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中文摘要 

 

因應高頻微波或毫米波實驗的需要，這篇論文提出了吸收高頻電磁波的方

法。材料的物理性質與入射波的頻率皆會影響反射係數(reflection coefficient)與肌

膚深度(skin depth)，因此可以從這兩個參數中找出適合吸收高頻電磁波的吸波材

料。以往的吸波材料多半是介電質材料，雖然介電質吸收電磁波的效果很好，但

是提高頻率會使的所需要的吸波材料厚度增加，如此的高頻吸波裝置會不易製造

及使用。然而，在這篇論文中，我們改以導電性損耗材料(conductive lossy material)

作為吸波材料，對應高頻微波其肌膚深度小於 1 mm，因此只需要塗上一薄層，就

可以有效地吸收高頻率的電磁波。 

為了驗證這個現象我們做了微波吸波器的模擬與量測實驗；將微波吸波器放

置於 Ka-band 的波導管中去計算電磁波的反射損失(return loss)，使用的頻率是

26.5 到 40 GHz，由此了解電導性損耗材料吸波器的吸波效果，並且將透過網路分

析儀量測到的結果與之比較。 

 

 

關鍵字:電容率、導電性損耗材料、肌膚深度、吸波材料、微波吸波器 
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Abstract 

 

Wave absorbers are widely used to attenuate and absorb the unwanted reflected 

waves creating a no-reflecting environment in anechoic chamber. The researches on 

wave absorbers for frequency below 20 GHz are extensively presented in many papers. 

For higher frequency, this thesis reports an applicable way to absorb the 

high-frequency electromagnetic waves by conductivity lossy materials and a 

simulation study of microwave absorbers settled in Ka-band waveguide, the 

recommended frequency of which is between 26.5 and 40 GHz.  

In the beginning of this thesis, we present the theoretical calculation on reflection 

coefficients and skin depth characterized by complex permittivity of materials and the 

frequency of applied waves. These parameters have great help for finding the proper 

absorbing material for high-frequency microwave absorbers. The electromagnetic 

wave interactions with dielectric and electrical conductive materials are also discussed. 

In the second part, two types of wave absorber, wedge-shaped and pyramidal absorbers 

are addressed to compare their competence in absorbing electromagnetic waves. 

Simulation and measurement results presented in chapter 4 and 5 indicate that the 

shape has a great impact on the reflection and absorption performance of a wave 

absorber, and that, more significantly, microwave absorbers with conductivity lossy 

materials can effectively absorb the power in high-frequency EM waves. 

 

Key words: complex permittivity, conductivity lossy material, skin depth, wave 

absorbing material, microwave absorber  
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Dielectric heating is also a major application of electromagnetic waves. The 

common sub-categories of dielectric heating like electronic heating, radio frequency 

heating and microwave heating are the process in which a high-frequency alternating 

electric fields heats dielectric materials. Because waves can get into dielectrics with a 

depth larger considerably than a conductor, the molecule dipoles within them rotate 

rapidly with the electric field, which causes friction and heat. The use of 

high-frequency electromagnetic waves for heating dielectric materials had been 

proposed in 1930s. For example, Bell Telephone Laboratory tendered "Method and 

apparatus for heating dielectric materials" in 1939 [4]. A lot of electromagnetic wave 

equipments and inventions largely apply the reflection and absorption effects of waves. 

Hence, we will investigate comprehensively these effects in this thesis. 

Moreover, many theories and technologies are as well devised or invented in this 

duration and are still in use today, such as satellite communication, television, 

microwave oven, and telecommunication. After World War II most applications of 

microwave which are military originally expanded to industries and general use, such 

as speed measurements, sensor, controller and data transformation as well as to 

medical applications, like disease sensing, RF surgery (diathermy) and clinical 

treatments.  

In this paper, we put our focus mainly on the microwave band. Microwave have 

frequencies with 300 GHz to as low as 0.3 GHz and corresponding wavelengths with 1 

mm to 1 m in free space, which is shorter than radio waves as its name. The 

establishment of microwave spectrum is specified by the dimensions of corresponding 

waveguide. It is arduous to fabricate very tiny waveguides for frequencies more than 

300 GHz. On the other side, for the lower-frequency microwaves the applicable 

waveguides are too ponderous to move. Therefore it is appropriate to specify 

microwave frequencies at this range. The development and applications of microwave 
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technology for several areas can be reviewed in [5], which lists the important 

milestones in microwave fields over a period of approximately 100 years, up to 1980. 

With the advancement of science the frequencies studied have come higher from 

radio waves to microwaves, millimeter waves and even over 1000 GHz, the terahertz 

radiation (1 THz), which is the wave with frequencies between far infrared and 

microwaves, so experiments on the high-frequency and high-power electromagnetic 

wave will receive more attention and interests. For this reason, we address and discuss 

the absorption performances of the wave absorber and anechoic chamber for 

high-frequency microwaves.  

Wave behavior in materials and the derivation of generalized permittivity are 

reviewed in chapter 2, where the power loss mechanisms of electromagnetic waves in 

conductor and dielectric materials are also discussed, respectively. The reflection and 

transmission of a wave are dependent significantly of physical properties of substances. 

Chapter 3 examines the reflection and transmission coefficients of microwave emitted 

from free space to different media and shows the results of theoretical calculations. In 

chapter 4, the simulation results of wave absorbers calculated through High Frequency 

Structure Simulation (HFSS) codes are discussed. Finally, these will be compared with 

the experiment results presented in chapter 5. 

 

  



 

5 

 

Chapter 2  

 

Plane Wave Propagation in Dielectrics and 

Conductors 

 

Energy can be propagated in the form of electromagnetic wave in free space or 

through various substances. To fully understand the behaviors of electromagnetic wave 

in media, it is necessary to dissect the fundamental physical properties of these media. 

We arrange them into dielectrics and conductors in the discussion according to the 

main characteristics of electrons in them.  

A conductor contains a lot of electric charges which can move easily when an 

electric field is applied. These free electrons dominate the conductive property of the 

conductor. Generally speaking, conductors are metallic but there are also many 

nonmetallic conductors, such as graphite, solution of salts and plasma. Graphite, 

particularly in microwave application, is usually mixed into alcohol to make wave 

absorbing material, which has excellent adhesion to metal, glass and plastic substrates. 

Moreover, other carbon materials, such as carbon fiber composites and flexible 

graphite, and carbon-containing compounds are also used for electromagnetic wave 

absorption [6, 7].  

Unlike conductors, dielectrics have no free electron. The physical properties of 

dielectric materials are different from conductors and of course their interaction with 

electromagnetic wave is distinguishing, too. Lossy dielectric or high dielectric loss 

materials are the common absorbing materials because waves can penetrate them and 
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are absorbed. The loss mechanism of dielectrics is explained at Sec. 2-2. 

In electromagnetic analyses of materials, the most common and important 

parameters are permittivity (ε), permeability (μ), and conductivity (σ) or resistivity (ρ), 

which characterize the physical properties of substances. In this chapter, we first give a 

brief review of the derivation of the generalized permittivity for matters and then 

discuss the behavior of electromagnetic wave in dielectrics and conductors. 

 

2.1  The Generalized Permittivity  

 

For general matter, it can be assumed that there are N molecules per unit volume 

and Z electrons per molecule. The electrons in one molecule are divided into j groups, 

each of which has electron number jf . The generalized permittivity can be expressed 

by the bound electrons and free electrons: 

 )( 0

0
2

)bound(
22

2

0 ωγωωγωωεε im
fNe

i

fNe im
j jj

j

−−− ++=  (2.1) 

where jω is the binding frequency and jγ is the collision frequency, respectively. The 

constant 0ε  is known as the permittivity of free space. The second term in this 

equation is due to the bound electrons, while the imaginary component is the 

contribution of the free electrons accounting for the conductivity. Based on the model 

for electrical conductivity proposed by Drude in 1900,  

  )( 0

2
0

ωγσ im
Nef
−=  (2.2) 

and Eq. (2.1) is also written as a concise type with real and imaginary part divided as 

  )( ω
σεεε +′′+′= i  (2.3) 

or  
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 )( ω
σεεε +′′+′= bb i  (2.4) 

where the subscript "b" refers to the bound electron. The complex permittivity of 

materials plays a very powerful role on the electromagnetic wave reflection and 

absorption [8, 9], especially that of ferrite materials [10]. The real component of 

permittivity results in the dispersion and refraction, while the imaginary component 

counts for the lossy (absorption) factor of a matter, including the dielectric damping 

loss )( bε ′′ and the conductivity loss )/( ωσ . The physical properties of substances 

considerably depend on the behavior of electrons. 

 

2.2  Plane Waves in a Dielectric Material and Loss Tangent 

 

According to the lossy property of dielectric materials, there are the lossless and 

the lossy dielectrics. The loss tangent is a parameter for dielectric materials that 

quantifies the dissipation of electromagnetic energy.  

Eq. (2.3) can be also expressed as  

 
 ]tan1[   

)](1[)(

δε
εω

σεωεω
σεεε

i

ii

+′=
′

+′′+′=+′′+′=
 (2.5) 

and  

  tan εω
σεωδ ′

+′′=  (2.6) 

The loss tangent is the ratio of the imaginary component to the real component. For 

lossless materials, such as free space, since there is no power loss as waves travel in it 

and the loss tangent is zero, the permittivity only has the real part. Nevertheless, the 

lossy dielectric material has a complex permittivity, the imaginary part of which 

interprets the power loss in the medium. With the requirement of the energy 

conservation the imaginary component of permittivity must be minus. The complex 



 

8 

permittivity of dielectrics is complicated and studied as the function of frequency and 

temperature, etc [11]. 

 Because the permittivity of dielectrics has real and imaginary component, the 

wave number can be written as  

 ωμεωμεωμε ImRe ik +==  (2.7) 

and we define it as 

 2
αβ ik +=  (2.8) 

where the parameter  rk=β is the phase constant and α is the power attenuation 

constant. Thus a plane wave can be expressed as 

 )()( 2/
00

tzitkzi eeEeEE z ωβω α +−+− −==  (2.9) 

The intensity of a wave depends on the imaginary part of wave number or the 

permittivity of material. In addition, from Eq. (2.7) we can know that waves travel at 

different speeds in various media.  

Intrinsically, a lossy dielectric material is an electrical isolator or very poor 

conductor of electricity which can be polarized by an applied electric field. Figure 2.1 

shows electric field interaction with an atom. When a dielectric is placed in an external 

electric field, its charge carriers tend not to drift through the material as they do in 

conductor since there is no loosely bound or free electron within dielectric materials, 

while only slightly shift from their average equilibrium positions. Positive charges are 

displaced toward the field and negative charges shift in the opposite direction as shown 

in figure 2.1(b), which result in the dielectric polarization. This dipole moment creates 

an internal electric field [Fig. 2.1(c)] which reduces the overall field within the 

dielectric itself [12]. The rotation of the dipole moment following the alternating field 

direction causes the thermal energy by friction, which is applied in the dielectric 

heating. Microwave oven works with 2.45 GHz microwaves to force water or other 
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  ω
σεε ib +=  (2.10) 

A good conductor is defined by  

 1>>
bωε

σ  (2.11) 

The value, σ/ωεb of copper whose conductivity is 5.9×107 /(Ω-m) is greater than one 

for a widespread frequencies ranging from radio waves to X-ray. Clearly, copper is a 

good conductor. However, a substance can display distinguishing characteristics at 

different frequencies. For example, the conductivity of water fresh is about 0.01 

/(Ω-m). From Eq. (2.11) water is a good electrical conductor for 60 Hz wave

)103/( 6×≈bωεσ so this is the reason why it is dangerous to touch the socket with 

humid hand, while it is dielectric for 2.45 GHz microwave )1034.7/( 2−×≈bωεσ , 

which is the frequency used specifically on microwave oven.  

The power of electromagnetic wave attenuates and diminishes to closely zero 

when wave penetrates a high conductivity medium with an extremely short distance. 

The distance is called the length of penetration or skin depth, which is denoted by δ. 

For a good conductor, we have  

 ( ) ( ) ( ) 12
2

1

2

1

iiib +=≈+= ω
σ

ωσωσεε  (2.12) 

and hence the wave number  

 δ
μσωωμε iik +=+== 1)1(2  (2.13) 

where  

 
μσω

δ 2=  (2.14) 

is skin depth, which is dependent of the conductivity (or resistivity) of substances and 

the frequency of incident wave.  

Figure 2.2 illustrates that skin depth is as a function of the resistivity of media for 
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2.4  Frequency Dependent Behavior of Materials 

 

In general, comparing with the collision frequency 0γ of matter, we can separate 

the frequencies into two parts, low-frequency )( 0γω << and high-frequency )( 0γω >> . 

For a good conductor like copper, its collision frequency is about 4×1013 s-1. If 

0γω << , Eq. (2.2) will become to  

 7

0

2
0

0

0
2

108.5
)(

×==≈
−

= copperm

Nef

im

fNe σ
γωγ

σ  (2.17) 

We can neglect the effect of frequency, and then the conductivity of copper is a 

constant. However, for the broad frequency,  
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which has an important dependence on frequency. Therefore 

 
)1041(
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00
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×+=+= ωω

ε
ω
σεε

i
ii  (2.19) 

The permittivity of copper divided to real part and imaginary part varies with 

frequency as shown in Fig. 2.4. The imaginary component has dominant influences at 

the low frequency region. However it is much smaller in magnitude than real 

component at high frequency region because in fact the real part is negative at 

frequencies over 2.6×1015 (Hz). 
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2.5  Ferrite Materials 

 

The ceramic-like materials, ferrites, can be classified according to the crystal 

configuration, the manufacturing process or the composition, for example, spinel 

Ni-Zn ferrite, spinel Mn-Zn ferrite, hexagonal barium ferrite, etc, or sintered ferrite, 

ferrite composition, soft ferrite and hard ferrite. A unique characteristic of ferrite 

material is that its dielectric constant is studied as a function of frequency, composition, 

(magnetic materials) loading and temperature [15]. Moreover, ferrites have the 

advantages, such as mold ability, high resistivity, lower price and greater heat 

resistance.  

The soft ferrites are most often used as materials for ferrite wave absorbers. The 

typical ferrite wave absorber is a ferrite tile blacked with a conductive metal plate. 

Each ferrite has two matching frequencies, fm1 and fm2, and two matching thicknesses, 

tm1 and tm2, respectively. The former is attributable to ferrites’ complex permeability. 

Therefore, if the frequency of the wave to be absorbed is specified, a particular ferrite 

material can be chosen to accomplish this absorption [16, 17]. Ferrite nanoparticles are 

also used as the component of radar-absorbing materials which coated in stealth 

aircraft to avoid being detected and also used for the electromagnetic compatibility 

measurement to diminish the reflected wave. After World War II, The use of 

microwave band increases annually and, hence, the requirement of the microwave 

absorbers are more and more for the development of the microwave technology. Many 

countries invest a large amount of time and resources to study the properties of ferrite 

materials and try to find the novel types. The historical development and the 

applications of ferrite materials have been reviewed in [18]. 

In addition to the utility for wave absorbing materials, ferrites are also 

characterized by their ferromagnetic. Since the resistivity of ferrite may be in the 
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Chapter 3  

 

Effects of Wave Reflection, Transmission and 

Absorption 

 

The effects such as reflection, diffraction, scattering, refraction, transmission and 

absorption of electromagnetic waves are critical importance in the study of how EM 

waves move in media. When waves interact with objects or materials through which 

they travel these electromagnetic phenomena happened depending on the composition 

of the material and the wavelength of wave.  

As a wave is reflected or diffracted, there is some loss of energy which generally 

passes into the medium and is absorbed because the photons hit the atoms or molecules 

and lead them to vibrate. Reflection coefficient is one of important parameters and 

reveals how much wave (or power) is reflected in electromagnetic wave experiments 

and measurements. For different purposes, sometimes we hope that waves can be 

reflected totally back without any signal loss when they impact objects so that we can 

receive complete information. However, sometimes absorbing the power of wave and 

decreasing the reflection are possibly the requirements for experiments and some 

devices, for example, wave absorbers and anechoic chambers.  

In last chapter, we have reviewed some derivations on the permittivity, which is 

one of significant factors in reflection of waves. And the calculations on the reflection 

and transmission coefficients will be shown and discussed in this chapter. This section 

begins with the derivation of reflection and transmission coefficient and then tries to 
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find the favorable materials to absorb the power in electromagnetic waves.  

 

3.1  Reflection of EM Waves on Flat Surfaces of Substances 

 

The surfaces of matters existing in the world are almost rough, which is the 

reason for scatter of waves. For simplicity, we neglect the effect of scatter and consider 

that the wave is emitted to a flat substance. The reflection and transmission coefficients 

for a plane wave emitted from free space to a flat surface of medium is given by [19, 

Eq. (7.39)&(7.41)]. According to the boundary conditions, there are two separate 

situations. The first one is that E-field of the incident wave is parallel to the plane of 

incidence as shown in Fig. 3.1 
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and the other situation is that E-field of the incident wave is perpendicular to the plane 

of incidence. The reflection and transmission coefficients are given by 

Figure 3.1 

Refraction and reflection with polarization 

parallel to the plane of incidence 
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where n  and n′ are the indices of refraction. These two cases, parallel and 

perpendicular polarizations, can reduce to the same for normal incidence. 
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where  

 

ε
μ
ε
μ

′
′

=′

=

Z

Z
 (3.4) 

are the impedances of the media.  

 

 

 

Figure 3.2 

Refraction and reflection with polarization 

perpendicular to the plane of incidence 
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The reflection coefficient can be counted by substituting Eq. (2.4) into Eq. (3.3) 

with the two assumptions for simplicity that permeability of media 0μμμ =′= and 

that 12
0 1085.8 −×=≈ εε b farad/m for all media.  

 ω
σεε i+= 0  (3.5) 

Figure 3.3(a) shows that the reflection coefficient for a variety of materials whose 

resistivity is ρ (=1/σ) at microwave frequencies. We have used the resistivity of copper 

(ρcu =1.72×10–8 Ωm) as a reference value. The reflection coefficients have a significant 

dependence on the resistivity (or conductivity) of materials. It is conspicuous that 

microwaves are almost totally reflected when they meet a good conductor but penetrate 

when they meet a dielectric. In the region with fractional reflection, there is an evident 

tendency that the reflection coefficient decreases gradually as the frequency of incident 

wave increases, especially in the middle of this figure. This verifies again that one 

substance can be a conductor or dielectric material at different frequencies, which is 

aforementioned at Sec. 2.3.  

Also, the corresponding transmission coefficient is shown in Fig. 3.3(b). The 

transmission coefficient of matter with large resistivity is nearly 1. This indicates good 

dielectrics are closely transparent to the microwaves.  
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3.3  Reflection of Power in Electromagnetic Waves 

 

In general, power is the magnitude we measure and observe in electromagnetic 

experiments and measurements. The power in an electromagnetic wave is proportional 

to the square of the amplitude. Therefore based on Eq. (3.3) and 
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power dTransmitte
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rpowe Reflected

Γ−=

Γ=
 (3.9) 

 

the reflection and transmission of the power of a wave emitted from vacuum to various 

substances can be calculated by using the generalized permittivity ω
σεε ib += [Eq. 

(2.6)] with the assumption that 12
0 1085.8 −×=≈ εε b farad/m and  
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where γ0 is the collision frequency of matter. Thus, if the frequency of incident wave is 

much lesser than the collision frequency, we obtain  

 
0

0
2

γ
σ

m

fNe≈  (3.11) 

The conductivity is just a real constant.  

Figure 3.7 are plotted as the function of the resistivity ρ with ρ normalized to that 

of copper (ρcu =1.72×10-8Ω-m) from good conductors to dielectrics. The wave 

frequencies cover a wide range. Although the reflection for good conductors is close to 

perfect reflection, there is still some transmission that can be seen in Fig. 3.7 (below). 

Conductor material absorbs about 15 times more at 1012 Hz than at 1010 Hz, that is to 

say, it absorbs much more infrared radiation than microwave frequencies. This is why 
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Chapter 4  

 

The Absorbers for Microwaves Frequencies 

 

4.1  Introduction 

 

Electromagnetic wave experiments and measurements in laboratory usually need 

a high quality no-reflecting environment, such as electromagnetic wave anechoic 

chambers or shielded room installations, which play an important role in the work of 

electromagnetic interference and compatibility tests. They are usually composed of 

many wave absorbers lined on walls. Absorbers in anechoic chamber can absorb the 

power of electromagnetic waves and efficiently reduce the reflected wave that could 

give rise to influences on the result of EM wave measurement.  

The dimensions of an anechoic chamber are based on the measured sample as 

well as the sizes of wave absorbers, or more correctly, based on the wavelength of the 

absorbed wave. The room of an anechoic chamber for radio waves is usually as large 

as an auditorium, but for microwaves it can be reduced greatly. Because studying on 

microwaves have extensively involved millimeter waves and even the higher 

frequency waves, terahertz waves, the needs for corresponding wave absorbers and 

measurement equipments are increasing. Hence, we will discuss the absorber for high 

frequency. In the following discussion the electromagnetic spectrums are focused on 

microwaves, whose wavelengths range from one meter to one millimeter, and 

equivalently, frequencies between 300 MHz and 300 GHz. For a 30 GHz microwave, 

its wavelength is 1 cm and thus the dimensions of appropriate chamber can be smaller 
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than a cubic meter. The cost of making one is inexpensive and it can be placed in a 

general laboratory.  

After the first absorber invested in Netherlands in 1930s, substantially, the 

discovery of novel wave absorbing materials and the progress of manufacturing 

techniques greatly benefit and strengthen the performance of wave absorber and of 

course anechoic chamber. In that time, they were studied mostly by military 

organizations and communication companies and the commercialized production of 

absorbers first appeared in 1950s. The early development of the absorber and anechoic 

chamber has been systematically reviewed in [20].  

The absorption competence of a wave absorber depends primarily on materials 

used, shapes and designs. Shape is a very significant factor affecting the performance 

of absorbers. There are also simulation studies to optimize the absorber geometry for 

better performance [21, 22]. Following the conclusions in Chapter 2 and 3, we have 

understood what kind of materials used as microwave absorbers can possess the 

optimal performance. In this section we will introduce the structures of absorbers in the 

beginning and then compare and discuss dimensional factors influencing the 

performances of wave absorbers simulated through High Frequency Structure 

Simulation (HFSS) codes. 

 

4.2  The Structures and the Material of Wave Absorbers 

 

Our purpose is to examine the dynamics of high-frequency microwave absorption 

and efficient absorber structures that can tolerate high power while also possessing a 

structural simplicity for laboratory fabrication.  

Here, we introduce two various wave absorbers, the pyramidal absorber and the 
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First, there is a clear tendency for every curve toward less reflection (more 

absorption) when the frequency of incident wave is enhanced increasingly. This is well 

demonstrated by the following equation. The time-averaged power absorbed on the 

surface of a good conductor is  

 
2

||
* H

4
]HERe[

2

1 μωδ=⋅×−= z
abs

da

dP e  (4.4) 

and by substituting Eq. (2.14) into Eq. (4.4) 

 ω
σ

μω ∝=
2

||H
8da

dPabs  (4.5) 

where ||H is the tangential magnetic field that exists just on the surface of the 

conductor. The power absorbed is proportional to square root of frequency of incident 

wave and return loss is in the same way.  

Equation (4.4) demonstrates a more significant point that the power loss per unit 

area also depends on the tangential magnetic field ( ||H ), and this can explain the 

difference of absorption performance between these two models. The tangential 

magnetic field increases with a reduced cross-sectional area of space in waveguide 

when wave gets into the zone of absorber [Fig. 4.2(a)]. Therefore this leads to more 

power being absorbed. For satisfying boundary conditions of electromagnetic fields, 

the electric field going into absorber can produce a current near the surface of the 

conductor, which causes the same magnetic field to resist the entrance of the magnetic 

field outside the surface. However, the effect doesn’t appear in wedge-shaped 

absorber-2 though cross-sectional area also reduces  

Secondarily, based on Fig. 4.1 and 4.2(a), the directions of TE10 mode electric 

field are closely parallel to the absorbing surfaces of wedge-shaped absorber-1 (parallel 

polarization). It is easier to form the electric force lines than the other case of 

wedge-shaped absorber, wedge-shaped absorber-2 (perpendicular polarization), for 
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Chapter 6  

 

The conclusion: Summary and Future Direction 

 
Medium with high resistivity can enhance the absorption and reduce the reflection, 

but meanwhile, it also increases the skin depth, resulting in an increase in the 

requirement for thickness. However, for simplicity fabrication of high-frequency 

microwave absorbers, only a few ten of microns lossy material is needed and the 

higher the operating frequency is, the thinner the required lossy material is. Thus, 

based on these two conditions, a minimum resistivity of material or the thickness of 

lossy layer can be found to absorb a specified frequency band. The simulation and 

experiment results both demonstrate that such wave absorbers with a lossy conducting 

layer can accomplish the absorption for Ka-band microwaves and also imply this 

method is certainly applicable at higher frequency bands.  

The simulation results also indicate that the shape is the most predominant factor 

in absorption performance. The geometrical advantage of the pyramidal absorber is its 

tip, a dot basically, which provides a good impedance match at first contact position 

and produces the minimum reflection of wave. Moreover, in terms of wedge-shaped 

absorbers, field polarization is also an important key to the issue. The power absorbed 

is proportional to the square of tangential magnetic field. Except for exactly 0
o
 and 90

o
, 

the parallel polarization possesses the better performance than perpendicular 

polarization at any incident angles. The simulation results corroborate this argument 

and are consistent with the theoretical calculation of reflection coefficient in chapter 3. 

This information has great help for the fabrication of wave absorbers. 
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 Based on this study, it has been well known what kind of materials and shapes are 

applicable to the high-frequency microwave absorber. But, we have only simulated 

wave absorbers in the waveguide; in fact, this is barely a fraction of an anechoic 

chamber. To understand the absorption performance of an anechoic chamber with 

many wave absorbers lined on the walls, it is necessary to measure under practical 

condition. The manner presented in this thesis makes the manufacturing of anechoic 

chambers easier to implement, serving as a convenient tool for high-frequency research 

and applications.   
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