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ABSTRACT

Three-dimensional environment reconstruction is a key technology that has been
widely researched over the last decade and has many applications such as indoor
environment navigation, virtual reality and visual guidance system for minimal invasive
surgery. Stereo camera provides color and spatia information together and therefore is
more suitable in 3D environment reconstruction task than other sensors like laser range
finder that only provides spatial information or mono camera that only provides color
information. Once each camera relative pose is estimated precisely, measurement points

provided from stereo camera can be placed at the correct position in the global



coordinate to reconstruct the 3D environment model. Thus, the most important task is to

achieve the goal of localizing the camera pose by using the same feature points in the

consecutive frames. However, because of the uncertainty caused by the stereo camera

noise and the feature point mismatching, estimating the camera pose directly without

eliminating the outliers could lead to an inaccurate or wrong result. Therefore, Random

Sample Consensus (RANSAC) algorithm is applied to solve the outlier problem in this

thesis. On the other hand, because of the limitation of the passive type sensor like stereo

camera, the disparity map has many missing data areas that occur in several situations

such as measuring object in low textureness or glossy surface. This problem may affect

the quality of the reconstructed 3D model. Thus, the data preprocessing method is

proposed to enhance the 3D reconstruction quality by reducing the missing data areas.

In addition, considering 3D model reconstruction task in dynamic scene, moving

object needs to be detected and removed. Therefore, the object detection and tracking

method is proposed to detect an object by constructing the occupancy grid map in

probability representation to extract object candidate. Then the distributions of hue and

saturation in HSV color space are used to link the candidate to the corresponding

database object correctly to solve the data association problem. Finally, the proposed

update strategy with Kalman filter is used to renew object states. The experiment results

demonstrate that the system can track multiple objects ssmultaneously and even though

iv



an object is out of the field of view for awhile or isin occlusion, the object can still be

tracked correctly.

Keywords:

Stereo camera, RGB-D localization, 3D environment reconstruction, object tracking,

visibility-based occupancy grid.
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Chapter 1

Introduction

1.1 Motivation

Three-dimensional object and environment model reconstruction is a popular topic
that has been researched in the last decade and plays an important role in many area
such as robot navigation [1: Henry et a. 2012], virtual reality [2: Marcincin et a. 2012]
and visual guidance system for minimal invasive surgery [3: Park et al. 2012].

To build a 3-D model, not only the spatial information of an object is needed but
also the color information. If the system only has spatial information, the model shapeis
built without knowing its appearance. Contrarily, if the system has only color
information, the model cannot be reconstructed since the points cannot be placed in the
correct positions. It shows the importance of color-spatial data structure for 3-D model
reconstruction task. Recently, many sensors that have the ability to acquire color-spatial
data have been developed, such as stereo camera and Microsoft Kinect. Both of them
provide RGB color image and the corresponding disparity map (depth map) with same
image coordinate, and this data structure is named as RGB-D data [5: Zeidl et al. 2012].
Moreover, RGB-D data can be extended to a RGBXYZ data structure, as shown in

Figure 1.1. Therefore, the whole environment 3D model can be reconstructed by several
1



frame data capturing in different positions. In addition, Kinect is an active type sensor

and its range image is acquired from the IR module, which is sensitive to incident angle

and sunlight [6: Suarez et al. 2012]. Contrarily, Stereo camera is a passive type sensor

and its range image is estimated by block matching algorithm, and do not have incident

angle problem and is less sensitive to sunlight. Figure 1.2 shows the RGB-D data

acquired from stereo camera and Kinect in outdoor environment. It is obvious to

observe that the number of valid pixelsin stereo depth map is larger than the number of

valid pixels in Kinect depth map. Hence, stereo camera which belongs to passive type

sensor isused in thisthesis.

To place these points to the correct positions in the global coordinate, estimating the

camera pose in each step is necessary, which is often called localization task. Many

existing methods used to localize stereo camera pose have been developed, and one of

these approaches is based on tracking the 3-D coordinate of image features and is often

called “visual odometry” [16: Scaramuzza et al. 2011].

Although the environment 3D model can be reconstructed by the localization

method which tracks the image feature points, many problems still need to be solved.

One of the problems affects the mapping quality is the shortcoming of stereo camera

itself. The disparity map generated from two CCDs of the stereo camera by loca

correspondence method has many small missing data areas, which are often called
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“broken holes.” To fix these missing data, the interpolation method called dual

orthogonal linear (DOL) interpolation is proposed and is compared to the radial basis

function (RBF) interpolation method in the experiment in Chapter 6.

On the other hand, it is suitable to reconstruct 3D static environment model by the

above method. However, if the environment is a dynamic scenario, build the model

without removing the dynamic points in the measurement data frames will causes two

problems: First, the dynamic points will affect the localization result since they are

considered to be the outliers; Second, these dynamic points may occur in the

consecutive data frames twice or more, therefore, these points will be mapped into the

3D model several times, causing the ghost effect. In order to detect and avoid the

dynamic points, this thesis proposed the object detection and tracking system to track

the states of object. Once the states of objects are known, such as the velocity of the

object, the points on the object can be seen as dynamic points and be removed.

pli, ) =(r.g.b,x,v,2)

pli.j)=(r.g,b.2)

Figure 1.1: RGB-D data structure



Figure 1.2: RGB-D data comparison between stereo camera and Kinect in an outdoor
environment.
(@)(b)(e)(f) Color image and depth map from stereo camera.
(c)(d)(g)(h) Color image and depth map from Kinect.

1.2 Problem Formulation

In order to construct 3-D environment model by RGB-D measurements acquired at
different positions, the sensor poses in each step need to be known. If the camera poses
are known ideally, the data points with RGBXY Z structure can be placed to the correct
positions with corresponding colors. However, these sensor poses are usually unknown
in practice and need to be estimated. Many researchers investigated the six degrees of
freedom sensor poses estimation by aligning two point clouds in k and k-1 steps
using ICP and ICP variant methods. However, due to the uncertainty of stereo camera, it
is not suitable to use ICP and ICP variant directly. Moreover, | CP needs a suitable initial

guess or it may return a wrong result due to the fact that ICP aligns two point clouds
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into local minimum. Contrarily, since camera moves step by step, many same feature

points captured in the consecutive frames. By using the relative 3D coordinates of these

points, the camera relative pose can be estimated by least-square method without any

initial guess. However, two challenges need to be solved. First, features may not be

linked correctly from previous to current frame, considering these wrong matching pairs

in motion estimation may cause inaccurate or wrong result. Secondly, due to the sensor

uncertainty, point may have inaccurate 3D coordinate, and will also affect the motion

estimation result. These two cases are considered to be the outliers, and will be solved

by applying Random Sample Consensus (RANSAC) agorithm.

On the other hand, stereo camera is a passive sensor, which the disparity map is

generated by finding the same features from reference to target images, which is

sensitive to illumination and textureness. This cause many missing data in the disparity

map and therefore affects the mapping quality to the 3D models. To overcome the

problem, this thesis proposes a data interpolation method to fix the missing data area

efficiently by the average of the horizontal and vertical linear interpolation results.

Besides, considering 3D model reconstruction task in a real life scenario, many

moving objects that do not belong to the 3D model need to be filtered out. Therefore,

the object detection and tracking system is proposed. Many researchers have

investigated object detection and tracking based on stereo vision, especialy in the field
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of intelligent transportation system (ITS). However, these tracking systems used in the
traffic scenario do not need to consider tracking an object correctly in the cases of the
object returning back to the camera field of view or partially occluded. Therefore, this
thesis proposed the object registration method based on color distributionsin HSV color
space and the update strategy to update the object states to solve the data association
problem during the system encounter the cases of object returning back to the camera

FOV or partialy occluded.

1.3 Contribution

The main contribution of this thesis is that the existing image feature-based
localization method, the proposed stereo refinement algorithm, the visibility-grid map
construction method proposed in [29: Perrollaz et al. 2012], the proposed object
detection method and object tracking algorithm are combined together to achieve two
main goals which are three-dimensional environment reconstruction and object tracking
using stereo camera.

For the first topic, static environment reconstruction can be divided into two parts,
which are sensor localization and stereo data refinement. For the first part, the existing

feature-based |ocalization method with RANSAC outlier rejection to achieve the goal of



six degrees of freedom (6-DoF) camera pose estimation [16: Scaramuzza et al. 2011] is

integrated in this thesis. After finishing the localization step, each point measured by

stereo camera can be added into 3D global model at the correct position with its color,

and thus the 3D environment model can then be constructed. However, since many

missing data in stereo camera, the proposed stereo refinement method combining with

forbidden area elimination, missing data (hole) detection and hole filling is applied to

fix this missing data area.

The second topic is the proposed object detection and tracking system. To detect

object candidates from stereo camera data, the existing visibility-based occupancy grid

map in u-disparity space [29: Perrollaz et al. 2012] with a dlightly modification is

integrated with the proposed post-processing algorithm in thesis. After object candidates

are extracted, the next problem is how to link candidates to the database objects

correctly. This problem is so called data association, and is solved by comparing the

distributions of hue and saturation channels of the corresponding image patch in HSV

color space with the proposed background pixels elimination method. Finally, to update

the states of database objects in different cases, this thesis proposed an update strategy

to handle the problem with Kalman filter.

The proposed systems can not only be used on stereo camera but also on other

sensors which provide the same RGB-D data structure.
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1.4 Organization of the Thesis

This thesis has 7 chapters including Chapter 1. The remaining part of this thesis is
organized asfollows: Literature survey is presented in Chapter 2. The related algorithms
are discussed in Chapter 3. Two main parts of this thesis are discussed in the following
two chapters. The three-dimensional environment reconstruction methods are shown in
Chapter 4, including sensor localization and data refinement algorithms. In Chapter 5,
object detection and tracking algorithms are presented. The experimental result and
analysis are shown in Chapter 6. In the end of this thesis, the conclusion and future
works are presented in Chapter 7 to show the benefits of the main ideas of the proposed

system and point out some disadvantages that will be improved and extended.



Chapter 2

Background and Literature Review

2.1 Three-Dimensional Environment Reconstruction

In the last decade, many researchers have been investigated on how to reconstruct
an environment map precisely using RGB-D sensor. According to the work in [1: Henry
et al. 2012], to build a 3D environment map completely, a mapping system should
consider three components, which are spatial alignment (localization), close loop
detection and global consistency.

For the first component, which is spatial alignment, is the most important element
for mapping system to localize the sensor poses. As mentioned in Section 1.3, if sensor
does not know its position accurately, the measurements from the sensor cannot map to
the correct positions in the 3D global model. Many existing ways to align two
consecutive data frames have been devel oped to achieve the goal of localization method.
The traditional and most popular way to align two point clouds s Iterative Closest Point
(ICP) method [9: Bsel et al. 1992]. In the ICP registration algorithm, closest point in
different point clouds is associated to compute the optimal rigid transformation
iteratively that minimizes the mean-square error of each associated point between two

datasets. However, due to noise points in the range data that affect the correctness of
9



point association, many ICP variant related techniques are proposed to solve this

problem. For example, [10: Turk et a. 1994] proposed the point pairs elimination

mechanism to remove point pairs that are too far apart or either points locates on a mesh

boundary to avoid the outliers effect. [11: Chen et al. 1991] proposed point-to-plane

error metric instead of point-to-point and get a better result on two surfaces registration.

Both of these two variant methods only consider the spatial information. For sensors

that generate color point cloud, performing ICP with color constraint can solve the data

association problem more convenient. For example, [12: Johnson et a. 1997] proposed

the point pairs elimination using hue (the hue channel of HSV color space) of each

points as afilter to be a constraint during the closest point search in every ICP iteration.

In [13: Men et al. 2011], the method not only consider the hue of each point as an

elimination constraint, but includes the hue into the error metric as 4D-1CP, which the

4D means the X, Y, z-coordinate and an additional hue intensity. Although many ICP

variant algorithms solve the data association problem, both the above ICP and ICP

variant algorithms are suffered from initial guess problem since ICP method aligns two

data sets to the local minimum. To solve the initial guess, Makadia [14: Makadia et al.

2006] proposed the method to automatically estimate the initial guess and refine the

alignment by trandating point cloud surface normal vector distribution into orientation

histogram, which is called Extended Gaussian Image (EGI). On the other hand, for the
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image feature-based localization, which is often called visual odometry, are the most

popular to RGB-D type sensors since the initial guess can be easily solved by using the

image feature such as Scalar Invariant Feature Transform (SIFT) [20: Lowe 2004] or

Speeded-Up Robust Features (SURF) as landmarks [16: Scaramuzza et al. 2011].

However, because many outliers such as wrong feature matching pairs affect the pose

estimation result, Random Sample Consensus (RANSAC) outlier rgjection algorithm is

applied to solve this problem [17: Nister et al. 2004]. Moreover, for binocular stereo

vision, since two image planes are fixed, the feature coordinates in reference image

plane can be a constraint to check the correctness of each matching pairs of the target

image plane in feature matching step. This concept was proposed in [18: Kitt et al.

2010], using the so called trifocal tensor to describe the relationship between three

images (which are the two images from previous step and the target image in current

step). Besides, [1: Henry et al. 2012] proposed two stage RGB-D localization method

by fusing feature tracking with RANSAC outlier regection and ICP. However, the

authors claim that feature-based method is good enough and applying I CP can refine the

result dlightly. Since image feature-based localization with RANSAC can solve the

initial guess and outlier rejection to get a precise localization result and is easily

implemented, this thesis chooses this method to achieve to goal of localization.

For the second and third components, which are close loop detection and global
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consistency, are used to minimize the error during the frame-by-frame localization. To

detect close loop data frames, keyframes are selected and are compared in each data

frame [1: Henry et al. 2012]. After detect the close loop, some optimization methods are

used to minimize the error. For example, in [1: Henry et a. 2012], two methods are

implemented to compare the results: the first method is tree-based network optimizer

(TORO) which uses stochastic gradient descent to maximize the likelihood of node

parameters subject to the constraints; another is sparse bundle adjustment (SBA), which

globally minimize the re-projection error of feature points which are matched in all data

frames. Loop detection and global consistency are essential when reconstructing large

scale environment model. However, the scenarios in this thesis do not encounter loop

closure and global consistency and these problems are considered to be the future

works.
]
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Figure 2.1: Sensor localization categories.
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2.2 Object Detection and Tracking

Object detection tracking have been researched for a long time and have been
developed by different sensors. According to the properties of different sensors, the
object detection task can be categorized into two types, beam-type sensor based and
vision-based. For the first category, beam-type sensor, such as laser range finder or
ultrasound, provides spatial information by returning an environment point positions. In
[34: Wolf et al. 2004], the authors proposed the moving object detection method by
constructing a static grid map, and comparing each scan data to this static gird to filter
out the dynamic points. However, tracking laser points are a challenge problem, since
no other information to determine how to link an object point to the object in next scan
correctly. It is well known as data association problem [62: Thrun 2005]. Although
many hypothesis approaches have been developed to overcome the problem,
considering only spatial information to solve data association problem is still hard and
makes ambiguous result.

On the other hand, for vision-base category, it can be divided into mono camera and
RGB-D type sensor. The main different between these two subcategories is if there has
the corresponding range image to the image. Object detection based on mono camera

has been researched for along time since camera provides abundant visual information

13



to obtain the object appearance. In [22: Saravanakumar et a. 2010], the authors

proposed a background subtraction method to retrieve dynamic object, which based on

the background modeling performance. To model the background, [23: Lee et al. 2003]

proposed using Gaussian Mixture Model (GMM) to model the environment background

by severa frame images. [24: Barnich et al. 2011] proposed the visual background

extractor (ViBe) to achieve better performance than GMM. Both these methods need

several images to construct the background, and thus the sensor cannot move too fast.

[25: Enzweiler et al. 2009] mentioned that moving object can be extracted by estimating

the optical flow of the image to extract moving pixels. The similar concept is tracking

features on the object to detect moving object in the image plane [26: Tang et al. 2008].

On the other hand, training-based algorithms are also popular to achieve the goa of

detecting specific object. For example, [21: Dala et al. 2005] proposed using the

histograms of oriented gradients (HOG) to detect human based on the edge orientation

of the human. [32: Viola et al. 2003] proposes the pedestrian detection method by

training the preset pedestrian patterns using Harr wavelet. However, training-based

should train a sequence of object patches, and only the specific object can be detected,

such as human or vehicle, with different training data.

Stereo camera provides color image with corresponding depth, which has abundant

image information and spatial information simultaneously. Therefore, object detection
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and tracking can be constructed more easily to combine two different spaces

information. To detect object, v-disparity approach is first proposed in [27: Labayrade et

al. 2002] and becomes more and more popular. The disparity map is projected to

V-disparity space by accumulating the disparity along the v-axis. [7: Hu et al. 2012] and

[38: Krotosky et al. 2007] extended the work of Labayrade, the u, v-disparity approach

is developed and using Hough transform to extract object bounding box. These methods

have a drawback that in some complicate scenario, the line of object bounding box

becomes discontinuous in Hough transform line extraction stage. Therefore, some

object may not enclose completely by the bounding box. Other approaches based on

grid mapping are developed. [31: Oniga et a. 2010] construct a digital elevation map

(DEM) to check the height of each grid cell, and construct a density map to check the

measurement density of the grid cell. Both of DEM and density map are constructed in

Cartesian space. By using these two grid map, the obstacle grid cell can be extracted

and find the corresponding object image position by perspective mapping. Although the

authors considered the fact that a grid cell at the far distance has less measurement

points due to perspective projection by constructing the density grid map, extracting

obstacle grid cells by checking the density map is not a complete consideration due to

the density of agrid cell may be affected by partially occlusion or missing data. In [29:

Perrollaz et al. 2012], Perrollaz et a. proposed the visibility-based occupancy grid map
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calculation method for an efficient and formal consideration on u-disparity occupancy

grid construction. Instead of using density to describe the occupancy of a grid, the

visibility-grid map considers the ratio between the valid number of disparity pixels and

the number of disparity pixels that exactly hit (measure) the obstacle to the grid cell and

formally uses a probability formula to describe the occupancy of a grid. Based on

occupancy grid mapping, tracking an object can be done by Kalman filter [36: Barth et

al. 2009] or particle filter [35: Danescu et al. 2012] based on Bayesian framework.

However, system encounters data association problem like the situation of beam-type

sensor when it tracks multiple object. For example, athough the particle tracking

method proposed in [35: Danescu et al. 2012] can track multiple objects in most of

cases, the tracking result fails when two objects move across each other. In [36: Barth et

al. 2009] the authors proposed track-before-detect scheme to solve the data association

problem by tracking the image features and then group features by the 3D motion of

each feature. In [37: Nedevschi et al. 2007], data association is solved by tracking the

features in the object bounding box. These methods can solve data association problem

quite well when the object is in the camera field of view. However, these methods may

fail when object is viewed from different directions during the object return to the

camera FOV. This is because that the feature points are too sparse and too distinctive to

describe an object and are not the same in different direction of an object. Contrarily, in
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most cases, the hue and saturation distributions of an object in HSV color space do not

change dramatically. Therefore, in this thesis, the color distributions of the object are

used to be the feature vectors to describe the object without using the feature points.

In this thesis, object detection is solved by dlightly modifying the visibility-based

occupancy grid construction method proposed in [29: Perrollaz et al. 2012], and data

association is solved by using the distribution of the hue and saturation of the object as

feature vector. The tracking strategy is proposed to update the state of an object in

different situations.
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Figure 2.2: The object detection and tracking categories.
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Chapter 3
Related Algorithms

3.1 Pin-hole Camera Model

The pin-hole camera model is used to describe the projection of a pinhole camera
from 3D coordinate to 2D image plane in mathematics. As shown in Figure 3.1, a 3D
point coordinate denoted by (X,y,Z) projects to the image plane at the coordinate
(u,v), the image center is at the coordinate (u,,v,), f is the camera focal length.
According to the similar triangles, the pinhole camera projective transform can be

written as follows [59: Laganiere 2011],

f, 0 u,| X
sfvi=]0 f, vy (31)
1 0O 0 1}z

where s is a scale factor to normalize the projective transform equation. The 3x3

matrix in Equation (3.1) includes all of the camera parameters which are called the

intrinsic parameters. f, is the focal length expressed in horizontal pixels, which is

defined as follows:

f =— 3.2
= (3.2)

where px is the pixel width. Similarly, f, is the focal length expressed in vertical

y

pixels, which is defined as follows:
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f=— (3.3)

Figure 3.1: lllustration of pin-hole model

Moreover, to generalize the projective transform, the rotation and translation vector are
added to the projective transform equation to overcome the problem when the reference
frame is not at the projection center of the camera. It can be extended as follows [59:
Laganiere 2011]:
f, 0 yl|R, R, R; T,
f

sivi=| 0 vy Vo R:, Ry Ry T,
1 0 0 1]Ry Ry, Ry T,

(3.4)

R N < X

where the elements of the rotation matrix R; and the elements of the translation vector
T, are put in the same matrix, these elements are called extrinsic parameters of the

camera.
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3.2 Random Sample Consensus

The random sample consensus is an iterative method to estimate parameters of a
mathematical model or transformation from a set of data which contains inliers and
outliers and it is well known as its abbreviation, RANSAC [47: Random Sample
Consensus from wiki 2013]. Generally, an idea dataset can be fitted using a certain
parameters of the model by least square approach. However, in most cases, data will
have noise or wrong measurement due to sensor uncertainty or limitation. Noise or
wrong measurements are considered to be the outliers, and the remaining data is called
inliers. Therefore, the idea of RANSAC isto find the parameters that are valid for most
of the points by discarding the noisy points. The general RANSAC process is listed in
Algorithm 3.1.

Figure 3.2 shows an example to illustrate the concept and algorithm of RANSAC
method. Assuming that the data set is in two dimensional, that is, each point has
coordinate(X, y) . The data set is also assumed to have the distribution of aline that can
fit the data set. The line model is assumed to be y=mx+ c. The goal isto find the best
parameters (m,c) of the line model that can describe the whole data set. For the first

iteration, two points are chosen randomly as red dots shown in Figure 3.2(a). The line

parameters (m,,c,) can be calculated according to the point-slope formula. The
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distances from each point in the dataset to the line can then be calculated. If the distance
is smaller than a certain thresholdd, the point is considered to be inlier, shown as blue
and red dots in Figure 3.2(a). The remaining gray dots are considered to be the outliers
in this iteration. The number of inliers and the corresponding line parameters are stored.
In the second iteration, two points are chosen randomly, shown as red dots in Figure
3.2(b). The line parameters (m,,c,) are calculated, each of the point-to-line distances
are found, and the inliers are counted. The number of inliers and the line parameters in
the second iteration step are stored either. In these two iterations, the line parameters in
first iteration can describe the dataset with more inliers number than the parameters in
the second iteration. For k time iterations, the best line parameters in k-th iteration

are chosen if the number of inliersisthe largest.

Y:m1X+C1 Y:m2X+C2

Line Parameters: (m4, ¢4) Line Parameters: (m5, ¢;)
Number of total inlier: 24 Number of total inlier: 8
(€Y (b)

Figure 3.2: Example of RANSAC agorithm.
(@ Thefirst iteration result with better sample selection.
(b) The second iteration result with worse sample selection.
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Algorithm 3.1: General Random Sample Consensus Algorithm

Input: Dataset of points P
Output: Model parameters Model

1. Setthebest model bestModel « ¢

2. Setthebestinlier set bestinliers« ¢

3. Set the number of best inlier set NBestlnliers=0
4. Define the number of iterations N

5: Define model error threshold threshold

6: for i=1toN

7 SampleSet < Randomly select k points from P
8 Compute CurrentModel from SampleSet

9 Currentinliers« ¢

10: for all points P in P

11: Computetheerror £ of P by usingthe CurrentModel
12: if &< threshold

13: Currentinliers «<— Currentinliers+ P

14: end if

15:  end for

16: Count the number of Currentinliers [NInliers,,,.,.] = Size(Currentinliers)
17: if Ninliers.,,,, > NBestInliers

18: bestModel «— CurrentModel

19: bestinliers «— Currentinliers

20: NBestInliers = NInliers.,, oy

21: end if

22: end for
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3.3 Image Processing and Description

3.3.1 HSV Color Space

HSV color model separate hue, saturation and value into three independent

channels. Each channel of HSV has specific meaning to describe the color. The original

color image data are stored in R, G, B three channels, therefore image need to be

transformed from RGB color space to HSV color space. The transformation formulas

are asfollows [45: HSL and HSV from wiki 2013]

MAX = max(R,G, B)

MIN =min(R,G, B)

V = MAX
0, if V=0
S=
1—M, other
MAX
0, if MAX = MIN
. G-B ) .
060" x +0, if MAX=RandG=>B
MAé—g/nN
H =60 x — +360°, if MAX=RandG<B
MA)LDE—IQ/IIN
60" x — +120°, if MAX =G
MA)é—Ig/IIN
60°x ———+240°, if MAX =B
MAX — MIN

3.3.2 Morphological Image Processing

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Morphologica image processing is used to refine some sets or reduce some small

parts in binary image for example. The language of mathematical morphology is set
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theory [58: Gonzalez & Woods 2008]. In binary image, the sets are members of the 2D
integer space Z° whose coordinates are the (X,y) of a white pixel in the image.
These white pixels are defined as the foreground pixels, whereas the other pixels are
called background pixels. Two additional definitions are used extensively in
morphology, which are not found in basic set theory, are listed and described as follows.
Thereflection of set B whichisdenotedas B isdefined as follows:
B={w|w=—b, for be B} (3.10)
Figure 3.3(b) illustrates the concept of reflection, which the elementsin B are equal to
the reflecting elements in B. On the other hand, the trandation of set B which is
denoted as (B), isdefined asfollows:
(B),={c|lc=b+z forbe B} (3.11)
Figure 3.3(c) illustrates the concept of translation, which the elements in (B), are

equal to the elementsin B by shifting acoordinate (z,z,).

B B
A A
(@ (b) (©)
Figure 3.3: Theillustration of the definition of reflection and trandlation.
(@) Theorigina set B.

(b) Thereflectionof B.
(c) Thetrandationof B.
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Two basic operators called dilation and erosion in the area of mathematical

morphology are commonly used to change the shape of the sets in the binary image and

are extended to be many advanced operators such as opening and closing. These two

operators are described in detail with the binary image and structure element to be an

example, which are shown in Figure 3.4.

(@) (b)
Figure 3.4: (a) Binary image. (b) Square structure element (SE) with size 3x 3

Dilation
The effect of the dilation operator applied on a binary image is to enlarge the
boundaries of the foreground pixels which are the white pixels in Figure 3.4(a) by the
structure element illustrated in Figure 3.4(b). The definition of dilation operator is as
follows:
ADB={z|[(B),nA c A (3.12)
That is, the pixel (i,]) is marked as foreground if one of pixels in the structure

element contacts any foreground pixels in the raw binary image, as shown in Figure
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3.5(b). The yellow pixels are the enlarged boundary after applying the dilation operator

to the binary image A with structure element B.

(a) (b)
(© (d)
Figure 3.5: Process of dilation operator in each step.
(8 The center of the structure element scans the image pixel-by-pixel. The
position will mark as‘1’ if one of pixels of the structure element contacts
the white pixels of the original binary image.

(b) (c) Theyelow pixels are the new added pixelstc the binary image.
(d) Thefinal result of the dilation process.

Erosion

Contrast to the dilation operator, the effect of the erosion operator applied on a
binary image is to erode away the boundaries of the foreground pixels which are the
white pixels in Figure 3.4(a) by the structure element illustrated in Figure 3.4(b). The

definition of erosion operator is as foll ows:
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AOB={z|(B), c A (3.13)
That is, the pixel (i, ) ismarked asforeground if al the pixelsin the structure element
contact the foreground pixels in the raw binary image, as shown in Figure 3.6(b). The
gray pixels are the eroded boundary after applying the erosion operator to the binary

image A with structure element B.

€) (b)
(©) (d)
Figure 3.6: Process of erosion operator.
(8 The center of the structure element scans the image pixel-by-pixel. The
pixel of the original binary image remains ‘1’ if al the pixels of the

structure element contact the pixels of the origina binary image.

(b) (c) Thegray pixels are the subtracted pixels to the original binary image.
(d) Thefinal result of the erosion process.
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3.3.3 Connected-Component Labeling

To analyze each morphology region of binary image, it is necessary to distinguish
each region at the beginning. Connected-component has the property that each pixel is
the neighbor of the other pixels in the region in 4- or 8-connectivity.
Connected-component labeling is an algorithm that used to detect connected regions in
binary image in computer vision [58: Gonzalez & Woods 2008]. Once the image region
is labeled by using connected-component labeling algorithm, many region properties
such as area (pixel number), smallest bounding box vertexes and component pixels list
can be extracted.

Many ways to achieve connected-component labeling task have been developed.
Here a simple agorithm in recursive version is described in Algorithm 3.2 and
illustrated in Figure 3.7. In this thesis, the connected-component labeling and region

properties can be found in MATLAB using the instruction regionprops.
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Algorithm 3.2: Simple Connected-Component Labeling with 4-connectivity

Input: Binary Image lmage
Output: Connected-Component Labeling Array Connectedl mage

[ ImageRow, |mageCol | = size(Image);
Connectedlmage = zeros(1mageRow, |mageCol );
NumberLabel =0
for i=1:ImageRow
for j=1:ImageCol
if Image(i, j)) ==1 and Connectedimage(i, j)) =0
Nurmber Label = NunberLabel +1;
Connectedimage(i, j) =1;
Connectedlmage = CheckNeighbor (i —1, j, Image, Connectedl mage);
Connectedlmage = CheckNeighbor (i +1, j, Image, Connectedl mage);
Connectedlmage = CheckNeighbor (i, j —1, Image, Connectedl mage);
Connectedlmage = CheckNeighbor (i, j +1, Image, Connectedl mage);
end if
end for
end for

e I el
a kr w R o

16: function CheckNeighbor(ildx, jldx,Connectedl mage)
17: if Image(ildx—1, jldx) =1 and Connectedimage(ildx—1, jldx) =0

18: Connectedlmage = CheckNeighbor (i —1, j, Image, Connectedl mage);
19: end if

20: if Image(ildx+1, jldx) =1 and Connectedimage(ildx+1, jldx) =0
21: Connectedlmage = CheckNeighbor (i +1, j, Image, Connectedl mage);
22: end if

23: if Image(ildx, jldx—1) =1 and Connectedimage(ildx, jldx—1) =0
24: Connectedlmage = CheckNeighbor (i, j —1, Image, Connectedl mage);
25: end if

26: if Image(ildx, jldx+1) =1 and Connectedimage(ildx, jldx+1) =0
27: Connectedlmage = CheckNeighbor (i, j +1, Image, Connectedl mage);
28: end if

29: return Connectedl mage
30: end function
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Figure 3.7: lllustration of connected component Labeling for 4-connectivity.

3.4 Radial Basis Function

Radial basis function (RBF) is an interpolation method for calculating unknown
data within the range of the available known data points. According to [63: Buhmann
2003], radial basis functions are typically used to construct a function approximately by
the form:

N
y(x) = a-o(x-x|) (3.14)
i=1
where Y(X) is the approximating function of sum of N radia basis functions, each

associated with different center x and weighted with corresponding coefficient @ .
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¢(|x—x]) istheso called radial basis function, which has many types, for example:

1. Gaussain:
p(r)=e (3.15)
2. Multiquadric:

o(r) = J1+ (er)? (3.16)

3. Inverse multiquadric:

(3.17)

1
o(r) =———
\J1+ (er)
where I’=HX—>§H isthe distance between x and x .
To obtain the goal of RBF interpolation, it is necessary to determine a proper radial
basis function ¢(r). After determining the radial basis function, the next step isto train
the weights of RBF @ . Since each known data point has corresponding known output,
the training process takes al the known data point X; to associate each data x to
calculate the corresponding weight @ , that is,
y(x)=hb, i=1.N. (3.18)
N -
yx) =Y @-p(x -x[)=b;, j=1.N (3.19)
i=1
where x istheknown nodeand b isthe corresponding known output. Extending the

Equation (3.19), it becomes:
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)@, + ...+ (| X, — Xy
XN@, + ...+ o(|%,

o(

)y b
9|

xpan || b (3.20)
o[ = XD+ 9% = %)@, + .+ 9% = XDy | LB

% — xl”)wlw(xl—xz
X_ ), + (| %,

Since (p(ij - >§H) = qo(”xi =X H) , the Equation (3.20) can be rewritten by replacing the
radial basis function (o(ij —xiH) to A, thatis,

A+ AD+ .t Ay | Ty
Az,la).l. + AZla)Z Tt Az,le = bz (3.22)

Aw+ Ao+t Apay | by

By rewriting the Equation (3.21) in matrix form, Equation (3.21) becomes:

'ph A, o pm'-wl- -bl—
Az,l A,z,z e Ag,N @, bz
: : : A, : =] (3.22)
_pm A, e e AN‘N__a)N_ _bN_
For ssimplicity, Equation (3.22) can be expressed as Equation (3.23)
Aw=Db (3.23)

If thematrix A isnonsingular, the coefficient @ can be obtained by Equation (3.24).

w=A"D (3.24)

Therefore, due to @ is known and ¢@(r) is defined previously, the approximating

function can be obtained.
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Chapter 4

3D Environment Reconstruction

In this chapter, the proposed 3D environment reconstruction method using stereo
camera is presented. The proposed system can be divided into two parts, which are
localization and stereo refinement. The overall system architecture can be illustrated by
Figure 4.1. For camera at k-th time step, two independent processes perform in
parallel. To estimate camera relative movement between current and previous step,
feature points captured in these two steps need to be the inputs of localization part to
achieve the goal of feature matching process. Some wrong matching pairs cause
inaccurate localization result are eliminated by the outlier rejection method based on
Random Sample Consensus (RANSAC). For stereo data refinement, wrong
measurement pixelsin forbidden area are removed by statistic method. The missing data
areas which are often called a hole in the remaining disparity map are detected by using
connected-component labeling technique. Finaly, the missing data regions are filled by

dual orthogonal linear interpolation method.
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Figure 4.1: The proposed system architecture.

4.1 Stereo Camera Localization and Mapping

One of the advantages of stereo camera is the data structure that combines spatial
and color information to a pixel in the image coordinate, that is, P =(>§ Y2, 6,0 b) .
This data structure provides essential information to 3-D reconstruction. Assuming a
camera captures a sequence of the local data in the environment with known camera
poses, the global environment 3D model can be reconstructed by placing these data in
correct positions to world coordinate. Figure 4.2 shows the concept: two landmarks in

the environment are captured by two consecutive camera frames with relative camera



pose T as in Figure 4.2(a). The landmarks are seen by the camera in k-th and

(k—1-th stepsasin Figure 4.2(b) and Figure 4.2(c) respectively. If the transformation

T isknown, two measurementsin k-th and (k—21)-th steps can be aligned together,

and therefore the environment can be reconstructed, as illustrated in Figure 4.2(d).

However, in practice the measurement data is acquired from the camera coordinate

without knowing the camera pose in world coordinate. That is, the measurement data

points cannot be placed to the correct positions in world coordinate. Fortunately, two

consecutive images capture the same landmarks in the environment, as illustrated in

Figure 4.2(e) and (f) for example. Assuming the environment is a rigid body, a certain

transformation which includes rotation and trandation can aign these landmarks in

current camera coordinate to the landmarks in previous camera coordinate correctly. In

other words, the transformation can be found out by using the relationship between the

corresponding landmarks in current and previous camera coordinates as illustrated in

Figure 4.2(g) and (f). By doing so, the 3-D points in current step can be mapped to the

previous coordinate. This transformation is the relative camera pose that is necessary to

be estimated, and the transformation estimation process is familiar with the term

“localization”. In ideal, the camera relative motion can be estimated by simply applying

the above concept. However, some error matching pairs affect the motion estimation as

shown in Figure 4.2(j) and (k). If the motion is estimated inaccurately, the environment
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cannot be reconstructed precisely as illustrated in Figure 4.2(1). Therefore, motion

estimation with outlier rejection by random sample consensus (RANSAC) is used in

thisthesis.

The relation between time flow and the each processes of the localization

algorithm is shown in Figure 4.3. For k-th step, stereo camera provides two images

from right and left CCDs and then calculates the depth map with respect to the target

image coordinate at first. The second step is to detect image feature from the target

image. In the third step, image featuresin k-th step are matched to the corresponding

featuresin (k—1)-th step.
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T
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Figure 4.2: lllustration of the importance of localization for mapping task
(@ Theenvironment is captured by camerain consecutive step.
(b)-(c) The camerameasurement in (K—21)-th and k-th stepsin camera

coordinates.

(d) If thetransformation is known, measurementsin k-th step can be
transformed to the (k—1)-th step camera coordinate to obtain the
environment reconstruction process.

(e)-(f) Feature pointsextracted in (Kk—21)-th and k-th stepinideal.

(g) Overlap these measurements in the same camera coordinates. Featuresin (e)
and (f) are matched by estimating the similarity of the local appearance of

each feature.

(h) Since the same landmarks captured by the camerain consecutive time steps
are matched well, the transformation relation can be estimated by using these

landmarks relative positions.

(i) Feature points extracted in (k—21)-th step with wrong feature point
extraction for example.

()-(k) In practice, there might have some wrong matching pairs that will cause
inaccurate or incorrect motion estimation.

() If the camerarelative motion is estimated inaccurately, the environment

cannot reconstruct precisely.
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Figure 4.3: The overall feature-based localization algorithm flowchart.

For better explanation, some notations are defined and listed in Table 4.1.

Table 4.1: Notations Definition

Image

Theright image captured at  k-th step

The left image captured at k-th step

The target image which is defined by different stereo camera system. In this

Tar k
thesis, the target image is equal to right image, 1, , =Ix-
4 The disparity map corresponding to the target image |,
g The disparity map corresponding to the target image 1., a k-th step
Feature
Fe The feature set of features extracted from 1, ,
i The i-th featurein F
FR.. | Thefeature pair set matched between F, and F
FR.,.. | The i-th feature pair infeature pair set FR,
Point
PFR, | Thespatial position of afeatureinset k of i-th matching pair FR,,_,; , that
IS, PFR, =X, =(X Y27 )
PFR,.. | Thespatial position of afeatureinset k of i-th matching pair FR,,_,; , that
IS, PP = X=Xt Yika Guea)
Camera Pose
G The set of cameraposeat k-th step
M. | Therelative cameramotion from (k—21)-th to k-th step.
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4.1.1 Feature Point Extraction

The purpose of the feature point extraction step is to detect some parts of the scene

observed by stereo camera in the environment for feature tracking. Currently, many

types of features that can be used to describe the environment have been developed. In

order to identify a point located at different image plane position frame by frame, a

feature should be robust or so called “salient” in the field of computer vision to

distinguish each data point. Point feature can be categorized into two main types, that is,

color and spatial spaces.

Stereo camera provides two images from different image planes and then the

disparity map is estimated by using these images, which is secondhand information and

using spatial type feature such as Normal Aligned Radial Feature (NARF) [42: Steder et

al. 2011] might be unreliable for stereo vision. Figure 4.4 shows the NARF detection

results from the depth maps at the same position but in different time steps for example

[55: NARF feature from PCL 2013]. Although the frame data are acquired by stereo

camera in the same poses, the NARF features are not robust due to stereo uncertainty

and missing data problem, as shown in Figure 4.4(i)-(l). Therefore, the Scalar Invariant

Feature Transform (SIFT) which belongs to color type feature point is used in this

thesis.
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(€) () (9) (h)

(i) () (k) ()
Figure 4.4: An example of spatial feature: Normal Aligned Radial Feature (NARF).
(a)-(d) Color image captured at the same position in different time steps.
(e)-(h) Corresponding depth maps in different time steps.
()-() NAREF features extracted from range images in different time steps. Red
circlesindicate the locations of NARF features.

In feature extraction step, a set of salient points F, is detected at k-th framein
the target image!.,, , . Each feature point has two important data, which are the position
in image coordinate  Postion . .(F)=(v;.u,;) and the 1x128 descriptor
Descriptor (F,;) = D,; =[dy; 1.0 ... 0 1s]  EXtracted from its local patch. The descriptor is
used to determine the correspondence of certain feature in two different images.
Moreover, with original SIFT feature information and the spatial information provided

from stereo camera depth map, the overall data structure of a feature point provides the
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image position of the feature point Position(F;), descriptor Descriptor(F,;) and the
spatial position Position,;, (F;) =[X. Y- %,] in camera coordinate. However, due to
the limitation of stereo camera, not al the feature points have depth information because
of missing data by occlusion or lighting problem in the left image as shown in Figure
4.6(d). Since invalid disparity is set to 256 (corresponding depth is set to 0), using these
features to estimate camera pose may cause wrong result. Therefore, feature points
without depth information must be removed before doing camera pose estimation step,
asillustrated in Figure 4.6(f). The block diagram of the total feature extraction process

isshown in Figure 4.5.

¢ o Image k-1 Image k Image k+1 g0 0

Feature Feature Feature

Extraction Extraction Extraction
s e ® Raw Feature Raw Feature Raw Feature * s 0

Set k-1 Set k Set k+1

' ] ™\ ' I N ' I ™
Remove Invalid Remove Invalid Remove Invalid

. & @ e @ @

Features Features ) L Features
er s Feature Set k-1 Feature Set k FeqLu-: et 2.8 0

Figure 4.5: The flowchart of feature extraction
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(@ (b)

(© (d)

Figure 4.6: Feature extraction by SIFT detector
(@)-(b) Input image and Corresponding depth map
(0)-(d) SIFT features with input image and corresponding depth map.
(e)-(f) Featureswith non-depth information are marked as red cross sign
according to the depth map.
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4.1.2 Feature Point Matching in Two Consecutive Frames

Several salient feature points are extracted from each target image frame in the
stage of feature detection presented in Section 4.1.1. In order to track 3D positions of
the features captured in consecutive images, this section aims at recognizing each
feature located at different images and formed as feature point pairs. This process is
often called feature matching, and the data flow is illustrated in Figure 4.7. For the
consecutive images at k-th and (k—1)-th step, feature sets F, and F_, are
extracted as the inputs of feature matching stage, and the output is the feature matching
pairs formed as 2xN matrix FR, ,=[FR, ;,FR, ,.....FR, ;s ... \FR, 1y |, Where
FR,.; isthe j-th matching pair with 2x1 dimension that stored the indexes of two
features F,, and F_,,.

A traditional way to achieve the goal of feature matching for certain feature in
current step is to compare the similarity of feature points from previous feature set.
Since the descriptor represents the local appearance of a feature, the similarity can be
evaluated by comparing the point descriptor in current frame to the descriptors in
previous frame. Many ways are used to calculate the similarity of two data, such as
Euclidean distance used in this thesis. The Euclidean distance measures the square root
of sum of square difference of each element between two n-dimension vectors, which

is defined as follows.



n

d(p,a)=,>(p-)° (4.1)

i=1

Substituting the descriptors D,; and D,_,; into Equation (4.1), the equation becomes.

128

d(Dk,i ) Dk—l,j) = \/Z(dk,i,m - dk—l,j,m)z (4-2)

m=1

where D, ; is the descriptor of i-th feature in F;, and D, ,; is the descriptor of
j-th feature in F_,;. Therefore, the feature with the smallest Euclidean distance in
descriptors is considered to be the successful matching feature pair of F; and F_; in

F..Thatis, for i-th featurein F,thecorresponding featurein F_, is,

argmin(d(D,;,D, ;) = \/f(dk,i,m _ dk_l,,-,m)z 43)

=13 m1

After feature matching step, features in current step will be linked to previous
features point-to-point. For a certain feature, its 3D positions (X, Y,Z) in stereo
camera coordinate are also known from stereo measurements. Therefore, each of the

features positions in consecutive time steps are known and the camera related pose can

be estimated by using these spatial relations.

® * * | Feature Set k-1 Feature Set k FREIE S5 e
k+1
F F Fea AN
N s A e a s —
N . Feature \ Feature \ Feature N .
F, S L Matching ) Matching ) Matching ) N

| \ A
~
N Sy FR k2 N‘ FRx1 \ y FRix

e o o | Feature Maiching Feature Matching Feature Matching o o o
Pair k-1 Pair k-1 Pair k+1

Figure 4.7: Block diagram of feature matching processing
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(©)
Figure 4.8: The result of feature matching by estimate the similarity between two
feature descriptor.
(8 Previousimage with the detected features. The same asin Figure 4.6(e).
(b) Current image with the detected features. The same asin Figure 4.6(f).
(c) By comparing the similarity, each previous feature is linked to the current
feature as the same landmark.



4.1.3 Estimate the relative transformation matrix of rigid

body by Least-Squares method using SVD.

After finishing the feature matching stage, points in each matching pair is assumed
to be the same landmark in the environment with different positions at current and
previous frames in camera coordinate. The goal is to find a proper rotation and
trandation to fit the current feature set in matching pair to the previous feature set. This
task is well known as “point clouds registration.” To find the optimal 3x3 rotation
matrix R and the 3x1 trandation vector t, the least-squares fitting method using
singular value decomposition (SVD) is first proposed in [15: Arun et a. 1987]. To
simplify the problem, two point sets are assumed to be a rigid body. Each point in rigid
body has the same rotation and translation in an arbitrary motion with respect to its
centroid, which is formulated as follows.

PFR_, = RxPFR +t (4.49)
Therefore the rotation and trandation can be departed in two independent materials.
According to the work proposed by [15: Arun et al. 1987], the overall least-square
fitting algorithm is listed in Algorithm 4.1, and the concept is illustrated in Figure 4.9.
Figure 4.9(a) shows that a rigid body is captured by camera in (k—1)-th and k-th
steps, where rigid body is located at different positions with respect to different camera

coordinates, as shown in Figure 4.9(b) and Figure 4.9(c). Figure 4.9(d) shows that these
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two measurements are drawn in the same coordinate. The dot lines in Figure 4.9(d)
stand for the measurement in (k—21)-th step, while the solid lines stand for the
measurements in k-th step. To align these measurement points, the rotation part R
needs to be estimated before the trandation since the trandation part depends on
PFR, x R. Because each point of the rigid body rotates around its centroid [60: Spong
2005], the rotation can be estimated by ignoring the trandation part by setting two
centroids to the original, as shown in Figure 4.9(f). Therefore the centroids of two point
sets are calculated at first asin Algorithm 4.1 line 2-3 and each point is subtracted to its
centroid in the product terms of 3x 3 covariance matrix in Equation (4.5). The optimal
rotation can be calculated using the following covariance matrix:
H= N_iil'f(PFFi{kl—ik_l)(PFPLk —Xi)" (4.5)
Note that the order of the product in Equation (4.5) cannot be changed or the
transformation will be the inverse motion. According to the property of SVD, the
covariance H can be decomposed into three parts, as shown in Equation (4.6), where
H isthe product of these parts and iswritten as follows.
[U,SV]=SVD(H) (4.6)
H=Usv' (4.7)
Therefore, the optimal |east-squares rotation matrix can then be calculated as follows:

R=VU" (4.8)

a7



After the optimal rotation part is calculated, the translation term can be extracted. Asthe

properties of rigid body mention above, each point has the same trandation as its

centroid. Therefore, the corresponding optimal transation vector can be calculated as

follows;

t= Xu1— RXk

(4.9)

The transformation matrix can be written as a 4x4 matrix combining with rotation

matrix and translation vector together into homogeneous transformation form, which is

written as follows [60: Spong 2005]:

R, R, Ry T,
R21 Rzz st Ty :|:Rk,kl Tk,kl:|:M
R, R, Ry T, 0o 1
0 0 0 1

(4.10)

Algorithm 4.1: Estimate relative transformation matrix using SVD

Input: Feature matching pairsFR,, ;.

Output: 4Xx4transformation matrix M, _,

1:  Calculate the number of point pairsN,,,, =size(FR,, ,);

Pairs

J— — — - NF'aArs
2. Compute the centroid of point setinstep k, X« =(x«,Y,,z)" = 1 > PFR,

Pairs i=1

3:  Compute the centroid of point set in step k-1,

NPBITS
L Spre,,

Pairs =1

Yk—l = (;(kfl,g/k_laik—l)T =

NPa‘rs J— J—
4:  Compute the covariance matrix H=)_ (PFR, - Xk-1)(PFR, — X«)'

i=1
Decompose covariance matrix H by SVD, [U,SV]=SVD(H)
Calculate rotation matrix R=vUT

Calculate translation vector t= X1 —RXx
Combine rotation and translation together. M, , =[R,t;0,1];
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Figure 4.9: Illustration of two point sets with a certain motion.
(8 Capturing arigid body with different camera poses with respect to the
consecutive from (k—1)-th to k-th step.
(b) Camerameasurementin (k—1)-th step.

(c) Camerameasurementin k-th step.

(d) Put these two measurements together in the same camera coordinate

(e) Find the rotation matrix by comparing the current data points to previous
data points

(f) Sinceeach points on rigid body have the same rotation angle according to its
centroids, two measurements on the samerigid body in (k—2)-th and k-th
step will have the same rotation centraids. This figure illustrates the concept
that the rotation matrix R is estimated by ignoring the translation and
rotating each pointin (k—1)-th to k-th stepinorder tofindthe
|east-square rotation matrix.

(g) After finishing estimatin the rotation matrix, the translation vector is then
estimated by subtracting the k-th step centroid position to the rotated
(k—1-thstep centroid position.
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Equation (4.10) is the relative camera motion from (k—1)-th to k-th step. In
order to place stereo measurements to global coordinate, camera pose needs to be
specified. The relation between camera relative motion and the camera pose in each step
is illustrated in Figure 4.10. The camera pose in k-th step can be defined as C, and
the posein (k—1)-th step can bedefined as C, ;. Therefore, the relation between C,
and C, , can bewritten asfollows:

C.=M,.C (4.11)

Similarly, the camera at (k—1)-th step C,_, can be written as C,_,=M,_,, ,C, ,,

and the pose at k-th step can then be writtenas C, =M, , .C_, =M, M, .C_,.

Following thisrule, if theinitial pose C, isknown or predefined by an identity matrix
as global coordinate, the cameraposeat k-th step can be written asfollows:

1
Ce=M M4y oM (Cp = (]‘! M k*“j C, (4.12)
Each k-th step point can be transformed to initial step camera coordinate as the

defined global coordinate, and this relation can be written as follows:

X2 [Ry R, Ry T [ X

YGIobaJ T Y

kGIObaI — R21 R22 R23 y k - PkGIObaI — CkPk (413)
Zk R3l R32 RSS Tz Zk
1

1 O 0 0 1
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Co=L C=MCy  C=MC =M;MCy C=MC=MM,,..Cq
Figure 4.10: lllustration of the relation between camera pose and relative camera
motion.

4.1.4 Camera Pose Estimation with RANSAC Outlier

Rejection

In previous section, the distinctive feature points are detected in each step, and the
corresponding feature points will be matched in two consecutive frame data. The
camera relative pose can then be estimated by using the spatia relation between these
matching pairs using SVD method. However, using these matching pairs without any
selection will cause inaccurate or incorrect localization result. Although the SIFT
feature is quite robust comparing to most of the recent feature techniques, there might
have some wrong matching cases such as repeating features or similar object in the
world. In addition, the uncertainty of each stereo camera measurement point may
contribute some drift to the final relative pose. To overcome the above problem,
Random Same Consensus (RANSAC) outlier rejection framework is applied to find a

best transformation matrix. The modified RANSAC algorithm to this case is listed in
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Algorithm 4.2. It is assuming that the best transformation matrix is the model with

largest number of inliers. In each iteration step, severa matching pairs are selected

randomly as sample data to estimate a transformation matrix M by SVD (asin

current

Algorithm 4.1). In order to determine which matching pairs are inliers, the feature

points in current frame are transformed by M to previous camera coordinate, then

current

each spatial error of the matching pair can be calculated by using Euclidean distance,

which can be written as:

&= d(PFFi)Tk' PFFi),k—l) = \/( Xi*,k - )ﬁ,k—l)z + ( yi*,k - yi,k—l)z + (i,k - Z,k—l)z (4'14)
PR = M| P (415

where PFP, =(X,,Y;.Z,)" Iis the coordinate of PFR, which is transformed by

M as shown in Equation (4.15). If the Euclidean distance between PFR and

current

PFP,_, islessthan a predefine threshold, it is considered to be an inlier. By doing so,

the transformation matrix and inlier set are calculated in certain step. Then, after

N times iteration, there will be N number of transformation matrix M,

Iteration Iteration

and the corresponding inlier setsinliers, where i =0...N The best transformation

Iteration *
M, isdetermined by choosing the transformation matrix M, with the largest number

of inliers Inliers, which can be done iteratively without storing all the trying models

M, withitsinliers Inliers asin theline 11-21 in Algorithm 4.2.
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Algorithm 4.2: Feature-based localization with RANSAC outlier rejection algorithm

Input:
Feature Matching Pair FR,,
Set the number of iterations N

Iteration

Number of sample pairs N

Output:
Transformation Matrix M, ,

Inlier listInliers

sample

1. Initialize best transformation matrix M, < ¢

2. Initialize best inliers set Inliers, ., < ¢
3. Initialize best inliers nUMBEr N o pes =0
4: Calculate the number of matching pairs N,,,, =size(FR,, ;)
5 for iteration = 1: N, aion

6 SampleSet <-Randomly select N,
7 Compute Current Transform Matrix M

(Algorithm 4.1)

matching pairsinFRr,,_,
from SampleSet using SVD

current

8: Inliers. o < @

O: for all FR i 1N FR,,

10: Compute the spatial error between M., PFR, and PFR,, by using
Euclidean distance, that is, &= Euclidean(M,,.,PFP,,PFP,_,)

11: if &<threshold

12 Inliersy e < INlErsy e + FRu

13: end if

14 end for

15: Count the number of  InlierSy, s Niyias arex = SZE(INIEMS, )

16: Recomputing the transformation matrix M, ., by Inliers,, ., using SVD
(Algorithm 4.1)

17: It Nijias arrer > Niars best

18: M < M et

19: Inliers, < Inliersy, o

20: Niniers_best = Nintiers. current

21. end if

22: end for

23. M, <M

For better understanding, 2-th and 3-th frame data are taken as (k—21)-th and
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k-th steps for example. The given relative motion is a pure trandation aong x-axis

with positive 0.1m without any rotation, and therefore the transformation matrix is as

follows;

coro
oroo
roof

1
} (4.16)

Figure 4.11 (a)-(b) are two target images captured from right CCD of the stereo camera
with corresponding feature points in (k—1)-th and k-th steps, respectively. The
green circlesindicate the featuresin the (k—1)-th step, while the red dots represent the
features in the k-th step. Figure 4.11(c) and (d) show the projecting result of k-th
step features from 3D coordinate to image plane by pin-hole model with different
transformation matrixes estimated in two iterations. For better estimation iteration case,

featuresin k-th step are transformed by the following matrix:

1.0000 -0.0019 -0.0033 0.1019

_|0.0019 1.0000 —0.0002 0.0009
T= 0.0033 0.0002 1.0000 0.0008 (4.17)
0 0 0 1

Most of the red dots align to the green circles as shown in Figure 4.11(c) and (e). The
aligning pairs are equivalence to the 3D spatial inliers since the projection by camera
pin-hole model is a degeneration process. This means that each feature in k-th stepin
the matching pairs is transformed correctly to the corresponding feature in (k—1)-th
step. On the other hand, the incorrect transformation matrix is estimated in the second

iteration case, and most of the red dots do not align to the green circles in the result of
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features projection shown in Figure 4.11(d) and (f). The corresponding transformation

matrix in the second iteration is as follows:

0.9933 -0.0536 0.1021 -0.0177

_| 0.0584 0.9973 -0.0441 0.0605
T= —0.0995 0.0498 0.9938 -0.0068 (4.18)
0 0 0 1

The number of theinliersin the second iteration is less than the number of theinliersin

the first iteration dramatically, and therefore this example shows that the relation

between the best transformation matrix and the number of the corresponding inliers.

The final result of RANSAC outlier rgjection algorithm is shown in Figure 4.12(b), only

the green lines are considered to be the inputs of the camera pose estimation step,

whereas the red lines are the outliers and do not be considered into the pose estimation

step.
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(€) ()
Figure 4.11: Illustration of estimating the relative motion with RANSAC algorithm by
two iterations for example. Green circles indicate the feature points in

(k—1)-th step, while the red dots indicate the feature points in k-th

step. Feature pointsin k-th step are projected by pin-hole camera model
with certain transformation matrix.

(@-(b) Featurepointsin (k—1)-th and k-th stepsrespectively.

(c) Feature points projected with correct transformation matrix.

(d) Feature points projected with incorrect transformation matrix. It is obvious
that alot of red dots transformed by incorrect transformation matrix do not
align to the green circles.

(e)-(f) The corresponding features plotting without showing images for better
visualization to distinguish these points.
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(b)
Figure 4.12: The result of using RANSAC outlier rejection algorithm on the matching
pairs.
(8 By comparing the similarity, each previous feature is linked to the current
feature as the same landmark.
(b) With RANSAC outlier rejection, some wrong matching pairs are removed.
Green linesindicate the inliers, whereas the red lines represnet the outliers

that do not consider into the motion estimation process.
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4.2 Stereo Vision Refinement

In this section, a simple way to refine the disparity image is presented. For
window-based stereo process, due to texture-less, lighting problem and occlusion case
in capturing environment, there might have many missing data (broken holes) in
disparity map. Therefore, these missing data regions are detected and filled by the
proposed method. Connected-component labeling is used to recognize and analyze each
region. These broken regions can be filled by the proposed interpolation or radial basis
function. These two interpolation methods are discussed in Subsection 4.2.1 and

compared in Subsection 6.2.7.

Moreover, some parts in the target image that cannot be seen by the reference
image plane. These parts should not have measurements. However, in practice this
region has some measurements due to the mismatching of using the window-based
stereo reconstruction method. In this thesis, these parts are defined as forbidden area,

and measurements in this area are removed by the proposed method.

Disparity Refinement

Forbidden A *
Raw Disparity D = or Rlem:nql rea Ly Holes Detection [ Holes Filling > Refined Disparity D
Vv

Figure 4.13: The block diagram of the proposed stereo refinement algorithm

58



4.2.1 Forbidden Area Detection and Elimination

In this section, the proposed stochastic-based disparity forbidden area detection

and removing method is discussed. One of the limitations of two lens stereo camerarig

is that there has a region that can be seen by target image but another image plane.

Figure 4.14(a) isatypical stereo camera configuration, while the target image is defined

as the right image plane. The red dash line at the right side of the right camera indicates

the region that can be seen by target image plane but cannot be seen by left image plane.

This area cannot find corresponding feature patch from right to left image, as shown in

Figure 4.14(b), and therefore it should not have any measurement data in that region.

Figure 4.14(c) is the disparity map corresponding to the target image as the right image

in Figure 4.14(b). The region colored in translucent purple region in the right side of the

disparity map indicate the region that should not have any measurement. However, due

to the limitation of window-based matching technique which uses sum of average

difference (SAD) as similarity index, many wrong matching points cause wrong

measurements at that region, which is defined as “forbidden area’ in this thesis.

Moreover, the size of the forbidden area varies with the distance from objects to camera.

The larger of the distance between object to camera, the boundary of the forbidden area

is closer to the right side of image plane (and thus the smaller region), as illustrated in

Figure 4.14(d). In most cases, the forbidden region is filled with invalid pixels in the
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right side of the disparity map. Therefore the statistical method proposed in this thesisis

used to solve this problem. The block diagram of the proposed forbidden area detection

and removing method is shown in Figure 4.15.

disparity

| teftcep | | Rightcep |

Figure 4.14: Illustration of the occlusion area that out of thefield of view (FOV) of left
image plane

(@ The geometry configuration of two camera planes of the stereo rig. The red
line area can be seen by right image plane but cannot by left image plane.

(b)-(c) Two images retrieved from left and right image plane. Some parts at the
right side of the right image that cannot be found out in the | eft image. These
pixels in the right image should not have disparity since there cannot find a
corresponding point in the left image.

(d) Disparity map corresponding to the target image which is defined to be the
right image in this thesis. The right side of the disparity colored in
trangucent purple should not have value in ideal. However, in practice there
have some wrong measurements in that region.

(e)-(f) For sensor measures in farther distance environment, the effect of this

phenomenon is less than the closer measurement object.
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Histogram Invalid Pixels Searching the Cutting Set All the Pixels in
—> Along Image Columnto [~»| Path According to the [ the Right Side of the
Find the Cutting Line Cutting Line Cutting Path

Input
Disparity

Figure 4.15: The block diagram of forbidden area detection

For an arbitrary target image with corresponding disparity map shown in Figure

4.17(a) and (b), the disparity map is accumulated on the invalid pixels aong the image

column at first. That is, the accumulator counts the number of all invalid pixelsin j-th

column. It can be formulated as follows:

ImageRow

A (D=2 B(l.(i0)) (4.19)
where
B )=5 g (420

A, isa 1lx ImageCol vector which stores the number of invalid pixels in disparity

map. Since some sparkle signals occur in A , the average filter is applied to A

before searching the cutting line. It can be written as follows:

K== 'S AG) @21)

N i=j-N/2

To find a reasonable cutting line C,, 0n 1, to depart the forbidden area, the

maximum gradient in A" () isfound according to the assumption that the right side

of the boundary of forbidden area has large number of invalid pixels while the left side

has large number of valid pixels. This can be written as follows:

Cowrg = AgmMaX_ (A ()-A (j-1)) (4.22)

j=ImageCol /2:1mageCol

The cutting line extraction process is listed in Algorithm 4.3. Figure 4.17(c) shows the
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accumulation result on invalid pixels along the column in the disparity map, and Figure

4.17(d) shows the resulting cutting line plotting on the disparity map. This process

departs the disparity map into the reasonable and the forbidden areas roughly by the

statistical vertical cutting line.

Algorithm 4.3: Cutting line extraction

Input: Disparity map |

Output: Cuttingline C.,,, that storesthe u-coordinate.

utting

1: Find out the disparity map size[lmageRow,ImageCol] =sz€(l,);
2. Initiaize the accumulator, Accumuator A = zerog(1, ImegeCal);
3. Couing = ImageCol, &; ., =0
4: for j=1to ImageCol

S A, (1) =sum(l,(:, j) = 256);
6: end for

7 A, = Average_Filter(A )

8. for j=ImageCol to ImageCol /2
9 Escuren = A, (1) - A, (1-1)

10: If & curent ™ €o e
11: Comig = 11
12: Esmax = €6 current
13: end if

14: end for

Most of invalid pixels are on the right side of the cutting line and are eliminated in

the next step. However, some valid pixels will be removed by this rough constraint.

Therefore, the cutting path R, is found according to the position of the cutting line
to avoid this problem. The cutting path is a ImageRowx1 vector and is searched from
top to bottom of image plane. To find the cutting path, it follows the basic concepts: if a

pixel located on the cutting line is valid, the cutting path is found by searching the
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boundary of the valid pixel from left to right starting at C.,,,, @ shown in Figure

4.16(a), or the cutting path is determined by searching the boundary of the invalid pixel

from right to left starting at C_,,,, , 8 shown in Figure 4.16(b). However, applying this

ing 1
method directly causes false result since there has wrong disparity near the boundary, as
shown in Figure 4.16(c). To overcome this problem, the additional continuity constraint
is applied during right searching the invalid pixel. The constraint is checking the
continuity of path disparity, that is:

abs(1 4 (i, J) = Do (1 = 1) > Aineces (4.23)
Drn(i—1) is the disparity of the v-coordinate (i —1) on the cutting path, 1,(i,]) is
the disparity of the coordinate (i, ), Ay 1S the user define threshold. Since this
constraint is set to check if the disparity is close to the previous step, the threshold is set
as 0.1 times D, (i —1), that is, A e =0.1XDpy,(i—1). Therefore, a cutting path

can be extracted to eliminate the wrong measurements pixels at the right side of the

disparity map, as shown in Figure 4.17(e)-(f).
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(©) (d)
Figure 4.16: lllustrate the basic concept of the cutting path extraction according to
cutting line.
(@ Right search the invalid pixel asthe boundary path.
(b) Left search to find the valid pixel to be the boundary path.
(c) Sincewrong measurements are near the object boundary, directly apply the
method will cause wrong path result.
(d) The constraint is applied to check the continuity of the disparity of the last

step.

Algorithm 4.4: Cutting path extraction

Input: Disparity map |,
Cutting line Cng

Output: Cutting path R, vector with length ImageRowx1 stored each
corresponding u-coordinate.

1:  Find out the disparity map size[lmegeRow,ImegeCa ] =5z¢(1,);

2. Initialize the cutting path, R, = ones(imageRow,1)xC,;,

3. Initialize the path disparity, D,,, =ones(imageRow,1)x (imageCol —C;, = 2XWey,)
4:  for i=W,+1toImageRow-W,,,

S Aceriivens = Dean (| =0 X Torgingous

6 If 143, Coying) ="invalid"  or  abs(l(i,Crging) — Dpan (i = 1) > D, (i =1) X Tpyriyrrer
7 for j=W,,:-1ImageCol /2 //Left search

8 it 140, ) ~="invalid" and (10, )~ Druy (i —D) < Aorens

S D () = 14, J)

10: Pring () = |

11: break

12: end if

13: end for

14: else

15: for  j =Py (i —1) to ImageCol //Right search

16: if 1,3, j)="invalid" or abs(l,(i, )~ Doy (i —1)) > Aerrgreose
17: Pring (1) = j -1




18:

DPath(i)= |d(i1j_l)

19: end if
20: end for
21: end if
22: end for

g B

& B B

BB B 8

Number of Invalid Pixels

R

[}

= B

() (f)

Figure 4.17: The illustration of the proposed forbidden area detection

(@
(b)
(©)

(d)

The target image captured from right CCD

The raw disparity corresponding to the target image

The result of the accumulating the disparity map along image column and
the corresponding cutting line extracted by searching maximum gradient.
The cutting line plotted on the raw disparity map.
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(e) The cutting path extracted according to the cutting line.
(f) The resulting disparity with removing pixelsin forbidden area.

4.2.2 Holes Detection

The wrong disparity measurements in the forbidden area are removed by the
proposed algorithm presented in Section 4.2.1. The proposed missing data area
detection algorithm based on connected-component labeling is presented in this section.
The block diagram of the proposed holes detection method is shown in Figure 4.18 and
illustrated in Figure 4.19. At first, since the value of invalid pixels in disparity map is
known (256 in this thesis), these pixels can be marked as‘1’, and the value of the valid
pixelsis marked as ‘0’ to form a binary image, as shown in Figure 4.19(d). This can be

written as follows:

B (. j):{]d |£tﬂ|ésrpﬁgéy(l, j)="invalid" (= 256 in thistheis) (4.24)

The holes are detected by applying connected-component labeling process with

4-connectivity mentioned in Section 3.4.4 to the invalid pixels mask B as shown

invalid ?
in Figure 4.19(e). Each region R which is marked in different colors means the
different label. The larger regions are ignored since they are often linked to different
objects, as shown in Figure 4.19(f), filling these regions according to different object

neighbors will cause wrong result. Larger regions are filtered out by the following

equation:
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Area(R) < Th (4.25)

Area

where Area(R) countsthe number of pixel in i-th regionto beitsregion area

Disparity with Forbidden N Extract Invalid Pixels N Connected- Analyze Each Region and
Area Removal to Binary image component Labeling Remove Large Component

Figure 4.18: The flowchart of holes detection

Book

4 M

@ (b)

(€)
Figure 4.19: Illustration of the hole detection concept
(& Hlustration of right image
(b) Corresponding disparity map of (a) inideal.
(c) Inpractice the disparity map have some missing data area.
(d) Invalid mask of disparity map. Pixels colored in white are the missing data.
(e) Using connected-component labeling to identify each region.
(f) Theresult of removing large areafrom (e).
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4.2.3 Dual Orthogonal Linear Interpolation

The missing data regions are detected by the proposed holes detection method
presented in Section 4.2.2. Pixels in these regions are marked as invalid and will be
filled by its neighbors. In this section, an interpolation method is proposed to fill the
missing data area efficiently. Due to only smaller holes are considered, these regions are
assumed to be plane patches. Considering the contributions of horizontal and vertical
neighborhood pixels, these patches can be filled by using two linear interpolations on
horizontal and vertical directions with same weights, as illustrated in Figure 4.20. For
an arbitrary pixel in a broken hole, the pixel can be filled with value d, by linear
interpolation with the horizontal neighbors. The Equation (4.18) shows the horizontal

linear interpolation by these two neighbors. u, . standsfor the u-coordinate of certain

Hole
pixel inthehole. u, and u, represent the u-coordinate of the left and right neighbors
respectively. d, and d, indicate the disparity of the left and right neighbors
respectively. On the other hand, the pixel can also be filled with value d,, by linear
interpolation with the vertical neighbors, and it can be written as Equation (4.19). V.
stands for the v-coordinate of the pixel. v, and v, represent the v-coordinate of the
top and bottom neighbors respectively. d, and d_ indicate the disparity of the top

and bottom neighbors respectively. Assuming d, and d, have same contribution,

the final disparity value of the pixel d,,, can be calculated as the average of vertical
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and horizontal interpolations as in Equation (4.20), and the above process is listed in

Algorithm 4.5.
d, = ds—d, (Upge — U ) +d, (4.26)
Uz —U.
d, —d
d, = v: _VTT (Ve — Vi ) + 0y (4.27)
Ohge =0ra =05(d, +d,) (4.28)

(%110t > Vitotes Biote)

(21, v, dy)

(uy,uy,dy)

Figure 4.20: Illustration of hole filling on an arbitrary pixel by DOL interpolation.
Blue arrows indicate the searching direction in horizontal part. Two
neighbors marked as blue dots are selected by searching the right and left
side of the pixel. Similarly, the red arrows indicate the searching
direction in vertical part, and the corresponding neighbors marked as red
dots are chosen by searching the top and bottom side of the pixel. Light
blue dots represent the neighbor candidates of the hole.
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Algorithm 4.5: Hole filling with DOL interpolation

Input: Disparity Map with forbidden arearejection 1,
Region properties structureR .

Output: The interpolated disparity map |

1. Find out the disparity map size[lmageRow,ImageCa] =sz«(1,);
2. for all regions R in R

3 for all pixels P in i" regionR
4 for k=u,,,:-1:1

5. if 4 rr(Vige: K) ="valid"

6: u =k, d = Id,FR(VHoIe’k)

7 break

8 end if

9 end for

10: for k =u,,, : ImageCol

11: if 1y (Ve K ="Valid"

12: Ug =K, dg =14 e (Vige: K)

13: break

14: end if

15: end for

16: for m=v,,, :-1:1

17: if 1y m(MUg,) ="valid’

18: Vi =m, dT = Id,FR(m’ uHoIe)

19: break

20: end if

21: end for

22: for m=v,,, : ImageRow

23: if 1, (Ve M ="valid"

24: Vg =M, dg =l (M Uye)

25: end if

26: end for

27 dy =(dg—d. ) (Upge —U )/ (Ug —u ) +d,, dy =(dg —d; ) (Ve = Ve )/ (Vg =V )+ 0y
28: l,=05(d, +d,)

29: end for

30: end for
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4.2.4 Radial Basis Function

Another data filling method is radial basis function (RBF) which is presented in
Section 3.5. RBF considers al the known data with corresponding weights to
interpolate the unknown data with the corresponding positions. In order to fill invalid
pixels in a hole, neighbors around the hole need to be selected. To obtain the neighbor
pixels, the bounding box vertexes of the hole are extracted first. Since the pixelsin the
hole region are labeled, the smallest bounding box can be easily obtained by finding the
minimum and maximum on v- and u-coordinate, asillustrated in Figure 4.21(a) and (b).
After extracting the smallest bounding box with four coordinates, (v, U..)
(Vains Unex) » (Vo Unin) - @0 (V0 U, ), the neighbor pixels can be obtained by
extracting the valid disparities in the bounding box, as illustrated in Figure 4.21(c) and
(d). These neighbors have data structure of n, = (u,v;,d;) and are used to be the inputs
of RBF.

According to the definition of radial basis function, a hole surface is defined as:

N
y(x) = le -o(|x=x) (4.29)
In this thesis, the multiquadric type is applied and the parameter ¢ is set to 1.
Therefore, substituting & into the Equation (3.16) the radial function becomes:
Ar)=v1+r? (4.30)

where r isthe Euclidean distance between neighbor and the processing pixel, that is,
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r=|x-x]. x denotes the position of the processing pixel, (Upopepica » Vorocessina)

whereas X denotes the position of neighbors, (U,V,). @ is the corresponding
weights to be determined by known neighbors n =(u,v,d;) in learning step, as

mentioned in Section 3.4. After finishing the learning step, invalid pixel can be

interpolated by Equation (4.29).

(@ (b)

L

A M

(© (d)
Figure 4.21: Illustration of the smallest bounding box extraction of a certain hole.

(8 Finding the bounding box of the certain hole depicted as red rectangle.

(b) To achievethe goal, pixels belong to that region are checked to find the
minimum and maximum of the v- and u-coordinate.

(c) Extracting neighborsin the disparity map in range of the bounding box.

(d) The gray pointsindicate the valid pixelsin disparity map to be the inputs of
the RBF available data.
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Figure 4.22: An example of filling a certain hole using radial basis function
interpolation.

() Disparity map before RBF interpolation. Red rectangle depicts the bounding
box of the hole.

(b) 3D mesh plot of the valid neighbors in the bounding box. These neighbors
are used to be the input of the RBF as the available known data.

(c) Theresult of the disparity map after finishing the radial basis function
interpolation process.

(d) The surface reconstructed by multiquadric type of RBF using the neighbors
data from (b).
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Chapter 5

Object Detection and Tracking based
on Stereovision

Three-dimensional environment reconstruction system in static scenario is
presented in Chapter 4, including sensor localization based on image feature and stereo
data preprocessing. However, in real scenarios many dynamic objects affect the
localization result due to the localization method uses features as static landmarks.
Moreover, the dynamic objects may be seen twice or more in different time step, and are
mapped into the 3D model many times that cause ghost effect. For these reason, this
thesis proposes the object tracking system for checking the moving object.

In this chapter, the details of the proposed object detection and tracking system are
discussed. The overall system architecture is presented in Section 5.1. Section 5.2
presents the proposed object detection algorithm based on u-occupancy grid. Section 5.3
shows the proposed object tracking method using color-based feature with Kalman

filter.

5.1 System Architecture

The proposed system can be divided into three parts: stereo data acquisition, object

detection and object tracking, illustrated in Figure 5.1. The stereo data acquisition part
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provides two color images from stereo camera and the disparity map is calculated by

these two images. The object detection and tracking are the main parts of this chapter.

The procedures of the object detection part are presented briefly as foll ows. First of all,

the disparity map is transformed to u-disparity occupancy grid map to know where the

object is located. Secondly, for the purpose of using image information to analyze the

object candidate, object bounding box in image plane needs to be extracted. After each

candidate bonding box is extracted, the color information is transformed from RGB to

HSV color space. To describe each object by using the color information, two feature

vectors are formed by histogramming the pixel value in H and S channels. Therefore,

database objects can be registered to the candidates by comparing the correlation of two

feature vectors. Finally, a strategy is proposed to handle the update problem.

RGB Image ; v - 3
Depth Image Dbiact Batecion Chisdiiacde
U-Disparity ” o
Stereo Bounding-Box Bounding Box Bounding B d
HE S ¥ S > ounding Box an
Reconstruction Ceainaney ad Extraction Color Space Obijects
Calculation Aol :
Hi A Recognition

Stereo Images

R C l
Object Stats
Update Mechanism
S

| H
111 [

el —————

M

Figure 5.1: The proposed object detection and tracking system
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5.2 Object Detection

For describing an object in database easily, some notations are defined in Table 5.1.

Table 5.1: The definition of some notations for a database object

Object Properties

X; i Object position in current time step x;, = (X, Z,)" -

Vi Object velocity in current time step v, = (V. Vi, ,) " -

m jth candidate measurement in current time step m;, =(m, ;,,m, ).
H,(O) The histogram of saturation channel of i-th object.

H,,(O) | Thehistogram of hue channel of i-th object.

H¢(C)) The histogram of saturation channel of j-th candidate.

H,(C) The histogram of hue channel of j-th candidate.

P,(O) The probability distribution of hue channel of i-th object.

R(O) The probability distribution of saturation channel of i-th object.

R (C) The probability distribution of hue channel of j-th candidate.
P(C)) The probability distribution of saturation channel of j-th candidate.

State Flags and counters

F

Flag that indicatesthe i-th object isinthefield of view of the camera

i,Inimage
F occlude Flag that statesthe i-th object is occluded.
F measrement | Flag recordsif the i-th object is measured by stereo camera.
Cnt; roy Counter for accumulating the times of an object that being out of FOV.
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5.2.1 Visibility-Based U-Disparity Occupancy Grid

Occupancy grid map is a powerful method for describing an environment and has
been used for a variety of applications in robot field. In the last decade, occupancy grids
are typicaly constructed in the Cartesian space from beam-type sensor such as
ultrasound or laser range finder. In contrast, stereo camera s conic type sensor, which is
less common to build an occupancy grid map due to the needing processing time and
the limitation in accuracy [29: Perrollaz et al. 2012]. To overcome these problems,
constructing occupancy gird map in u-disparity space using stereo camera is more
popular than constructing occupancy gird map in the Cartesian space.

In [29: Perrollaz et a. 2012], u-disparity occupancy grid map is constructed by
assuming that each pixel in disparity map is pre-classified as the road or obstacle pixel
by double correlation framework proposed in [30: Perrollaz et al. 2010] which exploits
different matching hypotheses for vertica and horizontal objects. However, in most
applications, occupancy grid map is used to describe the environment without knowing
each disparity is obstacle or road. Thus, knowing each pixel is obstacle or free space to
construct occupancy does not make sense. Therefore, in this thesis the proposed system
modifies the method slightly without pre-categorizing the disparity pixels.

The concept of the visibility-based occupancy grid map considers the ratio between

observation pixels and visible pixels in the region of interest (ROI) with the height
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according to the disparity of the grid cell. Figure 5.2 shows the concept: assuming that a

human stands behind of a car as shown in Figure 5.2(a) with corresponding disparity

map, shown in Figure 5.2(b). To estimate the occupancy of the grid cell U, =(u,d)

that the car is located at, the disparity pixelsin the region of interest are classified to be

visible or non-visible pixels, observed pixels or occluded pixels. u is the image

column coordinate, whereas d isthe disparity coordinate of the grid at certain distance

(d=fB/Z). Figure 5.2(c) shows the possible pixels in the region of interest with d

as illustrated in Figure 5.2(d), whereas Figure 5.2(e) shows the classification result of

these pixels. First, the pixels colored in green are classified as visible with their

disparity value smaller than d. This means that these measurement rays pass through

the grid cell and do not hit any obstacle (note that the larger disparity d, the smaller

distance Z). The pixels colored in yellow are categorized as observed and visible

pixels since their value in disparity map are the same as d, which means that the

measurements hit the car exactly. The remaining blue pixels are categorized as

non-visible pixels. The pixels in occlusion and invalid disparity are al in this case.

Figure 5.3(e) better shows the occlusion case: for estimating the grid cell that the human

stands at, these pixels do not hit or go through the human, which are occluded by the car

in front of the human. These pixels cannot “see” the grid cell and therefore they are

classified as non-visible pixels. The relation between these classifications can be
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illustrated in Figure 5.2(g).

3 (b)
= Q__'l'h(d) u >
N, (U)| ! : :
:. 4l v -=(a-,-d>l—
-Qfo ) v
(©) (d)
Optical Ray

Possible Pixels (ROI)

Visible Not Visible

Confidenca of (No Observation)
Observation

(9)
Figure 5.2: lllustration of the visibility-based occupancy grid construction method.

(a)-(b) Color image and corresponding disparity map with a human behind a car.

() Therange of the possible pixels of the car at certain position Z= fB/d,
which has the same meaning of region of interest (ROI).

(d) The u-disparity occupancy grid map of (b). U, isthe coordinate of the cell
that the car islocated at. Note that u-disparity and image has the same width.

(e) Classification of the possible pixels annotated with different color. The
annotationsin (e)-(g) have the cooresponding colors for better understanding.
Blue line standsfor the non-visible pixels. Yellow line represents the pixels
exactly hit the obstacle at that grid cell. Both yellow and green lines indicate
the visible pixels that do not be occluded at that distance and are not invalid.

(f) Each pixel inthe ROI can be thought of as a optical ray.

(g) Thereation of these classification.
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Figure 5.3: Another example to illustrate the concept of the visibility-based occupancy
grid map.

(a)-(b) Color image and corresponding disparity map with a human behind a car.

() Therange of the possible pixels of the human at certain position Z= fB/d,
which has the same meaning of region of interest (ROI).

(d) The u-disparity occupancy grid map of (b). U, isthe coordinate of the cell
that the human is located at.

(e)-(f) Classification of the possible pixels annotated with corresponding color.
Blue line stands for the non-visible pixels. Yellow line represents the pixels
exactly hit the human at that grid cell. Note that in this example, the hieght of
ROI is shortened due to the perspective projection. The blue pixels (blue
rays) are categoried as non-visible pixelsto the grid cell that the humanis
located at since these optical rays do not go through the position.
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According to [29: Perrollaz et al. 2012], the concepts of the visibility-based
occupancy grid construction which are presented above can be formulated as follows
[29: Perrollaz et a. 2012]:

P(Oy) = X P, =WIP(C, =6)P(O, [V, =V.C, =0) (5.1)
where P(Q,) is the probability describing the occupancy of a certain grid cell U, .
V,, G and Q, arebinary random variables, which can be one of the valuein {0,1},
describing the specific states of the grid U, . V,, represents the visibility of the cell.
V, =1 meansthat thegrid U, isvisible. C, indicates the obstacle confidence of the
cell. C, =1 meansthat an object isseeninthegrid U,. O, isthe occupancy of the
cell. O, =1 showsthat the cell is occupied by obstacle pixels.
To solve the Equation (5.1), some boundary conditions of P(O, |V,,C,) are intuitive
known. First of al, for a grid cell that is in invisible state, the occupancy cannot be
determined due to no measurement data. That is, nothing is known about its occupancy.
This can be written as follows [29: Perrollaz et al. 2012]:
Vee{0,3,P(Q, |V,,C, =c)=05 (5.2
Secondly, for grid cell that is fully in visible state, the boundary conditions
P(Q, |V, =1C,) are determined according to the obstacle confidence state C, of
that grid. If the grid cell isin full confident that an obstacle is observed, this means that

the cell is absolutely occupied or is not occupied only when the false positive is
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occurred. This can be expressed as follows [29: Perrollaz et al. 2012]:

PO, M, &) =1-Fe (53
On the other hand, if the grid cell was fully visible but noting can be observed, the cell
can only be occupied when it occur afalse negative. That is:

POy W, —=G,) = Py (54)

The four boundary conditions mention above are listed in Table 5.2.

Table 5.2: Bounding conditionsof P(Q, |V,,C,)

- Visibility v, _V,

Observed Confiden
G, 1-P, 0.5
_'CU PFN 0.5

Substituting these boundary conditions in Equation (5.1), it can be extended as follows
[29: Perrollaz et al. 2012]:

P(Gy) = P(V)P(C))(A-Rp) + P(V)(A-P(C))Re + (1-P(V,))-05 (55
P, and P, can occur during the stereo matching step and are assumed to be a
known constant (both of them are 0.02 in this thesis). Therefore, to obtain the
occupancy of grid cell P(Q,), the remaining things to be estimated are the visibility of
a cell, P(V, ), and the confidence of observation, P(C,). The visibility is defined as
the ratio between the number of visible and possible pixels (length of the ROI), that is

[29: Perrollaz et al. 2012]:

_NWUyp)
N0, >
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where U, = (u,d) standsfor the certain grid cell in u-disparity space. N.(U,) isthe

number of possible pixels at the cell depends on its d-coordinate, which is defined as

follows [29: Perrollaz et al. 2012]:

Np(Up) = v, (d) =V, (d) , (5.7)

where v, (d) is the v-coordinate of the pixel which are situated at the maximum

detection height for certain disparity d. Similarly, v,(d) is the v-coordinate of the

pixel which are located on the ground for certain disparity d. v,(d) and v, (d) can

be obtained by the fundamental pin-hole model and are expressed as follows:

v, (d)=d iBh +V er (5.8
Y
Vy(d) =d %‘”‘d Voo (5.9)

where B is the basdline of the stereo camera and v is the v-coordinate of the

center

center of the image plane. Y, and Y,,,,, are. Substituting Equation (5.8) and (5.9)

into (5.7), it becomes:

Y
—d ground +V

center

N, (U;) =di+v

B center

(Yh - ground)
B
=dCp,

-d (5.10)

Cro IS aconstant which depends on the preset detection height and ground position.

Thus, N,(U,) only depends on the d-coordinate for agivencell U, .

On the other hand, N, (U,) is the number of visible pixels in the subset of the
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possible pixels, which can be expressed as:

Ny (Up) = Z (Fd,visible(u'v)) ) (6.11)
Fyane = {]di(f)trl]der(u,v) <=d & &1 ,(u,v) = 'invalid’ (5.12)

With these expressions, the visibility of a grid cell P(V,) can be obtained as
Equation (5.6). For estimating the confidence of the observation, P(C,), the ratio
between the observed pixels and the visible pixels is considered. It is defined as an

exponential function asfollows [29: Perrollaz et al. 2012]:

1o (Up)

P(C,)=1-e @ (5.13)

where 7, is a constant and is chosen to be 7,=0.1 as the same value in [29:

Perrollaz et al. 2012], and 1, is defined as the obstacle confidence, which is the ratio

between observed pixels and the visible pixels, that is, [29: Perrollaz et al. 2012]:

No(Up)

r,U,)= 5.14
oWUp) N, U,) (5.14)
The number of the observed pixels can be expressed as follows:
NO (U D) = Z (Fd ,observed (U, V)) (515)
F, oo = {Jdi(l;ﬂ?gs(l 4(UV) —d) <= Cyeamresion & & 14 (U, V) #'invalid* (5.16)

For all the grid cells U, = (u,d) in the u-disparity space, their occupancy can be
obtained by the above expressions, Equation (5.5), (5.6) and (5.13). Notethat N,(U,),

v,(d) and v,(d) of each cell can be pre-calculated since they will not change during
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the occupancy grid calculation processing. Hence this pre-calculation process reduces
the time complexity and then speeds up the overall algorithm.

5.2.2 Post-processing

The raw u-disparity occupancy grid is constructed by using visibility-based
calculation method, as mentioned in Subsection 5.2.1. The occupancy grid can be
marked as ‘occupied’ by using a probability threshold to extract object candidate.
However, due to the noisy data from stereo camera and the discretization effects,
applying ssmple threshold without any preprocess will cause many unwanted candidate
results. Thus, before applying threshold to extract “ occupied” grid cell, a series of image
processes are applied to refine the raw occupancy grid. The overall post-processing flow
chart is shown in Figure 5.4.

First of al, in order to eliminate spatial noise to obtain smoother and more realistic
representation, 2-D Gaussian filtering is applied. Since the standard deviation o,
along the d axisis related to the disparity discretization, for example o7 =0.5, and the
standard deviation o, aong the u axis is related to the width of the correlation
window to model effects like foreground fattening in the u-disparity plane [30: Perrollaz
et al. 2010], the 5x5 2-D Gaussian filter mask is selected, as shown in Figure 5.4(d),
which is a constant Gaussian kernel. This 5x5 mask acts as image filter based on

convolution which can be written as Equation (5.8). Therefore this process is much fast
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and easy to implement.
P'(Qy)=G(0,,04)*P(Q,) (5.17)
After removing spatial noise by using Gaussian filter, the cells can be flagged as

“occupied” by applying a constant probability threshold. That is,

By doing so, the result of the u-disparity occupancy grid is a binary image, as shown in
Figure 5.4(f). This occupied mask might have a lot of disconnect part that cannot be
filtered out by using Gaussian filtering. This phenomenon is illustrated in Figure
5.4(e)-(f). To overcome this problem, a morphological image process is applied to
reduce the remaining noise and link the disconnect part, as shown in Figure 5.4(g).
Some of the small noise will be reduced, while the larger near neighbors are linked
together and formed as a connected component to solve disconnection problem.

The next step is to extract object candidates by using the connected-component
labeling with 4-connectivity as mentioned in Section 3.3.4. Figure 5.4(h) shows the
connected-component labeling result of the obstacle grid map, Figure 5.4(g), each
region is marked in different colors and indicates an object candidate C; .

For farther distance object, the number of pixels projected from 3D coordinate to
image plane is too sparse to analyze the image information of object candidate due to

perspective projection. Moreover, the large uncertainty of stereo camerain far distance
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will cause inaccurate result. Therefore, a ssimple disparity (distance) restriction is
applied to remove the candidate whose disparity is smaller than d ., as indicated by
the red line shown in Figure 5.4(h). The minimum disparity threshold d ., =6.5pxis
used in this thesis. In addition, object candidate is assumed to have image width larger
than a certain threshold and is filtered by the following expression:

W(C,) <W,, (5.19)

where W, = 25 pixels isused inthisthesis.
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(b)
(©)

(d)
(€)
(f)
(9)
(h)

(i)

(i)
Figure 5.4: Each post-processing step applies to the u-disparity occupancy grid.

Image from stereo target camera.

Corresponding disparity map.

The original u-disparity occupancy grid. Note that the darker pixel means
the higher probability of being occupied.

An example of the constant 2-D Gaussian kernel filter with size 5x5.
The occupancy grid filtered by 2-D Gaussian kernel.

Occupied binary mask by applying a certain probability threshold to (e)
Modified occupied mask by applying a series of morphological processes.
Connected-component labeling of (h). The red line indicates the disparity
threshold d;, .

Remove the candidate whose disparity d >d_;, and short candidatein (h)
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5.2.3 Object Candidates Bounding Box Extraction

As mentioned in section 5.2, the u-disparity occupancy grid is constructed by using
visibility-based occupancy grid method. Higher value of a grid cell means that the grid
has large probability that an object is located. Therefore, the ‘obstacle’ grid can be
extracted by using simple probability threshold. The obstacle grid is a binary image that
indicates each grid cell is occupied or not. Using connected-component labeling on the
obstacle grid can extract object candidate in u-disparity space. To describe the candidate
in the image coordinate, a rectangle called bounding box is used, which need four
variables, v;, v;, U and ug, to indicate the position of the vertexes, as shown in
Figure 5.5(c). Since the u-disparity and image width has same coordinate, which is the
image column, the u-coordinate of the bounding box can be extracted from the pixelsin
u-disparity grid directly. The v-coordinates, however, cannot be obtained directly from
u-disparity and is calculated by the d-coordinate d with the pre-defined positions of
the ground Y, and maximum detection height Y, as the same in the Equation (5.8)
and (5.9) in the Section 5.2.1. The v-coordinate of the top two vertexes is calculated by
Equation (5.20), whereas the v-coordinate of the bottom two is calculated by Equation
(5.22).

Y, f Y,d

vT(d,j):?+v0:hF+vO (5.20)
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vB(d,j)=%+v0=%+vO (5.21)

Z=— (5.22)
By doing so, each candidate labeled in u-disparity space can find the corresponding
bounding box to reach the information from image and disparity map. The bounding

box extraction result is shown in Figure 5.5(d).

(v, Ug)

(d)
Figure 5.5: lllustration of bounding box extratction from u-disparity obstacle grid.
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5.3 Object Tracking

Object candidates are extracted in previous section, the next problem is how to link
database object to corresponding candidate measurement in the current step correctly. It
Is so called “data association” problem in the field of robotic. For sensors that only
provide range information, it is difficult to do data association because no other
information can use to distinguish each of measurement points. Using sensor that
provides RGB-D data such as stereo camera can easily handle this problem since these
sensors provide additional image information to describe an object. This chapter will
describe the proposed solution to solve the data association problem in detail.

5.3.1 Remove Background Pixels in Bounding Box

Since many pixels do not belong to the object in the bounding box of detected
candidates, analyzing all the pixels of the bounding box directly without filtering out the
non-object pixels would get the wrong result. Therefore, before analyzing the object
pixels that within in the bounding box, background pixels should be removed. The
background pixels can be seen as the pixel with depth value that do not in the range of
the uncertainty in that distance. That is:

B(l, J) — {11 ZObieCt —AZ < Z(l, J) < Zobject +AZ (523)

, other

B(i, J) is a binary image which indicates if the position (i,]) is foreground or
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background pixel. Zosex is the depth value retrieved from u-disparity occupancy grid,

and the uncertainty AZ can be formulated as follows [49: Accuracy For Stereo Vision

from PointGrey 2010]:
=2
AZ = B__ B |:E Ad = Z object Ad = ZoimAd (5.24)
d d+ad| d (d+Ad) B iad) (B+ZuiwAd)

object

where Ad =matching error =0.1.

Moreover, the object is assumed to have thicknessZ therefore Equation (5.11)

Thickness ?

can be rewritten as follows:

B(@i, )= {1’ Zotjot = AZ = Zpyigpess < Z(1, 1) < Zotiost + AZ + Zryipees (5.25)

0, other

where the thicknessis assumedtobe Z =0.3m.

Thickness
The position (i, J) in image plane will be flagged as object pixel (foreground) when
the corresponding depth value Z(i, ) is in the uncertainty range, as illustrated in

Figure 5.6. These remaining pixels are used to be the input of the HSV histogram.

(@ (b) (©) )
Figure 5.6: Background Pixels Removal for frame #236.

(&) Bounding box image

(b) Bounding box depth map

(c) Depth map with background removal

(d) Foreground mask

(e) Image with mask filtering
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5.3.2 Registration between Candidates and Objects using

Feature Vectors

To distinguish one object to another, distinctive and invariant information that can
describe an object should be selected. Therefore, the images of a certain object in
different frames are analyzed at first. Figure 5.8 and Figure 5.9 show the related
information about the object such as the histograms of R, G, B, H, Sand V channelsin
frame No. 236 and No. 191, respectively for example. It can be observed that the
distributions of the H and S histograms are time-invariant, while the other channels are
changed dramatically. Moreover, assuming that object moves consequently, the
histogram distribution of H and S will not change dramatically, as shown in Figure 5.8
and Figure 5.11. On the other hand, the other object and the corresponding information
in frame No. 236 are shown in Figure 5.10 and are compared to Figure 5.8. It can be
observed that different object has corresponding distribution on H and S histogram.
Since the distributions of H and S histograms have distinctive and invariant properties,
data association problem can be solved by using H and S histograms as feature vectors
to register the certain object in different frame images. In this thesis, each H and S
channel is binned into 64 intervals to form a 1x64 feature vector. Note that H and S

histograms are normalized to form a probability distribution representation, that is,
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R, (G) _Ha(9) H,\(IO‘ ) (5.26)

P,(0)) =—HS,§Oi) (5.27)

where N is the remaining pixel number in the bounding box, O indicate the i-th
object, H,(O) represents the histogram of the H channel of the i-th object,
H,(O,) isthe histogram of the S channel of O .

To achieve the goal of registering candidate C; to corresponding database object
O successfully, estimating the similarity between object and candidate feature vectors
using Bhattacharyya distance is applied. The Bhattacharyya distance is a similarity
index that measures two probability distributions. The definition of Bhattacharyya
distanceisasfollows [41: Comaniciu et al. 2003]:

d(p,q) =1-BC(p,0) (5.28)

where BC isthe Bhattacharyya coefficient, which is defined as follows:

N
BC(p,qa)= >/ P(i)a(i) (5.29)
i=1
To calculate the Bhattacharyya distance between the H channel distribution of candidate

R,(C,) and the digtribution of database object P,(Q,), PR,(C;) and P,(O) are

substituted into Equation (5.28) and (5.29), the equations become:

dy, (PH (Cj)!PH (C)i)):\/l_ BC(R, (Cj)’PH @) (5.30)

BC(R(C)) P0)) = . \Per(C)Pen(©) (531)

Similarly, for the Bhattacharyya distance between the S channel of candidate and object,
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the equations become:

d(R(C,), R(Q)) = JI- BC(R(C,), R:(Q)) (5.32)

BC(R.(C).Ru(9)) = 3, PiunlC)R.(0) (539)

Combining these two similarity index with same weights, the total Bhattacharyya
distance between j-th candidate and i-th objectsis expressed asfollows:

dro (C;.0) =0 (R:(C)). R:(Q)) +ds(P(C)). (D)) (5:34)

Therefore, each candidate can be registered to the database object successfully, as

shown in Figure 5.7.

(b)
Figure 5.7: The registration result of each candidate to the database object. Different
objects are enclosed by different color bounding boxes
(@) Candidates before registration.
(b) Candidates after registration.
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Figure 5.8: Properties of object 1 in frame 236
(@ Bounding box image.
(b) Depth image with background removal.
() Image with background removal.
(d)-(f) H, SandV channel of HSV image transformed from (c).
(9)-(i) H,SandV channel histogram
()-(D R,Gand B channel histogram
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Figure 5.9: Properties of object 1 in frame 191
(@) Bounding box image.

(b) Depth image with background removal.

(c) Image with background removal.
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Figure 5.10: HSV histogram of object 2 in frame 236
(@ Bounding box image.
(b) Depth image with background removal.
() Image with background removal.
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(d)-(f) H, SandV channel of HSV image transformed from (c).

(9)-() H,SandV channel histogram
()-() R,Gand B channel histogram
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Figure 5.11: Properties of object 1 in frame 237

(@) Bounding box image.

(b) Depth image with background removal.

(c) Image with background removal.

(4)-() R,Gand B channel histogram
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Figure 5.12: Properties of object 2 in frame 237
Bounding box image.
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(b) Depth image with background removal.
Image with background removal.
H, Sand V channel of HSV image transformed from (c).
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Spatial Constraint

The data association result using hue and saturation histograms as feature vectors
is suitable in this thesis. However, considering the situation which two objects are too
similar to cause wrong registration result, spatial constraint is added. Since object will
not move dramatically, the database object is restricted in a region. Here a radius
threshold is used. If all database objects position were not in the range, the candidate is
new coming object in database. To check database objectsisin the circular range or not,
the Euclidean distance is used. That is, if the distance from i-th object to candidate

was smaller thanr, the candidate can be register to the i-th object.

\/(Xi,k_rrk,j,k)+(zi,k_mz,j,k) <r (5-35)

r

Object Position (x,z)

Figure 5.13: A radius distance threshold for the possible range of the object
candidates.
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5.3.3 Update Strategy with Kalman Filter

After the database objects are linked to the current candidates correctly, the object
states can be updated by the measurements. However, database object may not register
successfully due to out of field of view or occlusion, the update strategy is proposed to
handle the update problem. Figure 5.15(a) shows the case of an object moving out of the
field of view of the camera, whereas Figure 5.15(b) shows the situation that an object is
occluded by another. Moreover, Kalman filter with constant velocity is used to estimate
the object state. The proposed update strategy is shown in Figure 5.14.

First of al, the updater inspects if the object is measured by stereo camera or not

by checking the state of the object measurement flag, F When a database

i,Measurement *
object is successfully registered to a candidate as mentioned in Section 5.2.2, the object
measurement flag K\ cqremene 1S SEt t0 1. If the database object has measurement, the
next question is if the object is in normal, occlusion or in the camera FOV in previous
state. If the object is occluded or out of the camera FOV, it does not have previous
position and velocity states, and thus cannot predict its current position and can only

rely on the measurement information, this can be expressed as follows:

X =m; — (;(I:j = (?T}zj] (5.36)
L (v =X )] At
wtuonet (G e

If the object is not occluded and is in the camera FOV, Kalman filter can apply to this
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case to track the object state. This process is divided into two steps, motion prediction

and measurement update. In this thesis, the constant velocity model is applied to

describe an object motion. The object motion state and corresponding covariance

prediction can be expressed as follows:

z(i,k 1 0 At O Xka
v Zx |[_|0 1 0 At|| 3,4
Xik=FX 4= \—_/kax =100 1 0fv, (5.38)
Vik,z 000 Vi,k—l,z
Pc=FRF'+R (5.39)

Xix is the i-th object state prediction. F,_ is a constant velocity state transition
matrix, which is extended as Equation (5.38). X;, , istheobject state at previous time
step. P« isthe covariance prediction, whereas R is the motion noise covariance.

For the measurement update step, it combines the state prediction result and the

measurement to the object. This process can be expressed as follows:

K, =PHT(HPH' +Q)™ (5.40)
Xig = Xik+ K(Ziy - H Xix) (5.41)
P.=(l —K.H)P« (5.42)

K, is the Kaman gain. H is the measurement matrix with size 2x4. Q is the
covariance of the measurement noise. X; , isthe fina update state of the i-th object,

whereas P, isthe object state covariance update result.

On the other hand, if the object has no measurement in current step, only when the
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object is in camera FOV and is not occluded can apply the motion prediction process
which is similar to Equation (5.38). After finishing the motion prediction, the object
may move out of the camera FOV or be occluded. To check if the object moves out of
the FOV, the angle of object-to-camera is calculated by using the inverse tangent of
x/ z asillustrated in Figure 5.16, that is,
X

HObjToCam = arCtan(E) (5-43)

If HObjToCam is larger than the half of the camera FOV, then the object is not in the field

of view of thecameraand F issetto 0. That is,

i,Inimage
abs(Gpyocam) > (%xCameraFOVj =215 (5.44)

A counter Cnt, ., isused to check the continuity in order to solve the case that object

moves at the boundary of the camera FOV. Here the counter threshold is set to 3.
If HObjToCam is smaller than the half of the camera FOV, it is considered to be occluded,

and the occlusion flag F o isthensetto 1.
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Figure 5.14: The proposed object update flowchart.
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(@)
. =
(b)
Figure 5.15: Two cases of unsuccessful object registration since no measurement in

current step.
(8 Anobject moves out of the field of view of the camera.
(b) Anobject isoccluded by another object.
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Figure 5.16: Checking if the object is out of the camerafield of view (FOV).
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Chapter 6

Experiment Result and Analysis

The proposed methods which are presented in Chapter 4 and Chapter 5 are tested in
this chapter. In the beginning of this chapter, the apparatuses are shown in the Section
6.1. Experimental results and analysis of three-dimensional localization and mapping
algorithms which is proposed in this thesis are discussed in Section 6.2. The result and
analysis of the proposed stereo refinement algorithm presented in Section 4.2 are shown
in Section 6.3. For the proposed object detection and tracking system, the experimental

result and analysis are shown in Section 6.4.

6.1 Experimental Hardware

Stereo Camera

The stereo camera used in this thesis is Point Grey Bumblebee2 BB2-03S2-60,
which is shown in Figure 6.1. According to the online specification sheet of the sensor
[51: BumbleBee2 Product Datasheet from PointGrey 2013], the sensor size is
157x47.4x36 mm with weight 342 grams. It provides two images from left and right
CCDs with 43 degrees horizontal field of view, and then calculates the disparity using

right image as target image plane. Therefore the coordinate of disparity map is the same
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as right image plane. The total data acquiring frame rate is about 20Hz for a persona
computer with i7-950 CPU or 10Hz for a laptop with Intel P8400. Figure 6.1(c)-(f)
shows the stereo data with RGB Images from left and right CCD and corresponding
disparity image calculated from RGB images. The intensity of the disparity is
represented as gray image, that is, the brighter of the pixel, the higher the disparity value
is. Note that the white area is invalid pixel with value 256. Since distance is inversely
proportional to the disparity, in other words, the brighter of the pixel, the closer to the
camera coordinate. Also note that the value of invalid pixel in depth map is 0.

In this thesis, stereo vision data is captured by utilizing the two software
development kit libraries of Bumblebee stereo vision camera, which are FlyCapture and
Triclops SDK. The FlyCapture library uses IEEE 1394a bus as a communication
interface to exchange information between computer and camera. The Triclops library
uses the sum of absolute difference (SAD) correspondence method to estimate the
disparity between two images captured by the stereo vision camera. To connect the
Bumblebee stereo camera, the computer must have IEEE 1394a interface. In our
platform, a personal computer is equipped with Uptech DV/1394 1/0O Card. For an
autonomous robot controlled by a laptop, it should be equipped with Uptech UTE 120
Combo Card to the ExpressCard slot and an external 12V power to drive the Bumblebee

stereo camera.
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(9) (h)
Figure 6.1: A brief introduction of Bumblebee2 BB2-03S2-60 stereo camera.

(@ Point Grey Bumblebee2 BB2-03S2-60. [51: BumbleBee2 Product Datasheet
from PointGrey 2013]

(b) Dataacquiring from the scenario for example.

(c)-(d) Image from left and right CCD respectively.

(e) Thedisparity map estimated by (c)-(d). Note that (d) is the target image in
Bumblebee2 System.

(f)  The depth map transformed from (e) with therelation z(i, j) = fB/d(i, j) .

(9)-(h) Point clouds generated from (e) and plotted on to 3D coordinate.
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Figure 6.2: IEEE 1394 Interface
(@ Uptech DV/1394 1/0O Card.
(b) Uptech UTE 120 Combo Card [50: UTE120 Combo ExpressCard from
Uptech 2013].

Table 6.1: The specification of stereo camera BB2-03S2-60

Basaline 0.12m

Focal Length 6mm

Horizontal Field of View (HFOV)

43 degrees

Image Resolution

Maximum for 640x480 pixels

CCD Frame Rate

48 Fps

fB B

d d+e

Accuracy

AZ = , Where e= matching error

Laser Range Finder

In order to evaluate the experimental result, two Hokuyo URG-04L X-UGO1 laser
range finders are used to be a benchmark. Hokuyo URG-04L X-UGO1 could acquire the
laser rangein 240° with detection range about 20 mm — 5600 mm. The specification is
listed in Table 6.2.

Hokuyo URG-04LX-UGO0L1 laser range finder is capable of detecting in the range

20 mm — 5600 mm. However, for evaluating the object detection and tracking task in
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long range up to 10 meter, SICK LMS100 laser range finder is used. SICK LMS100

could acquire the laser rangein 270" with detection range about 0.5 m — 20 m, which

is suitable for evaluating the proposed method. The specification islisted in Table 6.3.

(@ (b)
Figure 6.3: Hokuyo URG-04L X-UG01 and SICK LM S100 laser range finders.
(@ Appearance of URG-04L X-UGO01 laser range finder [52:
URG-04L X-UGO01 from Hokuyo].
(b) Appearance of SICK LM S100 laser range finder [53: SICK LM S100 from
SICK].

Table 6.2: The specification of Hokuyo URG-04L X-UG01

Detection Angle Range | 240 Degrees (—30° to 210°)

Detection Range 20 mm —4000 mm

Scanning Rate 10 Hz

Angular Resolution 0.36 Degree

Accuracy 0.06-1Im: £30mm, 1-4m: *=3%

Table 6.3: The specification of SICK LM S100

Detection Angle Range | 270 Degrees (—45' to 225)

Detection Range 05-20m

Scanning Rate 10 Hz

Angular Resolution 0.25 Degree

Accuracy +30-40 mm
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6.2 Stereo Camera Localization and Mapping

To evaluate the overall 3D environment reconstruction system, several experiments
are built to test each subsystem. To check the feature-based localization method, stereo
camera capture a sequence of frame data in an indoor scenario with “L” shape with two
laser range finders which are used to be a benchmark. Subsection 6.2.1 shows the
experiment scenario and the construction of the platform. Subsection 6.2.2 shows the
benefit of using RANSAC outlier regection algorithm in the localization task.
Subsection 6.2.3 shows the relation between localization accuracy and mapping quality
from 2D laser data mapping result. Subsection 6.2.4 shows the accuracy of the
feature-based localization result comparing to two laser range finders. Finaly,
Subsection 6.2.5 shows the 3D environment reconstruction result rendered in 3D
window.

6.2.1 Experimental Scenario Setup

In this experiment, the scenario is constructed with size 2x2x2m*as shown in
Figure 6.4. To evaluate the localization method, the stereo camera is mounted with two
Hokuyo URG-04L X-UGO01 laser scanners orthogonally as shown in Figure 6.5(a). The
stereo camera moves by the given commands according to the grid sheet with resolution

1x1cm® on the ground, shown in Figure 6.5(b) and (c). In addition, the pan angle is
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given by the angle gage of the cradle head of Coman JS-4254+CV-O0 tripod, as shown in

Figure 6.5(d). The cameratrgjectory is composed by four paths as shown in Figure 6.6:

1.  Frame 0-8: cameramoves lateral by +0.1m per step in the first path.

2. Frame9: in the second path, camerarises+0.085m.

3.  Frame 10-15: camera then rotates 15 per step until it reaches90° in the third

path.

4.  Frame 16-18: for the final path, camera moves lateral by +0.1m per step again.

The bottom-right image in Figure 6.6 illustrates the camera trgjectory mentioned

above, while the four image groups are the image captured from right CCD of the stereo

camera corresponding to the four paths.

Figure 6.4: Experiment scenario
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(X.¥)=(0,0) 5

(@ (b) (©) (d)
Figure 6.5: Experiment platform and accessories.
() Stereo camerawith two HOKUY O laser scanners mounted orthogonally.

(b)(c) Thegrid sheet with resolution 1x1cm?.
(d) The cradle head of Coman JS-4254+CV-0 tripod.

Stereo Camera Path

Figure 6.6: Camera path and corresponding image captured from right CCD

The laser scanners are mounted orthogonally to estimate the relative horizontal and
vertical motion of the stereo camera. For the laser mounted horizontally as shown in
Figure 6.7, the camera horizontal motion (X-Y plane) is estimated by using ICP

registration method. For the laser mounted vertically shown in Figure 6.8, the camera
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vertical motion (Z axis) is estimated just by comparing the average laser measurements

intime k and k-1.

Before ICP, Frame 1-2

¥(m)

Before ICP I

“X(m)

,_.
192
Y(m)

After ICP, Frame 1-2
~ Dmat
O Daa?

e Y,

-

After ICP

“);{m}l

Figure 6.7: Horizontal laser data. The camera horizontal motion is estimated by
applying ICP method to align two consecutive laser data.

Frame 1-2

= Ceiling

« Data1
| - Data2

@
Figure 6.8: Vertical laser data

(8 Experiment scenario and corresponding vertical laser data.
(b) Laser height is determined by calculating the mean of the laser data from
angle-5 to +5 and are specified avalue with threshold at 0.94+ 0.01m
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6.2.2 The Effect of RANSAC Outlier Rejection Algorithm

As mentioned in Section 4.2, there have some wrong matching pairs between
current and previous step. To show the benefit of using RANSAC outliers rejection
algorithm, the localization with and without RANSAC algorithm results are plotted on
the Figure 6.9 in bird's-eye view. The localization result with RANSAC outlier rejection
algorithm is plotted as ‘-0-" colored in blue. The given command is plotted as *- % -’
colored in green, and the localization result estimated by laser using ICP method is
plotted as ‘-x-' colored in red. The localization result which considering all the matching
pairs to estimate camera position without using RANSAC outlier rejection is plotted as
‘-O-’" colored in black. The camera position estimated by matching pairs without
RANSAC rejection algorithm is not close to the results estimated by laser-ICP and the
given command. On the other hand, the feature-based localization result with RANSAC
algorithm is similar to the results estimated by laser-ICP and the given command.
Therefore, it is obvious to show that some outliers will cause inaccurate localization

result and can be solved by using RANSAC algorithm.
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Pose Estimation Comparing to Laser Scanner

——><¢— Localization by Laser ICP
i H Localization by Stereo Featured-based Method

Command
Localization by Stereo Featured-based Method without RANSAC

o
a1
T

Y Axis(m)

0 ™
-0.5|
_1 Il Il I Il I
0 0.5 15 2

1
X Axis(m)

Figure 6.9: Comparing the result of using feature-based localization method with and
without RANSAC outlier removal.
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6.2.3 Relation between Localization Accuracy and Mapping
Quality

The purpose of this experiment in this subsection shows that the environment
reconstruction result is more accurate with better localization. Since only two laser
scanners are mounted on the stereo rig, laser data can only have 5 degree of freedom.
Thus, this experiment degenerates the problem dimension from 6-DoF to 3-DoF planar
motion. The horizontal laser data is used to construct the 2-D top-view of the
environment map. Laser map reconstruction results with different localization methods
are shown in Figure 6.12, whereas Figure 6.10 demonstrates the localization results of
three different approaches, and Figure 6.11 shows the trandation displacement and
rotation error of given commands and feature-based localization method comparing to
laser-ICP. Blue square markers plotted in Figure 6.11(a) represent the tranglation
displacement between feature-based localization method and laser-ICP, and blue bars
plotted in Figure 6.11(b) show the rotation error of feature-based localization method
comparing to laser-ICP; on the other hand, the green star signs indicate the trandation
displacement of localization result between given command and laser-ICP, and green
bars plotted in Figure 6.11(b) show the rotation error of given commands comparing to
laser-1CP. Figure 6.11 shows the feature-based localization result is better than the given

commands.
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Figure 6.12(a) shows the laser map reconstructed by laser-ICP method which is

used to be the experiment benchmark. Blue dots plotted on Figure 6.12(b) show the

laser map reconstruction result by using feature-based localization method. Green dots

plotted on Figure 6.12(c) show the laser map reconstruction result by the given

commands. Almost blue dots in Figure 6.12(b) are overlapped to the red dots, but the

green dots in Figure 6.12(c) has a dightly displacements. This shows that the laser data

mapping result by feature-based localization method is better than the given commands,

and therefore it gives the conclusion that the more accurate localization constructs the

better mapping result. Note that in the third path at frame index #10-15, which the

camera rotate 15 in each step, the trandation and rotation errors of commands and

feature-based localization method both rise up. This phenomenon shows that in the

localization task, rotation motion is a challenge problem to be solved.
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Stereo Camera Pose Using Feature-based Localization

O 2]

>

-0.15

-0.2

Y Axis(m)

-0.25

-0.3

0.4 Localization by Laser ICP
Localization by Stereo Featured-based Method
-0.45 Command
0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8

X Axis(m)

Figure 6.10: Top view of the camera path. Red cross signs represent the positions
estimated by laser-1CP; blue square signs indicate the positions estimated
by stereo camera feature-based localization method; green star signs
show the given command positions.
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Figure 6.11: Trandlation and rotation error comparing to laser scanner
(@) Thetrandation error (displacement) comparing to laser-1CP. Blue squares
represent the error of the feature-based localization method, while the green
stars indicate the error of the given commands.
(b) Therotation error comparing to laser-ICP. Blue bars show the error between
feature-based localization and laser-1CP, while the green bars indicate the
error between the given commands and laser-I CP.
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Figure 6.12: Laser data mapping with localization by stereo feature-based localization
method and the given commands.
(@) Laser map constructed with laser-ICP localization method
(b) Laser map constructed with stereo vision feature-based |ocalization method
(c) Laser map constructed with the given command
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6.2.4 The Accuracy of Feature-based Localization Algorithm
In this subsection, the accuracy of the feature-based localization is analyzed by
comparing to laser scanners. Each x-, y-and z-component of the platform positions
which are given by different localization methods are plotted on to the left column of
Figure 6.13, while the absolute components errors are on the right column. The blue
square signs in Figure 6.13(a), (c) and (e) indicate the positions estimated by
stereovision feature-based localization method, and the blue sguare signs in Figure
6.13(b), (d) and (f) show the corresponding absolute errors of each components
comparing to laser scanner. From Figure 6.13(b), (d) and (f), each component error
between feature-based localization and laser-ICP is less than 0.02 meter, and the
absolute trandation error is less than 0.025 meter as shown in Figure 6.14, where the

absolute trandlation error is the Euclidean distance which is defined as follows;

Eanstaion (1) = \/Ex()° + E, (i)* + E, (i)’ (6.1)
Ex (I) = Xi,laser—ICP - Xi,Feature—ba%d (62)
In addition, Figure 6.15(a) shows the accumulating moving distance in each step, which

is defined as follows;

d(k) :Z\/(X. _)g—l)2+(yi - yi_1)2+(4 _Z—l)z (6-3)
d(0)=0 (6.4)

For moving 1.283 meter determined by laser, the accumulating moving distance drifts
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of feature-based localization method is about 0.005 m, as shown in Figure 6.15(b). Both

the trandation errors and accumulating moving distance drifts are in a small range,

which can be considered as the laser sensing uncertainty.

X Axis Component X Axis Error
004
08 /aﬁe—ﬂ—w ———e - m—n—n —a— Feature-based to Laser
. — 003 Command to Laser
06 3
£ f 002
> 04 - ]
/ ~— Laser ICP & —
02 ) —&— Stereo Featured-based 001 a " e
& +~— Command P I Ty S
o T T T Ot ) | e
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Frame No. Frame No.
Y Axis Component vo Y Axis Error
4
02+ &— Feature-based to Laser
. 003 +— Command to Laser
g 8 B B8 8 W--Q% §,
= N > 002
> 02 By ] a
«— Laser ICP \g LItJ P |
04 —=— Stereo Featured-based h oo . R
+— Command [ - w2 o SO '
T I I T 1 L L L L Oyt L . 1 L .
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Frame No. Frame No.
Z Axis Component Z Axis Error
04 004
—&— Feature-based to Laser
02 _. 003 +  Command to Laser
.E. O g 8- 0 @ —” g 002
N s —— Laser ICP E R g _—
—a— Stereo Featured-based 001 N N SN
04 +— Command ’ o - /" b
L L L A L I L I ] ’/JJ)L“*)— i —m"‘fk""u‘/J PAI/ 1 B =il - .
0 2 4 6 [] 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Frame No. Frame No.

Figure 6.13: Stereo featured-based |ocalization comparing to laser scanners.

(a)(c)(e) The X-, Y- and Z-components of the positions given by three different
approaches. Red cross signs indicate the platform positions given by the
laser-1CP method, blue square signs represent the positions given by stereo
camera feature-based |ocalization approach, and green star signs express the
positions provided by the given commands.

(b)(d)(f) The errors of each components comparing to laser range finder. Blue
square signs represent the error between feature-based | ocalization approach
and laser-1CP; green star signs express error between commands and
|aser-1CP.
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Figure 6.15: Accumulate distance for moving 18 steps.
(@) Theglobal view of the distance accumulation
(b) Theloca view of 18-th distance accumulation.
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6.2.5 Three-Dimensional Reconstruction

The stereo vision measurements with color and spatial information (RGBXY Z data

structure) are plotted on to world coordinate using Point Cloud Library in C++ code [54:

Point Cloud Library from PCL Website 2013], as shown in Figure 6.16, Figure 6.17 and

Figure 6.18. The red, green and blue sticks which are placed orthogonally represent the

camera coordinate in each step. Figure 6.16 demonstrates the mapping results in each

step with two time interval. Points in brighter color represent the measurement points in

current step, while the other points in darker color indicate points of the global map.

Figure 6.17(a) shows the experiment scenario, Figure 6.17(b) shows the reconstruction

result by the proposed method, and Figure 6.17(c) shows the reconstruction result by

given commands. Figure 6.18 shows the local views of the reconstruction result to

demonstrate the better mapping result by applying feature-based localization method

than the given commands. It is obvious to see that some object points do not align

together in the 3D model reconstructed by the given commands shown in the Figure

6.18(c), while the mapping result reconstructed by the feature-based localization method

is clearer, as shown in Figure 6.18(b). This is because that the localization result by

stereo vision localization method is more accurate than the given command, as

mentioned in Subsection 6.2.3 and 6.2.4. To evaluate the mapping quality by

quantitative analysis, peak-signal-to-noise ratio (PSNR) is used in the Subsection 6.2.6.
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(i) step 16 (j) step 18
Figure 6.16: The mapping results in each step with two time interval.
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Figure 6.17: Result of the three-dimensional environment
(8 The experiment scenario

(b) Environment reconstruction using stereo camera data with feature-based
localization method.

() Reconstruction result by the given commands.
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(b)
Figure 6.18: The local views of the reconstruction results at the same camera
viewpoint.
(@) Reconstruction result by feature-based localization method.
(b) Reconstruction result by the given commands. It is obvious to see that
some object points do not align together.
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6.2.6 Mapping Quality and the Proposed Stereo Refinement
Algorithm Evaluation

In the previous subsection, the 3D environment reconstruction results of different
localization approaches are shown in the 3D window. Although the mapping qualities
have been compared by qualitative analysis in Subsection 6.2.5, the quantitative
analysis is necessary to analyze the mapping result. On the other hand, the proposed
stereo refinement algorithm can be evaluated in the same manner since the goa of the
algorithm is to improve the mapping quality. Therefore, the mapping quality and stereo
refinement algorithm is evaluated together in the visual aspect in this subsection.
Moreover, to evaluate the accuracy of the proposed stereo refinement algorithm, another
experiment is built in the spatial aspect.

First, for visual aspect, the 3D reconstruction model is evaluated by comparing the
image projected from the 3D model to target image in each step. Each projection image
is built by projecting the 3D model points to image plane according to the camera pose
using pin-hole camera model, which is mentioned in Section 3.1 and illustrated in
Figure 6.19. Figure 6.19(b) is an example of the projection image result acquired from
the 3D model. To comparing the projection image to target image, peak signal-to-noise
ratio (PSNR) is used as a similarity index. PSNR is defined as follows [61: Szeliski

2010]:

129



PS\NR = 20Ioglo( F'dr\ﬂ/laxs) (6.5)

RMS = \/%ZD (x)—i(x)}2 (6.6)
where |, =255 the maximum intensity of the image is, RMS is the root mean
square of the image, |(x) is the target image as benchmark and 1(x) is the
projection image in this experiment. Note that not every pixel has projection value due
to no point can be projected from 3D model and the digitalization effect, as shown in
Figure 6.22(a), the invalid pixels are not counted in calculating the PSNR value.

Figure 6.20(a) is the target image used as a benchmark, Figure 6.20(b) shows the
projection image from the 3D model reconstructed by the given commands as shown in
Figure 6.17(c), Figure 6.20(c) shows the projection image from the 3D model
reconstructed by stereo vision feature-based localization method, and Figure 6.20(d)
represents the project image from the 3D model reconstructed by feature-based
localization with the proposed stereo refinement method. The PSNR values are listed in
Table 6.4 and plotted in Figure 6.21(a). It can be observed from Figure 6.21(a) that all
the PSNR values of the 3D model reconstructed by the given commands are lower than
others, which are the PSNR values of the 3D model reconstructed by feature-based
localization method. In addition, as mentioned previously, the localization result of the

given commands is inaccurate than the feature-based localization method. Therefore,
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this means that the better 3D model is reconstructed by more accurate localization result.
The PSNRs of 3D model from feature-based localization with and without the proposed
stereo refinement method are close to each other. This is because that the PSNR
consider the average difference of each pixel from testing to target image, and the
proposed stereo refinement algorithm do increase the number of valid pixels but do not
improves the image quality. Then, the percentages of the number of the valid pixels
projected from 3D model with and without stereo refinement method are listed in Table
6.4 and plotted on Figure 6.21(b), the black solid lines with cross sign represent the
result with applying stereo refinement method, while the red dash dot line with square
sign express result without applying stereo refinement. It can be observed that all the
percentages of the result with applying stereo refinement method are larger than the
result without applying. The blue dash lines with star sign indicate the increasing
percentages of each frame data, and the mean of the increasing percentages is 3.08%
with standard deviation 1.09% according to the right column of Table 6.4. This shows
that the proposed refinement method can increase the data number of the 3D model by
3.08% without decreasing PSNR which represents the model quality. Thus, with the

proposed stereo refinement method, the 3D model is better than others.
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(@ (b)
Figure 6.19: The 3D model projects to image plane with certain camera poses
(& Theregion enclosed by the red rectangle is projected to the image plane by
pin-hole camera mode!.
(b) Theresult of projecting the 3D model to the image plane.

Figure 6.20: Illustration of the concept of using PSNR as similarity index to compare
the 3D reconstruction quality in the color space viewpoint.

(8 Thetarget image as ground truth.

(b) Image projected from 3D model reconstructed by given command.

(c) Image projected from 3D model reconstructed by proposed localization
method.

(d) Image projected from 3D model reconstructed by proposed localization
method with proposed stereo refinement method.
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Figure 6.21: Comparing the 3D reconstruction result in different case.
(@) Comparing each caseto target image using PSNR value.
(b) Number of pixels projected from 3D model.

(@ (b)
Figure 6.22: Valid pixels projected from 3D model with and without applying the
proposed stereo refinement method. White areain (a) and (b) indicate the
valid pixel, while black region represent the pixels without valid value.
(8 Thevalid pixels projected from 3D model without any data processing.
(b) Thevalid pixels projected from 3D model with applying the proposed stereo
refinement method.
(c) Indicating each pixel isin state valid, invalid or refinement. Pointsin white
represent the invalid pixels, the red and green region indicate the valid
points, while the green areas are also considered as the pixels refined by the
proposed method.

133



Table 6.4: 3D model projected to image plane and compare to target image.

With Stereo Refinement

Without Stereo Refinement

ltems PSNR | #Valid Pixels (%) | PSNR | #Valid Pixels (%) | # Valid Pixels
Increment (%)
Frame 1 17.97 | 280307 (91.25%) | 17.88 | 271442 (88.36%) 2.89%
Frame 2 17.71 | 285761 (93.02%) | 17.69 | 278069 (90.51%) 2.51%
Frame 3 17.90 | 281997 (91.80%) | 17.95 | 273734 (89.11%) 2.69%
Frame 4 17.29 | 271269 (88.30%) | 17.37 | 262360 (85.40%) 2.90%
Frame 5 16.47 | 264272 (86.03%) | 16.39 | 257095 (83.69%) 2.34%
Frame 6 16.86 | 268400 (87.37%) | 16.75 | 262062 (85.31%) 2.06%
Frame 7 17.98 | 261130 (85.00%) | 17.89 | 256217 (83.40%) 1.60%
Frame 8 18.58 | 252685 (82.25%) | 18.24 | 246213 (80.15%) 2.10%
Frame 9 19.28 | 288396 (93.88%) | 18.76 | 274228 (89.27%) 4.61%
Frame10 | 18.80 | 284476 (92.60%) | 18.43 | 272929 (88.84%) 3.76%
Frame1ll | 18.37 | 284750 (92.69%) | 18.16 | 268865 (87.52%) 5.17%
Frame12 | 17.89 | 286571(93.28%) | 17.63 | 271339 (88.33%) 4.95%
Frame13 | 16.46 | 294475 (95.86%) | 16.47 | 281228 (91.55%) 4.30%
Frame1l4 | 16.45 | 292683 (95.27%) | 16.44 | 284420 (92.58%) 2.70%
Frame15 | 17.50 | 284657 (92.66%) | 17.29 | 278641 (90.70%) 1.96%
Frame16 | 19.52 | 285531 (92.94%) | 19.28 | 276996 (90.17%) 2.77%
Framel7 | 20.18 | 284094 (92.48%) | 19.63 | 274849 (89.47%) 2.99%
Mean 17.9535 | 279497 (90.98%) | 17.7794 | 270040 (87.90%) 3.08%
STD 1.0913 11697 (3.81%) 0.9489 10110 (3.29%) 1.09%
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6.2.7 Evaluate the Proposed Stereo Refinement in Spatial

Aspect

In Subsection 6.2.6 the proposed stereo refinement method is evaluated in the
visual aspect using PSNR to compare the image projected from 3D model to target
image. This evaluation method considers the local appearance of the 3D model by
image-based approach. However, it does not evaluate the accuracy of the missing data
(hole) filling of the proposed stereo data refinement in spatial aspect. Thus, this
subsection focuses on evaluating the proposed stereo refinement algorithm in spatial
aspect by constructing another experimental scenario.

In this experiment, a plane is placed in front of the stereo camera rig to be the
benchmark, as shown in Figure 6.23. The plane is measured by using two orthogonal
laser scanners and its plane parameters in stereo camera coordinate are estimated by
using these local laser data. The plane is located at different positions in order to be
measured by stereo camerarig in different viewing angles. Five viewing angles are set,
that is, —45°,—-30°,0°,30° and 45" respectively, which are shown in Figure 6.23(c)-(g).
To illustrate the evaluation method conveniently, Data #3 is used as an example, which
the viewing angle is O°. The plane is measured by the stereo camera and laser range
finders as shown in Figure 6.24(a). Figure 6.25 shows the concept of estimating the

plane parameters in the camera coordinate of Data #3. Figure 6.25(a) shows the
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horizontal laser data, whereas Figure 6.25(b) shows the vertical laser data. Two laser
data are transformed to the stereo camera coordinate as shown in Figure 6.25(c), while
the data pointed by the green arrow indicate the measurements on the plane. The plane
parameters are estimated by using the least-square method with these local laser data,
which are selected manually as shown in Figure 6.25(d). Figure 6.26 shows the result of
plane parameters estimation by using the local laser data. To compare the interpolation
result in the coordinate of the depth map, the plane depth map is built by inverse
projecting the points on the plane to the image coordinate. According to the definition of
aplane which iswritten as follows:

Ax+By+Cz=D (6.7)
And considering pin-hole model as mentioned in Section 3.1, substituting the Equation

(3.1)-(3.2) into Equation (6.7), the equation becomes:

AYiB ¥ |icz=D = 2= D (6.9)
f f Au+Bv+C/ f

For acertain pixel (u,v) on theimage coordinate, its depth value becomes:

fD
Depth(u,Vv) = z(u,v) = .
epth(u,v) = Z(u.V) Au+Bv+C/ f (69

Therefore, the plane depth map can be built by using the Equation (6.9), and the

construction result is shown in Figure 6.27(b).

The 200x200 rectangular region of interest (ROI) is selected at the image center

to be the comparison area, as shown in Figure 6.28(a). The invalid pixels (missing data
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areas) are filled by the proposed stereo refinement method with two different

interpolation approaches and the results are shown in Figure 6.28(e) and (g), and the

corresponding ROI patches are shown in Figure 6.28(f) and (h). The pixels in the

selected ROI are compared to the same ROI patch of the plane depth map estimated

from the laser data. Figure 6.28(d) shows the estimated plane depth map ROI patch of

Figure 6.28(c). Since the processing pixels are the missing data area as the white region

in Figure 6.28(i), only these pixels are compared to the estimated plane depth map.

Figure 6.28(j) shows the absolute difference between the ROI patch of the proposed

DOL interpolation approach and the ROI patch of the estimated plane depth map, while

Figure 6.28(k) shows the absolute difference between the refinement result of RBF

approach and the benchmark (Figure 6.28(d)). Figure 6.29(a) shows the absolute

differences of each filling pixel, and Figure 6.29(b) shows the histogram of these

absolute differences. For the five experimental datasets, each mean and standard

deviation of the interpolation errors comparing to the estimated plane depth are listed in

Table 6.5, and the processing times are listed in Table 6.6. It can be observed that the

means and standard deviations of the interpolation result by DOL are all slightly lower

than the result by RBF, which shows the better result in the planar case. Moreover,

according to Table 6.6, the processing time of DOL is approximately lower three times

than the processing time of RBF, which shows the better computation efficiency.
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Figure 6.23: Experiment scenario setup. A plane stands in front of the stereo camera
with different view angle.
(@(b) A planestandsin front of the sensor platform.
(0)-(g) Measuring the plane with different angles, —45°,-30°,0°,30" and 45°
respectively.

Figure 6.24: The target image and the corresponding depth map of Data #3.

(@ The plane standsin front of the camerawith viewing angle 0.
(b) Target image from right CCD of the stereo camera.
() The corresponding depth map.
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Figure 6.25: Two orthogonal laser data and transformed to camera coordinate. The local
laser datais used to be the input of plane estimation.

Data acquired from horizontal laser scanner.

Data acquired from vertical laser scanner.

Align two laser data to stereo camera coordinate with corresponding

detection plane.

Local data of the horizontal and vertical laser are selected manually to
estimate the plane parameters.

(@
(b)
(©)

(d)
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Figure 6.26: Using local laser data to estimate the plane parameters

X:209 Y: 173 X:375Y: 173
Index: 0.6506 Index: 0.6498
RGB: 0.651, 0.651, 0.651 RGB: 0.545, 0.545, 0.545

X:209 Y: 173 X:375Y: 173
Index: 0.6496 Index: 0.6482
RGB: 0.0314, 0.0314, 0.0314 RGB: 0.0314, 0.0314, 0.0314

X:209 Y: 310 X:375Y: 310
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RGB: 0.482, 0.482, 0.482 RGB: 0.376, 0.376, 0.376

X:209 Y: 310 X:375Y: 310
Index: 0.6473 Index: 0.6449
RGB: 0.0314, 0.0314, 0.0314 RGB: 0.0314, 0.0314, 0.0314

(b)
Figure 6.27: Comparing raw depth map and the depth map generated from the plane.
(& Raw depth map from stereo camera
(b) Depth map generated from the plane estimated by local orthogonal laser data.
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(i)

() (k)

Figure 6.28: The 200x200 rectangular ROI is selected, which is enclosed as in the

(@(b)
(c)(d)

(€)(f)
(9)(h)
(i)

()
()

depth maps.
The raw depth map and the corresponding ROI patch.
The depth map estimated from laser data and the corresponding ROI
patch.
The stereo refinement result of dual orthogonal linear (DOL)
interpolation and the corresponding ROI patch.
The stereo refinement result of radial basis function (RBF) interpolation
and the corresponding ROI patch.
The white areas indicate the region of missing data (hole) to be filled.
The absolute difference of the filling region between (d) and (f).
The absolute difference of the filling region between (d) and (h).
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Figure 6.29: The absolute error between the depth of interpolating pixels and the depth
generated from laser data. Red lines represent the result of the dual
orthogonal linear interpolation approach, while the blue lines indicate the
result of radial basis function method.

(@

Pixel index versus depth error.

(b) Histogram of depth error.

Table 6.5: The mean and standard deviation of interpolation errors comparing to laser

scanner (m).
Data Index Data#1 Data#2 Data#3 Data#4 Data#5
Angle —45 =30 0} 30 45
Error oL 0.0033 0.0037 0.0029 0.0125 0.0235
OpoL 0.0033 0.0034 0.0021 0.0095 0.0169
Error rer 0.0051 0.0051 0.0028 0.0145 0.0253
O e 0.0046 0.0041 0.0025 0.0106 0.0181

Table 6.6: Comparing the processing time with different interpolation approaches.

Data Index Data#1 Data #2 Data#3 Data#4 Data#5
Angle -45 =30 0} 30 45
Average processing time ()
DOL 0.8206 1.2909 1.4425 1.1886 1.1476
RBF 2.2014 2.9561 3.8157 3.0266 3.0398
Number of the interpolation pixels (N)
DOL & RBF 15784 19161 24636 16614 16577
Average processing time per pixel (ms/N)

DOL 0.0520 0.0674 0.0586 0.0715 0.0692
RBF 0.1395 0.1543 0.1549 0.1822 0.1834
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Figure 6.30: The data#1 interpolation result of two different approaches.

(@)-(c) Thetarget image with corresponding raw depth map and the small patch
extracted from the region enclosed by red rectangle in (b) to be analyzed.

(d) The white regions indicate the missing data area that will be interpolated.

(e) Theinterpolation result of the proposed DOL interpolation method.

(f) Theinterpolation result of the RBF interpolation method.

(g) The depth map estimated by using plane fitting method with the lasers data.

(h) The absolute interpolation error of DOL comparing to (g).

(i) The absolute interpolation error of RBF comparing to (g).

() Pixel index VS absolute depth error.

(k) The statistic result of the depth error, depth error VS number of pixels.
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Figure 6.31: The data #2 interpolation result of two different approaches.

(a)-(c) Thetarget image with corresponding raw depth map and the small patch
extracted from the region enclosed by red rectangle in (b) to be analyzed.

(d) Thewhite regionsindicate the missing data area that will be interpolated.
(e) Theinterpolation result of the proposed DOL interpolation method.
(f) Theinterpolation result of the RBF interpolation method.
(g) The depth map estimated by using plane fitting method with the lasers data.
(h) The absolute interpolation error of DOL comparing to (g).
(i) The absolute interpolation error of RBF comparing to (g).
() Pixel index VS absolute depth error.
(k) The statistic result of the depth error, depth error VS number of pixels.
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Figure 6.32: The data#3 interpolation result of two different approaches.

(a)-(c) Thetarget image with corresponding raw depth map and the small patch
extracted from the region enclosed by red rectangle in (b) to be analyzed.

(d) Thewhite regions indicate the missing data area that will be interpolated.

(e) Theinterpolation result of the proposed DOL interpolation method.

(f) Theinterpolation result of the RBF interpolation method.

(g) The depth map estimated by using plane fitting method with the lasers data.

(h) The absolute interpolation error of DOL comparing to (g).

(i) The absolute interpolation error of RBF comparing to (g).

() Pixel index VS absolute depth error.

(k) The statistic result of the depth error, depth error VS number of pixels.
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Figure 6.33: The data#4 interpolation result of two different approaches.

(a)-(c) Thetarget image with corresponding raw depth map and the small patch
extracted from the region enclosed by red rectangle in (b) to be analyzed.

(d) Thewhite regions indicate the missing data area that will be interpolated.

(e) Theinterpolation result of the proposed DOL interpolation method.

(f) Theinterpolation result of the RBF interpolation method.

(g) The depth map estimated by using plane fitting method with the lasers data.

(h) The absolute interpolation error of DOL comparing to (g).

(i) The absolute interpolation error of RBF comparing to (g).

() Pixel index VS absolute depth error.

(k) The statistic result of the depth error, depth error VS number of pixels.
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Figure 6.34: The data#5 interpolation result of two different approaches.

(a)-(c) Thetarget image with corresponding raw depth map and the small patch
extracted from the region enclosed by red rectangle in (b) to be analyzed.

(d) Thewhite regions indicate the missing data area that will be interpolated.

(e) Theinterpolation result of the proposed DOL interpolation method.

(f) Theinterpolation result of the RBF interpolation method.

(g) The depth map estimated by using plane fitting method with the lasers data.

(h) The absolute interpolation error of DOL comparing to (g).

(i) The absolute interpolation error of RBF comparing to (g).

() Pixel index VS absolute depth error.

(k) The statistic result of the depth error, depth error VS number of pixels.
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6.3 Object Detection and Tracking

In this section, the experimental result of the proposed object detection and tracking
methods presented in Chapter 5 is shown and to be discussed. Subsection 6.3.1 shows
the detection performance of the proposed system. Object tracking result is shown in
Subsection 6.3.2. Two preset experimental scenarios are constructed to show the
detection and tracking performance and accuracy.

The first preset experimental scenario is constructed at fifth floor in Ming-Da Hall
as shown in Figure 6.35(a). Data are acquired by stereo camerawith two people walking
arbitrarily, as shown in Figure 6.35(c). The purpose in this experiment is to show the

successful detection rate and tracking result with and without Kalman filter.

(b)
Figure 6.35: Experimental scenario setup
(& Ming-DaHall 5F
(b) Dataare acquired from stereo camerain this experimental scenario.
(c) Two people are walking in the scenario.
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The second experimental scenario is constructed at fifth floor in Ming-Da Hall

which is the same as first experimental scenario, with a SICK laser scanner to measure

the objects as benchmark. Figure 6.36 (b) and (c) shows the geometry relation between

SICK laser scanner and stereo camera. Data are acquired by stereo camera and |aser

scanner with two people walking arbitrarily in front of laser scanner and stereo camera.

The purpose in this experiment is to show the tracking accuracy of the proposed system.

(@ (b) (©) (d)
Figure 6.36: Experimental scenario setup

(& Ming-DaHall 5F.

(b) Dataare acquired from stereo camera (enclosed by solid line colored in light
yellow) in this experimental scenario with SICK laser scanner (enclosed by
dot line colored in light green) as benchmark.

(d) SICK laser scanner is mounted behind the stereo camera 30cm, and higher
than stereo camera 4.35cm.

(c) Two people are walking in the scenario.
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6.3.1 Object Detection

For total 81 frame data, successful detection rate of each object is calculated by the
ratio between the number of correct detection result and the number of occurring in
image in each frame manually. Three objects are defined as “Near Range”, “Far Coming”
and " Static” objects as illustrated in Figure 6.37(a), and the corresponding detection
rates are shown in Figure 6.37(b). Note that in this analysis, only detection results are
considered, tracking results are not discussed in this subsection.

For near range object which is enclosed with blue bounding box, the successful
detection rate is 84.058%. Two cases cause the false detection results are illustrated in
Figure 6.39 and Figure 6.40. Figure 6.39 shows the first case that an object does not be
detected since the lack of measurement pixels on to the object when it moves into the
camera field of view. Figure 6.39(a)-(b) show the color images captured in time step 1
to 2, whereas Figure 6.39(c)-(d) is the corresponding disparity maps. Since the lack of
disparity pixels on the object as shown in Figure 6.39(c), the width of the detecting
object candidate is too short that is removed by the constraint shown in Equation (5.19),
as shown in Figure 6.39(i) and (k). Another case that an object moves behind a static
object is illustrated in Figure 6.40. Since the object moves too close to the stand, its
disparity pixels are projected into the same u-disparity cell at where the stand is located.

Thus the object has no corresponding measurement in current step as shown in Figure
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6.40(l). For the static object which is enclosed with red bounding box, the successful
detection rate is 83.95%, which is only affected by the occlusion case.

On the other hand, for the far coming object which is enclosed with green
bounding box, the successful detection rate is only 63.0435%. The reason is that not
only the object is affected by the cases of entering the camera FOV and occlusion like
the near range object, but it has additional case that the object cannot be detected since
the disparity constraint mentioned in Subsection 5.2.2. Although the object is in the
image plane, it is not considered as a valid candidate.

The proposed object detection method is also compared to the existing human
detection method based on Histogram-of-Oriented Gradients (HOG) with SVM
classifier proposed in [21: Dalal et al. 2005] and the source code is found in the open
source library called OpenCV in version 2.4.3 [57: OpenCV from OpenCV official
website 2013]. Because the HOG human detection is a training based method and
focuses on detecting human object, the static stand object cannot be detected. For near
object which is a human dressed in black, the detection rate is 72.46%, which is lower
than the proposed object detection method. The reason is that the average gradient
image over the training examples is a frontal-like human gradient image. The failure
occurs when human is seen from lateral side or when the human is walking causes the

shape is not similar to the gradient image due to the human arms are waving.
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Figure 6.37: Detection rate of each object.
(a) The object definition.
(b) The detection rate of each object defined by (a).

Table 6.7: Successful detection rate of each object.

Object Near Range Far Coming Static
The Proposed Method
Detection Rate 58/69 (84.06%) | 29/46 (63.04%) | 68/81 (83.95%)

(# Detection / #ln Image Plane)

Histogram of Gradient (HOG)

Detection Rate 50/69 (72.46%) | 22/46 (47.82%) None
(# Detection / #1n Image Plane)

- I
@ (b) (©) (d)

Figure 6.38: An example of histogram-of-oriented gradients (HOG) method failure
detection case.
(@(b) Testing image and its magnitude of gradient image.
(c) The average gradient image over the training examplesin [21: Dalal et al.
2005].

(d) The object gradient patch image. It is not similar to the average gradient
imagein (c).
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Figure 6.39: For the near range object, one of two cases that is considered to be false
detection for example.

(@(b) When an object moves into the camerafield of view, the proposed
method cannot detects the object successfully since the candidate width
istoo short and is eliminated by the width constraint as show in (m).

(c)(d) The corresponding disparity map.

(e)(f)  Theoccupancy grid with Gaussian filtering.

(9)(h) Thebinary grid extracted by using the probakility threshold.

(1)(§)  Theresult of morphological process at (g) and (h).

(K)(I)  Theresult of connected-component |abeling.

(m)(n) Eliminate the candidate whose disparity issmaller than d_,, andthe

width is smaller than W, .
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, ¥

Occlusion

Figure 6.40: For the near range object, one of two cases that is considered to be false
detection for example.
(@(b) When an object moves back to an object, the bounding box cannot
enclose the object successfully.
(c)(d)  The corresponding disparity map.
(e)(f)  Theoccupancy grid with Gaussian filtering.
(g)(h) Thebinary grid extracted by using the probakility threshold.
(1)(§)  Theresult of morphological process at (g) and (h).
(K)()  Theresult of connected-component |abeling.
(m)(n) Eliminate the candidate whose disparity is smaller than d ., and the

width is smaller than W, .
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(m) (n)

Figure 6.41: The far coming object not only has the false detection cases of entering the
image plane and the occlusion, it aso has the case that is too far to be
detected.

(@(b) The object moves close to the camera. Since the preset disparity
threshold, the object cannot be detected in the previous step shown in (a),
and illustrated in (m).

(c)(d) The corresponding disparity map.

(e)(f)  Theoccupancy grid with Gaussian filtering.

(9)(h) Thebinary grid extracted by using the probakility threshold.

(1)(§)  Theresult of morphological process at (g) and (h).

(K)(I)  Theresult of connected-component |abeling.

(m)(n) Eliminate the candidate whose disparity is smaller than d_
width is smaller than W, .

and the

n
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6.3.2 Object Tracking

The detection rate is discussed in Subsection 6.3.1. Although object is not detected
in every step, this subsection will show that an object can be tracked by the proposed
method without losing it even when the object returns to the camera FOV or is occluded
temporarily. Moreover, the benefit of using Kalman filter in the tracking task is also
discussed in this subsection.

First of all, Figure 6.42 shows the tracking result in the image plane and the X-Z
Cartesian space with corresponding color. For simplicity, only 14 tracking results are
shown at four frame intervals (except the frame 32 to 38). It can be observed that each
object is tracked correctly in the image plane and the corresponding position in the X-Z
coordinate. Frame 24-38 show that even though the object which is enclosed by blue
bounding box moves out of the camera field of view, it can be tracked successfully
when it returns to the camera FOV. On the other hand, frame 58-66 show that even
though the object moves behind the stand and is occluded, it can be tracked successfully
when it moves out of stand and is measured by the camera again.

The overall tracking results on the X-Z plane with and without Kalman filter are
shown in Figure 6.43 and Figure 6.44. It can be observed that a sparkle is occurred in
the Figure 6.44. This is because two objects are too close to each other and are

considered to be the same candidate in frame 60, as shown in Figure 6.45. The

156



distributions of hue and saturation channels of the candidate of frame 60 are similar as

the distributions of the human who wears a black cloth in the database, as shown in

Figure 6.46. Therefore, the candidate is linked to the human who is enclosed by blue

bounding box as shown in Figure 6.46(g). Since the coordinate of each point on the

stand contribute to the object, the coordinate of the human is dragged close to the

coordinate of the stand. Applying Kalman filter can eliminate this problem sinceit is not

only considering the measurement but also the motion model. The tracking results of

each object are shown in Figure 6.47, Figure 6.48 and Figure 6.49. From these figures it

can be observed that Kalman filter do not improve the result dramatically. Note that the

x-coordinate of object at frame 60 shown in Figure 6.48, thisis sparkle signal whichis

eliminated by applying Kalman filter.
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Figure 6.42: Tracking result in image space and Cartesian space
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Figure 6.44: Object tracking result without applying Kalman filter
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Figure 6.45: Too close objects are measured as the same candidate in frame 60.

(@)
(©)-(h)
(i)

()(k)
()
(m)
(n)

The target image and the disparity map.

Each step of post-processing mentioned in Subsection 5.2.2.

The candidate enclosed by its bounding box. Two objects are enclosed by
the same bounding box.

The image patch and the depth map of the candidate.

The depth map with background elimination.

The remaining foreground mask.

The image patch with background elimination by (m). Note that in this
case two objects are too close that cannot be separated from each other.
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Figure 6.46: The candidate in frame #59 and #60 and the data association result.

(@ Theresidual image of frame image #59 after the background removing step.

(b)(¢) The hue and saturation distributions of (a).

(d) Theresidual image of frame image #60 after the background removing step.

(e)(f)  The hue and saturation distributions of (d).

(g) Since the hue and saturation distributions of the candidate in frame #60 are
close to the hue and saturation distributions of the human object in the
database, data association mechanism proposed in thisthesis may fail in this
case.
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Figure 6.47: Position of object #1 with and without Kalman Filter
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Figure 6.48: Position of object #2 with and without Kalman Filter
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Figure 6.49: Position of object #3 with and without Kalman Filter
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Tracking Accuracy

In this experiment, the accuracy of the proposed system is compared to SICK laser
scanner. The object path is decomposed to three parts to analyze the accuracy in
different conditions, which are “near path,” “far path” and “circular path,” as shown in
Figure 6.50. The tracking results of each part are listed in Table 6.8, Table 6.9 and Table
6.10. For the near path object, the mean of object to laser distances is 0.1468 and the
standard deviation is 0.0457. It is acceptable distance for a non-rigid object since the
center of the object may change when it moves, and the laser measurement on it may hit
at the different part of the object body. For the far path, the mean of object to laser
distances is 0.6140 and the standard deviation is 0.2639. It is obvious that the mean and
standard deviation of the far object are larger than the near range object. This is
reasonable since the stereo uncertainty increases when the distance of the measuring
object is getting larger. For the circular path, the mean of object to laser distances is
0.2219 and the standard deviation is 0.1444. Its mean and standard deviation are
increased comparing to the near path object. Thisis because that applying Kalman filter
with constant velocity motion model, the velocity of an object is assumed to be a
constant. However, an object movesin acircular path is not a constant velocity since the
direction of the motion is changing all the time. Therefore, when an object moves along

a circular-like shape path, the proposed tracking method applying Kalman filter with

163



constant velocity model is not inaccurate. It may get the better result if the motion

model is replaced by other nonlinear model and will be the system future work.

With Kalman Filter With Kalman Filter

With Kalman Filter

Z Axis
Z Axis

@ (b)

Figure 6.50: Object trgectories estimated by the proposed method and measured by
SICK LMS100 laser scanner. The blue square signs indicate the object positions in each
step estimated by the proposed tracking method using stereo camera, whereas the red
Cross signs represent the object positions in each step measured by the SICK LM S100
laser scanner. The path is divided into three parts:

(8 The near path.

(b) Thefar path.

(c) Thecircular path.

Table 6.8: The tracking result of near path (m)

Laser Stereo with Error
proposed method
Step/Axis | XAxis | ZAxis | XAxis |ZAxis | XAxis | ZAxis | Distance
Step 1 2.095 6.118 1.965 6.001 0.1300 | 0.1270 | 0.1749
Step 2 1.338 5.965 1.381 5.856 0.0430 | 0.1090 |0.1172
Step 3 0.4298 |5.817 0.412 5.901 0.0178 | 0.0840 | 0.0859
Step 4 -0.5279 | 5.704 -0.4705 | 5.848 0.0574 | 0.1440 | 0.1550
Step 5 -1.497 | 5.674 -1.607 5.842 0.1100 | 0.1680 | 0.2008
Mean N/A N/A N/A N/A 0.0716 | 0.1244 | 0.1468
STD N/A N/A N/A N/A 0.0469 | 0.0324 | 0.0457
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Table 6.9: The tracking result of far path (m)

Laser Stereo with Error
proposed method
Step / Axis | X Axis ZAxis | XAxis | ZAxis | XAxis | ZAxis | Distance
Step 1 2.543 8.538 3.104 | 8.809 0.5610 | 0.2710 |0.6230
Step 2 1.735 9.034 1911 |9.322 0.1760 | 0.2880 | 0.3375
Step 3 6.31E-16 | 9.975 0.9674 | 9.989 0.9674 | 0.0140 | 0.9675
Step 4 -0.8536 10.52 -0.3888 | 10.77 0.4648 | 0.2500 | 0.5278
Mean N/A N/A N/A N/A 0.5423 | 0.2057 | 0.6140
STD N/A N/A N/A N/A 0.3272 | 0.1288 | 0.2639

Table 6.10: The tracking result of circular path (m)

Laser Stereo with Error
proposed method
Step/ Axis | X Axis | ZAxis | XAxis | ZAxis | XAxis | ZAxis | Distance
Step 1 1.800 6.632 2.026 7.111 0.2260 | 0.4790 | 0.5296
Step 2 1.282 7.332 1.629 7.512 0.3470 | 0.1800 | 0.3909
Step 3 0.570 7.821 0.660 8.173 0.0900 | 0.3520 | 0.3633
Step 4 -0.362 | 7.965 -0.485 | 8.028 0.1230 | 0.0630 |0.1382
Step 5 -1.039 | 7.559 -0.903 | 7.521 0.1360 | 0.0380 |0.1412
Step 6 -1.322 | 6.805 -1.076 | 6.847 0.2460 | 0.0420 | 0.2496
Step 7 -1.379 | 5.892 -1.177 | 6.081 0.2020 | 0.1890 | 0.2766
Step 8 -1.328 | 4.993 -1.157 | 4.961 0.1710 | 0.0320 | 0.1740
Step 9 -1.175 | 4.214 -1.049 | 4.386 0.1260 | 0.1720 | 0.2132
Step 10 -0.717 | 3.540 -0.699 | 3.616 0.0180 | 0.0760 | 0.0781
Step 11 -0.032 | 3.310 0.034 3.365 0.0660 | 0.0550 | 0.0859
Step 12 0.602 3.696 0.622 3.615 0.0200 | 0.0810 | 0.0834
Step 13 0.703 4.374 0.922 4.642 0.2190 | 0.2680 | 0.3461
Step 14 -0.712 | 4.936 -0.748 | 4.937 0.0360 | 0.0010 | 0.0360
Mean N/A N/A N/A N/A 0.1447 | 0.1449 | 0.2219
STD N/A N/A N/A N/A 0.0964 | 0.1394 | 0.1444
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Figure 6.51: Near path object tracking result comparing to laser.

(@ The position of each step.

(b) The absolute error of each step comparing to laser.
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Figure 6.52: Far path object tracking result comparing to laser.

(@ The position of each step.

(b) The absolute error of each step comparing to laser.
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Figure 6.53: Circular path object tracking result comparing to laser.

(@) The position of each step.

(b) The absolute error of each step comparing to laser.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, the feature-based RGB-D localization method is presented to localize
stereo camera. This method uses image features to connect the relationship between two
consecutive frame data. Thus the camera relative pose can be estimated by using SVD
decomposition method with matching feature pairs with RANSAC outlier rejection. The
experiment shows that the localization method is quite robust by using two orthogonal
laser range finders as a benchmark, and the localization result is suitable in the mapping
task whereas the mapping quality is evaluated in visual aspect. Moreover, the proposed
stereo refinement method eliminates the wrong pixels in the occlusion area, and the
small missing data area which is called a hole is interpolated by two different methods,
which are the proposed dual orthogonal linear (DOL) and radial basis function
interpolation. Experiment results show that by applying the refinement method, 3D
model dataisincreased 2% in the image space, and the accuracies of two interpolation
methods are in acceptable range in the planar case. Experiment results also show that

the processing time of the proposed DOL interpolation method is three time faster than
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RBF.

On the other hand, the proposed object detection and tracking system is proposed to
track multiple objects. The visibility-based occupancy grid map construction method
proposed in [29: Perrollaz et al. 2012] can estimate the probability of each grid cell in
u-disparity space. The proposed data post-processing method eliminates the noise and
the region of the candidate in the occupancy grid map can be extracted by using the
connected-component labeling technique and then the bounding box used to enclose the
corresponding object in image can be obtained. Objects in the database can be
successfully registered to these candidates by comparing the distributions of hue and
saturation channels as object feature vectors. Finally, each database object can be
renewed by the proposed update strategy. Experiment results show that even though an
object returns to the field of view or is in occlusion, the object can still be tracked

correctly.

7.2 Future Work

Most complete mapping systems require three considerations, which are the spatial
alignment of consecutive data frames to achieve localization task, the detection of loop
closures and the globally consistent alignment of all dataframes[1: Henry et al. 2012].

This thesis implements the 3D mapping system considering the spatial alignment
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without the loop detection and global consistency. Since the feature-based localization

method is processing frame-by-frame, the accumulating drift of all data framesis large

when the camera moves for along distance and therefore the endpoints of aloop cannot

be aligned together. This is the main problems of the proposed 3D model reconstruction

system of this thesis that should be solved in the future. Besides, since the geometry of

binocular stereo camerais fixed, the physical relationship between left and right images

can be another constraint to make the localization result more accurate as proposed in

[18: Kitt et al. 2010]. Moreover, the proposed 3D model reconstruction system does not

consider how to model and update the mapping data. In [1: Henry et al. 2012], each

point in 3D model are transformed to the “surface element (Surfel)” data structure with

the proposed update strategy. With Surfel mapping model and update strategy, not only

the visualization result is improved by using surface representation, but also make the

update task more easily.

On the other hand, for the proposed stereo refinement method, hole region to be

filled is selected by a fix threshold currently. However, due to the properties of camera

projection, the size of a certain hole changes according to the distance to the camera

coordinate. Therefore, a dynamic range of the filling hole selection mechanism based on

the measurement distance to the camera coordinate is the future work to improve the

method.
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For the proposed object detection and tracking system, three aspects can be

improved and extended. First of all, this thesis use visibility-based occupancy grid to

detect object. However, the advantage of Bayesian occupancy filter (BOF) framework

does not implement currently in thesis. With BOF framework, a static global map can be

constructed by several frame data, and then moving object can be filtered out by

comparing the local u-disparity occupancy grid map to the global occupancy grid map.

The same concept implemented in Cartesian space using laser range finder has been

proposed in [34: Wolf et al. 2004]. Secondly, as the experiment results mentioned in

Subsection 6.3.2, the Kalman filter with constant velocity motion model is not quite

accurate when an object moves aong a circular path. To overcome this problem,

extended Kalman filter (EKF) with nonlinear dynamic model might be a solution. Third,

the proposed object tracking system has not been integrated into the proposed 3D

environment reconstruction system. Combining the localization method in the first topic

mentioned in Section 4.1 and the u-disparity occupancy grid with BOF framework to

handle the dynamic environment is the next work of thisthesis.
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