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中文摘要 
三維環境重建是目前一項熱門且應用廣泛的議題，諸如室內環境導覽、虛擬

實境以及微創手術之影像導覽系統。立體攝影機同時提供色彩及空間資訊，相較

於雷射僅提供空間資訊或單一攝影機提供色彩資訊，更能完整描述環境狀態，提

供充足的資訊於三維重建任務上。若能精確地將每一時刻攝影機的相對轉換關係

估算出來，立體攝影機量測點便能夠放置在正確的世界座標上，進而建立出三為

環境模型。因此首要的任務是利用連續影像上相同特徵點達成立體攝影機的定位。

然而，由於立體攝影機的不確定性及錯誤特徵點匹配，不將離群匹配點剃除直接

估測攝影機相對姿態將導致定位不精確或是錯誤估測。因此，隨機抽樣一致演算

法在此論文中用來作為離群匹配對的剃除。另一方面，由於立體攝影機為被動式

感測器，在許多情況如低紋理及光滑材質下，視差影像將產生許多破碎區域，影

響三維重建所需的資訊量。因此本論文將提出一個資料前處理的方法，降低量測

破碎，進而提高空間重建的品質。 
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  此外，考量到動態環境下建置靜態地圖時，必須將動態物偵測出並將其濾除。

因此本論文提出了一套物體偵測及追蹤演算法，以機率形式建立佔據網格地圖擷

取出候選物體。接著，候選物體利用 HSV 色彩模型中的色相及飽和度分佈相似性

對應到正確的資料庫物體，以解決資料關聯性問題。最後，物體狀態的更新以本

論文所提出的更新策略搭配卡爾曼濾波器來達成。實驗結果顯示此系統能夠同時

追蹤多重物體，即使物體在一段時間超出攝影機視野或是被遮擋後再被偵測，仍

能夠準確追蹤。 

 

關鍵字： 立體攝影機，RGB-D 定位，三維環境重建，物體追蹤，基於可視度之佔

據網格。  
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ABSTRACT 

Three-dimensional environment reconstruction is a key technology that has been 

widely researched over the last decade and has many applications such as indoor 

environment navigation, virtual reality and visual guidance system for minimal invasive 

surgery. Stereo camera provides color and spatial information together and therefore is 

more suitable in 3D environment reconstruction task than other sensors like laser range 

finder that only provides spatial information or mono camera that only provides color 

information. Once each camera relative pose is estimated precisely, measurement points 

provided from stereo camera can be placed at the correct position in the global 
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coordinate to reconstruct the 3D environment model. Thus, the most important task is to 

achieve the goal of localizing the camera pose by using the same feature points in the 

consecutive frames. However, because of the uncertainty caused by the stereo camera 

noise and the feature point mismatching, estimating the camera pose directly without 

eliminating the outliers could lead to an inaccurate or wrong result. Therefore, Random 

Sample Consensus (RANSAC) algorithm is applied to solve the outlier problem in this 

thesis. On the other hand, because of the limitation of the passive type sensor like stereo 

camera, the disparity map has many missing data areas that occur in several situations 

such as measuring object in low textureness or glossy surface. This problem may affect 

the quality of the reconstructed 3D model. Thus, the data preprocessing method is 

proposed to enhance the 3D reconstruction quality by reducing the missing data areas. 

 In addition, considering 3D model reconstruction task in dynamic scene, moving 

object needs to be detected and removed. Therefore, the object detection and tracking 

method is proposed to detect an object by constructing the occupancy grid map in 

probability representation to extract object candidate. Then the distributions of hue and 

saturation in HSV color space are used to link the candidate to the corresponding 

database object correctly to solve the data association problem. Finally, the proposed 

update strategy with Kalman filter is used to renew object states. The experiment results 

demonstrate that the system can track multiple objects simultaneously and even though 
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an object is out of the field of view for a while or is in occlusion, the object can still be 

tracked correctly. 

 

Keywords: 

Stereo camera, RGB-D localization, 3D environment reconstruction, object tracking, 

visibility-based occupancy grid. 
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Chapter 1 

Introduction 

1.1 Motivation 

Three-dimensional object and environment model reconstruction is a popular topic 

that has been researched in the last decade and plays an important role in many area 

such as robot navigation [1: Henry et al. 2012], virtual reality [2: Marcincin et al. 2012] 

and visual guidance system for minimal invasive surgery [3: Park et al. 2012].  

To build a 3-D model, not only the spatial information of an object is needed but 

also the color information. If the system only has spatial information, the model shape is 

built without knowing its appearance. Contrarily, if the system has only color 

information, the model cannot be reconstructed since the points cannot be placed in the 

correct positions. It shows the importance of color-spatial data structure for 3-D model 

reconstruction task. Recently, many sensors that have the ability to acquire color-spatial 

data have been developed, such as stereo camera and Microsoft Kinect. Both of them 

provide RGB color image and the corresponding disparity map (depth map) with same 

image coordinate, and this data structure is named as RGB-D data [5: Zeisl et al. 2012]. 

Moreover, RGB-D data can be extended to a RGBXYZ data structure, as shown in 

Figure 1.1. Therefore, the whole environment 3D model can be reconstructed by several 
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frame data capturing in different positions. In addition, Kinect is an active type sensor 

and its range image is acquired from the IR module, which is sensitive to incident angle 

and sunlight [6: Suarez et al. 2012]. Contrarily, Stereo camera is a passive type sensor 

and its range image is estimated by block matching algorithm, and do not have incident 

angle problem and is less sensitive to sunlight. Figure 1.2 shows the RGB-D data 

acquired from stereo camera and Kinect in outdoor environment. It is obvious to 

observe that the number of valid pixels in stereo depth map is larger than the number of 

valid pixels in Kinect depth map. Hence, stereo camera which belongs to passive type 

sensor is used in this thesis.  

To place these points to the correct positions in the global coordinate, estimating the 

camera pose in each step is necessary, which is often called localization task. Many 

existing methods used to localize stereo camera pose have been developed, and one of 

these approaches is based on tracking the 3-D coordinate of image features and is often 

called “visual odometry” [16: Scaramuzza et al. 2011].  

Although the environment 3D model can be reconstructed by the localization 

method which tracks the image feature points, many problems still need to be solved. 

One of the problems affects the mapping quality is the shortcoming of stereo camera 

itself. The disparity map generated from two CCDs of the stereo camera by local 

correspondence method has many small missing data areas, which are often called 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 1.2: RGB-D data comparison between stereo camera and Kinect in an outdoor 

environment. 

(a)(b)(e)(f) Color image and depth map from stereo camera. 

(c)(d)(g)(h) Color image and depth map from Kinect. 

 

1.2 Problem Formulation 

In order to construct 3-D environment model by RGB-D measurements acquired at 

different positions, the sensor poses in each step need to be known. If the camera poses 

are known ideally, the data points with RGBXYZ structure can be placed to the correct 

positions with corresponding colors. However, these sensor poses are usually unknown 

in practice and need to be estimated. Many researchers investigated the six degrees of 

freedom sensor poses estimation by aligning two point clouds in k  and 1k −  steps 

using ICP and ICP variant methods. However, due to the uncertainty of stereo camera, it 

is not suitable to use ICP and ICP variant directly. Moreover, ICP needs a suitable initial 

guess or it may return a wrong result due to the fact that ICP aligns two point clouds 
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into local minimum. Contrarily, since camera moves step by step, many same feature 

points captured in the consecutive frames. By using the relative 3D coordinates of these 

points, the camera relative pose can be estimated by least-square method without any 

initial guess. However, two challenges need to be solved. First, features may not be 

linked correctly from previous to current frame, considering these wrong matching pairs 

in motion estimation may cause inaccurate or wrong result. Secondly, due to the sensor 

uncertainty, point may have inaccurate 3D coordinate, and will also affect the motion 

estimation result. These two cases are considered to be the outliers, and will be solved 

by applying Random Sample Consensus (RANSAC) algorithm.  

On the other hand, stereo camera is a passive sensor, which the disparity map is 

generated by finding the same features from reference to target images, which is 

sensitive to illumination and textureness. This cause many missing data in the disparity 

map and therefore affects the mapping quality to the 3D models. To overcome the 

problem, this thesis proposes a data interpolation method to fix the missing data area 

efficiently by the average of the horizontal and vertical linear interpolation results.  

Besides, considering 3D model reconstruction task in a real life scenario, many 

moving objects that do not belong to the 3D model need to be filtered out. Therefore, 

the object detection and tracking system is proposed. Many researchers have 

investigated object detection and tracking based on stereo vision, especially in the field 
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of intelligent transportation system (ITS). However, these tracking systems used in the 

traffic scenario do not need to consider tracking an object correctly in the cases of the 

object returning back to the camera field of view or partially occluded. Therefore, this 

thesis proposed the object registration method based on color distributions in HSV color 

space and the update strategy to update the object states to solve the data association 

problem during the system encounter the cases of object returning back to the camera 

FOV or partially occluded. 

 

1.3 Contribution 

The main contribution of this thesis is that the existing image feature-based 

localization method, the proposed stereo refinement algorithm, the visibility-grid map 

construction method proposed in [29: Perrollaz et al. 2012], the proposed object 

detection method and object tracking algorithm are combined together to achieve two 

main goals which are three-dimensional environment reconstruction and object tracking 

using stereo camera.  

For the first topic, static environment reconstruction can be divided into two parts, 

which are sensor localization and stereo data refinement. For the first part, the existing 

feature-based localization method with RANSAC outlier rejection to achieve the goal of 
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six degrees of freedom (6-DoF) camera pose estimation [16: Scaramuzza et al. 2011] is 

integrated in this thesis. After finishing the localization step, each point measured by 

stereo camera can be added into 3D global model at the correct position with its color, 

and thus the 3D environment model can then be constructed. However, since many 

missing data in stereo camera, the proposed stereo refinement method combining with 

forbidden area elimination, missing data (hole) detection and hole filling is applied to 

fix this missing data area.  

The second topic is the proposed object detection and tracking system. To detect 

object candidates from stereo camera data, the existing visibility-based occupancy grid 

map in u-disparity space [29: Perrollaz et al. 2012] with a slightly modification is 

integrated with the proposed post-processing algorithm in thesis. After object candidates 

are extracted, the next problem is how to link candidates to the database objects 

correctly. This problem is so called data association, and is solved by comparing the 

distributions of hue and saturation channels of the corresponding image patch in HSV 

color space with the proposed background pixels elimination method. Finally, to update 

the states of database objects in different cases, this thesis proposed an update strategy 

to handle the problem with Kalman filter.  

The proposed systems can not only be used on stereo camera but also on other 

sensors which provide the same RGB-D data structure.  
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1.4 Organization of the Thesis 

This thesis has 7 chapters including Chapter 1. The remaining part of this thesis is 

organized as follows: Literature survey is presented in Chapter 2. The related algorithms 

are discussed in Chapter 3. Two main parts of this thesis are discussed in the following 

two chapters. The three-dimensional environment reconstruction methods are shown in 

Chapter 4, including sensor localization and data refinement algorithms. In Chapter 5, 

object detection and tracking algorithms are presented. The experimental result and 

analysis are shown in Chapter 6. In the end of this thesis, the conclusion and future 

works are presented in Chapter 7 to show the benefits of the main ideas of the proposed 

system and point out some disadvantages that will be improved and extended. 
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Chapter 2 

Background and Literature Review 

2.1 Three-Dimensional Environment Reconstruction 

In the last decade, many researchers have been investigated on how to reconstruct 

an environment map precisely using RGB-D sensor. According to the work in [1: Henry 

et al. 2012], to build a 3D environment map completely, a mapping system should 

consider three components, which are spatial alignment (localization), close loop 

detection and global consistency.  

For the first component, which is spatial alignment, is the most important element 

for mapping system to localize the sensor poses. As mentioned in Section 1.3, if sensor 

does not know its position accurately, the measurements from the sensor cannot map to 

the correct positions in the 3D global model. Many existing ways to align two 

consecutive data frames have been developed to achieve the goal of localization method. 

The traditional and most popular way to align two point clouds is Iterative Closest Point 

(ICP) method [9: Bsel et al. 1992]. In the ICP registration algorithm, closest point in 

different point clouds is associated to compute the optimal rigid transformation 

iteratively that minimizes the mean-square error of each associated point between two 

datasets. However, due to noise points in the range data that affect the correctness of 
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point association, many ICP variant related techniques are proposed to solve this 

problem. For example, [10: Turk et al. 1994] proposed the point pairs elimination 

mechanism to remove point pairs that are too far apart or either points locates on a mesh 

boundary to avoid the outliers effect. [11: Chen et al. 1991] proposed point-to-plane 

error metric instead of point-to-point and get a better result on two surfaces registration. 

Both of these two variant methods only consider the spatial information. For sensors 

that generate color point cloud, performing ICP with color constraint can solve the data 

association problem more convenient. For example, [12: Johnson et al. 1997] proposed 

the point pairs elimination using hue (the hue channel of HSV color space) of each 

points as a filter to be a constraint during the closest point search in every ICP iteration. 

In [13: Men et al. 2011], the method not only consider the hue of each point as an 

elimination constraint, but includes the hue into the error metric as 4D-ICP, which the 

4D means the ,  ,  -coordinatex y z  and an additional hue intensity. Although many ICP 

variant algorithms solve the data association problem, both the above ICP and ICP 

variant algorithms are suffered from initial guess problem since ICP method aligns two 

data sets to the local minimum. To solve the initial guess, Makadia [14: Makadia et al. 

2006] proposed the method to automatically estimate the initial guess and refine the 

alignment by translating point cloud surface normal vector distribution into orientation 

histogram, which is called Extended Gaussian Image (EGI). On the other hand, for the 
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image feature-based localization, which is often called visual odometry, are the most 

popular to RGB-D type sensors since the initial guess can be easily solved by using the 

image feature such as Scalar Invariant Feature Transform (SIFT) [20: Lowe 2004] or 

Speeded-Up Robust Features (SURF) as landmarks [16: Scaramuzza et al. 2011]. 

However, because many outliers such as wrong feature matching pairs affect the pose 

estimation result, Random Sample Consensus (RANSAC) outlier rejection algorithm is 

applied to solve this problem [17: Nister et al. 2004]. Moreover, for binocular stereo 

vision, since two image planes are fixed, the feature coordinates in reference image 

plane can be a constraint to check the correctness of each matching pairs of the target 

image plane in feature matching step. This concept was proposed in [18: Kitt et al. 

2010], using the so called trifocal tensor to describe the relationship between three 

images (which are the two images from previous step and the target image in current 

step). Besides, [1: Henry et al. 2012] proposed two stage RGB-D localization method 

by fusing feature tracking with RANSAC outlier rejection and ICP. However, the 

authors claim that feature-based method is good enough and applying ICP can refine the 

result slightly. Since image feature-based localization with RANSAC can solve the 

initial guess and outlier rejection to get a precise localization result and is easily 

implemented, this thesis chooses this method to achieve to goal of localization.  

 For the second and third components, which are close loop detection and global 
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consistency, are used to minimize the error during the frame-by-frame localization. To 

detect close loop data frames, keyframes are selected and are compared in each data 

frame [1: Henry et al. 2012]. After detect the close loop, some optimization methods are 

used to minimize the error. For example, in [1: Henry et al. 2012], two methods are 

implemented to compare the results: the first method is tree-based network optimizer 

(TORO) which uses stochastic gradient descent to maximize the likelihood of node 

parameters subject to the constraints; another is sparse bundle adjustment (SBA), which 

globally minimize the re-projection error of feature points which are matched in all data 

frames. Loop detection and global consistency are essential when reconstructing large 

scale environment model. However, the scenarios in this thesis do not encounter loop 

closure and global consistency and these problems are considered to be the future 

works.  

Figure 2.1: Sensor localization categories. 
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2.2 Object Detection and Tracking 

Object detection tracking have been researched for a long time and have been 

developed by different sensors. According to the properties of different sensors, the 

object detection task can be categorized into two types, beam-type sensor based and 

vision-based. For the first category, beam-type sensor, such as laser range finder or 

ultrasound, provides spatial information by returning an environment point positions. In 

[34: Wolf et al. 2004], the authors proposed the moving object detection method by 

constructing a static grid map, and comparing each scan data to this static gird to filter 

out the dynamic points. However, tracking laser points are a challenge problem, since 

no other information to determine how to link an object point to the object in next scan 

correctly. It is well known as data association problem [62: Thrun 2005]. Although 

many hypothesis approaches have been developed to overcome the problem, 

considering only spatial information to solve data association problem is still hard and 

makes ambiguous result. 

On the other hand, for vision-base category, it can be divided into mono camera and 

RGB-D type sensor. The main different between these two subcategories is if there has 

the corresponding range image to the image. Object detection based on mono camera 

has been researched for a long time since camera provides abundant visual information 
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to obtain the object appearance. In [22: Saravanakumar et al. 2010], the authors 

proposed a background subtraction method to retrieve dynamic object, which based on 

the background modeling performance. To model the background, [23: Lee et al. 2003] 

proposed using Gaussian Mixture Model (GMM) to model the environment background 

by several frame images. [24: Barnich et al. 2011] proposed the visual background 

extractor (ViBe) to achieve better performance than GMM. Both these methods need 

several images to construct the background, and thus the sensor cannot move too fast. 

[25: Enzweiler et al. 2009] mentioned that moving object can be extracted by estimating 

the optical flow of the image to extract moving pixels. The similar concept is tracking 

features on the object to detect moving object in the image plane [26: Tang et al. 2008]. 

On the other hand, training-based algorithms are also popular to achieve the goal of 

detecting specific object. For example, [21: Dalal et al. 2005] proposed using the 

histograms of oriented gradients (HOG) to detect human based on the edge orientation 

of the human. [32: Viola et al. 2003] proposes the pedestrian detection method by 

training the preset pedestrian patterns using Harr wavelet. However, training-based 

should train a sequence of object patches, and only the specific object can be detected, 

such as human or vehicle, with different training data.  

Stereo camera provides color image with corresponding depth, which has abundant 

image information and spatial information simultaneously. Therefore, object detection 
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and tracking can be constructed more easily to combine two different spaces 

information. To detect object, v-disparity approach is first proposed in [27: Labayrade et 

al. 2002] and becomes more and more popular. The disparity map is projected to 

V-disparity space by accumulating the disparity along the v-axis. [7: Hu et al. 2012] and 

[38: Krotosky et al. 2007] extended the work of Labayrade, the u, v-disparity approach 

is developed and using Hough transform to extract object bounding box. These methods 

have a drawback that in some complicate scenario, the line of object bounding box 

becomes discontinuous in Hough transform line extraction stage. Therefore, some 

object may not enclose completely by the bounding box. Other approaches based on 

grid mapping are developed. [31: Oniga et al. 2010] construct a digital elevation map 

(DEM) to check the height of each grid cell, and construct a density map to check the 

measurement density of the grid cell. Both of DEM and density map are constructed in 

Cartesian space. By using these two grid map, the obstacle grid cell can be extracted 

and find the corresponding object image position by perspective mapping. Although the 

authors considered the fact that a grid cell at the far distance has less measurement 

points due to perspective projection by constructing the density grid map, extracting 

obstacle grid cells by checking the density map is not a complete consideration due to 

the density of a grid cell may be affected by partially occlusion or missing data. In [29: 

Perrollaz et al. 2012], Perrollaz et al. proposed the visibility-based occupancy grid map 
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calculation method for an efficient and formal consideration on u-disparity occupancy 

grid construction. Instead of using density to describe the occupancy of a grid, the 

visibility-grid map considers the ratio between the valid number of disparity pixels and 

the number of disparity pixels that exactly hit (measure) the obstacle to the grid cell and 

formally uses a probability formula to describe the occupancy of a grid. Based on 

occupancy grid mapping, tracking an object can be done by Kalman filter [36: Barth et 

al. 2009] or particle filter [35: Danescu et al. 2012] based on Bayesian framework. 

However, system encounters data association problem like the situation of beam-type 

sensor when it tracks multiple object. For example, although the particle tracking 

method proposed in [35: Danescu et al. 2012] can track multiple objects in most of 

cases, the tracking result fails when two objects move across each other. In [36: Barth et 

al. 2009] the authors proposed track-before-detect scheme to solve the data association 

problem by tracking the image features and then group features by the 3D motion of 

each feature. In [37: Nedevschi et al. 2007], data association is solved by tracking the 

features in the object bounding box. These methods can solve data association problem 

quite well when the object is in the camera field of view. However, these methods may 

fail when object is viewed from different directions during the object return to the 

camera FOV. This is because that the feature points are too sparse and too distinctive to 

describe an object and are not the same in different direction of an object. Contrarily, in 
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most cases, the hue and saturation distributions of an object in HSV color space do not 

change dramatically. Therefore, in this thesis, the color distributions of the object are 

used to be the feature vectors to describe the object without using the feature points.  

In this thesis, object detection is solved by slightly modifying the visibility-based 

occupancy grid construction method proposed in [29: Perrollaz et al. 2012], and data 

association is solved by using the distribution of the hue and saturation of the object as 

feature vector. The tracking strategy is proposed to update the state of an object in 

different situations.  

 

Figure 2.2: The object detection and tracking categories. 
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Chapter 3 

Related Algorithms 

3.1 Pin-hole Camera Model 

The pin-hole camera model is used to describe the projection of a pinhole camera 

from 3D coordinate to 2D image plane in mathematics. As shown in Figure 3.1, a 3D 

point coordinate denoted by ( , , )x y z  projects to the image plane at the coordinate

( , )u v , the image center is at the coordinate 0 0( , )u v , f  is the camera focal length. 

According to the similar triangles, the pinhole camera projective transform can be 

written as follows [59: Laganière 2011], 
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 (3.1) 

where s  is a scale factor to normalize the projective transform equation. The 3 3×  

matrix in Equation (3.1) includes all of the camera parameters which are called the 

intrinsic parameters. xf  is the focal length expressed in horizontal pixels, which is 

defined as follows: 

 x

f
f

px
=  (3.2) 

where px  is the pixel width. Similarly, yf  is the focal length expressed in vertical 

pixels, which is defined as follows: 
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Figure 3.1: Illustration of pin-hole model  

 

Moreover, to generalize the projective transform, the rotation and translation vector are 

added to the projective transform equation to overcome the problem when the reference 

frame is not at the projection center of the camera. It can be extended as follows [59: 

Laganière 2011]: 
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where the elements of the rotation matrix ijR  and the elements of the translation vector 

mT  are put in the same matrix, these elements are called extrinsic parameters of the 

camera. 
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3.2 Random Sample Consensus 

 The random sample consensus is an iterative method to estimate parameters of a 

mathematical model or transformation from a set of data which contains inliers and 

outliers and it is well known as its abbreviation, RANSAC [47: Random Sample 

Consensus from wiki 2013]. Generally, an ideal dataset can be fitted using a certain 

parameters of the model by least square approach. However, in most cases, data will 

have noise or wrong measurement due to sensor uncertainty or limitation. Noise or 

wrong measurements are considered to be the outliers, and the remaining data is called 

inliers. Therefore, the idea of RANSAC is to find the parameters that are valid for most 

of the points by discarding the noisy points. The general RANSAC process is listed in 

Algorithm 3.1. 

  Figure 3.2 shows an example to illustrate the concept and algorithm of RANSAC 

method. Assuming that the data set is in two dimensional, that is, each point has 

coordinate ( , )x y . The data set is also assumed to have the distribution of a line that can 

fit the data set. The line model is assumed to be y mx c= + . The goal is to find the best 

parameters ( , )m c  of the line model that can describe the whole data set. For the first 

iteration, two points are chosen randomly as red dots shown in Figure 3.2(a). The line 

parameters 1 1( , )m c  can be calculated according to the point-slope formula. The 
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distances from each point in the dataset to the line can then be calculated. If the distance 

is smaller than a certain thresholdδ , the point is considered to be inlier, shown as blue 

and red dots in Figure 3.2(a). The remaining gray dots are considered to be the outliers 

in this iteration. The number of inliers and the corresponding line parameters are stored. 

In the second iteration, two points are chosen randomly, shown as red dots in Figure 

3.2(b). The line parameters 2 2( , )m c  are calculated, each of the point-to-line distances 

are found, and the inliers are counted. The number of inliers and the line parameters in 

the second iteration step are stored either. In these two iterations, the line parameters in 

first iteration can describe the dataset with more inliers number than the parameters in 

the second iteration. For k  time iterations, the best line parameters in -thk  iteration 

are chosen if the number of inliers is the largest. 

  

(a) (b) 

Figure 3.2: Example of RANSAC algorithm.  

(a) The first iteration result with better sample selection.  

(b) The second iteration result with worse sample selection. 
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Algorithm 3.1: General Random Sample Consensus Algorithm 

Input: Dataset of points P  

Output: Model parameters Model  

1: Set the best model bestModel φ←  

2: Set the best inlier set bestInliers φ←  

3: Set the number of best inlier set 0NBestInliers =  

4: Define the number of iterations N  

5: Define model error threshold threshold  

6: for  1  i to N=  

7:   SampleSet ← Randomly select k points from P  

8:   Compute CurrentModel  from SampleSet  

9:   CurrentInliers φ←  

10:   for all  points iP  in P  

11:     Compute the error ε  of iP  by using the CurrentModel  

12:     if thresholdε <  

13:       iCurrentInliers CurrentInliers P← +  

14:     end if  

15:   end for  

16:     Count the number ofCurrentInliers [ ] ( )CurrentNInliers size CurrentInliers=  

17:     if  CurrentNInliers NBestInliers>  

18:       CbestModel urrentModel←  

19:       bestInliers CurrentInliers←  

20:       NBestInliers = CurrentNInliers  

21:     end if  

22: end for  
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3.3 Image Processing and Description 

3.3.1 HSV Color Space 

HSV color model separate hue, saturation and value into three independent 

channels. Each channel of HSV has specific meaning to describe the color. The original 

color image data are stored in R, G, B three channels, therefore image need to be 

transformed from RGB color space to HSV color space. The transformation formulas 

are as follows [45: HSL and HSV from wiki 2013]  

 max( , , )MAX R G B=  (3.5) 

 min( , , )MIN R G B=  (3.6) 

 V MAX=  (3.7) 
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3.3.2 Morphological Image Processing 

Morphological image processing is used to refine some sets or reduce some small 

parts in binary image for example. The language of mathematical morphology is set 
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theory [58: Gonzalez & Woods 2008]. In binary image, the sets are members of the 2D 

integer space 2Z  whose coordinates are the ( , )x y  of a white pixel in the image. 

These white pixels are defined as the foreground pixels, whereas the other pixels are 

called background pixels. Two additional definitions are used extensively in 

morphology, which are not found in basic set theory, are listed and described as follows. 

The reflection of set B  which is denoted as B  is defined as follows: 

  { }| ,  for B w w b b B= = − ∈  (3.10) 

Figure 3.3(b) illustrates the concept of reflection, which the elements in B  are equal to 

the reflecting elements in B . On the other hand, the translation of set B  which is 

denoted as ( )zB  is defined as follows: 

 { }( ) | ,  for zB c c b z b B= = + ∈  (3.11) 

Figure 3.3(c) illustrates the concept of translation, which the elements in ( )zB  are 

equal to the elements in B  by shifting a coordinate 1 2( , )z z . 

  

 

(a) (b) (c) 

Figure 3.3: The illustration of the definition of reflection and translation. 

(a) The original set B . 

(b) The reflection of B . 

(c) The translation of B . 
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3.3.3 Connected-Component Labeling 

To analyze each morphology region of binary image, it is necessary to distinguish 

each region at the beginning. Connected-component has the property that each pixel is 

the neighbor of the other pixels in the region in 4- or 8-connectivity. 

Connected-component labeling is an algorithm that used to detect connected regions in 

binary image in computer vision [58: Gonzalez & Woods 2008]. Once the image region 

is labeled by using connected-component labeling algorithm, many region properties 

such as area (pixel number), smallest bounding box vertexes and component pixels list 

can be extracted.  

Many ways to achieve connected-component labeling task have been developed. 

Here a simple algorithm in recursive version is described in Algorithm 3.2 and 

illustrated in Figure 3.7. In this thesis, the connected-component labeling and region 

properties can be found in MATLAB using the instruction regionprops .  
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Algorithm 3.2: Simple Connected-Component Labeling with 4-connectivity 

Input: Binary Image Image  

Output: Connected-Component Labeling ArrayConnectedImage  

1: [ ] size( );ImageRow,ImageCol Image=  

2: zeros( );ConnectedImage ImageRow,ImageCol=  

3: 0NumberLabel =  

4: for i=1:ImageRow 

5:   for j=1:ImageCol 

6:     if ( , ) 1Image i j == and ( , ) 0ConnectedImage i j ==  

7:       1;NumberLabel NumberLabel= +  

8:       ( , ) 1;ConnectedImage i j =  

9:       ( 1, , , );ConnectedImage CheckNeighbor i j Image ConnectedImage= −  

10:       ( 1, , , );ConnectedImage CheckNeighbor i j Image ConnectedImage= +  

11:       ( , 1, , );ConnectedImage CheckNeighbor i j Image ConnectedImage= −  

12:       ( , 1, , );ConnectedImage CheckNeighbor i j Image ConnectedImage= +  

13:     end if  

14:   end for  

15: end for  

 

16: CheckNeighborfunction  (iIdx, jIdx,ConnectedImage)  

17:   if ( 1, ) 1Image iIdx jIdx− == and ( 1, ) 0ConnectedImage iIdx jIdx− ==  

18:     ( 1, , , );ConnectedImage CheckNeighbor i j Image ConnectedImage= −  

19:   end if  

20: if ( 1, ) 1Image iIdx jIdx+ == and ( 1, ) 0ConnectedImage iIdx jIdx+ ==  

21:     ( 1, , , );ConnectedImage CheckNeighbor i j Image ConnectedImage= +  

22:   end if  

23: if ( , 1) 1Image iIdx jIdx − == and ( , 1) 0ConnectedImage iIdx jIdx − ==  

24:     ( , 1, , );ConnectedImage CheckNeighbor i j Image ConnectedImage= −  

25:   end if  

26: if ( , 1) 1Image iIdx jIdx + == and ( , 1) 0ConnectedImage iIdx jIdx + ==  

27: ( , 1, , );ConnectedImage CheckNeighbor i j Image ConnectedImage= +  

28: end if  

29: return ConnectedImage  

30: end function  
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( )ix xϕ −  is the so called radial basis function, which has many types, for example: 

1. Gaussain: 

 
2( )( ) rr e εϕ −=  (3.15) 

2. Multiquadric: 

 2( ) 1 ( )r rϕ ε= +  (3.16) 

3. Inverse multiquadric: 

 
2

1
( )

1 ( )
r

r
ϕ

ε
=

+
 (3.17) 

where ir x x= −  is the distance between x  and ix . 

To obtain the goal of RBF interpolation, it is necessary to determine a proper radial 

basis function ( )rϕ . After determining the radial basis function, the next step is to train 

the weights of RBF iω . Since each known data point has corresponding known output, 

the training process takes all the known data point jx  to associate each data ix  to 

calculate the corresponding weight iω , that is, 

 ( ) ,  1... .i iy x b i N= =  (3.18) 

 
1

( ) ( ) ,  1...
N

j i j i j
i

y x x x b j Nω ϕ
=

= ⋅ − = =  (3.19) 

where ix  is the known node and ib  is the corresponding known output. Extending the 

Equation (3.19), it becomes: 
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1 1 1 1 2 2 1 1

2 1 1 2 2 2 2 2

1 1 2 2

( ) ( ) ... ( )
( ) ( ) ... ( )

( ) ( ) ... ( )

N N

N N

NN N N N N

x x x x x x b
x x x x x x b

bx x x x x x

ϕ ω ϕ ω ϕ ω
ϕ ω ϕ ω ϕ ω

ϕ ω ϕ ω ϕ ω

− + − + + −   
 − + − + + −  =   
   − + − + + −   

  (3.20) 

Since ( ) ( )j i i jx x x xϕ ϕ− = − , the Equation (3.20) can be rewritten by replacing the 

radial basis function ( )j ix xϕ −  to ,i jA , that is, 

 

1,1 1 1,1 2 1,1 1

2,1 1 2,1 2 2,1 2

,1 1 ,1 2 ,1

...

...

...

N

N

NN N N N

A A A b
A A A b

bA A A

ω ω ω
ω ω ω

ω ω ω

+ + +   
 + + +  =   
   + + +   

  (3.21) 

By rewriting the Equation (3.21) in matrix form, Equation (3.21) becomes: 

 

1,1 1,2 1, 1 1

2,1 2,2 2, 2 2

,

,1 ,2 ,

N

N

j i

N NN N N N

A A A b
A A A b

A

bA A A

ω
ω

ω

     
     
     =     
     
         

  
  

   
    
   

  

 (3.22) 

For simplicity, Equation (3.22) can be expressed as Equation (3.23) 

 A bω =  (3.23) 

If the matrix A  is nonsingular, the coefficient ω  can be obtained by Equation (3.24). 

 1A bω −=  (3.24) 

Therefore, due to iω  is known and ( )rϕ  is defined previously, the approximating 

function can be obtained.  
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Chapter 4  

3D Environment Reconstruction  

 In this chapter, the proposed 3D environment reconstruction method using stereo 

camera is presented. The proposed system can be divided into two parts, which are 

localization and stereo refinement. The overall system architecture can be illustrated by 

Figure 4.1. For camera at -thk  time step, two independent processes perform in 

parallel. To estimate camera relative movement between current and previous step, 

feature points captured in these two steps need to be the inputs of localization part to 

achieve the goal of feature matching process. Some wrong matching pairs cause 

inaccurate localization result are eliminated by the outlier rejection method based on 

Random Sample Consensus (RANSAC). For stereo data refinement, wrong 

measurement pixels in forbidden area are removed by statistic method. The missing data 

areas which are often called a hole in the remaining disparity map are detected by using 

connected-component labeling technique. Finally, the missing data regions are filled by 

dual orthogonal linear interpolation method.  
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Figure 4.1: The proposed system architecture.  

 

4.1 Stereo Camera Localization and Mapping 

One of the advantages of stereo camera is the data structure that combines spatial 

and color information to a pixel in the image coordinate, that is, ( ), , , , ,i i i i i i iP x y z r g b= . 

This data structure provides essential information to 3-D reconstruction. Assuming a 

camera captures a sequence of the local data in the environment with known camera 

poses, the global environment 3D model can be reconstructed by placing these data in 

correct positions to world coordinate. Figure 4.2 shows the concept: two landmarks in 

the environment are captured by two consecutive camera frames with relative camera 
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pose T  as in Figure 4.2(a). The landmarks are seen by the camera in -thk  and 

( 1)-thk −  steps as in Figure 4.2(b) and Figure 4.2(c) respectively. If the transformation 

T  is known, two measurements in -thk  and ( 1)-thk −  steps can be aligned together, 

and therefore the environment can be reconstructed, as illustrated in Figure 4.2(d). 

However, in practice the measurement data is acquired from the camera coordinate 

without knowing the camera pose in world coordinate. That is, the measurement data 

points cannot be placed to the correct positions in world coordinate. Fortunately, two 

consecutive images capture the same landmarks in the environment, as illustrated in 

Figure 4.2(e) and (f) for example. Assuming the environment is a rigid body, a certain 

transformation which includes rotation and translation can align these landmarks in 

current camera coordinate to the landmarks in previous camera coordinate correctly. In 

other words, the transformation can be found out by using the relationship between the 

corresponding landmarks in current and previous camera coordinates as illustrated in 

Figure 4.2(g) and (f). By doing so, the 3-D points in current step can be mapped to the 

previous coordinate. This transformation is the relative camera pose that is necessary to 

be estimated, and the transformation estimation process is familiar with the term 

“localization”. In ideal, the camera relative motion can be estimated by simply applying 

the above concept. However, some error matching pairs affect the motion estimation as 

shown in Figure 4.2(j) and (k). If the motion is estimated inaccurately, the environment 
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cannot be reconstructed precisely as illustrated in Figure 4.2(l). Therefore, motion 

estimation with outlier rejection by random sample consensus (RANSAC) is used in 

this thesis. 

 The relation between time flow and the each processes of the localization 

algorithm is shown in Figure 4.3. For -thk  step, stereo camera provides two images 

from right and left CCDs and then calculates the depth map with respect to the target 

image coordinate at first. The second step is to detect image feature from the target 

image. In the third step, image features in -thk  step are matched to the corresponding 

features in ( 1)-thk −  step.  
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

(i) (j) (k) (l) 
Figure 4.2: Illustration of the importance of localization for mapping task 

(a) The environment is captured by camera in consecutive step. 
(b)-(c) The camera measurement in ( 1)-thk −  and -thk steps in camera 

coordinates. 
(d) If the transformation is known, measurements in -thk  step can be 

transformed to the ( 1)-thk −  step camera coordinate to obtain the 
environment reconstruction process. 

(e)-(f) Feature points extracted in ( 1)-thk −  and -thk  step in ideal. 
(g) Overlap these measurements in the same camera coordinates. Features in (e) 

and (f) are matched by estimating the similarity of the local appearance of 
each feature.  

(h) Since the same landmarks captured by the camera in consecutive time steps 
are matched well, the transformation relation can be estimated by using these 
landmarks relative positions. 

(i) Feature points extracted in ( 1)-thk −  step with wrong feature point 
extraction for example.  

(j)-(k) In practice, there might have some wrong matching pairs that will cause 
inaccurate or incorrect motion estimation. 

(l) If the camera relative motion is estimated inaccurately, the environment 
cannot reconstruct precisely. 
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4.1.1 Feature Point Extraction 

The purpose of the feature point extraction step is to detect some parts of the scene 

observed by stereo camera in the environment for feature tracking. Currently, many 

types of features that can be used to describe the environment have been developed. In 

order to identify a point located at different image plane position frame by frame, a 

feature should be robust or so called “salient” in the field of computer vision to 

distinguish each data point. Point feature can be categorized into two main types, that is, 

color and spatial spaces.  

Stereo camera provides two images from different image planes and then the 

disparity map is estimated by using these images, which is secondhand information and 

using spatial type feature such as Normal Aligned Radial Feature (NARF) [42: Steder et 

al. 2011] might be unreliable for stereo vision. Figure 4.4 shows the NARF detection 

results from the depth maps at the same position but in different time steps for example 

[55: NARF feature from PCL 2013]. Although the frame data are acquired by stereo 

camera in the same poses, the NARF features are not robust due to stereo uncertainty 

and missing data problem, as shown in Figure 4.4(i)-(l). Therefore, the Scalar Invariant 

Feature Transform (SIFT) which belongs to color type feature point is used in this 

thesis. 
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(a) (b) (c) (d) 

 

(e) (f) (g) (h) 

 

(i) (j) (k) (l) 

Figure 4.4: An example of spatial feature: Normal Aligned Radial Feature (NARF).  

(a)-(d) Color image captured at the same position in different time steps. 

(e)-(h) Corresponding depth maps in different time steps. 

(i)-(l) NARF features extracted from range images in different time steps. Red 

 circles indicate the locations of NARF features. 

 In feature extraction step, a set of salient points kF  is detected at -thk  frame in 

the target image ,Tar kI . Each feature point has two important data, which are the position 

in image coordinate , , ,( ) ( , )Image k i k i k iPosition F v u=  and the 1 128× descriptor 

, , , ,1 , ,2 , ,128( ) [ , , , ]k i k i k i k i k iDescriptor F D d d d= =   extracted from its local patch. The descriptor is 

used to determine the correspondence of certain feature in two different images. 

Moreover, with original SIFT feature information and the spatial information provided 

from stereo camera depth map, the overall data structure of a feature point provides the 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.6: Feature extraction by SIFT detector 

(a)-(b) Input image and Corresponding depth map 

(c)-(d) SIFT features with input image and corresponding depth map. 

(e)-(f) Features with non-depth information are marked as red cross sign 

 according to the depth map. 

  



43 

4.1.2 Feature Point Matching in Two Consecutive Frames 

Several salient feature points are extracted from each target image frame in the 

stage of feature detection presented in Section 4.1.1. In order to track 3D positions of 

the features captured in consecutive images, this section aims at recognizing each 

feature located at different images and formed as feature point pairs. This process is 

often called feature matching, and the data flow is illustrated in Figure 4.7. For the 

consecutive images at -thk  and ( 1)-thk −  step, feature sets kF  and 1kF −  are 

extracted as the inputs of feature matching stage, and the output is the feature matching 

pairs formed as 2 N×  matrix , 1 , 1,1 , 1,2 , 1, , 1,, , , ,   ,k k k k k k k k j k k NFP FP FP FP FP− − − − − =    , where 

, 1,k k jFP −  is the -thj  matching pair with 2 1×  dimension that stored the indexes of two 

features ,k mF  and 1,k nF − .  

A traditional way to achieve the goal of feature matching for certain feature in 

current step is to compare the similarity of feature points from previous feature set. 

Since the descriptor represents the local appearance of a feature, the similarity can be 

evaluated by comparing the point descriptor in current frame to the descriptors in 

previous frame. Many ways are used to calculate the similarity of two data, such as 

Euclidean distance used in this thesis. The Euclidean distance measures the square root 

of sum of square difference of each element between two n -dimension vectors, which 

is defined as follows.  
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 ( )2

1

( , )
n

i i
i

d p q p q
=

= −  (4.1) 

Substituting the descriptors ,k iD  and 1,k jD −  into Equation (4.1), the equation becomes: 

 ( )
128 2

, 1, , , 1, ,
1

( , )k i k j k i m k j m
m

d D D d d− −
=

= −  (4.2) 

where ,k iD  is the descriptor of -thi  feature in ,k iF , and 1,k jD −  is the descriptor of 

-thj  feature in 1,k jF − . Therefore, the feature with the smallest Euclidean distance in 

descriptors is considered to be the successful matching feature pair of ,k iF  and 1,k jF −  in 

1kF − . That is, for -thi  feature in ,k iF , the corresponding feature in 1kF −  is,  

 ( ) ( )
128 2

, 1, , , 1, ,
1: 1

arg min ( , )k i k j k i m k j m
j J m

d D D d d− −
= =

= −  (4.3) 

 After feature matching step, features in current step will be linked to previous 

features point-to-point. For a certain feature, its 3D positions ( , , )x y z  in stereo 

camera coordinate are also known from stereo measurements. Therefore, each of the 

features positions in consecutive time steps are known and the camera related pose can 

be estimated by using these spatial relations.  

 

Figure 4.7: Block diagram of feature matching processing 
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(a) (b) 

 

(c) 

Figure 4.8: The result of feature matching by estimate the similarity between two 

feature descriptor. 

(a) Previous image with the detected features. The same as in Figure 4.6(e). 

(b) Current image with the detected features. The same as in Figure 4.6(f). 

(c) By comparing the similarity, each previous feature is linked to the current 

feature as the same landmark. 
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4.1.3 Estimate the relative transformation matrix of rigid 

body by Least-Squares method using SVD. 

 After finishing the feature matching stage, points in each matching pair is assumed 

to be the same landmark in the environment with different positions at current and 

previous frames in camera coordinate. The goal is to find a proper rotation and 

translation to fit the current feature set in matching pair to the previous feature set. This 

task is well known as “point clouds registration.” To find the optimal 3 3×  rotation 

matrix R  and the 3 1×  translation vector t , the least-squares fitting method using 

singular value decomposition (SVD) is first proposed in [15: Arun et al. 1987]. To 

simplify the problem, two point sets are assumed to be a rigid body. Each point in rigid 

body has the same rotation and translation in an arbitrary motion with respect to its 

centroid, which is formulated as follows.  

 1k kPFP R PFP t− = × +  (4.4) 

Therefore the rotation and translation can be departed in two independent materials. 

According to the work proposed by [15: Arun et al. 1987], the overall least-square 

fitting algorithm is listed in Algorithm 4.1, and the concept is illustrated in Figure 4.9. 

Figure 4.9(a) shows that a rigid body is captured by camera in ( 1)-thk −  and -thk  

steps, where rigid body is located at different positions with respect to different camera 

coordinates, as shown in Figure 4.9(b) and Figure 4.9(c). Figure 4.9(d) shows that these 
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two measurements are drawn in the same coordinate. The dot lines in Figure 4.9(d) 

stand for the measurement in ( 1)-thk −  step, while the solid lines stand for the 

measurements in -thk  step. To align these measurement points, the rotation part R  

needs to be estimated before the translation since the translation part depends on 

kPFP R× . Because each point of the rigid body rotates around its centroid [60: Spong 

2005], the rotation can be estimated by ignoring the translation part by setting two 

centroids to the original, as shown in Figure 4.9(f). Therefore the centroids of two point 

sets are calculated at first as in Algorithm 4.1 line 2-3 and each point is subtracted to its 

centroid in the product terms of 3 3×  covariance matrix in Equation (4.5). The optimal 

rotation can be calculated using the following covariance matrix: 

 1, 1 ,
1

( )( )
PairsN

T
k ki k i k

i

H PFP X PFP X−−
=

= − −  (4.5) 

Note that the order of the product in Equation (4.5) cannot be changed or the 

transformation will be the inverse motion. According to the property of SVD, the 

covariance H  can be decomposed into three parts, as shown in Equation (4.6), where 

H  is the product of these parts and is written as follows.  

 [ , , ] ( )U S V SVD H=  (4.6) 

 TH USV=  (4.7) 

Therefore, the optimal least-squares rotation matrix can then be calculated as follows:  

 TR VU=   (4.8) 
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After the optimal rotation part is calculated, the translation term can be extracted. As the 

properties of rigid body mention above, each point has the same translation as its 

centroid. Therefore, the corresponding optimal translation vector can be calculated as 

follows: 

 1k kt X R X−= −  (4.9) 

The transformation matrix can be written as a 4 4×  matrix combining with rotation 

matrix and translation vector together into homogeneous transformation form, which is 

written as follows [60: Spong 2005]:  

 

11 12 13

21 22 23 , 1

31
, 1

32 33

, 1

0 1

0 0 0 1

x

y k k

z
k

k k
k

R R R

R R R R

R R R

T
M

T

T

T
−

−
−

 
     = =    
 
 

 (4.10) 

 

Algorithm 4.1: Estimate relative transformation matrix using SVD  

Input: Feature matching pairs , 1k kFP − . 

Output: 4 4× transformation matrix , 1k kM −  

1: Calculate the number of point pairs , 1size( );Pairs k kN FP −=  

2: Compute the centroid of point set in step k, ,
1

1
( , , )

PairsN
T

k kk k i k
iPairs

X x y z PFP
N =

= =   

3: Compute the centroid of point set in step k-1, 

1 11 1 , 1
1

1
( , , )

PairsN
T

k kk k i k
iPairs

X x y z PFP
N

− −− − −
=

= =   

4: Compute the covariance matrix 1, 1 ,
1

( )( )
PairsN

T
k ki k i k

i

H PFP X PFP X−−
=

= − −  

5: Decompose covariance matrix H  by SVD, [ , , ] ( )U S V SVD H=  

6: Calculate rotation matrix TR VU=  

7: Calculate translation vector 1k kt X RX−= −  
8: Combine rotation and translation together. , 1 [ , ;0,1];k kM R t− =  
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Equation (4.10) is the relative camera motion from ( 1)-thk −  to -thk  step. In 

order to place stereo measurements to global coordinate, camera pose needs to be 

specified. The relation between camera relative motion and the camera pose in each step 

is illustrated in Figure 4.10. The camera pose in -thk step can be defined as kC  and 

the pose in ( 1)-thk −  step can be defined as 1kC − . Therefore, the relation between kC  

and 1kC −  can be written as follows: 

 , 1 1k k k kC M C− −=  (4.11) 

Similarly, the camera at ( 1)-thk −  step 1kC −  can be written as 1 1, 2 2k k k kC M C− − − −= , 

and the pose at -thk  step can then be written as , 1 1 , 1 1, 2 2k k k k k k k k kC M C M M C− − − − − −= = . 

Following this rule, if the initial pose 0C  is known or predefined by an identity matrix 

as global coordinate, the camera pose at -thk  step can be written as follows:  

 
1

, 1 1, 2 1,0 0 , 1 0...k k k k k k k
i k

C M M M C M C− − − −
=

 = =  
 
∏  (4.12) 

Each -thk  step point can be transformed to initial step camera coordinate as the 

defined global coordinate, and this relation can be written as follows: 
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 (4.13) 



51 

Figure 4.10: Illustration of the relation between camera pose and relative camera 

motion. 

 

4.1.4 Camera Pose Estimation with RANSAC Outlier 

Rejection 

In previous section, the distinctive feature points are detected in each step, and the 

corresponding feature points will be matched in two consecutive frame data. The 

camera relative pose can then be estimated by using the spatial relation between these 

matching pairs using SVD method. However, using these matching pairs without any 

selection will cause inaccurate or incorrect localization result. Although the SIFT 

feature is quite robust comparing to most of the recent feature techniques, there might 

have some wrong matching cases such as repeating features or similar object in the 

world. In addition, the uncertainty of each stereo camera measurement point may 

contribute some drift to the final relative pose. To overcome the above problem, 

Random Same Consensus (RANSAC) outlier rejection framework is applied to find a 

best transformation matrix. The modified RANSAC algorithm to this case is listed in 
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Algorithm 4.2. It is assuming that the best transformation matrix is the model with 

largest number of inliers. In each iteration step, several matching pairs are selected 

randomly as sample data to estimate a transformation matrix currentM  by SVD (as in 

Algorithm 4.1). In order to determine which matching pairs are inliers, the feature 

points in current frame are transformed by currentM  to previous camera coordinate, then 

each spatial error of the matching pair can be calculated by using Euclidean distance, 

which can be written as: 

 ( ) ( ) ( )2 2 2* * * *
, , 1 , , 1 , , 1 , , 1( , )i k i k i k i k i k i k i k i kd PFP PFP x x y y z zε − − − −= = − + − + −  (4.14) 

 
*

,,
11

i ki k
current

PFPPFP M   =     
 (4.15) 

where * * * *
, , , ,( , , )T

i k i k i k i kPFP x y z=  is the coordinate of ,i kPFP  which is transformed by 

currentM  as shown in Equation (4.15). If the Euclidean distance between *
,i kPFP  and 

, 1i kPFP −  is less than a predefine threshold, it is considered to be an inlier. By doing so, 

the transformation matrix and inlier set are calculated in certain step. Then, after 

IterationN  times iteration, there will be IterationN  number of transformation matrix iM  

and the corresponding inlier sets iInliers , where 0... Iterationi N= . The best transformation 

bestM  is determined by choosing the transformation matrix iM  with the largest number 

of inliers iInliers , which can be done iteratively without storing all the trying models 

iM  with its inliers iInliers  as in the line 11-21 in Algorithm 4.2.  

 



53 

Algorithm 4.2: Feature-based localization with RANSAC outlier rejection algorithm 

Input:  
Feature Matching Pair , 1k kFP −  Set the number of iterations IterationN  Number of sample pairs sampleN  
Output:  
Transformation Matrix , 1t tM −  

Inlier list Inliers  

1: Initialize best transformation matrix bestM φ←  

2: Initialize best inliers set bestInliers φ←  

3: Initialize best inliers number _ 0Inliers bestN =  4: Calculate the number of matching pairs , 1( )Match k kN size FP −=  
5: for  iteration = 1: IterationN  

6:   SampleSet ←Randomly select sampleN  matching pairs in , 1k kFP −  

7:   Compute Current Transform Matrix currentM  from SampleSet  using SVD  

  (Algorithm 4.1) 

8:   CurrentInliers φ←  

9:   for all  , 1,k k iFP −  in , 1k kFP −  

10:     Compute the spatial error between currentM ,i kPFP  and , 1i kPFP −  by using 

    Euclidean distance, that is, , , 1( , )current i k i kEuclidean M PFP PFPε −=  

11:     if thresholdε <  

12:       , 1,Current Current k k iInliers Inliers FP −← +  

13:     end if  

14:   end for  

15:     Count the number of CurrentInliers , _ ( )Inliers current CurrentN size Inliers=  

16:     Recomputing the transformation matrix currentM  by CurrentInliers  using SVD 

    (Algorithm 4.1) 
17:   if  _ _Inliers current Inliers bestN N>  

18:     best currentM M←  

19:     best CurrentInliers Inliers←  

20:     _ _Inliers best Inliers currentN N=  

21:   end if  

22: end for  

23: , 1k k bestM M− ←  

 

For better understanding, 2-th  and 3-th  frame data are taken as ( 1)-thk −  and 
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-thk  steps for example. The given relative motion is a pure translation along x-axis 

with positive 0.1m without any rotation, and therefore the transformation matrix is as 

follows: 

 
1 0 0 0.1
0 1 0 0
0 0 1 0
0 0 0 1

T

 
 =  
  

 (4.16) 

Figure 4.11 (a)-(b) are two target images captured from right CCD of the stereo camera 

with corresponding feature points in ( 1)-thk −  and -thk  steps, respectively. The 

green circles indicate the features in the ( 1)-thk −  step, while the red dots represent the 

features in the -thk  step. Figure 4.11(c) and (d) show the projecting result of -thk  

step features from 3D coordinate to image plane by pin-hole model with different 

transformation matrixes estimated in two iterations. For better estimation iteration case, 

features in -thk  step are transformed by the following matrix: 

 
1.0000 0.0019 0.0033
0.0019 1.0000 0.0002
0.0033 0.0002 1.000

0.1019
0.0009
0.

0 0 0 1
0 0008T

 
 = 


−



−



−


 (4.17) 

Most of the red dots align to the green circles as shown in Figure 4.11(c) and (e). The 

aligning pairs are equivalence to the 3D spatial inliers since the projection by camera 

pin-hole model is a degeneration process. This means that each feature in -thk  step in 

the matching pairs is transformed correctly to the corresponding feature in ( 1)-thk −  

step. On the other hand, the incorrect transformation matrix is estimated in the second 

iteration case, and most of the red dots do not align to the green circles in the result of 
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features projection shown in Figure 4.11(d) and (f). The corresponding transformation 

matrix in the second iteration is as follows: 

 
0.9933 0.0536 0.1021 0.0177
0.0584 0.9973 0.0441 0.0605
0.0995 0.0498 0.9938 0.0068

0 0 0 1

T

− − 
− = − − 

  

 (4.18) 

The number of the inliers in the second iteration is less than the number of the inliers in 

the first iteration dramatically, and therefore this example shows that the relation 

between the best transformation matrix and the number of the corresponding inliers. 

The final result of RANSAC outlier rejection algorithm is shown in Figure 4.12(b), only 

the green lines are considered to be the inputs of the camera pose estimation step, 

whereas the red lines are the outliers and do not be considered into the pose estimation 

step. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 4.11: Illustration of estimating the relative motion with RANSAC algorithm by 

two iterations for example. Green circles indicate the feature points in 
( 1)-thk −  step, while the red dots indicate the feature points in -thk

step. Feature points in -thk  step are projected by pin-hole camera model 
with certain transformation matrix. 

(a)-(b) Feature points in ( 1)-thk −  and -thk  steps respectively. 
(c) Feature points projected with correct transformation matrix. 
(d) Feature points projected with incorrect transformation matrix. It is obvious 

that a lot of red dots transformed by incorrect transformation matrix do not 
align to the green circles. 

(e)-(f) The corresponding features plotting without showing images for better 
visualization to distinguish these points. 
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(a) 

 

(b) 

Figure 4.12: The result of using RANSAC outlier rejection algorithm on the matching 

pairs.  

(a) By comparing the similarity, each previous feature is linked to the current 

feature as the same landmark. 

(b) With RANSAC outlier rejection, some wrong matching pairs are removed. 

Green lines indicate the inliers, whereas the red lines represnet the outliers 

that do not consider into the motion estimation process. 
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4.2 Stereo Vision Refinement 

In this section, a simple way to refine the disparity image is presented. For 

window-based stereo process, due to texture-less, lighting problem and occlusion case 

in capturing environment, there might have many missing data (broken holes) in 

disparity map. Therefore, these missing data regions are detected and filled by the 

proposed method. Connected-component labeling is used to recognize and analyze each 

region. These broken regions can be filled by the proposed interpolation or radial basis 

function. These two interpolation methods are discussed in Subsection 4.2.1 and 

compared in Subsection 6.2.7.  

Moreover, some parts in the target image that cannot be seen by the reference 

image plane. These parts should not have measurements. However, in practice this 

region has some measurements due to the mismatching of using the window-based 

stereo reconstruction method. In this thesis, these parts are defined as forbidden area, 

and measurements in this area are removed by the proposed method.  

Figure 4.13: The block diagram of the proposed stereo refinement algorithm  
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Holes Detection Holes Filling
Forbidden Area 

Removal
Raw Disparity D Refined Disparity *D
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4.2.1 Forbidden Area Detection and Elimination 

In this section, the proposed stochastic-based disparity forbidden area detection 

and removing method is discussed. One of the limitations of two lens stereo camera rig 

is that there has a region that can be seen by target image but another image plane. 

Figure 4.14(a) is a typical stereo camera configuration, while the target image is defined 

as the right image plane. The red dash line at the right side of the right camera indicates 

the region that can be seen by target image plane but cannot be seen by left image plane. 

This area cannot find corresponding feature patch from right to left image, as shown in 

Figure 4.14(b), and therefore it should not have any measurement data in that region. 

Figure 4.14(c) is the disparity map corresponding to the target image as the right image 

in Figure 4.14(b). The region colored in translucent purple region in the right side of the 

disparity map indicate the region that should not have any measurement. However, due 

to the limitation of window-based matching technique which uses sum of average 

difference (SAD) as similarity index, many wrong matching points cause wrong 

measurements at that region, which is defined as “forbidden area” in this thesis. 

Moreover, the size of the forbidden area varies with the distance from objects to camera. 

The larger of the distance between object to camera, the boundary of the forbidden area 

is closer to the right side of image plane (and thus the smaller region), as illustrated in 

Figure 4.14(d). In most cases, the forbidden region is filled with invalid pixels in the 
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Figure 4.15: The block diagram of forbidden area detection  

For an arbitrary target image with corresponding disparity map shown in Figure 

4.17(a) and (b), the disparity map is accumulated on the invalid pixels along the image 

column at first. That is, the accumulator counts the number of all invalid pixels in -thj  

column. It can be formulated as follows: 

 ( )( )
1

( ) ,
d

ImageRow

I d
i

A j B I i j
=

=   (4.19) 

where  

 ( )( ) ( ){1,  , 256,
0,

d
d

if I i jB I i j
other

==  (4.20) 

dI
A  is a 1 ImageCol×  vector which stores the number of invalid pixels in disparity 

map. Since some sparkle signals occur in 
dI

A , the average filter is applied to 
dI

A  

before searching the cutting line. It can be written as follows: 

 ( ) ( )
/2

*

/2

1
I dd

j N

I
i j N

A j A i
N

+

= −

=   (4.21) 

To find a reasonable cutting line CuttingC on dI  to depart the forbidden area, the 

maximum gradient in ( )*

Id
A j  is found according to the assumption that the right side 

of the boundary of forbidden area has large number of invalid pixels while the left side 

has large number of valid pixels. This can be written as follows:  

 ( )* *

/2:
arg max ( ) ( 1)

I Id d
Cutting

j ImageCol ImageCol
C A j A j

=
= − −  (4.22) 

The cutting line extraction process is listed in Algorithm 4.3. Figure 4.17(c) shows the 
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accumulation result on invalid pixels along the column in the disparity map, and Figure 

4.17(d) shows the resulting cutting line plotting on the disparity map. This process 

departs the disparity map into the reasonable and the forbidden areas roughly by the 

statistical vertical cutting line.  

Algorithm 4.3: Cutting line extraction 

Input: Disparity map dI  

Output: Cutting line CuttingC  that stores the u-coordinate. 

1: Find out the disparity map size[ ] size( );dImageRow,ImageCol I=  
2: Initialize the accumulator, (1, );

dI
Accumulator A zeros ImageCol=  

3: ,,  0Cutting G MaxC ImageCol ε= =  

4: for  1  j to ImageCol=  
5:   ( ) ( (:, ) 256);

dI dA j sum I j= ==  

6: end for  
7: _ ( )

d dI IA Average Filter A=  

8: for    / 2 j ImageCol to ImageCol=  
9:   ,G Currentε = ( ) ( 1)

d dI IA j A j− −  

10:   if  ,G Currentε > ,G Maxε  

11:     1CuttingC j= −  

12:     , ,G Max G Currentε ε=  

13:   end if  

14: end for  

Most of invalid pixels are on the right side of the cutting line and are eliminated in 

the next step. However, some valid pixels will be removed by this rough constraint. 

Therefore, the cutting path CuttingP  is found according to the position of the cutting line 

to avoid this problem. The cutting path is a 1ImageRow ×  vector and is searched from 

top to bottom of image plane. To find the cutting path, it follows the basic concepts: if a 

pixel located on the cutting line is valid, the cutting path is found by searching the 
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boundary of the valid pixel from left to right starting at CuttingC , as shown in Figure 

4.16(a), or the cutting path is determined by searching the boundary of the invalid pixel 

from right to left starting at CuttingC , as shown in Figure 4.16(b). However, applying this 

method directly causes false result since there has wrong disparity near the boundary, as 

shown in Figure 4.16(c). To overcome this problem, the additional continuity constraint 

is applied during right searching the invalid pixel. The constraint is checking the 

continuity of path disparity, that is: 

 ( ( , ) ( 1))d Path Contineousabs I i j D i λ− − >  (4.23) 

( 1)PathD i −  is the disparity of the v-coordinate ( 1)i −  on the cutting path, ( , )dI i j  is 

the disparity of the coordinate ( , )i j , Contineousλ  is the user define threshold. Since this 

constraint is set to check if the disparity is close to the previous step, the threshold is set 

as 0.1 times ( 1)PathD i − , that is, 0.1 ( 1)Contineous PathD iλ = × − . Therefore, a cutting path 

can be extracted to eliminate the wrong measurements pixels at the right side of the 

disparity map, as shown in Figure 4.17(e)-(f).  
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(e) The cutting path extracted according to the cutting line. 

(f) The resulting disparity with removing pixels in forbidden area. 

 

4.2.2 Holes Detection  

The wrong disparity measurements in the forbidden area are removed by the 

proposed algorithm presented in Section 4.2.1. The proposed missing data area 

detection algorithm based on connected-component labeling is presented in this section. 

The block diagram of the proposed holes detection method is shown in Figure 4.18 and 

illustrated in Figure 4.19. At first, since the value of invalid pixels in disparity map is 

known (256 in this thesis), these pixels can be marked as ‘1’, and the value of the valid 

pixels is marked as ‘0’ to form a binary image, as shown in Figure 4.19(d). This can be 

written as follows: 

 {1,  if ( , ) ' '  ( 256 in this theis)( , ) 0,  otherwiseinvalid
disparity i j invalidB i j = ==  (4.24) 

The holes are detected by applying connected-component labeling process with 

4-connectivity mentioned in Section 3.4.4 to the invalid pixels mask invalidB , as shown 

in Figure 4.19(e). Each region iR  which is marked in different colors means the 

different label. The larger regions are ignored since they are often linked to different 

objects, as shown in Figure 4.19(f), filling these regions according to different object 

neighbors will cause wrong result. Larger regions are filtered out by the following 

equation: 
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4.2.3 Dual Orthogonal Linear Interpolation 

The missing data regions are detected by the proposed holes detection method 

presented in Section 4.2.2. Pixels in these regions are marked as invalid and will be 

filled by its neighbors. In this section, an interpolation method is proposed to fill the 

missing data area efficiently. Due to only smaller holes are considered, these regions are 

assumed to be plane patches. Considering the contributions of horizontal and vertical 

neighborhood pixels, these patches can be filled by using two linear interpolations on 

horizontal and vertical directions with same weights, as illustrated in Figure 4.20. For 

an arbitrary pixel in a broken hole, the pixel can be filled with value Hd  by linear 

interpolation with the horizontal neighbors. The Equation (4.18) shows the horizontal 

linear interpolation by these two neighbors. Holeu  stands for the u-coordinate of certain 

pixel in the hole. Lu  and Ru  represent the u-coordinate of the left and right neighbors 

respectively. Ld and Rd  indicate the disparity of the left and right neighbors 

respectively. On the other hand, the pixel can also be filled with value Vd  by linear 

interpolation with the vertical neighbors, and it can be written as Equation (4.19). Holev  

stands for the v-coordinate of the pixel. Tv  and Bv  represent the v-coordinate of the 

top and bottom neighbors respectively. Td  and Bd  indicate the disparity of the top 

and bottom neighbors respectively. Assuming Hd  and Vd  have same contribution, 

the final disparity value of the pixel Totald  can be calculated as the average of vertical 
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Algorithm 4.5: Hole filling with DOL interpolation 
Input: Disparity Map with forbidden area rejection ,d FRI  

 Region properties structure R .  
Output: The interpolated disparity map *

dI  

1: Find out the disparity map size[ ] size( );dImageRow,ImageCol I=  

2: for all  regions iR  in R  

3:   for all  pixels jP  in thi  region iR  

4:     for : 1 : 1Holek u= −  
5:       if  , ( , ) ' 'd FR HoleI v k valid==  

6:         ,,  ( , )L L d FR Holeu k d I v k= =  

7:         break  
8:       end if  

9:     end for  

10:     for :Holek u ImageCol=  
11:       if  , ( , ) ' 'd FR HoleI v k valid==  

12:         ,,  ( , )R R d FR Holeu k d I v k= =  

13:         break  
14:       end if  
15:     end for  

16:     for : 1 : 1Holem v= −  
17:       if  , ( , ) ' 'd FR HoleI m u valid==  

18:         ,,  ( , )T T d FR Holev m d I m u= =  

19:         break  
20:       end if  

21:     end for  
22:     for :Holem v ImageRow=  
23:       if  , ( , ) ' 'd FR HoleI v m valid==  

24:         ,,  ( , )B B d FR Holev m d I m u= =  

25:       end if  

26:     end for  
27:     ( ) ( ) ( )/H R L Hole L R L Ld d d u u u u d= − − − + , ( ) ( ) ( )/V B T Hole T B T Td d d v v v v d= − − − +  

28:     ( )* 0.5d H VI d d= +  

29:   end for  

30: end for  
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4.2.4 Radial Basis Function  

Another data filling method is radial basis function (RBF) which is presented in 

Section 3.5. RBF considers all the known data with corresponding weights to 

interpolate the unknown data with the corresponding positions. In order to fill invalid 

pixels in a hole, neighbors around the hole need to be selected. To obtain the neighbor 

pixels, the bounding box vertexes of the hole are extracted first. Since the pixels in the 

hole region are labeled, the smallest bounding box can be easily obtained by finding the 

minimum and maximum on v- and u-coordinate, as illustrated in Figure 4.21(a) and (b). 

After extracting the smallest bounding box with four coordinates, min min( , )v u , 

min max( , )v u , max min( , )v u  and max max( , )v u , the neighbor pixels can be obtained by 

extracting the valid disparities in the bounding box, as illustrated in Figure 4.21(c) and 

(d). These neighbors have data structure of ( ), ,i i i in u v d=  and are used to be the inputs 

of RBF. 

According to the definition of radial basis function, a hole surface is defined as: 

 
1

( ) ( )
N

i i
i

y x x xω ϕ
=

= ⋅ −  (4.29) 

In this thesis, the multiquadric type is applied and the parameter ε  is set to 1. 

Therefore, substituting ε  into the Equation (3.16) the radial function becomes:  

 2( ) 1r rφ = +  (4.30) 

where r  is the Euclidean distance between neighbor and the processing pixel, that is, 
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(a) (b) 

 

(c) (d) 

Figure 4.22: An example of filling a certain hole using radial basis function 

interpolation. 

(a) Disparity map before RBF interpolation. Red rectangle depicts the bounding 

box of the hole. 

(b) 3D mesh plot of the valid neighbors in the bounding box. These neighbors 

are used to be the input of the RBF as the available known data. 

(c) The result of the disparity map after finishing the radial basis function 

interpolation process. 

(d) The surface reconstructed by multiquadric type of RBF using the neighbors 

data from (b).  
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Chapter 5 

Object Detection and Tracking based 

on Stereovision 

Three-dimensional environment reconstruction system in static scenario is 

presented in Chapter 4, including sensor localization based on image feature and stereo 

data preprocessing. However, in real scenarios many dynamic objects affect the 

localization result due to the localization method uses features as static landmarks. 

Moreover, the dynamic objects may be seen twice or more in different time step, and are 

mapped into the 3D model many times that cause ghost effect. For these reason, this 

thesis proposes the object tracking system for checking the moving object.  

In this chapter, the details of the proposed object detection and tracking system are 

discussed. The overall system architecture is presented in Section 5.1. Section 5.2 

presents the proposed object detection algorithm based on u-occupancy grid. Section 5.3 

shows the proposed object tracking method using color-based feature with Kalman 

filter.  

5.1 System Architecture 

The proposed system can be divided into three parts: stereo data acquisition, object 

detection and object tracking, illustrated in Figure 5.1. The stereo data acquisition part 
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5.2 Object Detection 

For describing an object in database easily, some notations are defined in Table 5.1.  

Table 5.1: The definition of some notations for a database object 

Object Properties 

,i kx  Object position in current time step , , ,( , )T
i k i k i kx z=x . 

,i kv  Object velocity in current time step , , , , ,( , )T
i k i k x i k zv v=v . 

,j km  -thj  candidate measurement in current time step ( ), , , , ,,j k x j k z j km m=m . 

( )S iOΗ  The histogram of saturation channel of -thi  object.  

( )H iOΗ  The histogram of hue channel of -thi  object. 

( )S jCΗ  The histogram of saturation channel of -thj  candidate.  

( )H jCΗ  The histogram of hue channel of -thj  candidate. 

( )H iP O  The probability distribution of hue channel of -thi  object. 

( )S iP O  The probability distribution of saturation channel of -thi  object. 

( )H jP C  The probability distribution of hue channel of -thj  candidate. 

( )S jP C  The probability distribution of saturation channel of -thj  candidate. 

State Flags and counters 

,i InImageF
 Flag that indicates the -thi  object is in the field of view of the camera 

,i OccludeF
 Flag that states the -thi  object is occluded. 

i,MeasurementF  Flag records if the -thi  object is measured by stereo camera. 

,i FOVCnt
 Counter for accumulating the times of an object that being out of FOV. 
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5.2.1 Visibility-Based U-Disparity Occupancy Grid  

Occupancy grid map is a powerful method for describing an environment and has 

been used for a variety of applications in robot field. In the last decade, occupancy grids 

are typically constructed in the Cartesian space from beam-type sensor such as 

ultrasound or laser range finder. In contrast, stereo camera is conic type sensor, which is 

less common to build an occupancy grid map due to the needing processing time and 

the limitation in accuracy [29: Perrollaz et al. 2012]. To overcome these problems, 

constructing occupancy gird map in u-disparity space using stereo camera is more 

popular than constructing occupancy gird map in the Cartesian space.  

In [29: Perrollaz et al. 2012], u-disparity occupancy grid map is constructed by 

assuming that each pixel in disparity map is pre-classified as the road or obstacle pixel 

by double correlation framework proposed in [30: Perrollaz et al. 2010] which exploits 

different matching hypotheses for vertical and horizontal objects. However, in most 

applications, occupancy grid map is used to describe the environment without knowing 

each disparity is obstacle or road. Thus, knowing each pixel is obstacle or free space to 

construct occupancy does not make sense. Therefore, in this thesis the proposed system 

modifies the method slightly without pre-categorizing the disparity pixels. 

The concept of the visibility-based occupancy grid map considers the ratio between 

observation pixels and visible pixels in the region of interest (ROI) with the height 
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according to the disparity of the grid cell. Figure 5.2 shows the concept: assuming that a 

human stands behind of a car as shown in Figure 5.2(a) with corresponding disparity 

map, shown in Figure 5.2(b). To estimate the occupancy of the grid cell ( , )DU u d=  

that the car is located at, the disparity pixels in the region of interest are classified to be 

visible or non-visible pixels, observed pixels or occluded pixels. u  is the image 

column coordinate, whereas d  is the disparity coordinate of the grid at certain distance 

( /d fB Z= ). Figure 5.2(c) shows the possible pixels in the region of interest with d  

as illustrated in Figure 5.2(d), whereas Figure 5.2(e) shows the classification result of 

these pixels. First, the pixels colored in green are classified as visible with their 

disparity value smaller than d . This means that these measurement rays pass through 

the grid cell and do not hit any obstacle (note that the larger disparity d , the smaller 

distance Z ). The pixels colored in yellow are categorized as observed and visible 

pixels since their value in disparity map are the same as d , which means that the 

measurements hit the car exactly. The remaining blue pixels are categorized as 

non-visible pixels. The pixels in occlusion and invalid disparity are all in this case. 

Figure 5.3(e) better shows the occlusion case: for estimating the grid cell that the human 

stands at, these pixels do not hit or go through the human, which are occluded by the car 

in front of the human. These pixels cannot “see” the grid cell and therefore they are 

classified as non-visible pixels. The relation between these classifications can be 
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 According to [29: Perrollaz et al. 2012], the concepts of the visibility-based 

occupancy grid construction which are presented above can be formulated as follows 

[29: Perrollaz et al. 2012]: 

 
,

( ) ( ) ( ) ( | , )U U U U U U
v c

P O P V v P C c P O V v C c= = = = =  (5.1) 

where ( )UP O  is the probability describing the occupancy of a certain grid cell DU . 

UV , UC  and UO  are binary random variables, which can be one of the value in { }0,1 , 

describing the specific states of the grid DU . UV  represents the visibility of the cell. 

1UV =  means that the grid DU  is visible. UC  indicates the obstacle confidence of the 

cell. 1UC =  means that an object is seen in the grid DU . UO  is the occupancy of the 

cell. 1UO =  shows that the cell is occupied by obstacle pixels.  

To solve the Equation (5.1), some boundary conditions of ( | , )U U UP O V C  are intuitive 

known. First of all, for a grid cell that is in invisible state, the occupancy cannot be 

determined due to no measurement data. That is, nothing is known about its occupancy. 

This can be written as follows [29: Perrollaz et al. 2012]:  

 {0,1}, ( | , ) 0.5U U Uc P O V C c∀ ∈ ¬ = =  (5.2) 

Secondly, for grid cell that is fully in visible state, the boundary conditions 

( | 1, )U U UP O V C=  are determined according to the obstacle confidence state UC  of 

that grid. If the grid cell is in full confident that an obstacle is observed, this means that 

the cell is absolutely occupied or is not occupied only when the false positive is 
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occurred. This can be expressed as follows [29: Perrollaz et al. 2012]: 

 ( | , ) 1U U U FPP O V C P= −  (5.3) 

On the other hand, if the grid cell was fully visible but noting can be observed, the cell 

can only be occupied when it occur a false negative. That is: 

 ( | , )U U U FNP O V C P¬ =  (5.4) 

The four boundary conditions mention above are listed in Table 5.2.  

Table 5.2: Bounding conditions of ( | , )U U UP O V C  

Visibility

Observed Confident 
UV  UV¬  

UC  1 FPP−  0.5  

UC¬  FNP  0.5  

Substituting these boundary conditions in Equation (5.1), it can be extended as follows 

[29: Perrollaz et al. 2012]: 

 ( ) ( ) ( )(1 ) ( )(1 ( )) (1 ( )) 0.5U U U FP U U FF UP O P V P C P P V P C P P V= − + − + − ⋅  (5.5) 

FNP  and FPP  can occur during the stereo matching step and are assumed to be a 

known constant (both of them are 0.02  in this thesis). Therefore, to obtain the 

occupancy of grid cell ( )UP O , the remaining things to be estimated are the visibility of 

a cell, ( )UP V , and the confidence of observation, ( )UP C . The visibility is defined as 

the ratio between the number of visible and possible pixels (length of the ROI), that is 

[29: Perrollaz et al. 2012]: 

 
( )

( )
( )

V D
U

P D

N U
P V

N U
=  (5.6) 
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where ( , )DU u d=  stands for the certain grid cell in u-disparity space. ( )P DN U  is the 

number of possible pixels at the cell depends on its d-coordinate, which is defined as 

follows [29: Perrollaz et al. 2012]: 

 0( ) ( ) ( ) ,P D hN U v d v d= −  (5.7) 

where ( )hv d  is the v-coordinate of the pixel which are situated at the maximum 

detection height for certain disparity d . Similarly, 0( )v d  is the v-coordinate of the 

pixel which are located on the ground for certain disparity d . 0 ( )v d  and ( )hv d  can 

be obtained by the fundamental pin-hole model and are expressed as follows: 

 ( ) h
h center

Y
v d d v

B
= +  (5.8) 

 0 ( ) ground
center

Y
v d d v

B
= +  (5.9) 

where B  is the baseline of the stereo camera and centerv  is the v-coordinate of the 

center of the image plane. hY  and groundY  are. Substituting Equation (5.8) and (5.9) 

into (5.7), it becomes: 

 

( )

( )

groundh
P D center center

h ground

ROI

YY
N U d v d v

B B
Y Y

d
B

dC

= + − +

−
=

=

 (5.10) 

ROIC  is a constant which depends on the preset detection height and ground position. 

Thus, ( )P DN U  only depends on the d-coordinate for a given cell DU .  

On the other hand, ( )V DN U  is the number of visible pixels in the subset of the 



84 

possible pixels, which can be expressed as: 

 
0

,( ) ( ( , )) ,
hv

V D d visible
v v

N U F u v
=

=   (5.11) 

 {,
1,  ( , ) & & ( , ) ' '
0,

d d
d visible

if I u v d I u v invalidF other
<= ≠=  (5.12) 

With these expressions, the visibility of a grid cell ( )UP V  can be obtained as 

Equation (5.6). For estimating the confidence of the observation, ( )UP C , the ratio 

between the observed pixels and the visible pixels is considered. It is defined as an 

exponential function as follows [29: Perrollaz et al. 2012]: 

 
( )

( ) 1
O D

O

r U

UP C e τ
−

= −  (5.13) 

where Oτ  is a constant and is chosen to be 0.1Oτ =  as the same value in [29: 

Perrollaz et al. 2012], and Or  is defined as the obstacle confidence, which is the ratio 

between observed pixels and the visible pixels, that is, [29: Perrollaz et al. 2012]: 

 
( )

( )
( )

O D
O D

V D

N U
r U

N U
=  (5.14) 

The number of the observed pixels can be expressed as follows: 

 
0

,( ) ( ( , ))
hv

O D d observed
v v

N U F u v
=

=   (5.15) 

 {,
1,  abs( ( , ) ) & & ( , ) ' '
0,

d ObservedThreshold d
d observed

if I u v d C I u v invalidF other
− <= ≠=  (5.16) 

For all the grid cells ( , )DU u d=  in the u-disparity space, their occupancy can be 

obtained by the above expressions, Equation (5.5), (5.6) and (5.13). Note that ( )P DN U , 

( )hv d  and 0( )v d  of each cell can be pre-calculated since they will not change during 
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the occupancy grid calculation processing. Hence this pre-calculation process reduces 

the time complexity and then speeds up the overall algorithm.  

5.2.2 Post-processing 

The raw u-disparity occupancy grid is constructed by using visibility-based 

calculation method, as mentioned in Subsection 5.2.1. The occupancy grid can be 

marked as ‘occupied’ by using a probability threshold to extract object candidate. 

However, due to the noisy data from stereo camera and the discretization effects, 

applying simple threshold without any preprocess will cause many unwanted candidate 

results. Thus, before applying threshold to extract “occupied” grid cell, a series of image 

processes are applied to refine the raw occupancy grid. The overall post-processing flow 

chart is shown in Figure 5.4.  

First of all, in order to eliminate spatial noise to obtain smoother and more realistic 

representation, 2-D Gaussian filtering is applied. Since the standard deviation dσ  

along the d axis is related to the disparity discretization, for example 2 0.5dσ = , and the 

standard deviation uσ  along the u  axis is related to the width of the correlation 

window to model effects like foreground fattening in the u-disparity plane [30: Perrollaz 

et al. 2010], the 5 5×  2-D Gaussian filter mask is selected, as shown in Figure 5.4(d), 

which is a constant Gaussian kernel. This 5 5×  mask acts as image filter based on 

convolution which can be written as Equation (5.8). Therefore this process is much fast 
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and easy to implement. 

 *( ) ( , ) ( )U u d UP O G P Oσ σ= ∗  (5.17) 

After removing spatial noise by using Gaussian filter, the cells can be flagged as 

“occupied” by applying a constant probability threshold. That is, 

 { *1,   ( ( , ))( , )
0,  other

Uif P O i j ThresholdB i j ≥=  (5.18) 

By doing so, the result of the u-disparity occupancy grid is a binary image, as shown in 

Figure 5.4(f). This occupied mask might have a lot of disconnect part that cannot be 

filtered out by using Gaussian filtering. This phenomenon is illustrated in Figure 

5.4(e)-(f). To overcome this problem, a morphological image process is applied to 

reduce the remaining noise and link the disconnect part, as shown in Figure 5.4(g). 

Some of the small noise will be reduced, while the larger near neighbors are linked 

together and formed as a connected component to solve disconnection problem. 

The next step is to extract object candidates by using the connected-component 

labeling with 4-connectivity as mentioned in Section 3.3.4. Figure 5.4(h) shows the 

connected-component labeling result of the obstacle grid map, Figure 5.4(g), each 

region is marked in different colors and indicates an object candidate jC .  

For farther distance object, the number of pixels projected from 3D coordinate to 

image plane is too sparse to analyze the image information of object candidate due to 

perspective projection. Moreover, the large uncertainty of stereo camera in far distance 
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will cause inaccurate result. Therefore, a simple disparity (distance) restriction is 

applied to remove the candidate whose disparity is smaller than mind , as indicated by 

the red line shown in Figure 5.4(h). The minimum disparity threshold min 6.5 pxd = is 

used in this thesis. In addition, object candidate is assumed to have image width larger 

than a certain threshold and is filtered by the following expression: 

 ( )j ThW C W<  (5.19) 

where 25 ThW pixels=  is used in this thesis.  

  



88 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 

  

(g) (h) 

 
 

(i)  

Figure 5.4: Each post-processing step applies to the u-disparity occupancy grid. 

(a) Image from stereo target camera. 

(b) Corresponding disparity map. 

(c) The original u-disparity occupancy grid. Note that the darker pixel means 

the higher probability of being occupied. 

(d) An example of the constant 2-D Gaussian kernel filter with size 5 5× . 

(e) The occupancy grid filtered by 2-D Gaussian kernel. 

(f) Occupied binary mask by applying a certain probability threshold to (e) 

(g) Modified occupied mask by applying a series of morphological processes. 

(h) Connected-component labeling of (h). The red line indicates the disparity 

threshold mind .  

(i) Remove the candidate whose disparity mind d>  and short candidate in (h) 
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5.2.3 Object Candidates Bounding Box Extraction 

As mentioned in section 5.2, the u-disparity occupancy grid is constructed by using 

visibility-based occupancy grid method. Higher value of a grid cell means that the grid 

has large probability that an object is located. Therefore, the ‘obstacle’ grid can be 

extracted by using simple probability threshold. The obstacle grid is a binary image that 

indicates each grid cell is occupied or not. Using connected-component labeling on the 

obstacle grid can extract object candidate in u-disparity space. To describe the candidate 

in the image coordinate, a rectangle called bounding box is used, which need four 

variables, Tv , Bv , Lu  and Ru , to indicate the position of the vertexes, as shown in 

Figure 5.5(c). Since the u-disparity and image width has same coordinate, which is the 

image column, the u-coordinate of the bounding box can be extracted from the pixels in 

u-disparity grid directly. The v-coordinates, however, cannot be obtained directly from 

u-disparity and is calculated by the d-coordinate d  with the pre-defined positions of 

the ground 0Y  and maximum detection height hY  as the same in the Equation (5.8) 

and (5.9) in the Section 5.2.1. The v-coordinate of the top two vertexes is calculated by 

Equation (5.20), whereas the v-coordinate of the bottom two is calculated by Equation 

(5.21). 

 0 0( , ) h h
T

Y f Y d
v d j v v

Z B
= + = +  (5.20) 
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5.3 Object Tracking 

Object candidates are extracted in previous section, the next problem is how to link 

database object to corresponding candidate measurement in the current step correctly. It 

is so called “data association” problem in the field of robotic. For sensors that only 

provide range information, it is difficult to do data association because no other 

information can use to distinguish each of measurement points. Using sensor that 

provides RGB-D data such as stereo camera can easily handle this problem since these 

sensors provide additional image information to describe an object. This chapter will 

describe the proposed solution to solve the data association problem in detail.  

5.3.1 Remove Background Pixels in Bounding Box 

Since many pixels do not belong to the object in the bounding box of detected 

candidates, analyzing all the pixels of the bounding box directly without filtering out the 

non-object pixels would get the wrong result. Therefore, before analyzing the object 

pixels that within in the bounding box, background pixels should be removed. The 

background pixels can be seen as the pixel with depth value that do not in the range of 

the uncertainty in that distance. That is:  

 
1, ( , )

( , )
0,

object objectZ Z Z i j Z Z
B i j

other

 − Δ < < + Δ
= 


 (5.23) 

( , )B i j  is a binary image which indicates if the position ( , )i j  is foreground or 
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background pixel. objectZ  is the depth value retrieved from u-disparity occupancy grid, 

and the uncertainty ZΔ can be formulated as follows [49: Accuracy For Stereo Vision 

from PointGrey 2010]:  

 
2

( ) ( )( )

object
object

object

object

fB fB fB d d Z d
Z Z

fBd d d d d d fB Z dd
Z

Δ Δ ΔΔ = − = = =
+ Δ + Δ + Δ+ Δ

 (5.24) 

where  0.1d matching errorΔ = = . 

Moreover, the object is assumed to have thickness ThicknessZ , therefore Equation (5.11) 

can be rewritten as follows:  

 
1, ( , )

( , )
0,

object objectThickness ThicknessZ Z Z Z i j Z Z Z
B i j

other

 − Δ − < < + Δ +
= 


 (5.25) 

where the thickness is assumed to be 0.3ThicknessZ m= . 

The position ( , )i j  in image plane will be flagged as object pixel (foreground) when 

the corresponding depth value ( , )Z i j  is in the uncertainty range, as illustrated in 

Figure 5.6. These remaining pixels are used to be the input of the HSV histogram.  

    
(a) (b) (c) (d) (e) 

Figure 5.6: Background Pixels Removal for frame #236.  
(a)  Bounding box image 
(b)  Bounding box depth map 
(c)  Depth map with background removal 
(d)  Foreground mask 
(e)  Image with mask filtering 
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5.3.2 Registration between Candidates and Objects using 

Feature Vectors 

To distinguish one object to another, distinctive and invariant information that can 

describe an object should be selected. Therefore, the images of a certain object in 

different frames are analyzed at first. Figure 5.8 and Figure 5.9 show the related 

information about the object such as the histograms of R, G, B, H, S and V channels in 

frame No. 236 and No. 191, respectively for example. It can be observed that the 

distributions of the H and S histograms are time-invariant, while the other channels are 

changed dramatically. Moreover, assuming that object moves consequently, the 

histogram distribution of H and S will not change dramatically, as shown in Figure 5.8 

and Figure 5.11. On the other hand, the other object and the corresponding information 

in frame No. 236 are shown in Figure 5.10 and are compared to Figure 5.8. It can be 

observed that different object has corresponding distribution on H and S histogram. 

Since the distributions of H and S histograms have distinctive and invariant properties, 

data association problem can be solved by using H and S histograms as feature vectors 

to register the certain object in different frame images. In this thesis, each H and S 

channel is binned into 64 intervals to form a 1 64×  feature vector. Note that H and S 

histograms are normalized to form a probability distribution representation, that is, 
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( )

( ) H i
H i

O
P O

N
=Η  (5.26) 

 
( )

( ) S i
S i

O
P O

N
=Η  (5.27) 

where N  is the remaining pixel number in the bounding box, iO  indicate the -thi  

object, ( )H iOΗ  represents the histogram of the H channel of the -thi  object, 

( )S iOΗ  is the histogram of the S channel of iO .  

To achieve the goal of registering candidate jC  to corresponding database object 

iO  successfully, estimating the similarity between object and candidate feature vectors 

using Bhattacharyya distance is applied. The Bhattacharyya distance is a similarity 

index that measures two probability distributions. The definition of Bhattacharyya 

distance is as follows [41: Comaniciu et al. 2003]: 

 ( ), 1 ( , )d p q BC p q= −  (5.28) 

where BC  is the Bhattacharyya coefficient, which is defined as follows: 

 ( )
1

, ( ) ( )
N

i

BC p q p i q i
=

=  (5.29) 

To calculate the Bhattacharyya distance between the H channel distribution of candidate 

( )H jP C  and the distribution of database object ( )H iP O , ( )H jP C  and ( )H iP O  are 

substituted into Equation (5.28) and (5.29), the equations become: 

 ( )( ), ( ) 1 ( ( ), ( ))H H j H i H j H id P C P O BC P C P O= −  (5.30) 

 ( )
64

, ,
1

( ), ( ) ( ) ( )
M

S j S i S m j S m i
m

BC P C P O P C P O
=

=

=   (5.31) 

Similarly, for the Bhattacharyya distance between the S channel of candidate and object, 
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the equations become: 

 ( )( ), ( ) 1 ( ( ), ( ))S S j S i S j S id P C P O BC P C P O= −  (5.32) 

 ( )
64

, ,
1

( ), ( ) ( ) ( )
M

H j H i H m j H m i
m

BC P C P O P C P O
=

=

=   (5.33) 

Combining these two similarity index with same weights, the total Bhattacharyya 

distance between -thj  candidate and -thi  objects is expressed as follows: 

 ( ) ( ) ( ), ( ), ( ) ( ), ( )Total j i H H j H i S S j S id C O d P C P O d P C P O= +  (5.34) 

Therefore, each candidate can be registered to the database object successfully, as 

shown in Figure 5.7. 

  

(a) (b) 

Figure 5.7: The registration result of each candidate to the database object. Different 

objects are enclosed by different color bounding boxes 

(a) Candidates before registration. 

(b) Candidates after registration. 
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(a) (b) (c) (d) (e) (f) 

  
(g) (h) (i) 

  
(j) (k) (l) 

Figure 5.8: Properties of object 1 in frame 236 

(a) Bounding box image. 

(b) Depth image with background removal. 

(c) Image with background removal. 

(d)-(f) H, S and V channel of HSV image transformed from (c). 

(g)-(i) H,S and V channel histogram  

(j)-(l) R,G and B channel histogram 
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(a) (b) (c) (d) (e) (f) 

  
(g) (h) (i) 

  
(j) (k) (l) 

Figure 5.9: Properties of object 1 in frame 191 

(a) Bounding box image. 

(b) Depth image with background removal. 

(c) Image with background removal. 

(d)-(f) H, S and V channel of HSV image transformed from (c). 

(g)-(i) H,S and V channel histogram  

(j)-(l) R,G and B channel histogram 
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(a) (b) (c) (d) (e) (f) 

  
(g) (h) (i) 

  
(j) (k) (l) 

Figure 5.10: HSV histogram of object 2 in frame 236 

(a) Bounding box image. 

(b) Depth image with background removal. 

(c) Image with background removal. 

(d)-(f) H, S and V channel of HSV image transformed from (c). 

(g)-(i) H,S and V channel histogram  

(j)-(l) R,G and B channel histogram 

 



99 

      

(a) (b) (c) (d) (e) (f) 

  
(g) (h) (i) 

  
(j) (k) (l) 

Figure 5.11: Properties of object 1 in frame 237 

(a) Bounding box image. 

(b) Depth image with background removal. 

(c) Image with background removal. 

(d)-(f) H, S and V channel of HSV image transformed from (c). 

(g)-(i) H,S and V channel histogram  

(j)-(l) R,G and B channel histogram 

 



100 

      

(a) (b) (c) (d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

Figure 5.12: Properties of object 2 in frame 237 

(a) Bounding box image. 

(b) Depth image with background removal. 

(c) Image with background removal. 

(d)-(f) H, S and V channel of HSV image transformed from (c). 

(g)-(i) H,S and V channel histogram  

(j)-(l) R,G and B channel histogram 
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5.3.3 Update Strategy with Kalman Filter  

After the database objects are linked to the current candidates correctly, the object 

states can be updated by the measurements. However, database object may not register 

successfully due to out of field of view or occlusion, the update strategy is proposed to 

handle the update problem. Figure 5.15(a) shows the case of an object moving out of the 

field of view of the camera, whereas Figure 5.15(b) shows the situation that an object is 

occluded by another. Moreover, Kalman filter with constant velocity is used to estimate 

the object state. The proposed update strategy is shown in Figure 5.14.  

First of all, the updater inspects if the object is measured by stereo camera or not 

by checking the state of the object measurement flag, i,MeasurementF . When a database 

object is successfully registered to a candidate as mentioned in Section 5.2.2, the object 

measurement flag i,MeasurementF  is set to 1. If the database object has measurement, the 

next question is if the object is in normal, occlusion or in the camera FOV in previous 

state. If the object is occluded or out of the camera FOV, it does not have previous 

position and velocity states, and thus cannot predict its current position and can only 

rely on the measurement information, this can be expressed as follows:  

 ,,
,

, ,

x ji k
i k j

i k z j

mx
z m

  = → =      
x m  (5.36) 

 1 , , , , 1
, , , 1

, , , , 1

( ) /
( ) ( ) /

i k x i k i k
i k i k i k

i k z i k i k

v x x t
t v z z t

− −
−

−

− Δ   = − Δ → =   − Δ   
v x x  (5.37) 

If the object is not occluded and is in the camera FOV, Kalman filter can apply to this 
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case to track the object state. This process is divided into two steps, motion prediction 

and measurement update. In this thesis, the constant velocity model is applied to 

describe an object motion. The object motion state and corresponding covariance 

prediction can be expressed as follows:  

 

, , 1

, , 1
, , 1

, , , 1,

, 1,, ,

1 0 0
0 1 0
0 0 1 0
0 0 0 1

i k i k

i k i k
i k k i k
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xx t
zz tF vv
vv

−

−
−

−

−

   Δ 
   Δ = → =    
        

X X  (5.38) 

 T
k k k kP F P F R= +  (5.39) 

,i kX  is the -thi  object state prediction. kF  is a constant velocity state transition 

matrix, which is extended as Equation (5.38). , 1i k−X  is the object state at previous time 

step. kP  is the covariance prediction, whereas R  is the motion noise covariance. 

For the measurement update step, it combines the state prediction result and the 

measurement to the object. This process can be expressed as follows:  

 1( )T T
k kkK P H H P H Q −= +  (5.40) 

 , ,, ,( )i k i ki k k i kK Z H= + −X X X  (5.41) 

 ( ) kk kP I K H P= −  (5.42) 

kK  is the Kalman gain. H  is the measurement matrix with size 2 4× . Q  is the 

covariance of the measurement noise. ,i kX  is the final update state of the -thi  object, 

whereas kP  is the object state covariance update result.  

On the other hand, if the object has no measurement in current step, only when the 
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object is in camera FOV and is not occluded can apply the motion prediction process 

which is similar to Equation (5.38). After finishing the motion prediction, the object 

may move out of the camera FOV or be occluded. To check if the object moves out of 

the FOV, the angle of object-to-camera is calculated by using the inverse tangent of 

/x z  as illustrated in Figure 5.16, that is,  

 arctan( )ObjToCam

x

z
θ =  (5.43) 

If ObjToCamθ  is larger than the half of the camera FOV, then the object is not in the field 

of view of the camera and ,i InImageF  is set to 0. That is,  

 
1

( ) 21.5
2ObjToCamabs CameraFOVθ  > × = 

 

 (5.44) 

A counter ,i FOVCnt  is used to check the continuity in order to solve the case that object 

moves at the boundary of the camera FOV. Here the counter threshold is set to 3.  

If ObjToCamθ  is smaller than the half of the camera FOV, it is considered to be occluded, 

and the occlusion flag ,i OccludeF  is then set to 1.  
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Figure 5.14: The proposed object update flowchart. 
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Chapter 6 

Experiment Result and Analysis 

The proposed methods which are presented in Chapter 4 and Chapter 5 are tested in 

this chapter. In the beginning of this chapter, the apparatuses are shown in the Section 

6.1. Experimental results and analysis of three-dimensional localization and mapping 

algorithms which is proposed in this thesis are discussed in Section 6.2. The result and 

analysis of the proposed stereo refinement algorithm presented in Section 4.2 are shown 

in Section 6.3. For the proposed object detection and tracking system, the experimental 

result and analysis are shown in Section 6.4.  

6.1 Experimental Hardware 

Stereo Camera 

The stereo camera used in this thesis is Point Grey Bumblebee2 BB2-03S2-60, 

which is shown in Figure 6.1. According to the online specification sheet of the sensor 

[51: BumbleBee2 Product Datasheet from PointGrey 2013], the sensor size is 

157×47.4×36 mm with weight 342 grams. It provides two images from left and right 

CCDs with 43 degrees horizontal field of view, and then calculates the disparity using 

right image as target image plane. Therefore the coordinate of disparity map is the same 
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as right image plane. The total data acquiring frame rate is about 20Hz for a personal 

computer with i7-950 CPU or 10Hz for a laptop with Intel P8400. Figure 6.1(c)-(f) 

shows the stereo data with RGB Images from left and right CCD and corresponding 

disparity image calculated from RGB images. The intensity of the disparity is 

represented as gray image, that is, the brighter of the pixel, the higher the disparity value 

is. Note that the white area is invalid pixel with value 256. Since distance is inversely 

proportional to the disparity, in other words, the brighter of the pixel, the closer to the 

camera coordinate. Also note that the value of invalid pixel in depth map is 0.  

In this thesis, stereo vision data is captured by utilizing the two software 

development kit libraries of Bumblebee stereo vision camera, which are FlyCapture and 

Triclops SDK. The FlyCapture library uses IEEE 1394a bus as a communication 

interface to exchange information between computer and camera. The Triclops library 

uses the sum of absolute difference (SAD) correspondence method to estimate the 

disparity between two images captured by the stereo vision camera. To connect the 

Bumblebee stereo camera, the computer must have IEEE 1394a interface. In our 

platform, a personal computer is equipped with Uptech DV/1394 I/O Card. For an 

autonomous robot controlled by a laptop, it should be equipped with Uptech UTE 120 

Combo Card to the ExpressCard slot and an external 12V power to drive the Bumblebee 

stereo camera. 
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(a)  (b) 

 
(c) (d)  

  

(e) (f) 

  

(g) (h) 

Figure 6.1: A brief introduction of Bumblebee2 BB2-03S2-60 stereo camera. 

(a) Point Grey Bumblebee2 BB2-03S2-60. [51: BumbleBee2 Product Datasheet 

from PointGrey 2013] 

(b) Data acquiring from the scenario for example. 

(c)-(d) Image from left and right CCD respectively.  

(e) The disparity map estimated by (c)-(d). Note that (d) is the target image in 

Bumblebee2 System. 

(f) The depth map transformed from (e) with the relation ( , ) / ( , )z i j fB d i j= . 

(g)-(h) Point clouds generated from (e) and plotted on to 3D coordinate. 
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(a)  (b)  

Figure 6.2: IEEE 1394 Interface 

(a) Uptech DV/1394 I/O Card.  

(b) Uptech UTE 120 Combo Card [50: UTE120 Combo ExpressCard from 

Uptech 2013]. 

 

Table 6.1: The specification of stereo camera BB2-03S2-60 

Baseline 0.12 m 

Focal Length 6mm 

Horizontal Field of View (HFOV) 43 degrees 

Image Resolution Maximum for 640×480 pixels 

CCD Frame Rate 48 Fps 

Accuracy 
,    

fB fB
Z where e matching error

d d e
Δ = − =

+

 

Laser Range Finder 

In order to evaluate the experimental result, two Hokuyo URG-04LX-UG01 laser 

range finders are used to be a benchmark. Hokuyo URG-04LX-UG01 could acquire the 

laser range in 240  with detection range about 20 mm – 5600 mm. The specification is 

listed in Table 6.2.  

Hokuyo URG-04LX-UG01 laser range finder is capable of detecting in the range 

20 mm – 5600 mm. However, for evaluating the object detection and tracking task in 
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long range up to 10 meter, SICK LMS100 laser range finder is used. SICK LMS100 

could acquire the laser range in 270  with detection range about 0.5 m – 20 m, which 

is suitable for evaluating the proposed method. The specification is listed in Table 6.3.  

 
 

(a) (b) 
Figure 6.3: Hokuyo URG-04LX-UG01 and SICK LMS100 laser range finders. 

(a) Appearance of URG-04LX-UG01 laser range finder [52: 
URG-04LX-UG01 from Hokuyo]. 

(b) Appearance of SICK LMS100 laser range finder [53: SICK LMS100 from 
SICK].  

 

Table 6.2: The specification of Hokuyo URG-04LX-UG01 

Detection Angle Range 240 Degrees ( 30   210to−   ) 

Detection Range 20 mm – 4000 mm 

Scanning Rate 10 Hz 

Angular Resolution 0.36 Degree 

Accuracy 0.06 1 :  30 , 1 4 :  3%m mm m− ± − ±  

 

Table 6.3: The specification of SICK LMS100 

Detection Angle Range 270 Degrees ( 45   225to−   ) 

Detection Range 0.5 - 20 m 

Scanning Rate 10 Hz 

Angular Resolution 0.25 Degree 

Accuracy 30 40 ± − mm 
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6.2 Stereo Camera Localization and Mapping 

To evaluate the overall 3D environment reconstruction system, several experiments 

are built to test each subsystem. To check the feature-based localization method, stereo 

camera capture a sequence of frame data in an indoor scenario with “L” shape with two 

laser range finders which are used to be a benchmark. Subsection 6.2.1 shows the 

experiment scenario and the construction of the platform. Subsection 6.2.2 shows the 

benefit of using RANSAC outlier rejection algorithm in the localization task. 

Subsection 6.2.3 shows the relation between localization accuracy and mapping quality 

from 2D laser data mapping result. Subsection 6.2.4 shows the accuracy of the 

feature-based localization result comparing to two laser range finders. Finally, 

Subsection 6.2.5 shows the 3D environment reconstruction result rendered in 3D 

window. 

6.2.1 Experimental Scenario Setup 

In this experiment, the scenario is constructed with size 32 2 2m× × as shown in 

Figure 6.4. To evaluate the localization method, the stereo camera is mounted with two 

Hokuyo URG-04LX-UG01 laser scanners orthogonally as shown in Figure 6.5(a). The 

stereo camera moves by the given commands according to the grid sheet with resolution 

21 1 cm×  on the ground, shown in Figure 6.5(b) and (c). In addition, the pan angle is 
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6.2.2 The Effect of RANSAC Outlier Rejection Algorithm 

As mentioned in Section 4.2, there have some wrong matching pairs between 

current and previous step. To show the benefit of using RANSAC outliers rejection 

algorithm, the localization with and without RANSAC algorithm results are plotted on 

the Figure 6.9 in bird’s-eye view. The localization result with RANSAC outlier rejection 

algorithm is plotted as ‘--’ colored in blue. The given command is plotted as ‘-＊-’ 

colored in green, and the localization result estimated by laser using ICP method is 

plotted as ‘-×-’ colored in red. The localization result which considering all the matching 

pairs to estimate camera position without using RANSAC outlier rejection is plotted as 

‘-O-’ colored in black. The camera position estimated by matching pairs without 

RANSAC rejection algorithm is not close to the results estimated by laser-ICP and the 

given command. On the other hand, the feature-based localization result with RANSAC 

algorithm is similar to the results estimated by laser-ICP and the given command. 

Therefore, it is obvious to show that some outliers will cause inaccurate localization 

result and can be solved by using RANSAC algorithm. 
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Figure 6.9: Comparing the result of using feature-based localization method with and 

without RANSAC outlier removal.  
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6.2.3 Relation between Localization Accuracy and Mapping 

Quality 

 The purpose of this experiment in this subsection shows that the environment 

reconstruction result is more accurate with better localization. Since only two laser 

scanners are mounted on the stereo rig, laser data can only have 5 degree of freedom. 

Thus, this experiment degenerates the problem dimension from 6-DoF to 3-DoF planar 

motion. The horizontal laser data is used to construct the 2-D top-view of the 

environment map. Laser map reconstruction results with different localization methods 

are shown in Figure 6.12, whereas Figure 6.10 demonstrates the localization results of 

three different approaches, and Figure 6.11 shows the translation displacement and 

rotation error of given commands and feature-based localization method comparing to 

laser-ICP. Blue square markers plotted in Figure 6.11(a) represent the translation 

displacement between feature-based localization method and laser-ICP, and blue bars 

plotted in Figure 6.11(b) show the rotation error of feature-based localization method 

comparing to laser-ICP; on the other hand, the green star signs indicate the translation 

displacement of localization result between given command and laser-ICP, and green 

bars plotted in Figure 6.11(b) show the rotation error of given commands comparing to 

laser-ICP. Figure 6.11 shows the feature-based localization result is better than the given 

commands.  
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Figure 6.12(a) shows the laser map reconstructed by laser-ICP method which is 

used to be the experiment benchmark. Blue dots plotted on Figure 6.12(b) show the 

laser map reconstruction result by using feature-based localization method. Green dots 

plotted on Figure 6.12(c) show the laser map reconstruction result by the given 

commands. Almost blue dots in Figure 6.12(b) are overlapped to the red dots, but the 

green dots in Figure 6.12(c) has a slightly displacements. This shows that the laser data 

mapping result by feature-based localization method is better than the given commands, 

and therefore it gives the conclusion that the more accurate localization constructs the 

better mapping result. Note that in the third path at frame index #10-15, which the 

camera rotate 15  in each step, the translation and rotation errors of commands and 

feature-based localization method both rise up. This phenomenon shows that in the 

localization task, rotation motion is a challenge problem to be solved.   
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(a) 

(b) (c) 

Figure 6.12: Laser data mapping with localization by stereo feature-based localization 

method and the given commands.  

(a) Laser map constructed with laser-ICP localization method 

(b) Laser map constructed with stereo vision feature-based localization method

(c) Laser map constructed with the given command 
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6.2.4 The Accuracy of Feature-based Localization Algorithm  

 In this subsection, the accuracy of the feature-based localization is analyzed by 

comparing to laser scanners. Each x -, y - and z -component of the platform positions 

which are given by different localization methods are plotted on to the left column of 

Figure 6.13, while the absolute components errors are on the right column. The blue 

square signs in Figure 6.13(a), (c) and (e) indicate the positions estimated by 

stereovision feature-based localization method, and the blue square signs in Figure 

6.13(b), (d) and (f) show the corresponding absolute errors of each components 

comparing to laser scanner. From Figure 6.13(b), (d) and (f), each component error 

between feature-based localization and laser-ICP is less than 0.02 meter, and the 

absolute translation error is less than 0.025 meter as shown in Figure 6.14, where the 

absolute translation error is the Euclidean distance which is defined as follows: 

 2 2 2( ) ( ) ( ) ( )Translation x y zE i E i E i E i= + +  (6.1) 

 , ,( )x i laser ICP i Feature basedE i x x− −= −  (6.2) 

In addition, Figure 6.15(a) shows the accumulating moving distance in each step, which 

is defined as follows: 

 2 2 2
1 1 1

1

( ) ( ) ( ) ( )
k

i i i i i i
i

d k x x y y z z− − −
=

= − + − + −  (6.3) 

 (0) 0d =  (6.4) 

For moving 1.283 meter determined by laser, the accumulating moving distance drifts 
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of feature-based localization method is about 0.005 m, as shown in Figure 6.15(b). Both 

the translation errors and accumulating moving distance drifts are in a small range, 

which can be considered as the laser sensing uncertainty.  

(a) (b) 

(c) (d) 

(e) (f) 

Figure 6.13: Stereo featured-based localization comparing to laser scanners.  

(a)(c)(e) The X-, Y- and Z-components of the positions given by three different 

approaches. Red cross signs indicate the platform positions given by the 

laser-ICP method, blue square signs represent the positions given by stereo 

camera feature-based localization approach, and green star signs express the 

positions provided by the given commands. 

(b)(d)(f) The errors of each components comparing to laser range finder. Blue 

square signs represent the error between feature-based localization approach 

and laser-ICP; green star signs express error between commands and 

laser-ICP. 
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Figure 6.14: Absolute translation error comparing to laser range finder. 

 

(a) (b) 

Figure 6.15: Accumulate distance for moving 18 steps. 

(a) The global view of the distance accumulation 

(b) The local view of 18-th  distance accumulation.  
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6.2.5 Three-Dimensional Reconstruction  

 The stereo vision measurements with color and spatial information (RGBXYZ data 

structure) are plotted on to world coordinate using Point Cloud Library in C++ code [54: 

Point Cloud Library from PCL Website 2013], as shown in Figure 6.16, Figure 6.17 and 

Figure 6.18. The red, green and blue sticks which are placed orthogonally represent the 

camera coordinate in each step. Figure 6.16 demonstrates the mapping results in each 

step with two time interval. Points in brighter color represent the measurement points in 

current step, while the other points in darker color indicate points of the global map. 

Figure 6.17(a) shows the experiment scenario, Figure 6.17(b) shows the reconstruction 

result by the proposed method, and Figure 6.17(c) shows the reconstruction result by 

given commands. Figure 6.18 shows the local views of the reconstruction result to 

demonstrate the better mapping result by applying feature-based localization method 

than the given commands. It is obvious to see that some object points do not align 

together in the 3D model reconstructed by the given commands shown in the Figure 

6.18(c), while the mapping result reconstructed by the feature-based localization method 

is clearer, as shown in Figure 6.18(b). This is because that the localization result by 

stereo vision localization method is more accurate than the given command, as 

mentioned in Subsection 6.2.3 and 6.2.4. To evaluate the mapping quality by 

quantitative analysis, peak-signal-to-noise ratio (PSNR) is used in the Subsection 6.2.6.  



126 

(a) step 0 (b) step 2 

(c) step 4 (d) step 6 

(e) step 8 (f) step 10 

(g) step 12 (h) step 14 

(i) step 16 (j) step 18 

Figure 6.16: The mapping results in each step with two time interval. 
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(a) 

(b) 

Figure 6.18: The local views of the reconstruction results at the same camera 

viewpoint.  

(a) Reconstruction result by feature-based localization method. 

(b)  Reconstruction result by the given commands. It is obvious to see that 

some object points do not align together. 
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6.2.6 Mapping Quality and the Proposed Stereo Refinement 

Algorithm Evaluation 

In the previous subsection, the 3D environment reconstruction results of different 

localization approaches are shown in the 3D window. Although the mapping qualities 

have been compared by qualitative analysis in Subsection 6.2.5, the quantitative 

analysis is necessary to analyze the mapping result. On the other hand, the proposed 

stereo refinement algorithm can be evaluated in the same manner since the goal of the 

algorithm is to improve the mapping quality. Therefore, the mapping quality and stereo 

refinement algorithm is evaluated together in the visual aspect in this subsection. 

Moreover, to evaluate the accuracy of the proposed stereo refinement algorithm, another 

experiment is built in the spatial aspect.  

First, for visual aspect, the 3D reconstruction model is evaluated by comparing the 

image projected from the 3D model to target image in each step. Each projection image 

is built by projecting the 3D model points to image plane according to the camera pose 

using pin-hole camera model, which is mentioned in Section 3.1 and illustrated in 

Figure 6.19. Figure 6.19(b) is an example of the projection image result acquired from 

the 3D model. To comparing the projection image to target image, peak signal-to-noise 

ratio (PSNR) is used as a similarity index. PSNR is defined as follows [61: Szeliski 

2010]: 



130 

 max
1020log

I
PSNR

RMS
 =  
 

 (6.5) 

 
21

( ) ( )RMS I I
n

 = −  
x

x x  (6.6) 

where max 255I =  the maximum intensity of the image is, RMS  is the root mean 

square of the image, ( )I x  is the target image as benchmark and ( )I x  is the 

projection image in this experiment. Note that not every pixel has projection value due 

to no point can be projected from 3D model and the digitalization effect, as shown in 

Figure 6.22(a), the invalid pixels are not counted in calculating the PSNR value. 

Figure 6.20(a) is the target image used as a benchmark, Figure 6.20(b) shows the 

projection image from the 3D model reconstructed by the given commands as shown in 

Figure 6.17(c), Figure 6.20(c) shows the projection image from the 3D model 

reconstructed by stereo vision feature-based localization method, and Figure 6.20(d) 

represents the project image from the 3D model reconstructed by feature-based 

localization with the proposed stereo refinement method. The PSNR values are listed in 

Table 6.4 and plotted in Figure 6.21(a). It can be observed from Figure 6.21(a) that all 

the PSNR values of the 3D model reconstructed by the given commands are lower than 

others, which are the PSNR values of the 3D model reconstructed by feature-based 

localization method. In addition, as mentioned previously, the localization result of the 

given commands is inaccurate than the feature-based localization method. Therefore, 
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this means that the better 3D model is reconstructed by more accurate localization result. 

The PSNRs of 3D model from feature-based localization with and without the proposed 

stereo refinement method are close to each other. This is because that the PSNR 

consider the average difference of each pixel from testing to target image, and the 

proposed stereo refinement algorithm do increase the number of valid pixels but do not 

improves the image quality. Then, the percentages of the number of the valid pixels 

projected from 3D model with and without stereo refinement method are listed in Table 

6.4 and plotted on Figure 6.21(b), the black solid lines with cross sign represent the 

result with applying stereo refinement method, while the red dash dot line with square 

sign express result without applying stereo refinement. It can be observed that all the 

percentages of the result with applying stereo refinement method are larger than the 

result without applying. The blue dash lines with star sign indicate the increasing 

percentages of each frame data, and the mean of the increasing percentages is 3.08% 

with standard deviation 1.09% according to the right column of Table 6.4. This shows 

that the proposed refinement method can increase the data number of the 3D model by 

3.08% without decreasing PSNR which represents the model quality. Thus, with the 

proposed stereo refinement method, the 3D model is better than others. 
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(a) (b) 

Figure 6.21: Comparing the 3D reconstruction result in different case. 

(a)  Comparing each case to target image using PSNR value. 

(b) Number of pixels projected from 3D model. 

 

 

  

(a) (b) (c) 

Figure 6.22: Valid pixels projected from 3D model with and without applying the 

proposed stereo refinement method. White area in (a) and (b) indicate the 

valid pixel, while black region represent the pixels without valid value.  

(a) The valid pixels projected from 3D model without any data processing. 

(b) The valid pixels projected from 3D model with applying the proposed stereo 

refinement method.  

(c) Indicating each pixel is in state valid, invalid or refinement. Points in white 

represent the invalid pixels, the red and green region indicate the valid 

points, while the green areas are also considered as the pixels refined by the 

proposed method. 
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Table 6.4: 3D model projected to image plane and compare to target image. 

 With Stereo Refinement Without Stereo Refinement  

Items PSNR # Valid Pixels (%) PSNR # Valid Pixels (%) # Valid Pixels 

Increment (%)

Frame 1 17.97 280307 (91.25%) 17.88 271442 (88.36%) 2.89%    

Frame 2 17.71 285761 (93.02%) 17.69 278069 (90.51%) 2.51%    

Frame 3 17.90 281997 (91.80%) 17.95 273734 (89.11%) 2.69%    

Frame 4 17.29 271269 (88.30%) 17.37 262360 (85.40%) 2.90%   

Frame 5 16.47 264272 (86.03%) 16.39 257095 (83.69%) 2.34% 

Frame 6 16.86 268400 (87.37%) 16.75 262062 (85.31%) 2.06%    

Frame 7 17.98 261130 (85.00%) 17.89 256217 (83.40%) 1.60%   

Frame 8 18.58 252685 (82.25%) 18.24 246213 (80.15%) 2.10%   

Frame 9 19.28 288396 (93.88%) 18.76 274228 (89.27%) 4.61%    

Frame 10 18.80 284476 (92.60%) 18.43 272929 (88.84%) 3.76%  

Frame 11 18.37 284750 (92.69%) 18.16 268865 (87.52%) 5.17% 

Frame 12 17.89 286571 (93.28%) 17.63 271339 (88.33%) 4.95%    

Frame 13 16.46 294475 (95.86%) 16.47 281228 (91.55%) 4.30%    

Frame 14 16.45 292683 (95.27%) 16.44 284420 (92.58%) 2.70%    

Frame 15 17.50 284657 (92.66%) 17.29 278641 (90.70%) 1.96%    

Frame 16 19.52 285531 (92.94%) 19.28 276996 (90.17%) 2.77%    

Frame 17 20.18 284094 (92.48%) 19.63 274849 (89.47%) 2.99% 

Mean 17.9535 279497 (90.98%) 17.7794 270040 (87.90%) 3.08% 

STD 1.0913 11697 (3.81%) 0.9489 10110 (3.29%) 1.09% 
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6.2.7 Evaluate the Proposed Stereo Refinement in Spatial 

Aspect 

In Subsection 6.2.6 the proposed stereo refinement method is evaluated in the 

visual aspect using PSNR to compare the image projected from 3D model to target 

image. This evaluation method considers the local appearance of the 3D model by 

image-based approach. However, it does not evaluate the accuracy of the missing data 

(hole) filling of the proposed stereo data refinement in spatial aspect. Thus, this 

subsection focuses on evaluating the proposed stereo refinement algorithm in spatial 

aspect by constructing another experimental scenario. 

In this experiment, a plane is placed in front of the stereo camera rig to be the 

benchmark, as shown in Figure 6.23. The plane is measured by using two orthogonal 

laser scanners and its plane parameters in stereo camera coordinate are estimated by 

using these local laser data. The plane is located at different positions in order to be 

measured by stereo camera rig in different viewing angles. Five viewing angles are set, 

that is, 45 , 30 ,0 ,30  and 45− −      respectively, which are shown in Figure 6.23(c)-(g). 

To illustrate the evaluation method conveniently, Data #3 is used as an example, which 

the viewing angle is 0 . The plane is measured by the stereo camera and laser range 

finders as shown in Figure 6.24(a). Figure 6.25 shows the concept of estimating the 

plane parameters in the camera coordinate of Data #3. Figure 6.25(a) shows the 
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horizontal laser data, whereas Figure 6.25(b) shows the vertical laser data. Two laser 

data are transformed to the stereo camera coordinate as shown in Figure 6.25(c), while 

the data pointed by the green arrow indicate the measurements on the plane. The plane 

parameters are estimated by using the least-square method with these local laser data, 

which are selected manually as shown in Figure 6.25(d). Figure 6.26 shows the result of 

plane parameters estimation by using the local laser data. To compare the interpolation 

result in the coordinate of the depth map, the plane depth map is built by inverse 

projecting the points on the plane to the image coordinate. According to the definition of 

a plane which is written as follows: 

 Ax By Cz D+ + =  (6.7) 

And considering pin-hole model as mentioned in Section 3.1, substituting the Equation 

(3.1)-(3.2) into Equation (6.7), the equation becomes: 

   
/

uz vz fD
A B Cz D z

f f Au Bv C f

   + + =  =    + +   
 (6.8) 

For a certain pixel ( , )u v  on the image coordinate, its depth value becomes: 

 ( , ) ( , )
/

fD
Depth u v z u v

Au Bv C f
= =

+ +
 (6.9) 

Therefore, the plane depth map can be built by using the Equation (6.9), and the 

construction result is shown in Figure 6.27(b).  

The 200 200×  rectangular region of interest (ROI) is selected at the image center 

to be the comparison area, as shown in Figure 6.28(a). The invalid pixels (missing data 
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areas) are filled by the proposed stereo refinement method with two different 

interpolation approaches and the results are shown in Figure 6.28(e) and (g), and the 

corresponding ROI patches are shown in Figure 6.28(f) and (h). The pixels in the 

selected ROI are compared to the same ROI patch of the plane depth map estimated 

from the laser data. Figure 6.28(d) shows the estimated plane depth map ROI patch of 

Figure 6.28(c). Since the processing pixels are the missing data area as the white region 

in Figure 6.28(i), only these pixels are compared to the estimated plane depth map. 

Figure 6.28(j) shows the absolute difference between the ROI patch of the proposed 

DOL interpolation approach and the ROI patch of the estimated plane depth map, while 

Figure 6.28(k) shows the absolute difference between the refinement result of RBF 

approach and the benchmark (Figure 6.28(d)). Figure 6.29(a) shows the absolute 

differences of each filling pixel, and Figure 6.29(b) shows the histogram of these 

absolute differences. For the five experimental datasets, each mean and standard 

deviation of the interpolation errors comparing to the estimated plane depth are listed in 

Table 6.5, and the processing times are listed in Table 6.6. It can be observed that the 

means and standard deviations of the interpolation result by DOL are all slightly lower 

than the result by RBF, which shows the better result in the planar case. Moreover, 

according to Table 6.6, the processing time of DOL is approximately lower three times 

than the processing time of RBF, which shows the better computation efficiency.  
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(a) (b) 

 
(c) (d) (e) (f) (g) 

Figure 6.23: Experiment scenario setup. A plane stands in front of the stereo camera 

with different view angle. 

(a)(b) A plane stands in front of the sensor platform. 

(c)-(g) Measuring the plane with different angles, 45 , 30 ,0 ,30  and 45− −    

 respectively. 

 

 

(a) (b) (c) 

Figure 6.24: The target image and the corresponding depth map of Data #3. 

(a) The plane stands in front of the camera with viewing angle 0 . 
(b)  Target image from right CCD of the stereo camera. 

(c) The corresponding depth map. 
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 

(i) (j)  (k) 

Figure 6.28: The 200 200×  rectangular ROI is selected, which is enclosed as in the 

depth maps.  

(a)(b) The raw depth map and the corresponding ROI patch. 

(c)(d) The depth map estimated from laser data and the corresponding ROI 

 patch. 

(e)(f) The stereo refinement result of dual orthogonal linear (DOL) 

 interpolation and the corresponding ROI patch. 

(g)(h) The stereo refinement result of radial basis function (RBF) interpolation 

 and the corresponding ROI patch. 

(i)  The white areas indicate the region of missing data (hole) to be filled. 

(j)  The absolute difference of the filling region between (d) and (f).  

(j)  The absolute difference of the filling region between (d) and (h).  
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(a) (b) 
Figure 6.29: The absolute error between the depth of interpolating pixels and the depth 

generated from laser data. Red lines represent the result of the dual 
orthogonal linear interpolation approach, while the blue lines indicate the 
result of radial basis function method. 

(a) Pixel index versus depth error. 
(b) Histogram of depth error. 

 

Table 6.5: The mean and standard deviation of interpolation errors comparing to laser 

scanner (m). 

Data Index Data #1 Data #2 Data #3 Data #4 Data #5 

Angle 45−   30−   0  30  45  

DOLError  0.0033 0.0037 0.0029 0.0125 0.0235 

DOLσ  0.0033 0.0034 0.0021 0.0095 0.0169 

RBFError  0.0051 0.0051 0.0028 0.0145 0.0253 

RBFσ  0.0046 0.0041 0.0025 0.0106 0.0181 

 

Table 6.6: Comparing the processing time with different interpolation approaches. 

Data Index Data #1 Data #2 Data #3 Data #4 Data #5 

Angle 45−   30−   0  30  45  

Average processing time (s) 

DOL  0.8206 1.2909 1.4425 1.1886 1.1476 

RBF  2.2014 2.9561 3.8157 3.0266 3.0398 

Number of the interpolation pixels (N) 

&DOL RBF  15784 19161 24636 16614 16577 

Average processing time per pixel (ms/N) 

DOL  0.0520 0.0674 0.0586 0.0715 0.0692 

RBF  0.1395 0.1543 0.1549 0.1822 0.1834 
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(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

(j) (k) 
Figure 6.30: The data #1 interpolation result of two different approaches.  

(a)-(c) The target image with corresponding raw depth map and the small patch 

extracted from the region enclosed by red rectangle in (b) to be analyzed. 

(d) The white regions indicate the missing data area that will be interpolated. 

(e) The interpolation result of the proposed DOL interpolation method. 

(f) The interpolation result of the RBF interpolation method. 

(g) The depth map estimated by using plane fitting method with the lasers data. 

(h) The absolute interpolation error of DOL comparing to (g). 

(i) The absolute interpolation error of RBF comparing to (g). 

(j) Pixel index VS absolute depth error.  

(k) The statistic result of the depth error, depth error VS number of pixels. 
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(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

(j) (k) 
Figure 6.31: The data #2 interpolation result of two different approaches.  

(a)-(c) The target image with corresponding raw depth map and the small patch 

extracted from the region enclosed by red rectangle in (b) to be analyzed. 

(d) The white regions indicate the missing data area that will be interpolated. 

(e) The interpolation result of the proposed DOL interpolation method. 

(f) The interpolation result of the RBF interpolation method. 

(g) The depth map estimated by using plane fitting method with the lasers data. 

(h) The absolute interpolation error of DOL comparing to (g). 

(i) The absolute interpolation error of RBF comparing to (g). 

(j) Pixel index VS absolute depth error.  

(k) The statistic result of the depth error, depth error VS number of pixels. 
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(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

(j) (k) 
Figure 6.32: The data #3 interpolation result of two different approaches. 

(a)-(c) The target image with corresponding raw depth map and the small patch 

extracted from the region enclosed by red rectangle in (b) to be analyzed. 

(d) The white regions indicate the missing data area that will be interpolated. 

(e) The interpolation result of the proposed DOL interpolation method. 

(f) The interpolation result of the RBF interpolation method. 

(g) The depth map estimated by using plane fitting method with the lasers data. 

(h) The absolute interpolation error of DOL comparing to (g). 

(i) The absolute interpolation error of RBF comparing to (g). 

(j) Pixel index VS absolute depth error.  

(k) The statistic result of the depth error, depth error VS number of pixels. 

0 1000 2000 3000 4000 5000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Pixel Index

D
e

p
th

 E
rr

or

Depth Error Versus Pixel Index

 

 

DOL
RBF with Multiquadratic

0 0.005 0.01 0.015 0.02
0

20

40

60

80

100

120

140

160

180

Depth Error

A
cc

um
ul

a
tio

n

Error Distribution

 

 

DOL
RBF with Multiquadratic



146 

  
(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

(j) (k) 
Figure 6.33: The data #4 interpolation result of two different approaches.  

(a)-(c) The target image with corresponding raw depth map and the small patch 

extracted from the region enclosed by red rectangle in (b) to be analyzed. 

(d) The white regions indicate the missing data area that will be interpolated. 

(e) The interpolation result of the proposed DOL interpolation method. 

(f) The interpolation result of the RBF interpolation method. 

(g) The depth map estimated by using plane fitting method with the lasers data. 

(h) The absolute interpolation error of DOL comparing to (g). 

(i) The absolute interpolation error of RBF comparing to (g). 

(j) Pixel index VS absolute depth error.  

(k) The statistic result of the depth error, depth error VS number of pixels. 
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(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) 

(j) (k) 
Figure 6.34: The data #5 interpolation result of two different approaches.  

(a)-(c) The target image with corresponding raw depth map and the small patch 

extracted from the region enclosed by red rectangle in (b) to be analyzed. 

(d) The white regions indicate the missing data area that will be interpolated. 

(e) The interpolation result of the proposed DOL interpolation method. 

(f) The interpolation result of the RBF interpolation method. 

(g) The depth map estimated by using plane fitting method with the lasers data. 

(h) The absolute interpolation error of DOL comparing to (g). 

(i) The absolute interpolation error of RBF comparing to (g). 

(j) Pixel index VS absolute depth error.  

(k) The statistic result of the depth error, depth error VS number of pixels. 
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6.3 Object Detection and Tracking 

In this section, the experimental result of the proposed object detection and tracking 

methods presented in Chapter 5 is shown and to be discussed. Subsection 6.3.1 shows 

the detection performance of the proposed system. Object tracking result is shown in 

Subsection 6.3.2. Two preset experimental scenarios are constructed to show the 

detection and tracking performance and accuracy.  

 The first preset experimental scenario is constructed at fifth floor in Ming-Da Hall 

as shown in Figure 6.35(a). Data are acquired by stereo camera with two people walking 

arbitrarily, as shown in Figure 6.35(c). The purpose in this experiment is to show the 

successful detection rate and tracking result with and without Kalman filter.  

  

(a) (b) (c) 

Figure 6.35: Experimental scenario setup 

(a) Ming-Da Hall 5F 

(b) Data are acquired from stereo camera in this experimental scenario. 

(c) Two people are walking in the scenario. 
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6.3.1 Object Detection  

For total 81 frame data, successful detection rate of each object is calculated by the 

ratio between the number of correct detection result and the number of occurring in 

image in each frame manually. Three objects are defined as “Near Range”, “Far Coming” 

and ”Static” objects as illustrated in Figure 6.37(a), and the corresponding detection 

rates are shown in Figure 6.37(b). Note that in this analysis, only detection results are 

considered, tracking results are not discussed in this subsection.  

For near range object which is enclosed with blue bounding box, the successful 

detection rate is 84.058%. Two cases cause the false detection results are illustrated in 

Figure 6.39 and Figure 6.40. Figure 6.39 shows the first case that an object does not be 

detected since the lack of measurement pixels on to the object when it moves into the 

camera field of view. Figure 6.39(a)-(b) show the color images captured in time step 1 

to 2, whereas Figure 6.39(c)-(d) is the corresponding disparity maps. Since the lack of 

disparity pixels on the object as shown in Figure 6.39(c), the width of the detecting 

object candidate is too short that is removed by the constraint shown in Equation (5.19), 

as shown in Figure 6.39(i) and (k). Another case that an object moves behind a static 

object is illustrated in Figure 6.40. Since the object moves too close to the stand, its 

disparity pixels are projected into the same u-disparity cell at where the stand is located. 

Thus the object has no corresponding measurement in current step as shown in Figure 
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6.40(l). For the static object which is enclosed with red bounding box, the successful 

detection rate is 83.95%, which is only affected by the occlusion case. 

On the other hand, for the far coming object which is enclosed with green 

bounding box, the successful detection rate is only 63.0435%. The reason is that not 

only the object is affected by the cases of entering the camera FOV and occlusion like 

the near range object, but it has additional case that the object cannot be detected since 

the disparity constraint mentioned in Subsection 5.2.2. Although the object is in the 

image plane, it is not considered as a valid candidate.  

The proposed object detection method is also compared to the existing human 

detection method based on Histogram-of-Oriented Gradients (HOG) with SVM 

classifier proposed in [21: Dalal et al. 2005] and the source code is found in the open 

source library called OpenCV in version 2.4.3 [57: OpenCV from OpenCV official 

website 2013]. Because the HOG human detection is a training based method and 

focuses on detecting human object, the static stand object cannot be detected. For near 

object which is a human dressed in black, the detection rate is 72.46%, which is lower 

than the proposed object detection method. The reason is that the average gradient 

image over the training examples is a frontal-like human gradient image. The failure 

occurs when human is seen from lateral side or when the human is walking causes the 

shape is not similar to the gradient image due to the human arms are waving. 
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6.3.2 Object Tracking  

The detection rate is discussed in Subsection 6.3.1. Although object is not detected 

in every step, this subsection will show that an object can be tracked by the proposed 

method without losing it even when the object returns to the camera FOV or is occluded 

temporarily. Moreover, the benefit of using Kalman filter in the tracking task is also 

discussed in this subsection. 

First of all, Figure 6.42 shows the tracking result in the image plane and the X-Z 

Cartesian space with corresponding color. For simplicity, only 14 tracking results are 

shown at four frame intervals (except the frame 32 to 38). It can be observed that each 

object is tracked correctly in the image plane and the corresponding position in the X-Z 

coordinate. Frame 24-38 show that even though the object which is enclosed by blue 

bounding box moves out of the camera field of view, it can be tracked successfully 

when it returns to the camera FOV. On the other hand, frame 58-66 show that even 

though the object moves behind the stand and is occluded, it can be tracked successfully 

when it moves out of stand and is measured by the camera again.  

The overall tracking results on the X-Z plane with and without Kalman filter are 

shown in Figure 6.43 and Figure 6.44. It can be observed that a sparkle is occurred in 

the Figure 6.44. This is because two objects are too close to each other and are 

considered to be the same candidate in frame 60, as shown in Figure 6.45. The 
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distributions of hue and saturation channels of the candidate of frame 60 are similar as 

the distributions of the human who wears a black cloth in the database, as shown in 

Figure 6.46. Therefore, the candidate is linked to the human who is enclosed by blue 

bounding box as shown in Figure 6.46(g). Since the coordinate of each point on the 

stand contribute to the object, the coordinate of the human is dragged close to the 

coordinate of the stand. Applying Kalman filter can eliminate this problem since it is not 

only considering the measurement but also the motion model. The tracking results of 

each object are shown in Figure 6.47, Figure 6.48 and Figure 6.49. From these figures it 

can be observed that Kalman filter do not improve the result dramatically. Note that the 

-coordinatex  of object at frame 60 shown in Figure 6.48, this is sparkle signal which is 

eliminated by applying Kalman filter. 
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Figure 6.42: Tracking result in image space and Cartesian space 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

  
(i) (j) (k) (l) (m) (n) 

Figure 6.45: Too close objects are measured as the same candidate in frame 60. 

(a)(b) The target image and the disparity map. 

(c)-(h) Each step of post-processing mentioned in Subsection 5.2.2. 

(i)  The candidate enclosed by its bounding box. Two objects are enclosed by 

 the same bounding box. 

(j)(k) The image patch and the depth map of the candidate. 

(l)  The depth map with background elimination. 

(m)  The remaining foreground mask. 

(n)  The image patch with background elimination by (m). Note that in this 

 case two objects are too close that cannot be separated from each other.  
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(a)  (b)  (c) 

  
(d)  (e)  (f) 

(g) 
Figure 6.46: The candidate in frame #59 and #60 and the data association result. 

(a) The residual image of frame image #59 after the background removing step. 
(b)(c) The hue and saturation distributions of (a). 
(d) The residual image of frame image #60 after the background removing step. 
(e)(f) The hue and saturation distributions of (d). 
(g) Since the hue and saturation distributions of the candidate in frame #60 are 

close to the hue and saturation distributions of the human object in the 
database, data association mechanism proposed in this thesis may fail in this 
case. 
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Figure 6.47: Position of object #1 with and without Kalman Filter 

Figure 6.48: Position of object #2 with and without Kalman Filter 

Figure 6.49: Position of object #3 with and without Kalman Filter 
  

0 10 20 30 40 50 60 70 80
-5

0

5
Object 1 Trajectory

# Frame

X
 (

M
e

te
r)

 

 

Without Kalman
With Falman

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

# Frame

Z
 (

M
e

te
r)

 

 

Without Kalman
With Falman

0 10 20 30 40 50 60 70 80
-5

0

5

# Frame

X
 (

M
e

te
r)

Object 2 Trajectory

 

 

Without Kalman
With Falman

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

# Frame

Z
 (

M
e

te
r)

 

 

Without Kalman
With Falman

0 10 20 30 40 50 60 70 80
-5

0

5
Object 3 Trajectory

# Frame

X
 (

M
e

te
r)

 

 
Without Kalman
With Falman

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

# Frame

Z
 (

M
e

te
r)

 

 

Without Kalman
With Falman



163 

Tracking Accuracy 

In this experiment, the accuracy of the proposed system is compared to SICK laser 

scanner. The object path is decomposed to three parts to analyze the accuracy in 

different conditions, which are “near path,” “far path” and “circular path,” as shown in 

Figure 6.50. The tracking results of each part are listed in Table 6.8, Table 6.9 and Table 

6.10. For the near path object, the mean of object to laser distances is 0.1468 and the 

standard deviation is 0.0457. It is acceptable distance for a non-rigid object since the 

center of the object may change when it moves, and the laser measurement on it may hit 

at the different part of the object body. For the far path, the mean of object to laser 

distances is 0.6140 and the standard deviation is 0.2639. It is obvious that the mean and 

standard deviation of the far object are larger than the near range object. This is 

reasonable since the stereo uncertainty increases when the distance of the measuring 

object is getting larger. For the circular path, the mean of object to laser distances is 

0.2219 and the standard deviation is 0.1444. Its mean and standard deviation are 

increased comparing to the near path object. This is because that applying Kalman filter 

with constant velocity motion model, the velocity of an object is assumed to be a 

constant. However, an object moves in a circular path is not a constant velocity since the 

direction of the motion is changing all the time. Therefore, when an object moves along 

a circular-like shape path, the proposed tracking method applying Kalman filter with 
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constant velocity model is not inaccurate. It may get the better result if the motion 

model is replaced by other nonlinear model and will be the system future work. 

 

(a) (b) (c) 

Figure 6.50: Object trajectories estimated by the proposed method and measured by 

SICK LMS100 laser scanner. The blue square signs indicate the object positions in each 

step estimated by the proposed tracking method using stereo camera, whereas the red 

cross signs represent the object positions in each step measured by the SICK LMS100 

laser scanner. The path is divided into three parts:  

(a) The near path. 

(b) The far path. 

(c) The circular path. 

 

Table 6.8: The tracking result of near path (m) 

 Laser Stereo with 

proposed method 

Error 

Step / Axis X Axis Z Axis X Axis Z Axis X Axis Z Axis Distance 

Step 1 2.095 6.118 1.965 6.001 0.1300  0.1170   0.1749    

Step 2 1.338 5.965 1.381 5.856 0.0430  0.1090   0.1172    

Step 3 0.4298 5.817 0.412 5.901 0.0178  0.0840   0.0859    

Step 4 -0.5279 5.704 -0.4705 5.848 0.0574  0.1440   0.1550    

Step 5 -1.497 5.674 -1.607 5.842 0.1100 0.1680 0.2008 

Mean N/A N/A N/A N/A 0.0716 0.1244 0.1468 

STD N/A N/A N/A N/A 0.0469 0.0324 0.0457 
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Table 6.9: The tracking result of far path (m) 

 Laser Stereo with 

proposed method 

Error 

Step / Axis X Axis Z Axis X Axis Z Axis X Axis Z Axis Distance 

Step 1 2.543 8.538 3.104 8.809 0.5610  0.2710  0.6230    

Step 2 1.735 9.034 1.911 9.322 0.1760  0.2880  0.3375    

Step 3 6.31E-16 9.975 0.9674 9.989 0.9674  0.0140  0.9675    

Step 4 -0.8536 10.52 -0.3888 10.77 0.4648 0.2500 0.5278 

Mean N/A N/A N/A N/A 0.5423 0.2057 0.6140 

STD N/A N/A N/A N/A 0.3272 0.1288 0.2639 

 

Table 6.10: The tracking result of circular path (m) 

 Laser Stereo with 

proposed method 

Error 

Step / Axis X Axis Z Axis X Axis Z Axis X Axis Z Axis Distance 

Step 1 1.800 6.632 2.026 7.111 0.2260   0.4790  0.5296    

Step 2 1.282 7.332 1.629 7.512 0.3470   0.1800  0.3909    

Step 3 0.570 7.821 0.660 8.173 0.0900   0.3520  0.3633    

Step 4 -0.362 7.965 -0.485 8.028 0.1230   0.0630  0.1382    

Step 5 -1.039 7.559 -0.903 7.521 0.1360 0.0380  0.1412    

Step 6 -1.322 6.805 -1.076 6.847 0.2460   0.0420  0.2496    

Step 7 -1.379 5.892 -1.177 6.081 0.2020   0.1890 0.2766 

Step 8 -1.328 4.993 -1.157 4.961 0.1710   0.0320  0.1740    

Step 9 -1.175 4.214 -1.049 4.386 0.1260   0.1720  0.2132    

Step 10 -0.717 3.540 -0.699 3.616 0.0180   0.0760  0.0781    

Step 11 -0.032 3.310 0.034 3.365 0.0660   0.0550  0.0859    

Step 12 0.602 3.696 0.622 3.615 0.0200 0.0810  0.0834    

Step 13 0.703 4.374 0.922 4.642 0.2190   0.2680  0.3461    

Step 14 -0.712 4.936 -0.748 4.937 0.0360 0.0010 0.0360 

Mean N/A N/A N/A N/A 0.1447 0.1449 0.2219 

STD N/A N/A N/A N/A 0.0964 0.1394 0.1444 
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(a) (b) 
Figure 6.51: Near path object tracking result comparing to laser. 

(a) The position of each step. 
(b) The absolute error of each step comparing to laser. 

(a) (b) 
Figure 6.52: Far path object tracking result comparing to laser. 

(a) The position of each step. 
(b) The absolute error of each step comparing to laser. 

(a) (b) 
Figure 6.53: Circular path object tracking result comparing to laser. 

(a) The position of each step. 
(b) The absolute error of each step comparing to laser. 
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

In this thesis, the feature-based RGB-D localization method is presented to localize 

stereo camera. This method uses image features to connect the relationship between two 

consecutive frame data. Thus the camera relative pose can be estimated by using SVD 

decomposition method with matching feature pairs with RANSAC outlier rejection. The 

experiment shows that the localization method is quite robust by using two orthogonal 

laser range finders as a benchmark, and the localization result is suitable in the mapping 

task whereas the mapping quality is evaluated in visual aspect. Moreover, the proposed 

stereo refinement method eliminates the wrong pixels in the occlusion area, and the 

small missing data area which is called a hole is interpolated by two different methods, 

which are the proposed dual orthogonal linear (DOL) and radial basis function 

interpolation. Experiment results show that by applying the refinement method, 3D 

model data is increased 2% in the image space, and the accuracies of two interpolation 

methods are in acceptable range in the planar case. Experiment results also show that 

the processing time of the proposed DOL interpolation method is three time faster than 
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RBF. 

On the other hand, the proposed object detection and tracking system is proposed to 

track multiple objects. The visibility-based occupancy grid map construction method 

proposed in [29: Perrollaz et al. 2012] can estimate the probability of each grid cell in 

u-disparity space. The proposed data post-processing method eliminates the noise and 

the region of the candidate in the occupancy grid map can be extracted by using the 

connected-component labeling technique and then the bounding box used to enclose the 

corresponding object in image can be obtained. Objects in the database can be 

successfully registered to these candidates by comparing the distributions of hue and 

saturation channels as object feature vectors. Finally, each database object can be 

renewed by the proposed update strategy. Experiment results show that even though an 

object returns to the field of view or is in occlusion, the object can still be tracked 

correctly. 

7.2 Future Work 

Most complete mapping systems require three considerations, which are the spatial 

alignment of consecutive data frames to achieve localization task, the detection of loop 

closures and the globally consistent alignment of all data frames [1: Henry et al. 2012]. 

This thesis implements the 3D mapping system considering the spatial alignment 
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without the loop detection and global consistency. Since the feature-based localization 

method is processing frame-by-frame, the accumulating drift of all data frames is large 

when the camera moves for a long distance and therefore the endpoints of a loop cannot 

be aligned together. This is the main problems of the proposed 3D model reconstruction 

system of this thesis that should be solved in the future. Besides, since the geometry of 

binocular stereo camera is fixed, the physical relationship between left and right images 

can be another constraint to make the localization result more accurate as proposed in 

[18: Kitt et al. 2010]. Moreover, the proposed 3D model reconstruction system does not 

consider how to model and update the mapping data. In [1: Henry et al. 2012], each 

point in 3D model are transformed to the “surface element (Surfel)” data structure with 

the proposed update strategy. With Surfel mapping model and update strategy, not only 

the visualization result is improved by using surface representation, but also make the 

update task more easily.  

On the other hand, for the proposed stereo refinement method, hole region to be 

filled is selected by a fix threshold currently. However, due to the properties of camera 

projection, the size of a certain hole changes according to the distance to the camera 

coordinate. Therefore, a dynamic range of the filling hole selection mechanism based on 

the measurement distance to the camera coordinate is the future work to improve the 

method.  
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For the proposed object detection and tracking system, three aspects can be 

improved and extended. First of all, this thesis use visibility-based occupancy grid to 

detect object. However, the advantage of Bayesian occupancy filter (BOF) framework 

does not implement currently in thesis. With BOF framework, a static global map can be 

constructed by several frame data, and then moving object can be filtered out by 

comparing the local u-disparity occupancy grid map to the global occupancy grid map. 

The same concept implemented in Cartesian space using laser range finder has been 

proposed in [34: Wolf et al. 2004]. Secondly, as the experiment results mentioned in 

Subsection 6.3.2, the Kalman filter with constant velocity motion model is not quite 

accurate when an object moves along a circular path. To overcome this problem, 

extended Kalman filter (EKF) with nonlinear dynamic model might be a solution. Third, 

the proposed object tracking system has not been integrated into the proposed 3D 

environment reconstruction system. Combining the localization method in the first topic 

mentioned in Section 4.1 and the u-disparity occupancy grid with BOF framework to 

handle the dynamic environment is the next work of this thesis.  
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