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中文摘要 

生物上許多重要的經濟、生理、或與生化有關的性狀均為數量性狀。這些控制

數量性狀的基因稱為數量性狀基因座 (Quantitative trait loci)，其定位與研究一直是

作物和動物在遺傳育種上的重要課題。利用分子遺傳標誌資料，數量性狀基因座定

位 (QTL mapping)方法可幫助我們了解 QTL 在染色體上的位置及其作用大小。選

擇性基因型鑑定 (Selective genotyping)是一種只針對樣本族群之外表型極大與極

小的部分個體進行基因型鑑定的方法，它除了降低遺傳鑑定的成本外，一般認為也

可以增進定位數量性狀基因座的效率。本篇文章中，利用 Lee et al. (2013) 針對選

擇性基因型鑑定所提出的兩種模式 (事後檢定模式與目前所行的模式)，分別推導

其分數檢定統計量(score test statistics)作為另一種定位 QTL 的統計量，並研究其在

選擇性基因型鑑定方法下的顯著性門檻值。結果發現，在單一 QTL 存在的假設情

況下，兩種分數檢定統計量表現的一樣好。未來研究中，我們期待將單一 QTL 假

設推廣至多個 QTL 存在的情況，進行選擇性基因型鑑定之數量性狀基因座定位研

究。 

 

關鍵字: 數量性狀基因座；數量性狀基因座定位；區間定位；分數檢定；選擇性基

因型鑑定  
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ABSTRACT 

The detection of quantitative trait loci (QTL) that govern many biologically and 

economically important traits is an important task in plant and animal breeding. Using 

genetic marker data, QTL mapping technique has been known to be an efficient tool to 

detect QTL location and estimate their effects. In QTL mapping, selective genotyping, 

which genotypes only the individuals from high and low phenotypic values, is one of the 

most common strategies that can reduce the cost of marker genotyping and at the same 

time increase efficiency in QTL detection. In this thesis, with the posterior model of 

selective genotyping proposed by Lee et al. (2013), we derived score test statistic for the 

model and applied it to QTL detection. Moreover, we compare this score test statistics 

with that of the currently used model, and the threshold values of the score test statistics 

under selective genotyping are also investigated. As the result, we found out that the two 

score test statistics for the posterior model and currently used model perform equally well 

under single-QTL model. In the future, we intend to extend the single-QTL posterior 

model to multiple-QTL model for QTL detection under selective genotyping. 

 

KEYWORDS: QTL; QTL mapping; interval mapping; score test statistic; selective 

genotyping  
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1  Introduction 

The traits of peas, such as flower color, seed coat color, observed in Mendel’s 

experiment are called qualitative traits, as they can be easily assigned to different 

categories. Qualitative traits are usually controlled by one or few genes, and less affected 

by environments. Besides the qualitative traits, there is another type of traits such as yield 

of crops, body weight of animals, and stress-resistance performance of plants, which can’t 

be easily classified into categories. These traits are showing continuous variation and 

called “quantitative trait”. Quantitative trait are usually controlled by several genes with 

small effects and can be easily modified by environments. The genes control quantitative 

traits are named polygenes (MATHER 1941) or called quantitative trait loci (QTL) 

(GELDERMANN 1975). In plant and animal breeding, many biologically and economically 

important traits are quantitative not qualitative. Therefore, it is essential to study the 

inheritance of QTL to modify and improve these traits. 

Nowadays, with advanced biotechnology, it is very convenient to gain numerous 

molecular genetic markers and construct the genetic maps for various organisms. By 

using the genetic marker data, several statistical methods have been applied to the study 

of QTL. Lander and Botstein (1989) developed a statistical method called interval 

mapping (IM) to systematically detect the genetic locations and estimate the effects of 
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QTL. In the IM model, because the QTL are unknown and needed to be estimated, a 

normal mixture model is used in modeling and a likelihood ratio test (LRT) statistic is 

perform to estimate at every position along the genomes. The position with the significant 

largest LRT statistics is regarded as the estimated QTL position. Because the likelihood 

approach of IM can be computationally slow, Haley and Knott (1992) proposed a 

relatively simpler regression version of IM model (REG interval mapping) to 

approximate the likelihood approach of IM. However, according to Kao (2000) and 

Feenstra et al. (2006) , REG interval mapping can be less powerful and precise as 

compared to the likelihood approach of IM. Besides, the IM method considers one 

putative QTL at a time in the model, thus the power to detect QTL is lower, and biases 

will occur in the estimation of QTL position and effects when there are other QTL exist 

on the same chromosome. To conquer this problem, Jansen (1993) and Zeng (1993, 1994)  

proposed composite interval mapping (CIM), which combine the IM with multiple 

regression analysis in QTL mapping. This approach fits one putative QTL in an interval 

and other markers into the model to improve QTL mapping. In the CIM model, the 

markers are treated as covariates for reducing the residual variance such that the test for 

the putative QTL can be more powerful and the estimation can be improved. Kao et al. 

(1999) extend the CIM method to multiple interval mapping (MIM) in a way that QTL 

can be directly controlled in the model. The MIM method uses multiple marker intervals 
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simultaneously to construct multiple putative QTL in the model, it tends to be more 

powerful and precise in detecting QTL. In addition to these methods, numerous studies 

for the estimation of QTL mapping have been carried out (OOIJEN 1992; DARVASI et al. 

1993; HALEY et al. 1994; JIANG and ZENG 1995; KRUGLYAK and LANDER 1995; DOERGE 

and CHURCHILL 1996; KNOTT et al. 1996; LYNCH and WALSH 1998; SEN and CHURCHILL 

2001). 

As the cost of data generation for QTL mapping analysis can be substantial, Lander 

and Botstein (1989) claimed that a selective genotyping strategy can reduce the 

genotyping cost by only genotyping the extreme progeny in a sample. When analyzing 

such selective genotyping data, they also suggested that the other nonextreme progeny 

with only phenotypic values still have to be included in the analysis to prevent the bias in 

parameter estimation. Later, numerous statistical methods have been proposed to detect 

QTL under selective genotyping strategy (DARVASI and SOLLER 1992; MURANTY and 

GOFFINET 1997; XU and VOGL 2000). Darvasi and Soller (1992) proposed an ANOVA-

based method to analyze the data by using only the extreme genotyped individuals. They 

found that it will almost never be useful to genotype more than the upper and lower 25% 

of the population. By including both the genotyped and ungenotyped individuals in the 

analysis, Muranty and Goffinet (1997) proposed a mixture normal model to obtain the 

estimates of QTL effects. Xu and Vogl (2000) developed a selective genotyping QTL 
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mapping method based on truncated model when only the extreme genotyped individuals 

are included in the analysis. Recently, Lee, Kao and Ho (2013) proposed alternative 

likelihood approaches and extended the state statistics model from single-QTL model to 

multiple QTL model for selective genotyping. An improvement in QTL detection has 

been made by their approaches under selective genotyping.  

Score test statistics has been a very popular tool in statistical analysis (COMMENGES 

1994; COMMENGES and ANDERSEN 1995; DUDOIT and SPEED 2000; GOLDSTEIN et al. 

2001; PUTTER et al. 2002; WANG and HUANG 2002). Compared with likelihood approach, 

score test statistic is a simpler and faster statistical method, as the maximum likelihood 

approach mapping is relatively difficult in obtaining the estimates and computationally 

demanding (CHANG MYRON et al. 2009; GUO 2011; KAO and HO 2012). In this thesis, 

with the model proposed by Lee et al. (2013), we derive score test statistic and use this 

statistic for QTL mapping in selective genotyping in the F2 population. Moreover, the 

threshold values of the score test statistics are also investigated. Simulations were carried 

out for illustration. 
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2  Theory and Methods 

2.1  Population Structures and Selective Genotyping for QTL Detection 

Various experimental populations have been designed for QTL detection. Among 

these populations, backcross and F2 populations are the most widely used designs. In this 

thesis, we considered the F2 population as mapping population. Assume that N individuals 

are sampled and measured with phenotypic values of y. Among the N individuals, only 

the upper 2
n  and the lower 2

n  extreme individuals are selected for genotyping, 

where 𝑛𝑛 ≤ 𝑁𝑁 . The remaining individuals are not genotyping. The n genotyped 

individuals and N n  ungenotyped individuals are included in the data analysis. 

2.2  Statistical Model of QTL Mapping for Complete Data 

An interval mapping statistical model for testing a QTL (Q), are assigned to describe 

the phenotypic value of the i th individual at any given position, and can be written as a 

normal mixture model: 

 * *
i i i iy ax dz       (1) 

where i is a random error, we assume i follows  20 ,  N  , a and d are the additive 

and dominance effects of Q, *
ix  and *

iz  defined as  
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 *

1   if the genotype of Q is QQ,
0   if the genotype of Q is Qq, 
1  if the genotype of Q is qq,  

ix


 and *
1 if the genotype of Q is Qq,2
1 otherwise,                         2

iz


  

in section 2.3 mentioned that Q is not observed but can be inferred from interval flanking 

markers, the Q can be QQ  * * 11,  2i ix z  , Qq  * * 11,  2i ix z   or qq 

 * * 11,  2i ix z   for an individual i. 

At a given position, for a sample of N individuals, the sum of the log likelihood function 

of the model in Equation (1) is 

    
 2

3
2 2

2
1 1

, , , log 2 log exp
2 2

N
i j

ij
i j

yNl a d p


  
 

               
    (2) 

where ijp  is the conditional probability of QTL for ith individual, and  
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which can be determined by the given position, and need not to be estimated here. 

2.3  Statistical Model of QTL Mapping for Selective Genotyping 

2.3.1 Statistical Model  

Applying the statistical model to selective genotyped data analysis, we have to 

separate the individuals into two parts: one of them is genotyped individuals  n , the 

other is ungenotyped individuals  N n . Then the sum of the log likelihood function 



7 

becomes 
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  (3) 

where ijp  is the conditional probability of QTL for ith individual in selective genotyped 

individual, which can be determined by the given position and need not to be estimated. 

jq  is the conditional probability of QTL for ungenotyped individuals, which have to be 

inferred from the posterior probability of ungenotyped flanking markers. According to 

the model proposed by Lee et al. (2013), we derived posterior model to estimate jq  in 

comparison with the prior model by using the score test statistic. Note that the log 

likelihood for ungenotyped individuals have the same mixing proportions, jq .  

2.3.2 The Genotypic Structure of QTL in Ungenotyped Individuals 

In the data analysis of selective genotyping, however, we only have the genotyped 

data of extreme individuals. For those ungenotyped individuals, we have to speculate the 

genotypic distribution of QTL according some rules.  

Consider a QTL (Q), in the F2 population in which the frequency of genotypes QQ, 

Qq and qq are 1
4 , 1

2 and 1
4 , respectively. In general, Q is not observed but can 

be inferred from the interval flanking markers according to the principle of conditional 
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probability as 

  
 
 

| ,
P MQN

P Q M N
P MN

 .  (4) 

In F2 population, the two flanking markers have nine different genotypes, and for each 

one of them, the genotype of the flanked Q can be QQ, Qq or qq. Thus, when considering 

the flanking markers and the QTL (M, N and Q) together, there are 27 different 

conditional probabilities. For example, the conditional probability for QTL given the 

marker genotype MN
MN  is | MNP QQ

MN
    

, | MNP Qq
MN

    
 and | MNP qq

MN
    

. For the 

genotyped individuals, we used conditional probability which is proposed by Kao and 

Zeng (1997) in Table 1 as the mixing proportion ( ijp ) for the frequency of putative QTL 

genotypes in the genotyped individuals. For the ungenotyped individuals, Xu and Vogl 

(2000) applied currently used method ( ( ) : ( ) : ( ) 1: 2 :1)P QQ P Qq P qq   to represent the 

mixing proportion ( jq ) for genotypic distribution of QTL based on ungenotyped 

individuals. However, the frequencies of QTL genotype for ungenotyped individuals do 

not follow the prior model under selective genotyping, for the reason that the extreme 

individuals includes the same genotype practically which lead to the movement of the 

frequencies of QTL for ungenotyped individuals and break the assumption of prior model 

(Figure 1). 
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Figure 1: Normal mixture of phenotypic value. Based on different ℎ2,𝑎𝑎 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎. 
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In this thesis we used posterior probability, which is proposed by Lee et al. (2013), 

as the mixing proportion ( jq ) trying to estimate the approximate probability of the QTL 

genotypes from ungenotyped individuals. First, we have to estimate the flanking marker 

genotypes for ungenotyped individuals, the rule of posterior probability: 
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g

g

          (5) 

where the nine different flanking marker genotypes (λ) are the same as these listed in 

Table 1. And in section 1 , n  is the total size of selective genotyped individual. 

9

1

|i
i

n


 | g , |i| g  represent the number of each flanking marker genotypes in selective 

genotyped individuals respectively. Second, the QTL conditional probabilities of 

ungenotyped individuals (𝑞𝑞𝑗𝑗 ) can be inferred from those posterior probabilities of 

flanking markers by using Table 1. 
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Table 1: Conditional probabilities of a putative QTL given the flanking marker genotypes for an F2 

population (KAO and ZENG 1997) 

Marker 
genotype 

Expected 
frequency 

QTL genotype 

QQ Qq qq 

MN
MN   21

4
r  1 0 0 

MN
Mn   1

2
r r

 1 p  p  0 

Mn
Mn  2

4
r   21 p   2 1p p  2p  

MN
mN   1

2
r r  p  1 p  0 

 or MN Mn
mn mN    21

2 2
r r    1cp p   1 2 1cp p    1cp p  

Mn
mn   1

2
r r  0 1 p  p  

mN
mN  2

4
r  2p   2 1p p   21 p  

mN
mn   1

2
r r  0 p  1 p  

mn
mn   21

4
r  0 0 1 

MQ

MN

rp r  , where MNr r  is the recombination fraction between the two flanking markers M and 

N, MQr  is the recombination fraction between the left marker M and the putative QTL. 

 
2

22 1
MN

MN MN

rc
r r

     

. The possibility of a double recombination event in the interval is ignored. 
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2.4  Score Test Statistics for Detecting QTL in Selective Genotyping 

Under our proposed model (Equation (3)), score test statistic can be constructed to 

test for the hypothesis of 0 : 0 and 0H a d   for the model at any given putative 

position along the whole genome. The score functions of a and d are the first derivatives 

of the log likelihood (Equation (5)) with respect to a and d, and using ˆ iy
N  and 

 2

2 ˆ
ˆ iy

N





 (the MLEs of   and 2 ) evaluated at a given position x under 

0H : 0 and 0a d  .  

Let  1u x  and  2u x  represent the score functions of a and d. The two score 

functions are 

              1 1 3 1 32
1 1

1
ˆ

n N

i i i i
i i n

u x p p y y q q y y
   

              
  ,      (6) 

and 

          2 1 2 3 1 2 32
1 1

1
ˆ2

n N

i i i i i
i i n

u x p p p y y q q q y y
   

                
  ,  (7) 

respectively, and under the null hypothesis, the variances of  1u x  and  2u x  are 

    2
1 2

1 1 1var
ˆ

N N

i i j
i i j

Nu x k k k
N N 

                       
  ,  (8) 

and 

    2
2 2

1 1 1var
ˆ4

N N

i i j
i i j

Nu x c c c
N N 

                       
  ,  (9) 

respectively, where  
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1 3

1 3

    
 

i i
i

p p
k

q q
  

and  1 2 3

1 2 3

        
 

i i i
i

p p p
c

q q q

    
, where 

1,......,         
1,......,

i n
i n N

   
  

and the covariance between  1u x  and  2u x  is 

     1 2 2
1

1 1 1cov ,
ˆ2

N N

i i i i
i i j

Nu x u x k c k c
N N  

         
    (10) 

If take only additive or dominance effect into consideration, then under the null 

hypothesis, the score test statistic is 

            
 

  
1

1

1var

u x
U x

u x
   or  

 
  

2
2

2var

u x
U x

u x
  

If both additive and dominance effects are taken into consideration simultaneously, 

the score test statistic become 

         
 

12 1
1 2

2

 
u x

U x u x u x V
u x


      

  (11) 

where V is the variance-covariance matrix of  u x  

       
       

1 1 2

1 2 2

var cov ,

cov , var

u x u x u x
V

u x u x u x

 
   
 
 

 

Here we can also use the maximum of  2U x  under the null hypothesis to assess 

the threshold value for QTL detection, which is simpler and faster to obtain the threshold 

value, as it avoids the iterative procedures in retraining the estimations of the parameter 

in the normal mixture likelihood. (COX and HINKLEY 1979; CHANG MYRON et al. 2009; 

GUO 2011; KAO and HO 2012) 
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3  Simulation and Results 

We performed computer simulation to evaluate score test statistics for the two 

selective genotyping models. The QTL mapping results of complete data are also 

presented for comparisons. The issue of determining threshold values for both statistical 

models was also investigated by simulations. All simulations were done by using 

Mathematica program (WOLFRAM RESEARCH 2012). 

A single QTL is assumed to be located at 25cM of a 100-cM chromosome covered 

by different marker densities in the 𝐹𝐹2 population. The marker densities, represented by 

the gap between two adjacent markers, are assigned to 5, 10 and 20cM. The genetic effects 

of the QTL are set at (𝑎𝑎 = 1,𝑎𝑎 = 0.5), (𝑎𝑎 = 1,𝑎𝑎 = 1) and (𝑎𝑎 = 1,𝑎𝑎 = 2), representing 

different levels of dominance effect. The heritability of all these cases is assumed to be 

0.05 (ℎ2 = 0.05). The number of selectively genotyped individuals was fixed at 100, 

from 200 and 1000 individuals, which lead to 50% and 10% selective genotyping 

proportions, respectively. The QTL location was estimated at the chromosomal position 

with the largest value of the test statistic computed every 1cM. For each case, 100 

replicates are simulated. Meanwhile, the score test statistics based on 10,000 simulated 

replicates under null (nonexistence of QTL) are also computed for investigating the 

behavior of the statistics under selective genotyping. These 10,000 maxima of the score 
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test statistics along the chromosome are ordered to have us obtain the approximated 

distribution of 
 

2

0,
sup ( )

x D
U x


. In the meantime, the threshold values at significant level 

α = 0.05 can be determined. Results are shown in Figure 2 and Tables 2 to 5. 

Figure 2 presents the scatter plots of the maxima of score test statistics of the 

posterior model under different selective proportions and marker densities. We can see 

that the scatter points are more concentrated around the true position as the marker 

becomes denser and the selective proportion gets more intense. Table 2 shows the score 

test statistics and their thresholds of QTL mapping for full genotyping data, we found that 

both of them become greater with denser markers. However, the powers to detect QTL 

are slightly higher as marker becomes denser. For example, when the genetic effects are 

set at 𝑎𝑎 = 1 ,𝑎𝑎 = 1, the score test statistics would be 11.34, 12.43 and 13.54, while their 

thresholds would be 9.68, 10.35 and 10.99 respectively with marker densities being 20cM, 

10cM and 5cM. There are increasing trends in both statistics and thresholds with the 

denser markers. But the power to detect the QTL are stable at 58%, 61% and 63%, 

respectively. 

 Tables 3 to 5 shows the score test statistics for both posterior and prior models as 

well as their thresholds under marker densities 20cM, 10cM and 5cM. We can find that 

the two score test statistics both increased when marker becomes denser and selective 

proportion becomes more intense. For example, with posterior model, when selective 
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proportion is 50% (10%) and the marker densities are 20cM, 10cM and 5cM, the score 

test statistics are 19.84 (81.82), 20.97 (85.92) and 22.54 (92.51), while the thresholds are 

17.4478 (40.6906), 18.769 (43.782) and 19.8247 (45.7761). On the other hand, the score 

test statistics for prior model are 19.98 (82.08), 20.87 (85.78) and 22.29 (93.32), while 

the thresholds are 17.7436 (41.6133), 18.831 (44.315), 19.8896 (46.9538). Both score test 

statistics for each model have the similar sizes and the similar thresholds. 

In comparison with full genotyping data (Table 2), the score test statistics and their 

thresholds under selective genotyping data (Tables 3-5) inflate. In addition, the results for 

the two score test statistics (posterior and prior model) were similar. From Tables 2 to 5, 

it is clear that the two models of score test statistics have similar performances. For 

example, when genetic effects are (𝑎𝑎 = 1,𝑎𝑎 = 0.5) and marker density is 10 cM, under 

50% selective proportion, the score test statistics of posterior model (prior model) has a 

mean of 20.97 (20.87) and the power to detect QTL is 50% (49%). When the selective 

proportion is 10%, the score test statistics of the posterior model (prior model) and the 

power for the posterior model (prior model) under the same settings become 85.92 (85.78) 

and 92% (92%), respectively. It showed clearly that the more intense the selective 

genotyping is, the greater the statistics inflate. 
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Figure 2: The scatter plots of the maximum score test statistics with a QTL at position 25cM on a 100-cM 

chromosome and genetic effect 𝑎𝑎 = 1,𝑎𝑎 = 0.5 and ℎ2 = 0.05. X-axis presents the marker positions (in 

cM). The marker density was 20cM (A-C), 10cM (D-F), 5cM (G-I) with the total population size 200, 200, 

1000, and selective proportion 100%, 50%, 10% respectively. Each plots used 100 simulation replicates. 

The dashed vertical lines indicate the QTL position (25 cM). 

 

Table 2: the score test statistics and threshold of full genotyping data for different genetic effect and 

marker density 20cM, 10cM and 5cM on a 100cM chromosome. 

h2 =0.05 𝒂𝒂 = 𝟏𝟏 Sample size: 200/200 
marker  
distance 

d 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

20cM 
0.5 30.66 21.03 11.73 6.15 60% 

9.6771 1 32.59 22.01 11.34 5.54 58% 
2 31.68 23.04 11.04 5.46 57% 

10cM 
0.5 27.92 17.52 12.35 5.85 56% 

10.351 1 30.60 16.94 12.43 5.84 61% 
2 29.64 18.28 12.14 5.45 56% 

5cM 
0.5 30.98 19.09 13.23 6.08 57% 

10.9863 1 30.76 17.85 13.54 6.27 63% 
2 29.30 17.20 13.08 5.60 61% 
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Table 3: The score test statistic and threshold of score test statistics at 𝛼𝛼 = 0.05 for different methods with 

different parameter setting on marker density 20cM of a 100cM chromosome. 

h2 =0.05 a=1 d=0.5          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

Posterior 
100/200 29.34 22.88 19.84 10.58 51% 17.4478 
100/1000 26.82 13.34 81.82 29.08 92% 40.6903 

prior 
100/200 30.12 23.80 19.98 10.74 51% 17.7436 
100/1000 27.19 13.79 82.08 29.07 90% 41.6133 
        

h2 =0.05 a=1 d=1          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

Posterior 
100/200 30.78 20.34 18.98 8.88 53% 17.4478 
100/1000 25.05 9.67 81.23 31.54 91% 40.6903 

prior 
100/200 30.71 20.30 19.16 8.87 53% 17.7436 
100/1000 24.58 9.91 81.86 31.51 91% 41.6133 
        

h2 =0.05 a=1 d=2          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

Posterior 
100/200 30.16 21.42 18.19 8.49 53% 17.4478 
100/1000 24.53 9.48 78.50 29.12 93% 40.6903 

prior 
100/200 31.00 22.75 18.28 8.48 52% 17.7436 
100/1000 24.38 9.45 79.04 28.91 92% 41.6133 

 

  



19 

Table 4: The score test statistic and threshold of score test statistics at 𝛼𝛼 = 0.05 for different methods with 

different parameter setting on marker density 10cM of a 100cM chromosome. 

h2 =0.05 a=1 d=0.5          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

posterior 
100/200 29.10 20.52 20.97 10.65 50% 18.769 
100/1000 27.54 12.71 85.92 29.99 92% 43.782 

prior 
100/200 28.26 19.26 20.87 10.68 49% 18.831 

100/1000 27.61 12.65 85.78 30.01 92% 44.315 

        

h2 =0.05 a=1 d=1          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

posterior 
100/200 30.45 17.38 20.87 9.96 54% 18.769 
100/1000 25.90 10.29 86.78 31.70 93% 43.782 

prior 
100/200 30.99 18.77 20.73 9.89 53% 18.831 

100/1000 25.87 10.23 86.62 31.68 93% 44.315 

        

h2 =0.05 a=1 d=2          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

posterior 
100/200 30.32 20.30 19.96 8.55 60% 18.769 
100/1000 24.52 5.95 83.77 31.17 91% 43.782 

prior 
100/200 30.32 20.27 19.89 8.57 56% 18.831 

100/1000 24.51 5.94 83.62 31.03 91% 44.315 
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Table 5: The score test statistic and threshold of score test statistics at α=0.05 for different methods with 

different parameter setting on marker density 5cM of a 100cM chromosome. 

h=0.05 a=1, d=0.5          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

posterior 
100/200 29.67 18.06 22.54 11.02 54% 19.8247 
100/1000 28.22 12.15 92.51 29.90 91% 45.7731 

prior 
100/200 29.57 18.02 22.29 11.04 54% 19.8896 

100/1000 28.23 12.31 93.32 29.96 91% 46.9538 

        

h=0.05 a=1, d=1          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

posterior 
100/200 30.88 19.59 22.67 10.66 53% 19.8247 
100/1000 24.80 5.75 95.39 32.62 96% 45.7731 

prior 
100/200 31.42 20.14 22.40 10.62 53% 19.8896 

100/1000 25.12 6.03 96.01 32.68 96% 46.9538 

        

h=0.05 a=1, d=2          

method 
position(25cM) score test statistic 

power threshold 
mean sd mean sd 

posterior 
100/200 31.10 20.77 21.34 8.90 53% 19.8247 
100/1000 24.96 2.94 95.66 31.43 97% 45.7731 

prior 
100/200 31.19 20.66 21.14 8.85 52% 19.8896 

100/1000 24.99 3.25 96.63 31.13 96% 46.9538 
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4  Conclusion and Discussion 

In selective genotyping, only the individuals with upper and lower extreme trait 

values are genotyped, while the remaining individuals are not. The score test statistic is 

simple in derivation and computation in comparison to the likelihood approach. Based on 

the posterior model proposed by Lee et al. (2013), which takes both genotyped and 

ungenotyped individual into account in the analysis, we derived the score test statistic for 

this posterior model for QTL mapping under selective genotyping. We also derived the 

score test statistics for the model proposed by Xu and Vogl (2000) and Muranty and 

Goffinet (1997) for comparisons. Moreover, we studied the threshold values of QTL 

mapping in score test statistics of both models. The results show that the score test 

statistics for posterior model and currently used model perform equally well under single-

QTL model. Given a significance level and a genome size, the threshold values are higher 

in denser marker maps and extremer selective proportions when score test statistics are 

used for QTL detection. 

The results for full genotyping and for selective genotyping were compared. The test 

statistics and thresholds from the maximum likelihood approach are similar, but these 

results from their score test statistics have significant differences. The test statistics and 

thresholds of score test statistics under selective genotyping are significantly inflated as 
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compared to those under full genotyping. However, the statistics (LRT) based on 

maximum likelihood approach obtained by Lee et al. (2013) do not possess the trend of 

enlargement as in the score test statistics under extremely selective genotyping. Reasons 

for the inflation of statistics and thresholds for the score test statistics might be due to the 

decrement of the variance when selection is more intense. Table 7 showed the mean 

values of the score and their variances and covariance (  1u x 、  2u x and the variance-

covariance matrix), we found that the score test statistic would raise under extremely 

selective proportion and the variance of 𝜇𝜇1(𝑥𝑥) and 𝜇𝜇2(𝑥𝑥) would decrease with the 

increasing number of total individuals. Moreover, the determinant of variance-covariance 

matrix also becomes decreasing to enlarge the statistics gravely. However, the exact 

reason for the inflations of the score test statistics and threshold values under selective 

genotyping has not been well studied and deserves to be further investigated. 
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Table 6:Comparison of the factor values of score test statistic in different selective proportion with the total 

phenotyping individuals number  

ℎ2 = 0.05, (𝑎𝑎 = 1,𝑎𝑎 = 0.5)    Method: Posterior 

Selective 
 size 

Position 
(25cM) 

Score test 
statistics 𝑢𝑢1(𝑥𝑥) var1 𝑢𝑢2(𝑥𝑥) var2 cov 

V-Cov  
Det 

mean sd mean Sd 
200/200 27.92 17.52 12.35 5.5 8.68 8.51 1.89 3.99 -0.01 34.18 
100/200 29.10 20.52 20.97 10.65 8.05 4.43 1.86 2.08 0.00 9.28 

1000/1000 24.61 4.30 47.89 13.41 40.82 41.18 9.85 18.81 -0.13 775.79 
100/1000 25.90 10.29 86.78 31.70 13.48 3.35 6.08 1.50 0.08 5.01 

Each value based on 100 replicates with marker distance 10-cM along a 100-cM 
chromosome. (𝑢𝑢1(𝑥𝑥) and 𝑢𝑢2(𝑥𝑥) represent the score functions of a and d, var1 and var2 
are the variance of 𝑢𝑢1(𝑥𝑥) and 𝑢𝑢2(𝑥𝑥).) 



24 

In this thesis, we only considered the cases of a single QTL with small effects. As 

shown  in Tables 2 to 4, the results from the score test statistics of the currently used and 

posterior models is similar because the frequencies of QTL genotypes in ungenotyped 

individuals are close to the frequencies in the whole population ( 1/4、1/2 and 1/4 ) for 

small QTL effect. Their differences will become more significant when the QTL has large 

effects (not shown). Most quantitative traits are believed to be influenced by multiple 

QTL and their interaction. In the cases of multiple QTL, the frequencies of multiple QTLs 

genotypes among the ungenotyping individuals may deviate from the population 

frequencies, and the differences between posterior model and currently used model might 

become remarkable and is worth pursuing. In the future works, we intend to extend the 

one-QTL posterior model to multiple-QTL posterior model for QTL detection when 

selective genotyping is implemented in QTL experiments. 
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6  Abbreviations 

Abbreviations Term 

QTL Quantitative trait loci 

IM Interval mapping 

LRT Likelihood ratio test 

REG interval mapping Regression interval mapping 

CIM Composite interval mapping 

MIM Multiple interval mapping 

 


	口試委員審定書
	謝誌
	中文摘要
	ABSTRACT
	Contents
	1  Introduction
	2  Theory and Methods
	1
	2
	2.1  Population Structures and Selective Genotyping for QTL Detection
	2.2  Statistical Model of QTL Mapping for Complete Data
	2.3  Statistical Model of QTL Mapping for Selective Genotyping
	1
	2
	2.1
	2.2
	2.3
	2.3.1 Statistical Model
	2.3.2 The Genotypic Structure of QTL in Ungenotyped Individuals

	2.4  Score Test Statistics for Detecting QTL in Selective Genotyping

	3   Simulation and Results
	3

	4  Conclusion and Discussion
	5  References
	6  Abbreviations



