
國立台灣大學電機資訊學院電機工程學系

博士論文

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

 National Taiwan University

Doctoral Dissertation

以軌跡資料剖析與倉儲進行物體移動行為分析

Trajectory Data Profiling and Warehousing

for Behavior Analysis of Moving Objects

吳蕙如

Huey-Ru Wu

指導教授：陳銘憲 博士

Advisor: Ming-Syan Chen, Ph.D.

共同指導教授：葉彌妍 博士

Co-advisor: Mi-Yen Yeh, Ph.D.

中華民國 102 年 8 月

August, 2013

Trajectory Data Profiling and Warehousing for

Behavior Analysis of Moving Objects

Huey-Ru Wu

Advisor: Ming-Syan Chen, Ph.D.

Co-Advisor: Mi-Yen Yeh, Ph.D.

Department of Electrical Engineering

National Taiwan University

Taipei, Taiwan, R.O.C.

August 2013

ii

Acknowledgement

I would like to take this opportunity to acknowledge all those people who have

provided me assistance throughout my doctoral work in these years.

First of all, I would like to express my gratitude to my advisor, Dr. Ming-Syan

Chen. Though concerned, he has allowed me to explore data mining and database

field in my own pace and has given me great freedom in choosing my research topic.

Meanwhile, he offers me timely suggestions when I faltered and wondered about my

next step, that always helps me find a way to keep on going.

Next, I am particularly grateful for the patient guidance and persistent help given

by my co-advisor, Dr. Mi-Yen Yeh. She spends time to discuss with me about my

developing ideas, helps me put my pieces of thoughts and parts of designs together,

and gives me constructive opinions as I tried to organize my work. Without the

support and guidance from my advisors, I could not complete my doctoral work.

In addition, I would like to thank the members of my Ph.D. defense committee:

Dr. Meng-Chang Chen, Dr. Chih-Wei Yi, Dr. Shou-De Lin, and Dr. Kun-Ta

Chuang. They have taken effort in giving me valuable comments and suggestions

on my earlier version of this dissertation.

I also want to thank my labmates in Network Database Laboratory in the Depart-

ment of Electrical Engineering, National Taiwan University. As a part-time student,

I rely a lot on their help and information sharing to keep up with the school matters

along these years. Special thanks go to Dr. Chih-Hua Tai, for her frequent kind-

ness experience providing, and Ms. Yu-Fen Chen, for her assistance in many school

administrative procedures.

Thing would not have been possible without the support from the managers

in my office, the Meteorological Information Center in Central Weather Bureau. I

would like to offer my appreciations to Director Shen and Director Cheng, they gave

iii

me permission and let me start my doctoral study while keeping my full time job.

And to Chief Huang and Chief Chang, they provide a lot of cares about my progress

along all these years.

I would like to extend my sincere thanks to my colleagues at work in Numerical

Weather Prediction Section. They help to cover those occasionally happened prob-

lems or temporary assignments of our application systems, when I left for school.

And they encouraged me to continue my doctoral work when I felt really exhausted

on trying to deal with both my office and school works at the same time.

Finally, yet importantly, I would like to express my deepest thanks and appre-

ciations to my beloved family members, especially to my parents. It is their uncon-

ditional love and undoubtedly confidence in me that makes me continue on going

and complete my doctoral work. I would never have reached this goal without their

endless support. Thank you, I will be grateful forever for your love.

iv

 v

摘要

近年來，發展出許多具有定位功能的設備，可以被運用於追蹤各種物體的移

動情況。這類工具蒐集到的大量而連續的位置及時間資料，足以描繪出各物體的

移動軌跡。這些物體移動軌跡資料中藏有豐富的移動行為訊息，值得進一步處理

並嘗試解析。在這篇論文中，我們鎖定以資料剖析與資料倉儲方式，由物體軌跡

資料中分析出他們的移動行為。

在物體移動分布的大範圍中，不同的小區域因其地理特性與時空條件，分別

呈現出物體於該區域中的移動行為。並且，在分析各群組物體移動路線的同時，

我們也同時關心其中的移動速度差異。於是，我們的目標訂在，由一組分布於大

範圍的物體移動軌跡資料中，找出這些物體在各小區域的典型移動行為。所找到

的區域典型移動行為，形成了對這組軌跡資料的剖析結果，可反映出該類物體的

移動型態與各區域的地理資訊。然而，物體移動當中，時有速度變化也常有方向

的改換，以致多個物體的共同行為不易由其移動軌跡中分析出。我們提出的

DivCluST 方法，同時考量了時間與空間的特性後，將軌跡資料進行切割與分群處

理，並從中得出資料剖析的結果。不同於只處理軌跡的空間特性，或只分析特定

小範圍區域的其他既存方法，DivCluST 可用於分析大區域範圍，並且在其切割的

步驟中，限制了各軌跡段落在時間上與空間上的變化，而在以 k-means 為基礎的

分群方法中，也同步量測兩軌跡段落的時間與空間距離。我們以數個真實世界中

的軌跡資料集，對所提出的方法進行了一系列的測試，並且設計將結果視覺化的

方式，以印證 DivCluST 可以有效的剖析物體移動軌跡。

在大量的物體移動軌跡被連續不斷收集的情況下，我們需要設計合宜的資料

結構，來長期存放移動行為相關資訊，以幫助訊息分析，並作進一步的處理與應

用。軌跡資料倉儲，可以有效率的濃縮摘要自物體軌跡中萃取出的移動模式，並

 vi

且可以提供模式查詢，幫助事件分析與進行決策。不同於轉換資訊為純統計值或

只專注在特定小區域的其他既存方法，我們設計了儲存各區域移動模式的軌跡資

料倉儲。首先是提出適合表現移動行為的資料存放格式，其中包含了行為所在位

置、移動方向、前進速度等。我們也規劃了完整的倉儲架構，以存放長時間下來

分析出的移動模式與其他相關資訊。我們使用兩階段的演算法，用以自軌跡資料

中萃取出移動模式，首先以在線處理方式摘要分布於廣大區域的定位資訊，然後

以多維度網格為基礎分析出移動模式。以不同精細度的單位網格為準設計的模式

運算工具，可以結合倉儲中的移動模式與其他資訊，回應各種可能的查詢需求與

幫助資料的長期維護。同樣的，我們實作了所設計的物體軌跡資料倉儲，並以數

個真實世界中的軌跡資料集，驗證了所提方法能有效且快速的進行物體移動行為

分析、模式儲存、也回應相關的資訊查詢。

關鍵字：物體軌跡、移動模式、軌跡分割、行為剖析、軌跡倉儲

Abstract

Nowadays, devices attached with position detecting techniques are used on many

places to track moving of objects. The collected time and position records, which

constructed moving trajectories of objects, are in huge amount. Among the object

trajectories, interesting moving behaviors are hidden and worth to be revealed

through some processing. In this dissertation, we focus on analyzing object moving

behaviors through trajectory data profiling and warehousing.

In an area where a set of objects moving around, there are some typical moving

behaviors of objects at different regions in respect to the geographical nature or

other spatiotemporal conditions. Not only paths that objects moving along, we also

want to know how different groups of objects move with various speeds. Therefore,

given a set of collected trajectories spreading in a bounded area, we are interested

in discovering typical moving styles in different regions of all monitored moving

objects. These regional typical moving styles are regarded as profile of the monitored

moving objects, which may help reflect the geographical information of observed

area and the moving behaviors of observed moving objects. However, an object

can move with various speeds and arbitrarily changing directions. The changes

cause difficulty in analyzing behaviors among object trajectories. Thus, we present

DivCluST, an approach to finding regional typical moving styles by dividing and

clustering trajectories in consideration of both spatial and temporal constraints.

Different from existing works that considered only spatial properties or just some

interesting regions of trajectories, DivCluST focuses more on finding typical regional

spatiotemporal behaviors over a large area. It takes both spatial and temporal

information into account when designing the criteria for trajectory dividing and the

distance measurement for adaptive k-means clustering. Extensive experiments on

three types of real data sets with specially designed visualization are presented to

vii

show the effectiveness of DivCluST.

With huge amount of object moving trajectories collected continuously and

boundlessly, we need a well designed data structure to analyze trajectory data and

keep moving behavior information for further processes and applications. A trajec-

tory data warehouse is an effective way to store organized moving patterns extracted

from object trajectories, and can offer efficient information queries for event anal-

ysis and decision making. Different from existing works that stored only statistic

values of trajectories or focused only on limited number of selected regions, we

present a trajectory data warehouse storing moving patterns spreading in all areas.

We design a proper data format for moving patterns to represent typical behav-

iors, containing main properties of trajectories, such as laying positions, moving

directions and forward speeds. Also, we propose a corresponding table schema

for keeping long-term moving patterns in our trajectory warehouse. A two-stage

algorithm is proposed to online process the incoming trajectory data over a large

area and extract the moving patterns from them based on multidimensional unit

grids. Operations on moving patterns and related tables, such as spatial position

relation and aggregation, based on multiple granularity of grids, are provided for

flexible query requirements and warehouse maintenance. Experiments on real-world

trajectory data sets show that our designs on storage and operations of trajectory

patterns make our trajectory data warehousing effective and efficient for moving

pattern analysis.

Keywords : object trajectory, moving pattern, trajectory dividing, behavior profiling,

trajectory warehousing

viii

Contents

Acknowledgement iii

Abstract v

Contents ix

List of Figures xi

List of Tables xiii

List of Algorithms xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Overview of the Dissertation . 3

1.3 Organization of the Dissertation . 6

2 Profiling Moving Objects by Dividing and Clustering Trajectories

Spatiotemporally 7

2.1 Introduction . 7

2.2 Related Works . 11

2.3 Problem Statement . 13

2.4 DivST: Spatiotemporal Trajectory Dividing 15

2.4.1 Spatiotemporal Trajectory Dividing Algorithm 16

2.4.2 Selection of Thresholds in DivST 19

2.5 CluST: Spatiotemporal Replacement Line Clustering 20

2.5.1 Spatiotemporal Line Distance 20

2.5.2 k-means Based Line Clustering Algorithm 24

ix

2.5.3 Profiling Moving Objects by Interpreting Trajectory Clustering

Results . 26

2.6 Experiment Results . 27

2.6.1 Three Sets of Real Trajectory 28

2.6.2 Profiling Results of DivCluST 30

2.6.3 Comparisons with Spatial-only and Temporal-only Profiling . 32

2.6.4 Analysis of DivST . 34

2.6.5 Analysis of CluST . 37

2.7 Summary . 41

3 Trajectory Warehousing for Multi-Granularity Moving Pattern Anal-

ysis 43

3.1 Introduction . 43

3.2 Related Works . 47

3.3 Preliminaries . 50

3.4 Extracting Moving Patterns . 54

3.4.1 Trajectory Consistency Dividing 54

3.4.2 Group Pattern Generating . 58

3.5 Warehouse Operations and Queries 62

3.5.1 Spatial and Temporal Operations 63

3.5.2 Aggregation and Warehouse Maintenance 65

3.5.3 Distinct Trajectory Estimation 67

3.5.4 Moving Pattern Queries . 69

3.6 Experiments and Evaluations . 71

3.6.1 Trajectory Sets and Pattern Extracted 71

3.6.2 Space and Time Analysis . 74

3.6.3 Operation Analysis . 76

3.7 Summary . 77

4 Conclusion and Future Work 79

4.1 Conclusion . 79

4.2 Future Work . 80

Bibliography 81

x

List of Figures

1.1 Observations about object moving behaviors and trajectories. 2

2.1 Illustration of DivCluST. 8

2.2 Output compared with main references. 10

2.3 Illustrations of data points and lines. 14

2.4 Illustrations of element lines L1, L2 passing the dividing criteria thlen

and thspd and being replaced by LR. 19

2.5 Illustrations of the two parts of shift distance. 21

2.6 Illustrations of equal shift distance. 21

2.7 Condition changes vary shift distances. 22

2.8 Zero shift distance cases: (a) ddp = 0, (b) dal = 0 23

2.9 Cases of zero speed distances: sLa = sLb
. 23

2.10 Illustration of mean line computation in CluST. 25

2.11 Information about real data sets. 28

2.12 Profiling results on typhoon track and corresponding spatial-only and

temporal-only comparisons. 29

2.13 Profiling results on bus trajectory and corresponding spatial-only and

temporal-only comparisons. 31

2.14 Profiling results on taxi trajectory data 32

2.15 The DivST parameter selection analysis. 34

2.16 Impacts of thlen for typhoon tracks profiling. 35

2.17 Impacts of thspd for typhoon tracks profiling. 35

2.18 Comparison of DivST and the approximate MDL. 37

2.19 CluST results with too large k. 37

2.20 CluST results with too small k. 38

2.21 Impacts of wsht and wspd on bus data profiling. 38

xi

2.22 DBSCAN parameters analysis on typhoon data. 39

2.23 DBSCAN representation lines on typhoon data. 39

3.1 Process of building trajectory data warehouse and related table schema. 53

3.2 Illustration of multidimensional grids and granularity. 59

3.3 Example of information loss in grid grouping. 62

3.4 Illustration of spatial domain operations. 65

3.5 Illustration of significant patterns on selected area. 72

3.6 Time spent in extracting moving patterns. 76

3.7 Results of pattern related operation on selected grid. 77

3.8 Analysis of pattern related operation. 78

xii

List of Tables

2.1 DivCluST : List of notations . 16

3.1 Summarizing information amount in pattern extraction processes . . 75

xiii

List of Algorithms

2.1 DivST: Spatiotemporal Trajectory Dividing 17

2.2 CluST: Spatiotemporal Line Clustering 25

3.1 Online trajectory consistency dividing 57

3.2 Multidimensional grid based moving pattern generating 59

3.3 Trajectory flow amount trace . 68

xiv

Chapter 1

Introduction

1.1 Motivation

Tracking movements of objects, such as human activities, animal migrations or

vehicle travelings, and learning about their behaviors interest people a lot. With the

development of position tracking techniques and the availability of related devices,

position records and their corresponding time instants of objects can be collected

easily. The continuously collected records of an object construct the object’s moving

trajectory. As huge amount of collected object moving records are available, many

studies are proposed to discover interesting information from object moving trajec-

tories in recent years. The topics include trajectory data clearing and prepro-

cessing [1] [2], trajectory data indexing and information retrieval [3] [4], similarity

measurement between trajectories [5], trajectory positioning quality and uncertainty

problem [6] [7], privacy preservation of trajectories [8] [9] [10], distinguishing special

activities from trajectories [11], analyzing specific types of trajectories [12] [13],

providing method for location-based services [14] [15], linking trajectories with

geographical data such as road or topographic maps [16], or visualizing trajectory

related information [17] [18].

Among various kinds of research topics related to trajectory data, we are specially

interested in analyzing moving behaviors of objects. A trajectory has both spatial

and temporal information, which describe moving paths and directions, and spent

times and speeds, respectively. We can infer the moving behaviors of objects from

these spatial and temporal information. From object moving trajectories, we observe

1

(a) Single trajectory passes through different

areas with different speeds.

(b) Various types of vehicles move with different

speed on one same road.

(c) Moving speeds and flow amounts on same road change over time.

Figure 1.1: Observations about object moving behaviors and trajectories.

that an object often moves in changing directions and speeds along a route. For

instance, a car would pass through different areas in a long route with changing

directions and different speeds as shown in Fig. 1.1(a). As a result, we want to find

out the changes of behaviors among different areas. We also observed that different

types of objects move differently on one same route. For example, various types of

vehicles may move with different speeds on a section of road as Fig. 1.1(b). So, we

should try to distinguish the difference of moving behaviors in an area via analysis.

Furthermore, we also noticed that even having same type of objects moving on one

same path, the moving speeds would be quite variant in different time periods. Say,

the moving speeds and flow amounts on one same road would be really different

between rush and off hours, and between workday mornings and evenings, as shown

in Fig. 1.1(c). Thus, trajectory analysis should also consider about the dynamic

moving behavior changes with time.

To reveal moving behaviors from trajectory data, there are several existing

methods. One method grouped similar parts of object moving paths, then swept

included members and constructed representation as a single new trajectory [19].

But various regional behaviors vanished during construction of one main trajectory.

The other focused on predefined interesting regions, and analyzed only about trajec-

tory behaviors over those limited regions [20] [21] [22]. However, we do not always

know enough about trajectory data and corresponding area to assign proper inter-

esting regions. Another type of works transformed trajectories to records in cells

2

they passed, and summarized behavior properties as statistic values [23] [24]. Yet the

statistics, such as summation or average, in cells cannot represent moving behaviors

well. Still others mapped trajectories to semantic data such as city maps, and inter-

preted the movings into real-world locations or else semantic descriptions to meet

predefined application requirements [25] [26]. The interpretations were application

dependent and limited other possibilities of further usage though.

We would like to reveal typical moving behaviors over all regions of the large

area where object trajectories spread, even without previous knowledge of the data

and the corresponding area. With a sketch of behaviors, we can understand general

moving styles of objects being monitored, such as animal migration in Autumn,

or downtown traffic during rush hours. In the mean time, an object almost never

moves in one single direction or with a steady speed through a long path, and

the corresponding moving trajectory is almost always in an irregular shape. With

many irregular shaped trajectories in a data set, though we want to find some

common moving behaviors among them, we can imagine the results of sketching all

trajectories in a figure would be a chaos and hardly any moving patterns can be

revealed. Moreover, as a trajectory is usually composed of many sampling positions

and the corresponding time instances, the amount of data to be processed is huge.

In this dissertation, we analyze object moving behaviors through trajectory data

profiling and warehousing. A trajectory profiling takes some algorithms or mathe-

matical techniques to discover patterns or correlations from large quantities of data.

We would like to use profiling to sketch the moving tendency and to understand the

moving behaviors of a set objects. After understanding moving behaviors through

profiling, we choose to warehouse the trajectory data for further analysis on moving

behaviors. Moving behaviors among trajectories from different time periods would

be extracted and kept as patterns in a long term. And regular formatted moving

patterns in a trajectory data warehouse can be used in various analytic processes.

1.2 Overview of the Dissertation

In moving behavior analysis, we care about not only the path an object moving

through, but also the time spent and the speed of its moving. Temporal information

3

like speed and time should be taken into account during moving behavior analyzing,

as well as spatial information such as areas where the object trajectory passed. In the

meantime, when an object moving through a long path, it is seldom in consistency

behavior from its start to end, both its direction and speed would change as moving.

Since moving behaviors of an object varies in different parts of a trajectory, the

behaviors should be analyzed separately. We would like to use profiling to sketch

and to understand typical moving behaviors among trajectories, while considering

in spatiotemporal information and analyzing moving of different trajectory parts.

Given a group of object moving trajectories in an area, and we know little

about the characteristics of trajectory data and the geographical conditions of their

corresponding spread area. We would like to analyze trajectories spread in large

area while revealing typical regional moving behaviors of the objects at the same

time. Therefore, we want to find typical moving behaviors through clustering similar

trajectories. Before clustering can work, we have to measure the distance between

any two trajectories first. Furthermore, in trajectory distance measurement, we have

to deal with irregular shapes and changing speeds of trajectories.

Thus, in Chapter 2, we propose DivCluST, an approach to automatically reporting

regionally typical moving behaviors over a wide bounded area. Both the spatial

and temporal properties of moving behaviors are considered during the process.

First, the non-uniform movement of a trajectory is dealt through dividing it into

uniformly behavior sub-trajectories, by examining the consistency of properties

on both spatial and temporal domains. Next, the typical moving behaviors are

extracted through clustering methods, while similarities between sub-trajectories

are measured spatiotemporally, and those ones with similar behaviors are clustered

together. By visualizing the cluster representations, we effectively present the profile

of given moving object trajectories. The moving behavior profile of an object type

can help understand moving tendency of this kind of objects. Also, the profile

provides a signature as typical moving of this type of object for further applications.

While the DivCluST profiles moving behaviors of object trajectories through

spatiotemporally dividing and clustering, it does not consider about changes of

moving behaviors in different time periods. Furthermore, while clustering methods

are effective in revealing similar behaviors among trajectory divisions, the arbitrarily

4

cluster sizes and distributing areas make the moving behavior sketch hard to be used

in further processes and comparisons. We would like to analyze long term changes

of object moving behaviors, compare their similarities or dissimilarities, and know

about representing value ranges of each extracted behaviors. Summing up the above,

a trajectory data warehouse is a proper choice for keeping new and aged moving

patterns extracted from trajectories in a long term, and for providing operations for

behavior analytic processes.

To build a trajectory data warehouse, we first have to decide the format of

moving patterns being stored. The format should be able to reflect object moving

behaviors, and allow pattern comparisons between different time periods. Next, the

data amount kept after extracting moving behaviors from large number of trajectory

points must be condensed, while the information loss ought to be constrained as well.

Finally, some special operations designed for moving patterns are required, in order

to help information retrieval from the warehouse and long term pattern maintenance.

Therefore, in Chapter 3, we store extracted moving patterns into a data ware-

house, which can summarize trajectory behavior information, keep new and aged

moving patterns, and meet the need of information retrievals, pattern comparisons

or further application requirements. The analytic process works on all area where

trajectory records spread, and then can provide a snapshot of moving behaviors

in a selected region, or can give a long term condition sketch of a spot. With

large amount of position and time records arriving and awaiting for moving pattern

extraction, an online algorithm is used for processing and condensing the informa-

tion. Meanwhile, to provide comparisons and further operations for moving behav-

iors, patterns are generated based on multidimensional unit grids, which regularized

the representing value ranges of pattern attributes. Afterward, pattern operations

with different granularity grids on spatiotemporal domains can help information

queries and application usages, and also help pattern summarizations. With these

operations, moving behavior template of an area or frequent moving style trend of

a spot can be found. Further more, with link to other spatial, temporal or specific

domain information in the data warehouse, various possibilities of analytic processes

are then provided.

5

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, DivCluST is

proposed to profile trajectory data, and to reveal typical spatiotemporal moving

behaviors of objects. Then, a trajectory data warehouse is designed in Chapter 3,

to extract moving patterns from trajectories and to provide operations for object

behavior analysis. In the final, works in this dissertation are concluded and possible

future directions are discussed in Chapter 4.

6

Chapter 2

Profiling Moving Objects by

Dividing and Clustering

Trajectories Spatiotemporally

2.1 Introduction

With the common use of tracking and positioning devices and the advance of mobile

communication technologies, a huge amount of trajectory data can be collected

almost anytime, anywhere. These trajectories are usually recorded with both posi-

tions and time-stamps, which denote the moving paths and speeds of objects being

tracked. For example, movement of different types of vehicles can be recorded with

the equipped GPS devices, travel paths of migrating animals are recorded by trans-

mitters worn on them, and tracks of typhoons are monitored by meteorological

satellites.

An object can move with various speeds and arbitrarily changing directions.

Given a bounded area where a set of objects moving around, there are some typical

moving styles of the objects at different local regions due to the geography nature or

other spatiotemporal conditions. Not only the paths that the objects move along,

we also want to know how different groups of objects move with various speeds.

For example, typhoons usually move faster after they develop over the tropical

oceans in low altitude regions but slow down when moving poleward or disappear

when hitting lands. In the main roads of a big city, a huge volume of vehicles

7

(a) Raw trajectories. (b) DivST results. (c) CluST results.

Figure 2.1: Illustration of DivCluST.

pass through them bidirectionally in a low speed during rush hours while only few

vehicles will pass through it fast in the midnight. Therefore, given a set of collected

trajectories spreading in a bounded area, we are interested in discovering the typical

moving styles in different regions of all the monitored moving objects. These regional

typical moving styles are regarded as the profile of the monitored moving objects,

which may help reflect the geographical information of the observed area and the

moving behaviors of the observed moving objects. For example, the profile of vehicles

moving in the downtown area of a city can be used to detect the road design flaws

in urban planning. The profile of animal migration can help us realize not only

the main walkable paths but also their habitual behaviors in different geographical

conditions. In this chapter, motivated by this need, we want to develop an automatic

approach to profiling the given set of moving objects by analyzing their trajectories,

namely to discover the profile of the regional typical moving styles of the moving

objects.

Wanting to know the intrinsic moving behaviors of the moving objects without

any prior knowledge about the geographic information of the area they moved

around, we need to deal with two main challenges. First, how should we extract each

group of moving objects that having the similar moving styles? This can be solved by

applying a clustering technique on the trajectories since it groups similar ones while

separating dissimilar ones. By identifying clusters with its representatives, we can

discover different moving styles while excluding the redundant information. As the

speed change, length of the moving path, and the directions are equally important,

we need to design a distance measurement that considers all these factors simultane-

ously, which is absolutely not a trivial process. Second, an important characteristic

of a trajectory is that its movement is not uniform in both the spatial and temporal

8

domains. For example, one can drive along one path with various speeds due to

different road conditions or speed limits. Therefore, we need a method to divide the

original trajectories into segments of sub-trajectories, each of which has little vari-

ations in both speeds and directions, before we can cluster them to find the typical

moving styles. The design of dividing criteria should consider both the spatial and

temporal information, while keeping the number of segments low.

To tackle the above problems, we develop DivCluST, an approach to finding

regional typical moving styles by dividing and clustering the trajectories in consid-

eration of both the spatial and temporal constraints. We use an example in Fig. 2.1

to illustrate our idea, where the set of raw trajectories is given in Fig. 2.1(a). In

essence, DivCluST is comprised of two phases: the DivST phase and the CluST

phase. In the DivST phase, the trajectories are divided into segments according to

both the given spatial and temporal criteria by a sliding window based method, such

that each divided sub-trajectory has little speed and direction variations and can be

represented by a replacement line. As shown in Fig. 2.1(b), different colors represent

different average speed of the replacement lines. Meanwhile, we keep the number of

segments as small as possible. The online dividing algorithm can deal with a large

number of trajectories streaming in with limited memory. In the CluST phase, where

a k-means based algorithm with a newly designed spatiotemporal distance measure-

ment for directional lines is applied. Through visualizing the cluster representatives,

each of which is also a line representing the overall position, speed (color), direction

(arrow), and member count of that cluster (line width), we can have a profile that

shows the regional moving behaviors of the area spanned by the given trajectory

set, as shown in Fig. 2.1(c).

Our profiling idea of finding typical moving styles is novel and different from the

main related research works as follows. First, most existing works of sub-trajectory

clustering such as TraClus [19] consider only the spatial information of trajecto-

ries, i.e., the physical position and the shape of trajectories, on both trajectory

segmenting and clustering. Also, the goal in [19] is to find one representative trajec-

tory describing the overall movement of each cluster found, where only paths with

significantly different directions will be revealed but some regional moving styles

were omitted. For example, on the same set of trajectories given in Fig. 2.1(a), we

9

(a) TraClus representatives. (b) Region of interest T-patterns.

Figure 2.2: Output compared with main references.

simulated the TraClus algorithm and illustrated the results in Fig. 2.2(a). Only two

clusters were generated by DBSCAN, of which the two representative trajectories

were found as shown in blue lines. We can see that two clusters of objects moving

shorter along the A→ B path, such as A→ F and A→ D, were missing. Moreover,

the speed differences between D → E and E → C or between F → C and E → C

were ignored. On the other hand, works such as [27] [20] only care the trajectories

or paths between the identified interesting locations. As illustrated in Fig. 2.2(b),

suppose only A, B and C were recognized as the interesting locations, the main

turning points in location D would be omitted. Also, the two paths A → D → C

and A→ F → C would not be distinguished as they spent similar time to pass.

To the best of our knowledge, we are the first to tackle the trajectory profiling

problem of a given set of moving objects, considering both the temporal and spatial

changes simultaneously. We make several contributions as follows.

• We propose a new way to look the collected trajectories and design DivCluST,

an approach to automatically reporting the regional typical moving styles over

a wide bounded area. By visualizing the cluster representative associated

with the physical location, speed, direction, and cluster size information, we

effectively present the profile of the given trajectories of the monitored objects.

• The profiling results on three real data sets can be found in Section 2.6.2.

Compared with the conditions that consider only the spatial or temporal infor-

mation of trajectories, we demonstrate the out-performance of DivCluST in

revealing the moving behaviors in Section 2.6.3.

• We design DivST to divide each trajectory into segments, each of which has

10

variations in both speeds and directions controlled to the user given criteria

and is replaced by a replacement line. Meanwhile, we guarantee to find the

minimum number of those replacement lines under the user given criteria.

Compared with the approximate MDL used in [19], we show in Section 2.6.4

that DivST has better processing efficiency when similar amount of replace-

ments are produced.

• We design CluST, a k-means based clustering method with an adaptive spatiotem-

poral distance function for two lines. In addition, we propose how to generate a

representative of a cluster, which is a directional mean line of all line segments

in that cluster. The analysis of the k selection, impact of different weights on

measuring the spatial and temporal distances, and the better effectiveness and

efficiency of CluST compared with DBSCAN are given in Section 2.6.5.

The remainder of this chapter is organized as follows. We discuss the related

work in Section 2.2. We introduce the problem statements and preliminaries in

Section 2.3. Our proposed approaches to dividing and clustering trajectories are in

Section 2.4 and 2.5, respectively. Section 2.6 presents the experiment results on real

data sets. We conclude our work in Section 2.7.

2.2 Related Works

Many traditional clustering methods are designed for spatially distributed data [28].

However, most of them are hard to apply on trajectory data directly due to the

uneven spatiotemporal characteristics along a trajectory. Non-trivial transforma-

tions or newly designed methods are often needed to process trajectory data [1]. For

example, previous works process the trajectories by the regression and probabilistic

methods [29], the hidden Markov model [30], or the polynomial approximation [31].

Instead of building models for trajectories in advance, other works handle trajectory

in a piecewise fashion with the hierarchical [32], indexed based [33], or distance based

methods [34]. All these works basically focus on clustering the whole trajectories.

In contrast to considering the whole trajectories, more and more works focus on

the characteristics of partial trajectories. For example, there are works detecting

region-of-interest from paths of moving objects [27] [35], and finding frequent patterns

11

[20] by defining popular points among trajectories. [36] calibrated trajectories consid-

ering their spatial relationships with pre-defined anchor points. There are also works

considering partial trajectory patterns on traffic networks in classification [37] and

pattern matching [38]. These works take only part of the trajectory data into

analyzing. In [39] and [40], the authors considered hierarchical clustering with

partial trajectory patterns. In [6], the authors mapped trajectories onto grid cells

and searched for top-k frequent routes. In [41], different transportation modes of a

human trajectory are partitioned by walk segments. In [19], the authors partitioned

a trajectory and changed it into line segments, and then clustered the lines instead.

These works generated or considered only majority patterns in a region.

While the time or speed information of moving behaviors is as important as

the positions, only few of trajectory clustering works take the temporal part into

consideration. However, the temporal information as time or speed are used only

for sampling fair trajectories [33], finding similar sub-trajectories in specified time

window [42], detecting interesting places [27], and distinguishing moving patterns

[20], but not on the clustering or the pattern finding process itself.

To extract regional characteristics inside trajectories, an important pre-process is

to divide them into desired segments. In order to divide the raw trajectories properly,

the work in [43], for example, computes the change of curviness among a trajectory.

In [19], a minimum description length method based on [44] was used to divide

trajectories by choosing a model that reaches the best tradeoff between the total

length of partitions and the sum of the difference from the raw trajectory. However,

the MDL method suffers from a high computation cost due to the repeated tradeoff

tests, which may not be suitable to deal with large amount of continuous incoming

trajectory data. Moreover, all the aforementioned trajectory dividing methods do

not take the temporal domain of the trajectory data into consideration.

Last but not least, the distance measurement between trajectories is very impor-

tant for trajectory clustering. When deciding the distance, many works measure

it by computing the point-to-point Euclidean distance [30], or by the Hausdorff

distance between two sets of data points [45], which simply computes the distance

between some representative points of trajectories. If we regard a trajectory as a

set of connected piecewise lines, measuring the distance between two trajectories is

12

to measure the line distances between them. To measure the line distance, some

works simply measure the Euclidean distance between the start and the end points

of two lines [38], which may overestimate the differences of forward directions and

line lengths. In [19] and [45], the authors proposed to use the line segment Haus-

dorff distance to measure the parallel, perpendicular and angle distances between

lines separately. However, this measurement was originally designed for pattern

recognition that aimed to detect patterns even under stretch and rotation. Thus, it

ignores the length difference and fails to reflect the direction change larger than 90

degrees. Furthermore, all of the aforementioned distance measurements do not take

the temporal domain into consideration either.

To the best of our knowledge, our work is the first one to take both the spatial

and temporal criteria into account for trajectory dividing, while clustering them

with a distance measurement designed in consideration of the spatial and temporal

information at the same time.

2.3 Problem Statement

Given a set of moving objects, we want to profile them by analyzing their accu-

mulated trajectories. To be more specific, we want to group those similar sub-

trajectories while separating dissimilar ones apart. The resulting profile should

reflect distinct moving behaviors over the regions passed by the objects. Intrinsi-

cally, a trajectory, composed of consecutive points with positions and time-stamps,

which may imply various speeds and directions in different parts, can be defined as

follows.

Definition 2.1 (Trajectory and element line). A trajectory is composed of a sequence

of N data points. Namely,

TR : {pt1, pt2, ..., ptN} = {(p1, t1), (p2, t2), ..., (pN , tN)},

where pi and ti indicate the position and corresponding recorded time of point pti,

respectively, and t1 < t2 < ... < tN . Two consecutive points constitute an element

line L : (pti, pti+1). Therefore, a trajectory can also be viewed as a sequence of

element lines. �

13

Figure 2.3: Illustrations of data points and lines.

If we treat each complete trajectory as an object and cluster them directly,

it is hard to find similar ones as each trajectory has various length and contains

different position and speed changes. Instead, it makes more sense to divide trajec-

tories into homogeneous characteristic partitions, while considering both the spatial

and temporal conditions, before any further processing. Therefore, we define the

following terms.

Definition 2.2 (Sub-trajectory). A sub-trajectory is a subset of a trajectory, a

part of consecutive data points in the trajectory. STR : {ptm, ptm+1, ..., ptq}, where

1 ≤ m < q ≤ N . Similarly, a sub-trajectory can be regarded as a set of consecutive

element lines. �

Definition 2.3 (Line, its direction and speed). A directional line L is composed of

two end points pts and pte as L : (pts, pte), where pts = (ps, ts) and pte = (pe, te).

With ts < te, we say its direction is from pts to pte, and its speed sL is defined as

sL = s(pts, pte) =
d(ps, pe)

(te − ts)
,

where d(ps, pe) is the non-negative direct distance between pts and pte. �

If some consecutive element lines of a sub-trajectory have similar speed and

direction characteristics, we can summarize them with a replacement line, which is

defined as follows.

Definition 2.4 (Replacement line). If a sub-trajectory is viewed as a sequence of

points in ascending chronological order, a replacement line is the directional line

connecting the point with earliest time-stamp and the one with latest time-stamp.

That is, the replacement line of STR : {ptm, ptm+1, ..., ptq} is L : (ptm, ptq). �

The illustration of data points and a line with direction along with the rela-

tionship between element lines and a corresponding replacement line is shown in

Fig. 2.3.

14

With the above definitions, we can state the two main problems studied in this

chapter.

Problem Definition 2.1 (Spatiotemporal Trajectory Dividing). Given a trajectory

TR, a spatial threshold and a temporal one, we would like to divide TR into a set

of sub-trajectories {STR1, STR2, ..., STRM} with an efficient algorithm. The divided

sub-trajectories must meet the following requirements: 1) the variation in speeds

(for temporal domain) and in directions (for spatial domain) of the element lines

in each STRi must be as small as possible, and 2) the number of generated sub-

trajectories, i.e., M , must be as small as possible. Each sub-trajectory can then be

replaced by a replacement line, and the whole set of replacement lines summarizes

the trajectory TR. Meanwhile, the dividing algorithm should be able to handle the

endless in-coming time-location data. �

Problem Definition 2.2 (Spatiotemporal Replacement Line Clustering). Given a

collection of replacement lines {L1, L2, ..., LO} generated from a given trajectory set

{TR1,TR2, ...,TRN}, we would like to cluster them into k clusters {C1, C2, ..., Ck}.

We want to adapt the k-means clustering algorithm and make it suitable for line

items, and design a spatiotemporal distance function for these line objects. In other

words, the line objects in the same cluster share similar speed and distribution char-

acteristics. Each cluster Cj is then represented by a mean line, which shows the

average position, length, direction, and speed information of the objects inside Cj.

The mean lines of all clusters then gives the summary of distinct moving types of

the trajectory set {TR1,TR2, ...,TRN}. �

To solve the two problems defined above, we proposed DivCluST. Through

comprising of the two phases, DivST for dividing trajectories and the CluST for

clustering replacement lines, the regional typical moving styles are profiled from

trajectory data. We summarize the notation used in this chapter as Table 2.1. We

shall elaborate on more details of the algorithm DivCluST in the following sections.

2.4 DivST: Spatiotemporal Trajectory Dividing

In this section, we shall introduce the design of spatiotemporal trajectory dividing

algorithm, DivST, which solves Problem Definition 2.1. To partition a long trajec-

15

Table 2.1: DivCluST : List of notations

TR {pt1, pt2, ..., ptN} Trajectory

pti (pi, ti) Data point

STR ptm, ptm+1, ..., ptq Sub-trajectory

L L : (pts; pte), where ts < te Directional line

dL d(ps, pe) Line length

sL s(pts, pte) = d(ps,pe)
(te−ts) Line speed

tory efficiently, we apply a sliding-window based algorithm that can online divide

a given trajectory, without suffering from loading in the entire trajectory at one

time and searching exhaustively for the global optimum partition of a trajectory.

Moreover, we want to provide the flexibility on controlling the number of gener-

ated replacement lines. In this way, our dividing method not only can generate

quality replacement lines but also can adjust the data amount to meet the resource

constraints such as limited memory space. We introduce the algorithm in Section

2.4.1 and give remarks on the threshold selection in Section 2.4.2.

2.4.1 Spatiotemporal Trajectory Dividing Algorithm

Essentially, given a trajectory, we start the test from its initial element line. Then, we

sequentially add each of the following element lines to form a new sub-trajectory, and

test whether the new sub-trajectory fulfills both the spatial and temporal criteria,

which would be explained later. If the inclusion of a certain element line, say Le,

fails to meet any of the dividing criteria, a replacement line is generated from the

sub-trajectory without including Le. Then, the same dividing test restarts from Le

to form next sub-trajectory and determine its replacement line. The spatiotemporal

trajectory dividing algorithm is shown in Algorithm 2.1.

How the spatial and temporal criteria work is the key of proper trajectory

dividing. In the spatial domain, as indicated in Problem Definition 2.1, the direc-

tion variation of each element line in a sub-trajectory is supposed to be as small as

possible. In other word, we want a replacement line to represent a sub-trajectory

containing element lines with similar directions. Our computation checks the length

difference between a replacement line and its corresponding sub-trajectory based on

16

Algorithm 2.1 DivST: Spatiotemporal Trajectory Dividing
Input: a trajectory TR : {pt1, pt2, ..., ptN}, dividing criteria thlen and thspd

Output: a set of replacement lines: L1, L2, ..., LM

Set start and end points of current sub-trajectory as m = 1, q = 2. that STRcurrent :

{pt1, pt2}

while m < N − 1 and q < N do

Test inclusion of next element line Le : (ptq, ptq+1) on the corresponding sub-

trajectory STRnext : {ptm, ..., ptq, ptq+1} and the candidate replacement line L :

(ptm, ptq+1) by dividing criteria thlen and thspd

if criterion (3.1) or (3.2) is not fulfilled then

Output L : (ptm, ptq) as a replacement line of STRcurrent : {ptm, ptm+1, ..., ptq}

Set m = q, q = q + 1

else

Set q = q + 1

end if

end while

Output the last line LM : (ptm, ptN)

the property of triangle inequality, the length of one edge of a triangle would be close

to the sum of the other two edges when an inner angle is close to 180◦ and the other

two are near 0◦. Since each divided sub-trajectory is replaced by a replacement line,

we may ensure a small direction variation of element lines inside a sub-trajectory by

examining the difference between the length of its replacement line and the length

sum of all its corresponding element lines.

Suppose the current sub-trajectory STRcurrent : {ptm, ptm+1, ..., ptq} has met the

spatial criterion, and the coming element line is Le : (ptq, ptq+1). We check the length

difference between STRnext : {ptm, ..., ptq, ptq+1} and the candidate replacement line

L : (ptm, ptq+1). Given the threshold thlen, if the following condition in (3.1) is met,

the coming element line Le : (ptq, ptq+1) would then be included. Then we renew

STRcurrent to {ptm, ..., ptq, ptq+1}, and continue the test on the next element line

Le+1 : (ptq+1, ptq+2). Otherwise, the replacement line L : (ptm, ptq) is generated and

the dividing test is restarted from Le, by assigning STRcurrent as {ptq, ptq+1} and

17

the next element line Le+1 as (ptq+1, ptq+2).

difflen∑q−1
i=m d(pi, pi+1)

< thlen, (2.1)

where difflen =
∑q−1

i=m d(pi, pi+1)− d(pm, pq).

In the temporal domain, we consider only the variance of forward speeds. To be

more specific, we want to ensure a replacement line can represent a sub-trajectory

containing element lines with similar speeds. We sum the speed difference between a

candidate replacement line and each element line contained in STRnext and normalize

the result by the total speed sum of each element line as in (3.2). Note that we use

speed, which indicates the forward moving measurement, rather than velocity, which

includes both speed and direction, since the influence of direction has been computed

in the spatial domain thlen.

diffspd∑q−1
i=m s(pti, pti+1)

< thspd, (2.2)

where diffspd =
∑q−1

i=m |s(pti, pti+1)− s(ptm, ptq)|.

To show how the designed spatial and temporal criteria (3.1) and (3.2) work, we

list three examples in Fig. 2.4. Suppose L1 and L2 are two element lines which span

equal time duration. We would like to check if it is acceptable to include them in

the same sub-trajectory and replace them by LR. Fig. 2.4(a) and Fig. 2.4(b) are two

conditions that would pass the spatial domain test in (3.1), while Fig. 2.4(a) and

Fig. 2.4(c) are two conditions that would fulfill the temporal domain criterion in

(3.2). For Fig. 2.4(a), the two element lines L1 and L2 have almost the same direc-

tion, so the sum of their lengths approximates to the length of LR. For Fig. 2.4(b),

although the direction difference between L1 and L2 is rather big, it can satisfy the

spatial dividing criterion since their lengths are also very different and the length

of L1 dominates the test. However, it would not satisfy the temporal criterion as

the speed variance is large between L1 and L2. In both Fig. 2.4(a) and Fig. 2.4(c),

L1 and L2 have similar speed value and pass the temporal test (3.2), the dividing is

then decided by the spatial criterion (3.1).

18

(a) thlen and thspd. (b) Only thlen. (c) Only thspd.

Figure 2.4: Illustrations of element lines L1, L2 passing the dividing criteria thlen

and thspd and being replaced by LR.

2.4.2 Selection of Thresholds in DivST

The goal of DivST is to generate a minimum number of replacement lines while

ensuring the lines to preserve as many spatiotemporal properties of the original

trajectory data as possible, as stated in Problem Definition 2.1. The goal can

be reached through a proper selection of thresholds thlen and thlen, to find the

balance between concision (quantity) and precision (quality) when dividing a given

trajectory data set.

A better precision can be reached by setting lower thlen and thspd such that the

differences of length and speed between a original sub-trajectory and its replacement

line would be smaller. However, by doing so, more replacement lines would be

generated, which increases the computation load of later steps. On the other hand,

suppressing the number of replacement lines sacrifice precision. Hence, we make

a proper selection of thlen and thspd through evenly taking both preciseness and

conciseness into account when dividing trajectories and generating replacement lines.

Regarding this, we propose the two measurements, Rprecise and Rconcise, defined as

follows.

Rprecise = (thlen + thspd)/2, and (2.3)

Rconcise = f(thlen, thspd) =
total replacement lines

total element lines
.

The Rprecise would be lower as thlen and thspd are smaller, which makes the criteria

more strict. On the other hand, Rconcise would be lower as the number of total

replacement lines decreased, which is reached by assigning larger thlen and thspd.

Thus, the decrease of Rprecise and Rconcise contradicts to each other by natural. To

make the best trade-off between precision and concision, we choose thlen and thspd

19

that derive the minimum sum of Rprecise and Rconcise as follows.

(thlen, thspd) = arg min(Rprecise +Rconcise). (2.4)

The best-fit criteria thlen and thspd can be determined heuristically by observing

the historical trajectories. They can also be adjusted dynamically to meet different

precise and concise requirements and produce line segments accordingly while intro-

ducing proper weights to the criteria in (2.3) and obtaining thresholds according

to (2.4). This shows DivST can provide better flexibility when dealing with huge

amounts of trajectory data under different available memory space or other computing

resources.

2.5 CluST: Spatiotemporal Replacement Line Clus-

tering

In CluST, we deal with Problem Definition 2.2 and cluster the replacement lines of

trajectories obtained from the DivST phase. As a replacement line is representing

those consecutive element lines with homogeneous speeds and directions inside a

trajectory, we do not need a special designed model-based clustering algorithm as

what [33] [29] [30] [31] [32] [34] do. Instead, we choose to use a typical clustering

method to find convex clusters of replacement lines that are similar in geographic

positions, lengths, directions, and speeds, then determine a representation for each

cluster. Under this goal, the density based clustering method perhaps is not a good

choice as it was in [19]. Although the density reachable idea makes it possible to find

a cluster with an arbitrary shape, it may include replacement lines that are in fact

quite different apart but connected due to the similar ones in-between. As a result,

we adapt the k-means idea, which is the most popular partition-based clustering

method in practice [46], to design our CluST method.

2.5.1 Spatiotemporal Line Distance

Measuring the distance between objects is the basis of a clustering method. We

propose that a proper line distance measurement should consider both the spatial

and temporal characteristics. As a result, the line distance function is constructed by

20

(a) Displacement distance. (b) Alignment distance.

Figure 2.5: Illustrations of the two parts of shift distance.

(a) Cases of equal ddp. (b) Cases of equal dal.

Figure 2.6: Illustrations of equal shift distance.

two major parts, the shift distance dsht and the speed distance dspd. The shift distance

measures the spatial difference between lines with its displacement and alignment

parts. In the meantime, the speed distance indicates the temporal difference of

two lines, which measures the variance between their forward speeds. Thus, the

spatiotemporal distance d(La, Lb) between a pair of lines La and Lb is as below.

d(La, Lb) = wsht × dsht(La, Lb) + wspd × dspd(La, Lb), (2.5)

where wsht and wspd are weights for the shift and speed distances respectively. The

weights can be adjusted to strengthen either of spatial or temporal information, or

to normalize the value range of different distance measure granularities used for the

two parts [47].

Shift Distance

Here we illustrate the spatial distance, measured by dsht, between two lines. When

taking one of the lines as reference base, the relative positions between two lines

can be described by three parts, the displacement between their start points, the

stretching or shortening of line length, and the rotation from the referenced line.

We compute the first part using the displacement distance, ddp, and the following

two together as the alignment distance, dal, as illustrated in Fig. 2.5. Note that L′a

and L′b in Fig. 2.5(b) are the result of shifting La and Lb in Fig. 2.5(a), and make

21

(a) Start positions: ddp1 < ddp2. (b) Lengths: dal1 < dal2 < dal3.

(c) Inner angles: dal1 < dal2 < dal3 < dal4.

Figure 2.7: Condition changes vary shift distances.

their start points virtually overlap at the same position.

The displacement distance ddp measures the geographic positioning difference [48]

between the start points of a pair of lines, defined as below,

ddp(La, Lb) = d(pas, pbs), (2.6)

where pas and pbs are the start points of lines La and Lb. There are possibly more

than one case having the same ddp, as shown in Fig. 2.6(a). Though their lengths

and directions are different, the distances between the starting points of two lines

in these cases are the same. In addition, according to (2.6), ddp increases as the

longitudinal or latitudinal displacement between the two start points on La and Lb

increases, as illustrated in Fig. 2.7(a).

The alignment distance dal is designed to estimate only relative length stretching

or shortening and the relative rotation between a pair of lines. It computes the

relative change between the end points of two lines, to avoid repeatedly estimating

the part that is already computed in the displacement distance, as illustrated in

Fig. 2.5(b). The alignment distance dal is defined as

dal(La, Lb) = d(p′ae, p
′
be) = d(pae − pas, pbe − pbs), (2.7)

where pae and pbe are the end points of lines La and Lb, and p′ae and p′be are the

new end positions of the shifted lines L′a and L′b. There may exist cases of line pairs

ending in the same virtually connected lines L′a and L′b, and getting the same dal as

shown in Fig. 2.6(b). The dal increases as the length difference gains or the inner

angle of La and Lb enlarges, as illustrated in Fig. 2.7(b) and Fig. 2.7(c). In addition,

some special cases of zero ddp and dal are illustrated in Fig. 2.8.

22

Figure 2.8: Zero shift distance cases: (a) ddp = 0, (b) dal = 0

(a) d(pas, pae) = d(pbs, pbe), tae − tas = tbe − tbs. (b) d(pas, pae) = 3d(pbs, pbe), tae−tas = 3(tbe−tbs).

Figure 2.9: Cases of zero speed distances: sLa = sLb
.

The shift distance dsht, comprised of ddp and dal, is defined as follows.

dsht(La, Lb) = ddp(La, Lb) + dal(La, Lb). (2.8)

Speed Distance

Here we illustrate the speed distance, measured by dspd, between two lines. dspd

computes the difference of forward speeds of a pair of lines, without considering

about their moving directions. The reason is that only the forward speed belongs

to the temporal domain. The direction is in fact a part of spatial domain and its

difference has already been considered in dal of the shift distance. The speed distance

is defined as below.

dspd(La, Lb) = |sLa − sLb
| =

∣∣∣∣d(pas, pae)

tae − tas
− d(pbs, pbe)

tbe − tbs

∣∣∣∣ . (2.9)

The speed distance is the difference of forward speed values between two replacement

lines, which is similar to the design of temporal dividing criterion thspd in Section

2.4.1. Note that dspd defined in (2.9) is independent of the absolute time-stamp

values of each replacement line. In this way, we can discover lines with similar

speed patterns across different time periods. Two cases of dspd equivalent to zero

are illustrated in Fig. 2.9, where the lengths, directions and time spent of the pair

of lines may all be different, but the speeds of the lines can be equal and make zero

speed distances.

23

Distance Function Analysis

The spatiotemporal line distance d(La, Lb) is measured by (2.5), which included two

components, dsht and dspd.

In shift distance dsht, base on (2.6), it displacement part ddp is computed as

ddp(La, Lb) = d(pas, pbs) = d((xas, yas), (xbs, ybs)) =
√

(xbs − xas)2 + (ybs − yas)2.

We can see that as (a − b)2 ≥ 0 is always true, ddp(La, Lb) ≥ 0 would also be

true. And ddp(La, Lb) = 0 happens only when xbs = xas and ybs = yas, which

indicating La = Lb. Also, as (b − a)2 would always equal to (a − b)2, we have

ddp(La, Lb) = ddp(Lb, La). Finally,

ddp(La, Lc) = d(pas, pcs) ≤ d(pas, pbs) + d(pbs, pcs) = ddp(La, Lb) + ddp(Lb, Lc)

would be met based on the triangle inequality property among three points, {pas, pbs, pcs},

in a space. From the above analysis, the displacement part ddp of shift distance is

a metric. Next, the alignment part dal as in (2.7) is computed by the distance

between relative end points p′e of line, where p′e = pe − ps. Thus, similar to the

analysis of ddp, dal also fits non-negativity, identity of indiscernible, symmetry and

subadditivity conditions required for a metric. In conclusion, dsht defined in (2.8) is

a metric, while both of its components, ddp and dal, are metrics.

As to dspd defined by (2.9), we can see both condition dspd(La, Lb) ≥ 0 and

dspd(La, Lb) = dspd(Lb, La) would always be met with the absolute value assigned in

distance. Next, as dspd is an absolute difference of two real numbers, by definition it

would meet triangle inequality function as |a− c| ≤ |a− b|+ |b− c|, while equality

holds if and only if a ≤ b ≤ c. However, according to our definition of sL, we would

get multiple possibilities of (pts, pte) pairs having the same sL, just as Fig. 2.9(b)

shown. Thus, dspd does not meet the identity of indiscernible condition of a metric.

In conclusion, dspd is not a metric, but is only a pseudo-metric.

2.5.2 k-means Based Line Clustering Algorithm

Here we show how k-means based idea is adapted to our clustering method, CluST.

First, CluST starts with k randomly selected replacement lines as initial cluster

24

Algorithm 2.2 CluST: Spatiotemporal Line Clustering
Input: a set of replacement lines: L1, L2, . . . , LM , number of cluster: k

Output: line clusters: C1, C2, . . . , Ck and k cluster means

Randomly choose k lines as the initial cluster means

repeat

for i = 1 to M do

Assign Li to the cluster with the closest mean line using the spatiotemporal line

distance function

end for

for j = 1 to k do

Update the mean line of cluster Cj

end for

until no new cluster assignment for any Li

return k clusters and their corresponding mean lines

(a) Average two end points. (b) Deal each property separately.

Figure 2.10: Illustration of mean line computation in CluST.

means. Then, it generates new partitions by assigning each of the remaining replace-

ment lines to its nearest mean using the distance measurement defined in (2.5). After

computing new mean of each cluster, CluST repeats the previous steps until no more

new assignment is needed. The algorithmic form of CluST is shown in Algorithm

2.2.

The next problem we are solving is how to decide the cluster mean of a group of

replacement lines. Since a cluster generated by CluST is a collection of directional

lines, its mean should also be a line with similar format that represents the temporal

and spatial attributes of all the cluster members, which are replacement lines. We

25

denote the mean of our line cluster as

Lmean : (pmean s, pmean e, smean),

where pmean s, pmean e are two end points describing the position of mean line and

smean is the average speed of cluster members, respectively. The initial idea of

obtaining pmean s and pmean e is to simply average the start ps and end pe positions

of every line in the cluster, as illustrated in Fig. 2.10(a), where the thin lines indicate

cluster members and the thick line is their mean. However, the length and direction

information of lines is blurred during the averaging process. Instead, we propose to

compute the mean line that preserve average position, length, direction and speed,

respectively, from all the members in a line cluster, as shown in Fig. 2.10(b). First

we compute the average center position cmean, average length lmean, and unit vector

amean for the direction of all line members Ln in a cluster C as follows.

cmean =

∑
Ln∈C (pns + pne)/2

|C|
, (2.10)

lmean =

∑
Ln∈C d(pns, pne)

|C|
, and

amean =

∑
Ln∈C ((pne − pns)/d(pns, pne))

|C|
,

where pns and pne are the two end points of Ln, and |C| is the number of lines in

cluster C. Then, the mean line Lmean is computed using (3.5) based on (3.4).

pmean s = cmean −
lmean × amean

2
, (2.11)

pmean e = cmean +
lmean × amean

2
, and

smean =

∑
Ln∈C sLn

|C|
.

2.5.3 Profiling Moving Objects by Interpreting Trajectory

Clustering Results

By properly interpreting the cluster means found out in CluST, we can profile the

given set of moving objects well. The output mean lines give an overall picture of

the original trajectory set with properties as their laying positions, spanning lengths,

stretching directions, moving speeds as well as the distribution densities of the input

trajectory data. We carefully design a method to visualize the clustering results and

26

demonstrate the characteristics of each cluster. Besides drawing the mean lines on

their related geographical positions and spans, we also put a mark on the end point

of each mean line to show their forward directions, use different colors to represent

the speeds and use line widths to represent the cluster sizes. Thus, the graph of

cluster means becomes a well profile that summarizes the moving patterns of given

trajectories.

To approximate a proper range of k, we can apply the cluster validation methods

such as those in [38] [49] [50] with the spatiotemporal distance defined here. We check

the range of k based on the inter-cluster and intra-cluster scattering measurements.

CDinter = min
1≤i,j≤k,i6=j

d(Lmean i, Lmean j), and (2.12)

CDintra =

∑
Ln∈C d(Li, Lmean n)

k × |C|
,

where Lmean n is the mean of Cn and 1 ≤ n ≤ k. A small enough CDintra and a

relatively larger CDinter are required for a proper k selection. And of course, to

get a more precise k, the parameter selection requires expertise of domain experts.

The profiling results are presented using the cluster mean lines. The results would

only reveal those significant and dominated spatiotemporal properties at smaller k’s

while some details would be omitted. On the other hand, more information would

be uncovered accompanying with more noise at larger k’s.

2.6 Experiment Results

We conducted extensive experiments on three different real trajectory data sets to

evaluate DivCluST, and to show their profiling results. In addition, we compared

the results of DivCluST with those considered only the spatial or temporal informa-

tion in the trajectory dividing phase and in the line clustering phase. Moreover, we

analyzed the impact of different thresholds in the DivST phase and different k in

the CluST phase. Finally, we implemented the MDL segmenting and the DBSCAN

method with our spatiotemporal line distance measurements to compare its trajec-

tory dividing and profiling results with ours. All algorithms were implemented in

C++ and the experiments were run with 2.5GHz CPU and 2GB RAM.

27

130 E125 E120 E115 E

18 N

20 N

22 N

24 N

original typhoon track
replacement lines

(a) Typhoon track and its division. (b) Bus/taxi data area Google map.

Figure 2.11: Information about real data sets.

2.6.1 Three Sets of Real Trajectory

The three real trajectory data sets we used for experiments were typhoon tracks,

bus and taxi trajectories. The first data set we chose to use was typhoon tracks over

the Western North Pacific, which is the area having the most typhoon activities.

The typhoon best tracks used for the experiments were data from year 1945 to 2007

offered by Joint Typhoon Warning Center [51]. The locations of each typhoon were

recorded every six hours from the time it formed till it disappeared. Therefore, we

gathered tracks of 1,830 typhoons with totally 53,075 records.

The second data set we used was the trajectories of city buses in Taipei. We

gathered two weeks of data during mid-March, 2010 from the Taipei city e-bus

system [52]. This system collected the GPS position data of all city buses on duty

around every 100 seconds. The bus trajectory data within several blocks in the

downtown area, as shown in Fig. 2.11(b), was selected for the experiments. We have

totally 3,296 buses, including 433 routes and 191,932 runs within 2,802,586 GPS

records for profiling.

The third data set was the GPS trajectories of taxis in Taipei. We used the data

recorded between 7-8 PM of the whole November, 2010 with the sampling rate be

one data point per second. We chose only data points that are located within the

same area as that chosen for the bus data. Totally 1,466,471 records were used for

experiments. We aimed to compare the profiling results of the taxi data, which may

have more erratic movements, to those of the bus data.

28

(a) Typhoon track DivCluST (k = 30, thlen = 0.15, thspd = 0.25)

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(b) S-only dividing and clustering.

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(c) T-only dividing and clustering.

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(d) S-only dividing and CluST.

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(e) T-only dividing and CluST.

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(f) DivST and S-only clustering.

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(g) DivST and T-only clustering.

Figure 2.12: Profiling results on typhoon track and corresponding spatial-only and

temporal-only comparisons.

29

2.6.2 Profiling Results of DivCluST

We first show the profiling results on the typhoon track data. We chose thlen = 0.15

and thspd = 0.25 according to (2.4) and thus obtained 7,269 replacement lines. One

sample of the divided typhoon tracks is shown in Fig. 2.11(a), where the two axes

in this and the following profiling result figures are their longitude and latitude.

More details about the threshold analysis of thlen and thspd will be given in Section

2.6.4. Fig. 2.12(a) shows the mean lines generated by DivCluST when k = 30.

Each mean line represents one cluster. In this and several following plots, the

speed, cluster size and forward direction of each mean line are represented with a

corresponding color, a proportional width, and a diamond mark respectively. To be

more specific, the colors varied from red to blue as the speeds of objects were from

fast to slow, while the lines were drawn wider as more replacement lines are contained

in one cluster. In Fig. 2.12(a), the DivCluST approach successfully revealed the

main moving behaviors of typhoons [53]. Typhoons over the Western North Pacific

typically move westward after developing over tropical oceans, which are shown by

the green lines in the bottom half of Fig. 2.12(a). Then roughly half of the typhoons

swing poleward around subtropical high, while most of the others move over to

lands. The speeds of typhoons decrease significantly when they are hitting lands or

recurving, which are indeed shown by the cyan short lines heading west or north

in the left part. When typhoons move far enough north, they are caught in the

westerly flow and curve to northeast. In middle latitudes, the forward speeds of

typhoons normally increase, which are clearly shown by the yellow and red lines on

the upper part of Fig. 2.12(a).

Next, we show the profiling results of the bus trajectory data. We chose thlen =

0.1 and thspd = 0.9 according to (2.4), and the bus trajectories were replaced by

535,932 lines. Similarly, we will discuss the choice of thresholds later in Section

2.6.4. We plotted the cluster means of k = 160 in Fig. 2.13(a). The clustering

results illustrated many representative characteristics of bus moving behaviors and

verified the effectiveness of DivCluST. By plotting the cluster means, we can see a

clear outline of the road network, of which the real road map is shown in Fig. 2.11(b).

We easily identified the main bus routes with the wider lines that obviously fall on

those main streets in the chosen area. The average speed of each cluster never

30

(a) Bus trajectory DivCluST (k = 160, thlen = 0.1, thspd = 0.9)

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(b) S-only dividing and clustering.

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(c) T-only dividing and clustering.

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(d) S-only dividing and CluST.

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(e) T-only dividing and CluST.

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(f) DivST and S-only clustering.

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(g) DivST and T-only clustering.

Figure 2.13: Profiling results on bus trajectory and corresponding spatial-only and

temporal-only comparisons.

31

Figure 2.14: Profiling results on taxi trajectory data

exceeded 40 km/hr, which is the limit of the city. In addition, there are close

parallel lines in opposite directions, showing those bi-directional bus routes. There

are also overlapped lines with different colors from red, yellow, green to cyan, which

implied the different speeds, from fast to slow, of bus movement under different

traffic conditions. We also notice some big blue spots that clearly showing the zero

speed of buses at the main bus stops or crossroads on their routes.

Third, we show the profiling results of the taxi trajectory data. We used the

same parameters as bus data in DivST, i.e., thlen = 0.1 and thspd = 0.9, and got

31,144 replacement lines after dividing. The results, with k = 160, were shown in

Fig. 2.14. Compared to Fig. 2.13(a), we observed the same main road networks

while many new lines appeared. These new lines indicated those road segments that

were never passed by buses. Meanwhile, since the movement of taxis were faster

and more erratic compared to buses, we observed more red color lines and various

short lines indicating some fast and irregular moving behaviors in Fig. 2.14.

The experiment results on the three real data sets, which locate in very different

geographic scopes and have distinct moving styles, well sketch their different regional

moving behaviors and successfully shown the effectiveness of DivCluST.

2.6.3 Comparisons with Spatial-only and Temporal-only Profiling

Here we show the importance of considering both of spatial and temporal prop-

erties when dividing and clustering trajectories. Focusing only on the spatial or

temporal domain cannot capture the whole picture of trajectory moving behaviors.

To compare with the results of DivCluST algorithm, we profiled the trajectory set by

using only the spatial or temporal criterion when dividing trajectories and measuring

32

only the spatial or temporal part of line distance when clustering the replacement

lines. In other words, we have the following settings. First, in spatial-only trajectory

dividing, we applied only the criterion (3.1) and ignored (3.2). In temporal-only

trajectory dividing, we used only the criterion in (3.2) and skip that in (3.1). Next,

we set wspd = 0 in (2.5) for spatial-only trajectory clustering, and wsht = 0 in (2.5)

for temporal-only trajectory clustering. Also, to be fair, we set the parameters thlen,

thspd, wsht, wspd and k the same as those in Section 2.6.2, if not specifically specified.

The results of dividing and clustering two real trajectory sets with only spatial

information were shown in Fig. 2.12(b) and 2.13(b). The cluster mean lines were

with much less speed variety (in much similar colors) comparing to those obtained

by DivCluST in Fig. 2.12(a) and 2.13(a). It is because here a long trajectory was

segmented only at significant direction change, while the speed changes along the

same direction were omitted. The condition was even more obvious on the bus

trajectory data. We observed many straight and long cluster mean lines, since the

replacement lines tended to be straight and long along roads, and were clustered

into one group even if their speeds were significantly different. Moreover, the stops

of bus trajectory shown as blue spots in Fig. 2.13(a) almost totally vanished in

Fig. 2.13(b).

The results of spatial-only trajectory dividing with regular CluST on two real

data sets were shown in Fig. 2.12(d) and 2.13(d). We observed similar phenomenons

as in Fig. 2.12(b) and 2.13(b). Only more speed variety was revealed as the clustering

phase considered the speed distance. We then show what if we divided trajectories

with DivST but clustering the replacement lines with only the spatial distance. The

results were in Fig. 2.12(f) and 2.13(f). Although the outcome had a layout similar

to Fig. 2.12(a) and 2.13(a), we still lost some speed information as the clustering

phase grouped those replacement lines of different speeds but in close geographic

locations.

Next, we show the results when the spatial information was not considered in

either the dividing phase or the clustering phase. Fig. 2.12(c) and 2.13(c) show

the results of temporal-only dividing and temporal-only clustering. All the spatial

properties vanished so that we could not distinguish the spreads, lengths and direc-

tions of lines. Most of the mean lines was short because the clusters contained

33

0
0.25

0.5
0.75

1
0

0.25
0.5

0.75
1

0.25

0.5

0.75

1

1.25

th
len

th
spd

R
pr

ec
is

e
+

 R
co

nc
is

e

(a) Selection for typhoon track

0
0.25

0.5
0.75

1
0

0.5
1

1.5

0.5

0.75

1

1.25

1.5

th
len

th
spd

R
pr

ec
is

e
+

 R
co

nc
is

e

(b) Selection for bus trajectory

Figure 2.15: The DivST parameter selection analysis.

replacement lines of various positions and directions. Also, due to the lack of

counting in the spatial information, all the mean lines gathered together in the

middle of the observing geographic area after the average position computation in

(3.4). Although obtaining the speed variances between clusters, we lost all of the

important geographic properties.

Fig. 2.12(e) and 2.13(e) shows the results when we did temporal-only trajectory

dividing and CluST. The results revealed many small fragments with different speeds

distributing among different geographic regions. However, as the dividing phase only

had response to the speed change over trajectory, we lost most of the spatial moving

trend, which should be revealed by the length of the cluster mean lines. Also, most

of the road distribution information vanished in Fig. 2.13(e). In Fig. 2.12(g) and

2.13(g), we show the results when dividing trajectories with DivST but clustering

the replacement lines with only the temporal distance. As we can see, most of the

spatial information disappeared due to the clustering phase grouped replacement

lines with similar speeds no matter how far their real spatial distances were.

With the above results, we can see it is important to consider both of the spatial

and temporal information when analyzing the given trajectories. As a result, we

show that DivCluST can produce better profiling results.

2.6.4 Analysis of DivST

In this section, we first show the impact of different thlen and thspd in DivST followed

by the comparison with the approximate MDL method used in [19].

34

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(a) thlen = 0.075 (k = 30, thspd = 0.25)

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(b) thlen = 0.6 (k = 30, thspd = 0.25)

Figure 2.16: Impacts of thlen for typhoon tracks profiling.

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(a) thspd = 0.125 (k = 30, thlen = 0.15)

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(b) thspd = 1.0 (k = 30, thlen = 0.15)

Figure 2.17: Impacts of thspd for typhoon tracks profiling.

As we stated in Section 2.4.2, the threshold selection is a tradeoff between precise-

ness and conciseness according to (2.4). Therefore, we show the results of Rprecise

+ Rconcise over different threshold values on the two real data sets in Fig. 2.15.

Both wsht and wspd were set to one in this and all of the following experiments.

The minimum values were reached at quite different threshold settings in the two

types of trajectories. For the typhoon track data, as shown in Fig. 2.15(a), we

found that Rprecise + Rconcise reached its minimum when both thlen and thspd were

around 0.2 (thlen = 0.15 and thspd = 0.25). Both of the two thresholds were small,

which hints that the trajectory data under study changed steadily in both speed and

direction. In fact, a typhoon indeed rarely changes its speed or direction abruptly.

In the meantime, the minimum value of Rprecise + Rconcise for the bus trajectory

data was attained when thlen = 0.1 and thspd = 0.9 as shown in Fig. 2.15(b). This

hints moving paths of buses were smooth along the same roads (only with significant

changes when turning at crossroads), while the speeds could vary extremely between

moves and stops. This is why the selected thspd was large.

Here we show what would happen if we do not choose the thresholds as suggested

by conducting some experiments on the typhoon track data. Without specifying

35

specific values, we by default set all the parameters in the following experiments

the same as those used in Section 2.6.2. The clustering results are presented using

the same legends as those in Fig. 2.12(a). The profiling results of too small and

too large thlen (0.075 and 0.6, respectively) were shown in Fig. 2.16. Comparing

to the results in Fig. 2.12(a), with a too small thlen, the dividing phase was more

sensitive to minor direction changes and thus we lost the information of longer sub-

trajectories with similar forward speed and directions. For example, those cyan

lines are relatively short in the bottom of Fig. 2.16(a). With a too large thlen, on

the other hand, several green clusters at the low latitude area are longer in length

and have larger longitude spread than those of Fig. 2.16(b). The profiling results of

too small and too large thspd (0.125 and 1.0, respectively) were shown in Fig. 2.17.

As thspd decreased, the trajectory dividing phase would be more sensitive to the

speed variance. In Fig. 2.17(a), we see clusters of different speeds but all the mean

lines were short. It is because many short replacement lines were generated in the

dividing phase due to the small thspd. In contrast, when thspd was large as shown in

Fig. 2.17(b), most trajectories were not easily divided and we see many long cluster

mean lines. At the bottom of Fig. 2.17(b), there are many cluster lines with similar

speeds, comparing to Fig. 2.12(a). The above results verified what we discussed

in Section 2.4.2. We have to properly select thlen and thspd for effectively dividing

trajectories.

Next, we show how DivST can work better in dividing the trajectories when

compared with the approximate MDL method described in [19]. We selected trajec-

tories including up to 6,000,000 GPS points from the taxi data sets. We implemented

the approximate MDL method by adopting our spatial distance functions and adding

in the temporal measurements. The L(H), which described the compressed trajec-

tory, is defined as the summation of the lengths of all replacement lines, plus the

sum of dspd between each element line and its corresponding replacement line. As to

L(D|H), which described the difference between the compressed and the raw trajec-

tories, we use summation of dal between each element line and its relative portion

of the candidate replacement line, plus the sum of dspd between the two.

We show the accumulated processing time to divide whole trajectory set and

the generated line numbers from its first record to the last in Fig. 2.18(a) and

36

(a) Time consuming compare. (b) Generated line compare.

Figure 2.18: Comparison of DivST and the approximate MDL.

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(a) typhoon TR: k=200 (thlen=0.15,thspd=0.25)

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(b) Bus TR: k=400 (thlen=0.1, thspd=0.9)

Figure 2.19: CluST results with too large k.

Fig. 2.18(b), respectively. Under the proper threshold selection of DivST, where

thlen = 0.05 and thspd = 0.3, we can see the approximate MDL method was much

slower when similar numbers of replacement lines were generated. This showed

that DivST was able to get the same compression quality with a smaller time cost.

Moreover, as we mentioned earlier in Sec. 2.4, DivST had better flexibility to adapt

different compression ratios in consideration of the memory space limit.

2.6.5 Analysis of CluST

One main challenge of the k-means based clustering is the decision of k. Here we

discuss the impact of k on the profiling and provide some guidelines for choosing k.

Based on (2.12), k between 30 and 55 was recommended for the typhoon track

data, and k from 60 to 160 was suggested for the bus trajectory data. After we can

decide a range of k based on some clustering validation measurements as in [50],

the exact k selection should base on the domain expertise of the data. In our

experiments, for typhoon tracks, clusters should tell different parts of the moving

37

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(a) typhoon TR: k=10 (thlen=0.15, thspd=0.25)

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(b) Bus TR: k=20 (thlen=0.1, thspd=0.9)

Figure 2.20: CluST results with too small k.

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(a) wsht : wspd = 5 : 1

121.53 E 121.54 E 121.55 E 121.56 E
25.033 N

25.038 N

25.043 N

(b) wsht : wspd = 1 : 5

Figure 2.21: Impacts of wsht and wspd on bus data profiling.

characteristics along their paths of typhoons from low latitudes to high latitudes

and distinguish different patterns. For bus trajectories, the number of clusters must

be large enough to separate traffic on different segments of roads and distinguish

those with different speeds on one road.

Finally, we show the clustering results if too small or too large k was used in

Fig. 2.19 and Fig. 2.20 on both the typhoon tracks and the bus trajectories. When

k was too large as shown in Fig. 2.19, too many similar and close-by clusters were

generated, which gave us too many redundant information. On the other hand,

when k was too small, many basic typhoon track moving styles vanished as shown

in Fig. 2.20(a) while the bus routes that were originally on different roads were

grouped into one cluster as shown in Fig. 2.20(b).

The weights in distance function (2.5) can be adjusted to strengthen either of

spatial or temporal information. The impact of wsht can be shown by comparing

Fig. 2.13(a), Fig. 2.21(a) and Fig. 2.13(f), where the wsht : wspd = 1 : 1, 5 : 1 and

1 : 0, respectively. The speed diversity decreased as ratio of wsht increased, while the

generated clusters fit better into the real road network. In the mean time, the impact

of wspd is shown through comparing Fig. 2.13(a), Fig. 2.21(b) and Fig. 2.13(g), where

38

0
100

200
300

0
1000

2000
3000

0

100

200

300

MinLns (min. # of lines)Eps−neighborhood

of

 c
lu

st
er

 g
en

er
at

ed

(a) Number of cluster generated

0
100

200
300

0
1000

2000
3000

0

0.25

0.5

0.75

1

MinLns (min. # of lines)Eps−neighborhood

no
is

e
ra

tio

(b) Noise line ratio

Figure 2.22: DBSCAN parameters analysis on typhoon data.

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(a) 31 clus. (ε=2500, MinLns=5, 0.4% noise)

180 E160 E140 E120 E100 E

10 N

30 N

50 N

(b) 175 clus. (ε=750,MinLns=20, 19.6% noise)

Figure 2.23: DBSCAN representation lines on typhoon data.

the wsht : wspd = 1 : 1, 1 : 5 and 0 : 1, respectively. The speed diversity increased

as ratio of wspd got larger, while the generated clusters distributed more randomly

and the original road network was totally vanished when wsht = 0. With the above

observations, the wsht and wspd should be adjusted according to the importance of

the spatial and speed information.

Based on the same replacement lines generated by DivST, here we show the

impact of different clustering methods on the profiling results. We compare our k-

means based clustering method, CluST, with the adapted DBSCAN algorithm used

in [19] on the typhoon track data set. As discussed in Section 2.5, the model-based

clustering methods require a data-dependent design and thus we did not compare

those algorithms with ours.

For the adapted DBSCAN method, we tested a series of ε-neighborhood and

MinLns (originates fromMinPts in the DBSCAN method [54], which is the minimum

number of lines in our case) values, while using the same line distance defined in

(2.5). As the parameters ε and MinLns varied, we plotted the number of clusters

39

and the noise ratio (the ratio of lines that were not included in any cluster to the

total number of replacement lines) in Fig. 2.22. When we set MinLns small or set ε

large, the number of generated clusters was very small (less than ten). The density

reachable characteristic of DBSCAN, which tends to group lines spread over large

area, is inflicted on generating few but large in size clusters. Thus the large line

cluster cannot be interpreted simply by computing its mean. To solve this problem,

an additional afterward cluster sweep was used in [19], which took a lot of time

to compute the average coordinate whenever the number of line segments encoun-

tered was more than MinLns. On the other hand, although the generated cluster

number increased rapidly as ε-neighborhood was smaller, the noise line ratio also

increased fast as illustrated in Fig. 2.22(b), which would cause serious information

loss. Furthermore, k-means has O(n+k) memory cost and O(ntk) time complexity,

where n is the number of objects to be clustered, t is the iteration number. Usually

k, t� n, so the k-means-based method is more scalable and efficient in processing

huge amounts of trajectory data compared to DBSCAN, which has O(n2) complexity

in both time and space.

To be clearer about the clustering results of DBSCAN, we provided sample results

under two sets of parameter settings on the typhoon data in Fig. 2.23. First we

set ε = 2500 and MinLns = 5 so that the number of generated cluster is 31,

which is close to the cluster number, k=30, used in our CluST method in previous

sections. Under similar number of clusters, the profiling results of DBSCAN, as

shown in Fig. 2.23(a), lost some important regional characteristics compared to those

in Fig. 2.12(a). For example, the delicate turning points of trajectories vanished from

several large clusters generated by the density reachable property of the clustering

method (represented by those very wide short lines). To capture more details, we

used another settings: ε = 750 and MinLns = 20. The chosen ε was the average

intra-cluster distances in Fig. 2.12(a), while this MinLns caused a tolerable noise

ratio, 19.6%. The resulting cluster number was 175 and the corresponding cluster

mean lines were shown in Fig. 2.23(b). We can see that too many clusters were

generated, which missed our goal of finding distinct moving patterns with a clear

view.

The above results showed that the DBSCAN-based method was not suitable for

40

our goal to cluster sub-trajectories: to find convex clusters of objects with consistent

spatiotemporal properties, as we discussed in Section 2.5. In fact, our distance

function and the way of computing cluster mean lines were all designed in favor

of convex clusters. The DBSCAN method connects density-reachable objects into

one group and may included members spreading over large spatial area or temporal

differences, which can result in less consistent spatiotemporal properties. Thus,

the DBSCAN method was unfavorable to reveal the regional moving behaviors of

trajectories in our design. This explains why we chose the k-means based clustering

method in DivCluST.

2.7 Summary

In this work, we presented DivCluST, an approach to profiling a set of moving objects

by dividing and clustering their accumulated trajectories spatiotemporally. First,

DivST divided the trajectories and generated a proper number of replacement lines

while preserving their original spatiotemporal properties well, through the designed

spatial and temporal dividing criteria and the threshold parameter selections. Then,

CluST clustered the replacement lines based on the proposed spatiotemporal line

distance measurement in consideration of the differences between positions, lengths,

directions and speeds. With the specially designed mean line representation, the

clustering results can reveal the regional main spatiotemporal moving behaviors

of the given trajectory data set. Finally, we conducted extensive experiments on

three different real world trajectory data sets. The results showed that DivCluST

can effectively produce the profiles of moving objects and identify regional typical

moving styles from the trajectory data.

41

42

Chapter 3

Trajectory Warehousing for

Multi-Granularity Moving Pattern

Analysis

3.1 Introduction

Nowadays, various kinds of devices, equipping positioning techniques such as GPS,

are available for tracking objects at any time from anywhere. The tracked position

and time records of objects construct their moving trajectories. Huge amount of

object trajectories, such as vehicle movements or animal migrations, are collected.

Moving behaviors of objects are hidden in their trajectories. The behaviors worth

to be extracted from trajectory data for further analysis. Learning typical vehicle

moving speeds and traffic flow amounts in various sections can help analyzing and

improving road design or traffic control. Examining about animal moving patterns

can help checking species annually migration or environment changing conditions.

In order to find out worthwhile knowledge, some earlier works clustered or classified

trajectory data and found some meaningful information, such as main moving paths

[19], overall behavior sketches [55], or distinguishing object groups [40]. However,

these works only provided analysis mainly on static trajectory data and cannot

reflect the evolving change of moving behaviors.

As we know, object moving behaviors vary in different periods of time. For

example, moving speeds of vehicles in rush hours can be much slower than those

43

during midnight in downtown area. Traffic flow directions are often toward urban

area in workday mornings and back to suburb of city in the evenings. Animal

migration paths and spent times are influenced by different weather conditions they

encountered every year. Typhoon moving styles differ in Summer and Fall, which are

effected by the global climates. It would be interesting and meaningful to distinguish

and compare patterns happened in different periods of time. Also, more knowledge

can be extracted through analyzing moving pattern evolvement in a long term basis,

to know about the behavior changes and possible influences.

To organize trajectory information for long, storing the extracted moving patterns

into a data warehouse would be a good choice. Through systematically summarizing

trajectory data, a warehouse can provide long term storage for moving patterns, easy

information access through queries, and possible other applications that need online

analytic of object behaviors. A moving pattern should include static attributes, such

as representing amount, as well as spatiotemporal properties, like lay position and

valid time, for various possible applications. The application possibilities include

to build some moving behavior templates and use them for abnormal detection or

special event analysis, or to search for pattern changing trends and find temporal

relationships or predict possible next moving. The analytic ought to be provided on

any large or small area that trajectories spreading, or to process a snapshot in single

time period as well as analyze long term behavior condition of a location. Moreover,

using some further processes, we can find relations between moving patterns and

other spatial, temporal, or specific domain information.

Some existing trajectory data warehousing works focused on statistics over regular-

sized spatial cells [23] [24], amount of trajectories passing each cell and average values

of other properties like speed were recorded in the tables. In these cell-based work,

the moving paths, length spans, and various forward directions of trajectories could

not be shown by the kept information in corresponding data warehouse. The second

group of works reconstructed trajectories by simplifying them into a data point on

each visited region of interest (RoI) [21] [22]. Only information on the previously

defined regions were analyzed, and frequent patterns were stored in the data ware-

house. In these RoI-based works, trajectory behaviors outside previously selected

regions were ignored directly, which caused obvious information loss. Still another

44

group of works transformed trajectories into different kinds of semantic represen-

tations, such as streets or landmarks with descriptions, then kept the information

in a data warehouse [25] [26]. The semantic-based trajectory data warehouses were

mostly designed for specific applications. Each information format was defined to

fit the previously determined application, which limit the possibility of later usage

changing requirements.

Since a data warehouse system aims to support data analyzing and decision

making, the information stored in should be processed and transformed into a

general format. For a trajectory data warehouse, the first challenge is what char-

acteristics from raw trajectories should be kept in a generated moving pattern.

Information of moving such as length, direction and speed are hidden behind the

recorded positions and times. Also, spatiotemporal characteristics of trajectory data

are closely related to each other. For example, moving lengths are decided by posi-

tions and forward speeds goes with directions. Thus, these properties should be kept

as a set rather than be separately dealt with. We settle the moving pattern format

based on a directional line, which keeps position, direction and length of spatial

domain, along with speed and time information. Meanwhile, for easier pattern

processing, the representative value in each dimension of moving patterns should be

defined as a regular range.

The second challenge is how to extract moving patterns from raw trajectories

that are incoming boundlessly with a huge amount and spreading in a wide area.

To deal with continuous incoming trajectories, an online algorithm is needed to

process arriving data points and extract typical moving behaviors among them. The

behavior extraction helps eliminating redundant portions existed in huge amount of

original data. Moving patterns generated by format transformation are then stored

into the trajectory data warehouse. We would like to reveal moving patterns from

each period of time and include all areas where the trajectories spread. Unlike some

earlier works focused only on some predefined regions, we believe behaviors from all

trajectory spreading areas worth being revealed. Interesting information may not

always happen on known regions, while we do not always know enough to decide

where are important in overall area. Furthermore, the process of pattern extraction

should meet the requirements of their format and predefined attribute ranges.

45

The third challenge is design of trajectory data warehouse schema and its related

operations for queries or other processes. The table schema in trajectory data ware-

house should fit the format of moving patterns and allow their related information to

be stored. Query operations designed for spatial and temporal properties are helpful

to deal with the moving pattern retrievals. Also, as both new and aged behaviors are

kept in the warehouse, moving pattern updating process for long term maintenance

is required. Furthermore, since different part of a trajectory may be included in

multiple patterns appearing in a large area, we need a method to estimate distinct

objects that contained in patterns relating to an area. With pattern operations and

other related information integrated in the data warehouse, we can analyze and use

the moving patterns in various applications.

In this work, we choose to build our trajectory data warehouse based on extracting

typical moving patterns of overall object trajectories. The original trajectories are

online processed and examined about their consistency in directions and speeds with

spatiotemporal criteria, which work with the thresholds on changes between each

pair of consecutive position and time records. After dividing trajectories according

to the criteria, direction and speed consistent segments can be transformed into

replacement lines. The lines remain to contain direction and speed properties of

original trajectory divisions and constraint the space requirement in the meantime.

After a period of time, the collected replacement lines are processed, and typical

moving behaviors among them are summarized into group representation lines.

The behavior extraction process works on regular-sized multidimensional grids, and

group representation lines are transformed into moving patterns if the corresponding

grids contain enough amount of replacement lines. Using regular-sized grids helps

constraint the property differences in each group and limit the information loss of

generated patterns, and make the design of pattern operations of data warehouse

more straight forward. After all the above steps, moving patterns and related infor-

mation are kept in the trajectory data warehouse.

Since moving patterns storing in the data warehouse still keep their spatial and

temporal properties, the available query styles are no longer limited on checking only

average statuses of trajectories in a cell, or only focusing on limited regions as earlier

works. The moving patterns starting from, ending in, or passing through different

46

areas, and happen during different time periods can all be checked separately or

mixed in respond to query requirements. Which includes, simple queries focusing

on one or multiple attribute values, like searching for patterns moving faster than

a speed or having members above certain amount. And advanced queries process

on spatial and temporal domains, through analyzing patterns included in an area

and a period of time. Furthermore, series changes of moving behaviors or frequent

patterns over a long period can also be queried. Through aggregation operation

on space or time dimensions with different grid granularity, pattern summarization

and aged pattern maintenance can be done in an efficient way. With the records of

trajectory flows, distinct trajectory amount including in queried patterns can also be

properly estimated. The data warehouse can further include other spatial, temporal

or specific domain databases, and provide variety of analytic processes related to

moving patterns.

The remainder of this Chapter is organized as follows. We discuss the related

works in Section 3.2. Then we introduce preliminaries of work and several definitions

in Section 3.3. Our proposed approach to extract moving patterns from trajectories

is described in Section 3.4. The warehouse queries and operations are illustrated in

Section 3.5. Section 3.6 presents the experiment results and analyzes the algorithms

and operations on real data sets. We conclude our work in Section 3.7.

3.2 Related Works

Trajectories need to be processed and transformed, before the information from raw

data set is ready to be stored into a data warehouse. Among the existing trajectory

data warehousing works, there are three major groups of design ideas. One is cell-

based, the other is RoI-based, and still another is semantic-based trajectory data

warehouse.

A cell-based trajectory data warehouse mainly focused on checking the amount

and averaged properties of trajectories passing over each cell [23] [24]. These works

first reconstructed trajectories according to the uniform-sized cells they passed over.

Then numeric measures on the reconstructed trajectories are processed per cells and

stored in the warehouse. The aggregation operations worked as value summation or

47

averaging among spatial and temporal dimensions. [23] gave the steps of building

a cell-based trajectory data warehouse and [56] visualized it. [24] and [57] focused

more on the aggregation processes. In this group of data warehouses, the measures

worked only in each cell as sum amount or averaged values. The information repre-

senting is limited by the size and boundary of cell. The various directions and

speeds of trajectories passing the same cells cannot be presented separately, thus

would mislead the overall picture in an area where several object moving behaviors

intersects. Furthermore, the length spans or moving ranges of trajectories cannot

be shown by the measures in cells, which is quite a loss of original information.

Our work can keep more trajectory properties by allowing both speed and direc-

tion variances of an intersection area to be shown. Moreover, a line format moving

pattern can show more clear spatial moving conditions with its start, end positions

and length spans.

A RoI-based trajectory data warehouse cared about ”interested” regions much

more than the other areas [21] [22]. Before processing trajectory data, the interested

regions ought to be defined first. Then, each raw trajectory was reconstructed into a

sequence of RoIs, where the interested regions were passed by the trajectory. After

reconstructing trajectories, the data warehouse then recorded those found frequent

visited RoI sets. Related query operations of RoI-based warehouse mainly focused

on frequent visited region groups in [21]. Data reduction by selecting regions and

provide efficient querying via encoding regions in [58]. In a RoI-based trajectory

data warehouses, data points and moving conditions not happened in any interested

region were ignored directly. Though the space requirement was low as trajectories

being simplified to limited points, the information loss would be quite high. The

need of defining interested regions in advance would also require sufficient previous

knowledge over trajectory passing areas. Whether the interested locations are prop-

erly selected would influence the information quality of a RoI-based trajectory data

warehouse. Our design analyzes all of the trajectory spreading area, while patterns

would automatically be generated from frequent visited area. This can decrease

information loss and avoid improper selection of interested area.

A semantic-based trajectory data warehouse transformed trajectories into concep-

tual information according to specific application requirements. [25] [26] Trajectories

48

were recorded with moving characteristics like stop, move, begin and end. In some

works, records also mapped to geographical locations like city, lake, store, etc. As

trajectory paths were turned into semantic representations, the format had been

designed to fit a specific application. [59] transformed trajectory to a sequence of

spatiotemporal distances between consecutive spots. And [60] focused on trajec-

tory location management and transformed routes according to map. [61] focused

on combining domain and spatial ontology represented object activities and spatial

relationship of semantic trajectories. The information stored in a semantic-based

trajectory data warehouse is pretty condensed. However, before building a semantic-

based warehouse, the application scenario must be clearly sketched first. On the

other hand, our design provides a general solution which does not require scenario

sketch in advance, and is open for various kinds of application to be developed later.

There were also some other trajectory database works focused on several specific

targets. [62] generated spatiotemporal pattern for moving objects based on frequent

item set among groups. [63] aimed only on group-by operations of trajectories,

including overlap, intersection, or both. [64] partitioned the original trajectories

with regions and identified preferring directions in each. Then it encoded the

moving paths into tree structures, and provided for amount counting and querying.

[65] queried trajectories through filtering region search for approximated trajectory

segments using octagon bounding, then refined evaluation and additional conditions

trace. [66] sampled and modeled uncertainty via beads of trajectory, and provided

model based queries. [67] designed a database keeping past, current, future loca-

tion information of moving objects using grid based indexing, and supported point,

range and kNN queries. While this quite early work provided a full structure, it

could hardly deal with today’s huge amount of trajectory data.

Our trajectory data warehouse design stores patterns in format with attributes

properly representing moving behaviors. It covers all areas in which trajectories

spread, while it can also reveal the variance in a small region. Moreover, it can

shown moving between locations without defining them in advance. Last but not

least, it allows flexible future possibilities of application development.

49

3.3 Preliminaries

Our goal of this work is to build a trajectory data warehouse, which stores object

moving patterns extracted from raw trajectory data, and provides various moving

behavior sketches in response to different query requirements. Thus, we not only

have to design the structure of data warehouse and its related operations for pattern

query and maintenance, but also have to propose algorithms to extract moving

behaviors from raw trajectory data and to transform the information into patterns

which can represent the typical parts of the originals.

The process of moving pattern extraction for data warehouse starts from analyzing

raw trajectories of objects.

Definition 3.1 (trajectory). An object trajectory TR is composed of a sequence of

moving records, which are data points including positions and corresponding times,

pt : (p, t). �

Since each trajectory has various length and contains different direction and

speed changes, it is hard to define and measure similarity between whole trajectories.

Meanwhile, as positions and times are recorded with frequent interval, it cost much

to store all of the recorded data points and analyze them repeatedly in each query.

Instead, it makes more sense to summarize trajectories, and then try to find similar

moving behaviors from the condensed data, especially when trajectories are divided

into homogeneous direction and speed segments.

Definition 3.2 (Replacement line). When a segment of trajectory with consistence

speed and direction characteristics is divided, a replacement line is generated as a

directional line connecting from the point with its earliest time-stamp of the segment

to the one with latest time-stamp, and denotes as LR : (pts, pte). �

The LRs can now properly replace corresponding sub-trajectories and condense

the kept information. Through grouping similar replacement lines considering their

positions, lengths, directions and speeds, common moving behaviors among trajec-

tory divisions can be found.

Definition 3.3 (Group representation line). When certain amount of replacement

lines have similar moving behaviors, they become a group G. A group representation

50

line is used to represent all replacement lines included in the group, and denotes as

LG : (ps, pe, s). �

The extracted LGs, which representing common moving behaviors of sub-trajectories

in a group, need to be transformed into a regular format and kept for long as

patterns.

Definition 3.4 (Moving pattern). Each LG is transformed into a moving pattern,

which is described by properties of LG, including its start, ps, and end, pe, positions,

forward direction, −→a , span length, dL, moving speed, sL and the amount of group,

|G|, along with its valid time period. �

The moving patterns are stored along with other related information, such as

grouping parameters and time periods, in a data warehouse.

Definition 3.5 (Trajectory data warehouse). A trajectory data warehouse stores

current as well as historical moving patterns extracted from trajectories. The repos-

itory integrates information related to object moving patterns through extract, trans-

form and load, and can be used for data analysis and decision support. �

With the above definitions, we can now state the main steps, extract, transform

and load, of building a trajectory data warehouse.

In the extraction step, we convert incoming trajectory data into corresponding

line segments, which represent their moving behaviors, on-the-fly. For each given

TR, we would like to divide it into a set of sub-trajectories with spatial and temporal

dividing criteria. The criteria set thresholds on the variation of directions and

speeds, and are used to check a raw trajectory point by point. The dividing

algorithm processes the boundless in-coming position and time records online, and

generate LRs without the need of storing any raw trajectory point information for

long or parsing it twice.

In the transform step, extracted replacement lines are summarized and turned

into moving patterns. The LRs are analyzed per time period, and corresponding

LGs of each period are generated based on regular-sized multidimensional grids,

and transformed into moving patterns. We propose how to find common behaviors

from LRs, and how to generate LGs. Meanwhile, the information included in a

51

pattern is constrained by a multidimensional grid, thus has limited uncertainty and

information loss.

In the load step, moving patterns extracted and transformed from trajectories

are stored in the trajectory data warehouse. The table schema is designed to fit the

pattern generating steps, and the attributes are for outputs of each part, as shown

in Fig. 3.1. Before moving patterns are generated, table divide check keeps the

latest trajectory check conditions and table replacement line keeps the extracted

behaviors. These two tables only keeps information temporarily during processes of

pattern extraction.

Next, characteristics of a moving pattern, including position, length, speed, direc-

tion, time and amount of representation lines, are stored in table moving pattern

along with its time period identity after transformation. Then, table time grid

registers the start and end time of each period and its corresponding granularity level

of a multidimensional grid. Group extraction in each time period uses regular param-

eter ranges defined previously for different grid granularity. The related parameter

ranges of different granularity level for each grid dimension are saved in table grid

unit, which keep basic unit records and decides element grids. These parameters

can be used for historical moving pattern maintenance as well as query operations.

In table flow trace, the flow amounts from group to group are recorded through

tracing the belonging groups of originally continuous replacement lines. The flow

information is used to help distinct trajectory estimation when querying patterns

from a larger area.

The data warehouse table schema is designed to deal with online analytic processing,

as well as to keep long term information. So the schema need to be designed as easy

use for both continuous record insert and historical maintenance update. Beyond

simple value queries, some operations which specially focusing on the spatial and

temporal properties are needed for well analyzing moving patterns, since a moving

always happens during some time and in some area. The aggregation operation

worked on one or several dimensions also need to be designed, in order to help

summarize queried moving patterns and maintain historical patterns. Still another

computation need to be tackled on is distinct trajectory flow amount estimation.

Which is to measure the amount of replacement lines in different patterns of an area

52

Moving pattern

Group ID

Forward direction

Move speed

Group amount

Time period ID

Line length

End position

Start position

Grid unit

Dimension end

Basic granularity

Dimension start

Granularity level

Dimension

Time grid

Time period ID

Period end time

Period start time

Granularity level

Object data

Trajectory ID

Time

Position

Divide check

Min speed

Time spend

Trajectory ID

Sum length

Average speed

Max speed

Previous line ID

Check length

Latest position

Start position

Flow trace

From group ID

Time period ID

Flow amount

To group ID

Replacement line

Belong group ID

Previous line ID

Line ID

Forward direction

Move speed

Time period ID

Next-line group ID

Line length

End position

Start position

Divide criteria

Speed threshold

Length threshold

Devices collect
object records

Trajectory divide
with criteria

Replacement
lines extract

Representation
lines generate

Load patterns
for query

and application
Moving patterns
into warehouse

Figure 3.1: Process of building trajectory data warehouse and related table schema.

53

originated from same trajectories.

Other related spatial, temporal or else domain specific information can also be

stored into the trajectory data warehouse, and used in advanced information analysis

and further applications. Such as geographical maps for semantic transformation of

patterns, weather reports for moving behavior change under different condition, or

road incident lists for afterward influences of car accidents or traffic controls.

3.4 Extracting Moving Patterns

We want to build a trajectory data warehouse which stores moving patterns extracted

from objects’ continuous position and time records. Objects move from locations to

locations with various pathes, directions and different speeds. Thus, it is hard to

measure similarity between irregular-shaped whole object trajectories. So, we decide

to divide the original trajectories into segments of direction and speed consistency

sub-trajectories. Then, search for similar moving behaviors among the divisions.

Afterward, we transform the common moving behaviors among sub-trajectories into

moving patterns.

To extract moving patterns, we have to deal with huge amount of continuously

and boundlessly incoming data points, and condense the size of stored information.

In the mean time, the extracted moving patterns should preserve major moving char-

acteristics of original trajectory data. We propose a two-stage process to transform

the raw data into condensed and meaningful moving patterns for the trajectory data

warehouse. In stage one, we deal with arriving data points of trajectories simulta-

neously and on-the-fly, through evaluating the consistency of incoming points and

generating replacement lines from divided sub-trajectories. In stage two, we deal

with the replacement lines, by processing to reveal similar ones and generating

moving patterns. These steps both condense the information amount to be stored

into the trajectory data warehouse.

3.4.1 Trajectory Consistency Dividing

In the first stage of moving pattern extraction, we divide each trajectory into direc-

tion and speed consistency sub-trajectories. Then the divisions of trajectories are

54

transformed into replacement lines, which can efficiently limit the storage space

requirement and provide regular format data for further processing. We adapt the

trajectory dividing method used in Section 2.4, with some modifications in the

criteria setting to make it parse each data point record only once. We also update

Algorithm 2.1 to process data points from multiple trajectories at the same time.

The incoming data points are dealt as soon as they arrived and simultaneously. The

corresponding trajectory records in temporary table divide check are updated,

and then the continuously arriving data points can be dropped without being saved.

Once a newly incoming data point fails to meet the consistency check, the trajectory

is divided and a replacement line is generated, then recorded into temporary table

replacement line for next stage of process.

We propose a modified version of spatiotemporal criteria to check the consistency

among continuous data points of a trajectory. The distance dividing criterion, thlen,

as (3.1) is used to measure the length difference ratio between element length sum

of current trajectory, dsum, and related candidate replacement line, dchk.

dsum − dchk
dsum

< thlen, (3.1)

where

dsum =
e−1∑
i=s

d(pi, pi+1), and

dchk = d(ps, pe).

d(pi, pi+1) in (3.1) is the geographical distance between pi and pi+1.

On the other hand, the speed dividing criterion, thspd checks the largest variation

of speed among current trajectory through tracing the maximum speed, smax, and

minimum one, smin, between each pairs of continuous data points, and work as (3.2).

smax − smin

savg
< thspd, (3.2)

where

savg =

∑e−1
i=s s(pti, pti+1)

e− s
,

smax =
e−1

max
i=s

[s(pti, pti+1)], and

smin =
e−1
min
i=s

[s(pti, pti+1)].

55

s(pti, pti+1) in (3.2) is moving speed between two data points, computing as d(pi, pi+1)/(ti+1−

ti).

In order to deal with large amount of incoming trajectory data points, the

dividing algorithm is designed to work online with minimum information kept. When

first point pti1 of trajectory TRi arriving, a corresponding record is set up. The

attributes of record TRi are initialized in table divide check as follow. Both of

the start ptis and end ptie points of candidate LR are assigned as pti1. Then record

attributes dsum = dchk = 0 and ∆t = 0, while smin = smax = savg = NULL.

As pti2 arriving, pte is assigned as pti2, and update dsum = dchk = d(pi1, pi2),

smin = smax = savg = s(pti1, pti2), and ∆t = ti2 − ti1.

As more data points of TRi arriving, the spatial and temporal criteria are tested,

and corresponding actions are taken according to the results. The newest element

line LE : (ptie, pti(e+1)) is used to test criteria (3.1) and (3.2) with reference of

attributes in record TRi, where dsum = dsum + d(pie, pi(e+1)), dchk = d(pis, pi(e+1)),

savg = (savg ∗(e−s)+s(ptie, pti(e+1)))/((e+1)−s), smax = max[smax, s(ptie, pti(e+1))]

and smin = min[smin, s(ptie, pti(e+1))]. When both criteria are met, attributes computed

above are updated into record TRi. Then, pti(e+1) replaces ptie, and renews ∆t =

ti(e+1)−tis. If any of the criteria is not fulfilled, a new replacement line LR : (ptis, ptie)

is generated. Record TRi is reset as ptis = ptie, ptie = pti(e+1), dsum = dchk =

d(pie, pi(e+1)), smin = smax = schk = s(ptie, pti(e+1)), ∆t = ti(e+1) − tie, then wait for

the next data point incoming.

The full steps of dividing raw trajectory into spatiotemporal characteristic consis-

tency segments is shown in Algorithm 3.1. This online algorithm takes O(1) compu-

tation as each data point arriving. The space requirement for table divide check

is O(n), where n is the total number of trajectories having data incoming in the

time period. The extracted LRs are stored into table replacement line for next

stage process.

In the dividing stage, some detailed moving information are eliminated while a

trajectory is substituted with several replacement lines. The maximum information

loss is controlled in a fixed ratio by the given thlen and thspd as dividing criteria.

When dealing with a more sensitive trajectory data, smaller thlen and thspd can be

used to constrain the information loss. Meanwhile, given larger thlen and thspd can

56

Algorithm 3.1 Online trajectory consistency dividing
Input: incoming data points of trajectories, ex. ptin of TRi, dividing criteria thlen and

thspd, defined time period TID

Output: a set of LRs for table replacement line

while new ptin arriving during time period TID do

if record TRi not exist then

Add record TRi

Initialize attributes of record TRi, with pti1 and

Set start and end points of candidate LR : (ptis, ptie) as s = e = 1

else

Test new element line added LE : (ptie, pti(e+1))

if criterion (3.1) or (3.2) is not fulfilled then

Output LR : (ptis, ptie)

Set s = e, e = e+ 1 for candidate LR

Reset attributes of record TRi

else

Set e = e+ 1 for candidate LR

Update attributes of record TRi

end if

end if

end while

After time period TID ended

while exist record TRi with s 6= e do

Output the last line LR : (ptis, ptie)

Delete record TRi

end while

57

decrease the amount of extracted replacement lines. There is a trade off between

information loss and data amount to handle in the following processes. As discussed

in Section 2.4.2, thlen and thspd should be decided through testing sample trajectory

data and consider about available storage space.

3.4.2 Group Pattern Generating

In this stage, we process for revealing similar moving behaviors from replacement

lines prepared in previous stage. The LRs are distributed in large area with various

lengths, directions, speeds, and are summarized per period of time. Clustering lines

with similar properties, like in [19] or [55], is the first idea for revealing moving

patterns. However, with typical clustering methods, the areas covered by clusters

are often with quite different sizes. The large variances inside a cluster, in positions,

speeds or others, are not bounded by a fixed value. In the mean time, without

regular sizes, the distribution of clusters would be varied in different periods of time,

and would cause limits on pattern comparison and processing. Furthermore, while

operations as aggregation are needed in a data warehouse for query and maintenance,

the moving patterns generated should be formatted in a regular base. Thus we

decided to adapt the uniform cell idea from [24], and extend it into multidimensional

unit grids.

Definition 3.6 (Unit grid). A unit grid, gdu, is decided with predefined basic gran-

ularity in each dimension. The value range of each dimension is sliced into equal

parts. Then the units of dimensions format corresponding regular size grids. �

A unit grid constrains the ranges of attribute values inside a group. The possible

attribute variance ranges between members in a group is limited by its basic gran-

ularity. We illustrate the dimensions of grids in Fig. 3.2, which shows the basic

granularity in spatial domain (x, y), temporal domain t, length dL, direction −→a ,

and speed s. The unit grids provide more straight forward way for aggregation

and other moving pattern operations, without a need to deal with changing prop-

erty ranges in any dimensions between patterns. Furthermore, the information loss

during generating moving patterns is constrained by the assigned grid granularity,

and can be clearly measured. Through periodically processing information in table

replacement line, the group pattern extraction goes as Algorithm 3.2.

58

Figure 3.2: Illustration of multidimensional grids and granularity.

Algorithm 3.2 Multidimensional grid based moving pattern generating
Input: a set of LRs from table replacement line, a set of unit grid gdu in the space

Output: a set of records for table moving pattern

for each gdu do

Count LRm lay in the grid

if criterion (3.3) is met then

Compute LG

Transform LG to moving pattern

Add pattern record into data warehouse

end if

end for

59

The replacement lines extracted in stage one are input of stage two along with

the unit grids for moving pattern extraction. In this stage, similar LRs are grouped

together when they lays in the same gdu. An minimum line amount is used to decide

whether a group should be generated in this gdu. Then the group representation

line LG is computed from LRs in the grid. The LGs generated are transformed into

regular moving pattern format and stored in the trajectory data warehouse. We

choose to keep the amount of objects of a group, |G|, instead of any member lists,

in a pattern. For we want to focus on the general moving behavior of objects, not

to specifically deal with any single object trajectory.

The minimum line amount is designed to select moving patterns. Infrequent

moving behaviors should not be recorded as patterns. We set the criterion as

|G|
|LR|

> thamt, where LR happen during T, (3.3)

where T is the time period under processing, |LR| is the total amount of LRs gener-

ated in this period. As (3.3) is met, the group representation line LG are computed

basing on LRs following (3.4). The LG computation find the mean length, direction

and center of LRs, along with (3.5), which decide the start, end points and speed of

LG.

cLG
=

∑
LR∈G (pLR,s

+ pLR,e
)/2

|G|
, (3.4)

lLG
=

∑
LR∈G d(pLR,s

, pLR,e
)

|G|
, and

aLG
=

∑
LR∈G ((pLR,e

− pLR,s
)/d(pLR,s

, pLR,e
))

|G|
,

where pLR,s
and pLR,e

are the two end points of LR, and |G| is the number of lines

in group G.

pG s = cLG
− lLG

× aLG

2
, (3.5)

pG e = cLG
+
lLG
× aLG

2
, and

sG =

∑
LR∈G sR

|G|
.

The information of LG and its group amount, are transformed and stored into

table moving pattern for later usages, while recording the time period and grid

granularity information into table time grid. We choose to record information

60

of each LG instead of each gdu to avoid keeping a huge matrix and waste storage

space, for not every multidimensional grids would include a pattern. Say, when

the direction dimension is divided into four quarters, possibility is only two units

exist on a road. Also, not every unit area are traveled by objects more than thamt.

Meanwhile, the granularity of different dimensions are kept in table grid unit,

and used in processing each period of LRs. Through indexing attributes of grid

dimensions, Algorithm 3.2 can be done in O(m), where m is the amount of LRs.

There are two sources of information loss as generating moving patterns. One

is caused by the computation of LG, and the other is by thamt used in generating a

group. Since the goal is to extract common moving patterns from a trajectory set,

thamt is used to eliminate those tracks not similar to other ones. The elimination

is controlled by a ratio over |LR|, where thamt set the upper bound of LRs being

dropped. The pattern computation can not avoid some differences between orig-

inal replacement lines LRs and the corresponding group representation, LG. Since

composition of a group is limited by each unit grid, the maximum difference between

LG and LRs is also limited by the granularity of gdu. The largest difference between

a LR and corresponding LG is the size of grid, which indicates they separately lay on

the two ends of attribute ranges in all dimensions. Meanwhile, even in the worst case

when all LRs are spread among the edges of unit grid, the average difference between

all LRs to the corresponding LG would not be larger than half of the granularity in

each dimension.

In Fig. 3.3, we illustrated a case suffering both information loss during grouping

LRs. The original LRs distributed in two grids as Fig. 3.3(a). Ideally, two LGs,

each has two and three LRs as members, should be grouped as Fig. 3.3(b), when

thamt = 2. However, the real case is Fig. 3.3(c), four members are grouped with

larger distance from origins in the lower grid, and the LR of upper grid is dropped

for not reaching thamt. The gdu can be adjusted to fit the data distribution and

decrease the information loss caused by line grouping when dealing with object

moves that changing more delicately. And thamt should be assigned properly, so

that the information eliminated by discarding those lines not belong to a pattern

would not harm the result patterns found.

61

(a) Original LRs (b) Ideal LGs (c) Generated LG

Figure 3.3: Example of information loss in grid grouping.

3.5 Warehouse Operations and Queries

After two stages of processing, the extracted moving patterns are stored into table

moving patten of the trajectory data warehouse. The granularity of grids used in

generating patterns are recorded in table grid unit, and the information of time

periods in table time grid. These relational attributes would be retrieved together

in information queries and moving pattern operations.

Moving patterns happen with spatiotemporal properties. Focusing pattern anal-

ysis on spatial or temporal domains would help information presenting. So, we first

discuss about the spatial and temporal operations designed for retrieving related

moving patterns in our trajectory data warehouse. Next, queries often request

summarizations on one or multiple dimensions over value ranges larger than basic

units. And maintenance is worked through further condensing aged moving patterns

with larger granularity grids. In response to the need, aggregation of patterns is

designed. Afterward, we propose a process to deal with the distinct trajectory esti-

mation problem caused by dividing stage during moving pattern extraction. The

distinct estimation is done by recording some additional attributes in pattern extrac-

tion processes. In table flow trace, records keep track of the duplicately counted

trajectory amount between patterns. Finally, we discuss about several types of

moving pattern queries, which work with both ordinary and special designed oper-

ations our trajectory data warehouse can provide.

62

3.5.1 Spatial and Temporal Operations

In a query, we usually limit value ranges on some of the attributes to get wanted

information. In moving pattern query and analysis, a geographical area or a time

period is often a focused target. We are interested in finding patterns related to a

regional area or a time period. Thus we provide several pattern query operations

on spatial and temporal domains to meet the need.

Here we define the operations in spatial domain, focusing on the laying positions

and passing areas of patterns. First, we deal with the operations related to start

and end points of moving patterns.

Operation 3.1 (Start from, End in). A moving pattern PTN starts from an area

A if its start point is inside A. Similarly, PTN ends in A if its end point is inside

A. �

The query target areaA is decided by four points {(xs, ys), (xe, ys), (xs, ye), (xe, ye)},

where xs < xe and ys < ye, as area A in Fig. 3.4. And assume PTN has start point

(xa, ya) and end point (xb, yb). Then, PTN starts from A if

xs ≤ xa < xe and ys ≤ ya < ye,

and PTN ends in A when

xs ≤ xb < xe and ys ≤ yb < ye.

With start from and end in operations, we can find patterns initialized and finalized

in a region, and the changing and connection among patterns in an area.

Next, a PTN might all happen inside an area.

Operation 3.2 (Lay on). A moving pattern PTN lays on an area A if it both starts

from and ends in A. Meanwhile, a point P lays on A if it is inside A. �

Thus, we can redefine PTN starts from A as its start point lays on A, and PTN

ends in A when its end point lays on A. Analyzing patterns lay on a larger area

helps emphasizing moving behaviors inside a region, distinguishing them with those

cross region boundaries.

Moreover, we are interested in moving patterns related to an area, even their

attributes show no direct connection to the area. A moving pattern might neither

63

start from nor end in an area, but pass through it. Pattern analysis of an area would

not be completed without finding out the passing through ones, and we would like

to reveal them via an operation.

Operation 3.3 (Pass through). A moving pattern PTN passes through an area A

if the PTN intersects with exactly two boundaries of A. �

The pass through definition excluded the start from or end in cases which inter-

sect only one or less boundary. While the idea of a PTN intersects with exactly

two boundaries of A is simple, the computations cost is high in checking intersection

with each area boundary in turn. We analyzed the properties and figured out its

would be more efficient to deal the computation with diagonal lines of area and their

slopes. Thus, we redefine PTN passes through A as it intersects with one of the two

diagonal lines in A.

When a pattern is neither start from nor end in A, we start to check for its

intersection with A. First we define the diagonal lines L+ and L− of A as

L+ : ((xs, ys), (xe, ye)), with positive slope, and

L− : ((xe, ys), (xs, ye)), with negative slope.

Next, we calculate the slope of PTN line LPTN as

SlopePTN =M y/ M x = (yb − ya)/(xb − xa).

When SlopePTN > 0, we find for intersecting point of LPTN and L−, else we search

for intersection of LPTN and L+. Then, PTN passes through A, if the following

check is met with intersecting point (xc, yc).

xs < xc < xe and ys < yc < ye and

xa < xc < xb and ya < yc < yb.

The above mentioned spatial operations of moving patterns are all illustrated in

Fig. 3.4, the moving pattern is starts from area B, ends in area D, lays on larger

area E and passes through area C.

Besides spatial domain, we are also interested in querying for patterns in a time

period. In temporal domain, while we store moving patterns period by period,

patterns are mapping to time grids they belong with their recorded TIDs.

64

Figure 3.4: Illustration of spatial domain operations.

Operation 3.4 (Happen during). A moving pattern PTN happens during a time

period T , if its corresponding time grid TID starts and ends in T . �

We define target period T start from ti and end at tj, and the valid period of

PTN queried with TID as (ts, te). PTN happens during T when

ti ≤ ts < te < tj.

The T which patterns happen during may also be a periodical ranges of time, say

every 7-9 AM or every Sunday. The time period selecting operation would help

pattern queries.

3.5.2 Aggregation and Warehouse Maintenance

The moving patterns storing in the trajectory data warehouse are extracted with

regular-sized grids. However, when users query for information, often they may want

to know about attributes with ranges larger than the basic granularity in one or more

dimensions. The query results are done by roll-up operation, which selecting the

related patterns from multiple unit grids according to the value requested on each

of the dimension. The slice and dice operations select patterns while giving limit

on only one and two or more dimensions, respectively. These operations mainly

operate as grouping patterns from multiple grids which meet the required ranges

of all dimensions. Since a pattern is extracted based on a unit grid, a gdu is also

the minimum granularity of these operations. When users required not only list

of matching patterns but also summarized information of them, aggregation over

patterns need to be computed.

Operation 3.5 (Aggregation). An aggregation of moving patterns finds the new

representation line for selected patterns. The start and end positions, time span,

65

speed, direction and group amount should be renewed as original groups Gs are

combined and a new group G′ is generated. �

The new pattern is mainly decided by weighting old group amount |G| of each

pattern. The new moving patterns LG′ generated in aggregation is computed through

using each original group amount as weighting parameter to find the new group

representations following (3.6) and (3.7). And the new group amount |G′| =
∑
|G|.

cLG′ =

∑
LG∈G′ ((pLG,s

+ pLG,e
)/2) ∗ |G|∑

LG∈G′ |G|
, (3.6)

lLG′ =

∑
LG∈G′ d(pLG,s

, pLG,e
) ∗ |G|∑

LG∈G′ |G|
, and

aLG′ =

∑
LG∈G′ ((pLG,e

− pLG,s
)/d(pLG,s

, pLG,e
)) ∗ |G|∑

LG∈G′ |G|
,

where pLG,s
and pLG,e

are the two end points of an original pattern LG, and |G| is

the number of lines in a original group G.

pLG′ s
= cLG′ −

lLG′ × aLG′

2
, (3.7)

pLG′ e
= cLG′ +

lLG′ × aLG′

2
, and

sLG′ =

∑
LG∈G′ sG ∗ |G|∑

LG∈G′ |G|
.

For the trajectory data warehouse to run in a long term, we need a histor-

ical pattern maintenance method. The historical maintenance should efficiently

condense required storage space, while still keeping main information of aged patterns.

First, design of hierarchical granularity levels can help for warehouse maintenance.

Several hierarchy of granularity are defined for different aged patterns, usually

focusing on spatial area and time range, while sometimes on distinguishing of direc-

tion, length or speed. For example, the vehicle moving patterns may first be analyzed

in 0.5 ∗ 0.5km2 per hour. After a month, the stored pattern may be aggregated into

1 ∗ 1km2 per three hour grids. The coarser granularity should always be defined as

integer times of its finest level, so the aggregation operation can be processed. While

applying the spatial and temporal operations defined earlier in this section, the unit

of coarser granularity spatial area should always be continuous, and the granularity

of time period might become a periodic time set, such as every 9-11 AM of day in

a month. The grid granularity used for data warehouse maintenance of different

66

aged data are recorded in table grid unit. Then the maintenance is periodically

triggered to aggregate the aged patterns according to new gdu and compute new

summarized representation lines. After the reanalysis is done, old patterns along

with the corresponding time period are removed, and new generated patterns with

a combined time period of higher level are stored, in both table moving pattern

and table time grid.

When the data warehouse is maintained with aggregation operation, the minimum

group size thamt may be increased, as gdu for generating patterns are enlarged.

Thus, both information loss caused by pattern generation would be increased in

these renewed aging patterns. This is a trade off between the amount of data to be

stored and the conciseness of information to be kept in a long run.

3.5.3 Distinct Trajectory Estimation

Moving patterns kept in the data warehouse are originated from trajectory data sets.

For times, we would like to know about the amount of distinct trajectories passing an

area. However, different moving patterns happen in an area may include replacement

lines originally continuous in one trajectory. Thus, to count distinct trajectories

related to an area, additional process is required besides simply check the member

amount summation of all patterns in an area. To deal with the distinct trajectory

estimation problem without keeping identity list of members in each pattern, we

introduced table flow trace to record flow information between groups.

As discussed in earlier section, when dividing trajectories, only information of

latest checked data points of each trajectory and extracted replacement lines of

current period are kept in the temporary tables. Based on the limited information,

an additional attribute, previous line ID, is introduced to table divide check. This

attribute register the replacement line ID as a LR generated from a trajectory. When

the record TRi is initialized in Algorithm 3.1, LpID = NULL is set. As a LR is

decided to be output, the existing LpID is also transferred into table replacement

line. Then the ID of just generated LR is recorded back in LpID of table divide

check as the attributes in record TRi are reset.

In table replacement line, two additional attributes, belong group ID, GID,

and next-line group ID, GnID, are added and initialized as NULL. As a LR is

67

Algorithm 3.3 Trajectory flow amount trace
Input: a set of attribute pairs {GID, GnID} from table replacement line

Output: a set of flow amount records for table flow trace

for each records in table replacement line do

if record GID = NULL or GnID = NULL then

continue to check next record

else if record {GID, GnID} pair does not exist then

Add record {GID, GnID} pair

Initialize flow amount |F | = 1

else

Update record {GID, GnID} pair, |F | = |F |+ 1

end if

end for

included in a group G and the corresponding pattern is generated, the GID is

updated in record LR. And according to the LpID registered with LR, the GnID

of its previous line is updated as well. After finishing pattern extraction through

Algorithm 3.2, the GID and GnID pairs in table replacement line are summarized

with Algorithm 3.3. Those pairs without NULL values are processed and the flow

amounts of each different pairs are calculated. The distinct GID and GnID pairs are

record into table flow trace as from and to group IDs, along with their amounts,

|F |, for later distinct estimation usage.

Operation 3.6 (Distinct flow amount). The distinct flow amount AMT in an

area A indicates the number of distinct trajectories moving start from, end in, or

pass through A. Which can be seen as the total group amount, |G|, minus the

amount of items that have their next lines also moving in the area, which caused

same trajectories being counted among multiple groups. �

The AMT in area A can be estimated with the summation of group amount,

|G|, from table moving pattern, minus the summation of flow amount, |F |, from

table flow trace, which both of its to and from group are included in the query

results. This can be describe with an equation as follow,

AMT =
∑
G∈A

|G| −
∑

(Gfrom∈A and Gto∈A)

|F |. (3.8)

68

Using 3.3 and (3.8), the distinct trajectory amount in an area can be efficiently

estimated. The process of parsing additional attributes for distinct estimation can

be done in O(m), where m is the amount of LRs. The results in flow trace are only

approximate estimation, though. The errors can come from several sources. For one,

some replacement lines would not be included into patterns when not reaching the

thamt required for a pattern. This might cause underestimate of original trajectory

amount, but only to the ratio of information eliminated in pattern generation. In the

mean time, an object might start from an area, then move out, and travel back into

the area again later. This would cause some overestimate of distinct flow amount.

Moreover, when only limited space is available for group flow trace, we might have

to keep only the larger amount flow records between groups and eliminate relatively

minor ones. This information loss would also cause some underestimate of original

trajectory amount.

3.5.4 Moving Pattern Queries

With ordinary condition assignments plus the operations described earlier in this

section, moving pattern queries with different complexities can be answered. The

basic queries assign some specific properties and get matched moving patterns from

the trajectory data warehouse as direct answers. In advanced level, queries include

some extra criteria and processes for extracting representations of patterns or their

summarized properties. Application level of queries try to give out overall pictures

of moving patterns in the trajectory data warehouse, and might further include in

other spatial, temporal or related domain information for analytic processes.

A query on specific pattern properties may focus on the value range of one or more

attributes, such as finding patterns move in a direction around certain speed. The

queries may also work on an area with spatial operations, like finding patterns start

from a spatial grid or pass through an area. Or may apply limits on temporal

domain to look for patterns happen during some hours of a day. These kinds of

property queries work like filters, and are useful in finding out moving patterns

matching some assigned conditions.

Query 3.1. Search for moving patterns related to (including start from, end

in, lay on and pass through) crossroad area A, with moving speed larger than 30

69

km/hr, happen during 9-10 AM, 2010-Nov-24. �

Next, adding in the aggregation and distinct flow amount operation, patterns

are processed to further reveal information. Such as identify the average moving

speeds in different directions of an area, through aggregating patterns in each direc-

tion. Or analysis the distribution of length spans in certain direction on a road,

to find the effectiveness of traffic light chain setting. Or summarize the end in

amount of a large area grid by grid, to find out possible locations with special

events happening as people gathering. Or process patterns of a spatial grid along

each time unit and find out the major directions or the change of average speeds

during a day. These queries with summarizing processes can be used to analyze

characteristics of attributes under different conditions.

Query 3.2. For moving patterns related to crossroad area A, which happen

during 8-10 AM, 2010-Nov-24, summarize the moving condition in each of their

four forward direction units through finding average moving speed and accounting

flow amount. �

Query 3.3. Find the behavior changes over a day through calculating the average

speeds per hour, in direction north to south, among moving patterns related to

crossroad area A, happen during 2010-Nov-24. �

Further more, with moving patterns collected in the trajectory data warehouse,

general moving conditions can be built as pattern templates for applications. A

template of work day morning traffic condition in downtown area can be extracted

through finding common patterns from long term collection. Then the pattern

template can be used for abnormal behavior detection or regional condition analysis.

Or through tracing condition of grids in a long term, the repeated pattern change

in speeds, amounts or directions can be revealed and logged as regular trend. Then

the trend can be used for event detection or change prediction. These processes can

add value to moving patterns stored in the trajectory data warehouse and provide

various kinds of useful applications.

Query 3.4. Find common moving patterns related to crossroad area A, happen

during 8-10 AM, work day of Nov, 2010, which is the aggregation results of

70

moving patterns occurred on same unit grids during more than 70% of the assigned

periods. Then build it as a pattern template of work day 8-10 AM. �

Query 3.5. Search for the series trend of speeds among moving patterns related to

crossroad area A, through analyzing average speeds in each directions per hour on

patterns happen during Nov, 2010. Then find out the repeated patterns and save

them as regular trends. �

3.6 Experiments and Evaluations

We conducted extensive experiments on two different real trajectory data sets to

evaluate the pattern extraction processes and operations we proposed for our trajec-

tory data warehouse. We analyzed the condense of information amount and the time

spent of pattern extraction in each steps. Also, the scalability of operations were

measured. Along with the analysis, samples of area moving patterns and opera-

tion results are also illustrated. All algorithms were implemented in C++ and the

experiments were run with 2.9GHz CPU and 4GB RAM.

3.6.1 Trajectory Sets and Pattern Extracted

We used trajectory data sets of city buses and taxies for experiments. These two

kinds of vehicles both move on city roads but in different moving styles. Thus we

used both of them for some comparisons.

The bus trajectories we used are from the Taipei city e-bus system [52], during

mid-November, 2012. This system collected GPS positioning data of city buses

on duty around every 30 seconds. We used totally 52,892,847 records for pattern

extraction. Meanwhile, the taxi trajectories are also GPS position and time data

recorded in Taipei city. We used the data from October to November, 2010, with

the position sampling in every three seconds. Totally 670,964,334 records were used

for experiments.

In the experiments, the basic granularity of dimensions in gdu were set according

to data characteristics. The spatial grid was chosen as 0.005o × 0.005o in latitude

and longitude, which is similar to the average size of street blocks in Taipei city.

The pattern length stretch granularity was set as every 0.5 km, about the distance

71

(a) Patterns of bus 2012-11-09 17-18 PM

(b) Patterns of taxi 2010-12-02 9-10 AM

(c) Area map: 25.015-25.065N, 121.515-121.575E

Figure 3.5: Illustration of significant patterns on selected area.

72

between boundaries of a spatial grid. The speed unit range was 10 km/hr, and the

direction granularity was per 90o in 360o angle. The unit grid of time for pattern

generating process was per hour.

Based on the experiences learned in vehicle trajectory data profiling, we selected

thlen = 0.1, thspd = 0.75 for the dividing criteria. The thlen was strict because

city roads are mostly straight, and direction changes of vehicles would be rather

small besides making turns at crossroads. On the other hand, thspd was set much

looser because even in smooth traffic, some speed changes would be often caused

by reacting to moving conditions of vehicles nearby. We would like to detect the

major speed changes, like stops and moves, but not minor speed adjustments on the

road. Meanwhile, we set thamt = 0.00015. thamt was set to avoid infrequent patterns

to be generated, while the value is also selected as a lower bound to constrain the

maximum ratio of information loss.

We show examples of extracted patterns in Fig. 3.5, and get a closer look. A

busy area, 25.015-25.065N, 121.515-121.575E, in Taipei city was chosen. The corre-

sponding road map is as Fig. 3.5(c). With the parameters assigned above, 204,570

bus trajectory records in the selected area were divided into 68,437 replacement

lines, the LRs separated in 3,959 unit grids. Then 1,763 moving patterns were

generated, with group size larger than 10. In Fig. 3.5(a), we illustrated 200 signif-

icant patterns. Meanwhile, 314,608 taxi records in the same area were replaced by

36,862 LRs. Candidate LGs separated in 4,571 unit grids, and with minimum group

size assigned as 6, 1,435 moving patterns were generated later. In Fig. 3.5(b), 200

major patterns are shown.

From the sample results in Fig. 3.5, we could see the pattern extraction based on

dividing criteria and predefined gdus can efficiently summarize the moving behaviors.

The patterns clearly illustrated various moving speeds, span lengths, flow amounts

on different sections and directions of roads. In the meantime, spread of patterns

well aligned the distribution of city roads automatically. The results also showed

some speedy movings with long length spans, and many other slower ones stopped

their length extensions around some crossroads. Furthermore, the sketches revealed

distinguishable differences among the two data sets we used. We can see the patterns

of taxi movings are more flexible than the bus behaviors. Meanwhile, the generated

73

replacement lines of taxi data spread among more grids than bus ones before pattern

generation. Also, taxi movings included more long and speedy patterns, while bus

movings were mostly in quite regular lengths. These were because of taxi do not

have previously assigned routes as buses, and do not have to pause at every bus

stops on the roads. Furthermore, since the two trajectory data sets were analyzed

with same parameters, the generated patterns can be directly compared with each

other based on gdus, and can used for more detailed analysis.

3.6.2 Space and Time Analysis

The information amount storing in tables shrank obviously after trajectory dividing

and pattern generating. We analyzed the amount ratio relations among original

records |pt|, divided segments |LR|, and generated patterns |LG| of both data sets

with different parameters in the two stages of pattern extraction, and summarized

in Table 3.1. Testing series of different thspd from 0.25 to 2.5, we can see the data

compression ratio, |LR|/|pt| is larger with looser dividing criterion, which indicating

fewer LRs are generated as more incoming data points pass the dividing check with

higher thspd setting. With more |LR| generated among the fixed number of predefined

unit grids, better information condensing ratio of |LG|/|LR| are reached in pattern

generation. While the final compression ratios |LG|/|pt| do not vary that much after

all processes.

Further information condensing in group generation is decided by the size of

unit grids. |LG|/|pt| are much smaller with latitude and longitude granularity as

0.01o than as 0.005o ones. With larger gdu, fewer grids would exist in an area. As

a result, with the same LRs spreading, fewer patterns would be generated. More-

over, the initial sampling rates of position and time records also influence obvi-

ously on the amount of LRs generated during trajectory dividing. Taxi data, which

was sampled more frequently, get better condensing ratios. Changes between more

frequent sampling records tend to be smaller and are more likely to pass the dividing

check, thus fewer divisions were divided. Also, the data moving styles cause differ-

ences in compression ratios and information losses. More moving patterns were

generated from divided lines of taxi data, according to statistic in earlier section.

The more flexible moving of taxi causes flatter distribution among different grids.

74

Table 3.1: Summarizing information amount in pattern extraction processes

Data
set

Divide (thlen = 0.1) Group (lat., lon.: 0.005o) Group (lat., lon.: 0.01o)

thspd

|LR|
/|pt|

|LG|
/|LR|

LR

∈ LG

|LG|
/|pt|

|LG|
/|LR|

LR

∈ LG

|LG|
/|pt|

bus

0.25 45.97% 8.18% 90.20% 1.99% 3.70% 96.73% 1.07%

0.5 42.67% 8.87% 89.75% 1.96% 4.06% 96.46% 1.07%

0.75 39.44% 9.64% 89.28% 1.93% 4.47% 96.22% 1.08%

1.0 35.96% 10.57% 88.71% 1.90% 4.97% 95.96% 1.09%

1.25 33.02% 11.57% 88.06% 1.88% 5.52% 95.74% 1.12%

1.5 29.19% 13.13% 87.33% 1.87% 6.37% 95.56% 1.16%

2.0 21.74% 16.84% 86.17% 1.75% 8.72% 95.13% 1.22%

2.5 16.80% 19.51% 86.75% 1.60% 10.95% 94.92% 1.20%

taxi

0.25 22.74% 14.79% 84.05% 1.60% 6.33% 96.01% 0.96%

0.5 19.15% 16.91% 84.01% 1.51% 7.60% 95.36% 0.93%

0.75 16.37% 18.65% 84.22% 1.39% 8.88% 94.34% 0.86%

1.0 14.22% 20.13% 84.24% 1.26% 10.09% 93.65% 0.80%

1.25 12.48% 22.21% 83.39% 1.19% 11.60% 92.94% 0.79%

1.5 11.05% 23.94% 83.03% 1.14% 12.86% 92.61% 0.77%

2.0 9.00% 26.90% 82.55% 1.05% 14.99% 92.30% 0.75%

2.5 7.55% 30.20% 92.30% 1.00% 17.15% 91.74% 0.72%

Meanwhile, with more member amounts lesser than thamt in grids, a little lower

ratio of LRs are included in the LGs for taxi data.

We analyze about the total information amount condensed in pattern extraction

process. However, during trajectory dividing process, the temporary table divide

check in fact only keeps a record of latest update for each trajectories, rather then all

of its raw data points. And the divided LRs in another temporary table replacement

line only keeps records in current time period, which are then processed by pattern

generating stage and directly dropped afterward. The storage spaces for temporary

tables can be reused after patterns of a time period are generated. That is to say,

although we have to deal with huge amount of data, the storage usage is quite

efficient during processing, and the process condensed information amount to less

than two percent of original in the experiments as shown in Table 3.1. In the

meantime, the compression analysis of different spatial grids provide outlook of

75

0

2

4

6

8

10

10k 20k 30k 40k 50k 60k 70k

Data Point Amount

S
pe

nt
 T

im
e

(s
ec

on
d)

0.5

1

1.5

2

2.5

(a) Trajectory dividing.

0

0.5

1

1.5

2

2.5

10k 20k 30k 40k 50k 60k 70k

Replacement Line Amount

S
pe

nt
 T

im
e

(s
ec

on
d)

bus

taxi

(b) Pattern generating.

Figure 3.6: Time spent in extracting moving patterns.

historical maintenance. With times four sized spatial grids, the patterns are lesser

to around half amount, which are still reflect the pattern distributing condition over

new grids.

The algorithms we used for trajectory dividing check and pattern generating are

quite efficient and with good scalability. The time spent with various amount of data

is shown in Fig. 3.6. We tested up to 70000 position records and replacement lines

in corresponding processes. The results shows the algorithms cost only linear time

and are quite scalable. Still have to remind that the trajectory dividing algorithm

is designed to process the data on-the-fly, not really in batch mode.

3.6.3 Operation Analysis

The pattern operations introduced in Section 3.5 were implemented. Sample results

of operations on an area including a crossroad, in 25.05-25.055N and 121.53-121.535E,

of bus data during 2010-03-09 17-18 PM are shown in Fig. 3.7. The result of start

from included 29 patterns in Fig. 3.7(a), end in as Fig. 3.7(b) included 31, 12 in

Fig. 3.7(c) are for lay on, and in Fig. 3.7(d) 8 for pass through operations. Addi-

tionally, the four new groups of directional aggregation on start from results

in all direction units are illustrated in Fig. 3.7(e). The figure showed the pattern

distributing in each direction of crossroad. While the forward speeds and length

spans various with larger range in start from and end in patterns, they are rather

slow in lay on and medium fast in pass through ones. As to directional aggrega-

tion which summarized all the other attributes, we can see both the flow amounts

76

121.53 E 121.535 E

25.05 N

25.055 N

(a) Start from.

121.53 E 121.535 E

25.05 N

25.055 N

(b) End in.

121.53 E 121.535 E

25.05 N

25.055 N

(c) Lay on.

121.525 E 121.53 E 121.535 E 121.54E

25.045 N

25.05 N

25.055 N

25.06 N

(d) Pass through.

121.53 121.535

25.05

25.055

(e) Direction aggregation.

Figure 3.7: Results of pattern related operation on selected grid.

and averaged speeds and lengths are quite even on this crossroad.

Some tests on efficiency and scalability of the spatial and aggregation opera-

tions were made. Operation tests were done on different sized spatial areas, which

included 1*1, 3*3, 5*5, 7*7, 9*9 and 11*11 unit grids, with 70,000 collected patterns

distributed in a 15*15 unit grids area. The results of queried amount and spent time

of operations are shown in Fig. 3.8. The amounts related to the start and end posi-

tions increased rapidly as the area getting larger. More times were taken as more

patterns would pass the first condition test and goes further, though still increased

much slower than the result amounts. As to the time spent on aggregation, it was

proportional to the amount of queried start from patterns. In the meantime, the

criteria for pass through operation got harder to meet as area size increasing, for

longer patterns were required. And as checks would often fail in first one or two

conditions, the cost time decreased obviously. Generally speaking, time cost on

these operations increased much slower than the problem size. Thus, these ware-

house pattern operations are quite efficient and scalable.

3.7 Summary

In this work, we proposed a trajectory data warehouse from its processing, table

schema design to moving pattern operations. Moving patterns were extracted from

77

0

100000

200000

300000

400000

500000

600000

1*1 3*3 5*5 7*7 9*9 11*11

Spatial Grids in Operation

Q
ue

ri
ed

 P
at

te
rn

 A
m

ou
nt

Start From End In Lay On Pass Through

(a) Result pattern amount.

0

1

2

3

1*1 3*3 5*5 7*7 9*9 11*11

S
pe

nt
 T

im
e

(S
ec

on
d)

Spatial Grids in Operation

StartFrom EndIn LayOn PassThrou. SF Drt. Aggr.

(b) Operation spent time.

Figure 3.8: Analysis of pattern related operation.

trajectories with a two-stage algorithm and loaded into the data warehouse. First,

behaviors of trajectories were analyzed, divided into spatiotemporal consistency

segments using an online algorithm and summarized as replacement lines. Then,

similar replacement lines were grouped and the representation lines were trans-

formed into regular formatted moving patterns with a multidimensional-grid based

algorithm. Finally, patterns were loaded into the data warehouse along with their

time and grid unit information.

Different types of pattern queries and data warehouse maintenance could be

worked with the spatial and temporal operations and the aggregation of moving

patterns based on different granularity in attribute dimensions. We also introduce a

process for estimating distinct trajectory among patterns relating to an area. More-

over, we conducted extensive experiments on real trajectory data sets. The results

showed efficiency of moving patterns extraction and warehouse operations. The

data warehouse not only summarized raw trajectories and transformed information

into regular format, but also provided a structure that allows flexible application

possibilities.

78

Chapter 4

Conclusion and Future Work

4.1 Conclusion

This dissertation mainly dealt with analyzing object moving behaviors, which were

extracted from huge amount of trajectory data. First, we presented DivCluST, an

approach to profiling a set of moving objects by dividing and clustering their accu-

mulated trajectories spatiotemporally. We used DivST to divide the trajectories

and to generate corresponding replacement lines. Through the design of spatial and

temporal dividing criteria accompanied with the threshold parameter selections, a

proper number of replacement lines were produced while preserving spatiotemporal

properties of their original trajectories well. Then, CluST clustered the replacement

lines based on the proposed spatiotemporal line distance function in consideration

of the position, length, direction and speed differences. With the specially designed

mean line representation, the clustering results revealed regional main spatiotem-

poral moving behaviors of any given trajectory data set.

Through profiling, we knew better on characteristics of moving behaviors hidden

among the trajectories. Since we wanted to use the moving behaviors in further

applications, we turned to work on a trajectory moving pattern data warehouse.

We proposed a trajectory data warehouse, from its data processing, table schema

to pattern operations, focusing on object moving behaviors. Moving patterns were

extracted from raw trajectories and then loaded into the trajectory data warehouse.

We first analyzed behaviors of trajectories and divided them into spatiotemporal

consistency segments with an online algorithm. The divided sub-trajectories were

79

then replaced by lines. Next, with a multidimensional-grid based algorithm, similar

replacement lines were grouped and the representation lines were transformed into

moving patterns. Finally, patterns were loaded into the data warehouse along with

their time period and grid unit information. In the trajectory data warehouse,

different types of pattern queries and warehouse maintenance could be worked on

multiple levels of grid granularity, with the aggregation, spatial and temporal oper-

ations and distinct flow estimation over moving patterns. The data warehouse not

only summarized the raw trajectories and transformed information into a regular

format, but also had a structure that allows flexible application possibilities.

We conducted extensive experiments on real trajectory data sets for both trajec-

tory data profiling and warehousing designs. The results illustrated from profiling

and warehousing showed ability of these methods. They can successfully reveal

the moving object behaviors among different regions and times. The analysis also

showed the efficiency in DivST and CluST of trajectory profiling, and moving pattern

extraction and operations of trajectory warehousing. With these moving behavior

analyzed, further applications related to object trajectories can be provided.

4.2 Future Work

For future research, we may use a profile as the signature of corresponding type of

moving objects for other mining tasks. With profiles of different trajectory data

sets, various typical moving behaviors can be used to identify the object type. And

we may use the information collected in trajectory data warehouse to build typical

sketches of object moving for other pattern based data mining tasks. The template

patterns can be used for event analysis and real-time abnormal condition detection.

And the routinely series trends can be used in moving style change analysis and

future moving behavior predictions. Moreover, we may link the moving patterns

with many other spatial, temporal, or event databases, and extend the applications

of data warehouse. For instance, we can link the patterns to real world road status

or weather conditions, and find the related influences in moving behaviors. Analysis

may also be further focused on area with interesting behaviors revealed by the

moving patterns, and provide location based services or other applications.

80

Bibliography

[1] Wang-Chien Lee and John Krumm. Trajectory preprocessing. In Computing

with Spatial Trajectories, pages 3–33. Springer, 2011.

[2] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong

Sun, and Yan Huang. T-drive: driving directions based on taxi trajectories. In

Proceedings of the 18th SIGSPATIAL International conference on advances in

geographic information systems, pages 99–108. ACM, 2010.

[3] Ke Deng, Kexin Xie, Kevin Zheng, and Xiaofang Zhou. Trajectory indexing

and retrieval. In Computing with Spatial Trajectories, pages 35–60. Springer,

2011.

[4] Jae-Woo Chang, Jung-Ho Um, and Wang-Chien LeeP. A new trajectory

indexing scheme for moving objects on road networks. In Flexible and Effi-

cient Information Handling, pages 291–294. Springer, 2006.

[5] Dimitrios Gunopulos and Goce Trajcevski. Similarity in (spatial, temporal and)

spatio-temporal datasets. In Proceedings of the 15th International Conference

on Extending Database Technology, pages 554–557. ACM, 2012.

[6] Hechen Liu, Ling-Yin Wei, Yu Zheng, Markus Schneider, and Wen-Chih Peng.

Route discovery from mining uncertain trajectories. In Data Mining Workshops,

IEEE 11th International Conference on, pages 1239–1242, 2011.

[7] Goce Trajcevski. Uncertainty in spatial trajectories. In Computing with Spatial

Trajectories, pages 63–107. Springer, 2011.

[8] Gianni Giannotti, Fosca Giannotti, and Dino Pedreschi. Mobility, data mining

and privacy: Geographic knowledge discovery. Springer, 2008.

81

[9] Manolis Terrovitis and Nikos Mamoulis. Privacy preservation in the publication

of trajectories. In Mobile Data Management, the 9th International Conference

on, pages 65–72. IEEE, 2008.

[10] Gyözö Gidófalvi, Xuegang Huang, and Torben Bach Pedersen. Privacy-

preserving data mining on moving object trajectories. In Mobile Data Manage-

ment, International Conference on, pages 60–68. IEEE, 2007.

[11] Nam Thanh Nguyen, Dinh Q Phung, Svetha Venkatesh, and Hung Bui.

Learning and detecting activities from movement trajectories using the hier-

archical hidden markov model. In Computer Vision and Pattern Recognition,

IEEE Computer Society Conference on, volume 2, pages 955–960, 2005.

[12] John Krumm. Trajectory analysis for driving. In Computing with Spatial Trajec-

tories, pages 213–241. Springer, 2011.

[13] Chan-Hyun Kang, Jung-Rae Hwang, and Ki-Joune Li. Trajectory analysis for

soccer players. In Data Mining Workshops, 6th IEEE International Conference

on, pages 377–381, 2006.

[14] Hassan A Karimi and Xiong Liu. A predictive location model for location-based

services. In Proceedings of the 11th ACM international symposium on Advances

in geographic information systems, pages 126–133, 2003.

[15] Yukun Chen, Kai Jiang, Yu Zheng, Chunping Li, and Nenghai Yu. Trajectory

simplification method for location-based social networking services. In Proceed-

ings of International Workshop on Location Based Social Networks, pages 33–

40. ACM, 2009.

[16] Harvey J Miller and Jiawei Han. Geographic data mining and knowledge

discovery. CRC Press, 2009.

[17] Gennady Andrienko, Natalia Andrienko, and Stefan Wrobel. Visual analytics

tools for analysis of movement data. ACM SIGKDD Explorations Newsletter,

9(2):38–46, 2007.

82

[18] Menno-Jan Kraak and Otto Huisman. Beyond exploratory visualization of

space–time paths. Geographic data mining and knowledge discovery, pages 431–

443, 2009.

[19] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a

partition-and-group framework. In Proceedings of the ACM SIGMOD interna-

tional conference on Management of data, pages 593–604, 2007.

[20] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory

pattern mining. In Proceedings of the 13th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 330–339, 2007.

[21] Luca Leonardi, Salvatore Orlando, Alessandra Raffaetà, Alessandro Roncato,

and Claudio Silvestri. Frequent spatio-temporal patterns in trajectory data

warehouses. In Proceedings of the 2009 ACM symposium on Applied Computing,

pages 1433–1440, 2009.

[22] Marcin Gorawski and Pawel Jureczek. Regions of interest in trajectory data

warehouse. In Intelligent Information and Database Systems, pages 74–81.

Springer, 2010.

[23] Gerasimos Marketos, Elias Frentzos, Irene Ntoutsi, Nikos Pelekis, Alessandra

Raffaetà, and Yannis Theodoridis. Building real-world trajectory warehouses.

In Proceedings of the seventh ACM international workshop on data engineering

for wireless and mobile access, pages 8–15, 2008.

[24] F Braz, Salvatore Orlando, Renzo Orsini, A Raffaela, Alessandro Roncato, and

Claudio Silvestri. Approximate aggregations in trajectory data warehouses. In

Data Engineering Workshop, IEEE 23rd International Conference on, pages

536–545, 2007.

[25] Stefano Spaccapietra, Christine Parent, Maria Luisa Damiani, Jose Antonio

de Macedo, Fabio Porto, and Christelle Vangenot. A conceptual view on trajec-

tories. Data & knowledge engineering, 65(1):126–146, 2008.

[26] Zhixian Yan, Jose Macedo, Christine Parent, and Stefano Spaccapietra. Trajec-

tory ontologies and queries. Transactions in GIS, 12(s1):75–91, 2008.

83

[27] Andrey Tietbohl Palma, Vania Bogorny, Bart Kuijpers, and Luis Otavio

Alvares. A clustering-based approach for discovering interesting places in trajec-

tories. In Proceedings of the ACM symposium on Applied computing, pages

863–868, 2008.

[28] Jiawei Han, Jae-Gil Lee, and Micheline Kamber. An overview of clustering

methods in geographic data analysis. In Geographic Data Mining and Knowl-

edge Discovery. CRC Press, 2009.

[29] Scott J Gaffney, Andrew W Robertson, Padhraic Smyth, Suzana J Camargo,

and Michael Ghil. Probabilistic clustering of extratropical cyclones using regres-

sion mixture models. Climate dynamics, 29(4):423–440, 2007.

[30] Fatih Porikli. Trajectory distance metric using hidden markov model based

representation. In IEEE European Conference on Computer Vision, PETS

Workshop, volume 3, 2004.

[31] Jinfeng Ni and Chinya V Ravishankar. Indexing spatio-temporal trajectories

with efficient polynomial approximations. Knowledge and Data Engineering,

IEEE Transactions on, 19(5):663–678, 2007.

[32] Zhouyu Fu, Weiming Hu, and Tieniu Tan. Similarity based vehicle trajectory

clustering and anomaly detection. In Image Processing, IEEE International

Conference on, volume 2, pages II–602, 2005.

[33] Elias Frentzos, Kostas Gratsias, and Yannis Theodoridis. Index-based most

similar trajectory search. In Data Engineering, IEEE 23rd International

Conference on, pages 816–825, 2007.

[34] Aris Anagnostopoulos, Michail Vlachos, Marios Hadjieleftheriou, Eamonn

Keogh, and Philip S Yu. Global distance-based segmentation of trajectories. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 34–43, 2006.

[35] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting loca-

tions and travel sequences from gps trajectories. In Proceedings of the 18th

international conference on World wide web, pages 791–800. ACM, 2009.

84

[36] Han Su, Kai Zheng, Haozhou Wang, Jiamin Huang, and Xiaofang Zhou. Cali-

brating trajectory data for similarity-based analysis. In Proceedings of the inter-

national conference on Management of data, pages 833–844. ACM, 2013.

[37] Gook-Pil Roh, Jong-Won Roh, Seung-Won Hwang, and Byoung-Kee Yi.

Supporting pattern-matching queries over trajectories on road networks.

Knowledge and Data Engineering, IEEE Transactions on, 23(11):1753–1758,

2011.

[38] J-G Lee, Jiawei Han, Xiaolei Li, and Hong Cheng. Mining discriminative

patterns for classifying trajectories on road networks. Knowledge and Data

Engineering, IEEE Transactions on, 23(5):713–726, 2011.

[39] Zhouyu Fu, Weiming Hu, and Tieniu Tan. Similarity based vehicle trajectory

clustering and anomaly detection. In Image Processing, 2005. IEEE Interna-

tional Conference on, volume 2, pages II–602, 2005.

[40] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez. Traclass: trajectory

classification using hierarchical region-based and trajectory-based clustering.

Proceedings of the VLDB Endowment, 1(1):1081–1094, 2008.

[41] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Under-

standing mobility based on gps data. In Proceedings of the 10th international

conference on Ubiquitous computing, pages 312–321. ACM, 2008.

[42] Kevin Buchin, Maike Buchin, Marc Van Kreveld, and Jun Luo. Finding long

and similar parts of trajectories. Computational Geometry, 44(9):465–476, 2011.

[43] Maike Buchin, Anne Driemel, Marc van Kreveld, and Vera Sacristán. An

algorithmic framework for segmenting trajectories based on spatio-temporal

criteria. In Proceedings of the 18th ACM SIGSPATIAL International Confer-

ence on Advances in Geographic Information Systems, pages 202–211, 2010.

[44] Peter Grünwald. Advances in minimum description length: Theory and appli-

cations. chapter Introducing the Minimum Description Length Principle. MIT

press, 2005.

85

[45] Jingying Chen, Maylor K Leung, and Yongsheng Gao. Noisy logo recognition

using line segment hausdorff distance. Pattern recognition, 36(4):943–955, 2003.

[46] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern Recognition

Letters, 31(8):651–666, 2010.

[47] Claudio Bettini, Sushil Jajodia, and Sean Wang. Time granularities in

databases, data mining, and temporal reasoning, chapter Granularity Systems.

Springer, 2000.

[48] Ed Williams. Aviation formulary v 1.46, 2011.

http://williams.best.vwh.net/avform.htm.

[49] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the

number of clusters in a data set via the gap statistic. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 63(2):411–423, 2001.

[50] Oded Z Maimon and Lior Rokach. Data mining and knowledge discovery hand-

book, chapter Clustering Method. Springer, 2005.

[51] Joint typhoon warning center. http://www.usno.navy.mil/JTWC.

[52] Taipei e-bus system. http://www.e-bus.taipei.gov.tw/.

[53] Kerry Emanuel. Divine Wind-The History and Science of Hurricanes. Oxford

University Press, 2005.

[54] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-

based algorithm for discovering clusters in large spatial databases with noise.

96:226–231, 1996.

[55] Huey ru Wu, Mi-Yen Yeh, and Ming-Syan Chen. Profiling moving objects by

dividing and clustering trajectories spatiotemporally. IEEE Transactions on

Knowledge and Data Engineering, 99(PrePrints), 2012.

[56] Luca Leonardi, Gerasimos Marketos, Elias Frentzos, Nikos Giatrakos, Salva-

tore Orlando, Nikos Pelekis, Alessandra Raffaetà, Alessandro Roncato, Claudio

Silvestri, and Yannis Theodoridis. T-warehouse: Visual olap analysis on trajec-

tory data. pages 1141–1144, 2010.

86

[57] Salvatore Orlando, Renzo Orsini, Alessandra Raffaetà, Alessandro Roncato,

and Claudio Silvestri. Spatio-temporal aggregations in trajectory data ware-

houses. In Data Warehousing and Knowledge Discovery, pages 66–77. Springer,

2007.

[58] Elio Masciari. Warehousing and querying trajectory data streams with error

estimation. In Proceedings of the 15th international workshop on Data ware-

housing and OLAP, pages 113–120. ACM, 2012.

[59] Gerasimos Marketos and Yannis Theodoridis. Ad-hoc olap on trajectory data.

In Mobile Data Management, 11th International Conference on, pages 189–198,

2010.

[60] Ouri Wolfson. Moving objects information management: The database chal-

lenge. In Next Generation Information Technologies and Systems, pages 75–89.

Springer, 2002.

[61] Rouaa Wannous, Jamal Malki, Alain Bouju, and Cécile Vincent. Modelling

mobile object activities based on trajectory ontology rules considering spatial

relationship rules. In Modeling Approaches and Algorithms for Advanced

Computer Applications, pages 249–258. Springer, 2013.

[62] Phan Nhat Hai, Pascal Poncelet, and Maguelonne Teisseire. Get move: an

efficient and unifying spatio-temporal pattern mining algorithm for moving

objects. In Advances in Intelligent Data Analysis XI, pages 276–288. Springer,

2012.

[63] Oliver Baltzer, Frank Dehne, Susanne Hambrusch, and Andrew Rau-Chaplin.

Olap for trajectories. In Database and Expert Systems Applications, pages 340–

347. 2008.

[64] Elio Masciari. Warehousing and querying trajectory data streams with error

estimation. In Proceedings of the fifteenth international workshop on Data ware-

housing and OLAP, pages 113–120. ACM, 2012.

87

[65] Hongjun Zhu, Jianwen Su, and Oscar H Ibarra. Trajectory queries and octagons

in moving object databases. In Proceedings of the 11th international conference

on Information and knowledge management, pages 413–421. ACM, 2002.

[66] Bart Kuijpers and Walied Othman. Trajectory databases: Data models, uncer-

tainty and complete query languages. In Database Theory–ICDT 2007, pages

224–238. Springer, 2006.

[67] Xiaofeng Meng and Zhiming Ding. Dsttmod: A future trajectory based moving

objects database. In Database and Expert Systems Applications, pages 444–453.

2003.

88

	cover3
	thesis-main
	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Overview of the Dissertation
	Organization of the Dissertation

	Profiling Moving Objects by Dividing and Clustering Trajectories Spatiotemporally
	Introduction
	Related Works
	Problem Statement
	DivST: Spatiotemporal Trajectory Dividing
	Spatiotemporal Trajectory Dividing Algorithm
	Selection of Thresholds in DivST

	CluST: Spatiotemporal Replacement Line Clustering
	Spatiotemporal Line Distance
	k-means Based Line Clustering Algorithm
	Profiling Moving Objects by Interpreting Trajectory Clustering Results

	Experiment Results
	Three Sets of Real Trajectory
	Profiling Results of DivCluST
	Comparisons with Spatial-only and Temporal-only Profiling
	Analysis of DivST
	Analysis of CluST

	Summary

	Trajectory Warehousing for Multi-Granularity Moving Pattern Analysis
	Introduction
	Related Works
	Preliminaries
	Extracting Moving Patterns
	Trajectory Consistency Dividing
	Group Pattern Generating

	Warehouse Operations and Queries
	Spatial and Temporal Operations
	Aggregation and Warehouse Maintenance
	Distinct Trajectory Estimation
	Moving Pattern Queries

	Experiments and Evaluations
	Trajectory Sets and Pattern Extracted
	Space and Time Analysis
	Operation Analysis

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

	摘要
	thesis-main
	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Overview of the Dissertation
	Organization of the Dissertation

	Profiling Moving Objects by Dividing and Clustering Trajectories Spatiotemporally
	Introduction
	Related Works
	Problem Statement
	DivST: Spatiotemporal Trajectory Dividing
	Spatiotemporal Trajectory Dividing Algorithm
	Selection of Thresholds in DivST

	CluST: Spatiotemporal Replacement Line Clustering
	Spatiotemporal Line Distance
	k-means Based Line Clustering Algorithm
	Profiling Moving Objects by Interpreting Trajectory Clustering Results

	Experiment Results
	Three Sets of Real Trajectory
	Profiling Results of DivCluST
	Comparisons with Spatial-only and Temporal-only Profiling
	Analysis of DivST
	Analysis of CluST

	Summary

	Trajectory Warehousing for Multi-Granularity Moving Pattern Analysis
	Introduction
	Related Works
	Preliminaries
	Extracting Moving Patterns
	Trajectory Consistency Dividing
	Group Pattern Generating

	Warehouse Operations and Queries
	Spatial and Temporal Operations
	Aggregation and Warehouse Maintenance
	Distinct Trajectory Estimation
	Moving Pattern Queries

	Experiments and Evaluations
	Trajectory Sets and Pattern Extracted
	Space and Time Analysis
	Operation Analysis

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

