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ABSTRACT

The detection of quantitative trait loci (QTL) that govern many biologically and
economically important traits is an important task in plant and animal breeding. Using
genetic marker data, QTL mapping technique has been known to be an efficient tool to
detect QTL location and estimate their effects. In QTL mapping, selective genotyping,
which genotypes only the individuals from high and low phenotypic values, is one of the
most common strategies that can reduce the cost of marker genotyping and at the same
time increase efficiency in QTL detection. In this thesis, with the posterior model of
selective genotyping proposed by Lee et al. (2013), we derived score test statistic for the
model and applied it to QTL detection. Moreover, we compare this score test statistics
with that of the currently used model, and the threshold values of the score test statistics
under selective genotyping are also investigated. As the result, we found out that the two
score test statistics for the posterior model and currently used model perform equally well
under single-QTL model. In the future, we intend to extend the single-QTL posterior

model to multiple-QTL model for QTL detection under selective genotyping.

KEYWORDS: QTL; QTL mapping; interval mapping; score test statistic; selective

genotyping
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1 Introduction

The traits of peas, such as flower color, seed coat color, observed in Mendel’s

experiment are called qualitative traits, as they can be easily assigned to different

categories. Qualitative traits are usually controlled by one or few genes, and less affected

by environments. Besides the qualitative traits, there is another type of traits such as yield

of crops, body weight of animals, and stress-resistance performance of plants, which can’t

be easily classified into categories. These traits are showing continuous variation and

called “quantitative trait”. Quantitative trait are usually controlled by several genes with

small effects and can be easily modified by environments. The genes control quantitative

traits are named polygenes (MATHER 1941) or called quantitative trait loci (QTL)

(GELDERMANN 1975). In plant and animal breeding, many biologically and economically

important traits are quantitative not qualitative. Therefore, it is essential to study the

inheritance of QTL to modify and improve these traits.

Nowadays, with advanced biotechnology, it is very convenient to gain numerous

molecular genetic markers and construct the genetic maps for various organisms. By

using the genetic marker data, several statistical methods have been applied to the study

of QTL. Lander and Botstein (1989) developed a statistical method called interval

mapping (IM) to systematically detect the genetic locations and estimate the effects of
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QTL. In the IM model, because the QTL are unknown and needed to be estimated, a

normal mixture model is used in modeling and a likelihood ratio test (LRT) statistic is

perform to estimate at every position along the genomes. The position with the significant

largest LRT statistics is regarded as the estimated QTL position. Because the likelihood

approach of IM can be computationally slow, Haley and Knott (1992) proposed a

relatively simpler regression version of IM model (REG interval mapping) to

approximate the likelihood approach of IM. However, according to Kao (2000) and

Feenstra et al. (2006) , REG interval mapping can be less powerful and precise as

compared to the likelihood approach of IM. Besides, the IM method considers one

putative QTL at a time in the model, thus the power to detect QTL is lower, and biases

will occur in the estimation of QTL position and effects when there are other QTL exist

on the same chromosome. To conquer this problem, Jansen (1993) and Zeng (1993, 1994)

proposed composite interval mapping (CIM), which combine the IM with multiple

regression analysis in QTL mapping. This approach fits one putative QTL in an interval

and other markers into the model to improve QTL mapping. In the CIM model, the

markers are treated as covariates for reducing the residual variance such that the test for

the putative QTL can be more powerful and the estimation can be improved. Kao et al.

(1999) extend the CIM method to multiple interval mapping (MIM) in a way that QTL

can be directly controlled in the model. The MIM method uses multiple marker intervals
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simultaneously to construct multiple putative QTL in the model, it tends to be more

powerful and precise in detecting QTL. In addition to these methods, numerous studies

for the estimation of QTL mapping have been carried out (OOIEN 1992; DARVASI et al.

1993; HALEY ef al. 1994; JIANG and ZENG 1995; KRUGLYAK and LANDER 1995; DOERGE

and CHURCHILL 1996; KNOTT et al. 1996; LYNCH and WALSH 1998; SEN and CHURCHILL

2001).

As the cost of data generation for QTL mapping analysis can be substantial, Lander

and Botstein (1989) claimed that a selective genotyping strategy can reduce the

genotyping cost by only genotyping the extreme progeny in a sample. When analyzing

such selective genotyping data, they also suggested that the other nonextreme progeny

with only phenotypic values still have to be included in the analysis to prevent the bias in

parameter estimation. Later, numerous statistical methods have been proposed to detect

QTL under selective genotyping strategy (DARVASI and SOLLER 1992; MURANTY and

GOFFINET 1997; XU and VOGL 2000). Darvasi and Soller (1992) proposed an ANOVA-

based method to analyze the data by using only the extreme genotyped individuals. They

found that it will almost never be useful to genotype more than the upper and lower 25%

of the population. By including both the genotyped and ungenotyped individuals in the

analysis, Muranty and Goffinet (1997) proposed a mixture normal model to obtain the

estimates of QTL effects. Xu and Vogl (2000) developed a selective genotyping QTL
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mapping method based on truncated model when only the extreme genotyped individuals

are included in the analysis. Recently, Lee, Kao and Ho (2013) proposed alternative

likelihood approaches and extended the state statistics model from single-QTL model to

multiple QTL model for selective genotyping. An improvement in QTL detection has

been made by their approaches under selective genotyping.

Score test statistics has been a very popular tool in statistical analysis (COMMENGES

1994; COMMENGES and ANDERSEN 1995; DuDOIT and SPEED 2000; GOLDSTEIN ef al.

2001; PUTTER et al. 2002; WANG and HUANG 2002). Compared with likelihood approach,

score test statistic is a simpler and faster statistical method, as the maximum likelihood

approach mapping is relatively difficult in obtaining the estimates and computationally

demanding (CHANG MYRON et al. 2009; GUO 2011; KAao and HO 2012). In this thesis,

with the model proposed by Lee et al. (2013), we derive score test statistic and use this

statistic for QTL mapping in selective genotyping in the F> population. Moreover, the

threshold values of the score test statistics are also investigated. Simulations were carried

out for illustration.



2  Theory and Methods

2.1 Population Structures and Selective Genotyping for QTL Detection

Various experimental populations have been designed for QTL detection. Among
these populations, backcross and F> populations are the most widely used designs. In this
thesis, we considered the /2 population as mapping population. Assume that N individuals
are sampled and measured with phenotypic values of y. Among the N individuals, only
the upper % and the lower % extreme individuals are selected for genotyping,
where n < N. The remaining individuals are not genotyping. The n genotyped

individuals and N —n ungenotyped individuals are included in the data analysis.
2.2 Statistical Model of QTL Mapping for Complete Data

An interval mapping statistical model for testing a QTL (Q), are assigned to describe

the phenotypic value of the i th individual at any given position, and can be written as a
normal mixture model:

Y, =ptax; +dz; +e (1

where €, is a random error, we assume ¢&; follows N <0 , 02), a and d are the additive

and dominance effects of Q, X; and Zz, defined as



1 if the genotype of Q is QQ,
x, =1 0 ifthe genotype of Qis Qq, and z = :
—1 if the genotype of Q is qq, _A otherwise,

% if the genotype of Q is Qq,

in section 2.3 mentioned that Q is not observed but can be inferred from interval flanking
markers, the Q can be QQ (Xl* =1,z = —%) , Qq (X,* =1z = %) or qq
(x: =—1,z = —%) for an individual 7.

At a given position, for a sample of N individuals, the sum of the log likelihood function

of the model in Equation (1) is

N

2
l(’u’a’d’az):_%log(zwaz)—’_zlog i:pinexp —M
i—1 =

207

)

where p; is the conditional probability of QTL for ith individual, and

00  with probability p, ~ N(u,,0%), = p+a— A
IfQis {Qg with probability p,, ~ N(uz,az), My, =+ %

gqq  with probability p,, ~ N(/UL3 , 02), fy =p—a— %

which can be determined by the given position, and need not to be estimated here.

2.3 Statistical Model of QTL Mapping for Selective Genotyping

2.3.1 Statistical Model

Applying the statistical model to selective genotyped data analysis, we have to
separate the individuals into two parts: one of them is genotyped individuals (n) , the

other is ungenotyped individuals (N — n) . Then the sum of the log likelihood function



becomes

2
n 3 A We
| ’ 3)
+ZN: IOg i:quexp _(ylz_’l;]>
i=n+1 j=1 o

where p; is the conditional probability of QTL for ith individual in selective genotyped
individual, which can be determined by the given position and need not to be estimated.
g; 1s the conditional probability of QTL for ungenotyped individuals, which have to be
inferred from the posterior probability of ungenotyped flanking markers. According to
the model proposed by Lee et al. (2013), we derived posterior model to estimate ¢; in
comparison with the prior model by using the score test statistic. Note that the log

likelihood for ungenotyped individuals have the same mixing proportions, ¢ .

2.3.2 The Genotypic Structure of QTL in Ungenotyped Individuals

In the data analysis of selective genotyping, however, we only have the genotyped
data of extreme individuals. For those ungenotyped individuals, we have to speculate the
genotypic distribution of QTL according some rules.

Consider a QTL (Q), in the F> population in which the frequency of genotypes QQ,

Qq and qq are y, % and %, respectively. In general, Q is not observed but can

be inferred from the interval flanking markers according to the principle of conditional



probability as

P(MON)

P(Q|M,N)= PN

(4)

In F> population, the two flanking markers have nine different genotypes, and for each
one of them, the genotype of the flanked Q can be QQ, Qq or qq. Thus, when considering
the flanking markers and the QTL (M, N and Q) together, there are 27 different

conditional probabilities. For example, the conditional probability for QTL given the
MN MN MN
MN, i i -
marker genotype A4N is P[QQ| N]’ P[Qq| N] and P[qq| N]' For the

genotyped individuals, we used conditional probability which is proposed by Kao and
Zeng (1997) in Table 1 as the mixing proportion ( p;) for the frequency of putative QTL
genotypes in the genotyped individuals. For the ungenotyped individuals, Xu and Vogl
(2000) applied currently used method (P(QQ): P(Qq): P(qq) =1:2:1) to represent the
mixing proportion (g, ) for genotypic distribution of QTL based on ungenotyped
individuals. However, the frequencies of QTL genotype for ungenotyped individuals do
not follow the prior model under selective genotyping, for the reason that the extreme
individuals includes the same genotype practically which lead to the movement of the
frequencies of QTL for ungenotyped individuals and break the assumption of prior model

(Figure 1).



h a d QQ Qq qq h a d QQ Qq qq
051 0 0.2077 0.5846 0.2077 041 0 0.2172 0.5655 0.2172
/ A E
/ \ p \_
h a d QQ Qq qq h a d QQ Qg qq
05105 0.2382 0.5665 0.1952 04105 0.2434 0.5542 0.2023
B F
- L -

h a d QQ Qq qq h a d QQ Qq qq
051 1 0.2694 0.5388 0.1918 041 1 0.2669 0.5337 0.1994
h a d QQ Qq qq h a d QQ Qq qq
051 2 02917 05114 0.1969 041 2 0.2829 0.5122 0.2049
__L . D L ~ H

Figure 1: Normal mixture of phenotypic value. Based on different h?, a and d.




In this thesis we used posterior probability, which is proposed by Lee et al. (2013),
as the mixing proportion (¢, ) trying to estimate the approximate probability of the QTL
genotypes from ungenotyped individuals. First, we have to estimate the flanking marker

genotypes for ungenotyped individuals, the rule of posterior probability:

P Gn+1 :M,S],Sz, ...... ’Sll
MN MN
P Gn+1:M_N‘S1’S2’ ..... ’Sn =
P(Gn+] )\ ’Sl 7S2’ ...... ’Sn)
)\e{ﬂanking marker genotypes}
n+1
p(g )‘“] p.(g)
_ [|g1|+1,|g2| |g9|][H et
9 n—+1 9
p.(g )ng (p.(8)
,Zl |g1|+1 (|gj|)16{1 9P\ [1_[1 )
| T+1xp[$]
g
_ 18 : (5)
xP(G=\)

i=1,Ae{flanking makrer genotypes} | 8 | —I_l
where the nine different flanking marker genotypes (A) are the same as these listed in

Table 1. And in section 1 , N is the total size of selective genotyped individual.
9
Z| g l=n, | 8 | represent the number of each flanking marker genotypes in selective

genotyped individuals respectively. Second, the QTL conditional probabilities of
ungenotyped individuals (g;) can be inferred from those posterior probabilities of

flanking markers by using Table 1.
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Table 1: Conditional probabilities of a putative QTL given the flanking marker genotypes for an F
population (K40 and ZENG 1997)

Marker Expected QTL genotype

genotype frequency QQ Qq da
MN/ by 1 0 0
M%n @ l—p p 0
o - (1-p)  2p(1-p) P’
7 Wy :
MN o My Ben op(-p) 1-2(1-p)  ep(l-p)
N 5 P 2p(1-p) (1-p)
mN/ ) 0 p 1-p
m%q ; (17;)2 0 0 1
p=""/  where r=r,, isthe recombination fraction between the two flanking markers M and

n, 18 the recombination fraction between the left marker M and the putative QTL.

c= "M ,1- The possibility of a double recombination event in the interval is ignored.
v T (1 v
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2.4 Score Test Statistics for Detecting QTL in Selective Genotyping

Under our proposed model (Equation (3)), score test statistic can be constructed to
test for the hypothesis of H,:a=0andd =0 for the model at any given putative

position along the whole genome. The score functions of @ and d are the first derivatives
of the log likelihood (Equation (5)) with respect to @ and d, and using [ = Zy % and

= Z / (the MLEs of ;1 and o) evaluated at a given position x under
H,:a=0andd =0.
Let u, <x> and u, (X) represent the score functions of a and d. The two score

functions are

u, (x):_;z {Zn:(pn —ps)X(, —7)+’ZN: (¢ — a5 )x(, —7)}, (6)

and

"z(x)zzéz{x(p,l P+ Pa) X (¥ —y)+z ~4+4) (yi—)_/)}, (7)

i=l i=n+1

respectively, and under the null hypothesis, the variances of , (x) and u, <x> are

o

i=j

var (”1 )

and

var i, () = x{i <X

i

') x{& ]} ©)

i=j

respectively, where

12



L —p. —p A i=1 M 5
ko= {pzl Pi3 and ¢ = {pzl P+ Pis , where { ‘
9 — 493 9 —49, +q;

and the covariance between 1, (x) and u, (x) is

(10)

cov i (x)1 (¥]) =~ 52

il N—1 i 1
[;kl C; XT_Zkf C; Xﬁ

i=j

If take only additive or dominance effect into consideration, then under the null

hypothesis, the score test statistic is

U ()i o g (et )

If both additive and dominance effects are taken into consideration simultaneously,

the score test statistic become

U? (x) = (w (x) u (x))V"

, (x)] an

where V is the variance-covariance matrix of u« (x)

var(u (x))  cov(u, (x),u, (x)
cov(u, (x),u; (x))  var(u, (x)

Here we can also use the maximum of U’ (x) under the null hypothesis to assess

V =

the threshold value for QTL detection, which is simpler and faster to obtain the threshold

value, as it avoids the iterative procedures in retraining the estimations of the parameter

in the normal mixture likelihood. (CoX and HINKLEY 1979; CHANG MYRON et al. 2009;

Guo 2011; KAo and HO 2012)
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3 Simulation and Results

We performed computer simulation to evaluate score test statistics for the two
selective genotyping models. The QTL mapping results of complete data are also
presented for comparisons. The issue of determining threshold values for both statistical
models was also investigated by simulations. All simulations were done by using
Mathematica program (WOLFRAM RESEARCH 2012).

A single QTL is assumed to be located at 25¢M of a 100-cM chromosome covered
by different marker densities in the F, population. The marker densities, represented by
the gap between two adjacent markers, are assigned to 5, 10 and 20cM. The genetic effects
of the QTL are set at (a = 1,d = 0.5), (a = 1,d = 1) and (a = 1,d = 2), representing
different levels of dominance effect. The heritability of all these cases is assumed to be
0.05 (h? = 0.05). The number of selectively genotyped individuals was fixed at 100,
from 200 and 1000 individuals, which lead to 50% and 10% selective genotyping
proportions, respectively. The QTL location was estimated at the chromosomal position
with the largest value of the test statistic computed every 1cM. For each case, 100
replicates are simulated. Meanwhile, the score test statistics based on 10,000 simulated
replicates under null (nonexistence of QTL) are also computed for investigating the

behavior of the statistics under selective genotyping. These 10,000 maxima of the score

14



test statistics along the chromosome are ordered to have us obtain the approximated

distribution of sup U 2(x). In the meantime, the threshold values at significant level
x€[0,D]

a = 0.05 can be determined. Results are shown in Figure 2 and Tables 2 to 5.

Figure 2 presents the scatter plots of the maxima of score test statistics of the
posterior model under different selective proportions and marker densities. We can see
that the scatter points are more concentrated around the true position as the marker
becomes denser and the selective proportion gets more intense. 7able 2 shows the score
test statistics and their thresholds of QTL mapping for full genotyping data, we found that
both of them become greater with denser markers. However, the powers to detect QTL
are slightly higher as marker becomes denser. For example, when the genetic effects are
setat a = 1,d = 1, the score test statistics would be 11.34, 12.43 and 13.54, while their
thresholds would be 9.68, 10.35 and 10.99 respectively with marker densities being 20cM,
10cM and 5cM. There are increasing trends in both statistics and thresholds with the
denser markers. But the power to detect the QTL are stable at 58%, 61% and 63%,
respectively.

Tables 3 to 5 shows the score test statistics for both posterior and prior models as
well as their thresholds under marker densities 20cM, 10cM and 5¢cM. We can find that
the two score test statistics both increased when marker becomes denser and selective

proportion becomes more intense. For example, with posterior model, when selective

15



proportion is 50% (10%) and the marker densities are 20cM, 10cM and 5¢M, the score

test statistics are 19.84 (81.82), 20.97 (85.92) and 22.54 (92.51), while the thresholds are

17.4478 (40.6906), 18.769 (43.782) and 19.8247 (45.7761). On the other hand, the score

test statistics for prior model are 19.98 (82.08), 20.87 (85.78) and 22.29 (93.32), while

the thresholds are 17.7436 (41.6133), 18.831 (44.315), 19.8896 (46.9538). Both score test

statistics for each model have the similar sizes and the similar thresholds.

In comparison with full genotyping data (Table 2), the score test statistics and their

thresholds under selective genotyping data (Tables 3-5) inflate. In addition, the results for

the two score test statistics (posterior and prior model) were similar. From Tables 2 to 3,

it is clear that the two models of score test statistics have similar performances. For

example, when genetic effects are (a = 1,d = 0.5) and marker density is 10 cM, under

50% selective proportion, the score test statistics of posterior model (prior model) has a

mean of 20.97 (20.87) and the power to detect QTL is 50% (49%). When the selective

proportion is 10%, the score test statistics of the posterior model (prior model) and the

power for the posterior model (prior model) under the same settings become 85.92 (85.78)

and 92% (92%), respectively. It showed clearly that the more intense the selective

genotyping is, the greater the statistics inflate.
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Figure 2: The scatter plots of the maximum score test statistics with a QTL at position 25cM on a 100-cM

chromosome and genetic effect a = 1,d = 0.5 and h? = 0.05. X-axis presents the marker positions (in

cM). The marker density was 20cM (A-C), 10cM (D-F), 5cM (G-I) with the total population size 200, 200,

1000, and selective proportion 100%, 50%, 10% respectively. Each plots used 100 simulation replicates.

The dashed vertical lines indicate the QTL position (25 cM).

Table 2: the score test statistics and threshold of full genotyping data for different genetic effect and

marker density 20cM, 10cM and 5¢M on a 100cM chromosome.

h=0.05 a=1 Sample size: 200/200
marker position(25¢M) score test statistic
) power threshold
distance mean sd mean sd
0.5 30.66 21.03 11.73 6.15 60%
20cM 1 32.59 22.01 11.34 5.54 58% 9.6771
2 31.68 23.04 11.04 5.46 57%
0.5 27.92 17.52 12.35 5.85 56%
10cM 1 30.60 16.94 12.43 5.84 61% 10.351
2 29.64 18.28 12.14 545 56%
0.5 30.98 19.09 13.23 6.08 57%
S5cM 1 30.76 17.85 13.54 6.27 63% 10.9863
2 29.30 17.20 13.08 5.60 61%

17

1

M

il



Table 3: The score test statistic and threshold of score test statistics at a = 0.05 for different methods with

different parameter setting on marker density 20cM of a 100cM chromosome.

h?=0.05 a=1d=0.5
position(25¢cM)  score test statistic
method power threshold
mean sd mean sd
. 100/200 29.34 22.88 19.84 10.58 51%  17.4478
Posterior
100/1000 26.82 13.34 81.82 29.08 92%  40.6903
. 100/200 30.12 23.80 19.98 10.74 51%  17.7436
rior
P 100/1000 27.19 13.79 82.08 29.07 90%  41.6133
h?=0.05 a=1d=1
position(25¢cM)  score test statistic
method power threshold
mean sd mean sd
. 100/200 30.78 20.34 18.98 8.88 53%  17.4478
Posterior
100/1000 25.05 9.67 81.23 31.54 91%  40.6903
. 100/200 30.71 20.30 19.16 8.87 53%  17.7436
rior
P 100/1000 24.58 9.91 81.86 31.51 91%  41.6133
h%=0.05 a=1d=2
position(25¢cM)  score test statistic
method power threshold
mean sd mean sd
. 100/200 30.16 21.42 18.19 8.49 53%  17.4478
Posterior
100/1000 24.53 9.48 78.50 29.12 93%  40.6903
. 100/200 31.00 22.75 18.28 8.48 52%  17.7436
ri
P 100/1000 24.38 9.45 79.04 28.91 92%  41.6133

18



Table 4: The score test statistic and threshold of score test statistics at a = 0.05 for different methods with

different parameter setting on marker density 10cM of a 100cM chromosome.

h?=0.05 a=1d=0.5
position(25¢M)  score test statistic
method power threshold
mean sd mean sd
. 100/200 29.10 20.52 20.97 10.65 50% 18.769
posterior
100/1000 27.54 12.71 85.92 29.99 92% 43.782
) 100/200 28.26 19.26 20.87 10.68 49% 18.831
prior

100/1000 27.61 12.65 85.78 30.01 92% 44315

h?=0.05 a=1d=1
position(25¢M)  score test statistic
method power threshold
mean sd mean sd
. 100/200 30.45 17.38 20.87 9.96 54% 18.769
posterior
100/1000 25.90 10.29 86.78 31.70 93% 43.782
) 100/200 30.99 18.77 20.73 9.89 53% 18.831
prior

100/1000 25.87 10.23 86.62 31.68 93% 44315

h?=0.05 a=1d=2
position(25¢M)  score test statistic
method power threshold
mean sd mean sd
. 100/200 30.32 20.30 19.96 8.55 60% 18.769
posterior
100/1000 24.52 5.95 83.77 31.17 91% 43.782
) 100/200 30.32 20.27 19.89 8.57 56% 18.831
rior
P 100/1000 24.51 5.94 83.62 31.03 91% 44315
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Table 5: The score test statistic and threshold of score test statistics at a=0.05 for different methods with

different parameter setting on marker density 5cM of a 100cM chromosome.

h=0.05 a=1, d=0.5
position(25¢M)  score test statistic
method power threshold
mean sd mean sd
. 100/200 29.67 18.06 22.54 11.02 54%  19.8247
posterior
100/1000 28.22 12.15 92.51 29.90 91%  45.7731
) 100/200 29.57 18.02 22.29 11.04 54%  19.8896
prior

100/1000 28.23 12.31 93.32 29.96 91%  46.9538

h=0.05 a=1, d=1
position(25¢M)  score test statistic
method power threshold
mean sd mean sd
. 100/200 30.88 19.59 22.67 10.66 53%  19.8247
posterior
100/1000 24.80 5.75 95.39 32.62 96%  45.7731
) 100/200 31.42 20.14 22.40 10.62 53%  19.8896
prior

100/1000 25.12 6.03 96.01 32.68 96%  46.9538

h=0.05 a=1, d=2
position(25¢M)  score test statistic
method power threshold
mean sd mean sd
. 100/200 31.10 20.77 21.34 8.90 53%  19.8247
posterior
100/1000 24.96 2.94 95.66 31.43 97%  45.7731
) 100/200 31.19 20.66 21.14 8.85 52%  19.8896
prior

100/1000 24.99 3.25 96.63 31.13 96%  46.9538
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4 Conclusion and Discussion

In selective genotyping, only the individuals with upper and lower extreme trait

values are genotyped, while the remaining individuals are not. The score test statistic is

simple in derivation and computation in comparison to the likelihood approach. Based on

the posterior model proposed by Lee et al. (2013), which takes both genotyped and

ungenotyped individual into account in the analysis, we derived the score test statistic for

this posterior model for QTL mapping under selective genotyping. We also derived the

score test statistics for the model proposed by Xu and Vogl (2000) and Muranty and

Goffinet (1997) for comparisons. Moreover, we studied the threshold values of QTL

mapping in score test statistics of both models. The results show that the score test

statistics for posterior model and currently used model perform equally well under single-

QTL model. Given a significance level and a genome size, the threshold values are higher

in denser marker maps and extremer selective proportions when score test statistics are

used for QTL detection.

The results for full genotyping and for selective genotyping were compared. The test

statistics and thresholds from the maximum likelihood approach are similar, but these

results from their score test statistics have significant differences. The test statistics and

thresholds of score test statistics under selective genotyping are significantly inflated as
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compared to those under full genotyping. However, the statistics (LRT) based on
maximum likelihood approach obtained by Lee ef al. (2013) do not possess the trend of
enlargement as in the score test statistics under extremely selective genotyping. Reasons
for the inflation of statistics and thresholds for the score test statistics might be due to the
decrement of the variance when selection is more intense. Table 7 showed the mean
values of the score and their variances and covariance (4, (x) A (x) and the variance-
covariance matrix), we found that the score test statistic would raise under extremely
selective proportion and the variance of p;(x) and p,(x) would decrease with the
increasing number of total individuals. Moreover, the determinant of variance-covariance
matrix also becomes decreasing to enlarge the statistics gravely. However, the exact
reason for the inflations of the score test statistics and threshold values under selective

genotyping has not been well studied and deserves to be further investigated.
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Table 6: Comparison of the factor values of score test statistic in different selective proportion with the total

phenotyping individuals number

h? = 0.05,(a = 1,d = 0.5) Method: Posterior
) Position Score test
Selective o V-Cov
. (25cM) statistics ~ uy(x) wvarl uy(x) var2 cov
size Det

mean sd mean Sd

200/200 27.92 17.52 12.35 55 868 851 1.89 399 -0.01 34.18
100/200 29.10 20.52 20.97 10.65 8.05 443 186 208 0.00 9.28
1000/1000 24.61 4.30 47.89 13.41 40.82 41.18 9.85 18.81 -0.13 775.79
100/1000 2590 10.29 86.78 31.70 13.48 335 6.08 1.50 0.08 5.01
Each value based on 100 replicates with marker distance 10-cM along a 100-cM

chromosome. (u;(x) and u,(x) represent the score functions of a and d, varl and var2

are the variance of u,(x) and u,(x).)
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In this thesis, we only considered the cases of a single QTL with small effects. As

shown in Tables 2 to 4, the results from the score test statistics of the currently used and

posterior models is similar because the frequencies of QTL genotypes in ungenotyped

individuals are close to the frequencies in the whole population ( 1/4 ~ 1/2 and 1/4 ) for

small QTL effect. Their differences will become more significant when the QTL has large

effects (not shown). Most quantitative traits are believed to be influenced by multiple

QTL and their interaction. In the cases of multiple QTL, the frequencies of multiple QTLs

genotypes among the ungenotyping individuals may deviate from the population

frequencies, and the differences between posterior model and currently used model might

become remarkable and is worth pursuing. In the future works, we intend to extend the

one-QTL posterior model to multiple-QTL posterior model for QTL detection when

selective genotyping is implemented in QTL experiments.
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6 Abbreviations

QTL Quantitative trait loci

M Interval mapping

LRT Likelihood ratio test

REG interval mapping Regression interval mapping
CIM Composite interval mapping
MIM Multiple interval mapping
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