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Abstract

Genetic markers such as DNA have long been used to represent the genotype of an
individual (precisely, a lineage) by geneticists and breeders. These markers are de-
veloped by some means throughout the genome of the particular organism and being
genotyped. Polymorphism of each marker characterizes different individuals. The
characterization would be much more specific with the amount of polymorphic ge-
netic markers we recognized. The genotypes of these markers are associated with the
phenotypic values in the mapping of quantitative trait loci (QTL). In this study, we
derived the multilocus genotypic frequencies for recombinant inbred and advanced
intercrossed populations from 2- and 4-way crosses of inbred lines. We provide the
mathematical proof for the relationship between the theoretical genotypic frequen-
cies and the recombination scores of individual in the selfed populations derived from
biparental cross of inbred lines. It is showed that genotypes with the same recombi-
nation score would have the equal probability to show up in any generation beyond
the Fy. Multi-level recombination score is proposed to identify the gametes with the
same theoretical frequency among the random-mated 4-way cross derivatives. By
using these symmetries, we reduced the dimensions of frequencies-transition matrix
for each population. The reduction of matrix size lightens the computation effort
in the multiplications for obtaining the advanced generation genotypic frequencies.
At the end of this study, we provide a simple simulated case studying involving a
biparental selfed Fg population and its multiple interval QTL mapping.

Keywords multi locus, genotypic frequencies, advanced population, biparental
cross, 4-way cross, genetic map construction, QTL mapping
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Chapter 1

Introduction

Genotypic frequencies in a structured population has long been researched. As
described in Hardy-Weinberg law, at any locus, allelic frequencies {f,}:, in the
population under random mating neglecting migration, selection and mutation re-
main constants from generation to generation. For multiple loci, derivation of geno-
typic frequencies in the F; population random mating dates back to 40’s when
GEIRINGER (1944) raised a function of gametic frequencies L; which depends to
the number of loci and is recurrently related to the similar functions with less loci,
thereby obtained gametic (genotypic) frequencies by solving a system of linear equa-
tions. These genotypic frequencies are presented in terms of the recombination rates

{ri,1, H}ﬁf for adjacent loci, where 7, is used to measure the degree of asso-

liv1
ciation between adjacent loci l; and [;;;. Each recombination rate is between 0
and 1/2. The former is the situation when two particular loci co-segregate while the
latter is that when they segregate independently. Previously, algorithm to obtain
multiple loci genotypic frequencies under various mating systems have already been
proposed (HOSPITAL et al. 1996). For 3- and 4-loci model under self, KAO and
ZENG (2009, 2010) derived the recurrence equations which could be manipulated to
gain genotypic frequencies generation by generation.

Genotypic frequencies are required in these days when DNA, the heritable part of
chemicals in almost all creatures in earth is being used to distinguish living or lived
organisms. The mapping of trait related locus (loci) throughout the chromosomes

has fallen into place in many plants and animals breeding programs. To make

improvement on expression of a/some trait(s) for more mankind-favorable crop or



livestock, breeders should genetically know to what the phenotype is attributed so
that the favorable alleles can be introgressed to elite-so-far through modern days’
markers assisted selection.

Mapping of trait locus (loci) is easy when the classes of trait are nominal and
the phenotypes are coincident with one or some of the markers genotyped, but can
be complicated when the expression profile is continuous or ordinal and genotype of
trait locus (loci) is not available. As trait locus (loci) should link with some of the
markers genotyped in most of the case as long as the density of markers is not too
low, therefore genotype of putative trait locus (loci) could be coded and treated as
random variable(s) that follows the distribution constructed based on the model in
which Bernoulli recombination trial during synapsis is assumed and eventually the
statistics of that particular locus would be obtained. For an advanced population,
the distribution for its genotypes depends on the number of meiosis its production
from Fj-progenitor takes.

There are various statistical method to map the trait locus, or more generally,
the continuous expression quantitative trait locus (loci) (QTL). Some widely used
linkage map-based methods are standard interval mapping (LANDER and BOTSTEIN
1989), composite interval mapping (JANSEN 1993; ZENG 1993, 1994), regression in-
terval mapping (HALEY and KNOTT 1992), multiple interval mapping (KA0 et al.
1999) and score statistics mapping (CHANG et al. 2009). All these methods first
go through the deduction of conditional probabilities of unobservable genotype of
trait locus by its putative flanking genotype-observed marker(s) and subsequently
likelihood of its location at that regarded site. Therefore, these methods need struc-
tured population in the design of experiment so that the genotypic frequencies that
are of concern can be derived. In one-QTL interval mapping, one needs genotypic
frequencies involved 3 loci, of which the second one in the ordered form of these loci
represents putative trait locus flanked left and right by genotype-observable markers

having each of their roles played by the first and the third locus, respectively. If



more than one intervals are to be analyzed simultaneously, genotypic frequencies for
multiple locus appear on the scene. For instance, multiple intervals mapping needs
6-loci genotypic frequencies if two intervals within each of which contains a putative
trait locus are in the model and are linked. Besides, obtaining covariances between
predictor variables for linked locus genotype needed in the detection of power of link-
age map-based trait locus mapping methods requires also genotypic frequencies with
higher number of locus considered (KA0 and ZENG 2010). Our work directs toward
genotypic frequencies of multiple locus under selfing and random mating model of
2-way and 4-way cross. The computer program written in Mathematica (WOLFRAM
RESEARCH, INC. 2012) builds the transition matrices of given locus number. For
selfing, the matrices display linear relationships of genotypic frequencies between
two successive generations and therefore are square, whereas for random mating,
the matrices are rectangular as they serve to turn genotypic frequencies into coming
gametic frequencies.

For simplicity, we consider only diploidy so that for any locus, Mendelian in-
heritance laws can be directly applied. Leaning on the randomness in the segrega-
tion and passing on of alleles, Hardy and Weinberg follow the intuition that each
gamete equally likely associates with any other gamete in the gametophyte(s) of
self-fertilization organisms and extend it to the mathematically ideal random mat-
ing population of sufficiently large size with assumption of no migration, selection
and mutation. Therefore, under this setting, we compute genotypic frequencies of
(A, A)s (A, A)) = (A, A))) within unit of mating!!! after sexual phase by ap-
plying Kronecker product p ® p with p = (p1,...,pqy)’s where p; is the frequency
of gametic sequence of alleles A; = (@i,l)ln; and m is number of locus!?, that is,
genotypic frequency of (A;, A;) is p? when ¢ = j and 2p;p; when i # j. We imple-

ment common practice by focusing only recombination of two observable markers

Unit of mating refers to a single individual under selfing and to the whole population under
random mating.

i represents the i-th possible gametic recombinant during meiotic synapsis in that particular
unit of mating and |{:}| is the number of possibilities of so.



(loci) and treat each interval confined by these markers and has no other marker
within it as a separated recombination trial. As a result, rap, rsc and repl® are
each parameter of a distinct probability space. We avoid using rac, rap and etc. as
they will bring dependency of 7ap to rgc (as well as of rg¢ to rcp). The relationship
of non-adjacent markers to above intervals of no marker within is handed on to the
mapping function which maps this non-linear space of r’s to linear metric space of
d’s with Morgan as its unit. Consider a gametic sequence of alleles A; with respect
to A, as its genetic materials interchanging counterpart before synapsis, Bernoulli
trial of A; becoming (..., a;, @k ig+1,--.) after end of synapsis has probability of
1 -1y, for k = ¢ and of ry, for &k = j, where r;, = ry,,41 is the recombination rate
of locus I, and locus Iy + 1. Therefore, within fully heterozygous® recombination
unit (A;, Ag), event of A; becoming Ay is joint of m — 1 trials and probability of
it is 3 01— )"0, where § = 6(1) is 1 when alleles in locus [ and locus [ + 1
of A; are different to those of A; by only one allele®! and is 0 when exchanging
of genetic materials is not observed. Joint probability of recombination of each A;
constructs the basic gametic frequencies condition in that particular recombination
unit. Depends on its recombination counterpart, A; can give rise to numerous kind
of recombinants and therefore derivation of exact genotypic frequencies is exponen-

tial complexity with respect to locus number m in consideration.

BIWith assumption of order of marker loci being A-B-C-D, these r’s are recombination rates of
intervals A-B, B-C and C-D, respectively.

[IThe term ‘fully homo-/heterozygous(-tic)’ states the property of every locus being homo- or
heterozygous in the particular genotype.

BITf two alleles are different from those of A, that means no recombination occurs in that
particular interval.



Chapter 2

Theory and Algorithm

2.1 Self-fertilization

Self-fertilization is a kind of sexual reproduction where two gametes united to-
gether are from the same individual (Figure 2.1). Consider an individual (A;, A;) =
(A, Aj), if it is self-fertilized, then its progeny (A, X) (or (A, X)) can only has its
X be (ar@,),-,, where k(l) € {i,j}. In a population under self, homozygous geno-
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Figure 2.1: Illustration of a selfed population derived from the biparenatal cross of
inbred lines in terms of a diploid chromosome. The figure shows segregation of 5
loci having polymorphism in parents P; and P;. We do not show all the available
genotypes which should be in Fy and onward populations as there are 528 of them
(by Theorem 1). Among them, 3 genotypes (A, B and C) are given as examples
each showing the possible progenies that can be produced (illustrated in the gray
boxes).



type would not produce heterozygous progeny. Therefore the genotypic frequencies

of heterozygote would reach 0 eventually as the number of selfing generations is

increased. If a few loci are considered, frequency of heterozygotes goes quickly to-

wards zero. HALDANE and WADDINGTON (1931) showed that in an experimental
1

population from a biparental cross of inbred lines with finite size, using SI(eED] and

ﬁ can very well approximate the frequencies of 2-loci model’s homozygote of
parental and recombinant type, respectively especially when the population is highly
inbred. However, when more loci are involved, though homozygotes dominate even-

tually, practically feasible inbred population would still contain a certain amount of

heterozygotes.

2.1.1 Biparental cross of inbred lines (2-way cross)

Technically, an inbred line somewhat refers to a genotype with highly homozy-
gosity in its genome and can be produced from genotype which has its every close
progenitors produced through selfing. Mathematically, an inbred line has all of its
loci being homozygous and can be denoted as (A;, A;). Population produced from
the cross of (A (), A()) and (Aqn), An)), depending on the gametic types A g and
A (1), has all of its individuals possess at most two alleles (represented respectively
as 0 and 1 in the following) at any locus. Since the genotype of an individual can
only be determined by its parent (closest progenitor), the genotypic frequencies in a
selfed population are regarded as a discrete-time Markov chain. The total number

of states (genotypes) in this stochastic process is described below.

Theorem 1. In diploidy, the total number of distinct genotypes derived from a 2-way

cross under m-loci model is 2™ 1 (2™ + 1).

The stochastic recurrence relationship between the parent (A;, A;) and the
production of its progeny (Ay,A;) in a selfed population can be described by
P((Ay, A)D|(A;, A;)®). As shown in Figure 2.2, a specific progeny can be

produced by one of several different parents, therefore the frequencies of progeny
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Figure 2.2: The rightest genotype can be possibly produced by one of the genotypes
at the left side. As an example, the gametes produced by the circled genotype are
shown in the middle box. Two of these gametes framed in red fuse to be the rightest
genotype.

are each a sum of linear combination of frequencies of their possible parents, that
is,
Pr((Ag, A)UY) = " Pr((Ag, A)V](A, A)D)Pr((A, AYTY) (21)
i<j
By Theorem 1, we have a total of 2771(2™ +1) i-j pairs (parents) as well as k-I pairs
(progenies). We express the system of 2771(2™ 4 1) equations in the matrix-vector

form as

p" = S,p" (2.2)

where these equations are essentially Equation (2.1) with different k-l pairs. S,
is a square matrix of 2™ (2™ + 1) rows and 2™7'(2™ + 1) columns containing
Pr((Ag, A) Y [(A;, A;)®) of all i-j and k-l pairs. Each row in S, contains the
conditional probabilities of producing a specific progeny, corresponding to that par-
ticular row, given every single genotype; each column in S,, contains the conditional
probabilities of producing every single progeny given a specific parental genotype

corresponding to that particular column. p® is the vector of genotypic frequencies



in F, population. For F;, p(!) has only one of its entries which corresponds to the
Fi-genotype (Figure 2.1) be 1.

Instead of S,,, we constructed its transpose, S,," in the finding of genotypic
frequencies. The entries of each row in S,,,” (or column in S,,) were deduced through
two main steps, the listing of all gametes that the parent who corresponds to the
particular row could produce as well as the frequency of each of them, followed by
the Kronecker product of the two same vectors containing these frequencies.

In the listing of gametic frequencies, we used the indicator function § = §(1) that
has been mentioned in previous chapter to calculate the joint probability of A; be-
coming A, and obtained the gametic frequencies of F;-genotype. These frequencies
are indexed together with their corresponding gametic type to be the blueprint of
string replacement in the later finding of gametic frequencies of other non-F; geno-
types. Among non-F; genotypes, if fully heterozygotes are encountered, then the
gametic frequencies of them are just some permutations of the blueprint; whereas

for other genotypes which have at least an unsegregable locus, a pooling function!®

0, (A = (A, fa = ((fk(u))uEA)A:()\)A)

=(r= U Afr= > i

A=(N)a Le{A|A3>u,A=(N\)x}

(2.3a)

ueY
is used to group some identical gametes in the blueprint. Then, for each genotype,
Kronecker product of the two same vectors of gametic frequencies is applied. Flat-

tening!” the upper triangle of each matrix resulted from these Kronecker product

[G}Pooling (I4) is a procedure of grouping those of same kind, for each group, companioned with
the sum of their frequencies. Another form of pooling (W) dealing with the situation when the
second argument cannot be summed (not sequences of numbers) is stated as following,

U, (A =M fal = ((fil(u))ue)‘)A=(>\)A>

(2.3b)
— (’r = U A,f—;l = ((le(u))Le{)\Aau,A—(A)A})ue‘r)
A=(N)x

[MMatrix flattening is a procedure of making every entry in a particular matrix to be placed

. . . . . . gm—1 —1 . .
in only one row according to the ordering function (Lj)?:l @m+1) 321 (2m+1), i.e., consider a



gave an array of at most 2™~1(2™ 4 1) in length.

Observation of symmetries among genotypic frequencies

With S, and p®™ = (...,0,1,0,...), by Equation (2.2), p®, p®, ..., and so on
are computed. Numerically, we discovered that in m = 3,4,5,6 and 9-loci model,
there are at most 2 x 3™~! distinct values of genotypic frequency in each of these case

(Table 2.1). Note that our numerical method assigns r;’s, where | = 1,...,m — 1,

No. of loci No. of distinct genotypes No. of distinct frequencies

2 10 5
3 36 18
4 136 54
5 528 162
6 2,080 486
9 131, 328 13,122
m gm=1(gm 4 1) 2 x 3m-1

Table 2.1: From all cases with various number of polymorphic loci in consideration
listed above, 2 x 3™~! can be conjectured as the number of distinct theoretical
frequencies for case of m polymorphic loci in the selfed population derived from
biparental cross of inbred lines. However, exception occurs when m = 2 loci are
concerned where 5 instead of 6 distinct theoretical frequencies are found in the
advanced population. This is explained in the proof of Lemma 2 in below.

to be the fractions less than /2 with numerator and denominator of each be 1 and
a prime number, respectively. For instance, r; = 1/3, ro = 1/5, ..., and so on.
By using these values, false declaration (underestimated) of the amount of distinct
frequencies was avoided as the numerical equality did not lose the information held
in the algebraic equality. The seemingly consistent phenomenon of at most 2 x 31
distinct values of genotypic frequency under m loci model, if proved to be true, can
largely reduce the dimension of S, and effectively save computer time to obtain

genotypic frequencies.

matrix M« = (a1’,...,a,’), where a;’ is the i-th row vector with length k, then after flattening,
an array (aq,...,ay,) is resulted.



Genotypes frequentially symmetric about recombination scores

HOSPITAL et al. (1996) introduced the recombination score to characterize a
genotype by its frequency in the Fy population under arbitrary m loci model. In
this section, we are to show that genotypes with the same recombination score have
the same frequency in any generation. Recombination score of genotype i, s; is
defined as

si = (—=1)29 x x(0,(1;4),...,61(m — 1;1)) (2.4)

where x(z1,...,2,) = >_7_; #; x 10", Notations in s; are based on p7, the fre-

quency of genotype ¢ in the Fy population, which has the following form,

m—1
@_ 1 61 (1) 26, (i
P = 5w H (1 —ry) 1(5d) (2.5)
=1
where
_ 2, if genotype ¢ is fully homozygous
50(2) = y
1, otherwise
(
0, if [-th interval in genotype ¢ is two parental types
d1(l5d) = < 1, " is one parental and one recombinant types
2, " is two recombinant types
\
and

" 0, if the first locus of genotype ¢ is homozygous
do(1) =

1, otherwise
In Equation (2.4), we see that recombination score gathers the information of fre-
quency in F, population (concatenation function x(-)) and kind of genotype (d2) in
a single number. For example, ((0,0,1),(1,0,1)), of which the frequency in the F,
population is 271 (1 — r1)r3 has recombination score —12.
Some important properties of recombination score are described below. Note that

in the following whenever same and different are mentioned, we mean algebraically

10



equal and unequal, respectively.

Property 1. The parental genotypes,

share the same recombination score 0 but have different frequencies in any genera-
tion. This circumstance is resolved by denoting the score for parental genotypes as

+0 and the score for Fi-genotype as —0.

Property 2. Any pair of genotypes having recombination scores with different sets

of d1’s have different frequencies in the Fy population.

Property 3 (Presence of “1” in the recombination score). If there is at least one

“1” in the recombination score s;, then genotype ¢ is not fully homozygous, that is,

5oli) = 1.

Property 4 (Absence of “1” in the recombination score). If there is no “1” in the
recombination score s;, then genotype ¢ is either fully homozygous or fully heterozy-

gous.

Property 5 (Algebraic ties of frequency in the Fy). By Properties 3 and 4, in the
Fy population, genotypes with their recombination scores being different only in
sign have the same frequency if these scores contain at least one “1” (Figure 2.3)
and have different frequencies if these scores contain no “1”. In such situation, the

frequency of the fully homozygote is one-half of that of the fully heterozygote.

Property 6 (Chromosomally structural difference between genotypes with their

recombination scores having opposite signs). Genotypes with their recombination

11
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Figure 2.3: Ties of frequency among genotypes with recombination scores different
only by signs and contain at least one “1” in the Fy population from biparental
cross of inbred lines. Note that each genotype shown above the recombination score
may not the only one that has that particular score, some others that are of the
same recombination score (regardless of signs) with it would have the same tie of
frequency.

scores being different only in sign have different probabilities to produce genotype

as themselves, that is,
Pr((AiaAj>(t+1)|(Ai7Aj)(t)) # Pr((Ak,Az)(tH)KAk,Al)(t)),

where $(a; A;) = —S(A,,A;)- However, an exception stands when the loci number m
is 2. In such situation, the above probabilities, when s(a; a;) = —S(a,,a,) = %1, are

both equal to /.
With these properties, we move on to the lemmas needed in Theorem 2.

Lemma 1. In the F, population from a 2-way cross, genotypes other than parental

and Fj- genotypes having the same recombination score have the same frequency,

12



that s,

2 2
8 =5j :pﬁ)ng)-

By Lemma 1, recombination score of a genotype determines the corresponding
genotypic frequency in the Fy population. However, on the other way around, the
latter does not determine the former as, according to Properties 2 and 5, there
are algebraic ties of frequency between genotypes with recombination scores being
different only in sign and containing at least one “1”. In Lemma 2, we show that

there is no such tie in the F5 and the later advanced populations.

Lemma 2. In the Fs and the later advanced populations from a 2-way cross un-
der m > 3-loct model, genotypes with different recombination scores have different
frequencies, that is,

s; # 8, = pl(.t) # pg-t) vt > 3.

Yet, it should be noted that Lemma 2 does not hold in the case where m = 2.
For simplicity, we represent genotypes ¢ and j by their corresponding recombination

scores s; = 1 and s; = —1. By Property 6,
Cls1 =C15-1 = 1/2-
Moreover, for _1g; € {i,7},
Chos g =0 VEk e G\fHm\fHt\{:, j},

where {fHm, fHt} C P(G) represents set of subsets respectively contain fully ho-

mozygous and fully heterozygous genotypes. By equation

o (@
Zkzeth Ch—iP = Zketh Ch=iPk

We have

as long as p?) = p(f% initially.
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Lemma 2 is by reason of the matrix S,, being fully ranked. In the next lemma,
symmetries brought out by the initial F; frequencies among genotypes with the same

recombination score are shown. These symmetries reduce the dimension of S,,.

Lemma 3. If we construct the parents of the same-scored genotypes i and j, denoted
k andl, in the same way, and if k and | have different scores, then their scores differ
at a/some position(s) where interval(s) of complete heterozygous is/are associated
with, that is, one has “0” and the other one has “2” at the particular position(s) in

each of their score. (Figure 2.4)

||
Via .
|
an | I. an
i D ‘

11112 u u —22011 -20011 u u 11112

| Eav X ¥ Yiu |l

Way x Way y

J
11112

Figure 2.4: Parents for genotypes i and j, denoted k and [ (K’ and ') respectively, are
constructed in the same way x (y). Same-way parent construction is a procedure of
copying the maternal side of chromosome in some recombined way (e.g., as shown in
r1,) and the paternal side of chromosome in what left to be filled in (e.g., as shown
in z1,), followed by the optional incorporation of heterozygosity in the parent (e.g.,
as shown in o where 3'¢ and 5" locus is changed to heterozygous in the particular
parent).

Now, we have prepared to Theorem 2, which points out the reduced row-column

dimensions of S,,.
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Theorem 2. In the populations from 2-way cross, if no selection of a/some geno-
type(s) is involved, then the dimension of rows (columns) in Sy, is at most 2 x 3™~!

for m-loci model under selfing.

By Theorem 2, we reduce row and column dimensions of S,, from 27-1(2™ + 1)
to 2 x 3™~1. This can be simply done by extracting the coefficients (entries) of
frequency of same-frequency group in the original-dimensions matrix and taking

summation of them, that is, the original

. 2m71(2m+1) 2m71(2m+1)
Sm = {Cij}i:1 j=1

would reduce to

2m=1(2m41)
Sm - {Zj/:1 ci/j/ﬂ{sj' = k}} ;

keK i'e{infarg s;=k|ke K}
i

where K is the set containing all recombination scores with cardinality 2 x 3™1.

2.1.2 4-way cross

4-way cross involves the crossing of four inbred lines, (A (), A(«)), (A@), A)),
(A, Aw) and (A, Ag)). First, (A),Aq) is crossed with (A(), Any) and
(A(2), A(9)) is crossed with (A(s), A)). Then, their respective Fis, (A, A1) and
(A(2), A3)), are intercrossed to produce a base population. Individuals in the base
population will undergo further selfing or random mating to produce advanced popu-
lation (Figure 2.5).

Generally, we assume at all m loci that the four founder inbred lines have different

alleles. For simplicity, we define in the gametic sequence of alleles A xy = (a@) )1,
awy =k Vl=1,...,m, where k € {0,1,2,3}.

Under this assumption, individuals in the base population are all fully heterozygous.
Since (A (o), A(1)) and (A (), A(s)) each produces 2™ types of gamete, the base popu-

lation has 22" kinds of genotype. Nevertheless, it should be noted that in reality,
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Figure 2.5: Illustration of a 4-way cross. A and B are the groups of all available
genotypes produced by the base population undergoing self-fertilization and the base
population undergoing random mating, respectively.
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the founders can hardly hold different alleles at all m loci, most of the time the
degenerate case is the situation, that is, at some loci at least one allele is shared
between (A (), Aq)) and (A, A)). If this is the case, the base population will
contain some non-fully heterozygous individuals. Within each of these individuals,
less markers show polymorphism.

We regard each individual in the base population as a Fy-like (fully heterozygote)
genotypel®, therefore if subsequently this population is inbred, then the population

at any given generation can be seen as a mix of populations with

f= (fi)z‘ecwase)

as the mixing proportions, where G("° is the set of available genotypes in the base
population and f; is the frequency of genotype i, as each of these populations is
similar to the advanced population from a 2-way crossl®.. Therefore, the flattened

10

matrix!'? of the Kronecker product

would be the genotypic frequencies of (¢t — 1)-th generation self-fertilized progenies
from the base population, where as in Equation (2.2), p{*) is obtained through S,,

derived before. Then, by Theorem 1, we have a total of
‘G(base)} . 2m—1(2m + 1)

genotypes and their corresponding frequencies in this advanced population. How-

ever, this amount of frequencies is superfluous as each genotype in G2s¢)

can only
produce a population with at most 2 x 3™~! distinct frequencies as mentioned in
Section 2.1.1. Moreover, in terms of genotypes, having the same progeny among

some out of the mixed populations as well as the degenerate case in which some

[8INote that even in the degenerate case, non-fully heterozygotes can also be regarded as F;-like
genotypes as we can ignore those unsegregable loci.
BlCorresponding to the particular given generation.
[191Refer to Footnote [7].
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g € Ge), mg < m, further eliminate the redundancy. Thus pooling!'!! for iden-
tical genotypes and for identical frequencies are required to simplify the finding of

genotypic frequencies.

2.2 Random mating

In the Introduction, we have mentioned unit of mating!'?, from which an indi-
vidual in a population during its sexual phase receives gametes to fertilize its own
one. Differing from the self-fertilized population, fusions of gametes from different
individuals could happen in a random mating population. Therefore, to deduce
the genotypic frequencies in such population, exposure of each gamete to the whole

population should be taken into account.

2.2.1 2-way cross

2-way cross has been introduced in Section 2.1.1, let pgt) be the frequency of
genotype ¢ in the F; population and g,(:) be the overall frequency of gamete k (a
gametic sequence of alleles) produced by some individuals in the F; _; population,

genotypic frequencies

is the flattened upper triangle of matrix resulted from the Kronecker product
g" @ g,

where g = (g,(:)) L, with 2771(2™ + 1) in dimension (length), as described in The-

orem 1. However, this huge yet information redundant array is reduced to

2m—2 (zm—l + 3)

(1 For the pooling of genotypes, Equation (2.3a) is used; for the pooling of frequencies, Equation

(2.3b) (see Footnote [6]) is used.
[12IRefer to Footnote [1].
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in dimension as the gametic frequencies in g are symmetric, that is, if gametes k
and | are BWWBs!!® then their corresponding frequencies would be algebraically
equal if initially only the fully heterozygote(s) (F;- and/or F;-like genotype(s)) which
brings out the symmetry is/are in the population. Whereas the gametic frequencies
g'" are deduced from the parental genotypic frequencies p*~") through a set of sum-
mations of their linear combinations. The coefficients of these linear combinations

are collected in the matrix

o 2m—2(2m—1+3) 2m—1
R, = {pij}izl j=1 >

where p;; represents the overall probability of ¢-th corresponding group of genotypes
to produce one of the gamete in j-th BWWBs-pair. Similar to the entries in S,,,
pij is deduced from the pooling!'¥ of degeneralized blueprint of Fi-produced gametes
and their corresponding frequencies. The recurrence system to obtain genotypic
frequencies of advanced random mating population from a biparental cross of inbred

lines is stated as following.

m—1 _
g(t) _ (g](t))?:1 _ Rmp(t 1) (2.6)

2 2
p = ((91")" 26901, 200 90 20 (2.7)

2.2.2 4-way cross

In this section, a base population derived from the crossing of four inbred lines,
(A0, A)), (Aq), Awy), (A),A) and (A), A)), as described in Section 2.1.2
is undergoing random mating. The genotypic frequencies in this base population
are collected in the array

0
p(O) = (pg ))iGG(base)-

[ BWWB is the abbreviation for Black-White-White-Black. It is defined by bicoloring every
gamete/genotype, according to its parental alleles, with white for a(); and black for a(y);. If
simply switching every black to white and every white to black in ¢ would be 7, then ¢ and j are a
pair of BWWBs.

[14Refer to Equation (2.3a) and Footnote [6].
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Each genotype in the base population regarded as a F,-like genotype produces 2™

distinct gametes with probabilities g having form
1 m—1 1-6
51_[1:1 Tl(l —7"[) .

Since some genotypes can commonly produce a certain gamete, a hierarchically
expanded listing of gametes for each genotype in the base population would cause a
number of redundancies in terms of gametic types. Thus, the gametes produced by
the base population and their corresponding frequencies, g(!) were obtained through

pooling this redundant list of gametes and gametic frequencies.

<{Aj}j7g(1)> = <({Algi)}i7j1)iec(base)’ (p’(O)q)igg(base)> (2.8>

Unlike the base population which contains only the F;-like genotypes, the popula-

tions of subsequent generation have all
22m—1(22m _I_ 1)

combinations of genotype. Moreover, each individual in these population can pro-
duce different amount of distinct gametes. Therefore, the q discussed before is of
different length for each of them. For genotype ¢, we denote its gametic frequencies

as q;. After deducing an algebraic blueprint for g in terms of pgtfl)

’s through
the pooling function as in Equation (2.8) with the replacement of g to g;, where
i € G that contains all the genotypes in advanced population, a transition matrix

R, collecting the sums of linear combination of some entries from several g;’s was

constructed. Then as in Equation (2.6), we have
g" =R, p" (2.9)

Before going on to obtain the genotypic frequencies, p*), by Kronecker product

g ® g®, a numerical method was used to identify the symmetries in g¥). We
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discovered that, out of 4™ distinct gametes, there are only
2m2(2m 4 1)

algebraically distinct frequencies. In Appendix A.5, we proposed a multi-level scor-
ing system to identify these 2m~2(2™~1 + 1) groups of gametes.
As in Equation (2.6), only the upper triangle of the upper left quarter in g gt

is concerned because of the groups of identical gj(t)’s in g, Therefore, there are
2m77(7 % 2m+2 + 4m+1 + 8m 4 48)

distinct genotypic frequencies among 22™~1(22™ 4 1) genotypes in each advanced
population. By using Equation (2.9) with the reduced version of p® which col-

lects

p(t)
SA () sSA (0 A
(Sa ) Sa A

instead of pgt) for every genotype i, where s is the score for gametes AE?) and AEQ)
that compose ¢ and A indicates whether these gametes are the same, coefficient
of each entry in p® is extracted from each entry in g and collected in a new

less-dimension R,,,. Since

) _ ® @
p(SAS)),SAE;)) ,A) - (2 — A)gSAE?) gSAEg)’

an equation similar to Equation (2.7) is established, that is

) (®) <t>)2)2m_2(2m_1“)

)12 1) (t
p = ((gl(g)) »2912)91(glp 20, Gom—2(gm-141) 2(gy (2.10)

k=1

where k’s are the orders for same-scored group. Moreover, it should be noted that
some entries in the new R, are not simply conditional probabilities. Instead, they
are sums of linear combinations of probabilities. Thus, their realizations may be

more than 1. However, this R,, would not result unreasonable.
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Chapter 3

Case Studying

We mainly concern interval-based QTL mapping here. There are two steps in the
interval mapping, the genetic linkage map construction followed by the genome walk-
ing for putative QTL. The map construction is split into two parts, genetic markers
grouping and ordering followed by the recombination rates estimation. Thereafter,
in the second step, we go on to the genomic scanning, locus by locus every ¢M (centi-

Morgan), for the likelihood that each of them would be where the QTL located at.

3.1 Map construction

Overview

In the map construction, theoretically, if the grouping and ordering of markers
are known, we can manipulate the multilocus genotypic frequencies as a prior dis-
tribution for the likelihood function Ly, the parameters for this function are the
unknown adjacent recombination rates.

T,y Tt 4l
Linap(T1, - o Tmilj € J) = (Z yj|>!Hp(”’ o met) (3.1)

1l
jeJ jeJ |'7|

where j’s are sets each collecting individuals with the same particular genotype,
p(g) is the theoretical frequency of genotype that j contains and r;’s are recombi-
nation rates between locus [ and [ 4+ 1. We consider that the sample space with the
recombination rates maximizing L,p is the likeliest one to have our data realized.
Nevertheless, in the real scene, especially for the orphan organisms, the grouping

and ordering of markers may be unfamiliar, therefore we need to group and order
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the markers in the most probable way as that of their laying on the chromosomes.
The reason for us to have such task first done is because the genotypic frequen-
cies we built are based on the knowledge of markers ordering. At the very first
place, the adjacencies of these markers are unknown, the recombination rates are
therefore estimated by the 2-loci genotypic frequencies pairwisely among markers.
Since the 2-loci genotypic frequencies contain only one parameter r, the genotypic
frequencies for advanced population and the corresponding L., are univariate poly-
nomials. Finding maximum of univariate polynomial equation is pretty easy as there
are efficient root finding algorithms (COLLINS and AKRITAS 1976; ROUILLIER and
ZIMMERMANN 2004; AKRITAS et al. 2008). After all, a distance/dissimilarity-like
matrix containing pairwise recombination rates is then constructed. There are some
criteria to obtain the optimum order of markers, including SAL (Sum of Adjacent
Log-likelihoods), SAR (Sum of Adjacent Recombination Rates), seriation (BUETOW
and CHAKRAVARTI 1987) and etc. Seriation method is a greedy algorithm running
in polynomial time, but its finding of optimal solution may not meet the need to
have the length of a linkage group as short as possible. Whereas SAR is implicitly
a traveling salesman problem (TSP), a NP-hard problem. Therefore, there is no
polynomial-time algorithm available for its optimal solution.

In the following simulated case studying, we use SAR as an ordering criterion
and, by R/TSP (HAHSLER and HORNIK 2006), a package in R based on Concorde
TSP solver, obtain the optimum of the markers order. We can further optimize
these recombination rates by using the genotypic frequencies for higher number of
loci as the prior in the likelihood function L., conditioning on this optimal order.
However, we don’t proceed to this step as the multilocus genotypic frequencies of an
Fg population are multivariate polynomials with huge size. The finding of arguments
(real and constrained in 0 to 1/2) that maximize Ly,,, based on these polynomials is
hardly possible. Moreover, the computation to derive the genotypic frequencies of

high loci number for advanced population in terms of algebraic notations of recom-
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bination rate takes exhaustively computer time. Therefore, in our case, the MLEs
for the recombination rates are merely on the basis of pairwise recombination events
and their optimal adjacencies. Our result, the best order based on SAR criteria, is
quite close to the true values. The order of marker is exactly the same as the true
one. The likelihood™! of the realization data based on this order and these estima-
tions are not far from that based on the true recombination rates, even a little bit

higher, that is, more likely.

Result

We simulated 200 chromosomes of a Fgz population having following genetic
marker’s positions in cM, they are 6.43174 (Marker I), 11.3343 (Marker IT), 20.8244
(Marker IIT), 32.4125 (Marker 1V), 40.5048 (Marker V) and 54.1496 (Marker VI).
By 2-loci genotypic frequencies, we obtain pairwise recombination rates maximizing
variant-pairs for Equation (3.1) using FindMaximum[] in Mathematica, where each
has m = 2 and 9 j's separately collecting markers class (A,A), (A,H), (A,B), (H,A),
(H,H), (H,B), (B,A), (B,H) and (B,B). The permuted pairwise recombination rates

matrix is shown below.

Marker vV IT \Y VI I11

I 0.2338 0.04070 0.29282 0.39583 0.13391

IAY 0.18921 0.06560 0.15033 0.11997
IT 0.25262 0.32101 0.09567
\Y 0.11370  0.18601
VI 0.26298

The best order based on SAR criterion is calculated by R/TSP. By adding a dummy

locus to form the best break point for linear order (CLIMER and ZHANG 2006),

(15]The likelihood to realize this data is essentially the probability of an instance in the sample
space following septingentivigintinoven(3% = 729)-omial distribution as expressed in Equation (3.1).
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R/TSP gave us the order
[-II-1I1-IV-V-VI

This order is exactly the same as the true one. With this optimal order, we set 1,
to r5 to be the recombination rates for five intervals of adjacent loci and have their
values be those entries in the matrix above. Using 6-loci genotypic frequencies, from
Equation (3.1), the likelihood of the realized data based on these parameters and
order of markers is 3.3590 x 107%* (with logarithm be —123.128), slightly higher than
that based on the simulation parameters with value 1.1548 x 107°* (with logarithm

be —124.196).

3.2 Genome scanning

Overview

The next part in the QTL mapping is to scan through the map built in previous
step and find where the QTL(s) is/are. In the standard interval mapping, it is
assumed that only one QTL lies in the particular map (genome) we are scanning
at. In a typical QTL mapping project, we put genetic markers throughout the
genome. The genotypes of each marker are used to represent the genomic states of
individual in the experimental population. These genomic states of individual are
to be associated with their corresponding phenotypic value. Since the genotypes of
markers are known (observed), and if we assume that the non-genetic effect (random
effect) follows normal distribution, we can deduce the likelihood function L; based

on the observed data and have it maximized.

Lz(9|y = (yi)iag = (gz)z) = H I (i, 93 9) (3‘2)

where y; is the phenotypic value of individual i, g; is the genotype of 7 at marker [, @
is the vector collecting freed parameters such as grand mean p, variance o2, additive

effect a and dominance effect d and f is the realization intensity of individual ¢ under
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the assumption of [ being a QTL. Commonly, f is the probability density function
of a normal distribution with mean Zq is QTL @qTq + dgZq + I + p and variance o2,

where in our case, Cockerham’s Fy-model assigning

Ti k(i) = Oap1(Gr(i))

and
Zig) = Y2 — [Sapi ()|,

where d4p1 : (g(k is parental A), g(k is heterozygous), g(k is parental B)) — (1,0, —1).
The arguments that maximize L; are the MLE of 8. On the other hand, between
two adjacent markers, since the genotype of such putative site is unknown, we guess
its genotype with probabilities conditioning on the genotype of its flanking markers
constructed based on the genotypic frequencies. In one-QTL interval mapping, we
need 3-loci genotypic frequencies in terms of the recombination rates of flanking
markers and putative site, whereas in two-QTL intervals mapping, we need 5-loci
genotypic frequencies if the considered intervals are adjacent and 6-loci genotypic
frequencies if the intervals are non-adjacent. The likelihood of the missing data
between markers is considered as a random variable. LANDER and BOTSTEIN (1989)
first proposed to use EM algorithm (DEMPSTER et al. 1977) in the maximization of

this likelihood’s expectation, that is,

g (10g Lungenotyped (014, 9o = (9o,i);» Gu = (Gug); €T))

site

= Z (log Lungeqotyped(e‘yagoagu)) - T(Y, o, Gu; é)

guel site
By (3.3)
(108(P(gus = 71905 - F(vss us = 36)))
=> > P(Gui = 3l904) * f(Yi, Gui = 5; 0)
o Zp(gu,i = j‘go,i) : f(yi,gu,i =7J; 9)
j
o — agg max B 1) (10g Lungenotyped (0] go, Gu)) (3.4)
site

where g, and g, respectively represent genotypes at flanking markers and at genotype-
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unobserved sites (QTL putative sites). Upper case of G, states that it is a random
vector from sample space I'. Since T is finite, by Fubini theorem, Equation (3.3)
is established where summation operators over ¢ and j are interchanged.  is the
probability mass function for the unobserved genotypes based on mixture intensities
weighted by conditional probabilities derived from genotypic frequencies.

In our simulated case, where a; = 1, ay = —1, d; = dy = /2 and o? = 5.0625.
We are to find out where the QTL would be in the genome. First we went through
standard interval mapping and found that no locus exceed the threshold for being
a QTL. This is because two QTLs in our simulated case have opposite effects. By
considering a potential QTL with its position 11cM as a covariate, we detected
that there is a high likelihood of another QTL being at position 26cM (Figure
3.1). Conditioning on the putative site at 26cM, we subsequently found 13cM has
maximum conditional LOD score. Similarly, conditioning on 13cM, 26¢cM being the
site, where maximum conditional LOD score locates at, followed. We therefore listed
out some of the likely models (automated ones as well as their neighbourhoods) and

their corresponding statistics (Table 3.1).
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Figure 3.1: The LOD scores in the mapping of QTLs. Dots in blue, red and purple
respectively represent the LOD scores in the automated step 1 to 3 of QTL mapping.
Dots blue in color are the maximum expectation of likelihood under assumption of
the presence of only one QTL (standard interval mapping); while dots red in color
are formed by two parts, the part left to 20cM and the part right to it. The position
where maximum of LOD under standard interval mapping (38¢M) occurs is fixed
as covariate. Condition on its existence, we found 11cM is still the QTL putative
site as in standard interval mapping. We therefore inferred that QTL may in the
vicinity of 11cM. Based on these inference, we scan the genome right to 20cM and
found that 26¢cM is significantly effective condition on the existence of QTL at 11cM;
dots purple in color left to 20cM are the LOD scores conditioning on the existence
of QTL at 26cM, whereas the same color dots right to 20cM are the LOD scores
conditioning on the existence of QTL at 13cM. Since conditioning on either 13¢cM
(left) or 26cM (right) could find each other (right/left to it) as the maximum of
scores, therefore we halted the automated finding at this point. The rigid triangles
indicate the true position where two QTLs locate at.
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Model Estimates of

Likelihood Log
Positions (cM) p + dyz1 + daze o? ay as
(15)  (26) (= —0.5") (=~ —5.1%) (1) (1)
. . 11 38 —0.4563 5.7035 0.6265 —0.6609 5.8 x 107200 _458.77
Estimation
11 26 —0.4683 51901 1.0545 —1.1666 1.4 x 10719 —455.60
(automated)
13 26 —0.4641 49823 1.2184 —1.3436 1.7 x 1079 _455.36
14 26 —0.4618 48785 1.3031 —1.4390 1.6 x 10719 —45547
14 25 —0.4665 48748 1.3471 —1.4650 1.6 x 10719 —455.47
Estimation
13 25 —0.4681 49892 12519 —1.3592 1.6 x 10719  —455.46
(neighbour-
hood) 13 27 —0.4614 5.0271 1.1657 —1.2973 1.3 x107'® —455.61
00
14 27 —0.4585 49378 12384 —1.3813 1.1 x107'% —455.85
15 27 —0.4553 48765 1.2964 —1.4563 7.1 x 10719 —456.25
Tr 15 25 —0.4649 47933 1.4260 —1.5601 1.3 x 10719 —455.65
ue
15 26 —0.4594 4.8055 1.3723 —1.5246 1.2 x 10719 —455.75
Null N/A —0.4694 6.2061 N/A 3.0 x 107203 _466.34

T Assume the genotypes of these putative QTLs are not heterozygous
1 Since the phenotypic values follow mixture (at least 4 components, i.e., QTLs’ genotypes
(A,A), (B,B), (A,B) and (B,A)) normal distribution, this number should > o2 = 5.0625.

However, as genotypic variance is much less than phenotypic variance, it is close to 5.0625.

Table 3.1: The putative models in True are the scenarios where at least one position
of true QTL (they are at 15cM and 26cM) is known (but the genotypes at that/those
position(s) are unobserved as we do not put genetic markers at such position(s)).
The first line is the putative model directly inferred from the result of standard
interval mapping. The rest models are inferred from the procedure of multiple
interval mapping (KA0 et al. 1999). From the procedure, we got automated results
(see Figure 3.1). We searched for these results’ neighbourhood and identified if there
was any better model. The model from the automated reasoning is still optimal (in
bold fonts). Each likelihood is the maximized expectation of likelihood, as expressed
in Equations (3.3) and (3.4), of the realized data with two particular positions
being putative simultaneously. It should be noted that our 8 does not include the
dominance effects d; and dy, thus their estimates are confounded with the grand
mean u’s one, where in our simulation, u = 0.
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Chapter 4

Discussion

Symmetries among genotypic frequencies

The work to obtain genotypic frequencies is partitioned into two, the construc-
tion of the transition matrix followed by the recurrent implementation of this matrix
together with the population frequencies vector. The former should take less com-
puter time when the fully symmetries within the genotypic frequencies are utilized.
These symmetries were firstly corresponded to the recombination scores, which were
purposely designed to relate the genotypic frequencies, by HOSPITAL et al. (1996). In
this study, despite the given proof of relationship between recombination scores and
distinct genotypic frequencies in a selfed population of biparental cross of inbred lines
as well as the proposed listings of same-frequency groups in 2- and 4-way crosses’
random mating populations, instead of direct derivations of transition matrix with
row and column dimensions being respectively the numbers of distinct gametic and
genotypic frequencies, we constructed the transition matrices with original dimen-
sions at first and reduced their size then. Constructing such larger matrices may
be unnecessary and time consuming, therefore we set a perspective for the bet-
ter algorithms to directly obtain the transition matrices with reduced dimensions.
Prior to this objective, the correctness of 3-level recombination scoring system that
has been proposed to classify the symmetrical groups in the case of 4-way cross
should be proved in the near future. Nevertheless, proposing an algorithm having
the mentioned directness is not so straightforward even in the intuitively easy selfed

population from biparental cross of inbred lines. The reason for this difficulty is that
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the recombination score itself cannot be the blueprint for string replacement. There-
fore, a sophisticated algorithm concerning data structure of F;-genotype-produced
genotypes and gametic types is needed to reduce the complexity in the work to-
wards reduction of transition matrices. With such data structure, recombination
score of a blueprint can be converted promptly to that of the other geno-/gametic
type without even checking the geno-/gametic type of that particular blueprint. Be-
sides, another concern in the direct derivation of the reduced transition matrices is
that these matrices do not necessary have each of their columns summing up to 1
as in the Markov chain transition matrix. This phenomenon, which is due to the
representation of multiple geno-/gametic type in each recombination score, restrains
us from simply using the idea of conditional probabilities in terms of recombination

Scores.

Potential of recombination scores in the genotypic frequencies’ derivation

We believe that the notion being used in the 3-level recombination score could
provide us a key to assort the geno-/gametic types according to their theoretical
frequencies in a balanced selfed population from 4-way cross. Furthermore, for the
general 2"-way crossed multiparent founded population, a k-level scoring system may
come into play, where k > 3. However, it should be noted that the classification
solely based on the theoretical frequencies may turn out probabilistic nonsense when
more founder inbred lines are involved in the initial crosses as the number of possible
combinations of intermating between individuals from different initial or sub-initial
(where applies) crossings increases rapidly and gives rise to a bottleneck effect in
the creation of all possible genotypes in the base and advanced population. The
resulted bottleneck effect will be much more intense when the number of loci in
consideration becomes greater because, in the population derived from a feasible
intermating practice, a number of genotypes do not come along. As a consequence,

the observed genotypic frequencies in the advanced population may far deviate from
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the computed ones. To deal with the bottleneck effect, some reasonable statistical
models should be introduced, for instance, at first glance, multinomial distribution
for subset of available intermatings can be the prior of the subsequent derivation of

transition matrix.

Genotypic frequencies in a segregation-distorted population

Segregation distortion may occur in some intermatings of certain organisms (XU
et al. 1997; Lu et al. 2002; PHADNIS and ORR 2009). Especially when the particular
organisms have far kinship. Usually, one of them brings a/some lethal gene(s) that
causes disappearance of a/some certain genotype(s) from the subsequent generation.
Yet, depends to the effect of lethality, weaker genotype may not all absent. There-
fore, transition matrix with original row and column dimensions should be adjusted
in terms of the fitness ratios. Since the vitality of each genotype has changed from
indifferent to different, the symmetries described by the recombination scores do not
hold. However, despite the untrueness of the reduced transition matrix as described
by recombination scores, we believe that, to a certain level, the row and column di-
mensions of transition matrix can be reduced, as long as the intensity of lethality is
fixed at all time. In an experiment, we do need to estimate the effect of lethality, in
addition to the position of lethal gene. The estimation can be complicated as every
locus in the vicinity of lethal gene(s) are distortedly segregated. Therefore, multi-
locus genotypic frequencies considering segregation distortion should be introduced
here. Rather than ordinary QTL mapping, the mapping of lethal gene is more like
a map construction under a circumstance that, at the spots near the lethal gene(s),
the genotypic frequencies are somehow distorted. This gives us the general notion
of linkage map construction. When the markers order in each linkage group is fixed,
the likelihood of such order can be deduced on the basis of genotypic frequencies

whenever segregation distortion is or is not regarded.
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Multi-locus score test statistics in advanced population

In pursuit of high resolution and high calls for allele causing differential pheno-
typic expression of mapped locus, we are off from less-meiotic biparental Fy to highly
recombined multi-parent derived RILs. Score test statistics is believed to be useful
in the mapping of QTL, especially when multiple intervals are concerned simulta-
neously and regardless of fixed or random effect model. When the population we
treat at is derived from more than two founder parents, and there are a lot of minor
loci controlling the trait we concern to, it is not suggested for us to consider that
each locus is having fixed effect because the overall levels may be too much. In fact,
the mixed model is closer to the actual case. We leave these complicated questions
for future. The main point here is that the multilocus genotypic frequencies play

important roles in deriving the score test statistics for advanced populations.

Genotypic frequencies in multi-parent-cross-derived population

The dynamic programming (DP) to obtain the conditional probabilities for geno-
types of ungenotyped loci is used in some studies (MOTT et al. 2000; KOVER et al.
2009). Basically, the DP was implemented for 3-loci genotypic frequencies as in our
case but these frequencies are of population derived from 8 founder parents. In that
context, it had been believed that the probability of each genotype could hardly
be deduced separately as the number of possibilities is huge and that DP worked
out efficiently. However, we hold to the idea that the construction of probabilities
list in terms of recombination rates, when which is to be firstly preloaded in a par-
ticular QTL mapping program, would greatly reduce the complexity in obtaining
the numerical realizations of each theoretical frequency. Since nowadays, the devel-
opment and genotyping of genetic markers in any well-known organisms have very
high throughput, the interval-based QTL mapping degenerates to associative anal-
ysis of differential expression among markers as the density of markers goes high,

where the genotype of each marker is dummy-coded as a real independent variable.
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Therefore, the mapping for QTL no longer guesses the genotype of locus between
flanking markers and the theoretical genotypic frequencies which construct the prior

mixture distributions for these ungenotyped (missing) loci have no beneficial use.
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Appendix: Proofs of Property,

Lemma and Theorem

A.1 Number of distinct genotypes in a 2-way-cross-

derived population

Theorem 1. In diploidy, the total number of distinct genotypes derived from a 2-way

cross under m-loci model is 2™ 1(2™ + 1).

Proof. At any given locus [, there are 22 = 4 ways to allocate alleles from two
parents, that is, following the notation A; = (a;;)["y, (@i, a;;) could be (0,0),
(0,1), (1,0) or (1,1). As (A;, A;) = (A;, A;), within the total 2™ genotypes for m
loci, the amount of those ¢ # j could be halved, therefore the number of distinct

genotypes is (2™ — 2m) 4+ 2™ = 2m~1(2™ 4 1), O

A.2 Reason for some properties in recombination

Scores

Property 3 (Presence of “1” in the recombination score). If there is at least one

“1” in the recombination score s;, then genotype ¢ is not fully homozygous, that is,

So(i) = 1.

Reason. Since “1” in the recombination score can only be the sum of 0 and 1 (not
of any others in {0,1}), at any interval where “1” is placed, the particular genotype
must have one and just only one out of two loci being heterozygous, therefore it is

not fully homozygous.
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Property 4 (Absence of “1” in the recombination score). If there is no “1” in the
recombination score s;, then genotype i is either fully homozygous or fully heterozy-

gous.

Reason. Since “2” in the recombination score can only be the sum of two 1’s (not
of any others in {0,1} and “0” in the score is the sum of 0’s, at any interval, both
gametic types of a genotype with its first locus being homozygous are either the

same
()5 (y),141)

whenever the occurrence of “2” or the same
(@)1, ) i41)

whenever of the occurrence of “0” in the recombination score. Whereas for a geno-

type with its first locus being heterozygous, at any interval, its genotype is either
(@)1 agy)a1), (@), a@) 1)) (in repulsion phase)
whenever the occurrence of “2” or

((@(@).1s Ay i11)s (A1, Ay)a41)) (in coupling phase)

whenever the occurrence of “0” in the recombination score, where z, y can be 0 or

1 and x # y.

Property 6 (Chromosomally structural difference between genotypes with their
recombination scores having opposite signs). Genotypes with their recombination
scores being different only in sign have different probabilities to produce genotype

as themselves, that is,
Pr((Ai:Aj>(t+1)|(Ai7Aj)(t)) # Pr((AknAl)(t+1)|(Ak;Al>(t))»

where $(a; A;) = —S(a,,A,)- However, an exception stands when the loci number m
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is 2. In such situation, the above probabilities, when s, a,) = —S(a,,a,) = £1, are

both equal to /2.

Reason. By Equation (2.4), the sign in the recombination score represents the status
of being homo- or heterozygous in the first locus. The status in the next locus, within
any interval, by Property 3, whenever the occurrence of “1” in the recombination
score, would be different from that in the previous locus; by Property 4, the status
in loci within any interval are the same whenever the occurrence of “0” or “2”. As a
consequence, at any locus, one of these genotypes is homozygous and the other one
of them is heterozygous. Difference of chromosomal structure causes these genotypes

segregate at different probabilities.

A.3 Lemmas prior to Theorem 2

Lemma 1. In the F, population from a 2-way cross, genotypes other than parental
and Fj- genotypes having the same recombination score have the same frequency,
that is,

S; = §j — p§2) = p§2)

Proof. We show contradictions in two possible cases. Suppose two genotypes i and

j have different frequencies but have the same score.

1. Consider genotypes with at least one “1” in their recombination scores, accord-
ing to Property 3, these genotypes have oy = 1. Therefore, their frequencies

differ only by set of d;’s. However, this leads to contradiction by Property 2.

2. Consider genotypes with no “1” in their recombination scores, if their fre-
quencies have different set of §;’s, then by Property 2, their scores would be
different; if their frequencies differ only by dy, by Equation (2.5) and Prop-
erty 4, then one of them is fully homozygous and the other one of them is fully

heterozygous. Therefore, their scores have opposite signs.
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|

Lemma 2. In the Fs and the later advanced populations from a 2-way eross un-
der m > 3-loci model, genotypes with different recombination scores have different
frequencies, that is,

si # 85 = pgt) =+ pg-t) vt > 3.

Proof. We first consider genotypes with recombination scores that contain at least
one “1” and differ only by sign. Denote these genotypes as ¢ and j, the frequency
of 7 in the F3 population can be expressed in terms of pZ@) by
3 2 2
pz(' ) = Ci—m‘pg ) + Z Ck—npé) (A1)
keG\fHm\{i}

and the frequency of genotype j in the F3 population can be expressed in terms of

(2)
p;’ by
p§-3) = cj_>jp§-2) + Z Ck_)jp§€2) (A.2a)
keG\fHm\{;j}
= cj_>jp§2) + Z ck_>jp,(f) (A.2b)
keG\fHm\{j}

where fHm C G is the set of fully homozygotes within all available genotypes G

and Equation (A.2b) is due to p(2) = pgg). If p§3) = pgg), then from Equations (A.1)

i

and (A.2b), we get

2 2
> Ck—»jpé) - > Ck—m'pé)

@ _ k€G\fHm\{j} keG\fHm\{i} (A.3)

’ Cimi = Cjoj
ck_>jp,(f) - Z Ck—np/(f)
. keG\fHm\fHt\{i,5}\{l:¢;—, ;=0} ke G\fHm\fHt\{7,j }\{l:c;—;=0}
Cisi = Cj—j
(A.3b)

By Property 6, ¢;,; # ¢, therefore Equations (A.3a) and (A.3b) are defined.

Moreover, Equation (A.3b) is established because

1. genotypes ¢ and j cannot produce genotype as each other since, by Property 6,
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they have different chromosomal structures.

2. each fully heterozygote in the set fHt C G produces genotypes ¢ and j at the

same probability since fully heterozygotes can be regarded as F;-like genotypes.

As a result, the first and the second terms in the numerator of Equation (A.3b) are
summations that sum over different sets of genotypes which are mutually exclusive
to each other and have different cardinalities. Since there exists at least one ¢ which
is unique to one of these sets, some non-trivial combinations of {r;}/";* and (p,(f)) .
that make the numerator be 0 can be found. However, this contradicts with the fact

(®)

in which p;’ can be freely chosen.
Next we consider any pair of genotypes with different recombination scores in the

F; population. From Equations (A.1) and (A.2b), the following relationship is ob-

tained.
(Cj%j - Cj%i)pgt) * ( 2. Ckﬁjpl(ct) - 2 Ck%ip,it))
keG\FHm\{i,j kEG\FHm\{i,;
pgt) _ €G\fHm\{i,j} €G\fHm\{i,j} (A.4)
Ci—i — Cij
As above, it leads to the same contradiction. [

Lemma 3. If we construct the parents of the same-scored genotypes i and j, denoted
k andl, in the same way, and if k and | have different scores, then their scores differ
at a/some position(s) where interval(s) of complete heterozygous is/are associated
with, that is, one has “0” and the other one has “27 at the particular position(s) in

each of their score.

Proof. For the sake of convenience in the denotations, we enumerate all the feasible
3-tuples (01(x;4),01(x; k), 01(2;1)) as (d13), 01y, 01(1y)- Each entry is the digit at
the same particular position (z-th interval) of recombination score of i, k and [,

respectively (note that d(;) = d1(j)). There are three possibilities.

1. Consider d;; = 0 or 2 and associates with complete heterozygosity at that
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particular interval, then d,(;) and d;¢) can only be 0 or 2 and associate with
complete heterozygote as we cannot incorporate homozygosity in their parent
at that particular interval. Moreover, since k and [ are constructed in the same

way, thus o) = 01().

. Consider 6;; = 0 or 2 and associates with complete homozygosity at that
particular interval, then ;) and d,) can be 0, 1 or 2. If no heterozygosity
is incorporated in k and [, since they are constructed in the same way, then
d1k)y = 010y = 013 = 0 or 2. If one heterozygosity is incorporated in k and
[, then 0y = 61 = 1. If two heterozygosities are incorporated in k and I,
again since they are constructed in the same way, then 6,4y = 613 = 0 or 2

(note that 1) does not necessarily equals to d,(;) here).

. Consider 6;; = 1, that is, genotype ¢ (j) has one homozygote and one he-
terozygote at that particular interval. If no heterozygosity is incorporated in
the only one homozygous locus, then ) = 014 = 01y = 1. However, if
heterozygosity is incorporated, though k£ and [ are constructed in the same
way, there exists cases such that d;() does not equal to d;(;). For example, let
ibe((-..,0,0,...),(...,1,0,...)),7be((...,0,1,...),(...,1,1,...)) and they
have the same recombination score with “1” at the position with which the
interval displayed above associates, if parent kis ((...,0,0,...),(...,1,1,...))
and in the same way parent [ is constructed as ((...,0,1,...),(...,1,0,...)),
we would observe that in &£ the recombination score has “0” while in [ the re-
combination score has “2” associated with that particular interval. Moreover,
as complete heterozygous appears in k and [ at this interval, so d,() and d;()

can only be 0 or 2.
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A.4 Number of distinct frequencies in a 2-way-

cross-derived selfed population

Theorem 2. In the populations from 2-way cross, if no selection of a/some geno-
type(s) is involved, then the dimension of rows (columns) in S, is at most 2 x 3™~!

for m-loci model under selfing.

Proof. By Lemma 3, if the recombination scores of genotypes k and [ are differ-
ent, they differ at position(s) where in the recombination score of ¢ (or j), “17(s)
is/are situated at. Moreover, each differential position can only be either “0” or “2”
and associates with complete heterozygous interval. Since k and [ are constructed
in the same way, their recombination scores are in the same sign. Therefore, by
simply introducing a/some recombination(s)!'® at the interval(s) where differential
position(s) is/are associated with in k, we would get k', of which the recombination
score is the same with that of I. This(-ese) particular recombined interval(s) pro-
duce one homozygote and one heterozygote in i, therefore within such interval(s),
i’s gametic types are one parental and one recombinant of k as well as of k. As a
consequence, k and k' have the same probability to produce 7. The same procedure
can also be done in [ to obtain I’. I’ shares the same recombination score with & and
produces j at the same probability as | do (Figure 2.4). A relationship leading to
the same frequency of same-scored genotypes pair is established.

D =3 s+ o)+ St (A5
(k,k")

t+l Zc5l (t) + ZC )\p}\ (A.5b)

(A5

The first terms in Equations (A.5a) and (A.5b) respectively represents (k, k’)- and

(16] Chromosomal configuration beyond the recombination point is flipped after a recombination
event.
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(1,1")-pairs. For every k and [ constructed in the same way,

C5k = Cs1-

Whereas the second terms respectively represent x’s and A’s. For every x and A

constructed in the same way, not only

Cé,x = Co,\)
they have the same recombination score (note that some -\ pairs are BWWBs!'7).

By Lemma 1, recombination score determines frequency in the Fy population, thus

2 _. .2 2 _ 2
P =Py P =Py

and

for each k-1 (K'-I') pair or k- pair constructed in the same way. As the right hand

side of Equation (A.5a) is equal to that of (A.5b),

=,

Since 7 and j share the same score, therefore recombination score determines also
genotypic frequency in the F3 population. Repeating the same procedure in t =
3,4, ..., and so on gives rise to the statement that recombination score determines

genotypic frequency in any generation, that is,

5 =5; => P = pgt) vt > 2,

)

where neither (7, j) nor (j,4) is (parental genotype, Fi-genotype).

By Lemmas 2 and 3, property of one-to-one in the mapping of recombination scores

to genotypic frequencies states that dimension of rows (columns) in S, is the num-

[17IRefer to Footnote [13].
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ber of distinct scores. Since the recombination scores are ternary numbers (with only
m—1

. . . . A
0, 1 or 2 in it) as stated in Equation (2.4), there are 3™~ ! of them from 0,...0 to

m—1

—N =
2,...2. Doubling this figure gives rise to the number of distinct scores, 2x 3™t [J

A.5 Multi-level recombination scores for 4-way cross

random-mated population

A multi-level binary scoring system is proposed to classify 2"72(2™~1 +1) groups
of gametes from a 4-way-cross-derived radom-mated population, where gametes with
the same score have the same frequency in every advanced population. The scores
store more information than that of 2-way cross’ selfed population. The first level
of each score, working similar to the concatenation function x(-) in Equation (2.4),
characterizes the recombination event between two adjacent markers. If a recombi-
nation occurs between the two adjacent markers, it is coded as “1” for that interval
(recombinant interval) and otherwise, it is coded as “0” (non-recombinant interval);
the second level is to determine if the two markers in the recombinant interval are
from the same initial cross. If they are from the different initial cross, the score is
given to “1”7, and to “0” otherwise for the recombinant interval; the third level is to
determine if the two markers at the ends of a chromosome segment flanked by two
closest recombined intervals with different initial crosses are from different parents.
If these two markers are from different parents, the score is given to “1”, and to
“0” otherwise. For example, gametes (0, 1,2,2,0) and (1,0,3,3,1) (and more) have
the same score 1101/011/1; gametes (0, 2,0, 3), (0,3,0,2) and (2, 1,2,0) (and more)

have the same score 111/111/01.
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