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ABSTRACT

Drug development is time-consuming and costly. However, most of drug
development projects fail before they ever enter into clinical trials. To reduce the high
risk of failure for drug development, pharmaceutical companies are exploring the drug
repositioning approach for drug development. Previous studies have shown the
feasibility of using computational methods to help extract plausible drug repositioning
candidates, but they all encountered some limitations. We thus propose a novel
drug-repositioning discovery method that takes into account multiple information
sources, including more than 15,000,000 biomedical research articles and existing
ontologies that cover detailed information about drugs, proteins and diseases, and
follow the ABC model derived from Swanson’s literature-based discovery works. We
design three experiments to evaluate our proposed drug repositioning discovery method.
The results show that our proposed method and our proposed integrated information
source can better help researchers sift plausible drug-disease relationships in

comparison with existing techniques.

Keywords: Drug repositioning, Drug repurposing, Literature-based discovery, Medical

literature mining
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Chapter 1 Introduction

1.1 Background

Drug development is time consuming and costly. As United States Food and Drug
Administration (FDA) regulated, the process of drug development can broadly be
divided into two major stages: discovery and preclinical stage and clinical stage. In the
discovery and preclinical stage, the pharmaceutical company or sponsor performs
laboratory and animal tests to discover how the drug works and whether it is likely to be
safe and work well in humans. After obtaining promising data, the candidate drug shall
enter the clinical stage. It must pass all three phases of clinical trials (phase 1 studies
typically involve 20 to 80 people; phase 2 studies typically involve a few dozen to about
300 people; and phase 3 studies typically involve several hundred to about 3,000
people), to determine whether the drug is safe when used to treat a disease and whether
it provides a real health benefit. The whole process requires about 10-15 years, and
costs between 500 million and 2 billion U.S. dollars to bring a new drug to market
(Adams & Brantner, 2006; Pharmaceutical Research and Manufacturers of America,

2007).

For de novo drug development, about a half of the time and one-third of the total
cost spend on discover and preclinical stage (DiMasi & Grabowski, 2007). Moreover,
80 to 90 percent of research projects fail before they ever get tested in human, according
to the U.S. National Institutes of Health (National Institutes of Health, 2009). It is
estimated that only 5 out of 5,000-10,000 tested compounds will qualify for clinical
trials (Pharmaceutical Research and Manufacturers of America, 2007). To reduce the

1



high risk of failure for de novo drug development, pharmaceutical companies have been
evaluating alternative paradigms for drug development, one of them being drug

repositioning.

Drug repositioning is the process of finding new indications (i.e., treatment for
diseases), other than original purposes, for existing drugs. Since the existing drugs
already have their preclinical properties and established safety profiles, several
experiments, analysis and tests can therefore be bypassed. Companies may thus reduce
significant time and spending in the discovering and preclinical stage. Another
advantage of drug repositioning is to make full use of company’s intellectual property
portfolio. By developing new uses of drugs, it is possible to extend their old, expiring

patents, or get new method-of-use patents (Ashburn & Thor, 2004).

One notable example of repositioned drug is Thalidomide. It was originally
marketed as a sedative and antiemetic for pregnant women to treat morning sickness,
but was completely removed from the market after the drug was found responsible for
severe birth defects (McBride, 1961). However, the banned drug was later discovered
that it can effectively treat erythema nodosum leprosum (ENL), an agonizing
inflammation in leprosy patients (Stephens & Brynner, 2001). After Celgene
Corporation’s repositioning works, FDA approved thalidomide for use in the treatment
of ENL in 1998. The company further discovered that the drug is highly effective
against several other diseases including multiple myeloma, a type of blood cell cancer
that affects the bones and kidney. Accordingly, Celgene gets several utility patents for
the repositioned thalidomide, and it brings in over 300 million U.S. dollars in revenue

annually since 2004 (Celgene Corporation, 2006; 2009; 2013). In addition to



Thalidomide, several other repositioned drugs have been identified and reported. Table

1 shows some selected examples of repositioned drugs.

Table 1. Selected Examples of Repositioned Drugs

Drug Original Indication New (Potential) Indication
Aspirin Pain, inflammation Heart attack
Antiplatelet
Colon cancer
Bromocriptine  Parkinson’s disease Diabetes
Finasteride Prostatic hypertrophy Hair loss
Mifepristone Abortion Cushing’s syndrome
(RU486) Breast cancer
Minoxidil Hypertension Hair loss
(Rogaine)
Sildenafil Chest pain (expected) Erectile dysfunction
(Viagra) Pulmonary hypertension

Altitude sickness (pulmonary edema)

Thalidomide Morning sickness ENL (severe inflammation)
Multiple myeloma (blood cancer)

Reference: Ashburn & Thor, 2004; Thomson Reuters, 2012

Several in silico methods for drug repositioning have been developed to help
medical researchers sift the most plausible drug-disease pairs from a wide range of
combinations. Existing methods can broadly be classified into two approaches:
literature-based and ontology-based. The literature-based approach analyzes a great size
of biomedical literature, e.g., from MEDLINE database, to uncover new, potentially
meaningful relationships between drugs and disease. For example, assume that, in
biomedical articles, a drug frequently co-occurs with some biomedical concepts (such as
enzymes, genes, pathological effects, and proteins) and many of these concepts also
frequently co-occur with a disease, where the disease is not the known indication of the
focal drug. In this case, it is likely that the disease is a new indication of the focal drug.

The above-described methodology is developed by Swanson (1986), who successfully



discovered that fish oil is a treatment for Raynaud’s syndrome. In contrast, the
ontology-based approach relies on existing ontologies and knowledge bases to discover
hidden relationships between drugs and diseases on the basis of the relations between
the focal drug and relevant biomedical concepts, and those between these concepts and
diseases recorded in the existing ontologies and knowledge bases. For example, Cheng
et al. (2012) extracted drug-target interaction network from DrugBank database, and
used network topology similarity to infer new targets for known drugs. Figure 1 and

Figure 2 are illustrations of the above-mentioned methods.
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Figure 1. Swanson’s literature-based discovering methodology
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Figure 2. Cheng et al.’s ontology-based network-based inference



1.2 Research Motivation and Objective

Existing methods have shown its feasibility for drug repositioning. However, they
incur some limitations. First, most previous methods rely only on single information
source. The literature-based approach uses only biomedical literature to infer new,
potentially meaningful relationships between drugs and diseases, whereas the
ontology-based approach depends solely on existing ontologies and knowledge bases.
Each information source has its own pros and cons. For example, the biomedical
literature has a wider coverage on co-occurrence connections between drugs and
relevant concepts and those between concepts and diseases. In contrast, the quality of
relations between drugs and relevant concepts and those between concepts and diseases
recorded in ontologies and knowledge bases should be higher than that of the
co-occurrence connections derived from the biomedical literature. A case in point of this
is Thalidomide. Not until 2006 has FDA approved Thalidomide for the treatment for
multiple myeloma, which means, they stayed unrelated in most ontologies until then;
however, the drug has been highly discussed in literature (and also been marketed) for
myeloma treatment since late-1990s. Because existing methods for drug repositioning
rely only on single information source for inferences, they cannot have the benefits of
different information sources and, at the same time, cannot attempts to mitigate the

inherent disadvantages of each information source.

Second, existing literature-based methods, of which follow Swanson’s ABC model
(Swanson, 1986), consider only single intermediate level, in other words, paths of
length 2. For example, take drug concepts as starting terms, genes as intermediate terms,

and diseases as target terms, we may find some plausible indirect drug-disease



relationships through combining drug-gene and gene-disease relationships. However,
there may be interesting unknown drug-disease relationship caused by gene-gene
relationships (i.e., a path of drug-gene-gene-disease), which cannot be found under the
original ABC model. Previous studies, such as Ozgir, Vu, Erkan, & Radev (2008) and
Li, Zhu & Chen (2009), have suggested that gene-gene or protein-protein interactions

are important in drug discovery.

In response to the limitations of existing methods, we propose to construct a
comprehensive network of biomedical concepts through literature, ontologies and
knowledge bases. We then adapt Swanson’s undiscovered public knowledge model, also
known as the ABC model, for our proposed network to extract plausible drug-disease
relationships. Because the nature of links from literature and ontologies are greatly
different (the former means co-occurrence while the later means meaningful relation),
existing measurements in the ABC model cannot fulfill our need for weighting links
from both literature and ontologies, since previous studies mostly based on single
information source. We thus propose several algorithms to better assess relationships
over our proposed network. Furthermore, we propose to extend the original ABC model

to consider paths whose length longer than 2.

The remainder of this thesis is organized as follows. Chapter 2 reviews existing
techniques relate to this study, and discuss their limitations to justify our research
motivation. In Chapter 3, we describe the design of our proposed drug repositioning
discovery method. Chapter 4 reports on our evaluation of proposed techniques. Finally,

we conclude our study in Chapter 5 as well as some future research directions.



Chapter 2 Literature Review

In this chapter, we review existing computational methods related to drug
repositioning, which can be classified into two categories: literature-based approach and
knowledge-based approach. The literature-based approach identifies plausible
drug-disease links by extracting information from academic publications. The
ontology-based approach uses existing ontologies or knowledge bases instead, to infer
plausible drug-disease links. We briefly summarize the current progress and issues of

these existing methods as follows.

2.1 Literature-based Approach

Swanson (1986) first introduced the idea of discovering hidden relationships from
biomedical literatures in the mid-1980s. He examined across disjoint literatures,
manually identified the plausible new connections, and found fish oil might be
beneficial to the treatment of Raynaud’s syndrome. It was validated by pharmaceutical
chemists later. Swanson and Smalheiser (1997) further developed the model he used
into a computational method. Figure 3 shows a graphical representation of this model.
The basic assumption of Swanson’s model is: if a biomedical concept A relates to
concept B, and concept B relates to another concept C, there is a logically plausible
relation between A and C. For example, if A is a chemical, and C is an illness, we may
infer a potential new indication of drug A through this model. It is thus called “ABC
model” or “undiscovered public knowledge (UPK) model”, and this approach is often

referred as literature-based discovery.
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Figure 3. Graphical representation of Swanson’s ABC model.

The process of Swanson’s methodology can be divided into several steps. First, in
term selection step, it defines which body of literature shall be extracted as terms
(concepts), either words from title, abstract, annotation, or entire document. The second
step, link extraction and filtering, is to identify relations between concepts. For example,
Swanson used co-occurrence analysis to extract relations of concepts. Then, each link is
assigned a weight through link weighting algorithm, which is often processed along with
link extraction. Finally, the system ranks target concepts so that those which are highly
relevant to the given starting concept will receive higher ranks in target term ranking
step. The term selection, link weighting, and target terms ranking are three major

research issues of literature-based discovery.

Ever since Swanson’s efforts, many other researchers have adapted the ABC model,
and developed several improving algorithms and concept extraction techniques. Weeber,
Klein, de Jong-van den Berg, & Vos (2001) followed Swanson’s idea of co-occurrence
analysis, while they translated words from titles and abstracts extracted from
MEDLINE articles to Unified Medical Language System (UMLS) concepts to filter link

8



candidates with the help of semantic information. Similarly, Wren, Bekeredjian, Stewart,
Shohet, & Garner (2004) mapped full text from articles into Online Mendelian
Inheritance in Man (OMIM) concepts. They measured link weights by mutual
information between concepts in replace of co-occurrence. Lee, Choi, Park, Song, &
Lee (2012) further combined multiple thesauruses to better translate text into
biomedical concepts. These researches suggested using full text as the corpus of concept
extraction with the help of thesauruses. On the other hand, Srinivasan (2004), Hristovski,
Peterlin, Mitchell, & Humphrey (2005), and Yetisgen-Yildiz and Pratt (2006) used
Medical Subject Headings (MeSH), keywords annotated to each article in MEDLINE,
instead of free text. They applied tf-idf, association rules, and z-score as the
measurement of link weights, respectively. All of them reported the metadata-only
approach is feasible, though Hristovski et al. noted some shortcoming of using MeSH

such as insufficient information of involving genes.

As mentioned, the ABC model has successfully discovered some unknown
chemical-disease relationships, including fish oil and Raynaud’s syndrome, and
magnesium and migraine (Swanson, 1986; 1988). Thus, researchers have suggested
applying this approach to drug repositioning. Weeber et al. (2001), Wren et al. (2004),
Frijters et al. (2010), and S. Lee et al. (2012) used it to find undiscovered relations
between drugs and diseases through selecting different semantic groups of intermediate

terms such as adverse effects, genes, and proteins.

As for evaluating the performance of literature-based approach, most researchers
use case studies, for instance, replicate historical discoveries, or apply laboratory

experiments, to conclude the improvement of their studies. To automatically and



systematically compare different link weighting and target term ranking algorithms,
Yetisgen-Yildiz & Pratt (2009) developed an evaluation methodology. They used two
literature sets collected from separated time spans, and trained systems by using the
older set to predict novel relations in the newer set. They also performed the
performance comparison between most of the above-mentioned link weighting
algorithms. According to their study, association rules mining seems to have the best
performance over tf-idf, mutual information measure, and z-score. They also compared
some target terms ranking algorithms and suggested using link term count with average

minimum weight.

As mentioned in Chapter 1, most literature-based drug repositioning methods rely
on single source. We may improve the performance by considering validated
information in ontologies and knowledge bases. Besides, there is still much room for
improving the performance of the ABC model itself. There may be other link weighting
and target terms ranking algorithms that can boost the accuracy. Previous researches
also considered only single intermediate level, while intra-intermediate relations may be

important.

2.2 Ontology-based Approach

Instead of using text from academic publications, ontology-based approach uses
several existing ontologies and knowledge bases to help reduce the noisy relations
extracted from free text. For example, DrugBank database contains much information of
drugs like their indications, mechanisms, adverse effects, related genes and proteins, etc.
With such kind of validated information, we can infer undiscovered relations based on

their known connections.
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Researchers have used different sources to extract possible connections. Campillos,
Kuhn, Gavin, Jensen, & Bork (2008) constructed a network of side-effect driven
drug-drug relations from UMLS ontology by measuring side-effect similarity between
drugs. Assuming that similar side effects of unrelated drugs may cause by sharing
common targets, they can be used to predict new drug-target interactions. They
experimentally validated some of their results, and thus reported the feasibility of using
phenotypic information to infer unexpected biomedical relations. Yang & Agarwal
(2011) also based on side effect likelihood between drugs, but they constructed Naive
Bayes models to make predictions. They also took PharmGKB and SIDER knowledge
bases, rather than phenotype database, as their information sources. Cheng et al. (2012)
built a bipartite network by extracting known drug-target interaction data from
DrugBank, and used the network similarity to predict new target of drugs. Li & Lu
(2012) built a network similar to Cheng et al.’s work, but added the similarity of drug

chemical structure into consideration.

These researches have done many efforts to display the effectiveness to discover
unexpected relations based on ontologies and knowledge bases. Nevertheless, due to the
carefulness of adding relations, the data set retrieved from ontologies is relatively small.
As suggested by Qu, Gudivada, Jegga, Neumann, & Aronow (2009), the prediction of
potential new therapeutic indication for drugs requires deep and broad pharmacological
and biological knowledge. Therefore, it is important to incorporate more ontologies and
knowledge bases together to better predict novel drug-disease relations. In respond to
that, Qu et al. and H. S. Lee et al. (2012) both attempted to increase the size and scope
of semantic data by constructing integrated network or database of ontologies. However,

to our knowledge, few researchers took both ontologies and literature into account,
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which may be a good way to acquire deeper and broader biomedical knowledge for
making predictions of drug-disease relations. Li et al. (2009) tried to incorporate more
knowledge by using protein-protein interactions extracted from Online Predicted
Human Interaction Database (OPHID) to expand disease-related proteins, and built
disease-specific drug-protein connectivity maps based on literature mining. His work

inspires us to build a network over multiple information sources.

As mentioned in Chapter 1, our proposed technique is based on constructing
comprehensive network over literature and ontologies, and applies Swanson’s ABC
model over our network to extract plausible drug-disease relationships and thus taking

both literature and ontologies into account.

12



Chapter 3

Design of Drug Repositioning Discovery Method

As mentioned previously, we propose a drug repositioning discovery method based
on Swanson’s hidden relationship discovering model (ABC model) that takes both
biomedical literature and existing ontologies and knowledge bases into account by
constructing a comprehensive network of biomedical concepts. As Figure 4 illustrates,
our method consists of five main phases: literature-based concept network construction,
ontology-based concept network construction, related concept retrieval, link weighting,
and target term ranking. The literature-based concept network construction phase
extracts and filters biomedical concepts from the literature database (i.e., MEDLINE)
and constructs the network via association rules mining, as suggested by Yetisgen-Yildiz
& Pratt (2009). The ontology-based concept network construction phase extracts known
relations between biomedical concepts from existing ontologies and knowledge bases as
concept network links. Subsequently, we construct a comprehensive network of
biomedical concepts. Given a specific drug, we retrieve a subgraph of related concepts
from our comprehensive network. Depending on single or multiple intermediate levels,
we apply different constraints in the related concepts retrieval phase. We then employ
Extended Normalized MEDLINE Similarity algorithm to weight each link in the
retrieved subgraph, either the link is from literature-based or ontology-based network.
Finally, we rank target terms extracted through our discovering model in order to
identify plausible novel drug-disease relationships. For single intermediate level

scenario, we propose and employ two target term ranking algorithms, Summation of

13



Minimum Weight and Summation of Average Weight; for multiple intermediate levels

scenario, we employ the Katz measure.

I
Literature in

Literature-based
Concept Network

MEDLINE Construction
Ontologies
= — | Comprehensive
Concept Network
DrugBank
- Ontology-based
OMIM Concept Ne’gwork —
- Construction
—
\-_____________/
CTD
\______—___/ l
Focal Drug Related Concepts
[Starting Term] Retrieval
!
Link Weighting
l
Drug Repositioning
Target Term Ranking ———Candidates (Disease)
[Target Terms]

Figure 4. Overall Process of Our Drug Repositioning Discovery Method

3.1 Literature-based Concept Network Construction

As mentioned, the purpose of the literature-based concept network construction
phase is to extract biomedical concepts from the literature and to construct the

literature-based concept network via association rules mining.
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3.1.1. Data Collection

We use MEDLINE database as our literature data source, which is constructed by
U.S. National Library of Medicine (NLM). Specifically, the database we adopt is
MEDLINE 2011 baseline. It contains 19,680,423 biomedical articles until 2010. For
each article, NLM indexes the publication type of each document, such as newspaper,
clinical trial report, journal article or guideline. Among the 61 publication types shown
in MEDLINE 2011 baseline, we remove the publication types that are suggested as less
relevant to literature-based discovery in previous studies (Yetisgen-Yildiz & Pratt, 2009),
as shown in Table 2. As a result, our literature database consists of 18,712,338

biomedical articles.

Table 2. Excluded Publication Types

Addresses Directory Letter

Bibliography Editorial News

Biography Guidelines Newspaper article
Comment Lectures Patient education handout
Congresses Legal ceases Periodical index
Dictionary Legislation Practical guideline

NLM also indexes representative medical terms discussed in each biomedical
article in MEDLINE into corresponding MeSH terms, which are controlled vocabulary
maintained by NLM for the purpose of annotation. Except some articles that are not
indexed with any annotation, the number of MeSH terms per MEDLINE article range

from 1 to 97, and its average is 9.44.

In this study, we use MeSH terms rather than words from title or abstract of each
biomedical article as input to the construction of literature-based concept network, as

suggested by previous studies (Srinivasan, 2004; Yetisgen-Yildiz & Pratt, 2009).
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3.1.2. Link Extraction and Filtering

We apply association rules mining approach to extract the relations between MeSH
terms in MEDLINE articles. Association rules were originally developed with the
purpose of market basket analysis, which is, to find two sets of items that are tend to be
purchased together. Hristovski et al. (2005) first adapted association rules to identify the
correlated biomedical terms. In their application, transactions are documents and items
are terms. Thus, the two important measures for an association rule are defined as
follows:

Support: Two biomedical terms A and B are correlated if they co-occur together in many
documents.

s=|D4nN Dg|
Confidence: A and B are correlated if the percentage of documents containing B within
all documents containing A is high.

_|Dyn Dg|
| D4l

where D, is the set of documents in which term A appears and Dy is the set of

documents that include term B.

Hristovski et al. suggested setting thresholds on support and confidence for
limiting the number of related concepts and improving the effectiveness of mining. We
follow Yetisgen-Yildiz & Pratt’s experiment (2009) by setting the minimum support
threshold as 2.6 and the minimum confidence threshold as 0.0055. Accordingly, the set
of rules that pass the threshold test are used to extract the relations between MeSH

terms in literature.
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Additionally, since we focus on drug repositioning, we limit terms to be identified
as correlated must be within some specific semantic groups, such as drugs, genes,
proteins, enzymes, pathological effects, and diseases. Each MeSH term is organized in
16 categories, and each category is further divided into subcategories. We select several
MeSH subcategories that can represent our specified semantic meanings. The
subcategories we select are shown in Table 3. After filtering, we extract 12,278 MeSH

terms and 2,623,222 relations from literature.

Table 3. Selected MeSH Subcategories

Semantic Group Corresponding MeSH Subcategories
Drugs D01-D05, D09, D10, D20, D26, D27
Genes, Proteins, and Enzymes D06, D08, D12, D13, D23
Pathological Effects G03-G16

Diseases C01-C23

3.2 Ontology-based Concept Network Construction

The purpose of this phase is to extract relations from ontologies. There are several
ontologies and knowledge bases which record semantic relations between biomedical
concepts. The relations depicted in these ontologies and knowledge bases are known
and validated. Therefore, the credibility of the ontology-based network should be higher

than literature-based network.
3.2.1. Data Collection

In this study, the ontologies and knowledge bases we adopt are DrugBank, Online
Mendelian Inheritance in Man (OMIM), and Comparative Toxicogenomics Database

(CTD).
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DrugBank

DrugBank (http://www.drugbank.ca/) is a richly annotated database which provides
extensive information about targets, pathways, indications, adverse effects, and related
proteins of various drugs (Knox, et al., 2011). It contains 6,811 drugs entries including
1,678 FDA-approved drugs and 5,080 experimental drugs. We use its drug-target
interactions data to build our ontology-based network. The number of drug-target

interactions we collect from DrugBank is 14,542.

OMIM

OMIM is a comprehensive and authoritative knowledgebase of human genes and
genetic phenotypes (Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005). It is
written and edited by scientists and physicians around the world. OMIM is freely
available at http://www.omim.org/. The knowledgebase contains 4,380 manually
annotated gene-disease relations, which we use as inputs to the construction of our

ontology-based concept network.

CTD

CTD (http://ctdbase.org/) is a database that integrates data from scientific literature
to describe chemical interactions with genes and proteins, and diseases and
genes/proteins, and others (Davis, et al., 2013). These relationships are manually curate
by biocurators. According to CTD’s own statistical report, the database contains
869,902 curated chemical-gene interactions and 27,397 gene-disease associations with

direct evidences. We extract these two categories of relations.
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3.2.2. Concept Mapping

There are several problems in combining multiple databases. First, different
ontologies have different terminology and codification. DrugBank use UniProt as its
protein name thesaurus, while OMIM has his own naming; besides, not all database
providers offer mapping between themselves and external databases. Second, the
definition for a same biomedical concept may be various in different ontologies. For
example, Alzheimer disease is defined to 17 concepts in OMIM, but not in other

ontologies.

In order to unify concepts from different ontologies and to integrate their relations
with literature-based concept network, we decide to map all retrieved terms into MeSH
terms. NLM provides MeSH Supplementary Concept Records (SCRs), which are
designed to extend the search terms for NLM’s PubMed search engine. SCRs contain
mapping between some OMIM terms and MeSH terms. Also, UniProt database provides
mapping between UniProt protein entries and OMIM terms. Furthermore, CTD contains
a vast amount of chemical, disease, and gene synonyms and their mapping between
OMIM and MeSH terms. With the help of above-mentioned information, we can
translate terms from different codifications into MeSH terms; however, due to the

complication of translation, some relations lost within the translating process.

3.2.3. Link Extraction and Filtering

We consider the relations retrieved from ontologies as credible. Thus, we only limit
that relations must be between two MeSH terms within our specified MeSH

subcategories, as shown in Table 5 previously. As a result, we retrieved 7,808 relations
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for translated MeSH terms from DrugBank, 2,404 relations from OMIM, and 195,033

relations from CTD database.

3.3 Related Concept Retrieval

In the previous two phases, we have constructed our comprehensive biomedical
concept network. Given a focal drug, we can retrieve all related concepts from the
comprehensive network, including intermediate terms and target terms (in other words,
plausible related diseases). These concepts form a subgraph which becomes the input to
the following two phases. In response to our research objective, we consider two
different scenarios in the related concept retrieval phase: single intermediate level (i.e.,
considering only paths of length 2), and multiple intermediate levels (i.e., considering

paths of length longer than 2).

The single intermediate level scenario is to simply retrieve concepts related to the
given drug in the network as intermediate terms. Then, we extract the disease concepts
that related to these intermediate terms but not related to the given drug. These disease
concepts are defined as target terms. This scenario is similar to the original ABC model

which we have shown in Figure 3 in Section 2.1.

The multiple intermediate levels scenario is to consider paths of length longer than
2. For those longer paths, we add two constraints to our retrieval model. First, we limit
the intra-intermediate relations must be between two terms of the same semantic group
(as we defined in Table 3), such as protein-protein relationships. The purpose of this
constraint is to make intra-intermediate relations more meaningful since we are only

interested in drug repositioning candidates. The second constraint is that the number of
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neighbors of intra-intermediate terms should less than a threshold. This is meant to
avoid popular terms that may lead to noisy long paths. Table 4 shows the top 10 most
connected intermediate terms in our evaluation (described in Section 4.4). As it shows,
these terms are likely to be a general terms. Figure 5 and Figure 6 are illustrations of our

constraints of multiple intermediate levels scenario.

Categoy 1

Category 2

Figure 5. Illustration of Constraint to Category of Intra-intermediate Terms

B,— B, C,

Figure 6. Illustration of Threshold to Number of Neighbors

Table 4. Top 10 Most Connected Intermediate Terms in Our Evaluation

Carrier Proteins (4631) DNA Primers (4138)
Tissue Distribution (4526) Biological Transport (3993)
Membrane Proteins (4261) Recombinant Fusion Proteins (3877)
Drug Synergism (4181) Antibodies (3791)
Peptide Fragments (4156) Cell Survival (3789)
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3.4 Link Weighting

The purpose of link weighting phase is to weight each link in the retrieved
subgraph of related concepts, either the link is from literature or ontologies. Our
weighting should reflect the following facts: first, links from ontologies are validated as
related; second, weights of links from literature are correlated to its degree of
co-occurrence in literature. Therefore, we develop a similarity measure on the basis of
Normalized Google Distance (Cilibrasi & Vitanyi, 2007) as our link weighting

algorithm.

Normalized Google Distance (NGD) is an approximation to Normalized
Information Distance (NID). NID expresses the similarity between two terms on a scale
from 0 to 1, in which 0 being the same and 1 being completely different. Cilibrasi &
Vitanyi developed NGD as an implementation of NID by using pages indexed by
Google as text corpus. The NGD is computed as follows:

NGD(x. y) = Maxllog f(x), log f(1)} — log f(x y)
777 Tlog M —min{log £ (x), 1og /()]

where f(x) denotes the number of pages containing x, f(x,y) denotes the number of
pages containing both x and y, and M is total number of pages indexed by Google. The
range of NGD is in between 0 and infinity, where NGD > 1 is semantically identical

to NID =1.

Since the purpose of NGD is to measure the similarity of two terms from the given
corpus, we can adapt NGD to MEDLINE as our similarity measurement. Lu and Wilbur
(2009) also adapted NGD to MEDLINE and showed the feasibility to identify related

queries in PubMed search engine. Besides, Lindsey, Veksler, Grintsvayg, & Gray (2007)
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compared NGD and Pointwise Mutual Information, and reported NGD has better

performance under different corpora.

We thus define our similarity measure as follows:

max{log|D|,log|Dg|} —log|D4 N Dg|

NMD(A, B) = -
( ) log M — min{log|D 4| ,log|Dg|}

,NMD =1if NMD > 1

NMS(A,B)=1—- NMD(A, B)

Sim(A, B) = {NMS(A, B).,if (A, B) € Literature A & Ontology
1 ,if (A, B) € Ontology

where D, is the set of articles that include MeSH term A, and M denotes the total
number of articles in MEDLINE. This similarity measure range from 0 to 1, in which 0
being completely unrelated and 1 being credibly related. If link (A, B) is from
literature-based network and is not find in ontology-based network, we weight it by
calculating its Normalized MEDLINE Distance and subtracting from 1, called
Normalized MEDLINE Similarity (NMS); otherwise, if the link is from the
ontology-based network, we assign its weight as 1 since the relation is validated. We
called our weighting as Extended Normalized MEDLINE Similarity (Extended NMS).
Accordingly, we weight each link in the retrieved subgraph of related concepts by

Extended NMS.

3.5 Target Term Ranking

In this phase, we rank target terms extracted through our discovering model,
according to our retrieved subgraph of related concepts and weights of links, in order to
identify plausible novel drug-disease relationships. As described in Section 3.3, we

consider two scenarios, single intermediate level and multiple intermediate levels, and
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apply different constraints over them. Accordingly, we employ different sets of target
term ranking algorithms. For single intermediate level scenario, we propose two
algorithms, Summation of Minimum Weight and Summation of Average Weight. For
multiple intermediate levels scenario, we apply Katz measure to discriminate between

longer and shorter paths.
3.5.1 Single Intermediate Level Scenario

Yetisgen-Yildiz & Pratt (2009) suggested using Link Term Count with Average
Minimum Weight (LTC-AMW) to have the best performance. In short, LTC-AMW takes
the number of intermediate terms between starting term and target term as the major
measurement, which is, the number of paths. The average minimum weight of paths
only used when two target terms are same in their number of paths. The assumption of
LTC-AMW is that all paths are equally important, which may not be precise if we have
proper measurement for weights of paths. Since we have developed Extended NMS to
measure the degree of relative for each link in Section 3.4, we wish to consider both
number of paths and weights of paths in a same measure. Therefore, we propose two
target term ranking algorithms as follows:

Summation of Minimum Weight (Sum_MW): the information in each path is measured

by the least information of internal edges in path.

Score(A,C) = Z min{Wi(A, B), Wi(B, C)}
BeN(A)NN(C)

Summation of Average Weight (Sum_AW): the information in each path is measured by
the average information of internal edges in path.

Wi(A, B) + Wi(B, C)

Score(A,C) = >

BEN(A)NN(C)
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where N(A) denotes the neighbor concepts of term A, and W#(A, B) is the weight of
link between A and B. The above algorithms differentiate the importance of each path
according to their minimum or average weight of internal edges, and assign ranking
score to each target term according to the cumulative information of all paths between
the starting term and the target term. We then order target terms according to their

Scores.
3.5.2 Multiple Intermediate Levels Scenario

As we consider paths of length longer than 2, previous studies suggest the longer
the transitivity inference is, the less likely the source concept is related to the target
concept (Liben-Nowell & Kleinberg, 2007). Katz (1953) defines a measure that sums
over the paths between two nodes, exponentially weighted by length and thus gives
more weights to shorter paths. We apply its Katz measurement as our target term
ranking algorithm for multiple intermediate levels scenario. Accordingly, the Katz

measurement is defined as:

L
Score(A,C) = Z B - ‘pathsi?c
=2

(?)

where pathsA’C

is the set of all length-¢£ paths between A and C, and >0 is a

parameter of the predictor.
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Chapter 4 Evaluation and Results

In this chapter, we describe the design of our evaluation, and then discuss our
evaluation results. We design three experiments. The first experiment is to evaluate our
proposed comprehensive network and link weighting algorithm. The second experiment
Is to evaluate our proposed target term ranking algorithms for single intermediate level

scenario. Finally, we evaluate the performance of multiple intermediate levels scenario.

4.1 Evaluation Design

We follow the evaluation procedure proposed by Yetisgen-Yildiz & Pratt (2009).

Specifically, we describe our experiment procedure step by step as follows:
Given a starting term (i.e., drug) A:

1. We set cut-off date as January 1, 2000 and divide MEDLINE 2011 baseline

into:
a.  Pre-cut-off set (.S;;) which includes documents prior to 1/1/2000.
b.  Post-cut-off set (S,,) which includes documents after 1/1/2000.

2. We use documents in the pre-cut-off set along with ontologies as the input to

construct our comprehensive concept network.

3. We create a gold-standard set G,, which contains terms that satisfied
following rules:

a.  Terms are within our specified target semantic group, i.e., disease.
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b. Terms that co-occur with A in the post-cut-off set, but do not co-occur
with A in the pre-cut-off set. In other words, these terms co-occur with A
in literature only after the cut-off date.

c. Terms are not related with A in our ontologies-based network.

4. We calculate the overall performance using the information retrieval metrics:

o NG
Precision: P, = TanGal
T4l
NG
Recall: R, = [TanGyl
1Gal

where T, is the set of target terms generated by our discovery method.

Table 5 includes the list of semantic groups that we used in our experiments. For
performance benchmark, we randomly select 100 terms from the semantic group of

drugs as starting terms, i.e., focal drugs.

Table 5. Semantic Groups Selected for Our Experiments

Intermediate Term Selection Target Term Selection

Drugs Diseases
Genes, Proteins, and Enzymes

Pathological Effects

Diseases

4.2 Experiment 1:

Comprehensive Network and Link Weighting Algorithm

In this experiment, we compare: (1) the performance of our proposed link
weighting algorithm, Extended NMS, with the algorithm suggested by previous
researches, and (2) the result extract through our proposed comprehensive biomedical

concept network with information sources used in previous studies.
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We employ single intermediate level scenario in this experiment. The performance
benchmark is the original ABC model over only literature which uses association rules
as link weighting algorithm. We evaluate three sets of result for our discovering model,
one is over only literature-based network, another one is over only ontology-based
network, and the third one is over the comprehensive network. Both our model and
benchmark model apply LTC-AMW as target term ranking algorithm. Table 6 shows the

evaluation results.

Table 6. Evaluation Results of Our Link Weighting and Comprehensive Network

Recall Association Rules NMS Extended NMS Extended NMS
(Literature) (Literature) (Ontology) (Integrated)

0% 62.61% 57.72% 39.01% 59.33%
10% 29.72% 29.93% 20.16% 30.54%
20% 22.07% 23.75% 15.96% 23.89%
30% 17.80% 18.95% 14.22% 19.01%
40% 15.13% 16.27% 12.58% 16.26%
50% 11.73% 13.80% 12.25% 13.62%
60% 9.52% 11.69% 13.77% 11.53%
70% 7.61% 9.66% 0% 9.61%

80% 7.17% 7.76% 0% 7.69%

90% 2.31% 6.01% 0% 5.97%
100% 0.60% 3.80% 0% 3.84%
AUC-PR 15.47% 16.86% 10.84% 16.97%

As shown above, our proposed Extended NMS outperforms the benchmark link
weighting algorithms, association rules, in both literature and integrated information
sources. Also, using both literature and ontologies as information sources would
improve overall performance, especially precisions on higher ranks. This would better
help researchers sift plausible drug-disease relations for the purpose of drug
repositioning.
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4.3 Experiment 2: Target Term Ranking Algorithms for Single

Intermediate Level Scenario

In this experiment, we evaluate our proposed target term ranking algorithms for
single intermediate level scenario, Summation of Minimum Weight (Sum_MW) and

Summation of Average Weight (Sum_AW).

The benchmark algorithm we use is LTC-AMW. We apply Extended NMS as our
link weighting algorithm in this experiment since we have shown that our Extended
NMS outperforms association rules. To detail the performances under different
information sources, we employ two sets of evaluation, one being using only literature,

and another using comprehensive network, which is, both literature and ontologies.

Table 7. Comparison of Target Term Ranking Algorithms (Literature-only)

Recall LTC-AMW Sum_MW Sum_AW
0% 57.72% 55.85% 58.70%
10% 29.93% 31.70% 32.32%
20% 23.75% 23.97% 24.45%
30% 18.95% 20.30% 20.80%
40% 16.27% 17.29% 17.28%
50% 13.80% 14.66% 14.84%
60% 11.69% 12.58% 12.79%
70% 9.66% 10.43% 10.41%
80% 7.76% 8.36% 8.40%
90% 6.01% 6.30% 6.33%
100% 3.80% 3.80% 3.80%
AUC-PR 16.86% 17.54% 17.89%
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Table 8. Comparison of Target Term Ranking (Multiple Sources)

Recall LTC-AMW Sum_MW Sum_AwW
0% 59.33% 59.14% 61.70%
10% 30.54% 33.46% 33.16%
20% 23.89% 24.86% 24.52%
30% 19.01% 20.91% 20.69%
40% 16.26% 17.32% 17.01%
50% 13.62% 14.74% 14.56%
60% 11.53% 12.42% 12.17%
70% 9.61% 10.50% 10.29%
80% 7.69% 8.41% 8.22%
90% 5.97% 6.35% 6.22%
100% 3.84% 3.84% 3.84%
AUC-PR 16.97% 18.05% 17.96%

Table 7 shows the result of using only literature as the information source, and
Table 8 shows the result of using our comprehensive network as the information source.
Both Sum_MW and Sum_AW outperform the benchmark algorithm, LTC-AMW. These
results show that our link weighting algorithm, Extended NMS, is a more effective
measure to weight paths, and considering both number and weights for paths between

starting term and target terms can improve the effectiveness of discovery.

We further compare Sum_MW with Sum_AW. Sum_AW performs better in using
only literature-based network as the information source, while Sum_MW performs
slightly better when using the comprehensive network. We think this may lead by some

parsing error in our concept mapping process (as we described in Section 3.2.2).

Overall, as we show in experiment 1 and experiment 2, using our proposed
comprehensive concept network as information source can improve the effectiveness of

predicting plausible drug-disease relations. Furthermore, our proposed link weighting
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and target term ranking algorithms all outperform existing algorithms.

4.4 Experiment 3: Multiple Intermediate Levels Scenario

In this experiment, we evaluate our discovering model under multiple intermediate
levels scenario. We consider two settings of path length, 2 < ¢ <3 and 2 < ¢ < 4, and
compare both of them with the benchmark setting, ¢ = 2. As suggested in the previous
experiments, we use our comprehensive network as information source, and Extended
NMS as link weighting algorithm. Our target term ranking algorithm is Katz
measurement. There are two parameters require tuning: the threshold number of

neighbors of intra-intermediate terms (max_neighbor), and S of Katz measure.
4.4.1 Parameter Tuning

We set £ = 0.05 as default for tuning max_neighbor, a value suggested in previous
study (Liben-Nowell & Kleinberg, 2007). After that, we examine if our default g is
optimal. We apply different sets of parameters to 2 < ¢ <3 and 2 < £ <4, and show their

tuning processes as follows.
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Table 9. Tuning of max_neighbor (2 <£<3)

Recall N(B)< 1250 N(B)<1000 N(B)<750 N(B)<500 N(B)< 250
0% 60.82% 60.95% 63.39% 62.17% 59.38%
10% 29.88% 31.16% 31.81% 32.71% 30.84%
20% 22.29% 23.27% 24.34% 24.79% 24.00%
30% 18.26% 19.35% 19.99% 19.89% 19.14%
40% 15.27% 16.12% 16.83% 17.03% 16.40%
50% 12.70% 13.40% 13.96% 14.11% 13.65%
60% 10.88% 11.27% 11.84% 11.95% 11.58%
70% 9.07% 9.49% 9.86% 9.94% 9.63%
80% 7.29% 7.53% 7.76% 7.89% 7.70%
90% 5.71% 5.80% 5.96% 6.02% 5.96%
100% 3.58% 3.58% 3.59% 3.66% 3.78%

AUC-PR 16.36% 16.97% 17.58% 17.72% 17.05%

Table 10. Tuning of g for Katz measurement (2 < £ < 3)

Recall p =0.05 p =0.01 p =0.005
0% 62.17% 60.27% 59.47%
10% 32.71% 31.00% 30.66%
20% 24.79% 24.17% 24.01%
30% 19.89% 19.24% 19.12%
40% 17.03% 16.52% 16.37%
50% 14.11% 13.71% 13.63%
60% 11.95% 11.63% 11.57%
70% 9.94% 9.68% 9.62%
80% 7.89% 7.73% 7.70%
90% 6.02% 5.95% 5.95%
100% 3.66% 3.66% 3.66%
AUC-PR 17.72% 17.16% 17.02%

As Table 9 shows, when max_neighbor is set to 500, the performance is the best
among others when considering paths of length no longer 3. We further examine the S

of Katz measure as Table 10 shows, and find that 0.05 is the optimal value for f.
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Table 11. Tuning of max_neighbor (2 <¢<4)

Recall N(B) < 750 N(B) < 500 N(B) < 250
0% 60.32% 60.20% 59.22%
10% 28.90% 30.62% 30.73%
20% 21.70% 23.12% 23.94%
30% 17.55% 18.90% 19.20%
40% 14.84% 15.84% 15.96%
50% 12.40% 13.03% 13.32%
60% 10.51% 11.03% 11.43%
70% 8.65% 9.13% 9.47%
80% 7.02% 7.35% 7.62%
90% 5.46% 5.66% 5.85%
100% 3.58% 3.58% 3.62%
AUC-PR 15.90% 16.66% 16.90%

Table 12. Tuning of g for Katz measurement (2 < £ <4)

Recall p =0.05 p =0.01 p =0.005
0% 59.22% 59.25% 58.84%
10% 30.73% 30.31% 30.42%
20% 23.94% 23.86% 23.84%
30% 19.20% 19.09% 19.00%
40% 15.96% 16.13% 16.17%
50% 13.32% 13.47% 13.53%
60% 11.43% 11.52% 11.51%
70% 9.47% 9.51% 9.53%
80% 7.62% 7.64% 7.66%
90% 5.85% 5.92% 5.93%
100% 3.62% 3.62% 3.62%
AUC-PR 16.90% 16.89% 16.88%

For considering paths of length no longer than 4, the performance top at N(B) <
250. We also examine the p of Katz measure, and 0.05 remains optimal for 5. Table 11

and Table 12 show our tuning processes and results.
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Accordingly, we set max_neighbor as 500 and g as 0.05 when considering paths of
length no longer than 3, and set max_neighbor as 250 and $ as 0.05 when considering

paths of length no longer than 4.

4.4.2 Experiment Result

Table 13. Comparison of Single and Multiple Intermediate Levels

Recall =2 2<?7 <3 2<¥ <4
0% 59.33% 62.17% 59.22%
10% 30.54% 32.71% 30.73%
20% 23.89% 24.79% 23.94%
30% 19.01% 19.89% 19.20%
40% 16.26% 17.03% 15.96%
50% 13.62% 14.11% 13.32%
60% 11.53% 11.95% 11.43%
70% 9.61% 9.94% 9.47%
80% 7.69% 7.89% 7.62%
90% 5.97% 6.02% 5.85%
100% 3.84% 3.66% 3.62%
AUC-PR 16.97% 17.72% 16.90%

Table 13 shows our evaluation result to multiple intermediate levels scenario. As
shown, considering paths of length no longer than 3 does improve the performance,
while further considering paths of length 4 do not improve. This result is consistent to
that of previous studies which suggest that intra-intermediate relations, such as
gene-gene and protein-protein interactions, are important in drug repositioning
discovery; meanwhile, the transitive inference decays more than our assumption. As a
result, we conclude that appropriately considering paths of length longer than 2 can

make better inferences in drug repositioning discovery.
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We further compare the performances between using our comprehensive network
as information source and using only literature-based network in order to justify our
assumption of this experiment. We set $ as 0.05 and consider paths of length no longer
than 3, as suggested above. In previous sections, we conclude that using both literature

and ontologies as information sources outperforms using only literature.

The comparison is shown in Table 14, and the result under multiple intermediate
levels scenario in consistent to our previous conclusion, that is to say, using our
comprehensive network as information source under both single and multiple
intermediate levels scenarios can improve the effectiveness of predicting plausible

drug-disease relations.

Table 14. Comparison of Using Different Information Sources (2 <£<3)

Recall Integrated Literature Literature Literature
(N(B) < 500) (N(B) < 250) (N(B) < 500) (N(B) < 750)

0% 62.17% 58.64% 60.07% 61.31%
10% 32.71% 31.75% 32.24% 31.55%
20% 24.79% 24.44% 24.59% 23.87%
30% 19.89% 19.63% 19.97% 20.07%
40% 17.03% 16.74% 17.03% 16.71%
50% 14.11% 14.11% 14.27% 13.96%
60% 11.95% 11.94% 12.02% 11.79%
70% 9.94% 9.86% 9.97% 9.85%
80% 7.89% 7.88% 7.94% 7.78%
90% 6.02% 6.03% 6.03% 5.92%
100% 3.66% 3.63% 3.60% 3.56%
AUC-PR 17.72% 17.35% 17.59% 17.39%
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Chapter 5 Conclusion and Future Work

Drug repositioning can reduce significant time and spending in comparison with de
novo drug development and can also create opportunities for pharmaceutical companies
to make full use of their intellectual property portfolio. Researchers have developed
several automated methods to help discover these hidden drug-disease relationships.
However, previous studies mostly rely on single information source, either literature or
ontologies. Also, previous proposed methods that rely on literature do not consider

multiple intermediate levels.

In this study, we develop a drug repositioning discovery method that uses both
biomedical literature and ontologies as information sources by constructing a
comprehensive network of biomedical concepts. Based on Swanson’s ABC model, we
extend it to consider multiple intermediate levels, and propose several algorithms for
better assessing relations in our network. We experimentally evaluate our proposed
method, and show that taking both literature and ontologies into account can improve
the effectiveness of predicting novel drug-disease relationships. Also, we develop a
similarity measurement, Extended NMS, that can assign unified weight to links from
literature and ontologies, and it outperforms existing link weighting techniques. Besides,
our proposed target term ranking algorithms can better infer plausible drug-disease
relations over our weighting and integrated information source. Furthermore, we show
that considering paths of length no longer than 3 can make better predictions in
comparison with considering only single intermediate level. Overall, our technique can
help researchers sift most plausible unknown drug-disease relationships, i.e., potential

drug repositioning candidates.
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There are some limitations and future research directions relevant to this study.
First, the quality of relations from ontologies can be further improved. In this study, we
only introduce three biomedical ontologies: DrugBank, OMIM, and CTD. There are
plenty of other ontologies and knowledge bases can be adopted, such as Gene Ontology,
PharmGKB, OPHID, etc. Incorporating more ontologies can widen the coverage and
cross-validate these relations. Besides, some relations lost while translating concepts
from ontologies into MeSH terms. Some mapping may also be incorrect. Researchers
may develop a better methodology for concept mapping in future. Second, our method,
as same as most previous drug repositioning approach, do not leverage known plausible
or implausible links. It is possible to apply supervised learning for drug repositioning
purposes. There may be several structural characteristics that differentiate between
known plausible indirect links and known implausible ones. This may improve the
effectiveness for predicting possible drug repositioning candidates. Third, our method
can be applied for other purposes, such as discovering unknown drug-drug interactions

or adverse drug reactions.
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