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中文 要

遺傳標幟（如 DNA分子標幟）常被遺傳學與育種學家用來代表某特定基因型（包

括品種或品系），這些標幟多散佈於整個基因組裡，它們在不同個體上的多型性

以及在族群裡的分離情形透過基因型鑑定所觀察。當人們擁有夠多數量具有多型

性的標幟，就可以輕易地辨識出一個個體或一組相似的基因型。標幟與基因間在

族群中的不獨立分離讓某些標幟上的基因型可代表一個或數個相似表現型個體，

若樣本族群中的表現型有所差異，（數量）性狀基因座的定位便可能造就。本研

究旨在推導在單交與雙交雜種後代自、異交族群中的多基因座（連鎖與不連鎖）

基因型頻度。在單交雜種自交族群裡，我們給連結基因型與其頻度的互換分數

（recombination score）提供了證明。在 Hospital 等人所給予互換分數的定義下，

具有相同互換分數的基因型在任意世代中的出現有理論上相同的機率。在雙交的

異交族群裡，我們使用了三階層的互換分數來歸類任意世代中擁有相同頻度的配

子型。由於基因型頻度理論值的數目少於基因型的數目，我們只要利用較少維度

的轉移矩陣作乘法運算，便可得到任意世代所有的基因型頻度。最後，我們提供

了一組模擬單交雜種自交 F6 族群的資料，作為多基因座頻度應用於多區間定位的

範例。

關 字 多基因座、基因型頻度、世代推進族群、單交雜種、雙交雜種、遺傳圖譜
建構、數量性狀基因座定位
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Abstract

Genetic markers such as DNA have long been used to represent the genotype of an

individual (precisely, a lineage) by geneticists and breeders. These markers are de-

veloped by some means throughout the genome of the particular organism and being

genotyped. Polymorphism of each marker characterizes different individuals. The

characterization would be much more specific with the amount of polymorphic ge-

netic markers we recognized. The genotypes of these markers are associated with the

phenotypic values in the mapping of quantitative trait loci (QTL). In this study, we

derived the multilocus genotypic frequencies for recombinant inbred and advanced

intercrossed populations from 2- and 4-way crosses of inbred lines. We provide the

mathematical proof for the relationship between the theoretical genotypic frequen-

cies and the recombination scores of individual in the selfed populations derived from

biparental cross of inbred lines. It is showed that genotypes with the same recombi-

nation score would have the equal probability to show up in any generation beyond

the F2. Multi-level recombination score is proposed to identify the gametes with the

same theoretical frequency among the random-mated 4-way cross derivatives. By

using these symmetries, we reduced the dimensions of frequencies-transition matrix

for each population. The reduction of matrix size lightens the computation effort

in the multiplications for obtaining the advanced generation genotypic frequencies.

At the end of this study, we provide a simple simulated case studying involving a

biparental selfed F6 population and its multiple interval QTL mapping.

Keywords multi locus, genotypic frequencies, advanced population, biparental
cross, 4-way cross, genetic map construction, QTL mapping
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Chapter 1

Introduction

Genotypic frequencies in a structured population has long been researched. As

described in Hardy-Weinberg law, at any locus, allelic frequencies {fa}Aa=1 in the

population under random mating neglecting migration, selection and mutation re-

main constants from generation to generation. For multiple loci, derivation of geno-

typic frequencies in the Ft population random mating dates back to 40’s when

Geiringer (1944) raised a function of gametic frequencies Lt which depends to

the number of loci and is recurrently related to the similar functions with less loci,

thereby obtained gametic (genotypic) frequencies by solving a system of linear equa-

tions. These genotypic frequencies are presented in terms of the recombination rates

{rli,li+1
}m−1
i=1 for adjacent loci, where rli,li+1

is used to measure the degree of asso-

ciation between adjacent loci li and li+1. Each recombination rate is between 0

and 1/2. The former is the situation when two particular loci co-segregate while the

latter is that when they segregate independently. Previously, algorithm to obtain

multiple loci genotypic frequencies under various mating systems have already been

proposed (Hospital et al. 1996). For 3- and 4-loci model under self, Kao and

Zeng (2009, 2010) derived the recurrence equations which could be manipulated to

gain genotypic frequencies generation by generation.

Genotypic frequencies are required in these days when DNA, the heritable part of

chemicals in almost all creatures in earth is being used to distinguish living or lived

organisms. The mapping of trait related locus (loci) throughout the chromosomes

has fallen into place in many plants and animals breeding programs. To make

improvement on expression of a/some trait(s) for more mankind-favorable crop or
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livestock, breeders should genetically know to what the phenotype is attributed so

that the favorable alleles can be introgressed to elite-so-far through modern days’

markers assisted selection.

Mapping of trait locus (loci) is easy when the classes of trait are nominal and

the phenotypes are coincident with one or some of the markers genotyped, but can

be complicated when the expression profile is continuous or ordinal and genotype of

trait locus (loci) is not available. As trait locus (loci) should link with some of the

markers genotyped in most of the case as long as the density of markers is not too

low, therefore genotype of putative trait locus (loci) could be coded and treated as

random variable(s) that follows the distribution constructed based on the model in

which Bernoulli recombination trial during synapsis is assumed and eventually the

statistics of that particular locus would be obtained. For an advanced population,

the distribution for its genotypes depends on the number of meiosis its production

from F1-progenitor takes.

There are various statistical method to map the trait locus, or more generally,

the continuous expression quantitative trait locus (loci) (QTL). Some widely used

linkage map-based methods are standard interval mapping (Lander and Botstein

1989), composite interval mapping (Jansen 1993; Zeng 1993, 1994), regression in-

terval mapping (Haley and Knott 1992), multiple interval mapping (Kao et al.

1999) and score statistics mapping (Chang et al. 2009). All these methods first

go through the deduction of conditional probabilities of unobservable genotype of

trait locus by its putative flanking genotype-observed marker(s) and subsequently

likelihood of its location at that regarded site. Therefore, these methods need struc-

tured population in the design of experiment so that the genotypic frequencies that

are of concern can be derived. In one-QTL interval mapping, one needs genotypic

frequencies involved 3 loci, of which the second one in the ordered form of these loci

represents putative trait locus flanked left and right by genotype-observable markers

having each of their roles played by the first and the third locus, respectively. If

2
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more than one intervals are to be analyzed simultaneously, genotypic frequencies for

multiple locus appear on the scene. For instance, multiple intervals mapping needs

6-loci genotypic frequencies if two intervals within each of which contains a putative

trait locus are in the model and are linked. Besides, obtaining covariances between

predictor variables for linked locus genotype needed in the detection of power of link-

age map-based trait locus mapping methods requires also genotypic frequencies with

higher number of locus considered (Kao and Zeng 2010). Our work directs toward

genotypic frequencies of multiple locus under selfing and random mating model of

2-way and 4-way cross. The computer program written in Mathematica (Wolfram

Research, Inc. 2012) builds the transition matrices of given locus number. For

selfing, the matrices display linear relationships of genotypic frequencies between

two successive generations and therefore are square, whereas for random mating,

the matrices are rectangular as they serve to turn genotypic frequencies into coming

gametic frequencies.

For simplicity, we consider only diploidy so that for any locus, Mendelian in-

heritance laws can be directly applied. Leaning on the randomness in the segrega-

tion and passing on of alleles, Hardy and Weinberg follow the intuition that each

gamete equally likely associates with any other gamete in the gametophyte(s) of

self-fertilization organisms and extend it to the mathematically ideal random mat-

ing population of sufficiently large size with assumption of no migration, selection

and mutation. Therefore, under this setting, we compute genotypic frequencies of

(Ai,Aj)’s ((Ai,Aj) ≡ (Ai,Aj)) within unit of mating[1] after sexual phase by ap-

plying Kronecker product p⊗ p with p = (p1, . . . , p|{i}|)
′, where pi is the frequency

of gametic sequence of alleles Ai = (ai,l)
m
l=1 and m is number of locus[2], that is,

genotypic frequency of (Ai,Aj) is p2i when i = j and 2pipj when i ̸= j. We imple-

ment common practice by focusing only recombination of two observable markers
[1]Unit of mating refers to a single individual under selfing and to the whole population under

random mating.
[2]i represents the i-th possible gametic recombinant during meiotic synapsis in that particular

unit of mating and |{i}| is the number of possibilities of so.

3



..

(loci) and treat each interval confined by these markers and has no other marker

within it as a separated recombination trial. As a result, rAB, rBC and rCD
[3] are

each parameter of a distinct probability space. We avoid using rAC, rAD and etc. as

they will bring dependency of rAB to rBC (as well as of rBC to rCD). The relationship

of non-adjacent markers to above intervals of no marker within is handed on to the

mapping function which maps this non-linear space of r’s to linear metric space of

d’s with Morgan as its unit. Consider a gametic sequence of alleles Ai with respect

to Aj as its genetic materials interchanging counterpart before synapsis, Bernoulli

trial of Ai becoming (. . . , ai,l0 , ak,l0+1, . . .) after end of synapsis has probability of

1 − rl0 for k = i and of rl0 for k = j, where rl0 = rl0,l0+1 is the recombination rate

of locus l0 and locus l0 + 1. Therefore, within fully heterozygous[4] recombination

unit (Ai,Ak), event of Ai becoming Ai′ is joint of m − 1 trials and probability of

it is 1
2

∏m−1
l=1 rδl (1− rl)

1−δ, where δ = δ(l) is 1 when alleles in locus l and locus l + 1

of Ai′ are different to those of Ai by only one allele[5] and is 0 when exchanging

of genetic materials is not observed. Joint probability of recombination of each Ai

constructs the basic gametic frequencies condition in that particular recombination

unit. Depends on its recombination counterpart, Ai can give rise to numerous kind

of recombinants and therefore derivation of exact genotypic frequencies is exponen-

tial complexity with respect to locus number m in consideration.

[3]With assumption of order of marker loci being A-B-C-D, these r’s are recombination rates of
intervals A-B, B-C and C-D, respectively.

[4]The term ‘fully homo-/heterozygous(-tic)’ states the property of every locus being homo- or
heterozygous in the particular genotype.

[5]If two alleles are different from those of Ai, that means no recombination occurs in that
particular interval.
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Chapter 2

Theory and Algorithm

2.1 Self-fertilization

Self-fertilization is a kind of sexual reproduction where two gametes united to-

gether are from the same individual (Figure 2.1). Consider an individual (Ai,Aj) ≡

(Ai,Aj), if it is self-fertilized, then its progeny (Ai′ ,X) (or (Aj′ ,X)) can only has its

X be (ak(l),l)
m

l=1
, where k(l) ∈ {i, j}. In a population under self, homozygous geno-

Figure 2.1: Illustration of a selfed population derived from the biparenatal cross of
inbred lines in terms of a diploid chromosome. The figure shows segregation of 5
loci having polymorphism in parents P1 and P2. We do not show all the available
genotypes which should be in F2 and onward populations as there are 528 of them
(by Theorem 1). Among them, 3 genotypes (A, B and C) are given as examples
each showing the possible progenies that can be produced (illustrated in the gray
boxes).
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type would not produce heterozygous progeny. Therefore the genotypic frequencies

of heterozygote would reach 0 eventually as the number of selfing generations is

increased. If a few loci are considered, frequency of heterozygotes goes quickly to-

wards zero. Haldane and Waddington (1931) showed that in an experimental

population from a biparental cross of inbred lines with finite size, using 1
2(1+2r)

and
2r

2(1+2r)
can very well approximate the frequencies of 2-loci model’s homozygote of

parental and recombinant type, respectively especially when the population is highly

inbred. However, when more loci are involved, though homozygotes dominate even-

tually, practically feasible inbred population would still contain a certain amount of

heterozygotes.

2.1.1 Biparental cross of inbred lines (2-way cross)

Technically, an inbred line somewhat refers to a genotype with highly homozy-

gosity in its genome and can be produced from genotype which has its every close

progenitors produced through selfing. Mathematically, an inbred line has all of its

loci being homozygous and can be denoted as (Ai,Ai). Population produced from

the cross of (A(0),A(0)) and (A(1),A(1)), depending on the gametic types A(0) and

A(1), has all of its individuals possess at most two alleles (represented respectively

as 0 and 1 in the following) at any locus. Since the genotype of an individual can

only be determined by its parent (closest progenitor), the genotypic frequencies in a

selfed population are regarded as a discrete-time Markov chain. The total number

of states (genotypes) in this stochastic process is described below.

Theorem 1. In diploidy, the total number of distinct genotypes derived from a 2-way

cross under m-loci model is 2m−1(2m + 1).

The stochastic recurrence relationship between the parent (Ai,Aj) and the

production of its progeny (Ak,Al) in a selfed population can be described by

P
(
(Ak,Al)

(t+1)
∣∣(Ai,Aj)

(t)
)
. As shown in Figure 2.2, a specific progeny can be

produced by one of several different parents, therefore the frequencies of progeny

6
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Figure 2.2: The rightest genotype can be possibly produced by one of the genotypes
at the left side. As an example, the gametes produced by the circled genotype are
shown in the middle box. Two of these gametes framed in red fuse to be the rightest
genotype.

are each a sum of linear combination of frequencies of their possible parents, that

is,

Pr
(
(Ak,Al)

(t+1)
)
=
∑
i<j

Pr
(
(Ak,Al)

(t+1)
∣∣(Ai,Aj)

(t)
)
Pr
(
(Ak,Al)

(t+1)
)

(2.1)

By Theorem 1, we have a total of 2m−1(2m+1) i-j pairs (parents) as well as k-l pairs

(progenies). We express the system of 2m−1(2m + 1) equations in the matrix-vector

form as

p(t) = Smp
(t−1) (2.2)

where these equations are essentially Equation (2.1) with different k-l pairs. Sm

is a square matrix of 2m−1(2m + 1) rows and 2m−1(2m + 1) columns containing

Pr
(
(Ak,Al)

(t+1)
∣∣(Ai,Aj)

(t)
)

of all i-j and k-l pairs. Each row in Sm contains the

conditional probabilities of producing a specific progeny, corresponding to that par-

ticular row, given every single genotype; each column in Sm contains the conditional

probabilities of producing every single progeny given a specific parental genotype

corresponding to that particular column. p(t) is the vector of genotypic frequencies

7



..

in Ft population. For F1, p(1) has only one of its entries which corresponds to the

F1-genotype (Figure 2.1) be 1.

Instead of Sm, we constructed its transpose, Sm
′ in the finding of genotypic

frequencies. The entries of each row in Sm
′ (or column in Sm) were deduced through

two main steps, the listing of all gametes that the parent who corresponds to the

particular row could produce as well as the frequency of each of them, followed by

the Kronecker product of the two same vectors containing these frequencies.

In the listing of gametic frequencies, we used the indicator function δ = δ(l) that

has been mentioned in previous chapter to calculate the joint probability of Ai be-

coming Ai′ and obtained the gametic frequencies of F1-genotype. These frequencies

are indexed together with their corresponding gametic type to be the blueprint of

string replacement in the later finding of gametic frequencies of other non-F1 geno-

types. Among non-F1 genotypes, if fully heterozygotes are encountered, then the

gametic frequencies of them are just some permutations of the blueprint; whereas

for other genotypes which have at least an unsegregable locus, a pooling function[6]

Ψ1

(
Λ = (λ)λ,fΛ =

(
(fλ(u))u∈λ

)
Λ=(λ)λ

)
:=

Υ =
∪

Λ=(λ)λ

λ,fΥ =

 ∑
L∈{λ|λ∋u,Λ=(λ)λ}

fL(u)


u∈Υ

 (2.3a)

is used to group some identical gametes in the blueprint. Then, for each genotype,

Kronecker product of the two same vectors of gametic frequencies is applied. Flat-

tening[7] the upper triangle of each matrix resulted from these Kronecker product
[6]Pooling (Ψ1) is a procedure of grouping those of same kind, for each group, companioned with

the sum of their frequencies. Another form of pooling (Ψ2) dealing with the situation when the
second argument cannot be summed (not sequences of numbers) is stated as following,

Ψ2

(
Λ = (λ)λ,f

−1
Λ =

((
f−1
λ (u)

)
u∈λ

)
Λ=(λ)λ

)

:=

Υ =
∪

Λ=(λ)λ

λ,f−1
Υ =

((
f−1
L (u)

)
L∈{λ|λ∋u,Λ=(λ)λ}

)
u∈Υ

 (2.3b)

[7]Matrix flattening is a procedure of making every entry in a particular matrix to be placed
in only one row according to the ordering function (i, j)2

m−1(2m+1) 2m−1(2m+1)
i=1 j=1 , i.e., consider a

8
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gave an array of at most 2m−1(2m + 1) in length.

Observation of symmetries among genotypic frequencies

With Sm and p(1) = (. . . , 0, 1, 0, . . .), by Equation (2.2), p(2), p(3), . . . , and so on

are computed. Numerically, we discovered that in m = 3, 4, 5, 6 and 9-loci model,

there are at most 2×3m−1 distinct values of genotypic frequency in each of these case

(Table 2.1). Note that our numerical method assigns rl’s, where l = 1, . . . ,m − 1,

No. of loci No. of distinct genotypes No. of distinct frequencies

2 10 5

3 36 18

4 136 54

5 528 162

6 2, 080 486

9 131, 328 13,122
m 2m−1(2m + 1) 2× 3m−1

Table 2.1: From all cases with various number of polymorphic loci in consideration
listed above, 2 × 3m−1 can be conjectured as the number of distinct theoretical
frequencies for case of m polymorphic loci in the selfed population derived from
biparental cross of inbred lines. However, exception occurs when m = 2 loci are
concerned where 5 instead of 6 distinct theoretical frequencies are found in the
advanced population. This is explained in the proof of Lemma 2 in below.

to be the fractions less than 1/2 with numerator and denominator of each be 1 and

a prime number, respectively. For instance, r1 = 1/3, r2 = 1/5, . . . , and so on.

By using these values, false declaration (underestimated) of the amount of distinct

frequencies was avoided as the numerical equality did not lose the information held

in the algebraic equality. The seemingly consistent phenomenon of at most 2×3m−1

distinct values of genotypic frequency under m loci model, if proved to be true, can

largely reduce the dimension of Sm and effectively save computer time to obtain

genotypic frequencies.

matrix Mn×k = (a1
′, . . . ,an

′)′, where ai
′ is the i-th row vector with length k, then after flattening,

an array (a1, . . . ,an) is resulted.

9
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Genotypes frequentially symmetric about recombination scores

Hospital et al. (1996) introduced the recombination score to characterize a

genotype by its frequency in the F2 population under arbitrary m loci model. In

this section, we are to show that genotypes with the same recombination score have

the same frequency in any generation. Recombination score of genotype i, si is

defined as

si := (−1)δ2(i) × χ(δ1(1; i), . . . , δ1(m− 1; i)) (2.4)

where χ(x1, . . . , xn) =
∑n

j=1 xj × 10n−j. Notations in si are based on p2i , the fre-

quency of genotype i in the F2 population, which has the following form,

p
(2)
i =

1

2δ0(i)

m−1∏
l=1

r
δ1(l;i)
l (1− rl)

2−δ1(l;i) (2.5)

where

δ0(i) =


2, if genotype i is fully homozygous

1, otherwise
,

δ1(l; i) =


0, if l-th interval in genotype i is two parental types

1, ′′ is one parental and one recombinant types

2, ′′ is two recombinant types

and

δ2(i) =


0, if the first locus of genotype i is homozygous

1, otherwise
.

In Equation (2.4), we see that recombination score gathers the information of fre-

quency in F2 population (concatenation function χ(·)) and kind of genotype (δ2) in

a single number. For example, ((0, 0, 1), (1, 0, 1)), of which the frequency in the F2

population is 1
2
r1(1− r1)r

2
2 has recombination score −12.

Some important properties of recombination score are described below. Note that

in the following whenever same and different are mentioned, we mean algebraically

10
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equal and unequal, respectively.

Property 1. The parental genotypes,

((0, . . . , 0), (0, . . . , 0)) and ((1, . . . , 1), (1, . . . , 1)),

as well as the F1-genotype,

((0, . . . , 0), (1, . . . , 1))

share the same recombination score 0 but have different frequencies in any genera-

tion. This circumstance is resolved by denoting the score for parental genotypes as

+0 and the score for F1-genotype as −0.

Property 2. Any pair of genotypes having recombination scores with different sets

of δ1’s have different frequencies in the F2 population.

Property 3 (Presence of “1” in the recombination score). If there is at least one

“1” in the recombination score si, then genotype i is not fully homozygous, that is,

δ0(i) = 1.

Property 4 (Absence of “1” in the recombination score). If there is no “1” in the

recombination score si, then genotype i is either fully homozygous or fully heterozy-

gous.

Property 5 (Algebraic ties of frequency in the F2). By Properties 3 and 4, in the

F2 population, genotypes with their recombination scores being different only in

sign have the same frequency if these scores contain at least one “1” (Figure 2.3)

and have different frequencies if these scores contain no “1”. In such situation, the

frequency of the fully homozygote is one-half of that of the fully heterozygote.

Property 6 (Chromosomally structural difference between genotypes with their

recombination scores having opposite signs). Genotypes with their recombination

11
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Figure 2.3: Ties of frequency among genotypes with recombination scores different
only by signs and contain at least one “1” in the F2 population from biparental
cross of inbred lines. Note that each genotype shown above the recombination score
may not the only one that has that particular score, some others that are of the
same recombination score (regardless of signs) with it would have the same tie of
frequency.

scores being different only in sign have different probabilities to produce genotype

as themselves, that is,

Pr
(
(Ai,Aj)

(t+1)
∣∣(Ai,Aj)

(t)
)
̸= Pr

(
(Ak,Al)

(t+1)
∣∣(Ak,Al)

(t)
)
,

where s(Ai,Aj) = −s(Ak,Al). However, an exception stands when the loci number m

is 2. In such situation, the above probabilities, when s(Ai,Aj) = −s(Ak,Al) = ±1, are

both equal to 1/2.

With these properties, we move on to the lemmas needed in Theorem 2.

Lemma 1. In the F2 population from a 2-way cross, genotypes other than parental

and F1- genotypes having the same recombination score have the same frequency,

12
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that is,

si = sj =⇒ p
(2)
i = p

(2)
j .

By Lemma 1, recombination score of a genotype determines the corresponding

genotypic frequency in the F2 population. However, on the other way around, the

latter does not determine the former as, according to Properties 2 and 5, there

are algebraic ties of frequency between genotypes with recombination scores being

different only in sign and containing at least one “1”. In Lemma 2, we show that

there is no such tie in the F3 and the later advanced populations.

Lemma 2. In the F3 and the later advanced populations from a 2-way cross un-

der m ≥ 3-loci model, genotypes with different recombination scores have different

frequencies, that is,

si ̸= sj =⇒ p
(t)
i ̸= p

(t)
j ∀t ≥ 3.

Yet, it should be noted that Lemma 2 does not hold in the case where m = 2.

For simplicity, we represent genotypes i and j by their corresponding recombination

scores si = 1 and sj = −1. By Property 6,

c1→1 = c−1→−1 = 1/2.

Moreover, for −1g1 ∈ {i, j},

ck→−1g1 = 0 ∀k ∈ G\fHm\fHt\{i, j},

where {fHm, fHt} ⊂ P(G) represents set of subsets respectively contain fully ho-

mozygous and fully heterozygous genotypes. By equation

∑
k∈fHt

ck→ip
(t)
k =

∑
k∈fHt

ck→jp
(t)
k .

We have

p
(t)
1 = p

(t)
−1 ∀t ≥ 3

as long as p
(2)
1 = p

(2)
−1 initially.

13
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Lemma 2 is by reason of the matrix Sm being fully ranked. In the next lemma,

symmetries brought out by the initial F1 frequencies among genotypes with the same

recombination score are shown. These symmetries reduce the dimension of Sm.

Lemma 3. If we construct the parents of the same-scored genotypes i and j, denoted

k and l, in the same way, and if k and l have different scores, then their scores differ

at a/some position(s) where interval(s) of complete heterozygous is/are associated

with, that is, one has “0” and the other one has “2” at the particular position(s) in

each of their score. (Figure 2.4)

Figure 2.4: Parents for genotypes i and j, denoted k and l (k′ and l′) respectively, are
constructed in the same way x (y). Same-way parent construction is a procedure of
copying the maternal side of chromosome in some recombined way (e.g., as shown in
x1a) and the paternal side of chromosome in what left to be filled in (e.g., as shown
in x1b), followed by the optional incorporation of heterozygosity in the parent (e.g.,
as shown in x2 where 3rd and 5th locus is changed to heterozygous in the particular
parent).

Now, we have prepared to Theorem 2, which points out the reduced row-column

dimensions of Sm.

14
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Theorem 2. In the populations from 2-way cross, if no selection of a/some geno-

type(s) is involved, then the dimension of rows (columns) in Sm is at most 2× 3m−1

for m-loci model under selfing.

By Theorem 2, we reduce row and column dimensions of Sm from 2m−1(2m + 1)

to 2 × 3m−1. This can be simply done by extracting the coefficients (entries) of

frequency of same-frequency group in the original-dimensions matrix and taking

summation of them, that is, the original

Sm = {cij}2
m−1(2m+1) 2m−1(2m+1)

i=1 j=1

would reduce to

Sm =

{∑2m−1(2m+1)

j′=1
ci′j′1{sj′ = k}

}
k∈K i′∈{inf arg

i
si=k|k∈K}

,

where K is the set containing all recombination scores with cardinality 2× 3m−1.

2.1.2 4-way cross

4-way cross involves the crossing of four inbred lines, (A(0),A(0)), (A(1),A(1)),

(A(2),A(2)) and (A(3),A(3)). First, (A(0),A(0)) is crossed with (A(1),A(1)) and

(A(2),A(2)) is crossed with (A(3),A(3)). Then, their respective F1s, (A(0),A(1)) and

(A(2),A(3)), are intercrossed to produce a base population. Individuals in the base

population will undergo further selfing or random mating to produce advanced popu-

lation (Figure 2.5).

Generally, we assume at all m loci that the four founder inbred lines have different

alleles. For simplicity, we define in the gametic sequence of alleles A(k) = (a(k),l)
m
l=1,

a(k),l ≡ k ∀l = 1, . . . ,m, where k ∈ {0, 1, 2, 3}.

Under this assumption, individuals in the base population are all fully heterozygous.

Since (A(0),A(1)) and (A(2),A(3)) each produces 2m types of gamete, the base popu-

lation has 22m kinds of genotype. Nevertheless, it should be noted that in reality,
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Figure 2.5: Illustration of a 4-way cross. A and B are the groups of all available
genotypes produced by the base population undergoing self-fertilization and the base
population undergoing random mating, respectively.
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the founders can hardly hold different alleles at all m loci, most of the time the

degenerate case is the situation, that is, at some loci at least one allele is shared

between (A(0),A(1)) and (A(2),A(3)). If this is the case, the base population will

contain some non-fully heterozygous individuals. Within each of these individuals,

less markers show polymorphism.

We regard each individual in the base population as a F1-like (fully heterozygote)

genotype[8], therefore if subsequently this population is inbred, then the population

at any given generation can be seen as a mix of populations with

f = (fi)i∈G(base)

as the mixing proportions, where G(base) is the set of available genotypes in the base

population and fi is the frequency of genotype i, as each of these populations is

similar to the advanced population from a 2-way cross[9]. Therefore, the flattened

matrix[10] of the Kronecker product

f ⊗ p(t)

would be the genotypic frequencies of (t − 1)-th generation self-fertilized progenies

from the base population, where as in Equation (2.2), p(t) is obtained through Sm

derived before. Then, by Theorem 1, we have a total of

∣∣G(base)∣∣ · 2m−1(2m + 1)

genotypes and their corresponding frequencies in this advanced population. How-

ever, this amount of frequencies is superfluous as each genotype in G(base) can only

produce a population with at most 2 × 3m−1 distinct frequencies as mentioned in

Section 2.1.1. Moreover, in terms of genotypes, having the same progeny among

some out of the mixed populations as well as the degenerate case in which some
[8]Note that even in the degenerate case, non-fully heterozygotes can also be regarded as F1-like

genotypes as we can ignore those unsegregable loci.
[9]Corresponding to the particular given generation.

[10]Refer to Footnote [7].
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g ∈ G(base), mg < m, further eliminate the redundancy. Thus pooling[11] for iden-

tical genotypes and for identical frequencies are required to simplify the finding of

genotypic frequencies.

2.2 Random mating

In the Introduction, we have mentioned unit of mating[12], from which an indi-

vidual in a population during its sexual phase receives gametes to fertilize its own

one. Differing from the self-fertilized population, fusions of gametes from different

individuals could happen in a random mating population. Therefore, to deduce

the genotypic frequencies in such population, exposure of each gamete to the whole

population should be taken into account.

2.2.1 2-way cross

2-way cross has been introduced in Section 2.1.1, let p
(t)
i be the frequency of

genotype i in the Ft population and g
(t)
k be the overall frequency of gamete k (a

gametic sequence of alleles) produced by some individuals in the Ft− 1 population,

genotypic frequencies

p(t) = (p
(t)
i )i

is the flattened upper triangle of matrix resulted from the Kronecker product

g(t) ⊗ g(t),

where g(t) = (g
(t)
k )k, with 2m−1(2m + 1) in dimension (length), as described in The-

orem 1. However, this huge yet information redundant array is reduced to

2m−2(2m−1 + 3)

[11]For the pooling of genotypes, Equation (2.3a) is used; for the pooling of frequencies, Equation
(2.3b) (see Footnote [6]) is used.

[12]Refer to Footnote [1].
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in dimension as the gametic frequencies in g(t) are symmetric, that is, if gametes k

and l are BWWBs[13], then their corresponding frequencies would be algebraically

equal if initially only the fully heterozygote(s) (F1- and/or F1-like genotype(s)) which

brings out the symmetry is/are in the population. Whereas the gametic frequencies

g(t) are deduced from the parental genotypic frequencies p(t−1) through a set of sum-

mations of their linear combinations. The coefficients of these linear combinations

are collected in the matrix

Rm = {ρij}2
m−2(2m−1+3) 2m−1

i=1 j=1 ,

where ρij represents the overall probability of i-th corresponding group of genotypes

to produce one of the gamete in j-th BWWBs-pair. Similar to the entries in Sm,

ρij is deduced from the pooling[14] of degeneralized blueprint of F1-produced gametes

and their corresponding frequencies. The recurrence system to obtain genotypic

frequencies of advanced random mating population from a biparental cross of inbred

lines is stated as following.

g(t) = (g
(t)
j )2

m−1

j=1 = Rmp
(t−1) (2.6)

p(t) =
(
(g

(t)
j )

2
, 2g

(t)
j g

(t)
j+1, . . . , 2g

(t)
j g

(t)

2m−1 , 2(g
(t)
j )

2
)2m−1

j=1
(2.7)

2.2.2 4-way cross

In this section, a base population derived from the crossing of four inbred lines,

(A(0),A(0)), (A(1),A(1)), (A(2),A(2)) and (A(3),A(3)), as described in Section 2.1.2

is undergoing random mating. The genotypic frequencies in this base population

are collected in the array

p(0) = (p
(0)
i )i∈G(base) .

[13]BWWB is the abbreviation for Black-White-White-Black. It is defined by bicoloring every
gamete/genotype, according to its parental alleles, with white for a(0),l and black for a(1),l. If
simply switching every black to white and every white to black in i would be j, then i and j are a
pair of BWWBs.

[14]Refer to Equation (2.3a) and Footnote [6].
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Each genotype in the base population regarded as a F1-like genotype produces 2m

distinct gametes with probabilities q having form

1

2

∏m−1

l=1
rδl (1− rl)

1−δ.

Since some genotypes can commonly produce a certain gamete, a hierarchically

expanded listing of gametes for each genotype in the base population would cause a

number of redundancies in terms of gametic types. Thus, the gametes produced by

the base population and their corresponding frequencies, g(1) were obtained through

pooling this redundant list of gametes and gametic frequencies.

({Aj}j, g(1)) = Ψ1

((
{A(i)

k }
2m

k=1

)
i∈G(base)

,
(
p
(0)
i q
)
i∈G(base)

)
(2.8)

Unlike the base population which contains only the F1-like genotypes, the popula-

tions of subsequent generation have all

22m−1(22m + 1)

combinations of genotype. Moreover, each individual in these population can pro-

duce different amount of distinct gametes. Therefore, the q discussed before is of

different length for each of them. For genotype i, we denote its gametic frequencies

as qi. After deducing an algebraic blueprint for g(t) in terms of p
(t−1)
i ’s through

the pooling function as in Equation (2.8) with the replacement of q to qi, where

i ∈ G that contains all the genotypes in advanced population, a transition matrix

Rm collecting the sums of linear combination of some entries from several qi’s was

constructed. Then as in Equation (2.6), we have

g(t) = Rmp
(t−1) (2.9)

Before going on to obtain the genotypic frequencies, p(t), by Kronecker product

g(t) ⊗ g(t), a numerical method was used to identify the symmetries in g(t). We
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discovered that, out of 4m distinct gametes, there are only

2m−2(2m−1 + 1)

algebraically distinct frequencies. In Appendix A.5, we proposed a multi-level scor-

ing system to identify these 2m−2(2m−1 + 1) groups of gametes.

As in Equation (2.6), only the upper triangle of the upper left quarter in g(t)⊗g(t)

is concerned because of the groups of identical g(t)j ’s in g(t). Therefore, there are

2m−7(7× 2m+2 + 4m+1 + 8m + 48)

distinct genotypic frequencies among 22m−1(22m + 1) genotypes in each advanced

population. By using Equation (2.9) with the reduced version of p(t) which col-

lects

p
(t)
(sA(i)

(1)
,sA(i)

(2)
,∆)

instead of p(t)i for every genotype i, where s is the score for gametes A(i)
(1) and A(i)

(2)

that compose i and ∆ indicates whether these gametes are the same, coefficient

of each entry in p(t) is extracted from each entry in g(t) and collected in a new

less-dimension Rm. Since

p
(t)
(sA(i)

(1)
,sA(i)

(2)
,∆) = (2−∆)g

(t)
sA(i)

(1)

g
(t)
sA(i)

(2)

,

an equation similar to Equation (2.7) is established, that is

p(t) =
(
(g

(t)
k )

2
, 2g

(t)
k g

(t)
k+1, . . . , 2g

(t)
k g

(t)

2m−2(2m−1+1), 2(g
(t)
k )

2
)2m−2(2m−1+1)

k=1
(2.10)

where k’s are the orders for same-scored group. Moreover, it should be noted that

some entries in the new Rm are not simply conditional probabilities. Instead, they

are sums of linear combinations of probabilities. Thus, their realizations may be

more than 1. However, this Rm would not result unreasonable.
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Chapter 3

Case Studying

We mainly concern interval-based QTL mapping here. There are two steps in the

interval mapping, the genetic linkage map construction followed by the genome walk-

ing for putative QTL. The map construction is split into two parts, genetic markers

grouping and ordering followed by the recombination rates estimation. Thereafter,

in the second step, we go on to the genomic scanning, locus by locus every cM (centi-

Morgan), for the likelihood that each of them would be where the QTL located at.

3.1 Map construction

Overview

In the map construction, theoretically, if the grouping and ordering of markers

are known, we can manipulate the multilocus genotypic frequencies as a prior dis-

tribution for the likelihood function Lmap, the parameters for this function are the

unknown adjacent recombination rates.

Lmap(r1, . . . , rm−1|j ∈ J) =

(∑
j∈J

|j|

)
!
∏
j∈J

p(j; r1, . . . , rm−1)
|j|

|j|!
(3.1)

where j’s are sets each collecting individuals with the same particular genotype,

p(j) is the theoretical frequency of genotype that j contains and rl’s are recombi-

nation rates between locus l and l+ 1. We consider that the sample space with the

recombination rates maximizing Lmap is the likeliest one to have our data realized.

Nevertheless, in the real scene, especially for the orphan organisms, the grouping

and ordering of markers may be unfamiliar, therefore we need to group and order
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the markers in the most probable way as that of their laying on the chromosomes.

The reason for us to have such task first done is because the genotypic frequen-

cies we built are based on the knowledge of markers ordering. At the very first

place, the adjacencies of these markers are unknown, the recombination rates are

therefore estimated by the 2-loci genotypic frequencies pairwisely among markers.

Since the 2-loci genotypic frequencies contain only one parameter r, the genotypic

frequencies for advanced population and the corresponding Lmap are univariate poly-

nomials. Finding maximum of univariate polynomial equation is pretty easy as there

are efficient root finding algorithms (Collins and Akritas 1976; Rouillier and

Zimmermann 2004; Akritas et al. 2008). After all, a distance/dissimilarity-like

matrix containing pairwise recombination rates is then constructed. There are some

criteria to obtain the optimum order of markers, including SAL (Sum of Adjacent

Log-likelihoods), SAR (Sum of Adjacent Recombination Rates), seriation (Buetow

and Chakravarti 1987) and etc. Seriation method is a greedy algorithm running

in polynomial time, but its finding of optimal solution may not meet the need to

have the length of a linkage group as short as possible. Whereas SAR is implicitly

a traveling salesman problem (TSP), a NP-hard problem. Therefore, there is no

polynomial-time algorithm available for its optimal solution.

In the following simulated case studying, we use SAR as an ordering criterion

and, by R/TSP (Hahsler and Hornik 2006), a package in R based on Concorde

TSP solver, obtain the optimum of the markers order. We can further optimize

these recombination rates by using the genotypic frequencies for higher number of

loci as the prior in the likelihood function Lmap conditioning on this optimal order.

However, we don’t proceed to this step as the multilocus genotypic frequencies of an

F6 population are multivariate polynomials with huge size. The finding of arguments

(real and constrained in 0 to 1/2) that maximize Lmap based on these polynomials is

hardly possible. Moreover, the computation to derive the genotypic frequencies of

high loci number for advanced population in terms of algebraic notations of recom-
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bination rate takes exhaustively computer time. Therefore, in our case, the MLEs

for the recombination rates are merely on the basis of pairwise recombination events

and their optimal adjacencies. Our result, the best order based on SAR criteria, is

quite close to the true values. The order of marker is exactly the same as the true

one. The likelihood[15] of the realization data based on this order and these estima-

tions are not far from that based on the true recombination rates, even a little bit

higher, that is, more likely.

Result

We simulated 200 chromosomes of a F6 population having following genetic

marker’s positions in cM, they are 6.43174 (Marker I), 11.3343 (Marker II), 20.8244

(Marker III), 32.4125 (Marker IV), 40.5048 (Marker V) and 54.1496 (Marker VI).

By 2-loci genotypic frequencies, we obtain pairwise recombination rates maximizing

variant-pairs for Equation (3.1) using FindMaximum[] in Mathematica, where each

has m = 2 and 9 j’s separately collecting markers class (A,A), (A,H), (A,B), (H,A),

(H,H), (H,B), (B,A), (B,H) and (B,B). The permuted pairwise recombination rates

matrix is shown below.

Marker IV II V VI III

I 0.2338 0.04070 0.29282 0.39583 0.13391

IV 0.18921 0.06560 0.15033 0.11997

II 0.25262 0.32101 0.09567

V 0.11370 0.18601

VI 0.26298

The best order based on SAR criterion is calculated by R/TSP. By adding a dummy

locus to form the best break point for linear order (Climer and Zhang 2006),
[15]The likelihood to realize this data is essentially the probability of an instance in the sample

space following septingentivigintinoven(36 = 729)-omial distribution as expressed in Equation (3.1).
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R/TSP gave us the order

I-II-III-IV-V-VI

This order is exactly the same as the true one. With this optimal order, we set r1

to r5 to be the recombination rates for five intervals of adjacent loci and have their

values be those entries in the matrix above. Using 6-loci genotypic frequencies, from

Equation (3.1), the likelihood of the realized data based on these parameters and

order of markers is 3.3590×10−54 (with logarithm be −123.128), slightly higher than

that based on the simulation parameters with value 1.1548× 10−54 (with logarithm

be −124.196).

3.2 Genome scanning

Overview

The next part in the QTL mapping is to scan through the map built in previous

step and find where the QTL(s) is/are. In the standard interval mapping, it is

assumed that only one QTL lies in the particular map (genome) we are scanning

at. In a typical QTL mapping project, we put genetic markers throughout the

genome. The genotypes of each marker are used to represent the genomic states of

individual in the experimental population. These genomic states of individual are

to be associated with their corresponding phenotypic value. Since the genotypes of

markers are known (observed), and if we assume that the non-genetic effect (random

effect) follows normal distribution, we can deduce the likelihood function Ll based

on the observed data and have it maximized.

Ll(θ|y = (yi)i, g = (gi)i) =
∏
i

f(yi, gi;θ) (3.2)

where yi is the phenotypic value of individual i, gi is the genotype of i at marker l, θ

is the vector collecting freed parameters such as grand mean µ, variance σ2, additive

effect a and dominance effect d and f is the realization intensity of individual i under
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the assumption of l being a QTL. Commonly, f is the probability density function

of a normal distribution with mean
∑

q is QTL aqxq + dqzq + I + µ and variance σ2,

where in our case, Cockerham’s F2-model assigning

xi,k(i) = δdpl(gk(i))

and

zi,k(i) = 1/2 −
∣∣δdpl(gk(i))

∣∣,
where δdpl : (g(k is parental A), g(k is heterozygous), g(k is parental B)) → (1, 0,−1).

The arguments that maximize Ll are the MLE of θ. On the other hand, between

two adjacent markers, since the genotype of such putative site is unknown, we guess

its genotype with probabilities conditioning on the genotype of its flanking markers

constructed based on the genotypic frequencies. In one-QTL interval mapping, we

need 3-loci genotypic frequencies in terms of the recombination rates of flanking

markers and putative site, whereas in two-QTL intervals mapping, we need 5-loci

genotypic frequencies if the considered intervals are adjacent and 6-loci genotypic

frequencies if the intervals are non-adjacent. The likelihood of the missing data

between markers is considered as a random variable. Lander and Botstein (1989)

first proposed to use EM algorithm (Dempster et al. 1977) in the maximization of

this likelihood’s expectation, that is,

Eθ̃(logLungenotyped
site

(θ|y, go = (go,i)i,Gu = (Gu,i)i ∈ Γ))

=
∑
gu∈Γ

(logLungenotyped
site

(θ|y, go, gu)) · π(y, go, gu; θ̃)

=
∑
i

∑
j

(
log(p(gu,i = j|go,i) · f(yi, gu,i = j; θ̃))

)
p(gu,i = j|go,i) · f(yi, gu,i = j; θ̃)∑
j

p(gu,i = j|go,i) · f(yi, gu,i = j; θ̃)

(3.3)

θ̃
(s)

= arg
θ

max E
θ̃
(s−1)(logLungenotyped

site
(θ|y, go,Gu)) (3.4)

where go and gu respectively represent genotypes at flanking markers and at genotype-
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unobserved sites (QTL putative sites). Upper case of Gu states that it is a random

vector from sample space Γ. Since Γ is finite, by Fubini theorem, Equation (3.3)

is established where summation operators over i and j are interchanged. π is the

probability mass function for the unobserved genotypes based on mixture intensities

weighted by conditional probabilities derived from genotypic frequencies.

In our simulated case, where a1 = 1, a2 = −1, d1 = d2 = 1/2 and σ2 = 5.0625.

We are to find out where the QTL would be in the genome. First we went through

standard interval mapping and found that no locus exceed the threshold for being

a QTL. This is because two QTLs in our simulated case have opposite effects. By

considering a potential QTL with its position 11cM as a covariate, we detected

that there is a high likelihood of another QTL being at position 26cM (Figure

3.1). Conditioning on the putative site at 26cM, we subsequently found 13cM has

maximum conditional LOD score. Similarly, conditioning on 13cM, 26cM being the

site, where maximum conditional LOD score locates at, followed. We therefore listed

out some of the likely models (automated ones as well as their neighbourhoods) and

their corresponding statistics (Table 3.1).
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Figure 3.1: The LOD scores in the mapping of QTLs. Dots in blue, red and purple
respectively represent the LOD scores in the automated step 1 to 3 of QTL mapping.
Dots blue in color are the maximum expectation of likelihood under assumption of
the presence of only one QTL (standard interval mapping); while dots red in color
are formed by two parts, the part left to 20cM and the part right to it. The position
where maximum of LOD under standard interval mapping (38cM) occurs is fixed
as covariate. Condition on its existence, we found 11cM is still the QTL putative
site as in standard interval mapping. We therefore inferred that QTL may in the
vicinity of 11cM. Based on these inference, we scan the genome right to 20cM and
found that 26cM is significantly effective condition on the existence of QTL at 11cM;
dots purple in color left to 20cM are the LOD scores conditioning on the existence
of QTL at 26cM, whereas the same color dots right to 20cM are the LOD scores
conditioning on the existence of QTL at 13cM. Since conditioning on either 13cM
(left) or 26cM (right) could find each other (right/left to it) as the maximum of
scores, therefore we halted the automated finding at this point. The rigid triangles
indicate the true position where two QTLs locate at.
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Model Estimates of
Likelihood Log

Positions (cM) µ+ d1z1 + d2z2 σ2 a1 a2

(15) (26) (≈ −0.5†) (≈ −5.1‡) (1) (−1)

Estimation
(automated)

11 38 −0.4563 5.7035 0.6265 −0.6609 5.8× 10−200 −458.77

11 26 −0.4683 5.1901 1.0545 −1.1666 1.4× 10−198 −455.60

13 26 −0.4641 4.9823 1.2184 −1.3436 1.7 × 10−198 −455.36

Estimation
(neighbour-

hood)

14 26 −0.4618 4.8785 1.3031 −1.4390 1.6× 10−198 −455.47

14 25 −0.4665 4.8748 1.3471 −1.4650 1.6× 10−198 −455.47

13 25 −0.4681 4.9892 1.2519 −1.3592 1.6× 10−198 −455.46

13 27 −0.4614 5.0271 1.1657 −1.2973 1.3× 10−198 −455.61

14 27 −0.4585 4.9378 1.2384 −1.3813 1.1× 10−198 −455.85

15 27 −0.4553 4.8765 1.2964 −1.4563 7.1× 10−199 −456.25

True
15 25 −0.4649 4.7933 1.4260 −1.5601 1.3× 10−198 −455.65

15 26 −0.4594 4.8055 1.3723 −1.5246 1.2× 10−198 −455.75

Null N/A −0.4694 6.2061 N/A 3.0× 10−203 −466.34

† Assume the genotypes of these putative QTLs are not heterozygous
‡ Since the phenotypic values follow mixture (at least 4 components, i.e., QTLs’ genotypes

(A,A), (B,B), (A,B) and (B,A)) normal distribution, this number should > σ2 = 5.0625.
However, as genotypic variance is much less than phenotypic variance, it is close to 5.0625.

Table 3.1: The putative models in True are the scenarios where at least one position
of true QTL (they are at 15cM and 26cM) is known (but the genotypes at that/those
position(s) are unobserved as we do not put genetic markers at such position(s)).
The first line is the putative model directly inferred from the result of standard
interval mapping. The rest models are inferred from the procedure of multiple
interval mapping (Kao et al. 1999). From the procedure, we got automated results
(see Figure 3.1). We searched for these results’ neighbourhood and identified if there
was any better model. The model from the automated reasoning is still optimal (in
bold fonts). Each likelihood is the maximized expectation of likelihood, as expressed
in Equations (3.3) and (3.4), of the realized data with two particular positions
being putative simultaneously. It should be noted that our θ does not include the
dominance effects d1 and d2, thus their estimates are confounded with the grand
mean µ’s one, where in our simulation, µ = 0.
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Chapter 4

Discussion

Symmetries among genotypic frequencies

The work to obtain genotypic frequencies is partitioned into two, the construc-

tion of the transition matrix followed by the recurrent implementation of this matrix

together with the population frequencies vector. The former should take less com-

puter time when the fully symmetries within the genotypic frequencies are utilized.

These symmetries were firstly corresponded to the recombination scores, which were

purposely designed to relate the genotypic frequencies, by Hospital et al. (1996). In

this study, despite the given proof of relationship between recombination scores and

distinct genotypic frequencies in a selfed population of biparental cross of inbred lines

as well as the proposed listings of same-frequency groups in 2- and 4-way crosses’

random mating populations, instead of direct derivations of transition matrix with

row and column dimensions being respectively the numbers of distinct gametic and

genotypic frequencies, we constructed the transition matrices with original dimen-

sions at first and reduced their size then. Constructing such larger matrices may

be unnecessary and time consuming, therefore we set a perspective for the bet-

ter algorithms to directly obtain the transition matrices with reduced dimensions.

Prior to this objective, the correctness of 3-level recombination scoring system that

has been proposed to classify the symmetrical groups in the case of 4-way cross

should be proved in the near future. Nevertheless, proposing an algorithm having

the mentioned directness is not so straightforward even in the intuitively easy selfed

population from biparental cross of inbred lines. The reason for this difficulty is that
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the recombination score itself cannot be the blueprint for string replacement. There-

fore, a sophisticated algorithm concerning data structure of F1-genotype-produced

genotypes and gametic types is needed to reduce the complexity in the work to-

wards reduction of transition matrices. With such data structure, recombination

score of a blueprint can be converted promptly to that of the other geno-/gametic

type without even checking the geno-/gametic type of that particular blueprint. Be-

sides, another concern in the direct derivation of the reduced transition matrices is

that these matrices do not necessary have each of their columns summing up to 1

as in the Markov chain transition matrix. This phenomenon, which is due to the

representation of multiple geno-/gametic type in each recombination score, restrains

us from simply using the idea of conditional probabilities in terms of recombination

scores.

Potential of recombination scores in the genotypic frequencies’ derivation

We believe that the notion being used in the 3-level recombination score could

provide us a key to assort the geno-/gametic types according to their theoretical

frequencies in a balanced selfed population from 4-way cross. Furthermore, for the

general 2n-way crossed multiparent founded population, a k-level scoring system may

come into play, where k > 3. However, it should be noted that the classification

solely based on the theoretical frequencies may turn out probabilistic nonsense when

more founder inbred lines are involved in the initial crosses as the number of possible

combinations of intermating between individuals from different initial or sub-initial

(where applies) crossings increases rapidly and gives rise to a bottleneck effect in

the creation of all possible genotypes in the base and advanced population. The

resulted bottleneck effect will be much more intense when the number of loci in

consideration becomes greater because, in the population derived from a feasible

intermating practice, a number of genotypes do not come along. As a consequence,

the observed genotypic frequencies in the advanced population may far deviate from
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the computed ones. To deal with the bottleneck effect, some reasonable statistical

models should be introduced, for instance, at first glance, multinomial distribution

for subset of available intermatings can be the prior of the subsequent derivation of

transition matrix.

Genotypic frequencies in a segregation-distorted population

Segregation distortion may occur in some intermatings of certain organisms (Xu

et al. 1997; Lu et al. 2002; Phadnis and Orr 2009). Especially when the particular

organisms have far kinship. Usually, one of them brings a/some lethal gene(s) that

causes disappearance of a/some certain genotype(s) from the subsequent generation.

Yet, depends to the effect of lethality, weaker genotype may not all absent. There-

fore, transition matrix with original row and column dimensions should be adjusted

in terms of the fitness ratios. Since the vitality of each genotype has changed from

indifferent to different, the symmetries described by the recombination scores do not

hold. However, despite the untrueness of the reduced transition matrix as described

by recombination scores, we believe that, to a certain level, the row and column di-

mensions of transition matrix can be reduced, as long as the intensity of lethality is

fixed at all time. In an experiment, we do need to estimate the effect of lethality, in

addition to the position of lethal gene. The estimation can be complicated as every

locus in the vicinity of lethal gene(s) are distortedly segregated. Therefore, multi-

locus genotypic frequencies considering segregation distortion should be introduced

here. Rather than ordinary QTL mapping, the mapping of lethal gene is more like

a map construction under a circumstance that, at the spots near the lethal gene(s),

the genotypic frequencies are somehow distorted. This gives us the general notion

of linkage map construction. When the markers order in each linkage group is fixed,

the likelihood of such order can be deduced on the basis of genotypic frequencies

whenever segregation distortion is or is not regarded.
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Multi-locus score test statistics in advanced population

In pursuit of high resolution and high calls for allele causing differential pheno-

typic expression of mapped locus, we are off from less-meiotic biparental F2 to highly

recombined multi-parent derived RILs. Score test statistics is believed to be useful

in the mapping of QTL, especially when multiple intervals are concerned simulta-

neously and regardless of fixed or random effect model. When the population we

treat at is derived from more than two founder parents, and there are a lot of minor

loci controlling the trait we concern to, it is not suggested for us to consider that

each locus is having fixed effect because the overall levels may be too much. In fact,

the mixed model is closer to the actual case. We leave these complicated questions

for future. The main point here is that the multilocus genotypic frequencies play

important roles in deriving the score test statistics for advanced populations.

Genotypic frequencies in multi-parent-cross-derived population

The dynamic programming (DP) to obtain the conditional probabilities for geno-

types of ungenotyped loci is used in some studies (Mott et al. 2000; Kover et al.

2009). Basically, the DP was implemented for 3-loci genotypic frequencies as in our

case but these frequencies are of population derived from 8 founder parents. In that

context, it had been believed that the probability of each genotype could hardly

be deduced separately as the number of possibilities is huge and that DP worked

out efficiently. However, we hold to the idea that the construction of probabilities

list in terms of recombination rates, when which is to be firstly preloaded in a par-

ticular QTL mapping program, would greatly reduce the complexity in obtaining

the numerical realizations of each theoretical frequency. Since nowadays, the devel-

opment and genotyping of genetic markers in any well-known organisms have very

high throughput, the interval-based QTL mapping degenerates to associative anal-

ysis of differential expression among markers as the density of markers goes high,

where the genotype of each marker is dummy-coded as a real independent variable.
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Therefore, the mapping for QTL no longer guesses the genotype of locus between

flanking markers and the theoretical genotypic frequencies which construct the prior

mixture distributions for these ungenotyped (missing) loci have no beneficial use.
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Appendix: Proofs of Property,

Lemma and Theorem

A.1 Number of distinct genotypes in a 2-way-cross-

derived population

Theorem 1. In diploidy, the total number of distinct genotypes derived from a 2-way

cross under m-loci model is 2m−1(2m + 1).

Proof. At any given locus l, there are 22 = 4 ways to allocate alleles from two

parents, that is, following the notation Ai = (ai,l)
m
l=1, (ai,l, aj,l) could be (0, 0),

(0, 1), (1, 0) or (1, 1). As (Ai,Aj) ≡ (Ai,Aj), within the total 22m genotypes for m

loci, the amount of those i ̸= j could be halved, therefore the number of distinct

genotypes is 1
2
(22m − 2m) + 2m = 2m−1(2m + 1).

A.2 Reason for some properties in recombination

scores

Property 3 (Presence of “1” in the recombination score). If there is at least one

“1” in the recombination score si, then genotype i is not fully homozygous, that is,

δ0(i) = 1.

Reason. Since “1” in the recombination score can only be the sum of 0 and 1 (not

of any others in {0, 1}), at any interval where “1” is placed, the particular genotype

must have one and just only one out of two loci being heterozygous, therefore it is

not fully homozygous.
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Property 4 (Absence of “1” in the recombination score). If there is no “1” in the

recombination score si, then genotype i is either fully homozygous or fully heterozy-

gous.

Reason. Since “2” in the recombination score can only be the sum of two 1’s (not

of any others in {0, 1} and “0” in the score is the sum of 0’s, at any interval, both

gametic types of a genotype with its first locus being homozygous are either the

same

(a(x),l, a(y),l+1)

whenever the occurrence of “2” or the same

(a(x),l, a(x),l+1)

whenever of the occurrence of “0” in the recombination score. Whereas for a geno-

type with its first locus being heterozygous, at any interval, its genotype is either

((a(x),l, a(y),l+1), (a(y),l, a(x),l+1)) (in repulsion phase)

whenever the occurrence of “2” or

((a(x),l, a(x),l+1), (a(y),l, a(y),l+1)) (in coupling phase)

whenever the occurrence of “0” in the recombination score, where x, y can be 0 or

1 and x ̸= y.

Property 6 (Chromosomally structural difference between genotypes with their

recombination scores having opposite signs). Genotypes with their recombination

scores being different only in sign have different probabilities to produce genotype

as themselves, that is,

Pr
(
(Ai,Aj)

(t+1)
∣∣(Ai,Aj)

(t)
)
̸= Pr

(
(Ak,Al)

(t+1)
∣∣(Ak,Al)

(t)
)
,

where s(Ai,Aj) = −s(Ak,Al). However, an exception stands when the loci number m
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is 2. In such situation, the above probabilities, when s(Ai,Aj) = −s(Ak,Al) = ±1, are

both equal to 1/2.

Reason. By Equation (2.4), the sign in the recombination score represents the status

of being homo- or heterozygous in the first locus. The status in the next locus, within

any interval, by Property 3, whenever the occurrence of “1” in the recombination

score, would be different from that in the previous locus; by Property 4, the status

in loci within any interval are the same whenever the occurrence of “0” or “2”. As a

consequence, at any locus, one of these genotypes is homozygous and the other one

of them is heterozygous. Difference of chromosomal structure causes these genotypes

segregate at different probabilities.

A.3 Lemmas prior to Theorem 2

Lemma 1. In the F2 population from a 2-way cross, genotypes other than parental

and F1- genotypes having the same recombination score have the same frequency,

that is,

si = sj =⇒ p
(2)
i = p

(2)
j .

Proof. We show contradictions in two possible cases. Suppose two genotypes i and

j have different frequencies but have the same score.

1. Consider genotypes with at least one “1” in their recombination scores, accord-

ing to Property 3, these genotypes have δ0 = 1. Therefore, their frequencies

differ only by set of δ1’s. However, this leads to contradiction by Property 2.

2. Consider genotypes with no “1” in their recombination scores, if their fre-

quencies have different set of δ1’s, then by Property 2, their scores would be

different; if their frequencies differ only by δ0, by Equation (2.5) and Prop-

erty 4, then one of them is fully homozygous and the other one of them is fully

heterozygous. Therefore, their scores have opposite signs.
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Lemma 2. In the F3 and the later advanced populations from a 2-way cross un-

der m ≥ 3-loci model, genotypes with different recombination scores have different

frequencies, that is,

si ̸= sj =⇒ p
(t)
i ̸= p

(t)
j ∀t ≥ 3.

Proof. We first consider genotypes with recombination scores that contain at least

one “1” and differ only by sign. Denote these genotypes as i and j, the frequency

of i in the F3 population can be expressed in terms of p(2)i by

p
(3)
i = ci→ip

(2)
i +

∑
k∈G\fHm\{i}

ck→ip
(2)
k (A.1)

and the frequency of genotype j in the F3 population can be expressed in terms of

p
(2)
j by

p
(3)
j = cj→jp

(2)
j +

∑
k∈G\fHm\{j}

ck→jp
(2)
k (A.2a)

= cj→jp
(2)
i +

∑
k∈G\fHm\{j}

ck→jp
(2)
k (A.2b)

where fHm ⊂ G is the set of fully homozygotes within all available genotypes G

and Equation (A.2b) is due to p
(2)
i = p

(2)
j . If p(3)i = p

(3)
j , then from Equations (A.1)

and (A.2b), we get

p
(2)
i =

∑
k∈G\fHm\{j}

ck→jp
(2)
k −

∑
k∈G\fHm\{i}

ck→ip
(2)
k

ci→i − cj→j

(A.3a)

=

∑
k∈G\fHm\fHt\{i,j}\{l:cl→j=0}

ck→jp
(2)
k −

∑
k∈G\fHm\fHt\{i,j}\{l:cl→i=0}

ck→ip
(2)
k

ci→i − cj→j

(A.3b)

By Property 6, ci→i ̸= cj→j, therefore Equations (A.3a) and (A.3b) are defined.

Moreover, Equation (A.3b) is established because

1. genotypes i and j cannot produce genotype as each other since, by Property 6,

38



..

they have different chromosomal structures.

2. each fully heterozygote in the set fHt ⊂ G produces genotypes i and j at the

same probability since fully heterozygotes can be regarded as F1-like genotypes.

As a result, the first and the second terms in the numerator of Equation (A.3b) are

summations that sum over different sets of genotypes which are mutually exclusive

to each other and have different cardinalities. Since there exists at least one c which

is unique to one of these sets, some non-trivial combinations of {rl}m−1
l=1 and (p

(2)
k )k

that make the numerator be 0 can be found. However, this contradicts with the fact

in which p
(t)
i can be freely chosen.

Next we consider any pair of genotypes with different recombination scores in the

Ft population. From Equations (A.1) and (A.2b), the following relationship is ob-

tained.

p
(t)
i =

(cj→j − cj→i)p
(t)
j +

( ∑
k∈G\fHm\{i,j}

ck→jp
(t)
k −

∑
k∈G\fHm\{i,j}

ck→ip
(t)
k

)
ci→i − ci→j

(A.4)

As above, it leads to the same contradiction.

Lemma 3. If we construct the parents of the same-scored genotypes i and j, denoted

k and l, in the same way, and if k and l have different scores, then their scores differ

at a/some position(s) where interval(s) of complete heterozygous is/are associated

with, that is, one has “0” and the other one has “2” at the particular position(s) in

each of their score.

Proof. For the sake of convenience in the denotations, we enumerate all the feasible

3-tuples (δ1(x; i), δ1(x; k), δ1(x; l)) as (δ1(i), δ1(k), δ1(l)). Each entry is the digit at

the same particular position (x-th interval) of recombination score of i, k and l,

respectively (note that δ1(i) = δ1(j)). There are three possibilities.

1. Consider δ1(i) = 0 or 2 and associates with complete heterozygosity at that

39



..

particular interval, then δ1(k) and δ1(l) can only be 0 or 2 and associate with

complete heterozygote as we cannot incorporate homozygosity in their parent

at that particular interval. Moreover, since k and l are constructed in the same

way, thus δ1(k) = δ1(l).

2. Consider δ1(i) = 0 or 2 and associates with complete homozygosity at that

particular interval, then δ1(k) and δ1(l) can be 0, 1 or 2. If no heterozygosity

is incorporated in k and l, since they are constructed in the same way, then

δ1(k) = δ1(l) = δ1(i) = 0 or 2. If one heterozygosity is incorporated in k and

l, then δ1(k) = δ1(l) = 1. If two heterozygosities are incorporated in k and l,

again since they are constructed in the same way, then δ1(k) = δ1(l) = 0 or 2

(note that δ1(k) does not necessarily equals to δ1(i) here).

3. Consider δ1(i) = 1, that is, genotype i (j) has one homozygote and one he-

terozygote at that particular interval. If no heterozygosity is incorporated in

the only one homozygous locus, then δ1(k) = δ1(l) = δ1(i) = 1. However, if

heterozygosity is incorporated, though k and l are constructed in the same

way, there exists cases such that δ1(k) does not equal to δ1(l). For example, let

i be ((. . . , 0, 0, . . .), (. . . , 1, 0, . . .)), j be ((. . . , 0, 1, . . .), (. . . , 1, 1, . . .)) and they

have the same recombination score with “1” at the position with which the

interval displayed above associates, if parent k is ((. . . , 0, 0, . . .), (. . . , 1, 1, . . .))

and in the same way parent l is constructed as ((. . . , 0, 1, . . .), (. . . , 1, 0, . . .)),

we would observe that in k the recombination score has “0” while in l the re-

combination score has “2” associated with that particular interval. Moreover,

as complete heterozygous appears in k and l at this interval, so δ1(k) and δ1(l)

can only be 0 or 2.
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A.4 Number of distinct frequencies in a 2-way-

cross-derived selfed population

Theorem 2. In the populations from 2-way cross, if no selection of a/some geno-

type(s) is involved, then the dimension of rows (columns) in Sm is at most 2× 3m−1

for m-loci model under selfing.

Proof. By Lemma 3, if the recombination scores of genotypes k and l are differ-

ent, they differ at position(s) where in the recombination score of i (or j), “1”(s)

is/are situated at. Moreover, each differential position can only be either “0” or “2”

and associates with complete heterozygous interval. Since k and l are constructed

in the same way, their recombination scores are in the same sign. Therefore, by

simply introducing a/some recombination(s)[16] at the interval(s) where differential

position(s) is/are associated with in k, we would get k′, of which the recombination

score is the same with that of l. This(-ese) particular recombined interval(s) pro-

duce one homozygote and one heterozygote in i, therefore within such interval(s),

i’s gametic types are one parental and one recombinant of k as well as of k′. As a

consequence, k and k′ have the same probability to produce i. The same procedure

can also be done in l to obtain l′. l′ shares the same recombination score with k and

produces j at the same probability as l do (Figure 2.4). A relationship leading to

the same frequency of same-scored genotypes pair is established.

p
(t+1)
i =

∑
(k,k′)

c5,k(p
(t)
k + p

(t)
k′ ) +

∑
κ

c6,κp
(t)
κ (A.5a)

p
(t+1)
j =

∑
(l,l′)

c5,l(p
(t)
l + p

(t)
l′ ) +

∑
λ

c6,λp
(t)
λ (A.5b)

The first terms in Equations (A.5a) and (A.5b) respectively represents (k, k′)- and
[16]Chromosomal configuration beyond the recombination point is flipped after a recombination

event.
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(l, l′)-pairs. For every k and l constructed in the same way,

c5,k = c5,l.

Whereas the second terms respectively represent κ’s and λ’s. For every κ and λ

constructed in the same way, not only

c6,κ = c6,λ,

they have the same recombination score (note that some κ-λ pairs are BWWBs[17]).

By Lemma 1, recombination score determines frequency in the F2 population, thus

p
(2)
k = p

(2)
l′ , p(2)l = p

(2)
k′

and

p(2)κ = p
(2)
λ

for each k-l (k′-l′) pair or κ-λ pair constructed in the same way. As the right hand

side of Equation (A.5a) is equal to that of (A.5b),

p
(3)
i = p

(3)
j .

Since i and j share the same score, therefore recombination score determines also

genotypic frequency in the F3 population. Repeating the same procedure in t =

3, 4, . . . , and so on gives rise to the statement that recombination score determines

genotypic frequency in any generation, that is,

si = sj =⇒ p
(t)
i = p

(t)
j ∀t ≥ 2,

where neither (i, j) nor (j, i) is (parental genotype, F1-genotype).

By Lemmas 2 and 3, property of one-to-one in the mapping of recombination scores

to genotypic frequencies states that dimension of rows (columns) in Sm is the num-
[17]Refer to Footnote [13].
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ber of distinct scores. Since the recombination scores are ternary numbers (with only

0, 1 or 2 in it) as stated in Equation (2.4), there are 3m−1 of them from
m−1︷ ︸︸ ︷

0, . . . 0 to
m−1︷ ︸︸ ︷

2, . . . 2. Doubling this figure gives rise to the number of distinct scores, 2×3m−1.

A.5 Multi-level recombination scores for 4-way cross

random-mated population

A multi-level binary scoring system is proposed to classify 2m−2(2m−1+1) groups

of gametes from a 4-way-cross-derived radom-mated population, where gametes with

the same score have the same frequency in every advanced population. The scores

store more information than that of 2-way cross’ selfed population. The first level

of each score, working similar to the concatenation function χ(·) in Equation (2.4),

characterizes the recombination event between two adjacent markers. If a recombi-

nation occurs between the two adjacent markers, it is coded as “1” for that interval

(recombinant interval) and otherwise, it is coded as “0” (non-recombinant interval);

the second level is to determine if the two markers in the recombinant interval are

from the same initial cross. If they are from the different initial cross, the score is

given to “1”, and to “0” otherwise for the recombinant interval; the third level is to

determine if the two markers at the ends of a chromosome segment flanked by two

closest recombined intervals with different initial crosses are from different parents.

If these two markers are from different parents, the score is given to “1”, and to

“0” otherwise. For example, gametes (0, 1, 2, 2, 0) and (1, 0, 3, 3, 1) (and more) have

the same score 1101/011/1; gametes (0, 2, 0, 3), (0, 3, 0, 2) and (2, 1, 2, 0) (and more)

have the same score 111/111/01.
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