
 

 

國立臺灣大電機資訊學院資訊工程研究所 

博士論文 

 

Department of Computer Science and Information Engineering 

College of Electrical Engineering and Computer Science 

 

National Taiwan University 

Doctoral Dissertation 

 

概念表徵及其應用 

Concept Representation and Its Application 

 

游基鑫 

Chi-Hsin Yu 

 

指導教授﹕陳信希  博士 

Advisor: Hsin-Hsi Chen, Ph.D. 

 

中華民國 102 年 8 月 

August 2013



 

i 

 

誌  謝 
 

論文終於完成，要衷心感謝很多人。最要感謝的人是我的家人，在人生的這

個階段回學校念書，家人們給了我最多的體諒及支持，沒有這些，研究將無法進

行。 

也要感謝指導老師陳信希教授，在這七年的時間中對我的指導、鼓勵、包容

與各種支持，有他的耐心引導及支持，這論文才能順利完成，謹在此表達深摯的

敬意與感激。另外，也要感謝眾多學弟妹們的陪伴、討論及各種幫助。 

謹將這論文獻給他們。 

 

 

  



 

ii 

 

Abstract 
 

In this dissertation, we propose a concept definition in language, derive a concept 

representation scheme based on this definition, and apply this framework in two applications: 

commonsense knowledge classification and word sense disambiguation. In addition, we assert 

two important assumptions for building concept representation using knowledge extraction: 

does commonsense knowledge appear in texts and is a small part of the Web sufficient for 

supporting important NLP tasks. Last, we introduce processed ClueWeb09 datasets. We hope 

the produced datasets can boost NLP research. 

We give a definition of concept that meets three criteria: having native origin in 

computational perspective, having no undefined terms in the definition, and having build-in 

nature for deep analysis by human and by intelligent system itself to understand internal 

structures of an intelligent system. We define concept a continuation, which is a temporary 

state in the concept computation process. This temporary state is interpreted within the 

context of the evolutionary language game. Based on this definition, we define concept 

representation to have two parts: static and dynamic parts. We investigate some theoretical 

aspects using theories in machine learning literatures. 

In the application of commonsense knowledge classification, we adopt vector space 

model to build representation and interpret this machine learning process in our framework. In 

WSD, we further apply our framework to develop two new concepts for solving WSD: 

context appropriateness and concept fitness. We use these two new concepts to build many 

new algorithms to solve WSD problem. 

For using knowledge extraction to build concept representation in the future, we verify 

two important perspectives: content of knowledge and size of knowledge sources. We find 

that commonsense knowledge are recorded in texts and assert that the web is a good source to 
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extract human knowledge. We use word ordering error task to indirectly assert that a small 

part of the web, such as ClueWeb09 dataset, can support NLP applications to produce 

comparable results to that of larger datasets, such as Google Web 5-gram dataset. These two 

assertions give us confidence to extract knowledge from a smaller dataset to build concept 

representation. 

Lastly, we preprocess English and Chinese web pages in ClueWeb09 and produce many 

resources for researchers, including (1) POS-tagged, phrase-chunked, and partly parsed 

English dataset, (2) segmented, POS-tagged, and discourse markers identified Chinese dataset, 

and (3) NTU Chinese POS-5gram dataset. 
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摘要 
 

在此論文中，我們為概念進行了定義，並基於此定義，提出了為系統建構概念表徵的架

構，及將此架構，套用在常識知識分類以及文字岐義消解這兩應用中。除此之外，我們

還驗證了兩個跟知識抽取有關的假設，這分別是常識知識是否出現在文字中，以及小規

模網路文件集是否足以支援重要的自然語言處理工作。最後，我們介紹了 ClueWeb09 這

一網絡規模資料集的一些前處理結果，希望能提供給其他研究者更好用的資源。 

我們給出的概念定義符合三個標準：本質上具有可計算性、沒有無定義的組成、有

內建的特質可被人或機器自身進行分析。我們將概念定義成一種延續 (continuation)，

這種延續可看成是一種概念運算過程的暫存態，此暫存態則放在進化語言博弈 

(evolutionary language game) 的架構下來詮釋。在此定義基礎上，我們將概念表徵

分為靜態跟動態兩方面，並使用機器學習理論來對系統的許多面向進行了理論的探討。 

將概念表徵應用在常識知識分類時，我們用向量空間模型來建構表徵，並展示如何

用我們的概念定義，來詮釋一般的機器學習處理過程。而在文字岐義消解這一應用中，

我們更進一步運用了我們發展出的概念，為文字岐義消解引入了脈絡適切性 (context 

appropriateness) 及概念適切性 (concept fitness) 此兩面向，並用此來建構嶄新的

文字岐義消解演算法。 

為了未來使用自動知識抽取的架構為機器建構概念，我們驗證了知識內容及大小這

兩基本問題。為了確認文件是好的知識內容來源，我們發現甚至連常識知識都會出現在

文件中。另外，我們利用文字語序錯誤這一問題，間接驗證了雖然 ClueWeb09 的規模

只是網路網頁的一小部份，它的規模已可產生跟 Google Web 5-gram 同樣的實驗結果，

能很好的支援重要的自然語言處理工作。 

最後，我們對 ClueWeb09 這一網絡規模資料集進行了前處理，並產生了許多有用

的資源可提供給研究者，這些資源包括 (1) 完成詞性標記、詞組切分及語句剖析的英

文語料庫、(2) 完成斷詞、詞性標記及語篇標記詞標記的中文語料庫、(3) 中文詞性 
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n-gram資料集 (NTU Chinese POS 5-gram)。 
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Chapter 1.   Introduction 

Concept and its representations have been studied for a long time in many disciplines. 

Scholars of different fields such as philosophy, psychology, cognitive science, artificial 

intelligence and natural language processing try hard to define what is concept, to trace the 

history of a specific concept, to model concepts in human mind, to discover the subtleness 

between similar concepts, to organize concepts in ontology, to search words that refer to same 

concept, to study how to draw concept from materials and to represent concept in 

machine-readable resources. Different disciplines have different focuses when they study 

concept-related topics. In artificial intelligence and natural language processing, researchers 

are interest in how to define concept and how to represent concepts in machine-readable 

format in the hope of supporting the task in hand. 

In this dissertation, we are interest in drawing a computational framework to define 

concept. The computational framework we used is based on continuation which is a concept 

used in programming language. Based on the framework, we define the concept 

representation scheme and apply the scheme to many applications to explore the usefulness of 

the computation framework and the representation scheme.  

1.1  Motivation 

In the pursuit of building human-like intelligent machines, defining concept and building 

concept representation are very important. Although concept has been studied for thousands 

years and scholars of different disciplines have proposed different definitions of concept for 

their uses, there are fewer definitions that explores computational perspective of concept. In 

addition, most concept definitions are always end up with some concepts that are needed to be 
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further defined. Although using undefined terms to define something is possible for human 

mind, these kinds of definitions introduce difficulties when we want to use these definitions to 

build an intelligent machine. 

For example, philosophers usually define concept in terms of the roles that concept plays 

in their problems of interests or the world they believe. If they believe the world has a pre 

-existing structure, they may prefer to define concept in terms of ontology or may believe that 

concept has a predefined structure which reflects the world's inherent properties and most 

fundamental structures. Plato’s theory of Forms holds this belief of relation between concept 

and the world in two thousand years ago. In this approach, philosophers give different 

structures for different concepts in terms of different terminologies, such as attributes, roles, 

categories, mental representations, abstract objects, and abilities. These terminologies are 

usually regarded as well-known or self-defined objects. When computer scientists adopt these 

definitions in their tasks such as machine reading, information extraction, and word sense 

disambiguation, these undefined objects are simply translated to features of a feature matrix in 

machine learning fields. For example, the features maybe the co-occurrence words in 

distributional representation approach (Harris, 1954). These words are undefined. More 

precisely, researchers interpret these words by themselves. In such cases, the whole system is 

a mathematical model and this model a black box for researchers. Researchers may 

manipulate different mathematical models or different model parameters to see how the 

models response to the operations, but researchers have little chance and face great difficulty 

to analyze the internal structures of these words. They do not know how the internal structures 

response to a specific model in a specific configuration of model parameters. If researchers 

use engineering perspectives to deal with the task, this is not a big problem because they have 

a workable system to solve their tasks in hand. If researchers want to build a real intelligent 

system, the system must interpret these words by itself and it must has knowledge on what it 



 

3 

 

is doing. This problem highlight the need to eliminate the use of undefined terms and the use 

of human-interpret concepts. 

We will explain these issues in length in later chapters. In summary, when concept 

definition ends up in undefined terms or human interpreted terms, it restricts the ability for 

researchers to conduct a deep analysis on the behaviors and internal structures of intelligent 

systems. It also restricts the ability for an intelligent system to interpret its behaviors by itself. 

Therefore, in this dissertation, we want to give a definition of concept that meets the criteria 

below: 

(1) has native origin in computational perspective,  

(2) has no undefined terms in the definitions,  

(3) and has the build-in nature in deep analysis for human and for intelligent system 

itself to understand internal structures of an intelligent system. 

We hope that with this concept definition, we can shed light on building real intelligent 

systems and boost the understanding of model building on solving a specific research task in 

engineering perspectives. 

1.2  Overview of this Dissertation 

In this dissertation, we define concept as continuation, define a representation scheme based 

on this definition, and adopt the concept representation in architecture of automatic 

knowledge extraction. 

In chapter 2, we describe the concept definition and investigate some computational 

aspects of this definition. We elaborate advantages of new definition by comparing it with 

some well-known definitions.  

In chapter 3, we draw a concept representation scheme from our definition of concept. 

The concept representation scheme is a simple instantiation of our definition for the 
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implementation purpose. When using a simple instantiation, we can focus our attention on the 

definition and avoid describing a complicated system. 

In chapter 4, we use the concept representation scheme to interpret a classical machine 

learning procedure. We explain that our representation scheme is capable of subsuming 

machine learning process and the is more general and useful for human to understand system. 

We use commonsense knowledge classification to demonstrate our claim. 

In chapter 5, we use the concept representation scheme to consider the relation between 

concept and its context. We identify concept fitness and context appropriateness for word 

sense disambiguation (WSD) problems. Using these two perspectives, we develop a novel 

ranking algorithm for WSD. We conduct experiments and report results in this chapter. 

In chapter 6, we describe resources processing procedures and results. 

In the last chapter, we summarize our dissertation and picture some future work. 
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Chapter 2.   Concept as Continuation 

Our concept definition is originated from the context of language study. We propose a 

computational architecture, and define concept as continuation in this architecture. After that, 

we investigate some important issues related to this definition. We organize materials in the 

order below. 

(1) We introduce concept theory (Hjørland, 2009) first, which concisely describes how 

scholars study the theories of concepts. 

(2) We introduce Shannon’s communication system, evolutionary language game (Trapa 

& Nowak, 2000) and the Chinese Room problem, which inspire us to derive our 

concept definition. 

(3) We describe our concept definition, which defines concept as continuation. 

(4) We investigate the implication of this definition in theoretical perspectives. 

(5) We compare our concept definition with other definitions. 

(6) We describe some considerations and variations on implementing the proposed 

definition. 

2.1  Concept Theory 

Although concepts have been studied thousand years, people still do not have a generally 

accepted agreement on what concepts are. Researchers often credit Plato (424 – 348 BC) and 

Aristotle (384 – 322 BC) being the earliest scholars to study concept formally. However, their 

ideas of concepts provide an important reference on the study of concepts but not a generally 

accepted consensus. Scholars propose many theories of concepts and discuss many views of 

concepts, and that does not result in consensus but in enlarging the border of our 

understanding of concepts. Hjørland (2009) systematically survey the theories of concepts and 
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classify these theories into four families. His classification is based on epistemological 

viewpoint, and he uses theories of knowledge to classify theories of concepts.  

We describe these four families here because it can give us a reference framework when 

we want to understand our proposed concept definition. These four families of theories of 

concepts are empiricism, rationalism, historicism, and pragmatism.  

Empiricism argues that knowledge is draw from observations. These observations are 

given by settings and are not contextual or theory-dependent. When applying empiricism to 

semantic, empiricism argues that meanings are defined based on observable features. When 

applying empiricism to concepts, empiricism argues that human’s sensations derive the 

concept. In computer science, empiricism argues that neural networks can be seen as 

modeling concept in empiricism.  

Rationalism argues that knowledge is based on predefined structures or rules, which can 

be logics, principles, or ontology. Plato’s theory of Forms is in this family. When applying 

rationalism to concepts, rationalism argues that concepts are prior to human’s sensations. 

Hjørland (2009) regard Formal Concept Analysis (FCA) (Priss, 2004, 2006) as a prominent 

mathematical formation of rationalist concept theory. The FCA uses features to define 

concept, and these features are regarded as simple and well-defined for the human. 

Historicism argues that knowledge has its social context and is time-variant. It argues 

that observations are theory-dependent and always be influenced by cultures, environments, 

or contexts. When applying historicism to concepts, historicism argues that concepts are 

always evolving. The concepts will change when the cognitive mechanisms are functioning. 

To understand a concept, historicism concerns about discovering the effective assumptions 

behind the concept and tracing the changes of these assumptions.  

Pragmatism argues that knowledge is based on “the analysis of goals, purposes, values, 

and consequences“. That is to say, knowledge is always based on some specific aspects of 
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reality. Pragmatism also argues that observations are theory-dependent, but it argues that 

knowledge cannot be neutral because it is derived for some purposes. When applying 

pragmatism to concepts, pragmatism argues that concepts are faceted. A concept describes 

reality in some aspects and ignores other aspects of the reality for their purposes.  

Hjørland (2009) gives three examples to illustrate the difference of concept theories, but 

we summarize three factors to make a more concise distinctions of these concept theories. The 

factors are structure-depend, time-variant, and faceted. We show the summary in Table 1. 

 

Family Factor Structure-depend Time-variant Faceted 

Empiricism No No No 

Rationalism Yes No No 

Historicism Yes Yes No 

Pragmatism Yes Yes Yes 

 

Table 1. The differences of families of theories of concepts 

 

In Table 1, we replace theory-dependent with structure-depend because the theory 

sometimes refers to ontology or reflects a specific world structure. In those cases, structure is 

more precise for describing the idea. In historicism and pragmatism, the structure is from the 

context or the purpose, which are different from rationalism. The time-variant factor in 

historicism and pragmatism contains the cases that the perceived concepts may affect the 

process of following concept perception. In terminology of machine learning, system feeds 

outputs to its inputs, which may result in recurrent neural network architecture. We do not put 

any implication between time-variant factor and self-feed architecture here. 

With the theories of concepts in mind, we can use it to explain our concept definition. 

Before defining concept, we put some words on the distinctions between concept definition 
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and theories of concepts. 

When we use the term definition, it means we refer one term to something. For example, 

a concept definition is to refer concept to something. Abstractly speaking, a definition 

connects object to other objects and use criteria to rate the goodness of this connection. In the 

philosophy of science, this means we use something to explain concept in order to reach a 

good understanding of concept. The criteria of judging the goodness of explanation is not 

easy to formulate. According to Friedman (1974), the judgment is the problem of scientific 

explanation:  

 

In Friedman’s article, he describes three views of scientific explanations. One of viewpoints 

of explanation is that “scientific explanations give us understanding of the world by relating 

(or reducing) unfamiliar phenomena to familiar ones.” We adopt this viewpoint when we 

construct our concept definition
1
. 

In our concept definition, we relate concept to a computational architecture, which is 

unambiguous and well-defined mathematical computation model. In this way, we avoid the 

use of human interpreted terms in defining concept. Next section, we will ground our concept 

definition to existing computation models. 

2.2  Concept and Language 

When we want to define concept in context of language, we must consider the relations 

between concepts and languages first. The relations between concepts and languages are 

                                                 
1
 Actually, the explanation of definition covers three views in Friedman’s article. We give a more detail analysis 

in Appendix A. 

“The central problem for the theory of scientific explanation comes down to this: what is 

the relation between phenomena in virtue of which one phenomenon can constitute an 

explanation of another, and what is it about this relation that gives understanding of the 

explained phenomenon?”  (Friedman, 1974)    
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complicated. When studying the relations, different disciplines have different focus and 

different assumptions. For example, psychologist may focus on concept development, and 

hence the language is just tokens to denote concepts in human mind. For some theorists, 

language is just tokens. They ignore concepts and may focus on topics such as the learnability 

of language, language identification (Gold, 1967). For Noam Chomsky, language has its 

structures and is generated by deep structures in the human mind, and concept is a general 

term to refer idea in mind. For some linguists, concepts denote components in real languages 

such as phoneme, words, phrases, and sentences. In this case, concepts are denoted by tokens. 

However, some scholars assert that concept has its own internal structure. For example, 

Margolis and Laurence (2011) investigate many proposals about the structure of lexical 

concepts
2
. We adopt this viewpoint and use continuation as an instantiation of concept’s 

internal structure. Moreover, we embed the continuation in communication model to let our 

concept definition have a solid computational ground. 

 

 

 

 

Now, we consider computational models about language. In Shannon’s communication 

system (Shannon, 1948), the language is signals from sender to receiver, and the signal may 

be corrupted by noises when signals are transmitted (see Figure 1). In this communication 

system, concepts are conveyed by words and are transmitted to receiver with possibility of 

                                                 
2
 In their definition, lexical concept is a word-sized concept, and it can be used to compose complex concepts. 

Sender’s 

concepts Noisy channel 
Receiver’s 

concepts 

Encoder Decoder 

Words (information) 

Figure 1. Diagram of Shannon's communication system for language. 
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misunderstanding. In this case, concepts are transparently encoded in words and jump into 

head when receiver decodes the received words. Although the concept definition is not 

necessary here, the communication system do capture an important aspect of language. Not 

like Shannon who concerns the communication process, we are interested in the words’ 

ability to trigger receiver to do computation. Because words carry concepts, the concepts 

trigger computations in both sides.  

Nowak’s evolutionary language game (Komarova, Niyogi, & Nowak, 2002; Nowak, 

Plotkin, & Krakauer, 1999; Plotkin & Nowak, 2000; Trapa & Nowak, 2000) further extends 

the communication system in a game setting. The meanings of signals are explicitly modeled 

in the evolutionary language game. In his settings, sender and receiver have a matrix P and Q, 

respectively. The matrix P encodes the sender’s knowledge of signals associated with 

meanings
3
, and the matrix Q encodes the receiver’s knowledge of signals associated with 

meanings. In this way, a concept can be denoted by many signals and vice versa. He then 

defines language        for an individual. For two individuals, they may have different 

knowledge about language, and hence they have different language        and           

respectively. Trapa and Nowak (2000) defines payoff function         and proves that a 

group of individuals with random knowledge of language can communicate to each other in 

the evolutionary language game setting. In summary, Nowak proves that it is possible to 

communicate concepts using signals even the initial knowledge of signals and concepts are 

different between individuals. But Nowak’s model consider language        of an 

individual as a whole, it is difficult to apply his results in various applications. 

Although Nowak asserts that the communication between different individuals with 

different language knowledge is possible no matter the individual being a human or a machine, 

some philosophers concern the ability for a machine to understand the communicated 

                                                 
3
 In Nowak’s paper, signals are associated with objects, which are anything that can be referred to, including 

concepts and meanings in human mind. 
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information. This is the core problem questioned in the famous Chinese Room problem 

(Searle, 1980).  

The Chinese Room problem is a thought experiment. It assumes that a computer system 

already passes the Turing test in Chinese language. If a man who has no knowledge about 

Chinese replaces the computer, the conversation in the Turing test can continue theoretically. 

The man runs the program, but this man doesn't understand Chinese. Searle concludes that the 

machines cannot understand human languages even thought machines conduct successful 

conversations with human. It means successful communication does not entail successful 

understanding. Although Searle’s argument is controversial, it highlights an important point 

that communication model cannot completely model all aspects of language. Language 

understanding is an important aspect of language and concept modeling. It inspires us to give 

a concept definition. 

2.3  Defining Concept as a Continuation 

Now, we have mentioned that Nowak’s evolutionary language game asserts communication 

between machine and human is possible. On the other hand, the Chinese Room problem 

argues that communication does not entail understanding. How do we build machines with 

abilities of language communication and understanding? 

In logical positivism, all meaningful statements must be verifiable. This follows that if 

we want to assert the statement “a machine understands language”, we must have a proof for 

verification. The empirical proofs for language understanding can be anything that been used 

to test a human for his/her understanding of language. We denote these empirical proofs as a 

verification set V and proof    .  

In Nowak’s evolutionary language game, concept encoding matrix       , in which 

n is the number of objects (concepts) and m is the number of signals (words). The concept 
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decoding matrix        is defined in the same way. Now, because we must have proofs 

for asserting statement “system understands a concept i”, we let concept encoding matrix P be 

a product of two matrices          and          (see Figure 2). The concept decoding 

matrix      can be defined in the same way, in which          and         .  

 

 

We denote matrix   as a concept-proof matrix, and matrix   as a proof-word 

information matrix. For example, for a concept        ,      , we may have multiple 

proofs     ,        , to assert that system understand concept   . With this formation, 

the machine has verifiable nature of its internal structure for human understanding.  

In Trapa and Nowak (2000), they define different types of languages based on 

constraints for matrices P, Q, and payoff function        . For example, a language        

is a Nash language if                for all language          , in which    has same 

dimension with P,    has same dimension with Q,         
 

 
           

      
      

 
   

 
   , 

     
 
     , and      

 
     . On the other hand, if      and     , we do not have 

the necessary to impose constraints for matrices G, H, R, and S. Matrices G and S are for 

verification by the third individuals. We can let          and            which means if 

proof k is used to verify concept i,       , else,       . In this case, a proof can be used to 

verify multiple concepts and vice-versa.   

Now, we have grounded the understanding of a concept on Nowak’s evolutionary 

= 

proofs 1..|V| words 1..m 

concepts 

1..n P G H 

words 1..m 

Figure 2. The relations between concepts, words, and proofs. 
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language game, which is a solid computation model. In this model, concept            

     ,            
   
        , in which          and         . In other word, 

concepts are represented by words and proofs.  

We can define an operational measure for language understanding. We have the Equation 

1, which states that if the difference between matrices G and S of human and machine is 

smaller than a threshold    , we assert the statement “the machine understands the 

language like human” is true. 

 

        
            

            
            

      
   
   

 
       Equation 1 

 

Although the definition of concept understanding on Nowak’s evolutionary language 

game is clear, it is not a good choice to use this as a concept definition. Nowak’s evolutionary 

language game describes stationary status of a group of communicating individuals, but we 

want a concept definition that can be used to design a system to communicate with members 

of group with stationary language knowledge.  

Now, consider the situation that two systems communicate with each other, and a 

scientist studies the change of concept understanding of the two systems in the 

communication. This situation is much like that developmental psychologists study human 

language development except the scientist has access to internal structures of systems. When 

a system receives a signal (word), it may triggers many concepts, and hence a concept may 

triggers proofs to be verified by the scientist. When this process continues, in a snapshot, how 

does the scientist define what is concept in a system?  

This scientist will notice that there are words, concepts, computation, and computed 

proofs of concepts. For a concept, there is pre-existing structure in the last communication, 

and system uses the information to compute related proofs (see Figure 3). We can say that a 

concept is represented by this pre-existing structure, and this structure is actually an 
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un-finished computation in the communication process. In other words, concept is a 

continuation in a computation process. We propose concept as continuation to be the 

definition of concept. 

 

 

 

This definition is well-defined because this is based on evolutionary language game 

setting. This definition also gives us a computational viewpoint of concept, which gives great 

advantages when we want to design real systems. In this concept definition, we have a 

uniform view of system’s concepts. In this definition, we can unambiguously define concept, 

concept computation, and language understanding. We can have a single viewpoint to 

integrate NLP tasks, which usually have their own definitions of concepts and understanding. 

This uniform viewpoint of concept is very important when we are interesting in designing a 

real intelligent system and when we are integrating multiple NLP tasks into a single intelligent 

system. 

Notice that although we define concept as continuation, we do not specify the structure 

of a continuation, what does a concept refers to, and what a proof is. We think these as the 

flexibility of our concept definition and will explain these issues in detail later. We consider 

some theoretical aspects of our concept definition first.  

System 

continuation 

of concept i 

signals 

proofs for concept i 

scientist for 

verification 

Figure 3. Relations of signal, continuation, concept and proofs. 
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2.4  Some Theoretical Aspects of the Definition 

We are concerned with some theoretical aspects of concept definition. The central problem is 

stability of a system. The stability problem has three different aspects, which are called 

dogma stability, input stability, and test stability. We describe them below. 

1. A system of dogma stability means the system has ability to strictly obeying some 

specific rules embedded by human. Human may want machine to obey the rules in 

any situation that the system may encounter. We can also use controllability to denote 

dogma stability of a machine. 

2. A system of input stability means its language understanding ability will not change 

significantly when the system has small changes inside the system.  

3. A system of test stability means the system has a general knowledge of language, and 

its language understanding ability will not change significantly when we use different 

verification sets, which may also change when the language is in evolution. Because 

a system is also a learning algorithm, the test stability is just the generalization of a 

learning algorithm. 

Using our concept definition, we can study these aspects of stability from machine 

learning viewpoint. When studying these stabilities, the theories of concepts and time orders 

of magnitude are two very important factors. The theories of concepts define how signals are 

sampled from reality. This sampling of signals reflects data distribution, and then affects the 

standard of judging system’s understanding ability. The time order of magnitude defines the 

scope of validity of stability analysis. There are three time orders of magnitude to be 

concerned: static world, short-term period, and long-term period. We describe them below. 

1. Static world: the time factor is not considered in the analysis. In this case, the 

distribution that generates signals is unknown but fixed for all time. Most analyses of 
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machine learning algorithms are in this situation.  

2. Short-term period: the system has small changes which may be due to system’s shift 

in its learning process or small environmental shift. For example, when a man 

changes his taste of food, a machine must adopt to this change to serve this man. 

3. Long-term period refer to system’s lifetime. Although we have full control in the 

birth of a system, we want to understand how it will behave in a long time without 

human’s interference.  

When the period is longer than system’s lifetime, test stability can be modeled by 

Nowak’s evolutionary language game. This implies that human language will co-evolve with 

concepts in machines because signals are exchanged between human and machines just like 

the setting in evolutionary language game. Input stability and dogma stability is meaningless 

when time period is larger than system’s lifetime. In Table 2, we sketch the theorems that are 

adopted in analyzing relations between stability and time period. In the table, blank cell 

means relations are not covered in this dissertation, and ML denotes machine learning.  

 

 Input stability Test stability Dogma stability 

Static world 
Sensitivity analysis 

(stability in ML) 
Generalization in 

ML 
Rice’s Theorem 

Short-term period Stability in ML   

Long-term period Stability in ML 
The No Free Lunch 

Theorem 
 

Table 2. The relations between stability and time factor. 

 

We will use existing theorems in machine learning literatures to analyze system’s 

stability. We define some mathematical terminologies first. 

Suppose a system has n concepts,     proofs, and their continuations           

  , in which    denotes continuation of concept i. Concept i has proofs              

       , and          is concept-proof matrix which is given by human. We define 
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empirical loss                           
   
   

 
    to measure language understanding of 

system, in which          is the input of function f,           is system learned 

knowledge to judge the relation between a concept and a proof, and                     is a 

loss function for function  ,     , and       . Because continuation is an un-finished 

computation and may changes, it is difficult to analyze system in this form. Therefore, we let 

the system has a specific internal structure for the convenience of analysis. We suppose that 

the system uses its knowledge to generate intermediate data and uses intermediate data 

         to learn a function for P (see Figure 4). In this setting, we can analyze system in 

two stages: the feature generating stage and machine learning stage. System generates features 

using continuations of concepts, and adopts standard machine learning approaches to learn a 

good function to show its understanding of language.  

 

 

 

The input stability of system considers the problem that the language understanding 

ability will not change significantly when the system has small changes. The small changes 

may be caused by external signals or by system’s internal operations, and the changes may be 

in continuations or in intermediate data D. This stability problem concerns if a system can act 

like a stable average person and won’t go crazy for changes from noises, inputs or internal 

operations. 

C: continuation 

intermediate data D 

System 

P= (pi,j) 

Figure 4. Internal structure of system for analysis. 
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If the small changes is in intermediate data D, according bipartite stability of ranking 

algorithms (Agarwal & Niyogi, 2005), there are learning algorithms that can result in a stable 

system. Because it is helpful to understand definition of system stability, we state stability of 

ranking functions in information retrieval in detail. In information retrieval, a query has a set 

of relevant documents, and system learns a ranking function to rank relevant documents and 

non-relevant documents of a set of queries. In our system, the concept acts like query, proof 

acts like relevant document, and non-proof of a concept acts like non-relevant document. 

Bousquet and Elisseeff (2002) gives many stability definitions for learning algorithms, and 

Agarwal and Niyogi (2005) uses similar definitions to prove that some ranking algorithms are 

stable. For example, ranking algorithm RankingSVM (Joachims, 2002), which uses 

reproducing kernel Hilbert space (RKHS) with kernel, has uniform leave-one-instance-out 

stability
4
 (Geng et al., 2008).  

 

Definition 1. Uniform leave-one-instance-out stability 

Let             , in which    ,    ,        ,5 D is the input space, and p 

is the label. Let                  
  denotes a training set that is drawn i.i.d. (Independent 

and identically distributed
6
) from an unknown distribution, and           denotes a 

training set with one instance out. The    denotes the resulting model of a learning algorithm 

L using training set S. This model    minimizes loss function             , where 

                      . The cost function         . Now, we say L has uniform 

leave-one-instance-out stability  ,       , if 

      ,                              . 

 

                                                 
4
 Uniform leave-one-instance-out stability is defined in Geng et al. (2008) and is similar to uniform score 

stability defined in Agarwal and Niyogi (2005). 
5
 In Agarwal and Niyogi (2005),   can be the set of real number.  

6
 In our definition of intermediate data D, it must be drawn i.i.d. in order to adopt this stability definition. This 

can be done by many methods. For example, we can draw a i.i.d. signal set, and feed this signal set to generate 

an i.i.d. intermediate set. 
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This definition states that if learning algorithms have uniform leave-one-instance-out 

stability, the resulting model will not change significantly when the training set has a small 

change (leaving one instance out). In Agarwal and Niyogi (2005), they proves that      
  

  
, 

where     is a regularization parameter,                              , and        

is the kernel of RKHS. Geng et al. (2008) show that for two training sets    and   , 

      ,                            
                      

                 
, where     is the size of  

set S.  

In static world, the whole system still has good input stability, because the role of 

continuations is just like a component of algorithm, and it will generate same distribution of 

intermediate data D if the distribution to generate signals is the same. In this case, the 

generalization (test stability) of system can be analyzed by using generalization theorems in 

ML. The generalization ability depends on the learning algorithms we adopted in intermediate 

data D. 

According to the No Free Lunch Theorem (Wolpert & Macready, 1997), if a system is 

built based on static world assumption, which is a viewpoint that holds by empiricism and 

rationalism on the theories of concepts, theoretically, the system cannot guarantee to have a 

good language understanding in long-term period for test stability. The No Free Lunch 

Theorem states that if a learning algorithm performs well in some tasks, it must perform badly 

in other tasks. The system is a learning algorithm, and it understands language well in the 

very beginning. Theoretically, we cannot guarantee how the world will change. Therefore, it 

is possible that this already built machine will perform badly in some cases in future. This 

theorem prompts that we can only have results in probability for system’s understanding 

ability in long-term period.  

We turn our attention to dogma stability in static world. A system with dogma stability 
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means it will strictly obey some specific rules without exception in any cases. The most 

famous example is The Three Laws of Robotics, which is coined by the science fiction author 

Isaac Asimov (1920 – 1992). Briefly speaking, scientists do not want a designed machine to 

hurt people. The possibility to design such machine is the issue of dogma stability. Dogma 

stability is different from input stability because system maybe misunderstands some concepts 

but is still have a good understanding of language. According to Rice's Theorem, which states 

that it is un-decidable for any non-trivial property of Turing machines, we can say that dogma 

stability can't be guaranteed if we do not put some assumptions on the human world. On the 

other hand, because scientists can always conclude a probability of violating dogma stability 

for a system, dogma stability may not a major concern for some real systems.  

In the long-term period, the input stability is the same as short-term period because 

system can continuously make a small changes like in short-term period. Therefore, we 

discuss the input stability in short-term period. In the short-term period, the system may 

modify their concepts to adopt the environmental changes, which also means the distribution 

to generate signals may not be stationary. For input stability in short-term, the input stability 

of whole system and intermediate data D depends on how we design the system. If all 

concepts are interrelated, the system with continuations is much like a recurrent neural 

networks (RNNs), and the output of RNNs is usually non-linear and is hard to be predicted 

(Barabanov & Prokhorov, 2002). Therefore, if we design system to have independent 

concepts or independent group of concepts, we can analyze system theoretically. We can 

analyze this issue in different cases such as same signal distribution but different concepts, 

different signal distribution but same concepts, and different signal distribution and different 

concepts. In other words, the proposed concept definition can be analyzed mathematically. 

This is very important when we want to design a real intelligent system. 
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2.5  Related Work in Concept Definition 

Scholars of different disciplines have their concept definitions to apply in their work. For 

philosophers, concept has intension and extension that represent knowledge of concept in 

human mind. For logicians (Jurafsky & Martin, 2009a, 2009b), a concept can be a symbol to 

denote an object in a logic model, can be a category to denote a group of objects, and can be a 

first order logic sentence(s) which specifies its relations with other concepts. In Formal 

Concept Analysis (Priss, 2006), concepts are objects that have attributes. The objects and 

attributes are defined by human’s commonsense, in which its meaning is interpreted by 

human in the context. For linguists, concept may be represented by words. Therefore, they use 

words to denote a lexicalized concept. The distinguished WordNet (Fellbaum, 1998) database 

adopt this viewpoint, and no formal definition of concept is given. In WordNet, concept is 

represented by a synset which contains words for a concept. For ontology builders and users, 

concept may play different roles in ontology. It may be an object, predicate, quantifier, 

function, and relation. These terminologies gain their meaning in the ontology. Its connection 

to real world is also interpreted by human. For researchers in artificial intelligence, concept 

may be represented by words or an object in a logic model.  

 In summary, concept definition in these disciplines is an object to be operated, while in 

our concept definition, a concept itself is a computational process that uses a continuation to 

represent it. Moreover, the continuation exists in the environment it lives like a continuation 

in programming language. This viewpoint adopts pragmatism concept theories. Its connection 

to real world is defined by its ability of understanding language and is modeled inside the 

definition. A continuation do not contain all information because some information is stored 

in its environment. A continuation is similar to a device that stores links to its environment 

and links to machine's internal states. Therefore, a continuation may has its internal structures 
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to store different types of information. We discuss this issue in next chapter. 

 In the viewpoint of continuation, human do not interpret a concept in machine. Human 

just provides proofs to test the comprehension of concept in language understanding of a 

machine. 

Computer scientist John Sowa (Sowa, 1984) gives a concept definition in pragmatism 

viewpoint, and we quote it below.  

 

The core insight of his definition is similar to our definition which captures the 

computational aspect of concept, but we further formulate concept definition in evolutionary 

language game and add mechanism for verifying language understanding. Marvin Minsky 

proposes a similar viewpoint of concept definition but uses different terminologies. In his 

book The society of Mind (Minsky, 1986), mind is a society which is composed of a group of 

agents. These agents represent various processes in human’s brain, and these processes can be 

any concepts interested by researchers such as free well, the sense of self, belief, memory, and 

consciousness. In our definition, we denote all processes in human mind as concepts and do 

not put any assumption on the structure and implementation of concept in order to gain the 

ability to analyze system theoretically in modern machine learning perspectives. Our concept 

definition is also similar to intelligent agent (Russell & Norvig, 2003) in artificial intelligence 

literatures, but we connect agent’s output to language understanding.  

Barker (2004) emphasizes the similarities between formal languages and natural 

languages and uses continuation to analyze linguistic phenomena in natural language. He 

“Concepts are inventions of the human mind used to construct a model of the world. They 

package reality into discrete units for further processing, they support powerful mechanisms 

for doing logic, and they are indispensable for precise, extended chains of reasoning. But 

concepts and percepts cannot form a perfect model of the world,—they are abstractions that 

select features that are important for one purpose, but they ignore details and complexities 

that may be just as important for some other purpose.” (Sowa, 1984, p.p. 344)  
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treats quantification words like everyone, no one, and someone as a continuation, and defines 

these words in formal language context. He uses control operators like control, prompt, shift, 

and reset in delimited continuation (Felleisen, 1988) to demonstrates computation of 

quantification words in syntax tree. Barker also studies a phenomenon called focus, which is 

denoted by focus particles such as only. His approach use first order logic to represent the 

semantic of sentences like the approaches in computational semantics (Jurafsky & Martin, 

2009a). Because continuation is a flexible mechanism to handle execution flow of formal 

language, he uses continuation as a mechanism to handle complex relations and phenomena in 

natural language, such as coordination, ambiguity, and quantification. In Baker’s formulation, 

a concept actually is a predefined continuation that has specific effects in parse tree. Although 

this definition is similar to our definition, the meaning of a concept is interpreted in FOL 

context, and hence, is interpreted by human. 

When considering the relations between concept and language, researchers usually 

regard concepts as states of mind and study the procedure of translating mind states to 

languages. For Noam Chomsky (1986), the translation procedure is the knowledge of 

languages, and languages are internalized language (I-language) that translating the structure 

of concepts (mind states) to externalized language (E-language), which is independent of 

mind. In this viewpoint, language understanding is the problem to understand the 

correspondences between I-language grammars and E-language grammars. In our concept 

definition, the grammars are one type of concepts, and the E-language is just one type of 

proofs that can be adopted to measure system’s understanding level.  

When considering a concept to be a program that has the ability to do something in an 

environment, researchers usually regard concepts as a computer program. They follow the 

approaches of reductionism, which reduces complex thing to many simpler and smaller things 

and combines these smaller results to solve the complex thing. For example, when studying 
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machine understanding, researchers in natural language frame the understanding problem to 

many smaller problems such as named entity recognition (NER), co-reference resolution, 

template element, template relation, and scenario template in the Message Understanding 

Conference. In this case, a program that archives good results in sub-problem is regarded as 

understanding language well. This approach is similar to our concept definition, which define 

concept to be a program represented by continuation, and we further link this approach to 

evolutionary language game to form a more general framework to integrate sub-problems. In 

other words, we provide a general framework to integrate many sub-systems, and this 

integration is still within language understanding framework.  

In the next section, we will mention some considerations of the proposed definition in 

implementation. 

2.6  Considerations of Implementation 

We have sketched a framework in our concept definition, and we give detail descriptions of 

continuation and proofs here.  

In our concept definition, we equally treat all types of concepts, but in literatures, 

researchers may manually gives definitions for concepts like beliefs, goals, plans, 

commonsense, knowledge, and intentions (Mueller, 2010). It is straightforward to build 

continuations for these concepts. Therefore, when we implement our concept definition, the 

implementation of continuation and the source of proofs are the keys to build intelligent 

systems. In this dissertation, we use a concept representation scheme to represent continuation 

and use automatically extracted knowledge as proofs. We will explain concept representation 

scheme in chapter 3 and knowledge extraction in chapter 4. 

We put some words on the proofs. We already have a continuation to represent a concept. 

Now, we explain how to test concepts with proofs here. In Figure 3, we use a set of proofs to 
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verify that a concept is studied by system. When the concept is settled in the concept-proof 

matrix, we use one row to represent it. For example, we want to know the concept <car> is 

well acquired by system, we can test it with proof <a car is a vehicle> or <a car is a human>. 

When we have a set of similar proofs such as <a car is a machine> and <a car has four 

wheels>, we can change the concept-proof matrix in other equivalent formats. One of the 

equivalent formats is to assign relations to concept. For example, the <car> has 

human-readable relations such as <is_a>, <has>, and <type_of>. Using this way, we connect 

system implementations to a general case and easy to be understand. 
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Chapter 3.   Concept Representation 

We use a concept representation scheme to represent continuation in this chapter. The 

proposed concept representation scheme is similar to continuation in programming language 

but has greater flexibility to adopt complex world. Just like a continuation in programming 

language store state of current program, we use structured format to represent the state of a 

continuation. In order to connect state to its environment, we use an explicitization process to 

do this job. In summary, we define our concept representation “a scheme that employs an 

explicitization process in a specific perspective to elicit a mathematical object for a 

concept.” The mathematical object is the intermediate data D in Figure 4, and this object 

usually is adopted as feature matrix for machine learning algorithms.  

In this chapter, we organize materials in the order below.  

(1) We describe a proposed structured format used in a scheme. 

(2) We describe related work of concept/word representation in natural language 

processing. 

(3) We describe the connection to feature engineering of machine learning. 

3.1  Representation of Continuation 

We use traditional frame structure to store the static knowledge of a concept, and we use the 

explicitization process to represent the dynamic part of a concept. We show the relations 

between frame structure, explicitization process, and system in Figure 5. In Figure 5, system 

can access the internal frame structure, and this ability completes our third claim that the 

concept definition (concept as continuation) has the build-in nature in deep analysis for 

human and for intelligent system itself to understand internal structures of an intelligent 

system. In summary, our concept definition originates from the evolutionary language game 
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and has native origin in computational perspective. We use continuation to eliminate the need 

of undefined terms in the definition, and use frame structure to let the system having build-in 

nature in deep analysis about system’s behaviors. The whole concept representation scheme is 

similar a feature engineering process except the scheme is grounded in a language 

understanding context.  

 

 

 

The frame structure contains static knowledge of a concept, and explicitization process 

represents dynamic connection between static knowledge and intermediate data D. Now, we 

face a cold start problem, which means we do not have the static knowledge but we must use 

the knowledge to let explicitization process to generate intermediate data D. Therefore, we 

extract knowledge from web pages to solve cold start problem. 

The frame structure may contains many kinds of knowledge. We classify frequently used 

knowledge in frame structure below.  

(1) Knowledge of language: 

This category contains knowledge about language, including lexical knowledge and 

syntactical knowledge. 

A continuation 

System 

Intermediate 

data D 

Frame structure 

Explicitization 

process 

P=(pi,j) 
Proofs/ 

Applications 

Figure 5. The relations between frame structure, explicitization process, and system. 
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(2) World knowledge: 

This category contains world knowledge and knowledge that connects world 

knowledge to language knowledge. We further classify the knowledge into three 

types, including relation knowledge, pattern knowledge, and grounded knowledge. 

Relation knowledge connects two phrases by using relation such as type_of relation 

in knowledge <bank, type_of, company>. Pattern knowledge is a knowledge 

extraction pattern and connects concept to language usages. For example, pattern 

<is_a, STRING> extracts knowledge <bank, is_a, company>. Grounded knowledge 

contains source sentences like the sentences we remembered and frequently used as 

prototype examples. For example, <The bank is a company incorporated …> is a 

prototype sentence used in pattern <is_a, STRING>. We use these three types of 

knowledge to extraction world knowledge.  

(3) Explicitization knowledge: 

This is the knowledge that been learned in explicitization process. Its detail 

information of the knowledge is subject to adopted learning algorithms. 

3.2  Related Work 

In literature, many representation schemes have been proposed. Some schemes are used to 

represent words while some schemes are used to represent concepts. We classify these 

representation schemes (static knowledge) in two categories (from human and from texts) 

according the source of the representation. We describe these representations below. 

The first type of knowledge source is human. Researchers directly derive static 

knowledge from human. These static knowledge include commonly used resources in NLP 

such as linguistic database (WordNet, FrameNet, VerbNet), ontology (Suggested Upper 

Merged Ontology, SUMO), commonsense knowledge (CYC, ConceptNet), and collaborative 
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knowledge base (Freebase). Experts or general users manually enter the knowledge, and the 

size of the knowledge is limited.  

The second type of knowledge source is texts. Researchers can design systems to extract 

knowledge from texts or design mathematical models to represent knowledge in texts. We 

ignore knowledge extraction here and describe the mathematical representations.  

Researchers use mathematical objects to derive representations from texts for words and 

concepts. These derived representations may be adopted in machine learning algorithms, but 

some representations store representations in internal network. These mathematical objects 

can be classified into three categories.  

(1) Frequency-based: This category counts the frequency of features in texts and uses 

approaches to select features. For example, distributional representation approach 

(Harris, 1954) collects co-occurrence words in texts to represent a target word or 

concept. Turney and Pantel (2010) gives a good review on using different kinds of 

lexical patterns to derive meaning for words. 

(2) Model-based: This category relies on mathematical models to build representations 

and capture static meaning of a word. For example, Latent Semantic Indexing adopts 

singular value decomposition (SVD) to derive latent concepts for word 

representation. Brown clustering (Brown et. al., 1992) uses clustering algorithms to 

cluster similar words and assigns bit strings to represent words in a cluster. Word 

embedding (Bengio, 2008) encodes word knowledge in a real-valued vector and uses 

neural language model to learn the representation. Turian et. al. (2010) adopts many 

semi-supervised learning algorithms including word embedding to represent words 

and conducts experiments on many NLP tasks to compare the usefulness of different 

approaches. 

(3) Operation-based: This category also relies on mathematical models to build 
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representations, but the algorithms in this category focus on capturing dynamic 

aspects of words, which are different from the model-based approaches. For example, 

holographic lexicon (Jones & Mewhort, 2007; Plate, 1995, 2003) uses neural 

network framework to learn representations that encode word order information and 

word composition information in distributed representations. Thater et. al. (2010)  

uses vector model to integrate compositionality knowledge of concepts and context 

information of a word. 

In addition to above approaches, some researchers adopt logic to represents word 

meaning. These approaches usually need human to encode domain knowledge manually. 

Therefore, it is similar the approaches that derive knowledge from human.  

When researchers want to measure the usefulness of a concept/word representation 

scheme, they proposed many criteria for this purpose. Commonly used intrinsic criteria to 

evaluate a representation include (a) encoded knowledge/information, (b) computational 

properties, such as accessibility, efficiency, affordance of generalization, robustness and 

graceful degradation (Plate, 2003), (c) supported operations, such as composition, 

decomposition, and manipulations, (d) expression power of the representation, (e) 

transparency, which means the results is easy to be understand by human, and (f) flexibility, 

which means the representation can be used in different situations. Researchers also adopt 

extrinsic applications to assert the usefulness of a representation. These applications can be 

any NLP applications such as chunking, WSD, word similarity, and GRE word test.  

In our representation, we emphasize on transparency and flexibility because we are want 

the representation can easily integrate different kinds of knowledge and has internal structure 

that is readable for human. Therefore, we put the readable part in the frame structure and put 

the un-readable and somewhat mysterious part in explicitization process. In this way, we can 

easily adopt our representation in existing machine learning approaches, and we still have 
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control on what is the learned knowledge of a system. 

Our representation is similar to feature engineering step in traditional machine learning 

approaches. The explicitization process is just like a feature engineering process, and the 

frame structure is just the resources that a feature engineering process can use. We integrate 

these two parts to let the system has ability to know what is the learned knowledge. 

Researchers also have access to system’s internal structures in this approach. When we want 

to design a real intelligent system, this is a very important feature. 

When we consider the frame structure and the concept-proof matrix, these two objects 

can form a closed loop in some settings, in which one object is the target to be learned and the 

other is the knowledge source. 

In a summary, the proposed concept representation is a framework, and its intention is 

for developing real intelligent systems and is not for a specific applications. With the ability to 

have control on system’s internal knowledge and the solid concept definition in language 

understanding perspective, we will have a good starting point for implementing intelligent 

systems. 

3.3  Framework of Knowledge Extraction 

We use automatically extracted knowledge as proofs of system’s understanding and as 

knowledge in frame structure. By using automatically extracted knowledge, we can alleviate 

human’s efforts to assert system’s understanding level. The ultimate goal of our concept 

definition is to build a system like human, which can learn knowledge from environment and 

communicate to people for the knowledge they learned. Because we have limitations on time 

and computation power, we demonstrate the use of our concept definition and derived concept 

representation scheme in the knowledge extraction process. We will describe our work in next 

section. 
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In the algorithm, the classifier C can be for a set of proofs/knowledge of a concept or 

many concepts. The algorithm can also run in batch mode if we have limited resources, but 

this limitation does not downgrade the value of the algorithm. This algorithm is much like 

algorithm used in NELL architecture (Carlson et al., 2010), but our algorithm has the ability 

to analyze knowledge in its own frame representation. 

The knowledge extraction framework is shown in Algorithm 1
7
.   

 

Algorithm 1. Automatic knowledge extraction from texts 

1 Let  K= a seed of knowledge set 

2 Build classifier C from K 

3 until 

4     Identify knowledge in texts 

5     Induce new lexical or syntactical patterns P 

6     Extract new knowledge from texts using patterns P 

7     Assert the quality of new knowledge using classifier C 

8     Let K be union of new knowledge set and K 

9     Build new classifier C from K 

10 until stop criteria  

 

3.4  Applications of Concept Representation 

Using extracted knowledge to represent concept is common in many literature (Chklovski, 

2003; Etzioni, Banko, Soderland, & Weld, 2008; Singh et al., 2002; Yu & Chen, 2010). 

Therefore, in our study, instead of extracting knowledge to build concepts, we focus on other 

related perspectives about concept representation and knowledge extraction.  

To demonstrate the application of our concept representation scheme, we adopt two 

problems. First, we study commonsense knowledge classification and interpret feature 

engineering process in concept representation scheme. This shows that our concept 

                                                 
7
 A similar algorithm appears in our paper (Yu & Chen, 2010). 
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representation is more general than feature engineering process and is more feasible in the 

point of view of natural language processing. We describe these issues in chapter 4. Second, 

we demonstrate the use of eliciting information from different perspectives to learn 

knowledge of word sense disambiguation. This process can be interpreted in same scheme, 

but we have a novel viewpoint to deal with WSD problem, which is a quite well-known 

problem in natural language processing. We describe these issues in chapter 5. These two 

demonstrations illustrate the application of our concept representation scheme.  

To study perspectives that are important and usually ignored by researchers, we examine 

two assumptions about the content and size of knowledge. We describe these issues in chapter 

6. In chapter 6, we also describe some important preprocess steps when we want to extract 

knowledge from the web. 
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Chapter 4.    

Commonsense Knowledge Classification 

In this chapter, we adopt our concept representation scheme in commonsense knowledge 

(CSK) classification, a task which is to know whether there is a specific relation between two 

noun phrases. 

When representing the static part of a concept in this chapter, we represent commonsense 

concepts (phrases)
8
 in predefined slots, and a learning algorithm is adopted to learn 

classifiers for commonsense knowledge. We formulate the CSK classification as a binary 

classification problem. The classifiers detect if a relation is valid between a pair of noun 

phrases. For example, relation CausesDesire holds between phrases “the need for money” and 

“apply for a job”.  

We organize materials of this chapter
9
 in the order below. 

(1) We introduce OMCS database first. We use CSK in our experiments. 

(2) We investigate related work about CSK mining. 

(3) We propose our concept representation scheme for complex concepts, which is a 

noun phrase in this case. 

(4) We describe data processing, experiment settings, and conducted experiments. 

(5) We report our experimental results. 

(6) We compare feature engineering and our concept representation scheme.  

                                                 
8
 These words (concept, word, and phrase) are identical in this paper, but word and phrase are different when 

they are in the context of language. 
9
 The materials in this chapter are from our paper (Yu & Chen, 2010). 
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4.1  OMCS Database 

We conduct our experiments by using dataset from OMCS project
10

, a public available 

database from MIT. This database contains CSK contributed by volunteers. The web 

volunteers enter sentences to a web system in a predefined format. In this way, each sentence 

has two aligned concepts corresponding to two arguments with a specific predicate (relation). 

The concepts can be a word or a phrase. There are many predicate types in this database. 

Table 3 lists some examples.  

 

Predicate Concept 1 Concept 2 

CausesDesire  the need for money  apply for a job 

HasProperty  Stones hard  

Causes making friends a good feeling 

HasPrerequi. having a party inviting people 

CapableOf  a cat  catch a mouse  

HasSubevent having fun laughing 

UsedFor  a clothing store changing room  trying on clothes 

IsA  a swiss army knife  a practical tool 

AtLocation  a refrigerator freezer the kitchen 

 

Table 3. Examples from OMCS database 

 

Besides, each sentence has a confidence score determined by users collaboratively. When 

a user asserts a sentence as a valid CSK, confidence score of this sentence is increased by one. 

On the contrary, if a user negates this sentence as a valid CSK, its score is decreased by one. 

In this way, a confidence score of a CSK can be considered as an indicator of its quality. 

4.2  Related Work 

To assert relations between two concepts is a common task, and this task is useful for many 

                                                 
10

 http://conceptnet.media.mit.edu/dist/   (Last access: 2013/06/18) 
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purposes. The most important purpose is to enlarge the knowledge base in order to alleviate 

knowledge acquisition bottleneck in many AI fields. There are many different types of 

knowledge that can be extracted from texts. Approaches that acquire commonsense 

knowledge from different sources (Chklovski, 2003; Schubert & Tong, 2003; Singh et al., 

2002) have been proposed.  

Chklovski and Gil (2005) roughly classified CSK acquisition approaches into three 

categories according to the knowledge sources. The approaches of the first category collect 

CSK from experts. WordNet (Fellbaum, 1998) and CYC (Lenat & Guha, 1989) are typical 

examples. A lot of knowledge is collected by linguists or by knowledge engineers. These 

approaches result in well-organized and high quality knowledge base, but the cost is 

expensive and then limits the scalability. The approaches of the second category collect CSK 

from untrained volunteers. Open Mind Common Sense (OMCS) (Singh et al., 2002) and 

LEARNER (Chklovski, 2003) are of this type. These approaches employ the vast volunteers 

in the Web to contribute CSK and correct the input CSK. The resulting CSK assertions can be 

in the order of million, but its quality is not as high as WordNet. The last approaches collect 

CSK from texts/the Web using algorithms. TextRunner (Etzioni et al., 2008), KNEXT 

(Schubert, 2009), and the systems (Cankaya & Moldovan, 2009; Clark & Harrison, 2009; 

Girju, Badulescu, & Moldovan, 2006) are of this type. These approaches usually process texts 

or web pages first, and then use lexical or syntactical patterns to extract facts or general 

knowledge. Because the CSK mined is large, it is not feasible to examine all CSK assertions 

manually. The performance of a knowledge acquisition algorithm is evaluated directly by 

assessors' small sampling or indirectly by employing the extracted knowledge to some tasks 

such as word sense disambiguation and examining the performance of applications. These 

approaches have the feasibility of controllable knowledge domain and scalability of extracted 

knowledge base, but the quality of resulting CSK is hard to control.  
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4.3  Concept Representation Scheme for Phrase 

For CSK classification, we propose a representation scheme to denote an assertion. In OMCS 

database, an assertion is already preprocessed to a tuple, i.e., (PredicateType, Concept1, 

Concept2). Because a concept is usually a phrase, we represent a concept by using slots. The 

number of slots depends on different approaches shown as follows. A slot in turn contains 

words, and a word is represented by a co-occurrence vector.  

We use a co-occurrence vector                                     to represent a 

word     in a slot, where D is a dictionary with size |D|,     is the j-th entry in D, and 

         is the co-occurrence frequency of entry and in a corpus. 

We propose three approaches to determine the number of slots and how to place words in 

a concept into slots. The three approaches are discussed as follows: 

(1) Bag-of-Words (BoW) Approach: All words are placed in one slot. BoW is 

considered as a baseline. 

(2) N-V-OW Approach: All words are categorized into three slots, named HeadNoun, 

FirstVerb, and OtherWords. HeadNoun and FirstVerb are the head nominal of a 

phrase and the first verb of a phrase, respectively. Those words that are not in the two 

slots are put into OtherWords slot. 

(3) N-V-ON-OW Approach: All words are categorized into four slots, named 

HeadNoun, FirstVerb, Other Nouns, and OtherWords. HeadNoun and FirstVerb are 

interpreted the same as those in the second approach. We further distinguish other 

words by their parts of speech (i.e., noun vs. non-noun). 

With the approaches defined above, we define vector      of slot k in concept j to be 

                               . Vector    of Concept1 and vector    of Concept2 by using 

N-V-OW approach are define in                                        . The concept 
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vectors for BoW and N-V-ON-OW approaches are defined in the similar way. 

An assertion is a tuple as described, but we ignore the PredicateType information here 

because it is usually the same within a predicate. For example, in IsA predicate, the keywords 

are “is” or “are” which did not help much for binary classification in our setting. Hence, an 

assertion is a vector         in which    and    come from Concept1 and Concept2, 

respectively.  

4.4  CSK Classification Algorithm 

CSK classification algorithm is described in Algorithm 2.   

 

Algorithm 2. CSK Classification Algorithm 

 Preprocessing 

1    Use POS Tagger to tag an assertion 

2     Place words of concepts into slots 

3    Derive vector of word     from a corpus 

4    Represent an assertion 

 Feature Selection 

5    Normalize concepts    and    to 1, respectively 

6    Calculate Pearson correlation coefficient of each feature in slot 

7    Select the first 10% features in each slot 

 Classification 

8    Use support vector machine to classify assertions 

 

  In step 1, we use Stanford POS tagger (Toutanova, Klein, Manning, & Singer, 2003) to 

get tags. In step 2, we identify the head noun and the first verb of concepts by heuristic rules. 

For example, the first appearance of a verb in a tagged sequence is regarded as the first verb, 

and the last noun in a phrase is considered as the head noun. We distinguish noun and 

non-noun by parts of speech. In step 3, we consider Google Web 1T 5-Gram as our reference 

corpus (Brants & Franz, 2006), and employ only 5-gram entries in this corpus. 
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The dictionary D in step 3 is a combination of WordNet 3.0 and Webster online 

dictionary
11

 (noun, verb, adjective, and adverb). The resulting lexicon contains 236,775 

entries. In step 5, the concept vectors are normalized to 1 respectively to equally emphasize 

on the two concepts. Only top 10% of features are selected. 

4.5  Experiment Settings 

We select positive assertions from OMCS and automatically generate negative assertions to 

produce a balance dataset for a predicate type. The positive assertions must meet the 

following four criteria: (1) the confidence score of an assertion must be at least 4; (2) the 

polarity (note that there are positive and negative polarities in OMCS
12

) must be positive; (3) 

a concept contains no relative clause, conjunct, or disjunct; and (4) the length of a concept is 

less than 8 words for simplicity. The negative assertions are generated by randomly selecting 

and merging concepts from the OMCS database. We ignore datasets of size smaller than 200. 

Table 4 lists the resulting nine datasets among 18 predicate types in OMCS. 

 

Predicate CausesDesire HasProperty Causes 

Size 204 254 510 

Predicate HasPrerequisite CapableOf HasSubevent 

Size 912 916 1026 

Predicate UsedFor IsA AtLocation 

Size 1442 1818 2580 

 

Table 4. Datasets for CSK classification. 

 

For each dataset, we randomly split 90% for training and 10% for testing. Next, we use 

LibSVM (Chang & Lin, 2011) for classification. In SVM training, we adopt radial basis for 

                                                 
11

 http://www.mso.anu.edu.au/~ralph/OPTED/index.html    (Last access: 2013/08/15) 
12

 Only 1.8% of assertions with CS ≥ 4 have negative polarity.   
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kernel function, grid search in parameters (c, g) (80 pairs). After the best parameters are 

obtained, we train a model on training set by using these parameters, and apply trained model 

to test set. The same procedure is repeated ten times to obtain statistically significant results.  

Note the performance variation of a classifier in classifying commonsense knowledge. 

We can view a train set as a knowledgebase that one person owns, and this person may be 38 

good at some aspects but bad at other aspects. This kind of train set may over-fit on some 

aspects and miss-classify other valid CSK. Because we aim to obtain a general purpose CSK 

classifier with broad coverage, the performance variation is an important indicator to evaluate 

a CSK classification algorithm. 

4.6  Experiment Results 

The test performance of classifiers is shown in Figure 6. The standard deviation and database 

size are also shown in this figure. 

 

 
Figure 6. Classifiers’ accuracy on nine datasets. 
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In Figure 6, N-V-OW approach and N-V-ON-OW app-roach are better than BoW 

approach except in CausesDesire predicate type. N-V-ON-OW approach tends to have smaller 

performance variation than BoW and N-V-OW approaches. N-V-OW approach has the best 

accuracy (82.6%) and variation in HasProperty predicate. IsA’s best result is 74.4%, which is 

comparable to similar problems in SemEval-2007 Task 4 Classification of Semantic Relations 

between Nominals (Girju et al., 2006).  

In this task, we can see that it is possible to design classifiers to detect CSK in the texts.  

We adopt the concept representation scheme to interpret feature engineering process in 

next section. 

4.7  Interpretation of Feature Engineering Process 

In Algorithm 2, we describe a general feature engineering process in machine learning 

viewpoint. If we are concerned the learned concepts in a machine and we want to integrate 

many tasks in a single viewpoint to understand the content of machine's concepts, feature 

engineering viewpoint is hard for this purpose because different tasks may have its own 

feature engineering procedure. Our concept representation scheme can be used for this 

purpose.  

In integrating different tasks using concept representation scheme, we can see that all 

learned concepts are stored in a uniform continuation, and the explicitization process just 

connect datasets, learned models, continuation, and its environment. In this viewpoint, we can 

treat different tasks and different learning algorithms in a uniform way. If we want to analyze 

whole system in a formal mathematical perspective, this interpretation give us an advantage 

because all continuations (concepts) and learning algorithms can be treated in a same way. 

When we want to build human-like machine, this interpretation is very important. 
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Chapter 5.   Word Sense Disambiguation 

In this chapter, we use word sense disambiguation (WSD) to demonstrate the application of 

our concept representation framework. We organize materials of this chapter
13

 in the order 

below. 

(1) We introduce WSD first and mention relation between concept and context, which is 

just like a continuation in computing environment.  

(2) We investigate related work about WSD and mention context appropriateness and 

concept fitness.  

(3) We explore context appropriateness and concept fitness formally. 

(4) We describe problem formulations in WSD using the proposed concepts. 

(5) We report data processing, experiment settings, and conducted experiments. 

5.1  Introduction 

Word Sense Disambiguation (WSD) is an important task that has gained great attention of 

many researchers for a long time. Because human always reuse same word to denote different 

meanings, it is natural to let a computer system to automatically recover the exact meaning in 

a given context. For example, word bank is reused to denote a concept depository financial 

institution in context “he saved his money in the biggest bank”, and to denote concept sloping 

land of water in context “he takes a walk on the river bank”. In the mentioned cases, a word 

sense denotes a specific meaning of a word, and the mission of a WSD system is to discover 

the denoted meaning for a word in a given context. It is obvious that if a WSD system can 

precisely recover the exact meaning for a word in a given context, this will be beneficial for 

many NLP applications, such as Machine Translation and Information Extraction. For 

                                                 
13

 We will use materials in this chapter in a paper. 
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instance, because the biggest bank in the example denotes a company, we may co-refer a 

company name to this bank in an Information Extraction task. 

Many literatures dedicate to discuss WSD. Agirre and Edmonds (2006) edit a thorough 

book on WSD related issues, including the history of WSD, the word sense inventory 

approaches, evaluation methods and datasets, WSD algorithms, resources, and applications. 

Navigli (2009) gives a newer and shorter survey on WSD. It lists many applications of WSD, 

including Information Extraction, Information Extraction (IE), Machine Translation (MT), 

Content Analysis, Word Processing, Lexicography, and the Semantic Web.  

Many studies (Carpuat & Wu, 2005; Sanderson, 1994; Stokoe, Oakes, & Tait, 2003; 

Zhong & Ng, 2012) focus on discussing the usefulness of WSD in IR systems. Zhong and Ng 

(2012) conduct their experiments in standard TREC collections and conclude that supervised 

WSD system can significantly improve the performance of a state-of-the-art IR system. Other 

studies (Carpuat & Wu, 2005, 2007; Chan & Ng, 2007) show that WSD can improve the 

performance of MT systems. Carpuat and Wu (2007) demonstrate a very promising results on 

Chinese-English machine translation task. They find that WSD systems can improve 

phrase-based statistical MT models in many metrics such as BLEU. Chan and Ng (2007) also 

show that WSD system significantly improves the performance of MT systems.  

In Information Extraction, WSD appears in a richer linguistic phenomenon. For example, 

traditional WSD concerns homonym, which has same word form and different meanings in 

different contexts. For IE researchers, they also consider synonym (different word forms but 

same meaning or same denotation in an entity) and metonymy. Markert and Nissim (2007) 

organized a metonymy resolution task in SemEval-2007. This task tries to make a distinction 

of BMW in context “my BMW runs fast”, which refers to a transportation vehicle and not a 

denotation to the famous automobile company. In biomedical domain, WSD plays an 

important role for automatic biomedical literature analysis (Schuemie, Kors, & Mons, 2005). 
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WSD improves the accuracy of literature understanding and improves the identification of 

ambiguous entities. Stevenson and Guo (2010) study three types of ambiguous terms in 

biomedical documents including ambiguous terms, ambiguous abbreviations and ambiguous 

gene names. Their systems reach very high performance ranging from 87.9% to 99.0%. Dai, 

Tsai, and Hsu (2011) study Entity Linking (EL) task, which links different mentions 

(synonyms) in biomedical literature to database entries to help document analysis.  

Standard performance evaluation of WSD algorithms comes from Senseval, which is a 

series of competitions related to NLP tasks. After Senseval-1 in 1998, Senseval-2 (Edmonds 

& Cotton, 2001) formulates two WSD tasks: the lexical sample WSD and all-words WSD. 

Lexical sample WSD decides a word sense of a single word in a given fragment of text which 

usually contains many sentences. The all-words WSD decides senses of multiple words in the 

same time. These datasets contain many human-annotated examples in many languages and in 

different settings. Many WSD systems adopt datasets in Senseval-2 and Senseval-3 (R. 

Mihalcea, Chklovski, & Kilgarriff, 2004) for evaluating their WSD systems. With the 

standard evaluation datasets, researchers can give more meaningful performance comparisons 

between different WSD systems.  

In the evaluation, researchers usually adopt WordNet (Fellbaum, 1998) as the sense 

inventory, which defines a closed set of senses for each word. In this situation, a word sense 

refers to a sense key in WordNet, and WSD problem is considered a classification problem 

because we want to decide the exact sense in the closed set. Kilgarriff (2006) gives a good 

survey on word sense. Some researchers did not use WordNet for sense inventory. They either 

use other ontologies or create their own sense clusters for sense inventory (Pantel & Lin, 

2002). In these cases, comparisons of system performances are not easy, but the systems can 

have domain-specific sense inventory for their study.  

Some researchers (Erk, McCarthy, & Gaylord, 2009; Erk & McCarthy, 2009; McCarthy, 
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Koeling, Weeds, & Carroll, 2004) study different perspectives of WSD. Because the most 

common sense is very useful in WSD systems, McCarthy et al. (2004) use unsupervised 

methods to find predominant word senses in text. Erk et al. (2009) investigate the word 

usages and word sense, and build datasets with graded senses in a given contexts. This setting 

is different from traditional WSD task which usually select the best-fit sense in a given 

context. They (Erk & McCarthy, 2009) propose many metrics to evaluate sense grading 

system and implement system for this tasks.  

In this study, we explore a more general problem which concerns the relation between 

concepts and contexts. We consider two aspects of this relation: context appropriateness and 

concept fitness. The context appropriateness is a function of modeling the appropriateness of 

contexts for a concept. For example, if we consider concept depository financial institution 

for word bank, context “he saved his money in the biggest bank” is appropriate but context 

“he takes a walk on the river bank” is inappropriate. On the other hand, the concept fitness is 

a function of modeling the fitness of concepts in a context. For example, if we consider 

context “he saved his money in the biggest bank”, concept depository financial institution is 

more fit than concept sloping land of water for word bank. It is obvious that WSD concerns 

concept fitness problem, while concept appropriateness problem is considered in knowledge 

extraction literature (Chklovski & Gil, 2005; Etzioni et al., 2008; Schwartz & Gomez, 2009; 

Singh et al., 2002). For example, if we consider concept IS-A, knowledge extraction 

researchers want to judge the appropriateness of the extraction (IS-A, a car, a vehicle) in 

context “a car is a vehicle usually driven by an engine of sorts”. But in context “Toyota Rent a 

Car is a vehicle rental system”, the extraction (IS-A, a car, a vehicle) is inappropriate but the 

extraction (IS-A, Toyota Rent a Car, a vehicle rental system) is good. In this case, concept 

IS-A is fixed but contexts (a car, a vehicle) and (Toyota Rent a Car, a vehicle rental system) 

are varying, which is directly opposite to WSD case. Knowledge extraction researchers try to 
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find a good way to model the appropriateness of context to extract vast knowledge from free 

text for alleviating knowledge acquisition bottleneck. In this study, we explore these two 

aspects of the relation in the same time to see if it is helpful for WSD task.  

When we interpret the relation between context and concept using our concept 

representation scheme, we can find that machine may learn models from perspectives of 

concept and context. The context (sentences) is the environment that a continuation (learned 

WSD models) lives. That is to say we can elicit information from different viewpoints. In this 

viewpoint, we can learn different models using different perspectives and combine the 

resulting models for WSD. We can also combine all information from different perspectives 

to learn a single model. We adopt the later approach for WSD.  

5.2  Related Work 

In literature, WSD systems study many aspects of the problem. In this section, we describe 

related work in WSD evaluation methods, algorithms, knowledge sources, feature processing, 

and training data utilization approaches. Although WSD are studied in many languages, we 

focus on English only in this study.  

In WSD evaluation, researchers not only evaluate different problem settings like 

all-words and lexical sample (Palmer, Fellbaum, Cotton, Delfs, & Dang, 2001), but they 

evaluate system results in different granularities of sense. Because defining a clear cut on 

word sense is not easy, researchers evaluate systems in fine-grained and coarse-grained 

settings (R. Mihalcea et al., 2004; Navigli, Litkowski, & Hargraves, 2007; Snyder & Palmer, 

2004). Generally, if the coarse-grained sense inventory is adopted, systems usually have 

higher performances. For example, in SemEval-2007 coarse-grained English all-words task, 

many systems can reach 87-88% F-measure. But if fine-grained sense inventory are used, the 

performance is in 65% accuracy (Snyder & Palmer, 2004). Therefore, some researchers think 
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that graded sense (Erk & McCarthy, 2009) is more natural for sense assignment. 

WSD algorithms can be roughly categorized into supervised, semi-supervised 

unsupervised algorithms. Supervised WSD algorithms usually have better performances. 

Researchers studied many supervised machine learning algorithms including exemplar-based 

algorithms (Escudero, Màrquez, & Rigau, 2000; Ng & Lee, 1996), neural networks (Towell & 

Voorhees, 1998), support vector machines (Lee, Ng, & Chia, 2004; Lee & Ng, 2002), 

multi-task learning (Ando, 2006), transfer learning (Dhillon, Foster, & Ungar, 2011; Dhillon 

& Ungar, 2009), and ensemble methods (Florian & Yarowsky, 2002). In SensEval-2 

SensEval-3 lexical sample tasks, SVMs achieves good performance on these two datasets 

(Lee et al., 2004; Lee & Ng, 2002), which is 65.4% and 72.4% micro-averaged fine-grained 

recall, respectively. Ando (2006) proposes Alternating Structure Optimization (ASO) 

algorithm to learn latent structures that assume to be shared by different words. He reports 

that ASOs are significantly better than SVMs in SensEval-2 and SensEval-3 lexical sample 

datasets. Dhillon, Foster and Ungar (2011) use transfer learning to select features using 

Minimum Description Length (MDL) principle, and report that their method TransFeat is 

significantly better than ASO in SensEval-2 dataset.  

Although supervised algorithms have better WSD performance, labeling sufficient 

training data is time-consuming. Researchers usually select a small set of words to label word 

senses for training and evaluation, and the learned models using supervised algorithms are 

only for these words. Semi-supervised can reduce the effort of labeling, and, sometimes, 

improve learning performance when combines with more labeled data (Ando, 2006). On the 

other hand, unsupervised algorithms do not need labeled data and can be used to learn WSD 

models for any words (Gonzalo & Verdejo, 2006). Some unsupervised approaches (Agirre & 

Martinez, 2004; Martinez, de Lacalle, & Agirre, 2008; R. F. Mihalcea, 2002; R. Mihalcea & 

Moldovan, 1999; Stevenson, Guo, & Gaizauskas, 2008) use heuristics to construct sense 
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tagged data by utilizing search engines. For example, Martinez et al. (2008) construct queries 

for each polysemous noun in WordNet, submit queries to search engine, parse snippets to 

extract examples for a noun, and assign a word sense to the extracted example. They collect 

150 million examples from Web, conduct experiments, and report promising results. Navigli 

and Lapata (2010) experiment unsupervised graph-based algorithm for all-word task. In 

graph-based algorithm, word senses are graph nodes, and relations between word senses are 

graph edges. Researchers usually use different relations in WordNet such as hypernymy 

semantic relation to link graph nodes (word senses). After building a graph for testing 

sentences, graph-based algorithms determine the importance of nodes and select most 

important nodes as the word senses. Navigli and Lapata (2010) investigate several graph 

connectivity measures to choose best senses for all testing words. Their experiments show 

that graph-based approaches are very useful for unsupervised WSD.  

In supervised WSD, an example is represented by features, and features are extracted 

from different knowledge sources (Agirre & Stevenson, 2006). Agirre and Stevenson (2006) 

survey and list a complete knowledge sources used in WSD-related articles. In their survey, 

the knowledge sources can be syntactic, semantic, or topical. For example, a system can use 

dictionary as syntactic knowledge source to extract part-of-speech (POS) information of a 

word. With different knowledge sources, WSD systems extract many types of features in a 

given context of a word to resolve word sense. For example, Lee and Ng (2002) extract four 

types features from different knowledge sources: POS of neighboring words, bag-of-words in 

the surrounding context, local collocations, and syntactic relations. They use 0/1 encoding for 

all features and experiment many supervised machine learning algorithms. In their 

experiments, SVMs have the best results.  

After extracted features, how to process feature values is an important consideration in 

supervised machine learning algorithms. Researchers may adopt simplest 0/1 encoding to 
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represent features, in which 1 means that feature appears and 0 means otherwise. Researchers 

may use real number to represent some features like word frequency. In this case, scaling the 

feature to range [-1, 1] may result in a better performance. Because different feature types 

may have very different feature sizes, how to deal with this problem is also important. For 

example, if context features are used, the feature size may in the order of thousands features. 

But if word POS feature is used, the feature size is usually smaller than two hundred. 

Researchers may normalize one feature type to unit vector before combining different feature 

types to re-balance difference of feature sizes.  

Meaning composition (Erk & Padó, 2008; Mitchell & Lapata, 2008; Thater et al., 2010) 

is an important feature processing approach in natural language processing, but it has not 

gained enough attention by WSD researchers. Meaning composition is a fundamental problem 

for meaning representation languages (Jurafsky & Martin, 2009b) and is crucial when 

researchers want to represent complex structures such as phrases and sentences in NLP 

applications. If researchers adopt first-order logic to represent meaning, meaning composition 

is embedded in the reference process. For example, meaning of a phrase is derived by 

composing the meaning of its individual words. When connectionist representations are 

adopted, meaning composition is usually considered a function that takes the meaning of 

components as input. Mitchell and Lapata (2008) explore many composition functions for 

cases that use vector space models to represent word meaning. They find that simple 

composition functions such as add and multiply are useful in judging word similarity. For 

example, Kintsch (2001) proposes that word senses are modified by context. For example, if 

word ran is modified in The color ran, its meaning is closer to dissolve instead of gallop in 

The horse ran. In WSD, researchers usually use horse and color as collocation or context 

information, and they did not consider the relation between meaning composition and WSD. 

In this paper, we will consider this issue.  



 

50 

 

In supervised WSD algorithms, how to maximally utilize the scarce training data is an 

important research topic. Ando (2006) uses multi-tasks learning to discover shared latent 

structures between different words. Dhillon, Foster and Ungar (2011) propose TransFeat 

algorithms to select features across different words. These two approaches demonstrate the 

approaches that best utilizing the scarce data in hand. In this view point, semi-supervised is 

also of this type because this approach extents information in labeled data to un-label data in 

the hope that there are more useful information can be captured by using semi-supervised 

approaches.  

We will investigate different ways to enlarge training set by using meaning composition 

and utilizing context appropriateness and context fitness. We explain our approaches later. 

5.3  Context Appropriateness and Concept Fitness 

In this section, we will explore context appropriateness and concept fitness more formally, 

and prepare notations that will be used later. 

Suppose we have a set of concepts
14

              . If we consider the relation between 

concepts and contexts, we get context appropriateness by fixing concept. In other words, we 

want to know the appropriateness of a specific context for a given concept. For example, if 

concept bank financial institution is given, context t1=“he saved his money in the biggest bank” is 

appropriate but context t2= “he takes a walk on the river bank” is inappropriate. Please note 

that although in WSD case, the set of concepts may be for senses of a word, but this 

formulation did not be restricted to WSD case only.  

Now, we define context appropriateness to be a real-valued function        that can 

correctly rank the appropriateness of a context given a concept si in Equation 2. 

 

                                                 
14

 In this chapter, we consider concept and word sense to be the same.  
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If we category contexts into two levels, we can say that 

                                                    , and  

                                                          , 

Equation 2 

 

 

 

 

 

Equation 2 just maintains an order between the appropriateness of contexts. In simplest 

case, we use    and      to denote the set of contexts that appropriate and not appropriate for 

concept si, respectively. In the mentioned example, context t1 belongs to    and t2 belongs to 

    for concept si = bank financial institution. This kind of formulation is motivated by Kintsch’s 

(2001) and Mitchell and Lapata (2008) in measuring sentence similarity after meaning 

composition. Their idea is that a good meaning composition model should result in a new 

vector that closer to vectors with similar meaning. When applying to concept and its context, 

we want machine can learn a good context appropriateness function that gives higher scores 

to appropriate contexts than inappropriate contexts for a concept. In Equation 2, meaning 

composition is important but not necessary. If there is enough information to judge the score, 

meaning composition is not necessary. But meaning composition gives us a new way to 

process features in WSD problems. We can use the composed feature vector for machine 

learning algorithms instead of the raw features for concept and context. This viewpoint is new 

in WSD, and we will illustrate approaches later to utilize this feature processing approach to 

enlarge the size of training data.  

In knowledge extraction literatures, as we mentioned earlier, context appropriateness 

function is used to judge the reliability of extracted knowledge. Knowledge extraction 

researchers want to extract knowledge from free text in tuple format (relation, argument 1, 

argument 2) such as extracting (IS-A, a car, a vehicle) from sentence “a car is a vehicle 

usually driven by an engine of sorts”. In this case, concept is IS-A relation, and meaning 

composition may take place between two arguments “a car” and “a vehicle”. We do not 
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restrict in how meaning composition is applied in Equation 2, and we will demonstrate how 

meaning composition work in WSD. 

If meaning composition is used, we use                                    to denote it, 

where            is a vector and, and     is a meaning composition function for context 

appropriateness. We will use                  to denote functions without and with meaning 

composition hereafter for simplicity. 

If we consider the relation between concepts and contexts, we get concept fitness by 

fixing context. We want to disambiguate the precise concept (or word sense) in a specific 

context. For example, concept si = bank financial institution.is fitter than concept sk = bank sloping land 

of water in a given context t1=“he saved his money in the biggest bank”. This is exactly a WSD 

problem, but we use a more general viewpoint to re-consider it. We will find that we can 

reformulate WSD in many ways if we adopt this more general viewpoint. In addition, this 

viewpoint can unify different WSD settings in a single viewpoint such as standard WSD and 

graded word sense problems (Erk & McCarthy, 2009). 

Like context appropriateness, we define concept fitness to be a real-valued function       

that can correctly rank the fitness of concepts given a context tj in Equation 3. 

 

 

                                

If we category contexts into two levels, we can say that 

                                            , and  

                                                  , 

Equation 3 

 

 

 

 

 

Equation 3 also just maintains an order between the fitness of concepts. In simplest case, 

we use    and     to denote the set of concepts that fit and not fit for context   , respectively. 

In standard WSD setting,    is a context to be disambiguated,    usually contains one word 

sense or multiple word senses, and     contains other word senses that not fit in context   . In 
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graded word sense problem (Erk & McCarthy, 2009), function       returns different scores 

for different word senses. Therefore, concept fitness is more general than standard WSD 

problems. Like context appropriateness, meaning composition can be adopted in a useful way. 

If meaning composition is used, we use                                  to denote it, 

where            is a vector, and   is a meaning composition function for concept fitness. 

We will use                 to denote functions without and with meaning composition 

hereafter for simplicity. 

Now, we jointly consider context appropriateness and concept fitness. We can derive 

equations Equation 4 to Equation 6 when different constraints are adopted. If we use two 

levels (fit and not-fit) for context appropriateness and concept fitness, we get Equation 4 and 

Equation 5, where      ,      ,        , and        . 

 

 
                                                        

 

Equation 4 

 

                                                         Equation 5 

 

Equation 4 and Equation 5 can be derived from definitions of Equation 3 and Equation 2, 

respectively. They suggest that context appropriateness and concept fitness provide different 

viewpoints to judge the validness of combining a concept and a context. If we careful choose 

different representation schemes for these two viewpoints, we can generate more training data 

for supervised algorithms. For example, if there are 5 senses                    for a word 

and there is a context    with only one correct concept              , the concept that not 

fit for context    are in                     , and then we can generate 4 training instances 

by using Equation 4. These training instances are showed in the followings. 
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Equation 5 can be used in the same way for contexts. 

If we further apply Equation 2 and Equation 3 in Equation 4 and Equation 5, we get 

Equation 6 in the below, in which         is a context that inappropriate for concept    . 

 

 
                                                          

                                                          

Equation 6 

 

 

 

Equation 6 just says that a learned function must return larger score of one error than that 

of two errors. We can use a simple score assignment to adopt those equations in WSD 

problem. For example, we can assign left hand side of Equation 4 to have value 2, right hand 

sides of Equation 4 and Equation 5 to have value 1, and right hand side of Equation 6 to have 

value 0. In this way, we have more training data and more ways to utilize the information we 

have. We will illustrate approaches to construct training datasets by utilizing these equations 

in next section.  

5.4  Problem Formulations in WSD 

In this section, we illustrate different approaches to utilize context appropriateness and 

concept fitness along with the meaning composition feature processing approach. We will 

introduce baseline approach without meaning composition, multi-class classifications with 

meaning composition, binary classifications with meaning composition, and ranking 

approaches with meaning composition. 
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5.4.1  Multi-class Classification (Baseline) 

In WSD, it is straightforward to formulate sense disambiguation of a word as a multi-class 

classification problem. Suppose we have a set of n word senses                 for word 

w, and we also have a set of m contexts              
 

 that word w occurs, where      and 

          denotes j-th context which its sense is   . The multi-class classifiers learn a function 

            which takes a context as input and predicts the correct sense   . In most WSD 

settings,    is ignored because word w is same for all contexts. In this case, classifiers learn 

function               instead of           . If classifiers learn function       for a word 

with dataset              

 
, we denote this kind of formulation Multi-Class without Meaning 

Composition (MCwoMC). 

In this formulation, the decision function depends on classifiers we adopt. Researchers 

usually use one-vs-the-rest multi-class strategy to train a binary classifier for a sense, and 

ensemble many binary classifiers to produce final prediction. For example, researchers  (Lee 

et al., 2004; Lee & Ng, 2002) train a binary SVM classifier for each word sense and output 

sense    with highest prediction score. We show the sense decision function in Equation 7, 

where function    is a binary classifier for sense    using one-vs-the-rest multi-class strategy, 

and i = 1...n.  

 

 
                   

 

Equation 7 

 

 

5.4.2  Multi-class Classification with Meaning Composition 

If meaning composition is used,            cannot be simplified into                because 
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different word senses will result in different meanings. With meaning composition, j-th 

context can compose with different word senses and classifiers must give different predictions. 

For example, although the disambiguating word is the same for all contexts, we have 

                       , in which     is a meaning composition function for concept    

and its context   . If classifiers learn function             for a word with dataset 

              
 

, we denote this kind of formulation Multi-Class with Meaning Composition 

(MCwMC). 

In this formulation, the decision function must be carefully handled because the class 

information is encoded in training features though meaning composition. In our study, we find 

that if we use decision function like that of MCwoMC, the performances using different types 

of features can reach 92% accuracy which is wrong
15

. To have a correct decision function, we 

must test every possible meaning compositions of word sense and choose the highest score as 

predicted sense. We show the sense decision function in Equation 8, where f is decision 

function returned by classifier and sense score decision function g is a function of assigning a 

score to value            . 

 

 
                           

 

Equation 8 

 

 

For example, if we use Support Vector Regression (SVR) as classifier, and let class 

     for value assignment. The regression function             returns a regression value  

  , and sense score decision function can adopt               . This means we measure 

the distance between class’s value and regression value and choose closest one as sense 

assignment. We denote this approach to be MCwMC-Reg. 

                                                 
15

 In this case, it means that classifier can make a clear distinguish between concepts but not concept in specific 

context. The reason is that concept’s features are derived by summing all contexts of a sense. 
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If we use many binary SVM classifiers for             like that of MCwoMC, sense 

score decision function is the predicted value of that class   . For example, if we have 3 

senses           , we must test three vectors          ,         , and          which 

represent three different meaning composition using different senses. A multi-class classifiers 

may output three scores of probability (score of   , score of   , score of   ) for a test case. If 

test case           has scores (0.95, 0.01, 0.11), we let                 = 0.95. If test 

case            has scores (0.05, 0.89, 0.21), we let                 = 0.89. If test 

case           has scores (0.16, 0.05, 0.76), we let               = 0.76. In this example, 

sense    is the predicted sense because it has highest value (probability). We denote this 

approach to be MCwMC-SVM. 

5.4.3  Binary Classification with Meaning Composition 

We can simplify multi-class classification problem to a single binary classification problem 

by using meaning composition. The idea is simple: if the composition          is valid, we 

assign 1 to it, and assign -1 otherwise. The resulting WSD dataset 

is                        
 

  
   , where             . We denote this kind of formulation 

Binary Classification with Meaning Composition (BCwMC). 

This formulation has two advantages. First, it is simple and does not need to train many 

classifiers for multiple classes. Second, there are more training samples than that of original 

multi-class problem. For example, if there are 100 contexts and 10 senses for a word, we will 

have 1000 feature vectors in dataset. 

This formulation comes with two disadvantages. First, it may result in an unbalanced 

dataset if there are a lot of senses of a word. For example, in SensEval-2 lexical sample task, 

word art.n (art with noun POS) has 19 senses. This means positive sample is only 5.3% in 
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whole dataset. It is not easy to train a good classifier in this case. Second, the resulting feature 

matrix may be a dense matrix which is not good if we want to handle large problems. In our 

study, the ratio of non-zero count of feature matrix using meaning composition may reach 

2~30%.  

Like MCwMC, for a context   , we have multiple vectors which compose meaning with 

different senses. If we use binary classifier with output of probability, we can use sense 

decision function like Equation 8. We denote this approach to be BCwMC-SVM. 

If we use regression, the sense score decision function is like that of MCwMC-Reg. But 

the classes are +1 and -1 in BCwMC. We denote this approach to be BCwMC-Reg. 

5.4.4  Ranking 2-Level with Meaning Composition 

Unlike BCwMC which uses single binary classification for a word’s disambiguation, we now 

try to formulate WSD as a ranking problem. In BCwMC formulation, if composition          

is valid, we assign +1 to it, and assign -1 otherwise. But if we want to learn a linear function 

that can rank all valid compositions before invalid compositions, we can formulate WSD 

using ranking (Cohen, Schapire, & Singer, 1999; Joachims, 2002). 

Ranking is a common technique used to order things. One of the most important 

applications of ranking is ranking results of search engines (T.-Y. Liu, 2009). In WSD with 

meaning composition, if we can rank valid compositions in high performance, we have a good 

model for WSD. The ranking formulation of WSD is shown in Equation 9 which is similar to 

Ranking SVM formulation (Joachims, 2002). 
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subject to: 

                                             

... 

                                             

                  , 

where                      

Equation 9 

 

 

 

 

 

 

 

 

 

 

In Equation 9,   is the learned linear function,         is slack variable,    is a sense, 

and    is a context. We can assign relevance score of valid compositions to be 2 (relevant) 

and that of invalid compositions to be 1 (non-relevant). In this setting, a sense is like a query, 

and we retrieve valid meaning compositions to be relevant documents of that sense.  

The ranking formulation is similar to formulation of binary classification, and we show if 

in Equation 10. We denote this approach to be Ranking 2-Levels with Meaning Composition 

(R2wMC-Ses), in which “Ses” means one sense one query.  

 

 

                          

 

Equation 10 

 

 

In R2wMC-Ses formulation, the constraints are hold inside a sense. We can enforce all 

constraints to be hold for a word. In this case, we only have one query for a word. We use the 

same formulation except every sense is in one query. We denote this approach to be 

R2wMC-Wrd, in which “Wrd” means one word one query.  
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5.4.5  Ranking 3-Level with Meaning Composition 

Now, we utilize context appropriateness and concept fitness using Equation 4 to Equation 6 in 

this section. Equation 4 to Equation 6 can be adopted to generate more training data when we 

assign different relevance scores to different situations. This is equivalently to direct adding 

Equation 4 to Equation 6 as constraints of Equation 9. We show the formulation in Eq. 10 

below. 

 

 

                
 

 
    

               

subject to: 

                                                       

                                                       

                                                        

                                                        

      

                      , 

where                           
              

                                         
            , 

                                       
             . 

Equation 11 

 

 

 

 

 

 

 

 

 

 

Equation 11 is simple. If context and concept match each other, we give it the highest 

ranking score. If context appropriateness and concept fitness are all missed, we give it the 

lowest score. If one of context appropriateness and concept fitness is missed, we give it 

middle score. In relevant score assignment of WSD, we set          to 3 (most relevant), 
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                   and                   to 2 (relevant), and             and           to 1 

(non-relevant). In this way, we generate many training samples for ranking algorithm even 

though the labeled dataset is small. We denote this approach to be Ranking 3-Levels with 

Meaning Composition (R3wMC-Ses), in which “Ses” means one sense one query.  

In R3wMC-Ses formulation, the constraints are hold inside a sense. We can enforce all 

constraints to be hold for a word. In this case, we only have one query for a word. We use the 

same formulation except every sense is in one query. We denote this approach to be 

R3wMC-Wrd, in which “Wrd” means one word one query. 

The sense decision functions of R3wMC-Ses and R3wMC-Wrd is the same. We use the 

equation in Equation 10 for sense decision function. 

5.5  Feature Extraction and Experiment Settings 

For a sample of SensEval’s lexical sample task, we extract nine types of features. The first 

four types are commonly used by WSD researchers (Lee & Ng, 2002). The next five types of 

features are new. We describe them below.  

1. Part-of-Speech of neighboring words (POS):  

We encode 7 POS features of the disambiguating word. A feature Pi (i=-3, -2, ..., 3) is 

a POS of neighboring word. P0 refer to the disambiguating word. If there is no such 

word in a position, we use NIL to be the tag. Each feature is regarded as a 

bag-of-word feature, and we assign weight of feature using 0/1 encoding, which 

means if that word appear, we assign weight 1 to that word, and assign 0 if that word 

did not appear.  

2. Words in context (Context):  

We lemmatize word unigram of surrounding context to WordNet 3.0 lemma and 

exclude stop words. The surrounding context includes all words in neighboring 
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sentences. This is a single feature and we use bag-of-word 0/1 encoding. 

3. Collocation (Colloc): 

We implement 11 collocations described in Lee and Ng's paper (Lee & Ng, 2002). 

There are 11 features and we use bag-of-word 0/1 encoding for each feature. 

4. Syntactic relations of target disambiguating word (SyntaxRel): 

We implement syntactic relations described in Lee and Ng's paper (Lee & Ng, 2002). 

There are different types features for noun, verb, and adjective. We use bag-of-word 

0/1 encoding for each feature. 

5. Words in dependency relation (drWord): 

We parse sentence of target disambiguating word to get dependency relations (de 

Marneffe, MacCartney, & Manning, 2006; Toutanova et al., 2003). For a list of tuples 

of dependency relations (grammatical relation, governor, dependent), there is a 

sub-list R that the target disambiguating word are in the relations. We add all words 

in R (in governor or in dependent) for this feature except the target disambiguating 

word itself. This is a single feature and we use bag-of-word 0/1 encoding. 

6. Grammatical relation in dependency relation (drRelt): 

We add all grammatical relation that in sub-list R that the target disambiguating word 

is in the relations. This is a single feature and we use bag-of-word 0/1 encoding. 

7. Words in dependency relation with role information (drRole): 

We add all words with its role information that in sub-list R except disambiguating 

word itself. For example, for word w, we add string w_gov to indicate that word w is 

a governor in the dependency relation. Similarly, we add string w_gov to indicate its 

role is dependent. This is a single feature and we use bag-of-word 0/1 encoding. 

8. Extension of words in dependency relation using WordNet definition (drDefi): 

For each word w in feature drWord, we add all word unigrams of word w's definition. 
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If word w has multiple senses, we add all definitions in WordNet 3.0. The stop words 

are excluded. This is a single feature and we use bag-of-word 0/1 encoding. 

9. Extension of words in dependency relation using WordNet synset (drCnpt): 

For each word w in feature drWord, we add all synset ids of word w. If word w has 

multiple senses, we add all synset ids in WordNet 3.0. This is a single feature and we 

use bag-of-word 0/1 encoding. 

In meaning composition, concept’s representation is build by summing all samples 

representation. Context, POS, and colloc are representation for context appropriateness. Other 

types of features are representations for concept fitness because these features are closely 

related to concept’s meaning and are usually adopted in meaning composition in knowledge 

extraction. We combine add and multiplication operations for meaning composition (Mitchell 

& Lapata, 2008). For example, for feature vector v and u, the meaning composition 

function                , where    is point wise multiplication.  

We conduct experiments in lexical sample tasks in SensEval-2 and SensEval-3. There are 

73 words and 57 words in SensEval-2 and SensEval-3 lexical sample tasks, respectively. 

These words are in three categories: noun, verb and adjective. There are total 8611 training 

samples and 4328 testing samples in SensEval-2, and 7860 and 3944 in SensEval-3. Some 

words have many senses but samples are little. For example, there are 43 senses for verb turn 

along with 131 training and 67 testing samples.  

We use LibSVM (Chang & Lin, 2011) classifiers for multi-class and binary class 

classification, use Liblinear (Fan, Chang, Hsieh, Wang, & Lin, 2008) for regression function 

of MCwoMC-Reg, and use Ranking SVM (Joachims, 2002) for our ranking algorithms.  

We adopt RBF kernel and perform a grid search for (c, g) in using LibSVM. We try 9 

parameter C in using Liblinear. We use 3-fold cross validation for model selection in LibSVM 

and Liblinear.  
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We find that higher cost c of Ranking SVM usually resulting in better performance but 

taking more training time, and we fix cost to 10. We also set parameter -# 20000 for truncate 

long time training. 

5.6  Experiment Results  

First, we want to know the performance of each feature, and we show fine-grained summary 

results of SensEval-2 and SensEval-3 in the table below.  

 

Features SensEval-2 SensEval-3 

Train Test Train Test 

Colloc                                                                                                                                                                                                                                                                                              40.78 53.27 55.51 59.62 

Context                                                                                                                                                                                                                                                                                       42.50 53.93 64.23 61.95 

drCnpt                                                                                                                                                                                                                                                                                     55.47 50.86 64.86 57.37 

drDefi                                                                                                                                                                                                                                                                                     58.75 52.15 67.98 59.21 

POS                                                                                                                                                                                                                                                                                           58.50 54.82 66.22 59.26 

SyntaxRel                                                                                                                                                                                                                                                                                     61.79 53.04 68.03 57.19 

drRelt                                                                                                                                                                                                                                                                                     60.19 53.29 68.51 59.42 

drRole                                                                                                                                                                                                                                                                                     60.26 53.43 70.12 60.64 

drWord                                                                                                                                                                                                                                                                                     59.11 53.62 66.70 57.32 

drDefi+drCnpt                                                                                                                                                                                                                                                                           55.63 52.03 65.81 59.26 

drWord+drRelt+drRole                                                                                                                                                                                                                                                                 64.42 55.64 71.75 61.72 

drWordvdrRelt+drRole+drDefi+drCnpt                                                                                                                                                                                                                                             65.55 56.86 68.17 61.62 

SyntaxRel+POS+Context+Colloc  (baseline)                                                                                                                                                                                                                                                             56.20 57.54 66.48 64.94 

baseline+drDefi+drCnpt  58.78 57.82 65.67 64.89 

baseline +drWord+drReRelt+drRole                                                                                                                                                                                                       56.61 58.01 64.21 64.12 

All features 59.69 58.48 63.72 64.00 

(Lee & Ng, 2002): micro averaged recall on all words n/a 65.4 n/a n/a 

(Ando, 2006) n/a 65.3 n/a 74.1 

 

Table 5. WSD results of MCwoMC using different features. 

 

In Table 5, we can see that our performance is far behind the state of the art. We notice 

that our baseline is 57.54 which is still smaller than that of Lee and Ng (2002)'s system. But 
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we use same types of features. One possible reason is that Lee and Ng (2002) train binary 

classifiers using different parameters while we use same parameter for all binary classifiers of 

a word.  

Next, we want to know the performance of different problem formulations. We show 

results in the table below.  

 

Problem Formulation SensEval-2 SensEval-3 

Train Test Train Test 

MCwoMC 59.69 58.48 66.48 64.94 

BCwMC-Reg 44.01 35.57 39.57 32.45 

BCwMC-SVM 85.98 47.06 92.75 59.80 

MCwMC-Reg 45.53 36.81 45.50 47.29 

MCwMC-SVM 53.03 48.07 56.99 52.10 

R2wMC-Ses 97.78 59.06 95.79 64.97 

R2wMC-Wrd 97.90 58.31 96.06 64.64 

R3wMC-Ses 97.87 59.06 95.56 64.10 

R3wMC-Wrd 97.99 58.22 97.45 64.59 

 

Table 6. WSD results in different problem formulations. 

 

In Table 6, R2wMC-Ses has best performance, but it is still smaller than the performance 

of state of the art. We can see that our models have better performances based on same 

experiment process. Especially, the training results are very high. Because the resulting 

models using ranking is linear, we think that this phenomenon is very useful if we integrate 

unsupervised algorithms with our methods.  

There are many possible ways to improve our performance. One possible direction is 
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using different approaches to derive concept representation. In our experiments, we sum all 

features of that sense to construct its representation. It may be better if we use unsupervised 

method to construct the representation. One possible direction is using dimension reduction to 

shorten the gap between training and testing. Approaches like principle component analysis 

(PCA) and feature selections may work for this case. We leave these issues for future work. 
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Chapter 6.   Knowledge Sources 

Many good sources can be adopted for researchers to extract knowledge for building concept 

representation of computer. One of most common sources is using web pages. Researchers 

already use web crawlers to download web pages and prepare a large dataset for researchers. 

We adopt ClueWeb09, a web-scale dataset, as knowledge source because it contains half 

billon of web pages in multiple languages. Although we did not extract knowledge from 

ClueWeb09, we want to prepare datasets for other researchers to boost research of knowledge 

extraction.  

We organize materials in the order below.  

(1) We shortly describe ClueWeb09 dataset. 

(2) We want to know what kinds of knowledge can be extracted from the web pages. 

Therefore, we search commonsense knowledge in the web, and find that even this 

kind of knowledge can be found in the web. This asserts that web page is a good 

knowledge source. 

(3) We describe the preprocessing of English web pages, the resulting dataset, and some 

statistical information.  

(4) We describe the preprocessing of Chinese web pages, the resulting datasets, and 

some statistical information. 

(5) Because we have build resources based on ClueWeb09 dataset. We want to know 

whether ClueWeb09 is sufficient large to be adopted in common NLP tasks. We 

compare the results with that of using Google web 5-gram dataset and find that the 

answer is positive. We also demonstrate the use of concept representation scheme 

here. 
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6.1  ClueWeb09 Dataset 

In order to support information retrieval and natural language processing researches, 

researchers in University of Massachusetts, Amherst and Carnegie Mellon University begin a 

The Lemur Project. As part of results of this project, it creates a system to crawl the web and 

create ClueWeb09 dataset
16

 in 2009. In ClueWeb09, there are total 1,040,809,705 web pages 

in 10 languages, 503,903,810 pages in English
17

, and 177,489,357 pages in Chinese. Those 

pages are stored in gzipped WARC format and are easy to read by using programming 

languages such as Java.  

This dataset has 25 TB (uncompressed) and 5 TB (compressed), which is huge for 

researchers to handle it. The large ClueWeb09 is a good dataset for us to use it in extracting 

knowledge. On the other hand, processing the dataset may beyond the reach of many 

academic laboratories in this scale. For example, if it takes 1 second to segment and tag POS 

for a Chinese web page, it will take 5.6 years by a computer with a single node.  

In processing ClueWeb09, parsing web pages, POS tagging, and phrase chunking are all 

time consuming and need a lot of computational resources to accomplish these tasks. In this 

study, we handle these issues and produce many datasets for researchers. We will explain 

these datasets in the following sections. 

6.2  Commonsense Knowledge in the Web 

We first examine what kinds of knowledge can be extracted from the web pages. Researchers 

already adopt many approaches to extract knowledge from the texts (Cankaya & Moldovan, 

2009; Chklovski, 2003; Clark & Harrison, 2009; Etzioni et al., 2008; Girju et al., 2006; 

Schubert & Tong, 2003; Schubert, 2009; Schwartz & Gomez, 2009). Some approaches claims 

                                                 
16

 http://lemurproject.org/clueweb09/  (Last access: 2013/01/20)  
17

 There is a larger dataset ClueWeb12, which contains 1 billion English pages. This dataset is released in 2012. 
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their system can even extract commonsense knowledge from texts. We want to assert this 

point before we design knowledge extraction system. 

Our idea is simple. If commonsense knowledge (CSK) exists in texts and we can extract 

this kind of knowledge from texts, using knowledge extracted from texts is a very good proof 

to test language understanding level of a system. Therefore, the first step is to verify does 

commonsense knowledge exist in texts. In our study (Yu & Chen, 2010), we show that 

commonsense knowledge is actually explicit stated and exists in texts. 

The verification step is simple. We adopt commonsense knowledge in OMCS dataset, 

which is a well-known public contributed commonsense knowledge dataset. We search these 

CSK in the web and find that a lot of CSK can be found in the web. The more reliable that 

human consider a sentence to be a commonsense knowledge, the more probable that we can 

found this knowledge in the web. We show the results in Figure 7
18

. 

 

 

Figure 7. Relationship between predicate types and explicitly stated CSK 

 

The CS in Figure 7 is confidence score, which is determined by users collaboratively. 

                                                 
18

 This figure also appears in our paper (Yu & Chen, 2010). 
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When a user asserts a sentence as a valid CSK, the corresponding score is increased by one, 

and vice versa. The confidence score is the quality of a CSK sentence. The relations such as 

IsA and PartOf are defined in OMCS dataset. We can see that a lot of CSK relations can be 

found in the web. Therefore, using ClueWeb09, which is part of the web, is a good knowledge 

source for our purpose. In section 6.5  we will examine the issue that if the size of 

ClueWeb09 is large enough for many general NLP tasks.  

6.3  Preprocessing of English Web Pages 

We preprocess English web pages in the following steps:  

(1) We translate web pages to pure text in RFC3676 format. 

(2) We filter noise texts.  

(3) We tag part-of-speech for each sentence. 

(4) We chunk phrases. 

We describe the first two steps in APPENDIX II. For POS tagging, we adopt Stanford 

POS tagger (Toutanova et al., 2003) to tag sentences and use trained tagging model 

wsj-0-18-left3words-distsim.tagger, which archives 97.01% correct on WSJ 19-21 and 

89.81% correct on unknown words. The Stanford tagger uses Penn Treebank POS tagset for 

tagging. We show the statistics of resulting dataset in Table 7. 

 

Number of documents (pages) 397,947,894  

Number of paragraphs 4,328,910,952  

Number of sentences 10,338,365,571  

Number of words 183,978,577,151  

 

Table 7. Statistics of English POS-tagging dataset. 
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The paragraph in Table 7 is different from paragraph in texts. If we encounter some 

HTML tag such as <p>, <br>, and table related tags, we break string to different paragraphs. 

We also show tag distribution in APPENDIX III.  

We use chunker from Apache OpenNLP 1.5.2. This chunker uses CoNLL 2000 shared 

task for its training set
19

. We show one example in Table 8. In the table, the chunked adjective 

phrase is <very conservative and tasteful>. Other two phrases are also chunked but its length 

is only one word. The chunker uses BIO scheme for its tags.  

 

English Word POS Tag Chunker’s Tag 

You 

are 

very 

conservative 

and 

tasteful 

. 

PRP 

VBP 

RB 

JJ 

CC 

JJ 

. 

B-NP 

B-VP 

B-ADJP 

I-ADJP 

I-ADJP 

I-ADJP 

O 

 

Table 8. A phrase-chunking example. 

 

The resulting dataset is compressed and be saved in Java serialization format. We have 

Java APIs to access the preprocessed English dataset. It is easy to access documents, 

paragraphs, sentences, chunked phrases, POS tag, and word. This dataset will be used in our 

knowledge extraction task, and we hope this dataset will be useful for researchers.  

6.4  Preprocessing of Chinese Web Pages 

Chinese web pages are more difficult to be handled. The first obstacle is encoding of web 

pages. In Chinese, there are many encodings for Chinese characters. In addition, there are 

different character sets that contain different Chinese characters. For example, Unicode is a 

                                                 
19

 http://www.clips.ua.ac.be/conll2000/chunking/   (Last access: 2013/01/21)  
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character set, and its newest version 6.2 contains more than more than 70,000 Han characters. 

Those Han characters are widely used in China, Japan, Korea, Taiwan, and Vietnam. Unicode 

has many encoding standards to store characters in different digit formats for different usages 

such as UTF-8, UTF-16, and UCS-4 (UTF-32). In addition to Unicode, the most popular 

character set in traditional Chinese may be the Big5 character set, which also has many 

versions and contains different Chinese characters. In simplified Chinese, there are many 

encoding standards such as GBK and GB2312. In order to deal with those variations, we 

convert all web pages to Unicode to simplify the question. 

Therefore, the first step is to detect encoding of a web page. In our paper (Yu, Tang, & 

Chen, 2012), we propose an algorithm to detect page’s encoding. Also, the proposed 

algorithm deals with mixed languages problem, in which there are more than two languages 

in single web page. For example, Chinese and Japanese language may be in a page from game 

forum.  

After converting all pages to correct encodings, we extract web pages to pure text in 

RFC3676 format. Because most of Chinese pages in ClueWeb09 are in simplified Chinese, 

we translate all web pages to simplified Chinese. We then adopt the Stanford Chinese Word 

Segmenter (Tseng, Chang, Andrew, Jurafsky, & Manning, 2005) and the Stanford Log-linear 

Part-Of-Speech Tagger (Toutanova et al., 2003) to process the texts. The details are in our 

paper (Yu et al., 2012), and we show the statistics of resulting dataset in Table 9 (also appears 

in our paper).  
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Number of web pages 173,741,587   

Number of sentences 9,598,430,559  

Number of tokens (terms) 141,179,769,123  

Number of digit terms 4,308,254,253  

Number of foreign words 4,095,774,930  

Number of character sequences 29,078,949,574  

Average sentences per page 55.2  

Average tokens per sentence 14.7  

 

Table 9. The statistics of the resulting Chinese POS-tagged dataset. 

 

Based on this Chinese POS-tagged dataset, we extract POS information for Chinese 

words and produce NTU PN-Gram corpus (Yu et al., 2012), which contains POS information 

for each n-gram (n in [1,5]). We also implement a web system for users to access the dataset 

easily (Yu & Chen, 2012a). We show statistics about NTU PN-Gram corpus in Table 10 (also 

appears in our paper).  

 

N # NTU PN-Grams # Google Chinese N-Grams Ratio 

1 2,219,170  876,004
20

  2.5 : 1 

2 62,728,971  281,107,315  1 : 4.5 

3 200,066,527  1,024,642,142  1 : 5.1 

4 294,016,661  1,348,990,533  1 : 4.6 

5 274,863,248  1,256,043,325  1 : 4.6 

 

Table 10. Comparison of NTU PN-Gram corpus and Google Chinese Web N-gram corpus 

 

In Table 10, Google Chinese Web N-gram corpus (F. Liu, Yang, & Lin, 2010) uses 

882,996,532,572 tokens to derive n-gram information while our NTU PN-Gram corpus uses 

141,179,769,123 tokens (ratio 6.3 : 1). In next section, we want to know is this size enough 

for general NLP tasks.  

In addition to POS information, we also identify discourse markers in Chinese texts. We 

                                                 
20

 We exclude 740,146 non-Chinese tokens in Google unigrams. 
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identify 319 single word markers (such as 另外 /in addition to), 85 inter-sentential 

connectives (such as 首先/the first …其次/the second), and 404 intra-sentential connectives 

(such as 除非/unless …否则/otherwise). When we identify the markers, inter-sentential 

connectives and intra-sentential connectives have higher priority than that of single markers. 

This means that if a word is used in inter-sentential connective or intra-sentential connective, 

it cannot be we a single marker. For example, 反而/instead is a single marker, but it also 

appears in intra-sentential marker不但/not only …反而/instead. If we identify反而/instead to 

be a part in 不但/not only …反而/instead, it will not be a single word marker. Sometimes, a 

intra-sentential marker can also be a inter-sentential marker. For example, 一方面/on the one 

hand …另一方面/on the other hand can be both intra- and inter-sentential connectives. There 

are 50 unique connectives of this type. We show them in Table 11. 

 

一方面,另一方面 

不仅,同时 

不仅,而 

不仅,而且 

不但,更 

不但,还 

因为,因此 

因为,就 

因为,所以 

因为,於是 

因为,而 

固然,但是 

固然,然而 

尽管,可是 

尽管,然而 

尽管,而 

当初,后来 

当初,如今 

当初,目前 

或,或 

或者,或者 

接着,最后 

接着,然后 

既,更 

既然,所以 

既然,而 

早期,然后 

最初,后来 

最早,后来 

由于,因此 

由于,所以 

由于,而 

目前,未来 

虽然,不过 

虽然,但 

虽然,但是 

虽然,可是 

虽然,然而 

虽然,而 

虽说,但 

还是,还 

还是,还是 

随后,最后 

首先,之后 

首先,其次 

首先,接着 

首先,最后 

首先,然后 

首先,目前 

首先,而且 

 

Table 11. 50 unique connectives that can be both intra- and inter-sentential connectives 

 

The identified markers are stored in a predefined format, and Java APIs are provided to 

access those information. We hope that the resulting datasets can boost NLP researches. 
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6.5  A Verification of ClueWeb09 Dataset 

Because ClueWeb09 is a small part of the whole web, we want to know is this size enough for 

our purpose. We want to produce useful datasets, and we want to assure that the datasets can 

derive reliable probability for NLP tasks. We use an NLP tasks and compare the use of two 

different resources (our dataset and Google Web N-gram corpus) to see if the results are the 

same. In addition to verifying the usefulness of the datasets, we also introduce the use of 

concept representation. We use the proposed representation to represent sentences. We adopt 

the detections of word ordering error in Chinese sentences for this purpose (Yu & Chen, 

2012b). 

The word ordering error in Chinese is the cases where words are placed in the wrong 

places in Chinese sentences. This may results in wrong words and grammatical errors. For 

example, <我/I (am) 很/very 有兴趣/interest in 对/for 关于/related 服装的工作/Work on 

clothing> is an error sentence, and the correct sentence should be <对/for 关于/related 服装

的工作/Work on clothing 我/I (am) 很有/very 兴趣/interesting>.  

The adopted concept representation uses syntactical knowledge and knowledge from two 

datasets
21

: NTU PN-Gram corpus and Google Web N-gram corpus. We show the process in 

Figure 8.  

 

                                                 
21

 We also use another features, but we did not show it here. 
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The knowledge we used in WOEs detection is simple, and the static part of the 

knowledge is POS tagging information of a sentence and probability derived from n-gram 

datasets. It is clear that this representation is easy to understand and easy to extent.  

If we replace the knowledge source from the larger Google Web N-gram corpus to the 

smaller NTU PN-Gram corpus and then compare system’s results, we can answer the question 

that is the size of ClueWeb09 enough for deriving reliable probability. The answer is yes, and 

we describe experiments below. 

We conduct experiments on two kinds of datasets (HSK-HSK and NAT-HSK) from HSK 

corpus. The results is shown in Table 12. 

 

Features 
HSK-HSK NAT-HSK 

accuracy (%) stdev. accuracy (%) stdev. 

CgW 50.84 2.26 63.17 1.54 

CgS 52.64 2.01 65.01 2.23 

(CgW, CgS) 52.59 2.21 64.77 2.29 

CbW 50.90 2.94 63.90 1.81 

CbS 51.95 2.67 65.09 1.69 

(CbW, CbS) 56.99 1.98 65.93 2.01 

 

Table 12. Compare results using NTU PN-Gram corpus and Google Web N-gram corpus. 

 

In Table 12, feature CgW denotes the system adopts Google Web N-gram corpus and does 

Frame structure 

Syntactical 

knowledge (POS 

information) 

Knowledge from 

dataset 

Explicitization 
process 

Feature 
matrix 

ML 
algorithms  

Figure 8. Illustration of concept representation in WOE detections. 
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not use segmentation system. Feature CgS denotes the system adopts Google Web N-gram 

corpus and does use segmentation system. Feature (CgW, CgS)
22

 denotes we combine two 

feature vectors to produce a new vector. The subscript character b in CbW denotes the same 

setting except we adopt NTU PN-Gram corpus as reference corpus. We can find that although 

the size of PN-Gram corpus are much smaller than that of Google Web N-gram corpus, this 

do not make difference (see CgW. and CbW). This conclusion still holds when we use 

segmentation system (see CgS. and CbS). This give us confidence to use ClueWeb09 and the 

resulting datasets. 

  

                                                 
22

 For detail setting, please refer to our paper (Yu & Chen, 2012b). 
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Chapter 7.   Conclusion and Future Work 

In this dissertation, we focus on concept representation in building intelligent systems. For 

this purpose, we define concept a continuation, which is a kind of temporary state in concept 

computation process of human. We put continuation in the context of the evolutionary 

language game. Based on this setting, we discuss some theoretical aspects of the definition. 

We also consider the concept theories, which relate to the world behind mathematical models. 

We derive some conclusions on three kinds of stability: input stability, test stability, and 

dogma stability.  

We propose a concept representation scheme, which contains static frame structure and 

dynamic explicitization process. This concept representation scheme features transparency 

and flexibility as its core advantages. We want the concept representation can be adopted in 

many different tasks.  

To demonstrate the application of our concept definition, we apply our concept definition 

in two problems: commonsense knowledge classification and word sense disambiguation. We 

use commonsense knowledge classification to demonstrate how to use our definition in 

traditional machine learning process. We further use our definition to derive new concepts to 

handle WSD problem. We investigate concept appropriateness and concept fitness in the 

relation between concept and its context, which is similar to continuation and its context. We 

use these two concepts to formulate new algorithms to learn models for WSD.  

In addition to the concept definition, we conduct experiments and assert that the texts 

contain commonsense knowledge, therefore, texts is a good source for mining proofs to test 

system’s understanding level. We also conduct experiments and assert that ClueWeb09 is a 

good knowledge source although it contains small part of the whole web. 

We preprocess ClueWeb09 and produce three datasets for researchers. The first dataset is 
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POS-tagged and phrase-chunked English datasets. The second dataset is segmented, 

POS-tagged, and discourse marker identified Chinese dataset. The third dataset is NTU 

PN-Gram corpus, a Chinese n-gram dataset with POS information (n in [1, 5]). We have 

design a web system for general users to access this NTU PN-Gram corpus. The system is 

designed to boost the speed of query this big n-gram dataset. 

In the future, we want to deeply investigate our concept definition in many aspects such 

as developing internal architecture of a continuation and grounding these structures in 

philosophical viewpoints. We want to use our concept representation scheme in more 

problems, and finally, we hope this concept definition can boost researchers to build a real 

intelligent system in the future.  
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APPENDICES    

APPENDIX I. The Definition of definition 

We propose that “a definition connects object to other objects and use criteria to rate the 

goodness of this connection” in text. We denote this viewpoint as Connection Rating. Here, 

we argue that this explanation of term definition can subsume three viewpoints in Friedman's 

(1974) article. 

Friedman's article gives three viewpoints of scientific explanations: (quotes below are 

from Friedman's article)  

1. D-N model: “According to the D-N model, a description of one phenomenon can 

explain a description of a second phenomenon only if the first description entails the 

second.” 

2. Familiarity: “scientific explanations give us understanding of the world by relating 

(or reducing) unfamiliar phenomena to familiar ones.” 

3. Intellectual Fashion: “the phenomenon doing the explaining must have a special 

epistemological status ... this status varies from scientist to scientist and from 

historical period to historical period. At any given time certain phenomena are 

regarded as somehow self-explanatory or natural.” 

Because “explanation” is also a concept, we can interpret these three views by using four 

families of concept theories. For example, Intellectual Fashion obviously uses concept 

theories from rationalism and historicism.  

We can see that if the connection is restricted to having entailment property, Connection 

Rating subsumes D-N model viewpoint. If the connection is restricted to having reduction 

property and the explanatory objects must be familiar ones, Connection Rating subsumes 
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Familiarity viewpoint. If the explanatory objects have special epistemological status, and the 

explanatory objects and rating function are time-variant and scientist-depend, Connection 

Rating subsumes Intellectual Fashion viewpoint.  

Actually, philosophers have proposed many criteria for the rating function. For Karl 

Popper (1902 – 1994), the criterion is falsifiability when we judge the goodness of a science 

theory. In logical positivism, the criterion is verifiability of explanatory objects. For Thomas 

Kuhn (1922 – 1996), the author of The Structure of Scientific Revolutions, the criteria are 

changing for different scientist societies and different historical periods. For scientists whose 

believe Galilean style, the criterion gives mathematical models higher priority to the reality. 

These criteria can be subsumed by the Connection Rating viewpoint, which gives a unified 

viewpoint of scientific explanation. 
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APPENDIX II. The Filtering of Noise Texts 

To have a cleaner dataset for knowledge extraction, it is necessary to filter out noises as much 

as we can, especially when the ClueWeb09 dataset are composed by web pages. The filtering 

procedures are as follows.  

1. Convert a HTML page to a sequence of Java String.  

2. For each string, we filter out it if it did not contain knowledge we want.  

We use Jericho HTML Parser
23

 to convert HTML pages to pure text in RFC3676 format. 

In the converting procedure, we write the converted strings in Java’s serialization format. The 

serialization format can preserve the order of texts as they appear in the web pages. All 

extracted elements in HTML page are converted to a sequence of Java strings. For example, 

the content in <P> tag will be transform to single string, as well as the content of table’s cell 

(<TD> tag) will be in a single string. HTML tags, script codes, and other HTML elements 

which are for formatting purpose are removed, and the result of transformed HTML page is a 

sequence of text string. A single string may be a word, a phrase, a sentence, or a paragraph 

which depends on the author of a web page. Not all strings are helpful for knowledge 

extraction, so we design a simple and fast approach to filter out useless strings. 

We filter out many types of strings that obviously did not help for knowledge extraction. 

These filtered strings included script codes (due to the mal-formed HTML page), words for 

site's functions link, number, and named entity such as proper name, date, and time. Some of 

filtered strings are shown as follows.  

 

                                                 
23

 http://jericho.htmlparser.net/docs/index.html 
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When processing the huge ClueWeb09 dataset, the speed is the most important 

consideration. We investigate two possible approaches, rule-based and linear SVM classifier 

(Fan, Chang, Hsieh, Wang, & Lin, 2008), for deciding a string of being selected or not. 

Rule-based approach uses a list of if-else decisions which is simple and fast, but is hard to 

find out the best filtering rules. Linear SVM classifier, on the other hand, is more theoretical 

valid, and it is fast because it uses linear decision function    , where w is the learned 

weights and x is feature vector. The hard problem here is to construct a test set for evaluating 

both approaches. We adopt a blended approach.  

We first use a simple rule-based approach as bootstrap step to construct training set. We 

process 4 ClueWeb09 data files first, and use heuristic rules to decide invalid strings, which 

are the strings we want to filter. Each data file contains about 33000 HTML pages, and 

resulting 1893,512 valid strings and 10,860,623 invalid strings. We then adopt Liblinear
24

 to 

train a classifier with L2-regularized L2-loss support vector classification.  

The features we used include number of sentences, number of period, string length, 

number of sentence markers (.!?), the ratio of maximum word length to string length, and the 

                                                 
24

 http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 

* Demographics (64)                           (list item) 

* Economics (64)                              (list item) 

Henry L. Williams                             (name) 

Hire Me to Write!                              (slogan) 

as of 2005.                               (word + date) 

^ Page 238.                                  (word + number) 

30 Jan 2006.                                  (date) 

About OLX | Terms Of Use | Contact Us            (site’s function link) 

Login | Sign Up!        (site’s function link) 

//<![CDATA[ Sys.Application.add_init(function()… (script codes) 

Tags: al green, alex gopher, annie, black keys, …  (tags) 
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ratios of different character categories, such as digit, space, A-to-Z characters, and special 

chars used in scripts (@+-&%*/~#;,.!?|$^\"\:=`). For some scalar features in range [0,1], we 

add four flags to indicate the scalar quantization result. The number of total features is 92, and 

all features are normalized to [-1, 1]. These features can be extracted in linear time O(L) 

where L is the string length. The best inside test performance of linear SVM is about 97.50%.  

The third step is applying the learned model to training set, and we manually induce 

simple rules from these errors. The final rules we used for filtering are as follows. 

1. The minimum string length must larger than 30 characters. This will filter out most list 

item, named entities and table cells. 

2. The number of space must larger than 1.  

3. If 
                                        

                  
     , we skip the string. 

4. If   
                                                                                

             
    , we skip 

the string. 

5. If        and 
                                                                   

             
>0.05, we 

skip the string. This rule takes the sentence delimiters (.?!) into consideration. 

6. Otherwise, this string is a valid string we want. 

 

By using the induced rules in third step, we found that the result set is more feasible for 

knowledge extraction. 
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APPENDIX III. English POS Tag Distribution 

We show the English POS tag distribution in the following table.  

 

PSO Tag Count PSO Tag Count 

NN 28,620,799,002  -RRB- 937,675,464  

IN 17,750,641,457  -LRB- 900,374,892  

NNP 16,881,018,047  FW 860,773,391  

DT 14,758,146,518  WDT 744,615,654  

JJ 12,012,182,379  WRB 670,162,968  

NNS 10,635,509,446  ' 656,528,827  

. 9,376,537,123  ` 631,464,670  

, 8,190,673,858  POS 599,654,658  

VB 6,438,881,097  NNPS 544,771,661  

RB 6,157,087,150  WP 544,603,373  

CC 5,890,474,901  JJR 529,219,620  

PRP 5,748,676,031  RP 468,632,400  

VBZ 4,281,854,212  JJS 379,247,918  

TO 4,028,295,683  EX 237,663,308  

VBP 3,851,865,455  RBR 213,693,574  

VBN 3,745,399,209  SYM 175,364,641  

CD 3,617,712,870  RBS 106,185,138  

VBG 3,022,735,634  $ 98,689,184  

VBD 2,998,857,011  PDT 92,562,716  

PRP$ 2,409,436,097  UH 77,926,846  

MD 2,021,238,205  LS 49,512,193  

: 1,981,648,298  # 24,026,175  

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ WP$ 15,558,197  

 

Table 13. English POS tag distribution. 
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