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摘要 

可解釋性在機器學習中是很重要的一部分，尤其現在越來越多強大的深度模型被

應用在各式各樣的問題中，其為人詬病的便是黑箱決策。特徵選取是一種理解資

料的方法，透過降低輸入空間的維度，亦能更掌握資料的特性。我們提出了一個

簡單的網絡層 SelectNet，使用特徵空間上的正則化損失，迫使模型在端到端的訓

練中使用較少的特徵。我們在兩個人工合成資料集上應用 SelectNet，藉此驗證特

徵選擇的能力，以及兩個真實世界的問題，以顯示找到關鍵特徵的好處，並且加

強驗證實際應用的效果。我們的模型顯示了增加可解釋性上的好處，而不會損害

準確性。由於該方法避免了來自那些不必要特徵的噪音，因此模型便能更加穩健。

SelectNet 可以採用任何進階網路架構作為其下游模型，而不僅僅是全連接層。我

們將它應用於具有 CNN 層的 MNIST，與基準相比，它仍然實現了相同的性能，

這也顯示了不需要的像素。 

 

 

關鍵詞：特徵選取、深度學習、正則化 
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Abstract 

Interpretability is an increasingly significant issue in machine learning, especially in 

deep learning. Recent developments in Deep learning have raised the need for 

interpretability of black box models. Feature selection is a way to help people 

understand difficult problem, by explaining the dataset. We propose a simple network 

layer, SelectNet, using regularization loss on feature space to force the model to use the 

less features in end-to-end training. We apply SelectNet on 2 synthesized datasets to 

examine the ability of feature selection and 2 real world problems to show the benefit 

from finding the key features. Our model shows what features are actually in use, 

without harming the accuracy. Since this method avoid noise from those unnecessary 

features, the model becomes more robust. SelectNet can take any modern network 

architecture, not just fully connected network, as its downstream model. We apply it on 

MNIST with CNN layer, and it still achieves same performance as benchmark does, 

which also shows what pixels are unnecessary. 

 

 

Keywords: Feature selection, Deep learning, Regularization loss 
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Chapter 1 Introduction 

End-to-end training saves a lot of cost of feature engineering, and it seems to be a 

prevalent way that use as many as possible features. The model should learn to 

transform features automatically. However, sometimes models were not built based on 

key features, which results in bad performance in validation/testing. This 

phenomenon may occur in small dataset with large redundant features space. 

Fortunately, there are many solutions to prevent overfitting, such as regularization and 

pruning [14, 15], to reduce the model complexity. Feature selection is another solution 

by reducing non-correlated input space, and it improves the interpretability, which is 

important because the patterns are hard to be explained, especially in numerical 

dataset. For example, interpreting image or word sequence numerical is easier than 

numeric medical values. Therefore, finding a subset of features is helpful to analyze 

specific problem.  

Previous studies in this area proposed many methods to understand how networks 

make decision, such as CNN visualization [10, 9] or attention mechanism [7, 19]. In 

those studies, they focus on explaining what patterns trigger the filters. Results of 

previous works have proved that contextual information [1, 3] is powerful. With 

contextual information, different samples focus on different features/patterns. Our 

study focuses on finding the efficient subset of features/patterns for whole dataset. 

Different fields are benefited by feature selection in different forms, such as smaller 

vocabulary in NLP task, less pixels in images, or minimal effective factors in medical. 

We propose a new layer, SelectNet, between the input layer and the first hidden layer. 

Every feature passes through a ‘gate weight’ before being fed to the first hidden layer. 
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Crucially, the layer shows clearly what features are necessary to the model, by 

interpreting the gate weight of SelectNet. The main purpose of this study is to explore 

what features are actually in use by network.  

 

Chapter 2 Related works 

Structured sparsity regularization is one of feature selection approach. For years many 

researchers contributed to sparsity regularization area, such as Lasso in linear logistic 

regression. This review [4] concludes the variant works on Lasso family. The 

exploration of this survey [5] includes many solutions in feature selection, such as 

statistical test [13, 12], sparse learning and information theory [2, 16]. The Deep 

Feature Selection (DFS) [17] uses an one-to-one element-wise product layer between 

input layer and first hidden layer. DFS imposes L1 regularization to achieve sparse 

structure in one-to-one layer. The p-norm (0 < p ≤ 1) has been proposed in [8] and has 

been successfully used in feature selection [6]. To further explore sparser structure 

representation, we introduce p-norm regularization in our one-to-one layer. 

 

Chapter 3 Methods 

We will introduce Deep Feature Selection (DFS) in the section 3.1 as the baseline 

model to compare the improvement. The second section 3.2, describe our method in 

detail. The last section 3.3 will discuss the main difference in modification.  

In this chapter, 𝜃 denotes the parameters of network, ⊙ denotes the element-wise 

product between two vectors. 
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3.1 Deep Feature Selection 

Deep Feature Selection (Yifeng Li, 2015) [17] is a network architecture between input 

layer and first hidden layer. In order to demonstrate the compact of every feature in 

input space, they proposed an one-to-one element-wise product layer. The architecture 

shows in Figure 1, and the additional regularization loss formats in Equation 1.  

𝑦$%&' = 𝑓 𝑥 ⊙𝑤	 	𝜃)				𝑥, 𝑤 ∈ 𝑅'				 

min
4
	𝑓 𝜃 = 𝑙 𝑦$%&', 𝑦6%7& + 𝛼 𝑊 ; + 𝛽 𝑤 =								(1) 

𝑊 ; denotes the common L2 regularization loss for parameters of network, 𝑤 = 

denotes the regularization loss on additional one-to-one layer. They use the L1 to 

make 𝑤= sparse to achieve the goal, which is feature selection. In the original paper, 

they rank the features by magnitude of corresponded weight in 𝑤. 

 

	
A	 B	

Figure 1: The Deep Feature Selection (DFS) – model architecture. 

(A) : The fully-connective network, with 2 hidden layer. (B) The DFS with 2 

hidden layer and one-to-one element-wise product layer. [17] 
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3.2 SelectNet 

To achieve the sparser structure, we first introduce a new hyper-parameter 𝑝, where 

0 < 𝑝 ≤ 1, to replace the regularization norm over 𝑤. 

𝑦$%&' = 𝑓 𝑥 ⊙𝑤	 	𝜃)				𝑥, 𝑤 ∈ 𝑅'				 

min
4
	𝑓 𝜃 = 𝑙(𝑦$%&', 𝑦6%7&) + 	𝛼 𝑊 ; + 𝛽 𝑤 $													(2) 

Moreover, we use the ratio over values of 𝑤 to rank features. 

𝑤%F6GHI =
𝑤G
𝑤J'

J
 

𝑦$%&' = 𝑓 𝑥 ⊙𝑤%F6GH	 	𝜃)				𝑥, 𝑤 ∈ 𝑅'			 

min
4
	𝑓 𝜃 = 𝑙(𝑦$%&', 𝑦6%7&) + 𝛼 𝑊 ; + 𝛽 𝑤 $													(3) 

After network converges, weight of the one-to-one layer can show what features are 

actually in use. With strong regularization loss, the network tends to fit the problem 

with the less features. In the following experiments, we also add a hyper-parameter 

calls ratio threshold, initialized by L.=
'

. It’s a threshold activation function to one-to-

one layer. Since the ratio values lower than threshold will be set zero, the feature 

could be seen as unnecessary feature for network. 
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3.3 Improvement 

The DFS faces 2 major shortcomings in feature selection and computing. 

l Weights of 𝑤 converge toward an extreme small value.  

l Accuracy dropping, because of covariate shift, and floating point computing 

problem in extreme small value. 

In formula (1), every 𝑤G is supposed to be small. It is hard to tell whether a feature is 

in use when even the greatest weight is lower than 10MN. Moreover, those weights 

may be recovered by the hidden layer with large weights. 

	
Figure 2: The SelectNet – model architecture. 

We calculated ratio in one-to-one layer. 
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The second is about the performance dropping, we notice that after applying DFS on 

original network, the network perform worse. Based on this observation, we assume 

the reason is caused by floating computation problem and covariate shift.  

When the inputs go through an extreme small value, they may still be recovered by 

hidden layer with large weights. The authors of DFS introduced L2 regularization on 

𝑊 ; to restrain this behavior, but covariate shift still remains the problem. 

Our method use ratio to control the gate weight, so its convergence is bounded within 

[1, =
'
] in practical, which prevents the covariate shift. It can also easily tell which 

features are actually used by introducing the ratio threshold. By the thumb rule, we set 

ratio threshold as 10MQ in all experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 



doi:10.6342/NTU201903589

7	
		

Chapter 4 Experiments 

In this section, we present the performance in 3 methods and 4 datasets.  

Three methods are listed below. 

l Naive DNN, only with hyper-parameter 𝛼	to control regularization loss of 

kernel weight matrix.		

	𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠 𝑦, 𝑦 + 𝛼 𝜃 ;
;	 

l Deep Feature Selection(DFS), the method from [6]. 

	𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠 𝑦, 𝑦 + 𝛼	 𝜃 ;
; + 𝛽 𝑤 =	 

l SelectNet, our proposed method.		

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠 𝑦, 𝑦 + 𝛼	 𝜃 ;
; + 𝛽 𝑤%F6GH $, 0 < 𝑝 ≤ 1 

Four datasets are listed below. 

1. Synthesized-easy 

2. Synthesized-hard 

3. MNIST 

4. Dengue fever binary classification 

The first two datasets are synthesized, and we use the easy one to test the ability 

of feature selection. Then, we use the 2nd one to show the importance of denoising. 

The third one is MNIST, a released image dataset for many benchmarks. Because 

images are more interpretable than numeric features, we use it to show the correctness 

in comprehensible dataset. At last, we apply this method to a real world medical 

binary classification problem. 

All the experiment results have been smoothed, we implemented the same logic 

with Tensorboard smooth variable as 0.8. 
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4.1 Model Selection 

To select the best hyper-parameters, we used the following rule: 

 𝑝 ∈ {0.25, 0.5, 0.75, 1.0} 

 𝛼 ∈ {0.1} 

 𝛽 ∈ {1, 10, 100, 1000} 

 𝛾 ∈ 0  

In every dataset, we train 3 times, ensuring to avoid the sampling bias. To 

demonstrate the ability of feature selection, the sparest feature group will be selected 

by top 3 at accuracy.  

4.2 Synthesized-easy 

It’s a 2D binary classification dataset 

with 6 extra noised features, shows as Figure 

3. 

 It contains 3 types of noised feature: 

redundant feature, random distribution and 

random permutation. Also, we add 10% 

missing with mean value for each feature to 

increase the complexity of this dataset.  

We denote 𝑈 𝑎, 𝑏 	as Uniform 

distribution within 𝑎, 𝑏 . 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑥  

as random permutation without association 

with label. The reason why we choose random permutation is based on [18] because 

the noised feature may share some similar characteristic with the original feature. 

Figure. 3 Synthesized-easy 

0.02𝑥=N − 0.5𝑥=; + 0.8𝑥; + 12 

separate hyper-plane of synthesized-easy 

dataset 
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The definition of all features shows as following: 

𝑥= ∼ 𝑈 𝑎, 𝑏 	|	𝑎 = −50, 𝑏 = 75	 

𝑥; ∼ 𝑈 𝑎, 𝑏 	|	𝑎 = −50, 𝑏 = 75	 

𝑥N = −0.5𝑥; 

𝑥i ∼ 𝑈 𝑎, 𝑏 	|	𝑎 = −50, 𝑏 = 75	 

𝑥Q ∼ 𝑁 𝜇, 	𝜎; 	|	𝜇 = 12.5, 𝜎 = 10	 

𝑥m = 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑥=  

𝑥n = 𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑥=;  

𝑥o = 𝑃𝑒𝑟	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑥;  

𝑦 = 0.02𝑥=N − 0.5𝑥=; + 0.8𝑥; + 12 

In this experiment, all three results, including the naive DNN, use fully 

connected network with 3 hidden-layer, hidden dimension as 16, as their downstream 

model. Table.1 lists top 3 hyper-parameter sets for each method. Figure. 4 shows the 

accuracy, and Figure. 5 represents the result of feature selection corresponding to 

SelectNet and DFS.  

Based on the results, both SelectNet and DFS find the key feature with slight 

difference, passing the noise test as well. In contrast to DFS, SelectNet filters out the 

redundant feature −0.5𝑥;. 

In conclusion, both methods work in this dataset, though DFS shows the 

drawback of dropping accuracy. The noise didn’t make significant effect on the naive 

FCN. Most likely, this dataset is too easy to show the benefit of finding the key 

feature. Therefore, in next section we design an advanced dataset based on this one, to 

demonstrate the importance of fitting on noised features.  
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Table 1: Performance in Synthesized Easy dataset. 

Colors indicate the groups of method, * denote the hyper-parameter set with sparest 

result of feature selection. 

 

Method 𝑝 𝛼 𝛽 Noised 

validation 

accuracy 

(mean) 

Noised 

validation 

accuracy 

(std) 

Validation 

accuracy 

Validation 

accuracy 

(std) 

*SelectNet 0.75 0.1 1 0.9832 0.0045 0.9832 0.0045 

SelectNet 0.5 0.1 1 0.9776 0.0038 0.9775 0.0039 

SelectNet 0.75 0.1 10 0.9775 0.0067 0.9775 0.0068 

FCN N/A 0.1 N/A 0.9734 0.0076 0.9809 0.0002 

*DFS N/A 0.1 1 0.9461 0.0199 0.9461 0.0199 

DFS N/A 0.1 10 0.9289 0.0104 0.9289 0.0104 

DFS N/A 0.1 100 0.8399 0.0058 0.8399 0.0058 

 

 

 

 

 

 

 

	

Figure. 4: Accuracy of training/validation set in Synthesize-easy. 
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Figure. 5: Feature selection in Synthesized-easy. 

 (A) The w value of DFS. (B) The w values of SelectNet. (C) The w ratio of DFS, 2 features were 

selected. (D) The ratio of SelectNet, 2 features were selected. Except the top 2 features, the rest all reach 

the lower bound. Which all were set to zero. 

 

 
	

A B

C D
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4.3 Synthesized-hard 

To emphasize the benefit of feature selection, we design an advanced dataset, 

altered from previous one. In this experiment, SelectNet shows the better performance 

in accuracy and feature selection. 

It’s also a 2D binary classification dataset 

with 6 extra noised features same as previous 

one, added non-linear transform, shows as 

Figure 6. 

 We only add 5% missing noise to each 

feature in this dataset, in contrast to adding 

10% the easier one.  

Table.2 lists top 3 hyper-parameter sets for 

each method. Figure. 7 shows the accuracy, and 

Figure. 8 represents the result of feature 

selection corresponding to SelectNet and DFS.  

 In this experiment, the naive FCN fits on the wrong features, so the accuracy 

drops dramatically. On the other hand, both DFS and SelectNet fit on the key features, 

but the drawback of DFS we mention in Section 3 shows up. When feature passes 

through an extreme small weight, it raises the hardness of converge. That may be the 

reason accuracy drops. 

 

 

 

Figure. 6 Non-linear separate hyper-plane of 

synthesized-hard dataset 
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Table 2: Performance in Synthesized Hard. 

Colors indicate the groups of method, * denote the hyper-parameter set with sparest 

result of feature selection. 

 

Method 𝑝 𝛼 𝛽 Noised 

validation 

accuracy 

(mean) 

Noised 

validation 

accuracy 

(std) 

Validation 

accuracy 

Validation 

accuracy 

(std) 

*SelectNet 0.5 0.1 10 0.9137 0.0114 0.9137 0.0114 

DFS N/A 0.1 1 0.8938 0.0027 0.908 0.0048 

SelectNet 0.25 0.1 1 0.8884 0.0229 0.8884 0.0229 

SelectNet 0.75 0.1 100 0.8753 0.0052 0.8753 0.0052 

*DFS N/A 0.1 10 0.8602 0.0238 0.8602 0.0238 

FCN N/A 0.1 N/A 0.6144 0.0322 0.7755 0.0357 

DFS N/A 0.1 100 0.5491 0.0568 0.5491 0.0568 

 

 

	
Figure.7: Accuracy of training/validation set in Synthesized-hard 
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Figure.8: Feature selection in Synthesized-hard  

 (A) The w value of DFS. (B) The w values of SelectNet. (C) The w ratio of DFS, 3 features were 

selected. (D) The ratio of SelectNet, 2 features were selected. Except the top 2 features, the rest all reach 

the lower bound. Which all were set to zero. 
	

	

	

A B

DC



doi:10.6342/NTU201903589

15	
	

 

 

4.4 MNIST 

In this multi-class image classification dataset, MNIST, we examine SelectNet to see 

whether it can still fit on the key feature in real-world data. For this purpose, we add 

noise on the border, where the pixels are unnecessary for naked eyes to distinguish 

digits. Additionally, we resize to 10x10x1 grayscale image and use the CNN and Max 

pooling as downstream model.  

Figure 9 shows the coverage of noise. Figure 10 shows the benefit from feature 

	

	
	

	

Figure.9: (A) The original image with label 2 in 10x10 pixels. (B) The noised 

image covered with red pixels, but the contour is still clear. The Noised validation 

accuracy shows the performance which model trained on images likes (A), then 

tested in (B). 

A	 B	
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selection, emphasizing the ability to defense noise from unnecessary features. If the 

model can fit on the key features, the central pixels, it should avoid the noise on the 

border. Figure 10 shows the pixel coverage that DFS and SelectNet actually used. 

Both DFS and SelectNet generated similar result, and the exposed region is sufficient 

to be differentiated by human vision. As the result, we conclude that the models find a 

subset of features to do this classification. In contrast to DFS, SelectNet ends up with 

some zero weights in one-to-one layer, so it’s clear to demonstrate unnecessary 

features, which is also the improvement we mentioned in Section 3. Overall, the 

SelectNet keeps the performance in validation set, and avoids the effect from noise on 

	

	
	

	

Figure.10: (A) The original image with label 2 in 10x10 pixels. (B) The noised image 

covered with red pixels, but the contour is still clear. The Noised validation accuracy 

shows the performance which model trained on images likes (A), then tested in (B). 

A	 B	
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unnecessary features. Table 3 shows the top 3 hyper-parameter sets of models.  

 

Table 3: Performance in MNIST dataset. 

Colors indicate the groups of method, * denote the hyper-parameter set with sparest 

result of feature selection. 

Method 𝑝 𝛼 𝛽 Noised 

validation 

accuracy 

(mean) 

Noised 

validation 

accuracy 

(std) 

Validation 

accuracy 

Validation 

accuracy 

(std) 

*SelectNet 1 0.1 10 0.983 0.0017 0.983 0.0017 

SelectNet 1 0.1 1 0.9825 0.0017 0.9807 0.0061 

SelectNet 0.75 0.1 1 0.9794 0.0057 0.9794 0.0057 

*DFS 1 0.1 1 0.9749 0.002 0.9743 0.0012 

FCN 0.25 0.1 1 0.9067 0.0054 0.9856 0.0016 

DFS 1 0.1 10 0.896 0.0111 0.898 0.011 

DFS 1 0.1 100 0.4584 0.0091 0.4556 0.011 

 

 

 

 

	
Figure.11: Accuracy of training/validation set in MNIST 
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4.5 Dengue Fever binary classification 

In this experiment, we discuss our first assumption, whether the feature selection 

benefit models in highly redundant input space. This dataset contains 63 features in 

total. However, our expert filter out 11 key features, and gain higher performance than 

training with 63 features. Under this premise, we expect SelectNet should improve the 

accuracy, and show similar result with experts.  

 

Table 4: Performance in Dengue Fever dataset. 

Colors indicate the groups of method, * denote the hyper-parameter set with sparest 

result of feature selection. 

 

Method 𝑝 𝛼 𝛽 Validation 

accuracy 

Validation 

accuracy (std) 

SelectNet 1 0.1 10 0.8021 0.0074 

*SelectNet 1 0.1 100 0.802 0.0098 

SelectNet 0.75 0.1 1 0.7998 0.0126 

*DFS 1 0.1 10 0.7947 0.0198 

DFS 1 0.1 1 0.7788 0.0218 

FCN 0.75 0.1 1 0.7672 0.0116 

DFS 1 0.1 100 0.7666 0.0169 

	
Figure.12: Accuracy of training/validation set in Dengue Fever. 
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A B 	

	

	

	

 

Figure.13: (A) The w value of DFS. (B) The w values of SelectNet. (C) The w ratio of DFS, 6 features were 

selected. (D) The ratio of SelectNet, 26features were selected. Except the top 6 features, the rest all reach the lower 

bound. Which all were set to zero. 
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Chapter 5 Conclusion and Future Works 

In this work, we presented the SelectNet, a regularization layer learning structured 

sparsity in input space, showing the sufficient subset of features. 

For classification task, the SelectNet performed better than naive FCN/CNN at noise 

data/images without harming the accuracy in default validation set. In feature 

selection aspect, SelectNet can directly show what features that network actually 

used. 

A further study with more focus on correctness of feature selection should be 

carefully examined. More experiments in human comprehensible data will increase 

confidence of this method. 

Overall, SelectNet is more stable than DFS in accuracy, more interpretable than naive 

network.  
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