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摘要 
原子力顯微鏡是一種非常有用的精密量測儀器，此儀器具有奈米等級的解析

能力並適用於導體與非導體樣本且不受使用環境所限制，為目前不可或缺的微奈

米量測工具。然而，傳統原子力顯微鏡所使用的掃描方式，在軌跡上容易造成掃

描器的機械共振問題，且無法去除不必要的掃描區域，因此，對於一個大範圍與

高解析度的影像要求，必須要以一個更長的掃描時間來達成，無法給予一個有效

率的掃描表現，為目前原子力顯微鏡應用上的主要缺陷。在本論文中， 將以自行

開發之原子力顯微鏡系統從三個不同的層面來克服上述問題。 

首先，我們採用順滑式利薩茹軌跡並搭配適合此軌跡的先進控制法則，可在

不引起水平掃描器震動的情況下提高掃描速率與精度。其次，針對此順滑軌跡的

路徑特徵，撰寫掃描路徑演算法則，並利用探針橫過樣本後迴授的高度資訊去除

不必要的掃描區域，藉此減少掃描所需時間。 最後，考慮樣本表面形貌的變化情

形，在表面劇烈變化的地方提供一個更高解析度的掃描，藉此改善掃描影像的品

質，從實際的掃描應用可以證實上述方法之效果。 

 

 

關鍵字: 原子力顯微鏡; 利薩茹掃描軌跡; 內部模型原理; 互補式順滑模式控制; 

類神經網路; 適應性控制 
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Abstract 

Atomic force microscopy (AFM) is a very useful measurement instrument. It can 

scan the conductive and nonconductive samples and without any restriction in the 

environments of application. Therefore, it has become an indispensable micro/nano 

scale measurement tool. However, because the raster scan method of the conventional 

AFM could easily induce the mechanical resonance of the scanner and cannot remove 

the scan area which is not our interest. Under a requirement for a large range and high 

resolution sample image which however needs excessive scan time, how to overcome 

such hurdles becomes the main challenge for AFM applications. In this thesis, we try to 

approach and resolve these problems with self-designed AFM system from three 

aspects. 

First, we use a smooth Lissajous scan trajectory, and apply an advanced controller 

to realize this kind of trajectory. Since vibration of the lateral scanner will not be 

induced easily, the scan rate and scan accuracy can thus be increased accordingly. Next, 

based on the path characteristics of the smooth Lisajous trajectory, we propose a 

suitable scan algorithm, which initially employs the information on the sample height 

which the probe is traversing the scan area, and them select the sub-areas of our interest 

for next phase scan. Overall, such two phase scan reduce the scan time. Finally, 
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considering the varying of sample topography, we provide higher resolution scan on the 

severe area to improve the scan performance so that a better scan image can be obtained. 

To validate the effectiveness of the proposed scan methodology, we have conducted 

extensive experiments and promising results have been acquired. 

 

Keywords: Atomic force microscopy; Lissajous scan trajectory; internal model 

principle; complementary sliding mode control; neural network; adaptive control. 
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Chapter 1 

Introduction 

1.1 Motivation 

Bining et al. [1] invented atomic force microscopy (AFM) in 1986 for 

investigating conductive and non-conductive samples. It utilizes a probe with a sharp tip 

to scan the sample surface, and the operational principle of AFM is to keep the 

interaction signal between the sharp tip and the sample surface at a constant value. 

Compared with common optical microscopy [2], it does not provide an assisting light 

source and can precisely reconstruct three-dimensional sample’s topography 

information with atomic-level resolution. Therefore, AFM has become an indispensable 

measurement instrument in many science field’s applications [3], [4]. 

Conventionally, the measured image of the sample is generated by moving the 

horizontal position of the sample or the probe along a pre-defined raster trajectory, 

which is achieved with the lateral scanner to track a triangular waveform and staircase 

waveform. By measuring the interaction between probe tip and the sample surface, a 

pixel-by-pixel method can produce the AFM image. Since a triangular waveform signal 
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includes odd harmonics of the fundamental frequency [5], if we wish to track this 

trajectory ideally, an infinite bandwidth of lateral scanner will be required. However, it 

is impossible to achieve this requirement for all kinds of finite bandwidth scanners, 

because they are unable to avoid exciting the mechanical resonance. Generally, the scan 

speed of an acceptable AFM image under the raster scan is limited to about 1% of the 

scanner’s resonance frequency [6]. Therefore, to select a good scan trajectory without 

inducing the mechanical vibration of the scanner will contribute to enhancement of the 

scan speed without sacrificing the image’s quality. In addition, notice that the 

conventional scanning method requires the probe to scan the overall scan area over the 

sample with a constant velocity. However, for quite a few real AFM application their 

scan areas typically include some sub-areas which are not our interest and the varying of 

measured sample surface may not be identical. If those applications take the same scan 

speed and thus the identical scan pitch, either some unnecessary long time will be spent 

or a bad AFM image will be produced if the total scan time is upper bounded. In 

another word, conventional AFMs inevitably need to spend longer time in order to 

obtain a better AFM image, and this result will restrict the AFM applications in many 

scientific fields. 

The aim of this thesis is to address the aforementioned issues from three aspects. 
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First, a smooth Lissajous scan trajectory is employed for AFM scan, which permits 

about a half-order increase in scan rate. Second, for the purpose of dealing with system 

parameters uncertainties, external disturbance, and hysteresis effect, two advanced 

controllers are designed so that the scan tip can track the Lissajous scan trajectory 

precisely. Finally, in order to remove the uninterested area and to achieve a higher 

resolution image for AFM, a new algorithm based on the characteristic of Lissajous 

trajectory is proposed. Specifically, by designing the Lissajous scan path and 

considering the sample’s height information, we propose a hierarchical local scan 

method, which allows us to obtain higher image resolution without increasing the total 

scan time. 

 

1.2 Literature Survey 

Since the small scan range and long scan time of the AFM are the major limitations 

in many applications, there have been many researches dedicated to improving them. In 

this section, we will survey the state-of-the-art researches in three topics. 

1.2.1 Large range AFM 

In recent years, the AFM system with large scanning range has been investigated by 



- 4 - 
 

many researchers. In 2007, Sinno et al. [7] developed a homemade sample-holder unit, as 

shown in Fig. 1-1, which includes a coarse linear motor stage and a fine piezoelectric 

stage for nano-positioning in two dimensions with 1 mm × 1 mm traveling range. In 2009, 

Brian [8] designed a long-range metrological atomic force microscope as shown in Fig. 

1-2, which also integrates a motor for large range travelling and a precision piezoelectric 

actuation for coarse-to-fine motion resulting in a 40 mm × 40 mm measurement volume. 

However, this AFM system has not been explicitly experimented to ours knowledge. In 

2010, Werner et al. [9] developed a new metrological AFM instrument as shown in Fig. 

1-3, which consists of a translation stage by using elastic straight guides and Lorentz 

actuators with a stroke of 1 mm × 1 mm, and a custom-designed AFM measurement head. 

However, only a small scale experiment was carried out to verify the capability of the 

proposed AFM systems. Furthermore, Dai et al. [10] developed a dual stage positioning 

system by integrating the coarse electrodynamics motor and the fine piezoelectric stage, 

which is used as a large area scanning of the AFM with 25mm 25 mm5 mm 

traveling-range in 2009 as shown in Fig. 1-4. In 2012, Guo et al. [11] also used the same 

stage by applying the dual feedback strategy to control the two kinds of the driven 

actuators, in order to obtain better AFM scanning results in a large measuring range. 
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Fig. 1-1 Photograph of the AFM tip placed over the sample-holder unit  

  

Fig. 1-2 Photograph of homemade enlarged sample holder for optical AFM imaging  

 

Fig. 1-3 The concept of a novel metrological AFM 
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Fig. 1-4 The photo of a metrological large-range AFM system 

 

1.2.2 High speed AFM 

A variety of solutions have been proposed to increase the scan speed of AFM 

system. The first method is to employ feedback to improve the damping ratio of the 

AFM scanner. In 2008, Bhikkaji et al. [12] used an integral resonant control by damping 

the resonance of a piezoelectric tube to achieve fast tracking performance as shown in Fig. 

1-5. In 2010, Yong et al. [13] designed a positive position feedback (PPF) controller by 

damping the scanner’s resonance to obtain closed-loop images of a standard grating at 31 

Hz scan rates as shown in Fig. 1-6. However, the scan speed of this method is limited 

based on the mechanical bandwidth of the scanner. In 2008, Fukuma et al. [14] developed 
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a piezo-support mechanism to offer the high resonance frequency of 540 kHz in the z-axis 

which is shown in Fig. 1-7. In 2011, Kenton et al. [15] developed a high-bandwidth 

three-axis serial-kinematic nano-positioning stage for application in a commercial AFM 

system, which can provide the scan speed up to a line rate of 7 kHz as shown in Fig. 1-8. 

Another method for increasing the scan speed of AFM system employs non-raster 

scanning, by tracking smooth trajectories on x and y axes of the positioning stage. In 2010, 

Yong et al. [16] designed a smooth cycloid-like scan trajectory to allow higher scan 

speed instead of applying the raster scan method, as shown in Fig. 1-9. In 2010, Hung 

[17] realized the spiral trajectory scan with constant linear velocity’s method, as shown 

in Fig. 1-10. In 2012, Tuma et al. [18] presented a smooth Lissajous scan trajectory for 

increasing the scan speed in AFM system. The main advanteges of Lissajous trajectory 

are not only improving the scan speed of the image but also providing the preview result 

of the scanned area, as shown in Fig. 1-11. 

  

Fig. 1-5 The Closed-loop system with the integral controller to implement in a 

piezoelectric tube 
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Fig. 1-6 Experimental configuration of the AFM system for generating scan images by 

using PPF controller 

 

Fig. 1-7 The developed scanner by piezo-support mechanism (a) Schematic model and 

(b) the photograph 
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Fig. 1-8 Three-axis serial-kinematic nano-positioning stage 

 

Fig. 1-9 The cycloid-like scan trajectory 

       

Fig. 1-10 The constant linear velocity spiral scan trajectory 
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(a)                                   (b) 

Fig. 1-11 (a) The Lissajous scan trajectory (b) Time-lapse sequences of the raster and 

Lissajous imaging processes 

1.2.3 Local scan AFM 

In many AFM applications, such as inspection of biological cells or measurement 

of nano material, if we can limit the scan region only to the interested area of samples, 

then such result will definitely shorten the overall scan time. As a result, the local scan 

AFM has become a new research topic in recent years. In 2010, Song et al. proposed an 

adaptive local scan strategy to provide online sensing for AFM based 

nano-manipulations [19]. The strategy of local scan based online sensing for cell cutting, 

as shown in Fig. 1-12. It is to scan the region of manipulation and provides visual 

feedback for identifying the actual surface topography during the process of 

manipulation. In 2011, Chang et al. presented a local raster scan algorithm for providing 
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high speed AFM imaging of biopolymers as shown in Fig. 1-13 [20]. This algorithm 

utilizes the measurement data of the AFM to operate the scanning tip to localize the 

scan area over the sample of interest in real time. The total scan time can be shortened 

by reducing the scan area of the sample. However, this local scan method can be used 

just for simple string-like sample. If the sample is too complex, this method tends to fail. 

In 2012, Li et al. developed an algorithm incorporating a strategic local scan method to 

identify and eliminate the drift-induced distortion in the AFM image for nanoparticles 

[21]. In that research, the local scan method is used to find the center position of the 

nanoparticle with local scanning a pair of perpendicular lines across the sample as 

shown in Fig. 1-14. But this algorithm is applicable only for particle-like samples. In 

2012, Xie et al. proposed a high-efficiency parallel imaging/manipulation force 

microscopy [22], which is a two-tip configuration AFM as shown in Fig. 1-15. In that 

scheme, one tip is responsible for image scanning, and another one is performing the 

manipulation. In order to find the sample position and decide the manipulation direction 

quickly, the local scan method is executed by the manipulation tip at first, and then 

performing the predetermined manipulation. 
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Fig. 1-12 (a) The strategy of local scan based online sensing for cell cutting (b) AFM 

image before cell cutting (c) AFM image after cell cutting 

 

Fig. 1-13 (a) Local raster scan and (b) raster scan images of a sinusoidal test curve 

 

        

Fig. 1-14 (a) Local scan of nanoparticles (b) The local-scan-after-operation results of a 

nanoparticle 

 

(a) (b) 

(a) (b) 

(a) (b) 

(c) 



- 13 - 
 

     

Fig. 1-15 (a) Parallel imaging/nanomanipulation scheme (b) Lateral push results with 

parallel manipulation 

1.3 Contribution 

Nowadays, AFM has been widely utilized in the precision biological measurement 

since it can scan the sample in native environment without damaging it. However, the 

main drawbacks of AFM measurement are small scan range and slow scan speed.  

In this thesis, we develop an instrument that can scan a sample from large to small 

scales without trading off the precision. To achieve that, a homemade precision hybrid 

scanner including electromagnetic and piezoelectric scanners is designed. 

Electromagnetic scanners can provide large travelling-range and piezoelectric scanners 

with high-bandwidth feature. Besides, in order to increase the allowable scan rate in 

AFM, we apply a smooth Lissajous trajectory as the desired scan pattern. By exploiting 

(b) (a) 
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the well-known dynamics of the Lissajous trajectory, two advanced controllers, namely, 

neural network complementary sliding mode and adaptive complementary sliding mode 

controllers, are designed based on internal model principle to track the scan trajectory 

precisely at high scan speed, which are both theoretically proved and practically 

implemented. Compared with the most commonly used raster scan method, in which the 

scan trajectory is non-smooth, the Lissajous scan with the designed controllers allows a 

half-order increase in AFM scan speed under the same hardware conditions. 

Furthermore, in order to increase the scan rate of AFM, we design a new scan algorithm 

based on the characteristics of Lissajous trajectory to realize a new hierarchical local 

scan method by reducing the redundant scanning of uninterested area and considering 

the height variations of the scanned samples. This method can save the scan time, 

provide a high resolution image, and is applicable to scanning of biological cells of any 

shape in biological applications. 

Despite the proposed AFM’s scan method is realized in our home-made AFM 

system, it can be applied to many existing AFM systems without hardware modification 

as a matter of fact. 

In a summary, the main contributions of this thesis are listed as follows: 

1. By combining the piezoelectric scanner with an electromagnetic scanner, the 
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large scan range AFM with high precision can be realized. 

2. By using the Lissajous scan trajectory based on the proposed controllers for 

AFM, a half-order scan speed improvement is achieved compared with the 

conventional raster scan based on PI controller. 

3. A new hierarchical local scan methodology with the aid of Lissajous trajectory 

is developed to shorten the overall scan time and enhanced the scan resolution 

for samples of any shape. 

4. The proposed scan method for improvement of the AFM scan speed can be 

implemented in most existing AFM systems without much hardware 

modification. 

5. We successfully perform the scan on human blood cells using the proposed 

Lissajous hierarchical local scan method with our self-designed AFM system. 

The imaging quality is satisfactory and the scanning results match the data 

listed in existing biological literature. 

 

1.4 Thesis Organization 

In this thesis, we focus on the development of a new AFM scan method and the 

design of the AFM system with corresponding controllers. This thesis is organized as 
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follows. Chapter 1 introduces the motivations for this research and surveys the 

state-of-the-art studies in AFM scan improvement. In Chapter 2, we initially review 

several fundamental theories of piezoelectric and electromagnetic actuations, the 

CD/DVD Pickup head, and scanning principles of AFM system. Chapter 3 describes the 

overall system configuration, including the AFM measuring system and scanning 

system, the laser interferometer sensing system and the hardware equipment. Besides, 

modeling and formulation of the scanner dynamics are derived for the purpose of 

controller design. Chapter 4 presents the Lissajous hierarchical Local scan trajectory 

method which is discussed in detail. Chapter 5 proposes the control strategy and two 

advanced controllers for the hybrid scanner to deal with the external disturbances, 

model uncertainties, and unknown nonlinear hysteresis behavior. In Chapter 6, 

extensive experimental results and AFM scanning applications are provided to verify 

the performance of the proposed scan method. Finally, the conclusions of this thesis are 

made in Chapter 7. 
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Chapter2  

Preliminary 

In this chapter, first we will briefly introduce the preliminary knowledge for the 

electromagnetic and piezoelectric actuations employed in our AFM scanning system. 

Then we will present the basic principle of CD/DVD pickup head which is used in our 

AFM measuring system. Next, we will provide the operation principle of the entire 

AFM system, and preliminary knowledge of the internal model principle (IMP) will 

also be given since the controllers of the AFM scanner are designed based on that. 

2.1 Fundamentals of Electromagnetic Actuation 

Since the scan range of traditional AFM can hardly exceed 100μm, which limits 

the applications of the AFM. In this research, we combine an electromagnetic actuated 

scanner and a commercial piezoelectric scanner as a hybrid scanner to improve the 

AFM scan range, which is developed in our research group [23]. Hence, we will briefly 

investigate several properties of permanent magnets and the Lorentz force principle in 

the seat of this section. 
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2.1.1 Lorentz force principle 

The Lorentz force equation is the basis for governing all magnetic forces. Magnetic 

fields are a description of the relativistic effects that occur among moving charges, which 

are a direct result of the Lorentz transformation of the Coulomb force. 

The force 𝑑𝐹 on a current element 𝐼 ∙ 𝑑𝑙 immersed in a magnetic field 𝐵 is given 

as: 

 
𝑑𝐹 = 𝐼 ∙ 𝑑𝑙 × 𝐵      (2.1) 

Note that 𝐼 ∙ 𝑑𝑙 cannot exist by itself as it must be part of a complete loop or circuit. In 

such a loop, the total summed force is 

 𝐹 = ∮ 𝐼 ∙ 𝑑𝑙 × 𝐵 (2.2) 

As shown in Fig. 2-1, in order to simplify Eq. (2.2), a segment with length L of a 

long straight wire exposed to a uniform magnetic field 𝐵 that is perpendicular to the wire, 

where the return path is outside the field, will be subject to the following relation,  

 𝐹 = 𝐼𝐿 × 𝐵  (2.3) 

where I is the current carried on the conduction wires, L is the length of the conduction 

wires through the magnetic field, and 𝐵 is the external magnetic flux density. If there are 

N-turn wires through the magnetic field, then  
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 𝐹 = 𝑁𝐼𝐿 × 𝐵 (2.4) 

 It is important to note that the force on the conductor is given only by Eq. (2.4) if the 

field due to the current 𝐼 can be neglected. 

 

 

Fig. 2-1 Lorentz force principle 

 

The electromagnetic actuators designed based on Lorentz force principle are often 

applied when high bandwidth dynamics are to be achieved. Examples are voice coil 

actuators, loudspeakers, synchronous brushless DC motors, and so on. 

 

2.1.2 Properties of permanent magnet 

Since electromagnetic actuators are utilized in the research work, it is crucial to 

understand the magnet characteristics. In this section, we will briefly review some basic 

properties of permanent magnets, and then present detailed specifications of the used 

magnets, such as maximum energy product, coercive force, temperature coefficient, etc. 
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According to Gauss law, the magnetic flux continuity law can be described as: 

 ∇𝜇0�⃑⃑�
 =-∇𝜇0�⃑⃑�

  (2.5) 

When a magnetic field �⃑⃑�  is applied to a ferromagnetic substance, the material will be 

magnetized with the internal flux density �⃑�  given by 

 �⃑⃑� = 𝑁�⃑⃑�  (2.6)  

 
�⃑� = 𝜇0

(�⃑⃑� +�⃑⃑� )
 (2.7) 

where �⃑⃑�  is the induced magnetization density, defined as the magnetic dipole moment 

per unit volume, and 𝑁 is the number of dipoles per unit volume. By (2.6) and (2.7), we 

can obtain the B-H curve by varying the field �⃑⃑�  and measuring the flux density �⃑� . Fig. 

2-2 is a typical B-H curve of a ferromagnetic material, the curve OP is the initial 

magnetizing curve, and point P is the saturation point that means the material reaches its 

maximum magnetization. Once we vary �⃑⃑�  from positive value to negative value and 

then back to the positive value again, the B-H curve forms a loop called hysteresis. The 

intersection of the loop and the �⃑�  axis is known as the remanence, residual 

magnetization, or residual flux density, denoted as 𝐵𝑟
⃑⃑⃑⃑ , which is the magnetic flux density 

inside the magnet when the external field �⃑⃑�  is reduced to zero. Moreover, 𝐻𝑐
⃑⃑ ⃑⃑  is known 

as the coercivity or coercive force, which is the external field needed to completely 

demagnetize the substance. 
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Fig. 2-2 B-H curve of a typical ferromagnetic material 

By Eq. (2.5), when external �⃑⃑�  is removed, the residual flux density inside the 

ferromagnetic material is 

 𝐵𝑟
⃑⃑⃑⃑ = �⃑⃑�  (2.8) 

which indicates that the material has become a permanent magnets with residual flux 

density �⃑⃑� . Then, the magnetization of this permanent magnets can be expressed as: 

 �⃑⃑� = 𝐵𝑟
⃑⃑⃑⃑  (2.9) 

 Therefore, the dipole moment resulting from the definition of magnetization is then 

given as: 

 �⃑⃑� = 𝐵𝑟
⃑⃑⃑⃑ 𝑉 (2.10) 

where 𝑉 is the volume of this permanent magnets. 
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Table 2-1 Specifications of NdFeB 

 

Specifications NdFeB 

Remanence (T) 1.29 

Coercivity ( m/kA ) 990 

Maximum energy product (
3m/kJ ) 320 

Density (
3cm/g ) 7.49 

Curie temperature ( C0
) 310 

Resistivity ( m ) 6 

 

Rare-earth elements are the most popular materials used to produce the strong 

magnets. One of the strong magnets is Samarium Cobalt, which has high 𝐵𝑟
⃑⃑⃑⃑ , high 𝐻𝑐

⃑⃑ ⃑⃑ , 

relatively high maximum energy product (𝐵𝐻𝑚𝑎𝑥), and also higher cost than NdFeB. 

Commonly, its energy product ranges from 18 MGOe (Mega Gauss Oersteds) to about 32

MGOe . The most familiar one of the strong magnets is NdFeB or, for more accurately, 

sintered NdFeB magnet, whose property is similar to that of SmCo but which belongs to 

the most powerful class and is commercially available today. Its energy product ranges 

from 2.8 MGOe  to about 48 MGOe . Therefore, NdFeB magnet is the most reliable 

choice to provide high magnetic force in our system. Table 2-1 indicates several 

characteristics of the NdFeB magnets. 
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2.2 Fundamentals of Piezoelectric Actuation 

In AFM system, the piezoelectric actuation is the most popular actuation 

mechanism in the scanning system because of its fast dynamic response, high stiffness, 

and high positioning resolution. Hence, AFM can provide nano-resolution imaging 

performance of the sample topography. However, the hysteresis effect of the 

piezoelectric actuator is an inevitable behavior. In this section, we will investigate the 

piezoelectric effect and the hysteresis behavior. 

 

2.2.1 Piezoelectric effect 

The piezoelectric effect is that materials have the ability to generate electricity 

when subjected to mechanical stress, and it is first discovered by the brothers Pierre 

Curie and Jacques Curie in 1880 [24]. Conversely, the reverse piezoelectric effect is that 

materials deform slightly when an external electric field is applied as shown in Fig. 2-3. 

In 1922, Langevin proposed the first actuator based on the piezoelectric effect of crystal 

materials. However, because the piezoelectric effect exhibited by natural materials such 

as tourmaline, Rochelle salt and quartz are very rare, polycrystalline ferroelectric 

ceramic materials with the same properties have been developed such as barium titanate 

http://en.wikipedia.org/wiki/Pierre_Curie
http://en.wikipedia.org/wiki/Pierre_Curie
http://en.wikipedia.org/wiki/Jacques_Curie
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and plumbum zirconate titanate (PZT), and the latter one is the most widely used 

materials for actuators today. 

 

 

Fig. 2-3 (a) Piezoelectric effect (b) Reverse piezoelectric effect 

 

According to the applied voltage, piezoelectric actuators can provide continuous 

expansion and retraction motions with high resolution, high stiffness, wide dynamic 

response range and no backlash. However, there are some disadvantages of piezoelectric 

actuators such as the small traveling range and nonlinear hysteresis effect which are 

described in the following section. 

2.2.2 Hysteresis phenomenon 

Hysteresis is the dependence of the system not only on its current input but also on 

its past input history. A typical hysteresis loop and a physical explanation for it has been 
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described by Chen and Montgomery [25] in Fig. 2-4. They presented that hysteresis is a 

result of grain domain switching, which occurs gradually, based on the variance of 

applied electric field. Increasing applied voltage to the piezoelectric actuators would 

cause severe hysteresis effect and the nonlinearity between the applied voltage and the 

displacement could go up to 10-25 % under large-signal situations. This nonlinearity 

will result in distortion on obtained images in AFM application. 

The hysteresis effect can be reduced by using charge amplifiers; however, the 

design of charge amplifiers is more difficult than that of voltage amplifiers and it could 

lead to drift and saturation problems. Another method to overcome the hysteresis effect 

is building up the hysteresis model, and then designing a suitable controller based on the 

model to compensate it. There are several approaches to model the hysteresis 

phenomenon, such as Bouc-Wen model [26], simplified Dahl model [27], backlash-like 

model [28], Preisach model [29] and Maxwell model [30]. Although these methods are 

able to provide predictions of the behavior of piezoelectric actuators, they are hard to be 

applied in practical system controller designs because of the complexity of their 

hysteresis models. 
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Fig. 2-4 Hysteresis loop 

2.3 Basic Principles of CD/DVD Pickup Head 

In order to reduce the complicated light path system and minimum the volume of the 

AFM measuring system, thus a commercial CD/DVD pickup head is used in this 

research. 

In general, the optical pickup head can be divided into two parts: optical system and 

actuator. The optical system could be subdivided into laser diode, spectroscope, object 

lens, detection devices, diffraction gratings, and cylindrical lens further. The light emits 

from the laser diode and passes through the grating, then focuses on the CD/DVD-ROM 

and forms a spot. After reflecting from the record pothole on the CD/DVD-ROM, the spot 

will be transferred to the detection device through the optical system, and makes the 
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photosensitive current increase or decrease. The magnitude of this current is represented 

by 0 or 1 data. 

 

Fig. 2-5 Photograph of used CD/DVD pickup head and the total mass is 18g 

 

The DVD system is chosen in this research rather than CD system because DVD 

system has better resolution and faster response. This DVD pickup head consists of four 

parts: laser diodes, lens set, opto-electric integrated circuit (OEIC), and focusing/tracking 

voice coil motors (VCMs). Fig. 2-5 illustrates the DVD pickup head used in our system 

(Model: TOP1100S, TopRay Technologies). 

 

The full width at half maximum (FWHM) of focal spot can be derived from the 

following equation: 

    0 . 5 2F WH M
NA


                                           (2.11) 
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where   is the wavelength of the laser and NA  is the numerical aperture of the 

objective lens. Referring to the specification, the wavelength is  = 655nm for laser 

diodes on DVD pickup head and the numerical aperture is NA  = 0.6 for objective lens. 

Hence, the FWHM  D = 568nm can be obtained. The width of the cantilever is several 

tens of micrometers, which is much greater than the FWHM. Therefore, the cantilever 

can block laser energy to present its leaking to the reflective sample that may cause 

sensing errors due to optical interference. 

 

2.3.1 Sensing Methodology 

Referring to Figs. 2-5 and 2-6, a laser beam emitted from a laser diode is first 

diffracted and collimated into three beams, and then focused onto an optical disk by an 

objective lens controlled by a VCM. After reflecting from the disc and passing through an 

astigmatic element, the beams will be directed back through the PUH and impinge onto 

the OEIC. The OEIC is composed of six split photosensors A-F (see Fig. 2-6), which have 

a current-to-voltage converter to transfer the tiny photocurrent into the voltage signal. 
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The center of OEIC is four quadrant photosensors (A-D), similar to the quadrant 

position-sensitive detectors used in traditional AFMs, and six current preamplifiers for 

the six photosensors. The data recorded on the disc, the focusing and tracking conditions 

from the summation signal, the focusing error (FE) signal and tracking error (TE) signal 

can be obtained from Eqs. (2.12)-(2.14) respectively as shown below. 

The FE signal is used to measure the cantilever deflection in AFM applications. 

A B C DData V V V V                                (2.12) 

( ) ( )A C B DFE V V V V                               (2.13) 

TE  = phase difference between ( )A CV V and ( )B DV V          (2.14) 

The relation between FE signal and the vertical distance of the disk is the so called 

S-curve as shown in Fig. 2-7 (d) [31]. When the laser beam is accurately focused on the 

disk surface, the laser spot on the four central quadrant photosensors (A-D) is circular 

(see Fig. 2-7 (b)) and is corresponding to the center of the S-curve. At the center of the 

S-curve, i.e. FE = 0, the sensitive linear range is about 8 μm, which is enough for 

measuring the vertical deflection of the AFM cantilever. The resolution of the focusing 
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error signal depends on the quality of the output stage amplifier and noise from the 

environment. 

 

Fig. 2-6 Inside buildup and working principle of a typical CD/DVD pickup head 

2.3.2 Focusing and Tracking Actuators 

 

As for the focusing and tracking actuators, there are four suspending metal wires 

supporting the lens set as shown in Fig. 2-5. There are several benefits of this kind of 

guiding system: no friction, simple structure, and cost-effectiveness. The position of the 

lens set in horizontal (tracking) and vertical (focusing) directions can be finely adjusted 

using the VCM. The main disadvantages of this mechanism are the assemblage difficulty 

and the low stiffness that make the system easily affected by disturbance from the 
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environment. 

 

Fig. 2-7 (a) Off focus, FES < 0. (b) On focus, FES = 0. (c) Off focus, FES > 0. (d) 

Linear region of FES 

2.4 Operation Principle of AFM System 

Generally, there are two primary operation modes to be applied to measure the 

topography of sample in an AFM system: contact mode and tapping mode. Fig. 2-8 

shows the schematic diagrams of both contact mode and tapping mode in an AFM 

system. In contact mode, the probe tip of the AFM will scrape across the sample surface 

along each scan line resulting in the deflection of the cantilever at its free end, which 

will be measured to reconstruct the topography of sample. The greater the cantilever is 

bent, the higher the force acts on the sample. However, a significantly deep valley or a 

significantly high hill on the sample surface cannot be sensed by the probe and brings 
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about the distortion on the obtained feature. Besides, some samples like biological 

materials are often delicate and tenuously immobilized on a surface, and thus the 

vertical and shear forces exerted on the sample via the tip could damage the sample due 

to compressing or tearing from the surface in such contact mode. 

    

Fig. 2-8 The schematic diagram of contact mode and tapping mode 

 

Fig. 2-9 The block diagram of a tapping mode AFM system 

In tapping mode, the cantilever with the probe is oscillated vertically by a small 

piezoelectric material, called bimorph, at its resonant frequency; therefore, the probe tip 



- 33 - 
 

of the AFM system makes contact with the sample surface only in each cycle of 

oscillation. Fig. 2-9 shows the block diagram of a tapping mode AFM system. At the 

first, the probe and the sample are maintained at a constant distance, which is specified 

to be the amplitude of the probe’s oscillation by a function generator. When the sample 

is moved by the xyz stage in scanning process, the probe offsets its height which is 

detected by the non-conventional CD/DVD pickup head sensor. The measured signal 

passing through a lock-in amplifier will be compared with the input signal from the 

function generator and then the difference is transmitted to a PC-based controller to 

keep the constant amplitude. The three dimensional voltage signals applied to control 

the xyz stage are collected to construct the topography of the corresponding sample. 

Since the interaction force between probe tip and sample is about 10−10~10−12 

N, the tapping mode AFM systems significantly reduce irreversible destructions on 

sample surfaces [30] and have been widely used for non-destructive measuring of soft 

or easily damaged materials such as polymers and biological samples [32]. The lateral 

forces are also significantly reduced compared with contact mode AFM systems, which 

minimizes positioning disturbance of the stage. Besides, the amplitude of the cantilever 

oscillation in tapping mode is typically several tens of nanometers, which ensures that 

the tip would not be stuck in a water layer resulting from surface tension force. 
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2.5 Internal Model Principle (IMP) 

Generally, the control systems for reference tracking and disturbance rejection are 

two important control goals. In some scenarios, the reference or disturbances signals 

have known dynamics structure, and thus they can be considered as an external system. 

Then, the controller can track the reference or reject the disturbance by incorporating 

the model of the reference or disturbance signal within itself. This approach is known as 

internal model principle (IMP), and was first proposed by Francis and Wonham in 1976 

[33]. 

The IMP states that if the reference 𝑟(𝑡) or the disturbance 𝑑(𝑡) has 𝛹(𝑠) as 

the generating polynomial, then the controller 𝐶(𝑠) with the form: 

 𝐶(𝑠) =
𝑃(𝑠)

𝛹(𝑠)𝐿(𝑠)
 (2.15) 

It can ensure that to track the reference and to reject the effect of the disturbance can be 

achieved asymptotically. Here, 𝛹(𝑠) is obtained from the dynamics of the reference or 

disturbance, and 𝑃(𝑠) and 𝐿(𝑠) need to be designed so that the closed-loop system is 

stable. From the viewpoint of linear time-invariant system, the IMP implies that the 

internal model is used to supply closed-loop transmission zeros which cancel the 

unstable poles of the reference or disturbance signals. Therefore, we can find that it 
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turns the tracking or disturbance rejection problem into a simple stabilizing problem. 

The schematic diagram of the IMP based control is shown in Fig. 2-10. 

 

Fig. 2-10 The schematic diagram of internal model principle based control 

However, the IMP is basically developed for LTI system with the concept of 

transfer function, which belongs to frequency-domain approaches and can hardly be 

applied to time-domain control scheme directly. In order to design the controller based 

on time-domain analysis or for nonlinear systems, we can consider the internal model 

from another viewpoint. Suppose the reference signal or disturbance satisfies some 

differential equation, e.g., 

 
𝑑𝑛

𝑑𝑡𝑛
𝑟(𝑡) + 𝑎𝑛−1

𝑑𝑛−1

𝑑𝑡𝑛−1
𝑟(𝑡) + ⋯+ 𝑎1

𝑑

𝑑𝑡
𝑟(𝑡) + 𝑎0𝑟(𝑡) = 0 , (2.16) 

Then by taking Laplace transform, we obtain 

 [𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + ⋯+ 𝑎1𝑠 + 𝑎0]𝑅(𝑠) = 𝑓(0, 𝑠) (2.17) 

where 𝑅(𝑠)  is the Laplace transform of the reference signal 𝑟(𝑡) , 𝑓(0, 𝑠)  is a 

polynomial in 𝑠 accounting for effects of the initial conditions, 𝑟(0), �̇�(0), �̈�(0), etc. 

Let 𝛹(𝑠)  be the generating polynomial, then the internal model 𝐺𝐼(𝑠)  can be 
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expressed as: 

 𝐺𝐼(𝑠) =
1

𝛹(𝑠)
=

1

[𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯+ 𝑎1𝑠 + 𝑎0]
 (2.18) 

Taking the internal model into Fig. 2-10, we can easily find the relationship between the 

tracking error 𝑒 and the internal model state ℎ in time-domain as: 

 𝑒 = ℎ(𝑛) + 𝑎𝑛−1ℎ
(𝑛−1) + ⋯+ 𝑎1ℎ̇ + 𝑎0ℎ (2.19) 

Therefore, design of the controller in time-domain can proceed with this internal 

dynamics.  

So far, there are many related researches in recent years, such as IMP-based sliding 

mode control [34], IMP-based state feedback control [35], IMP-based Kalman filter 

[36], etc. From Eq. (2.19), we can find that the reference tracking, or disturbance 

rejection now becomes a stabilizing problem since we just need to regulate the internal 

state to zero, and then the tracking error will be zero accordingly as well. 
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Chapter 3  

System Design and Dynamics 

Modeling 

The overall AFM system based on tapping mode scheme is shown in Fig. 3-1. The 

design concept of the system is in accordance with the demand for fast and precision 

scanning of the sample’s topography spread over a large range area. Generally speaking, 

both moving sample type and moving probe type AFMs have their own suitable 

applications and advantages. The comparison between these two types of AFM is 

arranged in Table 3-1. In order to obtain a good imaging quality of the sample and to 

simplify the optical complexity, we thus choose the moving sample type AFM in our 

system. The AFM system to be designed is mainly decomposed into two parts: the 

measuring system and the scanning system. The main function of the measuring system 

is detecting the tip-sample interaction from probe behavior (deflection, amplitude, 

phase, frequency, etc.). Additionally, we need a scanning system for the sake of 

understanding the whole sample topography. The entire AFM system will be described 

in the following sections. 



- 38 - 
 

 

Fig. 3-1 The block diagram of our proposed AFM system 

Table 3-1 Comparison between moving sample type and moving probe type 

 Moving Sample Type Moving Probe Type 

Sample size Small Large 

Scanning speed Slow Fast 

Optical complexity Simple Complex 

Image quality Good Normal 

 

3.1 AFM Measuring System 

For the scanning application, we need to excite the scanning probe at its first 

resonant frequency and detect the tip-sample interactions. Therefore, the AFM 
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measuring system must consist of two parts, which are probe oscillating system and 

probe dynamics detection. 

3.1.1 Probe oscillating system 

The probe used in an AFM consists of a cantilever and a tip, as depicted in Fig. 3-2.  

The choice of the probe in fact depends on the sample properties and the operation 

mode of AFM.  Here, we will use function generator based on direct digital 

synthesized (DDS) technology to provide stable sinusoidal energy to a bimorph attached 

to probe, and thus providing stable scanning environments. When the energy enters the 

bimorph, the probe oscillates simultaneously. In practical implementation, the probe 

will be located on a magnetic circle mount, and the bimorph is attached to the mount, as 

shown in Fig. 3-3. 

 

 

Fig. 3-2 Photograph of the AFM probe 
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Fig. 3-3 The CAD figure of the probe oscillating system 

Here, the probe we choose in this research is NanoWorld PointProbe Type-NCHR, 

which is designed for tapping mode AFM as shown in Fig. 3-4. The resonant frequency 

of the probe is about 250 kHz to 390 kHz. According to the manufacturing deviation, 

each probe has its own spectrum. The radius of curvature of this probe tip is less than 8 

nm and the relevant specification of the probe is shown in Table 3-2. 

 

Fig. 3-4 The probe of NanoWorld PointProbe Type-NCHR 

Table 3-2 Specification of the probe used in the research 

Technical Data Nominal Value Specified Range 

Thickness (μm) 4 3.0 - 5.0 

Mean Width (μm) 30 22.5 - 37.5 

Length (μm) 125 115 - 135 

Force Constant (N/m) 42 10 - 130 

Resonant Frequency (kHz) 330 204 - 497 
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3.1.2 Probe dynamics detection 

The detailed structure of the AFM measuring system is shown in Fig. 3-5. In this 

system, we use the CD/DVD pickup head to measure the probe deflection for the 

compact system design. The CD/DVD pickup head is fixed on the frame and the probe 

beam is aligned by a precision tuning mechanism. The focusing error signal (FES) 

signal is the most important information for understanding the probe dynamics 

behavior. During the scanning process, since the bimorph is used a sinusoidal signal 

drive, thus the probe’s cantilever beam will be excited in a sinusoidal motion, and thus 

the FES signal is also sinusoidal, which can be captured by the opto-electric integrated 

circuit (OEIC). 

 

Fig. 3-5 The CAD figure of the mechanism of the AFM sensing system 
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3.2 AFM Scanning System 

Generally, the AFM scanning system consists of two parts, which are the 

xy-scanner and the z-scanner. The xy-scanner moves the sample in xy-plane along the 

assigned scan trajectory, and the z-scanner is used to maintain the tip-sample interaction 

at the desired state. The detailed structure of our AFM scanning system is shown in Fig. 

3-6. In order to achieve large scan range and high resolution imaging performance, the 

xy-scanner in our AFM system is a xy-hybrid scanner, including an xy-electromagnetic 

scanner and an xy-piezoelectric scanner. The xy-electromagnetic scanner is a homemade 

scanner with 2 mm × 2 mm traveling range which has been developed in our research 

group [23]. It is composed of a monolithic xy parallel compliant mechanism, an eddy 

current damper, and four sets of electromagnetic actuator. To obtain the position 

information of the electromagnetic scanner, a 90° gold-coated mirror is mounted on the 

position base to reflect the laser beams emitted from the laser interferometer. On the 

other hand, the xy-piezoelectric scanner is a commercial scanner (Piezosystem jena 

PXY 38 SG), which has traveling range of 32 μm in x and y axes respectively with 

built-in strain gauge sensors. Fig. 3-7 shows the schematic diagram of the 

xy-piezoelectric scanner’s operation principle, which utilizes the stacked piezoelectric 
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actuator with parallelogram flexure configuration composed of solid state hinge to 

provide parallel motion in xy-plane. The realistic photograph of the xy-piezoelectric 

scanner is shown in Fig. 3-8, and the relevant specification of this scanner is given in 

the Table 3-3. 

 

Fig. 3-6 The AFM scanning system 

 

Fig. 3-7 The schematic diagram of the piezoelectric scanner’s operation principle 
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Fig. 3-8 Realistic photograph of the piezoelectric xy-scanner 

Table 3-3 Specifications of the piezoelectric xy-scanners 

 PXY 38 SG 

Motion (± 10%) 32 μm 

Capacitance per axis (± 20%) 0.7 μF 

Resonant frequency 0.73/1.09 kHz 

Stiffness 2 N/μm 

Max. push force 59/53 N 

Max. pull force 6/5 N 

Dimensions 40mm×40mm×23mm 

3.3 Dynamic Modeling and Formulation 

In order to obtain good AFM imaging quality, design of advanced controller is 

necessary for improving the positioning precision of scanner. Before proceeding to the 

controller design, we need to understand the governing dynamics of the plant at first. In 

this section, we will derive the dynamic modeling of the xy-hybrid scanner according to 
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physical characteristics of mechanics and point the possible disturbance source during 

AFM scanning process. In this research, the controllers for the xy-hybrid scanner will be 

designed based on adaptive control and neural network, and thus we do not need to find 

parameter values of the plant model precisely. However, the system identification 

would also be addressed at the end of this section to confirm the preciseness of our 

dynamics modeling and formulation. 

3.3.1 Modeling of Dual Lateral xy-Scanner 

 

Fig. 3-9 The schematic diagram of xy-hybrid scanner in x-axis 

Fig. 3-9 shows the schematic diagram of xy-hybrid scanner in x-axis. In the 

dynamic analysis, since the xy-electromagnetic scanner is composed of the flexure 

parallel compliant mechanism with four sets of electromagnetic actuator, it can be 

reasonably modeled as a second order system [37]. On the other hand, the commercial 

xy-piezoelectric scanner consists of piezoelectric actuators with parallelogram flexure 
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configuration, as shown in Fig. 3-6, and it has been shown that a mass-spring-damper 

system is a reasonable model for the dynamics of piezoelectric scanner [38]. However, 

due to the piezoelectric actuation mechanism, the piezoelectric actuator will have 

hysteresis phenomenon and exhibits highly nonlinear dynamic motion. Therefore, 

taking the hysteresis effect into the dynamic model of piezoelectric scanner is very 

crucial for describing the positioning behavior correctly. Furthermore, because the 

piezoelectric scanner is stacked on the electromagnetic scanner, the piezoelectric 

scanner will impart reaction forces on the electromagnetic scanner. Hence, the motion 

behavior of xy-hybrid scanner in x-axis can be described by the following dynamic 

equations: 

 (𝑚𝑒𝑚 + 𝑚𝑝𝑧)�̈�𝑒𝑚 = 𝐹𝑒𝑚𝑥 − 𝑘𝑒𝑚𝑥𝑥𝑒𝑚 − 𝑏𝑒𝑚𝑥�̇�𝑒𝑚 + 𝑤𝑝𝑧𝑥 

𝑚𝑝𝑧�̈�𝑝𝑧 = 𝐹𝑝𝑧𝑥 − 𝑟𝑝𝑧𝑥(𝑥𝑝𝑧, �̇�𝑝𝑧) − 𝑘𝑝𝑧𝑥𝑥𝑝𝑧 − 𝑏𝑝𝑧𝑥�̇�𝑝𝑧 

(3.1) 

where 𝑚𝑒𝑚  and 𝑚𝑝𝑧  are the unknown equivalent masses of electromagnetic and 

piezoelectric scanner, respectively. The notations 𝑘𝑒𝑚𝑥 , 𝑘𝑝𝑧𝑥  are the unknown 

equivalent spring coefficients, and 𝑏𝑒𝑚𝑥, 𝑏𝑝𝑧𝑥 are the unknown equivalent damping 

coefficients. 𝐹𝑒𝑚𝑥  and 𝐹𝑝𝑧𝑥  represent the total applied forces generated by 

electromagnetic and piezoelectric actuators. 𝑤𝑝𝑧𝑥  is the reaction force from 

piezoelectric actuator and 𝑟𝑝𝑧𝑥 is the unknown nonlinear restoring force which results 
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in the hysteresis effect of the piezoelectric scanner. Because the equivalent mass of 

electromagnetic scanner 𝑚𝑒𝑚 is much greater than that of piezoelectric scanner 𝑚𝑝𝑧 

and the traveling range of piezoelectric scanner is very limited, the reaction force 

generated by piezoelectric actuator 𝑤𝑝𝑧𝑥 can be assumed to be a small and bounded 

value compared to the forces generated by electromagnetic actuator 𝐹𝑒𝑚𝑥 in the first 

equation of Eq. (3.1). Hence, we can consider the reaction force 𝑤𝑝𝑧𝑥 as part of 

disturbance in the dynamic model of electromagnetic scanner, and the modeling of the 

xy-hybrid scanner can thus be decomposed into two sub-systems. 

 

Fig. 3-10 The dynamic modeling of parallel structure 

For the electromagnetic scanner, due to the parallel compliant flexure mechanism 

and eddy current damper, it can be modeled as a mass-spring-damper system as shown 

in Fig.3-10, the definition of x and y are the displacements along x- and y-axis, 

respectively. By Newton’s Law, the system dynamics can be written in the following 
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form: 

 (𝑚𝑒𝑚 + 𝑚𝑝𝑧)�̈�𝑒𝑚 = 𝐹𝑒𝑚𝑥 − 𝑘𝑒𝑚𝑥𝑥𝑒𝑚 − 𝑏𝑒𝑚𝑥�̇�𝑒𝑚 + 𝑤𝑝𝑧𝑥 

(𝑚𝑒𝑚 + 𝑚𝑝𝑚)�̈�𝑒𝑚 = 𝐹𝑒𝑚𝑦 − 𝑘𝑒𝑚𝑦𝑦𝑒𝑚 − 𝑏𝑒𝑚𝑦�̇�𝑒𝑚 + 𝑤𝑝𝑧𝑦 

(3.2) 

According to the Lorentz force principle, the applied forces 𝐹𝑒𝑚𝑥  and 𝐹𝑒𝑚𝑦  are 

proportional to the input currents. Besides, taking the scanning disturbance into 

consideration, the dynamics of the electromagnetic scanner in Eq. (3.2) can be 

reformulated follows: 

 (𝑚𝑒𝑚 + 𝑚𝑝𝑧)�̈�𝑒𝑚 = −𝑘𝑒𝑚𝑥𝑥𝑒𝑚 − 𝑏𝑒𝑚𝑥�̇�𝑒𝑚 + 𝐶𝑒𝑚𝑥𝑢𝑒𝑚𝑥 + 𝑤𝑝𝑧𝑥 + 𝑑𝑒𝑚𝑥 

(𝑚𝑒𝑚 + 𝑚𝑝𝑧)�̈�𝑒𝑚 = −𝑘𝑒𝑚𝑦𝑦𝑒𝑚 − 𝑏𝑒𝑚𝑦�̇�𝑒𝑚 + 𝐶𝑒𝑚𝑦𝑢𝑒𝑚𝑦 + 𝑤𝑝𝑧𝑦 + 𝑑𝑒𝑚𝑦 

(3.3) 

where 𝑢𝑒𝑚𝑥, 𝑢𝑒𝑚𝑦 are the input currents for the electromagnetic scanner, 𝐶𝑒𝑚𝑥, 𝐶𝑒𝑚𝑦 

are the force constants, and 𝑑𝑒𝑚𝑥, 𝑑𝑒𝑚𝑦 represent the scanning disturbances. 

To make the representation of the above dynamic equations more concise, we 

define the variable vector 𝑋𝑒𝑚 = [𝑥𝑒𝑚 𝑦𝑒𝑚]𝑇 and rewrite the dynamical equations as 

a multi-input multi-output (MIMO) system: 

 �̈�𝑒𝑚 = 𝐾𝑒𝑚𝑋𝑒𝑚 + 𝐵𝑒𝑚�̇�𝑒𝑚 + 𝐶𝑒𝑚𝑈𝑒𝑚 + 𝐷𝑒𝑚 (3.4) 

The definition of the related parameters is shown in the following form: 

 

𝐾𝑒𝑚 = [

−𝑘𝑒𝑚𝑥

𝑚𝑒𝑚+𝑚𝑝𝑧
𝑘𝑒𝑚𝑥𝑦

𝑘𝑒𝑚𝑦𝑥
−𝑘𝑒𝑚𝑦

𝑚𝑒𝑚+𝑚𝑝𝑧

] , 𝐵𝑒𝑚 = [

−𝑏𝑒𝑚𝑥

𝑚𝑒+𝑚𝑝
𝑏𝑒𝑚𝑥𝑦

𝑏𝑒𝑚𝑦𝑥
−𝑏𝑒𝑚𝑦

𝑚𝑒𝑚+𝑚𝑝𝑧

]  (3.5) 
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𝐶𝑒𝑚 = [

𝐶𝑥

𝑚𝑒𝑚+𝑚𝑝𝑧
0

0
𝐶𝑦

𝑚𝑒𝑚+𝑚𝑝𝑧

] , 𝑈𝑒𝑚 = [
𝑢𝑒𝑚𝑥

𝑢𝑒𝑚𝑦
] , 𝐷𝑒𝑚 = [

𝑤𝑝𝑧𝑥+𝑑𝑒𝑚𝑥

𝑚𝑒𝑚+𝑚𝑝𝑧

𝑤𝑝𝑧𝑦+𝑑𝑒𝑚𝑦

𝑚𝑒𝑚+𝑚𝑝𝑧

]  

Here, we introduce the off-diagonal terms in 𝐾𝑒𝑚 and 𝐵𝑒𝑚 to account for the coupling 

effect between x- and y-axis motions. 

For the piezoelectric scanner, although the mass-spring-damper system is also a 

reasonable model to describe the dynamic behavior of it, an additional term that 

represents the hysteresis effect should be taken into account. The system dynamics can 

be written in the following form: 

 𝑚𝑝𝑧�̈�𝑝𝑧 = 𝐹𝑝𝑧𝑥 − 𝑟𝑝𝑧𝑥(𝑥𝑝𝑧, �̇�𝑝𝑧) − 𝑘𝑝𝑧𝑥𝑥𝑝 − 𝑏𝑝𝑧𝑥�̇�𝑝𝑧  

𝑚𝑝𝑧�̈�𝑝𝑧 = 𝐹𝑝𝑧𝑦 − 𝑟𝑝𝑧𝑦(𝑦𝑝𝑧, �̇�𝑝𝑧) − 𝑘𝑝𝑧𝑦𝑦𝑝𝑧 − 𝑏𝑝𝑧𝑦�̇�𝑝𝑧  

(3.6) 

where 𝑟𝑝𝑧𝑥, 𝑟𝑝𝑧𝑦 represent the restoring forces which are both nonlinear functions, and 

𝐹𝑝𝑧𝑥, 𝐹𝑝𝑧𝑦 represent the applied forces which are proportional to the input voltage of 

the piezoelectric actuator. Often taking the external disturbances into consideration in the 

dynamic formulation of the piezoelectric scanner, then Eq. (3.6) can be rewritten in the 

following form: 

 𝑚𝑝𝑧�̈�𝑝𝑧 = 𝐶𝑝𝑧𝑥𝑢𝑝𝑧𝑥 − 𝑟𝑝𝑧𝑥(𝑥𝑝𝑧, �̇�𝑝𝑧) − 𝑘𝑝𝑧𝑥𝑥𝑝𝑧 − 𝑏𝑝𝑧𝑥�̇�𝑝𝑧 + 𝑑𝑝𝑧𝑥  

𝑚𝑝𝑧�̈�𝑝𝑧 = 𝐶𝑝𝑧𝑦𝑢𝑝𝑧𝑦 − 𝑟𝑝𝑧𝑦(𝑦𝑝𝑧, �̇�𝑝𝑧) − 𝑘𝑝𝑧𝑦𝑦𝑝𝑧 − 𝑏𝑝𝑧𝑦�̇�𝑝𝑧 + 𝑑𝑝𝑧𝑦  

(3.7) 

where 𝐶𝑝𝑧𝑥 , 𝐶𝑝𝑧𝑦  denote the piezoelectric force coefficient in x- and y-axis, 

respectively, and 𝑢𝑝𝑧𝑥, 𝑢𝑝𝑧𝑦 are the input voltages for the piezoelectric actuators. 
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To simplify the representation of dynamic equation, we define the variable vector 

𝑋𝑝𝑧 = [𝑥𝑝𝑧 𝑦𝑝𝑧]𝑇 and rewrite Eq. (3.7) as a MIMO system: 

 �̈�𝑝𝑧 = 𝐾𝑝𝑧𝑋𝑝𝑧 + 𝐵𝑝𝑧�̇�𝑝𝑧 + 𝐶𝑝𝑧𝑈𝑝𝑧 − 𝑅𝑝𝑧 + 𝐷𝑝𝑧 (3.8) 

The definition of related parameters is shown in the following form: 

 
𝐾𝑝𝑧 = [

−𝑘𝑝𝑧𝑥

𝑚𝑝𝑧
𝑘𝑝𝑧𝑥𝑦

𝑘𝑝𝑧𝑦𝑥
−𝑘𝑝𝑧𝑦

𝑚𝑝𝑧

] , 𝐵𝑝𝑧 = [

−𝑏𝑝𝑧𝑥

𝑚𝑝𝑧
𝑏𝑝𝑧𝑥𝑦

𝑏𝑝𝑧𝑦𝑥
−𝑏𝑝𝑧𝑦

𝑚𝑝𝑧

],  

𝐶𝑝𝑧 = [

𝐶𝑝𝑧𝑥

𝑚𝑝𝑧
0

0
𝐶𝑝𝑧𝑦

𝑚𝑝𝑧

] , 𝑈𝑝𝑧 = [
𝑢𝑝𝑧𝑥

𝑢𝑝𝑧𝑦
] , 𝑅𝑝𝑧 = [

𝑟𝑝𝑧𝑥

𝑚𝑝𝑧

𝑟𝑝𝑧𝑦

𝑚𝑝𝑧

] , 𝐷𝑝𝑧 = [

𝑑𝑝𝑧𝑥

𝑚𝑝𝑧

𝑑𝑝𝑧𝑦

𝑚𝑝𝑧

]  

(3.9) 

Similarly, the off-diagonal terms of 𝐾𝑝𝑧  and 𝐵𝑝𝑧  represent the coupling effect 

between x- and y-axis motions. 

 

3.3.2 AFM scanning disturbance 

In tapping-mode AFM, the interaction forces are mainly contributed by Van der 

Waals force [39] and adhesion force by Derjarguin-Muller-Toporov (DMT) [40], which 

are consequently considered to be the major disturbance introduced to the stage while 

scanning (as shown in Fig. 3-11). Therefore, these forces will be analyzed in the 

following paragraph. In order to model the interaction force between the probe tip and the 

sample in the AFM system, the interactions between objects need to be studied. 

Assuming the potential is additive, the interaction energies between macroscopic bodies 
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can be obtained via integration. In the case of two interacting spheres with radius 𝑅1 and 

𝑅2 at a distance 𝐷 (as shown in Fig. 3-12), according to Derjarguin approximation [41], 

the force 𝐹(𝐷) between two spheres is given by 

 
𝐹(𝐷) = ∫ 2𝜋

𝑅1𝑅2

𝑅1+𝑅2
𝑓(𝑍)

∞

𝐷

𝑑𝑧 = 2𝜋
𝑅1𝑅2

𝑅1+𝑅2
𝑊(𝐷) (3.10) 

where 𝑊(𝐷) is the interaction potential energy between two flat surfaces. This formula 

holds whenever the interaction range and the separation D  are much less than radii 𝑅1 

and 𝑅2.  

 

Fig. 3-11 The tip and sample interaction is considered as the disturbance to the stage 

 

 

Fig. 3-12 Geometry employed in the Derjarguin approximation 
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Some previous researches have shown that it is reasonable to approximate the 

tip-sample geometry to sphere-flat in AFM application [42]. By setting 𝑅2 ≫ 𝑅1, the 

force between a sphere and a flat surface can be obtained: 

 
𝐹(𝐷) = 2𝜋𝑅1𝑊(𝐷) = −

𝐻

6𝐷2
𝑅1 (3.11) 

where the Hamaker constant H , which includes all physical and chemical information 

shown as follows: 

 𝐻 = 𝜋2𝐶𝜌1𝜌2 (3.12) 

where 𝐶 is the constant in the atom-atom pair potential, and 𝜌1 and
 
𝜌2 are the numbers 

of atoms per unit volume in two molecules, respectively. The Hamaker constant of 

condensed phases in vacuum is typically about 1910 J . 

The interaction between tip and sample is determined by the attractive and 

repulsive surface potentials. The distance between tip and sample is 𝐷 = 𝑧𝑠 + 𝑧. The 

scalar 𝑧 is the tip deflection and the scalar 𝑧𝑠 is the distance between the undeflected 

cantilever and the sample. Van der Waals forces dominate the interaction in the 

attractive region (𝐷 ≥ 𝑎0). The tip–sample forces are calculated from Derjarguin–

Muller–Toporov (DMT) model when D is in the repulsive region (𝐷 ≤ 𝑎0). The DMT 

model describes a situation where the energy dissipation due to tip–sample contact is 

negligible. To avoid an unphysical divergence, the parameter 𝑎0  is introduced, 
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corresponding to the interatomic distance [41]. The tip sample forces are given by 

 

𝐹𝑡𝑠(𝑧) = {
−𝐻𝑅/[6(𝑧𝑠 + 𝑧)2] 𝐷 ≥ 𝑎0

−𝐻𝑅/6𝑎0
2 +

4

3
𝐸∗√𝑅(𝑎0 − 𝑧𝑠 − 𝑧)3/2 𝐷 ≤ 𝑎0

 
(3.13) 

where 𝑅 is the radius of the tip. The effective contact stiffness is calculated from 𝐸∗ =

[
1−𝑣𝑡

2

𝐸𝑡
+

1−𝑣𝑠
2

𝐸𝑠
]−1 , where 𝐸𝑡  and 𝐸𝑠  are the elastic moduli, and 𝑣𝑡  and 𝑣𝑠  are the 

Poisson ratios of the tip and the sample, respectively. It should be mentioned that the 

choice of bulk material parameters for the nano-scale simulations can only be a rough 

estimation. It has been shown that hardness of a material at nanometer scale is 

significantly different from its micro-hardness. Besides, the silicon tips are typically 

covered by a silicon oxide layer. Despite these, numerical simulations based on these 

bulk parameters provide useful predictions of the system dynamics. For very small 

oscillations around an equilibrium position 𝑧0, Eq. (3.13) can be linearized, leading to 

 

𝑘𝑡𝑠
∗ = −

𝜕

𝜕𝑧
𝐹𝑡𝑠(𝑧)|𝑧=𝑧0

= {
−𝐻𝑅/[3(𝑧𝑠 + 𝑧0)

3] 𝐷 ≥ 𝑎0

2𝐸∗√𝑅(𝑎0 − 𝑧𝑠 − 𝑧)1/2 𝐷 ≤ 𝑎0

 
(3.14) 

and the contact stiffness 𝑘𝑡𝑠
∗  is normalized to the cantilever spring constant 𝑘 by 

�̂�𝑡𝑠 = 𝑘𝑡𝑠
∗ /𝑘 . After all these parameters are taken into account, the interaction force 

while scanning is calculated to be between 10−10~10−12 N, and is then considered as 

a scanning disturbance bounded by a constant. 
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3.3.3 System identification 

In this research, the xy-hybrid scanner is controlled using adaptive control and 

neural network schemes, thus knowing the exact values of system parameters is not so 

necessary compared with some model-based control methods. However, in order to 

know the characteristics of the system and verify the correctness of the system dynamic 

modeling, we also identify the system and construct a mathematical model based on the 

measured input-output signals. Here, the system identification is performed for the 

xy-electromagnetic scanner and the xy-piezoelectric scanner separately. 

For xy-electromagnetic scanner, since the first resonant frequency is small, we can 

obtain its mathematical model based on the subspace method by applying functions of 

system identification toolbox in MATLAB. With broadband knowledge of arbitrary 

number of white noise input and output data, five constant matrices 𝐴, 𝐵, 𝐶, 𝐷, and 

𝐾 of the state space representation in continuous time are estimated by command 

“n4sid”, as shown in the follows: 

 �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡)  

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑒(𝑡)  

(3.15) 

The state space system representation can be transformed into continuous-time transfer 

function by using the command “ss2tf” in MATLAB. 
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By searching through the 1st-10th order models, the best model for 

xy-electromagnetic scanner in x-axis is computed to be a 2nd order one, and the 

continuous-time transfer function is given by: 

 

𝐺𝑒𝑚𝑥(𝑠) =
−0.001402𝑠 + 2.468

  𝑠2 + 3.756𝑠 +  16553
 

(3.16) 

The Bode diagram of xy-electromagnetic scanner in x-axis is shown in Fig. 3-13. We 

can find that the first resonant frequency is about 129 rad/sec (20.53 Hz), and the 

bandwidth is about 131 rad/sec (20.85 Hz). 

 

Fig. 3-13 The Bode diagram of xy-electromagnetic scanner in x-axis 

Similarly, the best model for xy-electromagnetic scanner in y-axis is also computed 

to be a 2nd order model, and the continuous-time transfer function is given by: 

 

𝐺𝑒𝑚𝑦(𝑠) =
−0.001475𝑠 + 2.603

𝑠2 + 2.171 𝑠 + 14319
 

(3.17) 

Fig. 3-14 shows the Bode diagram of xy-electromagnetic scanner in y-axis. The first 
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resonant frequency is about 120 rad/sec (19.10 Hz), and the bandwidth is about 122 

rad/sec (19.42 Hz). 

 

Fig. 3-14 The Bode diagram of xy-electromagnetic scanner in y-axis 

For the xy-piezoelectric scanner, because the resonant frequency is high, it can 

hardly be identified with the previous method. We employ the MEMS Motion Analyzer 

(MMA) System supported by National Chip Implementation Center to implement 

system identification of the xy-piezoelectric scanner. The obtained frequency response 

of the xy-piezoelectric scanner in x-axis is shown in Fig. 3-15. By using the command 

“invfreqs” in MATLAB and choose 2nd order to calculate the matched model, the 

continuous-time transfer function is given by:  

 

𝐺𝑝𝑧𝑥(𝑠) =
4.058 × 10−4𝑠 + 11.436

  𝑠2 + 986.321𝑠 + 5.136 × 107
 

(3.18) 

The resonant frequency appears at 7043 rad/sec (1121 Hz), the bandwidth is about 7326 
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rad/sec (1166 Hz), and the DC-gain is 2.26 × 10−7 m/V (-132.9 dB). 

 

Fig. 3-15 The Bode diagram of xy-piezoelectric scanner in x-axis 

Similarly, the obtained frequency response of the xy-piezoelectric scanner in y-axis 

is shown in Fig. 3-16, and is matched to a 2nd order continuous-time transfer function: 

 

𝐺𝑝𝑧𝑦(𝑠) =
4.497 × 10−4𝑠 + 13.214

  𝑠2 + 414.117𝑠 + 6.193 × 107
 

(3.19) 

The resonant frequency appears at 7860 rad/sec (1251 Hz), the bandwidth is at 8049 

rad/sec (1281 Hz), and the DC-gain is 2.14 × 10−7 m/V (-133.4 dB). 

 
Fig. 3-16 The Bode diagram of xy-piezoelectric scanner in y-axis 
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3.4 Laser Interferometer Sensing System 

Laser interferometer sensing system is an advanced tool which provides highly 

accurate measurement in the field of precise metrology. Laser beam has several 

advantages such as high intensity, high directionality, well spatial coherence, narrow 

bandwidth and monochromaticity [43]. Basically, the resolution of Laser interferometer 

sensing system is limited only by the sampling rate of electronics and noise level of the 

whole measuring-decoding system [44], [45]. Fig. 3-17 shows the overall system set-up 

including a 5517D laser head manufactured by Agilent Technologies emitting HeNe laser 

with wavelength of 633 nm. The diameter of the laser beam is 6 mm and the minimum 

output laser power is 180 μW. The emitted laser beam will encounter a 10701A 50% 

beam splitter also made by Agilent technologies, in which laser beam is separated into 

two beams. The two spilt beams having equal-energy are directed into 10706B 

interferometer with turned configuration respectively. Moreover, we design the up-down 

structure of the beam path instead of left-right one, so that the beam path can be as short 

as possible in the limited space to reduce the effect resulting from the environment. 
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Fig. 3-17 The configuration of laser interferometer sensing system 

In the 10706B interferometer, the incident laser beam is separated into a 

measurement beam and a reference beam. The measurement beam passes through the 

interferometer and then it is reflected by the plane mirror mounted on the 

xy-electromagnetic scanner to combine with the reference beam, which travels inside of 

the interferometer. A gold-coated right angle specialty mirror with ±2 arcmins angle 

tolerance, as shown in the Fig. 3-6, is applied to ensure that the measured two axes are 

orthogonal in a traceable way. The protected gold allowing 96% average reflection is the 

most efficient reflective coating. Finally, both measurement and reference beams are 

received by the 10780C receiver of Agilent Technologies. Fig. 3-18 shows the beam path 

inside the 10706B interferometer, there are two laser beams with frequencies 𝑓𝐴 and 𝑓𝐵 

entering the interferometer. These two laser signals with equal lengths and energies are 

received by the N1231B A/D card of Agilent Technologies, and then are compared with a 

x 

y 
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reference laser signal which is provided from the laser head to interpret the differential 

signal into displacement. According to designed interferometry beam path, the measured 

displacement is two times larger than the real one. 

 

 

Fig. 3-18 The schematic diagram of beam path in 10706B interferometer 

3.5 Hardware Equipment 

The xPC Target developed by MathWorks Inc is a solution for testing real-time 

systems. Simulink®  and Stateflow®  models built on target computer can be executed for 

hardware-in-the-loop (HIL) simulation, rapid control prototyping, and real-time testing 

applications. By using target PC hardware, the xPC target can connect a real-time system 

to a non-real-time system which is usually under Windows operating system. Moreover, 

every hardware configuration needs to be constantly checked by real-time operating 

system for regular operation. With high sampling rate A/D, D/A cards and high speed 
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computing CPU, we can achieve 20 kHz real-time sampling rate at most without 

influential timing latency. 

The xPC Target software provides users to generate an executable code from the 

model built in Matlab/Simulink and C/C++ command code in the host PC, for example, 

typical signal processing and arithmetic blocks as well as I/O blocks, and then the code is 

uploaded and executed in the target PC. The dual lateral xy-scanner and dual vertical 

z-scanner perform commands sent by National Instrument PCI 6733 16-bit D/A card. 

Through the sampling and decoding processes of two laser axis board N1231B made by 

Agilent technologies, we can obtain position data of xy-electromagnetic scanner per axis 

with 32-bit resolution. Besides, the position data of xy-piezoelectric scanner is acquired 

by strain gauge sensor, amplifier, and an A/D card Measurement Computing PCI-DAS 

1602/16 with 16-bit resolution. Then, the digital data are processed in the target PC, 

computing the position errors and sending feedback to the xy-hybrid scanner by A/D card 

Measurement Computing PCI-DAS 1602/16. The diagram of system hardware structure 

is shown in Fig. 3-19. 
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Fig. 3-19 The diagram of system hardware structure 
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Chapter 4 

Lissajous Hierarchical Local Scan 

In the AFM scanning process, the sample is measured by moving the sample or 

scan probe in xy-plane along a given scan trajectory. Conventional AFM scan trajectory 

uses a raster pattern throughout a rectangular scan region, and then collect measured 

data along a standard grid to build the image of the sample topography with 

pixel-by-pixel method. However, due to the dynamics characteristic of the raster scan 

trajectory, it will induce the mechanical vibration of the scanner, and therefore the scan 

speed is restricted. In order to improve the scan speed of the scanner, we replace the 

raster scan trajectory by a smooth Lissajous scan trajectory in this research. In addition, 

since the scan region mostly contain some uninterested areas, which lead to redundant 

scan time. For the purpose of reducing the scan time and reaching the desired scan 

resolution of interested sample, we propose a new hierarchical local scan based on 

Lissajous scan trajectory. By using Lissajous scan points in previous layer to decide 

Lissajous scan area in next layer, which can effectively reduce the scan area and 

improve the scan resolution with this type of hierarchical scan. In this chapter, we first 

discuss both raster and Lissajous scan trajectories, and then formulate the Lissajous 
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trajectory from the fundamental principle which simultaneously describes how 

Lissajous points are mapped to raster points. Finally, the proposed new Lissajous 

hierarchical local scan method will be introduced. 

 

4.1 Scan trajectory Analysis 

Generally speaking, raster scan trajectory has been the standard trajectory used in 

AFM system. During the AFM scanning process, the lateral scanner has to track a 

triangle waveform in one axis, and a staircase waveform in another axis. By combining 

both, we can produce a raster scan trajectory. Although this kind of scanning method 

can provide acceptable solutions during slow scan speed, it cannot give a good 

performance in faster scan process due to using the non-smooth scan trajectory. For an 

acceptable scanning quality, the frequency of the raster scan is typically limited to about 

1% of the first resonance frequency of the scanner. It is a main constraint to the 

scanning speed of AFM system. As a result, a smooth Lissajous scan trajectory has been 

applied to AFM scanning [18], [46], and it has been shown that such scan trajectory can 

effectively reduce the vibration phenomenon of the lateral scanner during scanning 

process. The detailed analysis of raster and Lissajous scan trajectory are introduced in 

the following sections. 
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4. 1. 1 Conventional raster scan trajectory 

The raster scan trajectory can be generated by tracking a triangular waveform in 

the x-axis and staircase waveform in the y-axis respectively, and the waveform signals 

are described as follows: 

 𝑥𝑟𝑎𝑠𝑡𝑒𝑟(𝑡) =
4𝐴𝑟

𝑇𝑟
(𝑡 −

𝑇𝑟

2
⌊
2𝑡

𝑇𝑟
+

1

2
⌋) (−1)

⌊
2𝑡

𝑇𝑟
+

1

2
⌋
                    

𝑦𝑟𝑎𝑠𝑡𝑒𝑟(𝑡) = 𝑃𝑟 ⌊
2𝑡

𝑇𝑟
+

1

2
⌋  

(4.1) 

where 𝐴𝑟 is the amplitude of triangular signal, 𝑇𝑟 is the period of signals, 𝑃𝑟 is the 

scan pitch, the symbol ⌊𝑛⌋ represents the floor function of 𝑛, and 𝑡 is a time constant. 

The signal waveforms in x- and y-axes and the raster scan trajectory are shown in Fig. 

4-1. 

 

Fig. 4-1 The diagram of raster scan trajectory (a) the signal waveforms of x and y axes 

(b) the raster scan trajectory by combining both signals. 

In general, a high speed raster scan has to use a high frequency triangular 

waveform for the scanner. It is well known that a triangular waveform can be 

(a) (b) 
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approximated with additive synthesis by adding all odd harmonics of the fundamental 

mode, and thus the triangular waveform can be described by an infinite Fourier series as 

shown below: 

 
𝑥𝑟𝑎𝑠𝑡𝑒𝑟(𝑡) =

8𝐴𝑟

𝜋2
∑(−1)𝑘

sin(2𝜋𝑓𝑟(2𝑘 + 1)𝑡)

(2𝑘 + 1)2

∞

𝑘=0

 (4.2) 

where 𝑓𝑟 is the scan frequency equals to 1 𝑇𝑟⁄ . The frequency spectrum of a triangular 

waveform with 𝐴 = 1 and 𝑓 = 220 Hz is shown in Fig. 4-2. We can find that the 

triangular waveform contains all odd harmonic signals of its fundamental frequency, 

and the amplitudes of these harmonic signals attenuate as 1 (2𝑘 + 1)2⁄ , where 2𝑘 + 1 

is the harmonic number. Therefore, when a fast triangular waveform is applied to the 

scanner, it will inevitably excite the mechanical resonance of the scanner. Such result 

will vibrate the scanner and cause a distorted triangular trajectory in scanner, and 

indirectly affect the scanning performance. 

 

Fig. 4-2 The frequency spectrum of a triangular waveform with 𝐴 = 1, 𝑓 = 220 Hz 
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4. 1. 2 Smooth Lissajous scan trajectory 

Unlike the aforementioned non-smooth raster scan trajectory, in this section, we 

will describe a smooth Lissajous scan trajectory used to increase the scan speed of the 

lateral scanner. The Lissajous scan trajectory can be constructed by tracking the 

following signals in the x and y axes: 

 𝑥𝐿𝑖𝑠𝑠𝑎𝑗𝑜𝑢𝑠(𝑡) =
𝐴x

2
cos(2𝜋𝑓x𝑡) 

𝑦𝐿𝑖𝑠𝑠𝑎𝑗𝑜𝑢𝑠(𝑡) =
𝐴y

2
cos(2𝜋𝑓y𝑡) 

(4.3) 

where 𝑓x,  𝑓y are the frequencies of the cosine signals and 𝐴x, 𝐴y are the amplitudes 

of the cosine signals.  

A major advantage here compared with the raster scan trajectory is that the 

Lissajous scan trajectory is a smooth one by using the two cosine waveforms for x- and 

y-axis scans. Fig. 4-3 shows the frequency spectrum of a cosine waveform with 𝐴 = 1 

and 𝑓 = 220 Hz. We can find that the cosine waveform contains single frequency 

signal, whose frequency can in fact be set closer to the scanner’s first resonance 

frequency. Because their smooth scan trajectory contains no other high frequency signal, 

it will not excite the resonant mode to induce the vibration phenomenon of the scanner. 

In addition, another axis motion of raster scan trajectory is a staircase waveform, which 

is also a non-smooth trajectory for the scanner. Therefore, by using signals of two 
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smooth cosine waveforms to replace the non-smooth triangular and staircase waveforms, 

the result will effectively improve the tracking performance of the lateral scanner 

conceivably. 

  

Fig. 4-3 The frequency spectrum of a cosine waveform with 𝐴 = 1, 𝑓 = 220 Hz 

 

4.2 Lissajous Scan Trajectory Formulation 

In this section, we will focus on the Lissajous scan trajectory from two parts: The 

Lissajous scan trajectory principle is described at first, and then how to mapping 

Lissajous points to raster points are discussed. 

4. 2. 1 Trajectory fundamental principle 

The Lissajous scan trajectory for scanning application must calculate the 

half-period scanning time and maximum scanning pitch. In the following, we will focus 
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on these two aspects to perform the detailed discussion. 

Half-period scan time 

 In Eq. (4.3), the frequency difference between 𝑓x and 𝑓y will determine the 

period of scan time and the form of the Lissajous scan trajectory. Generally, we can 

describe the relationship between 𝑓x  and 𝑓y  by a constant 𝑛  and a fundamental 

frequency 𝑓 as follows: 

𝑓𝑥 = 2𝑛𝑓  

𝑓𝑦 = (2𝑛 − 1)𝑓                                                  (4.4) 

Since the reciprocal of the fundamental frequency is the fundamental period 𝑇, we can 

find the fundamental period 𝑇 by Eq. (4.4) as [47]: 

𝑇 =
1

𝑓𝑥−𝑓𝑦
=

1

𝑓
                                                   (4.5) 

Next, we will investigate the relation between the period and the form of the 

Lissajous trajectory. For better grasp of the idea, we start with a simple example as 

shown in Fig. 4-4, where we use the 𝑛 = 12 such that the frequencies 𝑓x = 24 Hz, 𝑓y 

= 23 Hz, and assign the amplitudes 𝐴x, 𝐴y as 1, and the resulting Lissajous scan 

trajectory is shown to be confined in a square region. By Eq. (4.5), the fundamental 

period of the Lissajous scan trajectory in this example can be calculated, which is equal 

to 1 second. 
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Fig. 4-4 Schematic of the Lissajous-scan trajectory with 𝑛 = 12, and 𝐴x, 𝐴y are 

1, (a) The first quartered period. (b) The second quartered period. (c) A square formed 

scan trajectory can be fully generated by a half-period Lissajous scan trajectory. 

Fig. 4-4 (a)-(b) shows the change of the Lissajous scan trajectory. During the first 

quarter period ( 0 ≤ 𝑡 ≤ 𝑇/4 ), the trajectory scans counter clockwise from an 

almost-diagonal line to multiple ellipse-like curves, as shown in Fig. 4-4 (a). Under the 

second quarter period (𝑇/4 ≤ 𝑡 ≤ 𝑇/2), the trajectory is back to a different diagonal 

and then traverse counter-clockwise to multiple ellipse-like curves similar to previous 

fashion, as shown in Fig. 4-4 (b). Besides, during the third and fourth quarter periods, it 
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will perform a reverse trajectory of that in the 2nd quarter period and then that in the 1st 

quarter period. Now, if we overlap the trajectory of the first quarter period and that 

second quarter period as shown in Fig. 4-4 (c), then we obtain a complete Lissajous 

scan trajectory which is formed over a square region using a half-period scan time (0 ≤

𝑡 ≤ 𝑇/2). Thus, in the sequel we will apply only half-period Lissajous trajectory for the 

square Lissajous scan result in our AFM system. 

Maximum scan pitch 

Since the Lissajous trajectory is composed of two cosine waveforms, its scan 

pitches is not uniform. In general, the sampling time is usually designed shorter than the 

time interval associated with the scan pitch, so that we can determine the appropriate 

image resolution in x and y axes by calculating the maximum scan pitch of the scan 

trajectory. To calculate the maximum scan pitch, we first obtain the time interval of scan 

pitch 𝛿, defined as follows [46]: 

𝛿 =
1

2
(

1

𝑓𝑦
−

1

𝑓𝑥
) =

1

4𝑛(2𝑛−1)𝑓
                                        (4.6) 

For easy understanding, we use an example of Lissajous trajectory with 𝑛 = 2. 

From Eq. (4.4), we can get that 𝑓𝑥 = 4 𝐻𝑧 and 𝑓𝑦 = 3 Hz, and then construct the scan 

trajectory on xy-plane as shown in Fig. 4-5. In the figure, red circle is the starting point, 

and purple rhombus is the ending point, and all black triangles are pitch points of 
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Lissajous trajectory. The time interval of scan pitch is defined as the time elapse for 

traversing form an arbitrary pitch point to its next pitch point along the trajectory. 

 

Fig. 4-5 Pitch points of the Lissajous scan trajectory with 𝑛 = 2 

For actual scanning applications, we must use higher values of n to generate 

sufficiently dense Lissajous trajectory, and an example with 𝑛 = 6 is shown in Fig. 4-6.  

Because the lowest resolution of trajectory will occur at the center of the scanning area, 

and its shape is almost straight line, the maximum scan pitch satisfies the condition at 

the time 𝑡 = (𝑛 − 1)δ, 𝑡 = 𝑛δ  [46]. Thus, given the frequencies 𝑓𝑥  and 𝑓𝑦 , the 

coordinates of the two pitch points can be derived from Eqs. (4.3), (4.6) as follows: 

{
𝑥𝐿|(𝑛−1)𝛿

 𝑦𝐿|(𝑛−1)𝛿
  and  {

𝑥𝐿|𝑛𝛿

 𝑦𝐿|𝑛𝛿
                                       (4.7) 
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Under such circumstance, we can obtain the maximum scan pitch (𝑚𝑎𝑥 𝑃) from 

geometric computing by Eq. (4.7), and that can be formulated as: 

𝑚𝑎𝑥 𝑃 = √(𝑥𝐿|𝑛𝛿 − 𝑥𝐿|(𝑛−1)𝛿)
2
+ ( 𝑦𝐿|𝑛𝛿 −  𝑦𝐿|(𝑛−1)𝛿)

2
             (4.8) 

For an appropriate image resolution with 𝑚𝑎𝑥 𝑃 to project in x- and y-axis, which will 

satisfy the results of 𝑚𝑎𝑥 𝑃𝑥 and 𝑚𝑎𝑥 𝑃𝑦, as also shown in Fig. 4-6. 

 

Fig. 4-6 Maximum scan pitch of the Lissajous scan trajectory with 𝑛 = 6 

4.2.2 Mapping Lissajous points to raster points 

For raster scan trajectory, the image of sample surface topography can be generated 

from the measured data with pixel-by-pixel method by image processing software. 

However, unlike the raster trajectory, the linear velocity of Lissajous trajectory is not 
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identical, and thus the distance between two adjacent points of this scan method is 

variable along the scan path. In order to utilize image processing software for Lissajous 

scan trajectory, we need to map the Lissajous points along the Lissajous trajectory to the 

raster points or pixels along a standard grid. Fig. 4-7 shows a schematic diagram of 

placing the Lissajous points on top of the raster points. 

 

Fig. 4-7 Schematic diagram of placing the Lissajous points on top of the raster points 

In the mapping procedure, the scan amplitude 𝐴 and scan pitch 𝑃 of both scan 

methods are set to be the same. Hence, the number of lines in the Lissajous trajectory 

will be equal to the number of lines in the raster scanned image. Then, each Lissajous 

point is mapped to the nearest raster point. Because the positions of raster and Lissajous 

points are known for every scan frequency and dimension, the corresponding nearest 

Pras 

PLis 
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Lissajous point of each raster point can be determined and saved in an indexed matrix 

before the scanning process. When the scan of sample is finished, the image of sample 

surface topography can thus be generated pixel-by-pixel by this mapping method. 

Next, we need to analyze the mapping error when we map the Lissajous points to 

the raster points. The mapping error can be obtained by computing the magnitude of the 

position vector from the corresponding nearest Lissajous point to the raster point. An 

example of the position vector between a Lissajous point 𝑃𝐿𝑖𝑠 and a raster point 𝑃𝑟𝑎𝑠 

with coordinate index of (2, 2) is shown in Fig. 4-7. The magnitude of this position 

vector can be calculated as 

|𝑃𝐿𝑖𝑠𝑃𝑟𝑎𝑠
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑(𝑖, 𝑗)| = √(𝑃𝐿𝑖𝑠

𝑥 − 𝑃𝑟𝑎𝑠
𝑥 )2 + (𝑃𝐿𝑖𝑠

𝑦
− 𝑃𝑟𝑎𝑠

𝑦
)
2
     (4.9) 

where 𝑖 = 2 and 𝑗 = 2. Since the image resolution is determined by the maximum 

pitch distance of the Lissajous trajectory to project in x- and y-axis, this mapping error 

can be neglected if which is less than the image resolution. Therefore, we can construct 

an image from the Lissajous sampled data by utilizing image processing software with 

this mapping procedure, and have the same resolution as that of the raster scanned 

image. 
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4.3 Lissajous Hierarchical Local Scan Algorithm 

Conventionally, the scan region of AFM is a rectangular area, and the scanning 

probe must cross the overall location of scan area by an acceptable constant scan velocity. 

However, in many AFM applications, such as biological sells inspecting or nano-material 

measuring, there usually exists a large ratio of uninterested area in the scan region. Notice 

that the uninterested portion of the scan area implies the wasted time in unnecessary 

scanning. Besides, for constant velocity scanning without considering the situation where 

the sample topography many vary, this result lead to a bad image when the sample is 

subject to severe height variation. In this research, we propose a new Lissajous 

hierarchical Local scan method, with the aid of Lissajous scan trajectory, to remove the 

uninterested scan area in the first layer scan, followed by subsequent hierarchical scan 

strategy considering the height variation of sample topography in order to meet the 

demand of the image resolution. By employing this proposed method, we can effectively 

improve the scan image quality without substantially increasing the overall scan time. In 

this section, we will describe how to decide the necessary scan area by first layer scan 

algorithm. Furthermore, we consider the height varying of the scan area and then imitate 

the second or even higher layer scan algorithm to achieve higher image resolution.  
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Fig. 4-8 The flow chart of the Lissajous hierarchical Local scan method 

The flow chart of the Lissajous hierarchical Local scan method is shown in Fig. 4-8. 

The purpose of this scan method is to obtain the desired resolution (∆𝑑) given the 
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permissible maximum scan frequency (𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 ) and the permissible minimum 

frequency difference threshold (𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2). The 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 depends on the resonance 

frequency of the x-scanner, and 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2  will affect the scan time (∆𝑡 ) using 

Lissajous trajectory, which can be divided into two parts for discussion. The first part is 

first layer scan for the desired sample size in the preset scan region, and the second part is 

to satisfy ∆𝑑 in an acceptable 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 of the xy-hybrid scanner by 

second or higher layer scan. The detailed descriptions of the proposed scan algorithm 

will be presented in the next sub-sections. 

4.3.1 First layer scan 

Traditionally, we must set the probe tip close to the sample of interest during the 

AFM scanning. In order to scan every sample completely, the preset scan region must 

set to be large enough to cover all samples, and it turns out some unnecessary scan time 

is usually wasted. In this section, we will focus on the above-mentioned problem to 

improve seek possible improvement using our proposed first layer scan algorithm. 

According to Eq. (4.3), the first layer scan path can be planned as: 

𝑥1(𝑡1) =
𝐴𝑥1

2
cos(2𝜋𝑓𝑥1𝑡1)        

𝑦1(𝑡1) =
𝐴𝑦1

2
cos(2𝜋𝑓𝑦1𝑡1)                                        (4.10)    
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Over a reasonable preset scan region, there is a minimum size of the interested 

sample, say, ∆𝑠. In order to collect sufficient scan information to judge the variations of 

the sample topography, we choose sufficiently dense scan line such that the relationship 

between ∆𝑠 and 𝑚𝑎𝑥 𝑃  (the maximum scan pitch) is given as: 

∆𝑠

𝑚𝑎𝑥 𝑃
≥ 3                                                    (4.11) 

By Eq. (4.3), we can reality determine the parameters 𝑓𝑥1 and 𝑓𝑦1 for performing the 

first layer scan. Under such circumstance, the maximum scan pitch which satisfies Eq. 

(4.11) indicates that each scan sample of interest can be crossed at least by six scan lines 

of a rectangular Lissajous scan trajectory. Intuitively, more scan line crossing the 

sample surface means that longer scanning time will be needed at the first layer scan. In 

the other hand, if there are too few scan line will unable to judge the height variation of 

the sample topography. Thus, we use the surface fitting method to estimate the height 

topography of a sample, which suggest that six or more scan lines will provide a 

reasonably good resolution for height information of the sample’s topography. For this 

reason and considering the scan time, we barely so that design the Lissajous scan 

trajectory six scan lines will cross minimum size sample of interest in the first layer 

scan algorithm, but this density number is actually a design parameter for user in our 

scan algorithm. 
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Fig. 4-9 (a) The schematic diagram of the Lissajous first layer scan, (b) the amplified 

diagram of (a) in the nearest sample, (c) the M-th scan line of nearest sample with 

height information. 

(a) 

(b) 

(c) 
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In Fig. 4-9 (a), we show the scan plot of the first layer scan satisfying Eqs. (4.10) 

and (4.11), and Fig. 4-9 (b) shows a zoom-in plot of an interest sample nearest to the 

terminal point 𝑃𝐸 of the first layer scan. In Fig. 4-9 (b), we choose in particular scan 

line with number 𝑀 (𝑠𝑎𝑚𝑝𝑙𝑒𝑙𝑖𝑛𝑒[𝑀]), which crosses that sample, and illustrate the 

scanned height profile along that scan line in Fig. 4-9 (c), where the profile is in the 

zr-plane, and r represents the distance variable along the scan line. Let the height 

information measured in z-axis be composed of a series of discrete measurement points, 

and the slope of the height profile at every discrete point, say, 𝑠𝑙𝑜𝑝𝑒[𝑘] , is 

approximated by: 

𝑠𝑙𝑜𝑝𝑒[𝑘] =
𝑧[𝑘+1]−𝑧[𝑘]

𝑟[𝑘+1]−𝑟[𝑘]
 , 𝑘 ∈ 1,2, … , 𝑛𝑘                             (4.12) 

where 𝑠𝑙𝑜𝑝𝑒[𝑘] indicates the slope at the k-th sampling point of the scan line and 𝑛𝑘 

is the number of sampling points in one scan line. By this definition, when the tip does 

not contact the sample, the slope is close to zero, but the slope starts to vary when 

contact with is made. Therefore, all sampling points whose magnitudes of their slopes 

are greater than a preset threshold value will be marked as the margin points of the 

sample, denoted as 𝑟𝑀[𝑗], i.e., 

𝑟𝑀[𝑗] = 𝑟𝑀[𝑘],  for |𝑠𝑙𝑜𝑝𝑒[𝑘]| ≥ 𝜌𝑚 𝑎𝑛𝑑 𝑧[𝑘] ≤ ∆𝑚, 𝑗 ∈ 1,2, . . , 𝑛𝑗     (4.13) 

In whose 𝜌𝑚 and ∆𝑚 are the preset threshold values of the slope and the height, and 
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they are also the design parameters for user. Besides, along the line with number 𝑀 

the starting and the ending points respectively satisfying Eq. (4.13) can be described 

as: 

𝑟𝑠
𝑀 = 𝑟𝑀[1]  

𝑟𝑒
𝑀 = 𝑟𝑀[𝑛𝑗]                                                   (4.14) 

where 𝑟𝑠
𝑀 and 𝑟𝑒

𝑀 serve as rising point and falling point, respectively, referring to Fig. 

4-9 (c). From Eq. (4.11), every interested sample has at least six scan lines crossing its 

topography surface within the Lissajous rectangular scan area. Furthermore, each scan 

line contains the aforementioned rising point (𝑟𝑠
𝑀) and the falling point (𝑟𝑒

𝑀), which are 

marked by circles on the contour of the sample as shown in Fig. 4-9 (b). From 

sub-section 4.2.1, the Lissajous trajectory of first layer scan can obtain the coordinates 

of all pitch points (𝑃𝑙) as shown below: 

 𝑃𝑙 = (𝑥|𝑙𝛿1, 𝑦|𝑙𝛿1), 𝑙 ∈ 1,2, . . , 𝑛(𝑛 + 1) + 1                        (4.15) 

where 𝛿1 represents the time interval of scan pitch. Apparently, we will able to find 

the coordinates of a pitch point outside the sample but nearest to every rising point or 

falling point on the contour of the sample. In other words, let 𝑟𝑢
𝑀 denote one of rising 

points or falling points, then: 
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𝑃𝐼 (𝑟𝑢
𝑀) =  (𝑥𝐼 , 𝑦𝐼) = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑃𝑙

‖𝑃𝑙 − 𝑟𝑢
𝑀‖2,  for 𝑧(𝑃𝑙) ≤ ∆𝑚, 𝐼 = 1,2, … , 2𝑛𝑀 

                                                              (4.16) 

where 𝑃𝐼  is marked by square symbol in Fig. 4-9 (b). In order to avoid the pitch 

points selected are inside the sample, we design ∆𝑚 as the threshold value for Eq. 

(4.16). By collecting 𝑃𝐼 , we identify four of them, namely, (𝑚𝑖𝑛 𝑥𝐼 , 𝑦𝐼), 

(𝑚𝑎𝑥 𝑥𝐼 , 𝑦𝐼), (𝑥𝐼 , 𝑚𝑖𝑛 𝑦𝐼), (𝑥,𝑚𝑎𝑥 𝑦𝐼) and call each of the four 𝑃𝐼
∗ for destination. 

Finally, four the scan pitch 𝑃𝐼
∗ , we can readily search for the scan pitch points 

symbolized as 𝑃𝐼𝐼  satisfying: 

𝑃𝐼𝐼 = (𝑥𝐼𝐼 , 𝑦𝐼𝐼) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑙

‖𝑃𝑙 − 𝑃𝐼
∗‖2, for 𝑧(𝑃𝑙) ≤ ∆𝑚, 𝐼𝐼 = 1~4           (4.17) 

which are marked by triangle symbols in Fig. 4-9 (b). Now, if we further define the four 

points, (𝑚𝑎𝑥 𝑥𝐼𝐼 , 𝑚𝑖𝑛 𝑦𝐼𝐼),(𝑚𝑖𝑛 𝑥𝐼𝐼 , 𝑚𝑖𝑛 𝑦𝐼𝐼), (𝑚𝑖𝑛 𝑥𝐼𝐼 , 𝑚𝑎𝑥 𝑦𝐼𝐼),(𝑚𝑎𝑥 𝑥𝐼𝐼 , 𝑚𝑎𝑥 𝑦𝐼𝐼) 

by the diamond symbols, then it is not hard to see from Fig. 4-9 (b) that these four pitch 

points span a rectangular region completely enclosing the sample. 

To sum up in the first layer scan algorithm, we can get a minimum rectangle area 

to cover each interested sample based on the scan pitch points of the Lissajous trajectory, 

and further we can determine all scan amplitudes of the samples based on Lissajous 

scan trajectory in second layer scan as shown below: 
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𝐴𝑥2 =
1

2
(𝑚𝑎𝑥 𝑥𝐼𝐼 − 𝑚𝑖𝑛 𝑥𝐼𝐼)  

𝐴𝑦2 =
1

2
(𝑚𝑎𝑥 𝑦𝐼𝐼 − 𝑚𝑖𝑛 𝑦𝐼𝐼)                                   (4.20) 

The detailed description for second or higher layer scan will follow in the next section. 

4.3.2 Second or higher layer scan 

In the second layer scan, we consider the height variations of the samples at the 

scan points. Typically, the standard deviation is a good evaluation method to the 

varying degree of the sample topography. First, we assume the standard deviation of 

nearest sample at the scan points to be 𝐻𝑠𝑑. Let the standard deviation threshold be set 

as ∆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. When 𝐻𝑠𝑑 ≤ ∆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, it means the sample topography is smooth. On 

the contrary, when 𝐻𝑠𝑑 > ∆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 it implies the sample topography varies severely. 

Next, we will focus on these two situations. 

Situation one: 𝑯𝒔𝒅 ≤ ∆𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

Since the sample topography is smooth, we do not need to consider the height 

variation of this sample at the scan points. For a quick scan in this situation, we first use 

the coordinates of the four scan points (𝑃𝐼𝐼𝐼), and then, find the minimum distance 

between four scan points and ending point of first layer scan (𝑃𝐸), the coordinate point 

can be defined as: 

𝑆𝑛1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝐼𝐼𝐼

‖𝑃𝐼𝐼𝐼 − 𝑃𝐸‖
2
                                       (4.21) 
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By the specified 𝐴𝑥2, 𝐴𝑦2, and ∆𝑑, we can readily determine the scan frequency 

𝑓𝑥2 and 𝑓𝑦2 in the second layer scan. Assume there exists a permissible the maximum 

scan frequency ( 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1)  and the permissible minimum frequency difference 

threshold (𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2). Since 𝑓𝑥2 > 𝑓𝑦2 by Eq. (4.4), if 𝑓𝑥2 ≤ 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and ∆𝑓≥

𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, which means that the desired resolution (∆𝑑) can be achieved within the 

acceptable maximum scan time (∆𝑡) by the scan amplitude (𝐴𝑥2, 𝐴𝑦2) and the scan 

frequency (𝑓𝑥2, 𝑓𝑦2). Additionally, If 𝑓𝑥2 > 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 or ∆𝑓< 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, the desired 

∆𝑑 cannot be achieved. Therefore, for an acceptable scan performance, we use 𝑓𝑥2 =

𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 , 𝑓𝑦2 = 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 − 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 , and regulate the parameters of 𝐴𝑥2, 𝐴𝑦2 

with the new parameters of 𝐴𝑥2(𝑖), 𝐴𝑦2(𝑖) by Eqs. (4.3) and (4.8) to meet the demand 

for achieving ∆𝑑. In this situation, the sample will be completely scanned until 𝐴𝑥2 =

∑ 𝐴𝑥2
𝑎
𝑖=1 (𝑖) and 𝐴𝑦2 = ∑ 𝐴𝑦2

𝑎
𝑖=1 (𝑖). The detailed scan procedure is shown in Fig. 4-8. 

Situation two: 𝑯𝒔𝒅 > ∆𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

When 𝐻𝑠𝑑 > ∆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, it means the variation of sample topography is out of our 

tolerance. Therefore, we need to consider the height variations by calculating the sum of 

all grating weighting of the sample (𝑊𝑡𝑜𝑡𝑎𝑙). To explain grating weighting, referring to 

Fig. 4-10, it neglects the variation of the height information over the diamond shape 

confined by the four scan lines 𝑙𝑖𝑛𝑒[1𝑚]
1 , 𝑙𝑖𝑛𝑒[1𝑚]

2  , 𝑙𝑖𝑛𝑒[1𝑚]
3 , 𝑙𝑖𝑛𝑒[1𝑚]

4 , and it is donated 
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as 𝑊11 here. To compute 𝑊11, there are two ways in general: First one is calculating 

the standard deviations of the height samples over the four scan line segments, and the 

results are 𝐻1𝑚
𝑠𝑑1, 𝐻1𝑚

𝑠𝑑2, 𝐻1𝑚
𝑠𝑑3, 𝐻1𝑚

𝑠𝑑4; second one is calculate the average values of the 

same height samples over the four scan line segments, and obtain the results 𝐻1𝑚
𝑎𝑣1, 

𝐻1𝑚
𝑎𝑣2, 𝐻1𝑚

𝑎𝑣3, 𝐻1𝑚
𝑎𝑣4. 

 

Fig. 4-10 The height variations by calculating the sample grating weighting. 

For our system, prefer to use a mixed 𝑊11 to represent the grating weighting, i.e., 

𝑊11 = 𝛼𝐻1𝑚
𝑠𝑑𝑤 + 𝛽𝐻1𝑚

𝑎𝑣𝑤                                          (4.21) 

where 𝐻1𝑚
𝑠𝑑𝑤 =

(𝐻1𝑚
𝑠𝑑1+𝐻1𝑚

𝑠𝑑2+𝐻1𝑚
𝑠𝑑3+𝐻1𝑚

𝑠𝑑4)

4
 and 𝐻1𝑚

𝑎𝑣𝑤 =
|𝐻1𝑚

𝑎𝑣1−𝐻1𝑚
𝑎𝑣3|+|𝐻1𝑚

𝑎𝑣2−𝐻1𝑚
𝑎𝑣4|

2
, and 𝛼 and 

𝛽 are parameters to be designed by the user. By Eq. (4.21), we can obtain all weighting 

values of the sample as displayed in Fig. 4-11 (a).  

Now, we try to sum all the weighting values of the sample and denote it as 𝑊𝑡𝑜𝑡𝑎𝑙, 

which can be expressed by 𝑊𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑊𝑐𝑑𝑐=1~𝑛
d=1~𝑚

. By referring to the four vertex 



- 87 - 
 

points denoted as 𝑃𝐼𝐼𝐼, we can determine the coordinates of the middle points as 𝑆𝑐1, 

𝑆𝑐2, 𝑆𝑐3, 𝑆𝑐4 as shown in Fig. 4-11.Then, it is not hard to find the scan pitch points 

𝑆𝑝𝑖 , such that 𝑆𝑝𝑖  is closest to 𝑆𝑐𝑖, 𝑖 = 1~4. Next, we try to choose one of the four 

scan pitch points to the ending points of the 1st layer scan, namely, and let it be the 𝑃𝐸 

as starting scan point for the 2nd layer scan. But incidentally we further employ the 

region growing method [48] by a pre-specified threshold ∆𝑊, which can be lead to the 

sub-block with a rectangular scan area (2𝐴𝑥21, 2𝐴𝑦21), as show in Fig. 4-11 (b). By 

𝐴𝑥21, 𝐴𝑦21 , and ∆𝑑 , we can determine the scan frequency 𝑓𝑥21  and 𝑓𝑦21  in the 

sub-block. Assuming there exist an acceptable the maximum scan frequency 

(𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1) and the minimum frequency difference (𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2). If 𝑓𝑥2 ≤ 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 

and ∆𝑓≥ 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, the desired resolution ∆𝑑 can be achieved within the maximum 

scan time (∆𝑡) with the scan amplitude (𝐴𝑥21, 𝐴𝑦21) and the scan frequency (𝑓𝑥21, 𝑓𝑦21).  

However, if 𝑓𝑥2 > 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1  or ∆𝑓< 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 , the resolution ∆𝑑  cannot be 

achieved. In order to achieve an acceptable scan performance, we use 𝑓𝑥2 = 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 

and 𝑓𝑦2 = 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 − 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, which can acquire the scan resolution as ∆𝑠1 in 

the second layer scan. In order to meet the desired resolution ∆𝑑, we must perform third 

or higher layer scan until the condition of ∆𝑠𝑖≥ ∆𝑑. The entire scan procedure can be 

found in Fig. 4-8. 
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Fig. 4-11 (a) Calculate the sample all grating weighting and (b) generate the sub-block 

(blue rectangular area) by region growing 
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Chapter 5 

Controller Design 

In this chapter, the advanced controllers of the hybrid scanner, which consists of an 

xy-electromagnetic scanner and an xy-piezoelectric scanner, will be designed to realize 

the proposed hierarchical local scan method so as to achieve good AFM scanning 

performance. Since the characteristics of the Lissajous scan trajectory is well-known 

and simple, we can incorporate the internal model principle (IMP) into the design 

procedures of these controllers for tracking the scan trajectory well. 

 

5.1 Scan Trajectory Assignment for xy-hybrid 

scanner 

For the proposed Lissajous hierarchical local scan method as discussed in Chapter 

4, by moving the sample and scan probe with xy-scanner, we achieve scanning of the 

sample surface with the assigned scan trajectory. The hybrid xy-scanner in our AFM 

system is composed of a large scan-range xy-electromagnetic scanner and a high 

bandwidth xy-piezoelectric scanner. However, from the system identification in  
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sub-section 3.3.3, although the xy-electromagnetic scanner has the advantage of large 

scan range, its scan bandwidth is only about 20 Hz. Contrarily, although the 

xy-piezoelectric scanner has the advantage of high bandwidth, its scan range is only 

32m32m. For the purpose of obtaining both of the above advantages, the scan 

trajectory needs to be divided into two parts with respective permissible scan ranges in 

the xy-electromagnetic scanner and xy-piezoelectric scanner. According to Fig. 3-9, the 

Lissajous hierarchical local scan trajectory with i-th scan layer in half-period scan time 

(𝑡𝑖) can be described as: 

𝑥(𝑡𝑖) = 𝑥𝑒𝑚(𝑡𝑖) + 𝑥𝑝𝑧(𝑡𝑖) = 𝑥0𝑖 +
𝐴𝑥𝑖

2
cos (2𝜋𝑓𝑥𝑖𝑡𝑖)  

𝑦(𝑡𝑖) = 𝑦𝑒𝑚(𝑡𝑖) + 𝑦𝑝𝑧(𝑡𝑖) = 𝑦0𝑖 +
𝐴𝑦𝑖

2
cos (2𝜋𝑓𝑦𝑖𝑡𝑖)                    (5.1) 

During the scan process, (𝑥0𝑖 , 𝑦0𝑖) donates the initial scan point. Among allowable 

motions of scan trajectory for xy-hybrid scanner, when the scan range is greater than 

32m, it is the xy-electromagnetic scanner which will be employed to track the scan 

trajectory. In other word, if the scan range is less than 32m, it is the xy-piezoelectric 

scanner which will be need for high bandwidth tracking of the assigned scan trajectory. 

Therefore, the scan trajectory based on scan range ( 𝐿𝑠 ) for i-th scan layer to 

xy-electromagnetic scanner and xy-piezoelectric scanner can be arranged as follows: 
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Scenario one: 𝑳𝒔 > 𝟑𝟐𝐦 

{
𝑥𝑒𝑚(𝑡𝑖) = 𝑥0𝑖 +

𝐴𝑥𝑖

2
cos (2𝜋𝑓𝑥𝑖𝑡𝑖)

𝑦𝑒𝑚(𝑡𝑖) = 𝑦0𝑖 +
𝐴𝑦𝑖

2
cos (2𝜋𝑓𝑦𝑖𝑡𝑖) 

  ,   {
𝑥𝑝𝑧(𝑡𝑖) = 0

𝑦𝑝𝑧(𝑡𝑖) = 0 
                 (5.2) 

 

Scenario two: 𝑳𝒔 ≤ 𝟑𝟐𝐦 

{
𝑥𝑒𝑚(𝑡𝑖) = 𝑥0𝑖

𝑦𝑒𝑚(𝑡𝑖) = 𝑦0𝑖  
  ,     {

𝑥𝑝𝑧(𝑡𝑖) =
𝐴𝑥𝑖

2
cos (2𝜋𝑓𝑥𝑖𝑡𝑖)

𝑦𝑝𝑧(𝑡𝑖) =
𝐴𝑦𝑖

2
cos (2𝜋𝑓𝑦𝑖𝑡𝑖) 

                   (5.3) 

In the following sections, the advanced controller will be designed for the two 

scanners to track the assigned scan trajectories. 

 

5.2 IMP based Adaptive Complementary Sliding 

Mode Control 

The adaptive complementary sliding mode control (ACSMC) is an advanced 

control scheme, which combines the beneficial features of the adaptive control and 

complementary sliding mode control. The adaptive law provides the on-line estimation 

of the system parameters and adjusts the controller gain to deal with the modeling 

uncertainties and improve the performance. On the other hand, the complementary 

sliding mode control can improve the system robustness and reject the influence of 
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external disturbance effectively. 

5.2.1 Problem formulation 

During Lissajous hierarchical scanning process, the scan trajectories of the 

xy-electromagnetic scanner in both axes are cosine waveforms with different 

frequencies. The reference position vector 𝑋𝑒𝑚𝑟 of the xy-electromagnetic scanner in 

half-period scan time 𝑡𝑖 of i-th scan layer will be one of the following forms:  

 𝑋𝑒𝑚𝑟 = [𝑥0𝑖 +
𝐴𝑥𝑖

2
cos (2𝜋𝑓𝑥𝑖𝑡𝑖) 𝑦0𝑖 +

𝐴𝑦𝑖

2
cos (2𝜋𝑓𝑦𝑖𝑡𝑖)]

𝑇

      (5.4) 

We can easily find that these reference position vectors satisfy the following dynamics: 

 �̈�𝑒𝑚𝑟 + 𝐾𝑒𝑚𝑟𝑋𝑒𝑚𝑟 + 𝐶𝑒𝑚𝑟 = 0 (5.5) 

where 𝐶𝑒𝑚𝑟 = 𝑑𝑖𝑎𝑔 [−𝑥0𝑖(2𝜋𝑓𝑥𝑖)
2  − 𝑦

0𝑖
(2𝜋𝑓𝑦𝑖)

2
]  and 𝐾𝑒𝑚𝑟 =

𝑑𝑖𝑎𝑔 [(2𝜋𝑓𝑥𝑖)
2  (2𝜋𝑓𝑦𝑖)

2
] are diagonal matrices. Therefore, perfect tracking of the 

cosine waveform can be achieved by incorporating the reference model as an internal 

model into the closed-loop system of the xy-electromagnetic scanner according to 

internal model principle. Moreover, in consideration of system parameter uncertainties 

and external disturbance while scanning, we design an adaptive complementary sliding 

mode controller based on internal model principle (IMP) for the xy-electromagnetic 

scanner to track the cosine waveform trajectory precisely. 

First, we divide the disturbance term 𝐷𝑒𝑚 of Eq. (5.2) into constant uncertainty 
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and varying uncertainty terms, and rewrite the dynamic equation of the 

xy-electromagnetic scanner as follows: 

 �̈�𝑒𝑚 = 𝐾𝑒𝑚𝑋𝑒𝑚 + 𝐵𝑒𝑚�̇�𝑒𝑚 + 𝐶𝑒𝑚𝑈𝑒𝑚 + 𝐷𝑐 + 𝐷𝑣  (5.6) 

where constant uncertainty 𝐷𝑐 = [𝑑𝑐1 𝑑𝑐2]
𝑇 represents the model uncertainty, and 

time-varying uncertainty 𝐷𝑣 = [𝑑𝑣1 𝑑𝑣2]
𝑇  represents the influence of external 

disturbance and coupling force from the piezoelectric scanner. Suppose the varying 

uncertainty is bounded and satisfy ‖𝐷𝑣‖∞ ≤ �̅�.  

To begin with, incorporating the reference model in Eq. (5.5) as an internal model 

into the closed-loop system, the relationship between the tracking error vector 𝐸𝑒𝑚 and 

the internal model state vector ℎ𝑒𝑚 can be obtained as follows:  

 𝐸𝑒𝑚 = ℎ̈𝑒𝑚 + 𝐾𝑒𝑚𝑟ℎ𝑒𝑚 (5.7) 

The tracking error induced by the forced response of the reference trajectory with the 

form Eq. (5.5) would be zero according to Eq. (5.7). Hence, the rest of the problem is to 

design a controller to stabilize the closed-loop system with the internal model so that the 

tracking error induced by the natural response decays to zero as well. 

Here, we define the tracking error vector without reference trajectory as: 

 𝐸𝑒𝑚 = 0 − 𝑋𝑒𝑚 = [𝑥𝑒𝑚 𝑦𝑒𝑚]𝑇 (5.8) 

Substituting Eq. (5.8) into Eq. (5.6), we can obtain the error dynamics as below: 
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 �̈�𝑒𝑚 = −�̈�𝑒𝑚 = −𝐾𝑒𝑚𝑋𝑒𝑚 − 𝐵𝑒𝑚�̇�𝑒𝑚 − 𝐶𝑒𝑚𝑈𝑒𝑚 − 𝐷𝑐 − 𝐷𝑣  (5.9) 

which shows that this plant is treated as an MIMO system. The inevitable coupling 

effect is regarded as the off-diagonal terms in the coefficient matrices 𝐾𝑒𝑚 and 𝐵𝑒𝑚, 

which will be estimated by the adaptive algorithm. Substituting Eq. (5.9) into Eq. (5.7), 

the internal model state dynamics are obtained as: 

 ℎ𝑒𝑚
(4)

= −𝐾𝑒𝑚𝑋𝑒𝑚 − 𝐵𝑒𝑚�̇�𝑒𝑚 − 𝐶𝑒𝑚𝑈𝑒𝑚 − 𝐷𝑐 − 𝐷𝑣 − 𝐾𝑒𝑚𝑟ℎ̈𝑒𝑚 (5.10) 

Next, we need to design a proper control input vector 𝑈𝑒𝑚 such that the closed-loop 

system with the internal model is exponentially stable. 

 

5.2.2 Control algorithm 

The schematic diagram of the proposed IMP based ACSMC for cosine waveform 

tracking of the xy-electromagnetic scanner is shown in Fig. 5-1. 

 

Fig. 5-1 The schematic diagram of internal model principle based adaptive 

complementary sliding mode control 

First, we define the generalized sliding surface 𝑆𝑒𝑚  and the complementary 
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sliding surface 𝑆𝑒𝑚𝑐 as the follows: 

 𝑆𝑒𝑚 = ℎ⃛𝑒𝑚 + 4Λ𝑒𝑚ℎ̈𝑒𝑚 + 6Λ𝑒𝑚
2 ℎ̇𝑒𝑚 + 4Λ𝑒𝑚

3 ℎ𝑒𝑚 + Λ𝑒𝑚
4 𝐻𝑒𝑚 

         = [𝑠𝑒𝑚1 𝑠𝑒𝑚2]𝑇 

(5.11) 

 𝑆𝑒𝑚𝑐 = ℎ⃛𝑒𝑚 + 2𝛬𝑒𝑚ℎ̈𝑒𝑚 − 2𝛬𝑒𝑚
3 ℎ𝑒𝑚 − 𝛬𝑒𝑚

4 𝐻𝑒𝑚 

          = [𝑠𝑒𝑚𝑐1 𝑠𝑒𝑚𝑐2]𝑇 

(5.12) 

where Λ𝑒𝑚 = 𝑑𝑖𝑎𝑔[𝜆𝑒𝑚1 𝜆𝑒𝑚2] is a positive diagonal matrix to be designed and 

𝛨𝑒𝑚(𝑡) = ∫ ℎ𝑒𝑚(𝜏)𝑑𝜏
𝑡

0
. Here, 𝑆𝑒𝑚 and 𝑆𝑒𝑚𝑐 have the following relationship: 

 �̇�𝑒𝑚𝑐 + Λ𝑒𝑚(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) = �̇�𝑒𝑚 (5.13) 

From Eq. (5.11) and Eq. (5.12), we can easily find that 𝑆𝑒𝑚 and 𝑆𝑒𝑚𝑐 consist of the 

internal model state term, and its derivative as well as its integral terms. The main 

purpose is to drive both the sliding surface and complementary sliding surface variables 

to zero so that we can ensure ℎ𝑒𝑚, ℎ̈𝑒𝑚 and ℎ⃛𝑒𝑚 will simultaneously converge to 

zero as well. 

The developed ACSMC can provide on-line estimation of system parameters and 

tuning of controller gains to accommodate the environmental changes. According to the 

dynamics of sliding surface and complementary sliding surface, the control law is 

designed as 



- 96 - 
 

 𝑈𝑒𝑚 = �̂�𝑒𝑚
−1

[−�̂�𝑒𝑚𝑋𝑒𝑚 − �̂�𝑒𝑚�̇�𝑒𝑚 − �̂�𝑐 − 𝐾𝑒𝑚𝑟ℎ̈𝑒𝑚 + 5Λ𝑒𝑚ℎ⃛𝑒𝑚

+ 10Λ𝑒𝑚
2 ℎ̈𝑒𝑚+10Λ𝑒𝑚

3 ℎ̇𝑒𝑚 + 5Λ𝑒𝑚
4 ℎ𝑒𝑚 + Λ𝑒𝑚

5 𝐻𝑒𝑚

+ 𝐺𝑒𝑚𝑠𝑔𝑛(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)] 

(5.14) 

where �̂�𝑒𝑚, �̂�𝑒𝑚, �̂�𝑒𝑚, and �̂�𝑐 are the estimated value of 𝐶𝑒𝑚, 𝐾𝑒𝑚, 𝐵𝑒𝑚, and 𝐷𝑐, 

respectively, 𝐺𝑒𝑚 ≡ 𝑑𝑖𝑎𝑔[𝑔𝑒𝑚1 𝑔𝑒𝑚2], ∀𝑔𝑒𝑚𝑖 > 0 , is the high gain such that 

𝑔𝑒𝑚1, 𝑔𝑒𝑚2 > �̅�. 

However, the use of hard switching sign function 𝑠𝑔𝑛(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) in the control 

law would lead to chattering phenomenon of the control input, which may excite 

resonant modes of the system. Hence, similarly we use a soft switching saturation 

function 𝑠𝑎𝑡(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) as defined in the following instead of the hard switching 

term: 

 𝑠𝑎𝑡(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) ≡ [𝑠𝑎𝑡(𝑠𝑒𝑚1 + 𝑠𝑒𝑚𝑐1) 𝑠𝑎𝑡(𝑠𝑒𝑚2 + 𝑠𝑒𝑚𝑐2)]
𝑇  (5.15) 

where 𝑠𝑎𝑡(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖) = {

1
𝑠𝑒𝑚𝑖+𝑠𝑒𝑚𝑐𝑖

𝑒𝑚

−1

    𝑖𝑓   −

𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖 > 휀𝑒𝑚

휀𝑒𝑚 ≤ 𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖 ≤ 휀𝑒𝑚

𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖 < −휀𝑒𝑚

 and 휀𝑒𝑚 

is a small positive parameter to adjust the rate of switching operation. Eq. (5.14) then can 

be expressed as 

 𝑈𝑒𝑚 = �̂�𝑒𝑚
−1

[−�̂�𝑒𝑚𝑋𝑒𝑚 − �̂�𝑒𝑚�̇�𝑒𝑚 − �̂�𝑐 − 𝐾𝑒𝑚𝑟ℎ̈𝑒𝑚 + 5Λ𝑒𝑚ℎ⃛𝑒𝑚

+ 10Λ𝑒𝑚
2 ℎ̈𝑒𝑚+10Λ𝑒𝑚

3 ℎ̇𝑒𝑚 + 5Λ𝑒𝑚
4 ℎ𝑒𝑚 + Λ𝑒𝑚

5 𝐻𝑒𝑚

+ 𝐺𝑒𝑚𝑠𝑎𝑡(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)] 

(5.16) 
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 5.2.3 Stability analysis 

Define a Lyapunov function candidate 𝑉𝑒𝑚 with the following form, which is a 

positive definite function: 

 𝑉𝑒𝑚 =
1

2
𝑆𝑒𝑚

𝑇𝑆𝑒𝑚 +
1

2
𝑆𝑒𝑚𝑐

𝑇𝑆𝑒𝑚𝑐 +
1

2
𝑡𝑟 (�̃�𝑒𝑚

𝑇
𝛤1

−1�̃�𝑒𝑚) 

            +
1

2
𝑡𝑟 (�̃�𝑒𝑚

𝑇
𝛤2

−1�̃�𝑒𝑚) +
1

2
𝑡𝑟 (�̃�𝑒𝑚

𝑇
𝛤3

−1�̃�𝑒𝑚) 

            +
1

2
𝑡𝑟(�̃�𝑐

𝑇
𝛤4

−1�̃�𝑐) 

(5.17) 

where 𝛤𝑖 = 𝑑𝑖𝑎𝑔[𝛾𝑖1, 𝛾𝑖2], 𝑖 = 1~4, are all positive diagonal matrices, 𝑡𝑟(∙) is the 

trace of a matrix. �̃�𝑒𝑚, �̃�𝑒𝑚, �̃�𝑒𝑚, and �̃�𝑐 are the estimation errors, which are defined 

as �̃�𝑒𝑚 = 𝐾𝑒𝑚 − �̂�𝑒𝑚 , �̃�𝑒𝑚 = 𝐵𝑒𝑚 − �̂�𝑒𝑚 , �̃�𝑒𝑚 = 𝐶𝑒𝑚 − �̂�𝑒𝑚 , and �̃�𝑐 = 𝐷𝑐 − �̂�𝑐 . 

Take the time derivative of the Lyapunov function candidate, we can obtain 

 �̇�𝑒𝑚 = 𝑆𝑒𝑚
𝑇�̇�𝑒𝑚 + 𝑆𝑒𝑚𝑐

𝑇�̇�𝑒𝑚𝑐 + 𝑡𝑟 (�̃�𝑒𝑚
𝑇
𝛤1

−1�̇̃�𝑒𝑚) 

            +𝑡𝑟 (�̃�𝑒𝑚
𝑇
𝛤2

−1�̇̃�𝑒𝑚) + 𝑡𝑟 (�̃�𝑒𝑚
𝑇
𝛤3

−1�̇̃�𝑒𝑚) 

            +𝑡𝑟 (�̃�𝑐
𝑇
𝛤4

−1�̃�𝑐
̇ ) 

(5.18) 

According to Eq. (5.13), the first two terms of Eq. (5.18) can be rewritten as 

 𝑆𝑒𝑚
𝑇�̇�𝑒𝑚 + 𝑆𝑒𝑚𝑐

𝑇�̇�𝑒𝑚𝑐 

= 𝑆𝑒𝑚
𝑇�̇�𝑒𝑚 + 𝑆𝑒𝑚𝑐

𝑇[�̇�𝑒𝑚 − Λ𝑒𝑚(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)] 

= (𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)
𝑇(�̇�𝑒𝑚 − Λ𝑒𝑚𝑆𝑒𝑚𝑐)  

= −(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)
𝑇Λ𝑒𝑚(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) 

(5.19) 
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+(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)
𝑇(�̇�𝑒𝑚 + Λ𝑒𝑚𝑆𝑒𝑚)  

Here, �̇�𝑒𝑚 + Λ𝑒𝑚𝑆𝑒𝑚 can be reformulated by Eq. (5.10), Eq. (5.11) and Eq. (5.16) as 

 �̇�𝑒𝑚 + Λ𝑒𝑚𝑆𝑒𝑚 

= ℎ𝑒𝑚
(4)

+ 5Λ𝑒𝑚ℎ⃛𝑒𝑚 + 10Λ𝑒𝑚
2 ℎ̈𝑒𝑚 + 10Λ𝑒𝑚

3 ℎ̇𝑒𝑚 + 5Λ𝑒𝑚
4 ℎ𝑒𝑚 

    +Λ𝑒𝑚
5 𝐻𝑒𝑚 

= −𝐾𝑒𝑚𝑋𝑒𝑚 − 𝐵𝑒𝑚�̇�𝑒𝑚 − 𝐶𝑒𝑚𝑈𝑒𝑚 − 𝐷𝑐 − 𝐷𝑣 − 𝐾𝑒𝑚𝑟ℎ̈𝑒𝑚 + 5Λ𝑒𝑚ℎ⃛𝑒𝑚 

    +10Λ𝑒𝑚
2 ℎ̈𝑒𝑚 + 10Λ𝑒𝑚

3 ℎ̇𝑒𝑚 + 5Λ𝑒𝑚
4 ℎ𝑒𝑚 + Λ𝑒𝑚

5 𝐻𝑒𝑚 

= −(�̂�𝑒𝑚+�̃�𝑒𝑚)𝑋𝑒𝑚 − (�̂�𝑒𝑚+�̃�𝑒𝑚)�̇�𝑒𝑚 

    −(�̂�𝑒𝑚+�̃�𝑒𝑚)�̂�𝑒𝑚
−1

[−�̂�𝑒𝑚𝑋𝑒𝑚 − �̂�𝑒𝑚�̇�𝑒𝑚 − �̂�𝑐 + 5Λ𝑒𝑚ℎ⃛𝑒𝑚 

    +10Λ𝑒𝑚
2 ℎ̈𝑒𝑚 + 10Λ𝑒𝑚

3 ℎ̇𝑒𝑚 + 5Λ𝑒𝑚
4 ℎ𝑒𝑚 + Λ𝑒𝑚

5 𝐻𝑒𝑚 

    +𝐺𝑒𝑚𝑠𝑎𝑡(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)] − (�̂�𝑐+�̃�𝑐) − 𝐷𝑣 − 𝐾𝑒𝑚𝑟ℎ̈𝑒𝑚 + 5Λ𝑒𝑚ℎ⃛𝑒𝑚 

    +10Λ𝑒𝑚
2 ℎ̈𝑒𝑚 + 10Λ𝑒𝑚

3 ℎ̇𝑒𝑚 + 5Λ𝑒𝑚
4 ℎ𝑒𝑚 + Λ𝑒𝑚

5 𝐻𝑒𝑚 

= −�̃�𝑒𝑚𝑋𝑒𝑚 − �̃�𝑒𝑚�̇�𝑒𝑚 − �̃�𝑒𝑚𝑈𝑒𝑚 − �̃�𝑐 − 𝐷𝑣 

    −𝐺𝑒𝑚𝑠𝑎𝑡(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) 

(5.20) 

Then, we can substitute Eq. (5.19) and Eq. (5.20) into Eq. (5.18), and applying the 

following trace operations: 

 𝑎. 𝑡𝑟(𝐴𝐵)  =  𝑡𝑟(𝐵𝐴),  for any 𝐴, 𝐵 ∈  𝑅𝑛×𝑛 

𝑏. 𝑡𝑟(𝐴 + 𝐵)  =  𝑡𝑟(𝐵 + 𝐴),  for any 𝐴, 𝐵 ∈  𝑅𝑛×𝑛 
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𝑐. 𝑡𝑟(𝐴𝐵𝑇)  =  𝑡𝑟(𝐵𝐴𝑇)  =  𝐴𝑇𝐵 =  𝐵𝑇𝐴,  for any 𝐴, 𝐵 ∈  𝑅𝑛×1 

so that Eq. (5.18) can be rewritten as the following expression: 

 �̇�𝑒𝑚 = −(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)
𝑇Λ𝑒𝑚(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) 

      −(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)
𝑇[𝐺𝑒𝑚𝑠𝑎𝑡(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) + 𝐷𝑣] 

      +𝑡𝑟 [−�̃�𝑒𝑚
𝑇
(𝛤1

−1�̇̃�𝑒𝑚 + (𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)𝑋𝑒𝑚
𝑇 )] 

      +𝑡𝑟 [−�̃�𝑒𝑚
𝑇
(𝛤2

−1�̇̃�𝑒𝑚 + (𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)�̇�𝑒𝑚
𝑇 )] 

      +𝑡𝑟 [−�̃�𝑒𝑚
𝑇
(𝛤3

−1�̇̃�𝑒𝑚 + (𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)𝑈𝑒𝑚
𝑇 )] 

      +𝑡𝑟 [−�̃�𝑐
𝑇
(𝛤4

−1�̇̃�𝑐 + (𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐))] 

(5.21) 

By using the σ-modification [49] to establish the boundedness in the presence of 

modeling error and choose the robust adaptive laws in the following form: 

 �̇̂�𝑒𝑚 = �̇̃�𝑒𝑚 = −𝛤1(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)𝑋𝑒𝑚
𝑇 − 𝛤1Σ1�̂�𝑒𝑚 

�̇̂�𝑒𝑚 = �̇̃�𝑒𝑚 = −𝛤2(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)�̇�𝑒𝑚
𝑇 − 𝛤2Σ2�̂�𝑒𝑚 

�̇̂�𝑒𝑚 = �̇̃�𝑒𝑚 = −𝛤3(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)𝑈𝑒𝑚
𝑇 − 𝛤3Σ3�̂�𝑒𝑚 

�̂�𝑐
̇ = �̃�𝑐

̇ = −𝛤4(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) − 𝛤4Σ4�̂�𝑐 

(5.22) 

where Σ𝑖 = 𝑑𝑖𝑎𝑔[𝜎𝑖1, 𝜎𝑖2], 𝑖 = 1~4, are all positive diagonal matrices. Substitute Eq. 

(5.22) into Eq. (5.21), then we obtain 

 �̇�𝑒𝑚 = −(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)
𝑇Λ𝑒𝑚(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) 

      −(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐)
𝑇[𝐺𝑒𝑚𝑠𝑎𝑡(𝑆𝑒𝑚 + 𝑆𝑒𝑚𝑐) + 𝐷𝑣] 

(5.23) 
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      +∑ ∑ [𝜎1𝑖�̃�𝑖𝑗�̂�𝑖𝑗 + 𝜎2𝑖�̃�𝑖𝑗�̂�𝑖𝑗 + 𝜎3𝑖�̃�𝑖𝑗�̂�𝑖𝑗 + 𝜎4𝑖�̃�𝑖𝑗�̂�𝑖𝑗]
2
𝑗=1

2
𝑖=1  

Here, we utilize completion of squares and then the sign indeterminate term in Eq. (5.23) 

satisfies 

 𝜎1𝑖�̃�𝑖𝑗�̂�𝑖𝑗 = 𝜎1𝑖�̃�𝑖𝑗(𝑘𝑖𝑗 − �̃�𝑖𝑗) 

                 ≤ −𝜎1𝑖|�̃�𝑖𝑗|
2
+ 𝜎1𝑖|�̃�𝑖𝑗| ∙ |𝑘𝑖𝑗| 

                 ≤ −
𝜎1𝑖

2
|�̃�𝑖𝑗|

2
−

𝜎1𝑖

2
(|�̃�𝑖𝑗| − |𝑘𝑖𝑗|)

2
+

𝜎1𝑖

2
|𝑘𝑖𝑗|

2
 

                 ≤
𝜎1𝑖

2
|𝑘𝑖𝑗|

2
 

(5.24) 

A similar inequality can also be obtained for 𝜎2𝑖�̃�𝑖𝑗�̂�𝑖𝑗 , 𝜎3𝑖�̃�𝑖𝑗�̂�𝑖𝑗  and 𝜎4𝑖�̃�𝑖𝑗�̂�𝑖𝑗 , 

respectively. Substituting these inequalities into Eq. (5.23), we can find that �̇�𝑒𝑚 

satisfies the following inequality:  

 �̇�𝑒𝑚 ≤ −∑ 𝜆𝑒𝑚𝑖(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)
22

𝑖=1   

      −∑ (𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)[𝑔𝑒𝑚𝑖𝑠𝑎𝑡(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖) + 𝑑𝑣𝑖]
2
𝑖=1  

      +
1

2
∑ ∑ [𝜎1𝑖|𝑘𝑖𝑗|

2
+ 𝜎2𝑖|𝑏𝑖𝑗|

2
+ 𝜎3𝑖|𝑐𝑖𝑗|

2
+ 𝜎4𝑖|𝑑𝑖𝑗|

2
]2

𝑗=1
2
𝑖=1  

(5.25) 

Because complementary sliding mode control scheme with saturation function 

belongs to boundary layer control, the analysis of parameters 𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖 inside or 

outside the boundary layer 휀𝑒𝑚 should be taken into consideration. To begin with, 

considering the complementary sliding variables are outside the boundary layer, i.e, 

|𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖| > 휀𝑒𝑚 , the saturation function can be readily replaced by the sign 
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function. So, the element of the second term in Eq. (5.25) can be expressed as follows 

and satisfy the inequality: 

 (𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)[𝑔𝑒𝑚𝑖𝑠𝑎𝑡(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖) + 𝑑𝑣𝑖] 

= (𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)[𝑔𝑒𝑚𝑖𝑠𝑔𝑛(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖) + 𝑑𝑣𝑖] 

= |𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖|𝑔𝑒𝑚𝑖 + (𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)𝑑𝑣𝑖 

≥ |𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖|(𝑔𝑒𝑚𝑖 − �̅�) 

(5.26) 

whereby, Eq. (5.25) can be rewritten as: 

 �̇�𝑒𝑚 ≤ −∑ 𝜆𝑒𝑚𝑖(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)
22

𝑖=1   

      −∑ |𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖|(𝑔𝑒𝑚𝑖 − �̅�)2
𝑖=1  

     +
1

2
∑ ∑ [𝜎1𝑖|𝑘𝑖𝑗|

2
+ 𝜎2𝑖|𝑏𝑖𝑗|

2
+ 𝜎3𝑖|𝑐𝑖𝑗|

2
+ 𝜎4𝑖|𝑑𝑖𝑗|

2
]2

𝑗=1
2
𝑖=1  

(5.27) 

Since 𝑔𝑒𝑚𝑖 > �̅�, Eq. (5.27) becomes 

 �̇�𝑒𝑚 ≤ −∑ 𝜆𝑒𝑚𝑖(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)
22

𝑖=1   

            +
1

2
∑ ∑ [𝜎1𝑖|𝑘𝑖𝑗|

2
+ 𝜎2𝑖|𝑏𝑖𝑗|

2
+ 𝜎3𝑖|𝑐𝑖𝑗|

2
+ 𝜎4𝑖|𝑑𝑖𝑗|

2
]2

𝑗=1
2
𝑖=1   

(5.28) 

Next, consider the complementary sliding variables which are inside the boundary 

layer, i.e. |𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖| ≤ 휀𝑒𝑚, the saturation function will be replaced by 
𝑠𝑒𝑚𝑖+𝑠𝑒𝑚𝑐𝑖

𝑒𝑚
. 

Hence, the element of the second term in Eq. (5.25) can be expressed as follows and 

satisfies the inequality: 
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 (𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)[𝑔𝑒𝑚𝑖𝑠𝑎𝑡(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖) + 𝑑𝑣𝑖] 

= (𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖) [𝑔𝑒𝑚𝑖 (
𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖

휀𝑒𝑚
) + 𝑑𝑣𝑖] 

=
𝑔𝑒𝑚𝑖

휀𝑒𝑚

(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)
2 + (𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)𝑑𝑣𝑖 

≥
𝑔𝑒𝑚𝑖

휀𝑒𝑚

|𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖|
2 − �̅�|𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖| 

=
𝑔𝑒𝑚𝑖

휀𝑒𝑚

|𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖|
2 − �̅�|𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖| +

휀𝑒𝑚

4𝑔𝑒𝑚𝑖
�̅�2 −

휀𝑒𝑚

4𝑔𝑒𝑚𝑖
�̅�2 

= (√
𝑔𝑒𝑚𝑖

휀𝑒𝑚

|𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖| −
1

2
√

휀𝑒𝑚

𝑔𝑒𝑚𝑖
�̅�)

2

−
휀𝑒𝑚

4𝑔𝑒𝑚𝑖
�̅�2 

(5.29) 

Thus, �̇�𝑒𝑚 can be rewritten as: 

 �̇�𝑒𝑚 ≤ −∑ 𝜆𝑒𝑚𝑖(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)
22

𝑖=1   

            −∑ [(√
𝑔𝑒𝑚𝑖

𝑒𝑚
|𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖| −

1

2
√

𝑒𝑚

𝑔𝑒𝑚𝑖
�̅�)

2

− 𝑒𝑚

4𝑔𝑒𝑚𝑖
�̅�2]2

𝑖=1   

            +
1

2
∑ ∑ [𝜎1𝑖|𝑘𝑖𝑗|

2
+ 𝜎2𝑖|𝑏𝑖𝑗|

2
+ 𝜎3𝑖|𝑐𝑖𝑗|

2
+ 𝜎4𝑖|𝑑𝑖𝑗|

2
]2

𝑗=1
2
𝑖=1   

    ≤ −∑ 𝜆𝑒𝑚𝑖(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)
22

𝑖=1 + ∑ [ 𝑒𝑚

4𝑔𝑒𝑚𝑖
�̅�2]2

𝑖=1  

            +
1

2
∑ ∑ [𝜎1𝑖|𝑘𝑖𝑗|

2
+ 𝜎2𝑖|𝑏𝑖𝑗|

2
+ 𝜎3𝑖|𝑐𝑖𝑗|

2
+ 𝜎4𝑖|𝑑𝑖𝑗|

2
]2

𝑗=1
2
𝑖=1   

(5.30) 

After considering two conditions about 𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖 with respect to the boundary 

layer, we can conclude the most conservative stability by Eq. (5.28) and Eq. (5.30). 

According to Lyapunov stability theorem, when 
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then 

∑ 𝜆𝑒𝑚𝑖(𝑠𝑒𝑚𝑖 + 𝑠𝑒𝑚𝑐𝑖)
22

𝑖=1 ≥
1

2
∑ ∑ [𝜎1𝑖|𝑘𝑖𝑗|

2
+ 𝜎2𝑖|𝑏𝑖𝑗|

2
+2

𝑗=1
2
𝑖=1

𝜎3𝑖|𝑐𝑖𝑗|
2
+ 𝜎4𝑖|𝑑𝑖𝑗|

2
+ 𝑒𝑚

4𝑔𝑒𝑚𝑖
�̅�2]  

 

�̇�𝑒𝑚 ≤ 0 

(5.31) 

which implies that 𝑉𝑒𝑚, �̇�𝑒𝑚 ∈ 𝐿∞ and thus 𝑆𝑒𝑚, 𝑆𝑒𝑚𝑐, �̃�𝑒𝑚, �̃�𝑒𝑚, �̃�𝑒𝑚, �̃�𝑐 ∈ 𝐿∞. 

Hence, ℎ⃛𝑒𝑚 , ℎ̈𝑒𝑚 , ℎ̇𝑒𝑚 , ℎ𝑒𝑚 ∈ 𝐿∞  and 𝐸𝑒𝑚 , �̇�𝑒𝑚 ∈ 𝐿∞  according to Eq. (5.9). 

Moreover, we can further verify that |𝐸𝑒𝑚(𝑡)| will converge to a residual set whose 

size is related to 𝜎𝑖𝑗,
𝑒𝑚

𝑔𝑒𝑚𝑖
 . 

 

5.3 IMP based Neural Network Complementary 

Sliding Mode Control 

The neural network complementary sliding model control (NNCSMC) is an 

advanced control scheme, which combines the advantages of two different control 

methods. The neural network is featured with the ability to model complex relationships 

between inputs and outputs and approximate nonlinear behaviors. On the other hand, 

the complementary sliding mode control can improve system robustness and then 

reduce the influence of external disturbance effectively. Furthermore, compared with 
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conventional sliding mode control [50], this control scheme can reduce the guaranteed 

ultimate bound of the tracking error by half and improve the tracking performance [51]. 

5.3.1 Problem formulation 

During the Lissajous scanning process, the main task of xy-piezoelectric scanner is 

to track the motion of two single-frequency cosine waveforms while the 

xy-electromagnetic scanner is regulated at the desired position. Thus, the reference 

position vector of the xy-piezoelectric scanner will be one of the following forms:  

 𝑋𝑝𝑧𝑟 = [
𝐴𝑥𝑖

2
𝑐𝑜𝑠(2𝜋𝑓𝑥𝑖𝑡𝑖)

𝐴𝑦𝑖

2
𝑐𝑜𝑠(2𝜋𝑓𝑦𝑖𝑡𝑖)]

𝑇

 (5.32) 

It’s easy to find that these reference position vectors satisfy the following dynamical 

equation: 

 �̈�𝑝𝑧𝑟 + 𝐾𝑝𝑧𝑟𝑋𝑝𝑧𝑟 = 0 (5.33) 

where 𝐾𝑝𝑧𝑟 = 𝑑𝑖𝑎𝑔 [(2𝜋𝑓𝑥𝑖)
2  (2𝜋𝑓𝑦𝑖)

2
] is a diagonal matrix. Ideally, perfect tracking 

can be achieved by incorporating the reference model as an internal model into the 

closed-loop system according to internal model principle. However, since the 

piezoelectric scanner has hysteresis effect and external disturbance in the scanning 

process, we design a neural network complementary sliding model controller based on 

internal model principle to achieve precision tracking of the cosine waveform for the 

xy-piezoelectric scanner. 
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The hysteresis effect is caused by the nonlinear restoring force of piezoelectric 

actuator, which is an unknown variable since we do not have appropriate force sensor to 

measure it. Hence, we design a radial basis function neural network based model-free 

controller to compensate the hysteresis effect [52]. The radial basis function neural 

network is characterized by its simple structure, fast learning, and better approximation 

capabilities, which has been utilized widely in the fields of system modeling, 

identification, and nonlinear control. Hence, we employ the radial basis function neural 

network to provide on-line computation of the equivalent control input for the 

xy-piezoelectric scanner.  

First, by incorporating the reference model in Eq. (5.33) as an internal model into 

the closed-loop system, the relationship between the tracking error vector 𝐸𝑝𝑧 and the 

internal model state vector ℎ𝑝𝑧 can be obtained as below: 

 𝐸𝑝𝑧 = ℎ̈𝑝𝑧 + 𝐾𝑝𝑧𝑟ℎ𝑝𝑧 (5.34) 

According to Eq. (5.34), the tracking error induced by the forced response of the 

reference trajectory with the form of Eq. (5.33) would be zero. Therefore, the remaining 

problem is to design a controller for stabilization of the closed-loop system with the 

internal model such that the tracking error induced by the natural response would decay 

to zero. 
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Here, we define the tracking error vector without reference trajectory as:  

 𝐸𝑝𝑧 = 0 − 𝑋𝑝𝑧 = [𝑥𝑝𝑧 𝑦𝑝𝑧]𝑇 (5.35) 

Substituting Eq. (3.8) into Eq. (5.35), we can obtain the error dynamics as below: 

 �̈�𝑝𝑧 = −�̈�𝑝𝑧 = −𝐾𝑝𝑧𝑋𝑝𝑧 − 𝐵𝑝𝑧�̇�𝑝𝑧 − 𝐶𝑝𝑧𝑈𝑝𝑧 + 𝑅𝑝𝑧 − 𝐷𝑝𝑧 (5.36) 

which implies that the plant is considered as a MIMO system. To simplify the 

representation, define 𝑓 = −𝐾𝑝𝑧𝑋𝑝𝑧 − 𝐵𝑝𝑧�̇�𝑝𝑧 + 𝑅𝑝𝑧 to be an unknown time-varying 

function of the system states, so that Eq. (5.36) can be simplified as:  

 �̈�𝑝𝑧 = 𝑓 − 𝐶𝑝𝑧𝑈𝑝𝑧 − 𝐷𝑝𝑧 (5.37) 

Note that 𝐶𝑝𝑧 = 𝑑𝑖𝑎𝑔 [
𝐶𝑝𝑧𝑥

𝑚𝑝𝑧

𝐶𝑝𝑧𝑦

𝑚𝑝𝑧
] = 𝑑𝑖𝑎𝑔[𝑐𝑝𝑧1 𝑐𝑝𝑧2] is a positive diagonal matrix 

since the piezoelectric coefficients and equivalent mass of the piezoelectric scanner are 

all positive values. Substituting Eq. (5.37) into Eq. (5.34), we can obtain the internal 

model state dynamics as shown below: 

 ℎ𝑝𝑧
(4)

= 𝑓 − 𝐶𝑝𝑧𝑈𝑝𝑧 − 𝐷𝑝𝑧 − 𝐾𝑝𝑧𝑟ℎ̈𝑝𝑧 (5.38) 

The main objective in the following controller design procedure is seeking a proper 

control input vector 𝑈𝑝𝑧 such that the closed-loop system with the internal model is 

exponentially stable. 
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5.3.2 Control algorithm 

    The schematic diagram of the proposed internal model principle based neural 

network complementary sliding mode control for cosine waveform tracking of the 

xy-piezoelectric scanner is shown in Fig. 5-2. 

 

Fig. 5-2 The schematic diagram of internal model principle based neural network 

complementary sliding mode control 

First, in order to develop the complementary sliding mode control, we define the 

generalized sliding surface 𝑆𝑝𝑧 and the complementary sliding surface 𝑆𝑝𝑧𝑐 as the 

following form: 

 𝑆𝑝𝑧 = ℎ⃛𝑝𝑧 + 4Λ𝑝𝑧ℎ̈𝑝𝑧 + 6Λ𝑝𝑧
2 ℎ̇𝑝𝑧 + 4Λ𝑝𝑧

3 ℎ𝑝𝑧 + Λ𝑝𝑧
4 𝐻𝑝𝑧 

       = [𝑠𝑝𝑧1 𝑠𝑝𝑧2]𝑇 

(5.39) 

 𝑆𝑝𝑧𝑐 = ℎ⃛𝑝𝑧 + 2𝛬𝑝𝑧ℎ̈𝑝𝑧 − 2𝛬𝑝𝑧
3 ℎ𝑝𝑧 − 𝛬𝑝𝑧

4 𝐻𝑝𝑧 

         = [𝑠𝑝𝑧𝑐1 𝑠𝑝𝑧𝑐2]𝑇 

(5.40) 

where 𝛬𝑝𝑧 = 𝑑𝑖𝑎𝑔[𝜆𝑝𝑧1 𝜆𝑝𝑧2] is a positive diagonal matrix to be designed and 

𝛨𝑝𝑧(𝑡) = ∫ ℎ𝑝𝑧(𝜏)𝑑𝜏
𝑡

0
. And the relationship between 𝑆𝑝𝑧 and 𝑆𝑝𝑧𝑐 is shown in the 
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following expression: 

 �̇�𝑝𝑧𝑐 + Λ𝑝𝑧(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐) = �̇�𝑝𝑧 (5.41) 

If all signals in Eq. (5.38) were known, a perfect equivalent control input is given by:  

 𝑈𝑒𝑞 = 𝐶𝑝𝑧
−1(−ℎ𝑝𝑧

(4)
+ 𝑓 − 𝐷𝑝𝑧 − 𝐾𝑝𝑧𝑟ℎ̈𝑝𝑧 − �̇�𝑝𝑧 − Λ𝑝𝑧𝑆𝑝𝑧) 

    = [𝑢𝑒𝑞1 𝑢𝑒𝑞2]𝑇 

(5.42) 

Substituting Eq. (5.42) into Eq. (5.38), we can find that:  

 �̇�𝑝𝑧 + Λ𝑝𝑧𝑆𝑝𝑧 = 0 (5.43) 

Since Λ𝑝𝑧 is a positive diagonal matrix, the sliding surface 𝑆𝑝𝑧 will converge to zero 

exponentially and the internal model state will converge to zero as well. However, we 

cannot obtain the signals of restoring force and scanning disturbance to obtain the 

equivalent control input in practice. Thus, we utilize the radial basis function neural 

network to approximate the equivalent control input 𝑈𝑒𝑞  by mapping the sliding 

variable 𝑆𝑝𝑧 into 𝑈𝑒𝑞 instead of model-based computation.  

 

Fig. 5-3 Structure of the radial basis function neural network 
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    The structure of the radial basis function neural network is shown in Fig. 5-3, in 

which the Gaussian function is employed as the activation function of each neuron in 

the hidden layer. 

 
𝜙𝑖 = 𝑒𝑥𝑝(−

‖𝑆𝑝𝑧 − 𝑃𝑖‖2

2

𝜎𝑖
2 ) , 𝑖 = 0, 1, 2,⋯ , 𝑛 (5.44) 

where 𝜎𝑖 and 𝑃𝑖 = [𝑝𝑖𝑥 𝑝𝑖𝑦]𝑇 are the spread factor and central position of the 𝑖-th 

neuron, respectively. Here, 𝑃0 is equal to 𝑆𝑝𝑧 so that 𝜙0 = 1. The weighting factor 

𝑤𝑖 = [𝑤𝑖𝑥 𝑤𝑖𝑦]𝑇 between hidden and output layer will be adjusted by the designed 

tuning algorithm. Thus, the output of the neural network 𝑈𝑁𝑁 can be expressed as 

below: 

 
𝑈𝑁𝑁 = ∑𝑤𝑖𝜙𝑖

𝑛

𝑖=0

= 𝑊Φ𝑇 = [𝑢𝑁𝑁1 𝑢𝑁𝑁2]𝑇 (5.45) 

where 𝑊 = [𝑤0 𝑤1     ⋯ 𝑤𝑛] ∈  𝑅2×𝑛, Φ = [𝜙0 𝜙1     ⋯ 𝜙𝑛] ∈  𝑅1×𝑛. 

Theoretically, the radial basis function neural network can approximate any 

nonlinear function with a reasonable accuracy and a basic assumption can be made for 

the stability analysis [53]: There exists an optimal weighting factor 𝑊∗ such that the 

output 𝑈𝑁𝑁
∗  approximate the equivalent control 𝑈𝑒𝑞 with an error smaller than 𝛿. 

 ‖𝑈𝑒𝑞 − 𝑈𝑁𝑁
∗ ‖

∞
≤ δ  (5.46) 

where 𝑈𝑁𝑁
∗ = 𝑊∗Φ𝑇. Let �̃� = 𝑊 − 𝑊∗ so that 𝑈𝑁𝑁 − 𝑈𝑁𝑁

∗ = �̃�Φ𝑇. 
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Moreover, in order to improve the robustness, we apply an additional soft 

switching input 𝑈𝑟 which is given by: 

 𝑈𝑟 = −𝐺𝑝𝑧𝑠𝑎𝑡(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐) (5.47) 

where 𝐺𝑝𝑧 = 𝑑𝑖𝑎𝑔[𝑔𝑝𝑧1 𝑔𝑝𝑧2]  is a positive diagonal matrix and satisfies 

𝑔𝑝𝑧1, 𝑔𝑝𝑧2 > 𝛿. The saturation function 𝑠𝑎𝑡(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐) is defined as following form: 

 𝑠𝑎𝑡(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐) ≡ [𝑠𝑎𝑡(𝑠𝑝𝑧1 + 𝑠𝑝𝑧𝑐1) 𝑠𝑎𝑡(𝑠𝑝𝑧2 + 𝑠𝑝𝑧𝑐2)]
𝑇
  (5.48) 

where 𝑠𝑎𝑡(𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖) = {

1
𝑠𝑝𝑧𝑖+𝑠𝑝𝑧𝑐𝑖

𝑝𝑧

−1

    if   −

𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖 > 휀𝑝𝑧

휀𝑝𝑧 ≤ 𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖 ≤ 휀𝑝𝑧

𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖 < −휀𝑝𝑧

 and 휀𝑝𝑧  is a 

small positive parameter adjusting the rate of switching operation. Hence, the overall 

control input is expressed as: 

 𝑈𝑝𝑧 = 𝑈𝑁𝑁 + 𝑈𝑟 = 𝑊Φ𝑇 − 𝐺𝑝𝑧𝑠𝑎𝑡(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐) (5.49) 

 

5.3.3 Stability analysis 

Define a Lyapunov function candidate 𝑉𝑝𝑧, which is a positive definite function: 

 𝑉𝑝𝑧 =
1

2
𝑆𝑝𝑧

𝑇 𝑆𝑝𝑧 +
1

2
𝑆𝑝𝑧𝑐

𝑇 𝑆𝑝𝑧𝑐 +
1

2
𝑡𝑟(�̃�𝑇𝐶𝑝𝑧

𝑇 𝛤−1�̃�) (5.50) 

where 𝛤 = 𝑑𝑖𝑎𝑔[𝛾1, 𝛾2] is a positive diagonal matrix, 𝑡𝑟(∙) is the trace of a matrix. 

Taking the time derivative of the Lyapunov candidate function, we obtain: 

 �̇�𝑝𝑧 = 𝑆𝑝𝑧
𝑇 �̇�𝑝𝑧 + 𝑆𝑝𝑧𝑐

𝑇 �̇�𝑝𝑧𝑐 + 𝑡𝑟 (�̃�𝑇𝐶𝑝𝑧
𝑇 𝛤−1�̇̃�) (5.51) 
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According to Eq. (5.41), the first two term of Eq. (5.51) can be rewritten as: 

 𝑆𝑝𝑧
𝑇 �̇�𝑝𝑧 + 𝑆𝑝𝑧𝑐

𝑇 �̇�𝑝𝑧𝑐 = 𝑆𝑝𝑧
𝑇 �̇�𝑝𝑧 + 𝑆𝑝𝑧𝑐

𝑇 [�̇�𝑝𝑧 − 𝛬𝑝𝑧(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)] 

= (𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)
𝑇
(�̇�𝑝𝑧 − 𝛬𝑝𝑧𝑆𝑝𝑧𝑐) 

= −(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)
𝑇
𝛬𝑝𝑧(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐) + (𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)

𝑇
(�̇�𝑝𝑧 + 𝛬𝑝𝑧𝑆𝑝𝑧) 

(5.52) 

Here, �̇�𝑝𝑧 + 𝛬𝑝𝑧𝑆𝑝𝑧 can be reformulated by Eq. (5.42), Eq. (5.38) and Eq. (5.49) as 

following:  

 �̇�𝑝𝑧 + 𝛬𝑝𝑧𝑆𝑝𝑧 = −𝐶𝑝𝑧𝑈𝑒𝑞 − ℎ𝑝𝑧
(4)

+ 𝑓 − 𝐷𝑝𝑧 − 𝐾𝑝𝑧𝑟ℎ̈𝑝𝑧 

           = −𝐶𝑝𝑧𝑈𝑒𝑞 + 𝐶𝑝𝑧𝑈𝑝𝑧 

           = 𝐶𝑝𝑧(𝑈𝑁𝑁 + 𝑈𝑟 − 𝑈𝑒𝑞) 

           = 𝐶𝑝𝑧[(𝑈𝑁𝑁 − 𝑈𝑁𝑁
∗ ) + 𝑈𝑟 − (𝑈𝑒𝑞 − 𝑈𝑁𝑁

∗ )] 

           = 𝐶𝑝𝑧[�̃�Φ𝑇 + 𝑈𝑟 − (𝑈𝑒𝑞 − 𝑈𝑁𝑁
∗ )] 

(5.53) 

Substituting Eq. (5.52) and Eq. (5.53) into Eq. (5.51) we can obtain: 

 �̇�𝑝𝑧 = −(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)
𝑇
𝛬𝑝𝑧(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐) + (𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)

𝑇
𝐶𝑝𝑧�̃�Φ𝑇 

       +(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)
𝑇
𝐶𝑝𝑧[𝑈𝑟 − (𝑈𝑒𝑞 − 𝑈𝑁𝑁

∗ )] 

       +𝑡𝑟 (�̃�𝑇𝐶𝑝𝑧
𝑇 𝛤−1�̇̃�) 

(5.54) 

By applying the following trace operations:  

 𝑎. 𝑡𝑟(𝐴𝐵)  =  𝑡𝑟(𝐵𝐴),  for any 𝐴, 𝐵 ∈  𝑅𝑛×𝑛 

𝑏. 𝑡𝑟(𝐴 + 𝐵)  =  𝑡𝑟(𝐵 + 𝐴),  for any 𝐴, 𝐵 ∈  𝑅𝑛×𝑛 
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𝑐. 𝑡𝑟(𝐴𝐵𝑇)  =  𝑡𝑟(𝐵𝐴𝑇)  =  𝐴𝑇𝐵 =  𝐵𝑇𝐴,  for any 𝐴, 𝐵 ∈  𝑅𝑛×1 

We can rewrite Eq. (5.54) in the following expression:  

 �̇�𝑝𝑧 = −(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)
𝑇
𝛬𝑝𝑧(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐) 

       +(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)
𝑇
𝐶𝑝𝑧[𝑈𝑟 − (𝑈𝑒𝑞 − 𝑈𝑁𝑁

∗ )] 

       +𝑡𝑟 [�̃�𝑇𝐶𝑝𝑧
𝑇 ((𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)Φ + 𝛤−1�̇̃�)] 

(5.55) 

In order to cancel the last term in Eq. (5.55), we choose the tuning algorithm as: 

 �̇� = �̇̃� = −𝛤(𝑆𝑝𝑧 + 𝑆𝑝𝑧𝑐)Φ (5.56) 

By Eq. (5.46), we can simplify Eq. (5.55) as below:  

 �̇�𝑝𝑧 ≤ −∑ 𝜆𝑝𝑧𝑖
2
𝑖=1 (𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖)

2
  

      −∑ (𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖)𝑐𝑝𝑧𝑖[𝑔𝑝𝑧𝑖𝑠𝑎𝑡(𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖) − 𝛿]2
𝑖=1   

(5.57) 

Because the saturation function is used in the control scheme, the analysis of 

parameters 𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖 inside or outside the boundary layer 휀𝑝𝑧 should be taken into 

account. First, consider the complementary sliding variables which are outside the 

boundary layer, i.e, |𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖| > 휀𝑝𝑧, so that the saturation function can be replaced 

by the sign function. Thus, the time derivative of the Lyapunov function �̇�𝑝𝑧 becomes: 

 �̇�𝑝𝑧 ≤ −∑ 𝜆𝑝𝑧𝑖
2
𝑖=1 (𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖)

2
  

      −∑ (𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖)𝑐𝑝𝑧𝑖[𝑔𝑝𝑧𝑖𝑠𝑔𝑛(𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖) − 𝛿]2
𝑖=1   

    ≤ −∑ 𝜆𝑝𝑧𝑖
2
𝑖=1 (𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖)

2
 

(5.58) 
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      −∑ |𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖|𝑐𝑝𝑧𝑖(𝑔𝑝𝑧𝑖 − 𝛿)2
𝑖=1  

    < 0  

Second, consider the complementary sliding variables which are inside the boundary 

layer, i.e. |𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖| ≤ 휀𝑝𝑧, then, the saturation function will be replaced by 
𝑠𝑝𝑧𝑖+𝑠𝑝𝑧𝑐𝑖

𝑝𝑧
. 

The time derivative of the Lyapunov function �̇�𝑝𝑧 becomes: 

 �̇�𝑝𝑧 ≤ −∑ 𝜆𝑝𝑧𝑖
2
𝑖=1 (𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖)

2
  

      −∑ (𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖)𝑐𝑝𝑧𝑖 [𝑔𝑝𝑧𝑖 (
𝑠𝑝𝑧𝑖+𝑠𝑝𝑧𝑐𝑖

𝑝𝑧
) − 𝛿]2

𝑖=1   

    ≤ −∑ (𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖)
2
[𝜆𝑝𝑧𝑖 +

𝑐𝑝𝑧𝑖𝑔𝑝𝑧𝑖

𝑝𝑧
−

𝑐𝑝𝑧𝑖𝛿

|𝑠𝑝𝑧𝑖+𝑠𝑝𝑧𝑐𝑖|
]2

𝑖=1   

(5.59) 

Thus, according to Lyapunov stability theorem, when 

 

then 

|𝑠𝑝𝑧𝑖 + 𝑠𝑝𝑧𝑐𝑖| >
𝑐𝑝𝑧𝑖𝛿

𝜆𝑝𝑧𝑖 + 𝑐𝑝𝑧𝑖𝑔𝑝𝑧𝑖/휀𝑝𝑧
 

 

�̇�𝑝𝑧 < 0 

(5.60) 

which implies that 𝑉𝑝𝑧 , �̇�𝑝𝑧 ∈ 𝐿∞  and thus 𝑆𝑝𝑧 , 𝑆𝑝𝑧𝑐, ℎ𝑝𝑧 , ℎ̇𝑝𝑧 , ℎ̈𝑝𝑧 , ℎ⃛ 𝑝𝑧 , �̃� ∈ 𝐿∞ . 

According to Eq. (5.60), it can be concluded that the internal model state will converge 

into a small error bound. Hence, the tracking error will also converge into to a small set 

according to internal model principle. 
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Chapter 6  

Experiments 

In this chapter, the experimental setup will be described at first. In order to validate 

the performance of the designed controllers, the experiments of hysteresis compensation 

and scan trajectory tracking at different scan frequencies are performed. And then the 

proposed hierarchical local scan based on Lissajous trajectory’s methodology is 

employed to scan the human blood cells.  

6.1 Experimental Setup 

The photo of the overall implemented AFM system, including the measuring 

system and the scanning system, is shown in Fig. 6-1. In the measuring system, a 

commercial CD/DVD pickup head is fixed in the aluminum rectangle framework and the 

probe is mounted on the CD/DVD pickup head’s lens below. The distance between the 

probe and the CD/DVD pickup head’s lens is adjusted by a precision linear stage. In 

addition, the measured sample lies in the scanning system which is composed of the 

xy-hybrid scanner and the z-scanner. In the experiments, MATLAB xPC target is 

employed for real-time control. Besides, Agilent N1231b A/D card and MC1602/16 is for 
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laser interferometer and strain gauge sensing feedback, respectively. NI 6733 D/A card is 

for output control signals. Furthermore, the measured noises, including sensor noises and 

environmental disturbances, are shown in Fig. 6-2, and the measured noises of laser 

interferometer and strain gauge sensor are calculated to be 14.15 nm and 13.51 nm in rms 

error. 

 

Fig. 6-1 Realization of the proposed AFM system 

 

Fig. 6-2 The measured noises of laser interferometer and strain gauge sensor 
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6.2 Hysteresis Compensation 

In this section, experiments of hysteresis compensation are performed to verify the 

performance of the proposed neural network complementary sliding mode control. Fig. 

6-3 shows the hysteresis effect of xy-piezoelectric scanner in x-axis. For open loop 

tracking, the maximum displacement error is ℎ𝑚𝑎𝑥 = 13.12%, which would affect the 

scanning precision significantly. When the proposed controller is employed, the 

maximum displacement error is decreased to ℎ𝑚𝑎𝑥 = 0.87%. 

 

Fig. 6-3 The hysteresis effect of xy-piezoelectric scanner in x-axis (a) without control (b) 

with NNCSMC 

Similarly, the hysteresis effect of xy-piezoelectric scanner in y-axis is shown in Fig. 

6-4. The maximum displacement error without control is ℎ𝑚𝑎𝑥 = 13.58%, which can 

be decreased to ℎ𝑚𝑎𝑥 = 0.89% when the proposed controller is applied. Therefore, the 

designed neural network complementary sliding mode controller can compensate the 

(a) (b) 
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hysteresis behavior effectively.  

 

Fig. 6-4 The hysteresis effect of xy-piezoelectric scanner in y-axis (a) without control (b) 

with NNCSMC 

6.3 Scan Trajectories Tracking 

For the AFM system, the scan speed is mainly determined by the moving velocity 

of the scanner. In this section, three experiments of scan trajectory tracking including 

triangular waveform tracking with PI control, cosine waveform tracking with PI control, 

and cosine waveform tracking with the IMP based NNCSMC proposed in Section 5.3 

are implemented to illustrate the improvement of the scan precision of the scan method 

and the proposed control scheme. 

6.3.1 Triangular waveform with PI control 

In conventional AFM system, the generally used scan trajectory and controller are 

(a) (b) 
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the raster pattern and PI controller, respectively. Here, the triangular waveforms with 

scan range of ±5 m and different frequencies are used for the x-axis motion of the 

piezoelectric scanner. As shown in Fig. 6-5, when the frequency of the triangular 

waveform is 10 Hz, which is about 1% of the scanner’s bandwidth, the scanner can 

track the scan trajectory with acceptable tracking precision. However, the hysteresis 

effect of the piezoelectric scanner is obvious. As the frequency is increased to 50 Hz, 

the high frequency harmonic signals of the triangular waveform will start to have 

sufficiently large amplitude to excite the mechanical vibration of the scanner, where 

results will induce a large scan trajectory tracking error and distort the scanning image. 

When the frequency is further increased to 100 Hz, the aroused mechanical vibration 

will be even serious. From these experimental results, we can find that the conventional 

non-smooth scan trajectory would cause the scan frequency of AFM to be limited to just 

about 1 % of the scanner’s bandwidth. Moreover, the generally used PI controller will 

have difficulty to handle the hysteresis problem of piezoelectric scanner. 
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Fig. 6-5 Triangular waveform tracking performance with frequency of (a) 10 Hz, (b) 50 

Hz, and (c) 100 Hz using PI control 

6.3.2 Cosine waveform with PI control 

In order to show the effect of scan trajectory on AFM scanning precision, we 

replace the triangular waveform with cosine waveform while the control scheme is still 

PI control. Thus, cosine waveforms with the same scan range of ±5 m and scan 

frequencies are applied to the x-axis motion of the piezoelectric scanner. As shown in 

Fig. 6-6, since the tracking trajectory contains only a single-frequency signal, there is no 
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aroused mechanical vibration during the scanning process. Furthermore, the scanning 

precision can be improved significantly by only changing the non-smooth scan 

trajectory to a smooth one. Hence, the scan speed of AFM can be easily increased in 

software aspect but at no price of modifying any hardware.  

 

Fig. 6-6 Cosine waveform tracking performance with frequency of (a) 10 Hz, (b) 50 Hz, 

and (c) 100 Hz using PI control 

6.3.3 Cosine waveform with IMP based NNCSMC 

For the experiments in this section, the same cosine waveforms are employed to 
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the x-axis motion of the piezoelectric scanner with the designed IMP based NNCSMC 

proposed in Section 5-3. The tracking results are shown in Fig. 6-7, in there we can find 

that the tracking errors are reduced by the proposed control scheme significantly. In 

comparison with the triangular waveforms using PI control, the cosine waveform using 

the proposed controller permits one order increase in scan rate under the identical 

hardware conditions. 

 

Fig. 6-7 Cosine waveform tracking performance with frequency of (a) 10 Hz, (b) 50 Hz, 

and (c) 100 Hz using IMP based NNCSMC 
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6.4 Numerical Simulation of Lissajous 

Hierarchical Local Scan 

In this section, the Matlab Simulink is used to simulate the performance of the 

proposed hierarchical local scan algorithm. We use Eqs. (3.16) and (3.17) as the plants 

of the xy-scanner and adopt our proposed ACSMC with the following parameters: 

Λ𝑒𝑚 = 𝑑𝑖𝑎𝑔[5000 5000], ε𝑒𝑚 = 𝑑𝑖𝑎𝑔[10−5  10−5], 𝐺𝑒𝑚 = 𝑑𝑖𝑎𝑔[0.1 0.1] 

 Besides, referring to sweep-sine identification experiment, the transfer function of 

the plant of the z-scanner is shown below: 

𝐺𝑧(𝑠) =
3.127 × 10−5𝑠 + 21.461

  𝑠2 + 9514.258𝑠 + 4.916 × 109
 

In order to show the hierarchical local scan performance, we design a hexagon shaped 

samples. The width of the sample is 30 m and the length of the sample is also 30 m. 

In the first layer scan simulation, the scan area is set as 100 m  100 m, there are 

three samples for scanning, as shown in Fig. 6-8 (a). The structure of the scan sample is 

trapezium-shaped, the height of the trapezium is 3.2 m, the width of a trapezium is 2 

m, and distance between two trapeziums is 4 m, as show in Fig. 6-8 (b). The purpose 

of this numerical simulation is to achieve the desired resolution ∆𝑑 = 160 pixels× 160 

pixels in the scan area of 30 m× 30 m by a permissible maximum scan frequency 
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𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 ≤ 1Hz, and minimum frequency difference 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 ≥  0.025 Hz. Notice 

that 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 will affect the period of the second or higher layer scan. If 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 

= 0.025 Hz, the scan time of each area (∆𝑡) is equal to 20 seconds, which can be 

obtained by Eq. (4.5). However, if 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 > 0.025 Hz, one finds that the ∆𝑡 will 

be less than 20 seconds. 

 

Fig. 6-8 The overall structure of the scan sample (a) 2D image (b) 3D image 

(a) 

(b) 
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First layer scan 

In the first layer scan, in order to satisfy Eq. (4.11) with the minimum size of the 

interested sample (∆𝑠= 30 m), the maximum scan frequency (𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 ≤ 1Hz), and 

the scan amplitudes (𝐴𝑥1= 𝐴𝑦1= 100 m). Therefore, the scan parameters of 𝑓𝑥 and 𝑓𝑦 

are chosen as 1 Hz and 0.95 Hz, respectively, and the scan results can be found in Fig. 

6-9, in this first layer scan which takes 10 seconds for scan time. Next, we want to 

remove the uninterested scan areas and determine the amplitudes of second layer scan 

(𝐴𝑥2, 𝐴𝑦2). 

 

Fig. 6-9 The results of first layer scan  

Second layer scan 

In the second layer scan, there exists a sample nearest to the ending point of first 

layer scan and name it sample 1. In order to briefly display the performance of the 
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proposed scan algorithm, we just show the scan results for sample 1. Fig. 6-10 (a) show 

that sample 1 is divided into four scan areas by aforementioned region growing method. 

Our mission is to satisfy the desired resolution (∆𝑑) given the acceptable maximum scan 

frequency (𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 ≤ 1Hz) and the minimum frequency difference (𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 ≥

 0.025 Hz). Ideally, we will just choose the scan frequency 𝑓𝑥2= 1 Hz and 𝑓𝑦2= 0.9875 

Hz. However, the scan algorithm considering the constraint of 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, so that it 

regulates the scan frequency by 𝑓𝑥2= 1 Hz and 𝑓𝑦2= 0.975 Hz, so that the result of 

Lissajous scan pattern are shown in Fig. 6-10 (a). The total scan time is 80 seconds and 

the image resolution is 120 pixels× 80 pixels in this layer scan. Since the scan 

resolution cannot meet the ∆𝑑 requirement, By comparing the 3D scan image (as 

shown in Fig. 6-10 (b)) with the original image (as shown in Fig. 6-8 (b)), it is obvious 

that second layer scan fails to have good image quality. This should be expected results  

because the image resolution does not meet the preset value (∆𝑑). Consequently, 

the hierarchical local scan algorithm will perform third layer scan. 

Third layer scan 

In the third layer scan, the sample will be divided into sixteen scan areas. For 

satisfying the ∆𝑑 requirement given 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, the scan frequency 

can be met by choosing the 𝑓𝑥2= 1 Hz and 𝑓𝑦2= 0.975 Hz, and the associated Lissajous 
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scan pattern is shown in Fig. 6-11 (a). The total scan time is 320 seconds and the image 

resolution is 480 pixels× 160 pixels in this layer scan. By comparing the second and 

third layer scan results, we find that the scan resolution will be enhanced 8 times when 

the scan time is increased 4 times. Fig. 6-11 (b) shows the 3D scan image of third layer 

scan, which exhibits obvious improvement in the image quality. Because the 

pre-specified ∆𝑑 requirement has been satisfied, the Lissajous hierarchical local scan 

algorithm will not perform the next layer scan.  

 

Fig. 6-10 The results of second layer scan (a) 2D Lissajous scan pattern (b) 3D image 

(b) 

(a) 
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To sum up from the simulation results by our proposed Lissajous hierarchical local 

scan algorithm, the uninterested scan areas can be removed by the first layer scan. In 

addition, for adding one more layer scan, the scan time will be increased 4 times, but the 

image resolution can be increased at least 4 times. 

 

 

Fig. 6-11 The results of third layer scan (a) 2D Lissajous scan pattern (b) 3D image 

 

(b) 

(a) 
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6.5 AFM Scanning Application 

For the experiments of AFM scanning, first, we will make a comparison of the 

imaging performance between raster scan and Lissajous scan by scanning a standard 

grating at different scan frequency. As shown in Fig. 6-12, the pitch and height of the 

standard grating are 10 μm (peak : valley = 7 : 3) and the height of 1.5 μm, respectively. 

Then we apply the proposed Lissajous hierarchical local scan method to scanning of 

biological cells, and construct the unknown the 3D topography of each cell in an 

efficient way. 

 

Fig. 6-12 The dimensions of standard grating 

 

6.5.1 Standard grating with raster scan 

In the first part of AFM scanning experiments, we scanned the standard grating 

with the most commonly used raster scan method and PI control at three different scan 

speeds. The scanned range is 30 μm × 25 μm and the image resolution is 900 × 750 

pixels. The scanned images are shown in Fig. 6-13, and the imaging distortions can be 

observed at average scan speeds of 900 m/s and 1500 m/s due to lack of appropriate 
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trajectory tracking at high speed scanning. Moreover, the behavior of scan probe will be 

affected by the severe scan oscillation at high scan frequencies, which also leads to 

incorrect height information. 

 

Fig. 6-13 Scanned images of standard grating with raster scan and PI control at different 

scan frequencies 
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6.5.2 Standard grating with Lissajous scan 

Here, the same standard grating is scanned with the same hardware equipment 

using Lissajous scan method and the proposed IMP based NNCSMC. The scanned 

images are shown in Fig. 6-14, and we can find that by simply replacing the raster scan 

trajectory with a Lissajous one and applying the proposed controller, the scan-induced 

vibration can be avoided and high precision imaging of AFM can be achieved. As the 

scan average speed is increased from 300 m/s to 1500 m/s, there is no severe 

oscillation occurred in the obtained image. However, it is obvious that the obtained 

height information of the sample tends to be distorted as the average scan speed is 

increased, which is due to the limited bandwidth of our z-scanner. Since the change rate 

of the sample surface topography will become rapid as the scan frequency is increased, 

the overall imaging performance at high scan speed is also determined by the response 

time of z-scanner. Nevertheless, the scan rate of AFM can still be increased by 

half-order with the proposed scan method compared with the conventional raster scan 

under the same hardware conditions. 
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Fig. 6-14 Scanned images of standard grating with Lissajous scan and the proposed IMP 

based controllers at different scan frequencies 
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6.5.3 Human blood cells with Lissajous 

hierarchical local scan 

In this experiment, the human blood cells are scanned by the proposed Lissajous 

hierarchical local scan, which include the red and white blood cells, respectively. The 

red blood cell is disk-shaped and the size average from 6 m to 8 m in diameter. 

Different from red blood cells, the white blood cell is ellipse-shaped and has the larger 

size from 10 m to 16 m. Besides, since the white blood cell has the nucleus, its cell’s 

height is higher than that of red blood cell. Here, we apply the proposed scan 

methodology to scan the samples with the desired resolution (∆𝑑 = 2250 pixels× 2250 

pixels) in a large scan range of 90 m× 90 m. Since the scan range greater than 32 

m× 32 m, thus we use the electromagnetic stage for the first layer scan, and Fig. 

6-15 (a) shows the scanned image result. In order to satisfy the minimum size 

requirement ∆𝑠= 6 m by Eq. (4.11) and provide the good scan performance of the 

electromagnetic scanner, the scan frequencies of first layer in 𝑓𝑥1 and 𝑓𝑦1 are 1.1 Hz 

and 1.09 Hz. The scan time of the image is about 50 seconds. By employing our 

proposed scan algorithm, the interested sample will be covered with the white 

rectangular frame, which is shown in Fig. 6-15 (b). After the first layer scan, we can 
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remove the most of uninterested scan area, which is 92.46  of the total area (the 

outsides of the white rectangular frames from Fig. 6-16) taking 50 second scan time if it 

is actually scanned. 

 

Fig. 6-15 (a) First layer scan result with a large scan range of 90 m×90 m (b) partial 

enlarged in the scan area 

 Fig. 6-16 shows the scan algorithm to calculate the height weighting (𝐻𝑠𝑑) of scan 

samples. In this case, we set the weighting threshold (∆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) equal to 1.5 for 
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providing different scan strategy in each interested sample. In the sample 1, 2, 3, 5, they 

have approximate weightings and scan amplitudes (𝐴𝑥2, 𝐴𝑦2), as shown in table of Fig. 

6-16, which indicates that the samples probably belong to same category. Therefore, the 

algorithm will adopt the same scan strategy for them.  

 

Fig. 6-16 Decide the rectangular scan area in the interested samples by weighting 

Notice that, sample 4 displays a higher weighting (𝐻𝑠𝑑) and larger scan amplitude 

(is also shown in table of Fig. 6-16), and thus in order to obtain a good image quality for 

this sample, the proposed scan algorithm will further calculate the total weighting of the 

sample (𝑊𝑡𝑜𝑡𝑎𝑙) by Eq. (4.22). By region growing method, the sample will be divided 

into four sub-blocks for providing next layer scan in order to gain higher image 

resolution. In second layer scan, since the sizes of all samples are less than 32 m, all 

samples will be scanned by the piezoelectric scanner.  
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Fig. 6-17 AFM scanned image of human blood cells in 2D by the proposed Lissajous 

hierarchical local scan 

The overall 2D scan results are shown in Fig. 6-17 by the scan frequency of 𝑓𝑥2 =

15 Hz and 𝑓𝑦2 = 14.95 Hz, and scan time for each rectangular frame scan time is 10 

seconds. The resolution of the scanned image is 2250 pixels× 2500 pixels, which has 

satisfied the demand of preset resolution. Therefore, the scan algorithm will not perform 

the third layer scan. Furthermore, by observing the imaging result and compare it 

against the topography of human blood cells, we can confirm that samples 1, 2, 3, 5 are 

indeed red blood cells whereas sample 4 is white blood cell. More specifically, we 

measure length, width, and height of the cell images in sample 1 and sample 4, and find 
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the data are 6.69 μm, 6.16 μm, and 2.35 μm, respectively, for sample 1 (as shown in Fig. 

6-17), which are reasonably region to the physical size of a human red blood cell. In the 

sample 4, the length, width, and height are 13.75  μm , 10.23 μm  and 5.16  μm , 

respectively (as also shown in Fig. 6-17), which are also reasonably region to the 

physical size of a human white blood cell. 

 

Fig. 6-18 AFM scanned image of human blood cells in 3D by the proposed Lissajous 

hierarchical local scan 

Fig. 6-18 shows the AFM scanned image of human blood cells in 3D by the 
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proposed Lissajous hierarchical local scan. Generally speaking, the human red blood 

cell has the cave feature at the center and the human white blood cell has the structure 

of tentacles in the surface. From the scanned image of sample 1, which shown a cave at 

the center, we can further confirm that the sample is truly the human red blood cell (as 

shown in Fig. 6-18). Likewise, the sample 4 is truly a human white blood cell which has 

many similar tentacles in the surface (is also shown in Fig. 6-18). Such results can 

indeed verify that the proposed scan methodology in our self-designed AFM system has 

the ability to scan different biological cells with a large scan range, a superior scan rate, 

and without damage on the cells. 
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Chapter 7 

Conclusions 

In this research, we have developed the Lissajous hierarchical local scan method to 

improve AFM scan speed. Since the Lissajous scan trajectory contains only two 

single-frequency signals, the scan rate can be increased without inducing scanner 

vibration compared with the conventional raster scan method. Exploiting the 

well-known dynamics of the Lissajous trajectory, the internal model principle based 

control strategy is designed to achieve precision tracking of this scan pattern. In order to 

take advantage of both the high bandwidth of piezoelectric scanner and the large 

traveling range of electromagnetic scanner, the scan region is divided into 32 m up and 

down for xy-hybrid scanner. For xy-electromagnetic scanner, the internal model 

principle based on adaptive complementary sliding mode controller is designed to track 

the scan trajectory precisely and to deal with the cross-coupling, system parameter 

uncertainties and external disturbance. For xy-piezoelectric scanner, the internal model 

principle based on neural network complementary sliding mode controller is designed to 

track the scan trajectory precisely and to deal with the cross-coupling, system parameter 

uncertainties, external disturbance and unknown nonlinear hysteresis effect. To verify 
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effectiveness of the proposed scan trajectory and control scheme, we provide some 

experiments to demonstrate the hysteresis compensation for piezoelectric scanner, scan 

trajectories tracking comparison between the proposed one and the conventional one. 

From the experimental results, the proposed Lissajous scan with the proposed control 

scheme can achieve superior imaging performance when comparison with results from 

raster scan is made, and thus the scan rate can be greatly increased. Furthermore, based 

on the characteristics of the Lissajous scan trajectory, we proposed a hierarchical local 

scan algorithm. By employing the sampled height information after the probe crosses 

the sample, we can appropriately remove the unnecessary scan areas, which saves 

significantly amount of scan time. On the other hand, by considering the varying 

condition of the interested sample topography, we design several layer scan which 

allows one to achieve the desired scan image resolution but only at the price of taking 

just enough local scans, which also helps to improve scan time. Finally, verification of 

the proposed scan methodology by numerical simulation and by actual biological scan 

applications has been performed, and our proposed solution is shown to be effectively 

for improving the scan rate in a larger scan region without any hardware modification. 
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