國立臺灣大學生命科學院生態學與演化生物學研究所

博士論文

Institute of Ecology and Evolutionary Biology College of Life Science National Taiwan University Doctoral Dissertation

全寄生植物菱形奴草質體基因組演化之研究

Evolutionary Studies of Plastid Genome of Holoparasitic Mitrastemon kanehirai

徐馨怡

Shin-Yi Shyu

指導教授:胡哲明 博士

Advisor: Jer-Ming Hu, Ph.D.

中華民國 102 年 8 月

August, 2013

謝 辭

終於,這段漫長的博士生生涯可以畫下句點了。

首先謝謝我的指導教授胡哲明老師,我想老師在心裡應該也想著「終 於!」並且也鬆了一口氣吧!謝謝老師在這段長長的時間裡的指導與照顧,老 師不只引領我進入這個研究領域,也擴展了我的生活視野。感謝口試委員邱少 婷老師、蕭淑娟老師、鍾國芳老師以及劉少倫老師,撥冗在匆促的時間內審閱 論文並提供建議與匡正。

謝謝一路走來與我互相扶持的實驗室夥伴們。一起討論實驗、一起出外採 集、一起遭遇實驗的撞牆期,沒有你們的協助我無法順利完成我的實驗。我的 玩樂好友們,謝謝你們聽我吐苦水、照顧我這個窮學生,這期間我們一起經歷 了許多難忘的體驗。其他對我實驗提供協助的學長姐、一起帶實驗課的助教還 有許多未曾謀面卻大方提供資訊的朋友,謝謝你們給與的溫暖。

最後謝謝我的家人們,雖然不太清楚我在做啥,也搞不懂為什麼一個博士 班要念這麼久,你們還是盡其所能的協助我以及給與無限的包容與支持。

感謝這一路上所有幫助過我的人~謝謝!

摘要

非光合作用植物只存在著退化的質體,且其質體基因組已高度的縮減。菱形 奴草(Mitrastemon kanehirai)為台灣特有的全寄生植物,屬於嚴重瀕臨絕滅的 珍貴保育物種。目前菱形奴草只有一條質體序列被發表,而此序列 pt16S rDNA 顯示了演化速度加快的現象。

本論文首先比較了六種 DNA 萃取方法在兩種非光合作用植物日本蛇菰 (Balanophora japonica)和菱形奴草上的成效。而利用 Barnwell 等人(1998)針對 富含黏液的多肉植物發展出的方法所抽出的蛇菰及奴草 DNA,其純度皆能夠進 行限制酶切割反應。此外並成功的在菱形奴草運用了 Milligan 在 1989 年所敘述 利用高鹽溶液去除細胞核 DNA 的方法,有效的提高其質體 DNA 的含量。

研究顯示除了質體外,異營性植物的細胞核以及粒腺體小次單元 rDNA 也有 演化速度加快的現象。為了釐清異營性植物細胞內三種 SSU rDNA 間演化速度的 相對關係,本研究檢視了九種異營性植物(包括一種半寄生、五種全寄生以及三 種真菌異營性的植物)的粒線體 19S、質體 16S 以及核 18S rDNA;藉由相對速 率分析和譜系分析兩種方法來估算這些 rDNA 序列的演化速度。分析顯示與其他 被子植物相比較,非光合作用植物的 pt16S 及 nr18S rDNA 序列,其取代率明顯 的增高,而 mt19S rDNA 則無此現象。九種被檢視的植物中,日本蛇菰和菱形奴 草的 pt16S 和 nr18S rDNA 的變異最大,並且伴隨著序列中 GC 比例的降低。

此外本論文利用了次世代定序技術,成功的獲得了非光合作用植物菱形奴草 質體基因組的完整序列。與一般陸生植物的葉綠體基因組相比,菱形奴草的質體 基因組喪失了所有與光合作用相關的基因,並欠缺反向重覆區域,而保留下來的 基因大多與轉譯作用相關。這個保有4個rRNA、4個tRNA及18個蛋白質編碼 (protein-coding)基因、大小只有25,740 bp的質體基因組為目前已知的最小質體基 因組。

關鍵字:非光合作用植物、異營性植物、小次單元 rDNA、演化速度、質體基因 組、菱形奴草、質體基因組

i

ABSTRACT

Non-photosynthetic plants only retain remnant plastids and their plastome is highly reduced. *Mitrastemon kanehirai*, a root holoparasite, is endemic to Taiwan and considered an endangered species. *Mitrastemon kanehirai* has only one plastid sequence has been reported, and the sequence, pt16S rDNA, shows increased substitution rate.

In this dissertation, the performance of six DNA extraction procedures for two nonphotosynthetic plants, *Balanophora japonica* and *M. kanehirai*, were compared. All six procedures yielded DNA of sufficient quality for PCR, and the method described by Barnwell et al. (1998) performed well in isolating DNA from both species for restriction enzyme digestion. Meanwhile, enrichment of *M. kanehirai* plastid DNA content was achieved by using the 'high salt' methods based on protocol presented by Milligan (1989).

High rate of nucleotide substitution in three subcellular SSU rDNAs have been reported in heterotrophic plants, and the rate heterogeneity among these sequences are presented in this dissertation. Mt19S, pt16S and nr18S rDNA sequences from nine heterotrophic plants, including one hemiparasitic, five holoparasitic and three mycoheterotrophic plants, were examined. Rate heterogeneity among various rDNA sequences was evaluated by relative rate tests and phylogenetic analysis. Both pt16S and nr18S rDNA sequences of non-photosynthetic species show significant increases of substitution rate, but the phenomenon was not found in mt19S rDNA. The extreme divergent pt16S and nr18S rDNA sequences were found in *B. japonica* and *M. kanehirai*, and accompanied by a decrease in GC content of the sequences.

Mitrastemon kanehieai plastome was sequenced by using next generation sequencing technology. The genome is smallest plastome that have been described with size of 25,740 bp. Only 26 genes were retained in the plastome, which include 4 rRNAs, 4 tRNAs and 18 protein-coding genes. These retained genes are mostly involved in translation machinery. All photosynthesis-related genes were lost, and the inverted repeat region is absent. Despite the enormous reduction, the *M. kanehirai* plastome is a functional gene expression system. DNA transfer from plastid to nucleus and horizontal transfer from the host to the parasite were also observed in *M. kanehirai*.

Keywords: heterotrophic plant, *Mitrastemon kanehirai*, non-photosynthetic plant, plastome, small-subunit rDNA, substitution rate.

CONTENTS

CONTENTS
ABSTRACT (Chinese)
ABSTRACT (English)
CONTENTS v
LIST OF TABLES
LIST OF FIGURES ix
Chapter 1. Overview1
Figures
Reference
Chapter 2. Comparison of six DNA extraction procedures and the application of plastid
DNA isolation methods in non-photosynthetic plants
Abstract
Introduction15
Materials and Methods 17
Results and Discussion
Figures and Tables
References
Supplementary Data
Chapter 3. Evolutionary rate of nuclear and organelle small-subunit rDNAs in

~ ~	U	
heterotrophic plants		
Abstract		
Introduction		

Materials and Methods	
Results	44.
Discussion	
Figures and Tables	
References	
Supplementary Data	

Chapter 4. Reduction of plastid genome of the non-photosynthetic plant Mitrastemon

kanehirai	65
Abstract	66
Introduction	67
Materials and Methods	
Results	75
Discussion	79
Tables and Figures	
References	
Supplementary Data	105
Chapter 5. Summary	115
Appendix	117

LIST OF FIGURES

LIST OF FIGURES	A SISIS
Figure 1-1. The phylogenetic tree of Ericales according to the APG III system	Tololol
Figure 1-2. Photos of <i>Mitrastemon kanehirai</i> 7	
Figure 2-1. The results of restriction enzyme digestion on the isolated DNAs	
Figure 2-2. Real-time PCR amplification plot of <i>Mitrastemon kanehirai</i> DNA30	
Figure 2-3. Relative quantification of nr18S and pt16S rDNA	
Figure 2-4. The ratio of pt16S/nr18S rDNA in extracted <i>Mitrastemon kanehirai</i> DNAs	
Figure 3-1. Patterns of nucleotide substitution in A mt19S, B pt16S and C nr18S rDNAs across selected taxa	
Figure 4-1. Circular map of <i>Mitrastemon kanehirai</i> plastome91	
Figure 4-2. Expression of the plastid genes in <i>Mitrastemon kanehirai</i>	
Figure 4-3. Maps of three large DNA fragments93	
Figure 4-4. Results of Southern blot analyses of Mitrastemon kanehirai	
Figure 4-5. The real-time PCR amplification plot of three <i>Mitrastemon kanehirai</i> DNA fragments	
Figure 4-6. The histogram of real-time PCR amplification of three <i>Mitrastemon</i> <i>kanehirai</i> DNA fragments96	
Figure 4-7. The comparison of three non-photosynthetic and two green plant plastomes	
Figure 4-8. Relationship between plastome size and pt16S rDNA substitution rate among heterotrophic plants	

LIST OF TABLES

LIST OF TABLES
Table 2-1. The methods used in this study
Table 2-2. A _{260/280} ratios of DNA extracted by commercial kits and CTAB-based methods
Table 3-1. The information for source materials of SSU rDNA sequences 54
Table 3-2. Primers used in this study
Table 3-3. Features of mt19S, pt16S and nr18S rDNAs from heterotrophic plants56
Table 3-4. Results of relative rate tests for comparing SSU rDNA substitution rates between heterotrophic lineages (Lineage 1) and their autotrophic relatives (Lineage 2)
Table 4-1. Gene contents (without photosynthesis related genes) of plastomes in 5 non- photosynthetic plants
Table 4-2. Length and GC content of plastid regions in 2 photosynthetic and 5 non- photosynthetic plants

Chapter 1. Overview

The heterotrophic plants

The heterotrophic plants are those having all or some of resources required to support their vital processes and can be classified as either mycoheterotrophs or haustorial parasites (Leake, 1994; Nickrent, 2002; Irving and Cameron, 2009; Selosse and Cameron, 2010; Těšitel et al., 2011). Mycoheterotrophs obtain their nutrition from the associated plant via a mycorrhizal fungus whereas haustorial parasites feed directly on another plant (the host) via haustoria (Kuijt, 1969; Nickrent, 2010; Selosse and Cameron, 2010). Noted that not all of the haustorial parasites are non-photosynthetic, and they can be categorized into two groups, hemiparasites and holoparasites, based on the ability to perform photosynthesis. Hemiparasites are chlorophyllous and photosynthetic during at least one stage of their life cycle, and they obtain water and nutrients from the host xylem. Some advanced hemiparasites (e.g. dwarf mistletoes) also obtain photosynthates from the host phloem. Holoparasites, on the other hands, are totally achlorophyllous (or nearly so), nonphotosynthetic, and must rely on their host for water and nutrients from the host xylem and photosynthates from the host phloem (Nickrent, 1997; Nickrent et al., 2000; Nickrent, 2002; Heide-Jørgensen, 2008; Irving and Cameron, 2009; Nickrent, 2010). The term 'non-photosynthetic plants', refer to both mycoheterotrophs and holoparasitic plants that completely lost photosynthetic ability.

It has been reported that the parasitic lifestyle has evolved at least 11 times in flowering plants (Barkman et al., 2007). There are about 4,400 parasitic species of flowering plants, which consist about 1% of angiosperms (Heide-Jørgensen, 2008; Nickrent, 2010). Classifications of heterotrophic plants based on morphological characters have long been difficult because of the reduction of their morphological features and frequent convergence on character evolution. In addition, phylogenetic reconstruction of heterotrophic plants faces great challenges with their highly divergent ptDNA sequences. Furthermore, non-photosynthetic plants lost their photosynthetic ability and genes related to photosynthesis were either lost or pseudogenized. Therefore, it makes even more difficult to select suitable molecular markers for non-photosynthetic plants.

Phylogenetic study in heterotrophic plants

Two plastid genes, *rps2* and *rbcL*, have been used to examine the phylogeny of some parasitic taxa (dePamphilis et al., 1997; Nickrent et al., 2000). Since these two genes might be lost in non-photosynthetic plants, *rps2* and *rbcL* are not proper molecular markers for non-photosynthetic plants. The plastid 16S and nuclear 18S rDNA sequences also have been utilized in phylogenetic studies of parasitic plant and the results show evolutionary rates of the two rDNAs are increased in some parasitic plants (Nickrent and Starr, 1994; Nickrent and Duff, 1996; Nickrent et al., 1997; Nickrent et al., 2000; Lemaire

et al., 2010; Su and Hu, 2012). The mitochondrial sequences have been shown as suitable markers for reconstructing the phylogeny of parasitic plants (Barkman et al., 2004; Nickrent et al., 2004). However, massive mitochondrial DNA transfers in parasitic plants also have been reported (Xi et al., 2012; Xi et al., 2013), and therefore the usage of mitochondrial sequences as molecular markers should be very careful in these taxa.

Cuscuta is one of the most intensely studied genera of parasitic plants, and several *Cuscuta* plastomes have be completely sequenced (Revill et al., 2005; Stefanović and Olmstead, 2005; Funk et al., 2007; McNeal et al., 2007; Braukmann et al., 2013). The size of the *Cuscuta* plastome appears to be correlated with the ability of photosynthesis. The genus *Cuscuta* represents an evolution process from hemiparasites to holoparasites, with some of the *Cuscuta* species still retain partial photosynthetic ability. In addition, several heterotrophic plant plastomes, including some mycoheterotrophic orchids, have been described recently. All these plastome data enable us to compare the plastid sequences, gene content and gene order in heterotrophic plants. By analyzing and comparing the plastome sequence, it will give us more insight into the evolution of plastid genome in heterotrophic plants.

Mitrastemon are root endoparasites distributed in Central America, East and Southeast Asia (Yamamoto, 1936; Meijer and Veldkamp, 1993). Previous studies were mostly focused on morphological observation. *Mitrastemon* has long been thought to belong to the Rafflesiaceae (Hayata, 1913; Kuijt, 1969; Meijer and Veldkamp, 1993; Bouman and Meijer, 1994; Mabberley, 1997). However, recent studies have placed *Mitrastemon* (Mitrastemonaceae) in Ericales, but not Rafflesiaceae (in Malpighiales) according to their molecular phylogenetic analyses based on nuclear 18S rDNA and mitochondrial *mat*R sequences (Fig. 1-1) (Barkman et al., 2004; Nickrent et al., 2004). There is only one plastid sequence of *Mitrastemon* (16S rDNA) available in GenBank. The 16S sequence showed higher accelerated substitution rate than the pt16S of *Epifagus virginiana*, which is a holoparasite with a reduced plastome of size 70 kb (Nickrent et al., 1997; Nickrent et al., 2000).

Two *Mitrastemon* species, *M. kanehirai* and *M. kawasasakii* were found in Taiwan, both were reported endemic to Taiwan (Yang and Lu, 1996). In the two species, *M. kanehirai* is considered an endangered species and only found in few limited localities with few individuals within populations.

This dissertation focuses on the plastome of *Mitrastemon kanehirai* (Fig. 1-2), a non-photosynthetic plant that is not close to any other heterotrophic plants with complete plastome sequence. By analyzing and comparing the *M. kanehirai* plastome sequence with other plants, we hope it will help us further understand the evolution of plastid genome in non-photosynthetic plants.

In order to obtain total genomic DNA and plastid DNA with high quality from M.

kanehirai, I have tested several DNA extraction and plastid isolation procedures. Only some of the DNA extraction procedures successfully isolated DNA from *M. kanehirai*. Although the attempt of isolating pure and intact *M. kanehirai* plastid failed, I indeed succeeded to obtain enriched plastid DNA from *M. kanehirai* DNA preparation. The comparison of different DNA extraction procedures and the application of ptDNA enrichment protocols are presented in Chapter 2.

Previous studies have documented accelerated evolutionary rates in heterotrophic plants for nuclear 18S rRNA genes (Nickrent and Starr, 1994; Nickrent and Duff, 1996; Lemaire et al., 2010) and plastid 16S rRNA genes (Nickrent et al., 1997; Nickrent et al., 2000); however, high evolutionary rate is not a ubiquitous phenomenon in small-subunit rDNAs of heterotrophic plants. Therefore in Chapter 3, I extended my survey examining mt19S, pt16S and nr18S rDNA sequences from nine heterotrophic plants in order to examine whether there is any correlation of evolutionary rate patterns among the three subcellular SSU rDNAs in heterotrophic plants.

In Chapter 4, the theme of this dissertation, we sequenced the complete plastid genome of *M. kanehirai* by using next generation sequencing technology. The plastome sequence was analyzing and compared with other plastomes to improve our understanding of plastome evolution in non-photosynthetic plants.

Lastly, a brief summary based on the results from each chapter is given in Chapter 5.

Figure 1-2. Photos of *Mitrastemon kanehirai*. A young stage, B male stage and C female stage. Photos were taken by Jer-Ming Hu.

References

- Barkman, T., J. McNeal, S.H. Lim, G. Coat, H. Croom, N. Young and C. dePamphilis.
 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol. 7: 248.
- Barkman, T.J., S.H. Lim, K.M. Salleh and J. Nais. 2004. Mitochondrial DNA sequences reveal the photosynthetic relatives of *Rafflesia*, the world's largest flower. Proc Nat Acad Sci USA. 101: 787-792.
- Bouman, F. and W. Meijer. 1994. Comparative structure of ovules and seeds in Rafflesiaceae. Plant Syst Evol. 193: 187-212.
- Braukmann, T., M. Kuzmina and S. Stefanovic. 2013. Plastid genome evolution across the genus *Cuscuta* (Convolvulaceae): two clades within subgenus *Grammica* exhibit extensive gene loss. J Exp Bot. 64: 977-89.
- dePamphilis, C.W., N.D. Young and A.D. Wolfe. 1997. Evolution of plastid gene *rps2* in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proc Nat Acad Sci USA. 94: 7367-7372.
- Funk, H., S. Berg, K. Krupinska, U. Maier and K. Krause. 2007. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, *Cuscuta reflexa* and *Cuscuta gronovii*. BMC Plant Biol. 7: 45.
- Hayata, B. 1913. On the systematic position of *Mitrastemon*, as a genus representing a special tribus of the Rafflesiaceae. Icones Plantarum Formosanarum. 3: 199-213.
- Heide-Jørgensen, H.S. 2008. Parasitic Flowering Plants, Koninklijke Brill NV, Leiden, The Netherlands.
- Irving, L.J. and D.D. Cameron. 2009. You are what you eat: interactions between root parasitic plants and their hosts. *In* K. Jean-Claude, and D. Michel, (eds.).

Advances in Botanical Research. Academic Press, pp. 87-138.

- Kuijt, J. 1969. Rafflesiaceae, Hydnoraceae, and Balanophoraceae. The Biology of Parasitic Flowering Plants. University of California Press, pp. 118-133.
- Leake, J.R. 1994. The biology of myco-heterotrophic ('saprophytic') plants. New Phytol. 127: 171-216.
- Lemaire, B., S. Huysmans, E. Smets and V. Merckx. 2010. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J Plant Res. 124: 561-576.
- Mabberley, D.J. 1997. The plant-book, 2nd. Cambridge University Press, Cambridge.
- McNeal, J., J. Kuehl, J. Boore and C. de Pamphilis. 2007. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus *Cuscuta*. BMC Plant Biol. 7: 57.
- Meijer, W. and J.F. Veldkamp. 1993. A revision of *Mitrastema* (Rafflesiaceae). Blumea. 38: 221-229.
- Nickrent, D.L. 1997. The parasitic plant connection. http://www.parasiticplants.siu.edu/.
- Nickrent, D.L. 2002. Parasitic plants of the world. In J.A. López-Sáez, P. Catalán and L. Sáez (eds.), Parasitic plants of the Iberian Peninsula and Balearic Islands. Mundi-Prensa Libros, S. A., Madrid, Spain, pp. 7-27.
- Nickrent, D.L., A. Blarer, Y.L. Qiu, R. Vidal-Russell and F.E. Anderson. 2004. Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol. 4: 40-56.
- Nickrent, D.L. and R.J. Duff. 1996. Molecular studies of parasitic plants using ribosomal RNA. *In* M.T. Moreno, J.I. Cubero, D. Berner, D. Joel, L.J. Musselman, and C. Parker, (eds.). Advances in Parasitic Plant Research, pp. 28-52.
- Nickrent, D.L., R.J. Duff, A.E. Colwell, A.D. Wolfe, N.D. Young, K.E. Steiner and C.W. dePamphilis. 2000. Molecular phylogenetic and evolutionary studies of parasitic

plants. *In* D.E. Soltis, P.S. Soltis, and J.J. Doyle, (eds.). Molecular Systematics of Plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, Massachusetts, USA, pp. 211-241.

- Nickrent, D.L., R.J. Duff and D.A.M. Konings. 1997. Structural analyses of plastidderived 16S rRNAs in holoparasitic angiosperms. Plant Mol Biol. 34: 731-743.
- Nickrent, D.L., Musselman L. J. 2010. Introduction to parasitic flowering plants. http://www.apsnet.org/edcenter/intropp/PathogenGroups/Pages/ParasiticPlants.a spx.
- Nickrent, D.L. and E.M. Starr. 1994. High-rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. J Mol Evol. 39: 62-70.
- Revill, M.J.W., S. Stanley and J.M. Hibberd. 2005. Plastid genome structure and loss of photosynthetic ability in the parasitic genus *Cuscuta*. J Exp Bot. 56: 2477-2486.
- Selosse, M.A. and D.D. Cameron. 2010. Introduction to a virtual special issue on mycoheterotrophy: New Phytologist sheds light on non-green plants. New Phytol. 185: 591-593.
- Stefanović, S. and R. Olmstead. 2005. Down the slippery slope: plastid genome evolution in Convolvulaceae. J Mol Evol. 61: 292-305.
- Stevens, P.F. 2001 onwards. Angiosperm Phylogeny Website. Version 12, July 2012. http://www.mobot.org/MOBOT/research/APweb/.
- Su, H.J. and J.M. Hu. 2012. Rate heterogeneity in six protein-coding genes from the holoparasite *Balanophora* (Balanophoraceae) and other taxa of Santalales. Ann Bot. 110: 1137-1147.
- Těšitel, J., J. Lepš, M. Vráblová and D.D. Cameron. 2011. The role of heterotrophic carbon acquisition by the hemiparasitic plant *Rhinanthus alectorolophus* in seedling establishment in natural communities: a physiological perspective. New

Phytol. 192: 188-199.

- Xi, Z., R. Bradley, K. Wurdack, K. Wong, M. Sugumaran, K. Bomblies, J. Rest and C. Davis. 2012. Horizontal transfer of expressed genes in a parasitic flowering plant.
 BMC Genomics. 13: 227.
- Xi, Z., Y. Wang, R.K. Bradley, M. Sugumaran, C.J. Marx, J.S. Rest and C.C. Davis. 2013.
 Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genet. 9: e1003265.
- Yamamoto, Y. 1936. Species nova Mitrastemonacearum (Rafflesiacearum) ex Mexico. Botanical Magazine (Tokyo). 50: 539-541.
- Yang, Y.P. and S.Y. Lu. 1996. Rafflesiaceae. In Editorial Committee of the Flora of Taiwan, (eds.). Flora of Taiwan, second edition. Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, pp. 652-655.

Chapter 2.

Formatted for submission to *Taiwania* (Accepted July 03, 2013)

Comparison of six DNA extraction procedures and the application of plastid DNA enrichment methods in selected non-photosynthetic plants

Shin-Yi Shyu¹ and Jer-Ming Hu¹

¹Institute of Ecology and Evolutionary Biology, National Taiwan University, Taiwan

Authors' contributions:

Shin-Yi Shyu designed and performed the experiments, analyzed data and wrote the manuscript. Jer-Ming Hu administered the experiments and edited the manuscript.

Abstract

Genomic DNA was isolated using three DNA extraction commercial kits and three CTAB-based methods for two non-photosynthetic plants, *Balanophora japonica* and *Mitrastemon kanehirai*. The quality of the isolated DNA was evaluated and subjected to following restriction enzyme digestions. All six procedures yielded DNA of sufficient quality for PCR, and the method described by Barnwell et al. (1998) performed well in isolating DNA from both species for restriction enzyme digestion. In addition, we succeeded to enrich plastid DNA content by using the methods depending on a high salt buffer to deplete nuclear material. The 'high salt' methods based on protocol presented by Milligan (1989) were able to increase plastid DNA effectively and significantly reduce nuclear DNA from *M. kanehirai*. The plastid DNA enrichment protocols are inexpensive and not time-consuming, and may be applicable to other non-photosynthetic plants.

Keywords: CTAB, DNA isolation, heterotrophic plants, plastid DNA, polysaccharide.

Introduction

Many heterotrophic plants contain polysaccharides and other secondary metabolites that interfere with DNA isolations (Hayata, 1913; Do and Adams, 1991; Scott and Playford, 1996; Nickrent et al., 2000; Tsai et al., 2008; Yu et al., 2010; Wang et al., 2012). These compounds sometimes prevent enzymes to access DNA, and therefore inhibiting follow-up experiments such as polymerase chain reaction (PCR) or restriction enzyme digestions. Many DNA extraction methods, including most commercial kits, are generally designed for cultivated species, which contain much less interfering compounds for isolating DNAs, and therefore might be inapplicable for heterotrophic plants (Do and Adams, 1991; Scott and Playford, 1996). Previous studies (Nickrent et al., 1997a; Nickrent et al., 1997b) showed that the CTAB-based method described by Nickrent (1994) can successfully extract DNA from non-photosynthetic plants with quality good enough for PCR, but is insufficient for enzyme digestions.

We have applied the common DNA extraction methods (Doyle and Doyle, 1987) to the non-photosynthetic parasitic *Balanophora* species, and it is generally fine to obtain good quality DNA for PCR amplification (Su and Hu, 2012; Su et al., 2012). However, the *Balanophora* DNA from such methods sometimes failed to perform well in enzyme digestions in our preliminary surveys. Furthermore, ordinary DNA extraction methods cannot guarantee to have enough plastid DNA since very few plastids are present in the cells of the non-photosynthetic plants (dePamphilis and Palmer, 1990; Nickrent et al., 1997b; Nickrent et al., 2000). All available methods for plastid DNA isolation are designed for isolating ordinary non-reduced chloroplasts in green plants, for example, the gradient-based methods for plastid isolation (Kolodner and Tewari, 1975; Palmer, 1986), and others to enrich organelles (e.g. Herrmann, 1982; Palmer, 1982; Bookjans et al., 1984; Milligan, 1989; Triboush et al., 1998; Kausch et al., 1999). The isolation methods with DNAase-I treatment postulated by Herrmann (1982) require a large amount of plant samples, which is also unpractical in our study, since the plant materials are usually limited.

However, some methods (e.g. Milligan, 1989; Triboush et al., 1998) have been used without the requirement on the color of materials and just need a small amount of tissue. The Milligan's procedure (1989) depends on a high salt buffer to solubilize nuclear material in order to obtain a chloroplast fraction, and Triboush *et al.* (1989) isolated organelles by differential centrifugation. These methods are thus have potentials for plastid isolation in non-photosynthetic plants.

In our preliminary survey on 12 DNA extraction methods for two nonphotosynthetic plants, *Balanophora japonica* Makino and *Mitrastemon kanehirai* Yamamoto, six of them showed promising results, while the others performed badly, with low or no yield of DNA (see supplementary data Table S2-1). In this report, we compared the performance of the six procedures that successfully isolated DNA from these two nonphotosynthetic plants and evaluated with the following PCR and restriction enzyme digestion. The procedures include three DNA extraction commercial kits, the two methods mentioned above and another CTAB-based method that Barnwell et al. (1998) developed for the highly mucilaginous succulent plants. At the same time, we attempted to enrich plastid DNA content during extraction of *M. kanehirai* DNA for studying its plastid genome by using and modifying the Milligan and Triboush methods. The results were compared with the proportion of plastid vs. nuclear DNA content among the three different plastid enrichment methods.

Materials and methods

Plant Materials

Balanophora japonica and *M. kanehirai* are both non-photosynthetic plants native to Taiwan. The materials (*B. japonica*: Mt. Datong, Taipei County, Sep. 29, 2005, *Hu1567*; *M. kanehirai*: Lienhuachih, Nantou County, Oct. 12, 2010, *Hu1810*) were freshly collected and stored in -20°C. Frozen tissues were used for each DNA extraction method.

DNA extraction methods

The methods used for comparison are listed in Table 2-1, including three commercial kits (*Method 1-3*) and three CTAB-based methods (*Method 4-6*).

Total genomic DNAs were extracted by *Method 1-3* according to the corresponding manufacturer's protocols. *Method 1*, the DNeasy Plant Mini Kit (QIAGEN), uses the QIAshredder spin column to remove initial precipitates and cell debris, and a DNeasy column to capture DNA. *Method 2*, the Tri-Plant Genomic DNA Reagent Kit (Geneaid), and *Method 3*, the TRI Reagent (Molecular Research Center), both use their own particular reagents to lyse plant samples and then follow by an isopropanol or ethanol precipitation.

Method 4 denoted for the standard CTAB method described by Doyle and Doyle (1987). Plant materials were ground in liquid nitrogen and then incubated in 10 volumes of preheated 2× CTAB buffer (100 mM Tris-HCl, 1.4 M NaCl, 20 mM EDTA, 2% w/v CTAB, 2% w/v PVP40 and added 0.2% β -mercaptoethanol just before use.) at 65°C for 1 h with occasional swirling. The solution was mixed with 10 mL of Chloroform:isoamyl alcohol (24:1, v/v) and was blended thoroughly. This was followed by a centrifugation at 9,000 g for 10 min, and the aqueous phase was transferred to a new centrifuge tube. The DNA was precipitated by adding 0.7 volume of isopropanol and incubated at -20°C for 30 min. The DNA pellet was collected by a centrifugation for 10 min at 10,000 g and washed with cold 75% ethanol. The pellet was resuspended in 2 mL of TE buffer, and then RNase digestion was performed.

Method 5 denoted for the "delayed hot CTAB" method described by Nickrent (1994).

The sample was cut into small pieces and homogenized with hot 95°C CTAB buffer (about 25 mL for every 2-3 g of plant tissue). The modified 2× CTAB buffer is composed of 100 mM Tris-HCl, 1.4 M NaCl, 30 mM EDTA, 2% w/v CTAB, 5 mM ascorbic acid, 4 mM diethyldithiocarbamic acid and 2% w/v PVP40, the latter two ingredients were added just before use. The extract was strained through cheesecloth into 50-mL centrifuge tube and then incubated at 70-80°C for 30 min with occasional swirling. The sample was briefly centrifuged without pausing, and the supernatant was transferred to a new tube. Chloroform: isoamyl alcohol (24:1) (0.7 volume) was added and the solution was mixed for 5 min. This was then centrifuged at 9,000 g for 15 min, and the aqueous phase was transferred to a new centrifuge tube. The DNA was precipitated by adding 0.7 volume of ice-cold isopropanol and incubated at -20°C for at least 1 h. The DNA pellet was collected by a centrifugation for 20 min at 10,000 g. Then the pellet was resuspended in 3 mL of TE and 2 mL of 4 M NH₄OAc. This was followed by an extraction with an equal volume of phenol:chloroform (1:1), and 2 volumes of ethanol were added to the aqueous phase. The content was incubated at -20°C for at least 30 min, and the DNA pellet was collected by a centrifugation, then proceeded an RNase treatment.

Method 6 denoted for the extraction procedure developed by Barnwell et al. (1998) for the highly mucilaginous succulent plants. The frozen plant tissue was ground to powder, 5 volumes of extraction buffer (100 mM Tris-HCl, 1.4 M NaCl, 20 mM Na₂

EDTA, 2% w/v CTAB, 1% w/v PVP40) were added and mixed. The homogenate was then incubated at 65 °C for 30 min with occasional shaking followed by a centrifugation at 3,000 g for 5 min. The supernatant was mixed with 1.25 volumes of 10% CTAB (w/v, in 0.7 M NaCl), and the mixture was vortexed for 10 s and centrifuged at 3,000 g for 5 min. The supernatant was thoroughly mixed with 3 volumes of precipitation buffer (50 mM Tris-HCl, 10 mM Na₂ EDTA, 1% w/v CTAB). The mixture was incubated at room temperature for 30 min and then centrifuged at 5,000 g for 15 min. The pellet was dissolved in high salt TE buffer (10 mM Tris-HCl, 1.0 M NaCl, 1 mM Na₂ EDTA), and 2 volumes of ice-cold ethanol were added followed by incubation at -20°C for 1 h. The DNA was pelleted by a centrifugation and washed twice with 70% ethanol.

Plastid DNA enrichment methods

Three plastid enrichment methods were analyzed in this study. *Method PE1* denoted for the procedure developed by Milligan (1989) that incorporates several other methods of extracting chloroplast DNA. The procedure is summarized below. The tissue was ground with 6 volumes of ice-cold isolation buffer (50 mM Tris-HCl, 1.25 M NaCl, 5 mM EDTA, 0.1% w/v BSA, 0.1% β -mercaptoethanol), and the homogenate was filtered through 4 layers of cheesecloth. The plastids were pelleted by a centrifugation at 3,000 g for 10 min and then resuspended in 10 mL of cold isolation buffer. The centrifugation and resuspension were repeated once, and 0.1 volume of 10% CTAB was added to lyse the plastids. The extract was then incubated at 60°C for 1 h and followed by extraction with Chloroform:isoamyl alcohol (24:1). The DNA was precipitated by adding 0.7 volume of cold isopropanol to the aqueous phase and incubated at -20°C for at least 30 min. During the isolation of plastids, the materials should be kept at 4°C.

Method PE2 denoted for a method combined with Milligan's protocol (1989) and the Tri-Plant Genomic DNA Reagent Kit. Plastid pellet was isolated by centrifugation at 6,000 g for 20 min instead of 3,000 g for 10 min following Milligan's protocol. The DNA was then extracted from pellet by using Tri-Plant Genomic DNA Reagent Kit.

Method PE3 denoted for the method mainly based on Triboush's DNA extraction method (Triboush et al., 1998), combined with Milligan's protocol (1989), as described below. All the operations of isolating plastids were conducted in ice. The sample was homogenized with 6 volumes of STE buffer (50 mM Tris-HCl, 400 mM sucrose, 20 mM Na₂EDTA, 0.2% w/v BSA, 0.2% β -mercaptoethanol). The homogenate was filtered through 4 layers of cheesecloth and centrifuged at 200 g for 20 min. The supernatant was centrifuged at 3,700 g for 20 min, and the pellet was resuspened in 20 mL of isolation buffer (based on Milligan's protocol). It was then repeated the centrifugation and resuspension once, and then the DNA was obtained by following Milligan's protocol.

Real-time PCR

Real-time PCR and data analysis were performed in the CFX96TM Real-Time PCR

Detection Systems (Bio-Rad Laboratories). Sequences of nuclear and plastid SSU fragments were amplified from M. kanehirai DNA extracted by different methods. The primers SSU1594F: 5'-CTACGTCCCTGCCCTTTGTA-3' and SSU1703R: 5'-GGACTTCTCGCGGCATCACGAG-3' were used to amplify a nuclear 18S rDNA fragment; the primers 16S298F: 5'-GGAAACAGCCCAGATCATCA-3' and 16S436R: 5'-GCCGACATTCTCACTTCTGC-3' were used to amplify the plastid 16S rDNA. The primers were designed based on *M. kanehirai* sequences in our preliminary survey. The PCR mixture (20 µL) contained 10 µL KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems), 50 nM (nr18S rDNA) or 100 nM (pt16S rDNA) of each primer and 20 ng of extracted DNA was used as template. The amplification program initiated at 95 °C for 3 min, followed by 40 cycles at 95 °C for 10 s and 64 °C for 30 s, and finally 95 °C for 10 s. Melting curve analysis was carried out after amplification. All experiments were performed in triplicate.

Results and discussion

Performance of different isolation procedures

Balanophora japonica and *M. kanehirai* both lost their photosynthetic ability completely and plants are very rich in polysaccharides and other secondary metabolites (Hayata, 1913; Wang et al., 2012). Many of the commercial kits and methods failed to

extract high quality DNA from heterotrophic plants (listed in supplementary data Table S2-1). Here we show the six methods that can successfully extract the DNAs from these two non-photosynthetic plants.

The ratios of the absorbance at 260 and 280 nm ($A_{260/280}$) of DNA isolated from two species with different procedures are in the range of 1.28-2.11 (Table 2-2). Two of the three CATB-based methods (*Method 4* and 6) yielded better results than all the others, including the commercial kits, for *B. japonica*. In comparison, *Method 2* and 6 worked best for *M. kanehirai*.

Only *Method 6* (Barnwell et al., 1998) performed well on both *B. japonica* and *M. kanehirai*, with acceptable A_{260/280} ratio. However, *Method 2* and *4* showed inconsistent results between *B. japonica* and *M. kanehirai*. Nonetheless, the quality of all DNA isolated by different procedures were good enough for the following PCR (data not shown).

To further examine the DNA quality, we proceeded with restriction enzyme digestion on the obtained DNA extracts. The result shows that the *Method 6* (Barnwell protocol) performed better than the other procedures in extracting DNA from *B. japonica* (Fig. 2-1A), and *Method 2* (the Tri-Plant Genomic DNA Reagent Kit) performed best in *M. kanehirai* (Fig. 2-1B). In general, all procedures performed better in *M. kanehirai* which is likely because it contains less polysaccharides than *B. japonica*. However, *Method 3* (the TRI Reagent) and Method 4 (the Doyle and Doyle protocol) could not produce DNA bands for *M. kanehirai* (M3 and M4 in Fig. 2-1), compared to *B. japonica*. From all of the commercial kits tested, we found that most kits extracted DNA by using columns did not perform well. It is probably because these kits were unable to eradicate polysaccharides that prevent the elution of DNA from columns and result in the low yields (Fleischmann and Heubl, 2009). Among the three CTAB-based DNA isolation methods, it seems that shortening the initial incubation time and increasing the incubation temperature could improve DNA purity, since the Method 5 (Nickrent protocol) performed better than Method 4. However, Method 6 that Barnwell et al. (1998) developed increases CTAB concentration in a step-wise manner in order to avoid coprecipitation of polysaccharides with DNA, which was the most effective procedure to obtain DNA with high quality. As for yields, all the commercial kits produced more amount of DNA than the CTAB-based methods. The Method 6 produced least but the purest DNA among all procedures, which might result from the protocol's additional purification steps and less efficient precipitation buffer.

Plastid DNA enrichment

The Milligan's 'high salt buffer' method (1989) and the Triboush's differential centrifugation method (1998) were used and modified to enrich plastid DNA content for extracting *M. kanehirai* DNA. The performance of these procedures was evaluated by

relative quantification of nr18S and pt16S rDNA in the DNAs extracted by different methods with Barnwell protocol as the reference. DNA isolated by all methods (included the Barnwell protocol) could amplify nr18S and pt16S rDNA fragments by real-time PCR (Fig. 2-2). However, Method PE3 (Triboush-based method) not only failed to enrich plastid DNA in our tests but also yielded the lowest quality DNA that the Cq(quantification cycle) values of PE3 were the largest among all methods in both nr18S and pt16S rDNA. The two Milligan-based protocols (Method PE1 and PE2) were capable of increasing plastid DNA content more than 1.5 times and meanwhile reduced the proportion of nuclear DNA effectively (Fig. 2-3). The pt16S/nr18S rDNA ratios of extracted DNA by using these two procedures are significantly higher than Method 6 (Fig. 2-4). The best performed method was *Method PE2*, the Milligan protocol combined with the Tri-Plant Genomic DNA Reagent Kit, which yielded pt16S/nr18S rDNA ratio almost 15 times higher than Method 6 with good quality of DNA from M. kanehirai. It suggests that increasing centrifugal speed in the beginning step of collecting plastids could enrich plastid DNA further since Method PE3 performed better than Method PE2 (Fig. 2-3 and Fig. 2-4).

The result shows that the procedure based on differential centrifugation failed to apply to our studying materials. Although the high salt buffer-based protocols could not eliminate nuclear DNA completely, they still could enrich plastid DNA content significantly (*Method PE2 and PE3*). These protocols are inexpensive and not timeconsuming, and may be applicable to other non-photosynthetic plants, which will be useful in studying the plastid genome of heterotrophic plants.

Overall, the Barnwell protocol performed best among all examined methods, but it is inapplicable for small amount of plant samples. However, our results suggest that there is no DNA isolation protocol can be applied to all plants because of the presence of various compounds in the plant tissue and it cannot have DNA with both the highest quality and quantity from the same protocols. Additional effort to find out or modify isolation procedures is necessary in order to obtain high quality DNA for nonphotosynthetic plants.

Table 2-1.	The methods used in this st	udy.
Method		Reference
DNA isola	tion	
Method 1	Column-based commercial kit	DNeasy Plant Mini Kit, QIAGEN, Manchester, UK
Method 2	Particular reagent- based commercial kit	Tri-Plant Genomic DNA Reagent Kit, Geneaid, New Taipei City, Taiwan
Method 3	Particular reagent- based commercial kit	TRI Reagent – RNA, DNA, protein isolation reagent, Molecular Research Center, Cincinnati, OH, USA
Method 4	The standard CTAB method	Doyle and Doyle, 1987
Method 5	The delayed hot CTAB method	Nickrent, 1994
Method 6	The increased CTAB method	Barnwell et al., 1998
Plastid DN	A enrichment	
PE1	Depleted nuclear material by using a high salt buffer	Milligan, 1989
PE2	Combined PE1 with Method 2	Milligan, 1989
PE3	Isolated organelles by differential centrifugation	Milligan, 1989; Triboush et al., 1998

Drogoduro	A ₂₆₀	0/280
Procedure —	B. japonica	M. hanehirai
Kit		
Method 1	1.75	1.76
Method 2	1.28	2.08
Method 3	1.91	1.48
CTAB-based Method		
Method 4	2.06	1.73
Method 5	1.83	1.81
Method 6	2.10	2.11

Table 2-2. A_{260/280} ratios of DNA extracted by commercial kits and CTAB-based methods.

臺

Figure 2-1. The results of restriction enzyme digestion on the isolated DNAs. A: *Balanophora japonica*. B: *Mitrastemon kanehirai*. 4 µg DNA was digested with 4 U *Eco*RI/µg DNA for 1 h at 37°C, and then were separated on a 0.8% TAE agarose gel. U, uncut DNA; C, cut DNA; λ , lambda DNA/*Hind*III marker; M1, QIAGEN DNeasy Plant Mini Kit; M2, Geneaid Tri-Plant Genomic DNA Reagent Kit; M3, Molecular Research Center TRI Reagent; M4, the Doyle and Doyle protocol; M5, the Nickrent protocol; M6, the Barnwell protocol.

Figure 2-2. Real-time PCR amplification plot of *Mitrastemon kanehirai* **DNA.** A: nr18S rDNA. B: pt16S rDNA. M6, the Barnwell protocol; PE1, the Milligan protocol; PE2, the Milligan protocol combined with Geneaid Tri-Plant Genomic DNA Reagent Kit; PE3, the Triboush method combined with Milligan protocol.

Figure 2-3. Relative quantification of nr18S and pt16S rDNA. *Mitrastemon kanehirai* DNAs extracted by three methods were compared with Barnwell protocol as the reference. M6, the Barnwell protocol; PE1, the Milligan protocol; PE2, the Milligan protocol combined with Geneaid Tri-Plant Genomic DNA Reagent Kit; PE3, the Triboush method combined with Milligan protocol.

Figure 2-4. The ratio of pt16S/nr18S rDNA in extracted *Mitrastemon kanehirai* DNAs. The pt16S rDNA content was compared with nr18S rDNA in the same DNA samples extracted by four different procedures. M6, the Barnwell protocol; PE1, the Milligan protocol; PE2, the Milligan protocol combined with Geneaid Tri-Plant Genomic DNA Reagent Kit; PE3, the Triboush method combined with Milligan protocol.

References

- Barnwell, P., A.N. Blanchard, J.A. Bryant, N. Smirnoff and A.F. Weir. 1998. Isolation of DNA from the highly mucilagenous succulent plant *Sedum telephium*. Plant Mol Biol Rep. 16: 133-138.
- Bookjans, G., B.M. Stummann and K.W. Henningsen. 1984. Preparation of chloroplast DNA from pea plastids isolated in a medium of high ionic strength. Anal Biochem. 141: 244-247.
- Croy, E.J., T. Ikemura, A. Shirsat and R.R.D. Croy. 1993. Plant nucleic acids. *In* R.R.D. Croy, (ed.). Plant molecular biology labfax. Oxford, pp. 21-48.
- dePamphilis, C.W. and J.D. Palmer. 1990. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature. 348: 337-339.
- Do, N. and R.P. Adams. 1991. A simple technique for removing plant polysaccharide contaminants from DNA. Biotechniques. 10: 162, 164, 166.
- Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19: 11-15.
- Fleischmann, A. and G. Heubl. 2009. Overcoming DNA extraction problems from carnivorous plants. Anal Jardin Bot Mad. 66: 209-215.
- Hayata, B. 1913. On the systematic position of *Mitrastemon* as a genus representing a special tribus of the Rafflesiaceae. Icones Plantarum Formosanarum. pp. 199-213.
- Herrmann, R.G. 1982. The preparation of circular DNA from plastids. *In* M. Edelman,R.B. Hallick, and N.H. Chua, (eds.). Methods in chloroplast molecular biology.Elsevier Biomedical Press, Amsterdam, pp. 259-280.
- Kausch, A.P., T.P. Owen, Jr., S. Narayanswami and B.D. Bruce. 1999. Organelle isolation by magnetic immunoabsorption. Biotechniques. 26: 336-343.

- Kolodner, R. and K.K. Tewari. 1975. The molecular size and conformation of the chloroplast DNA from higher plants. BBA-Nucleic Acids and Protein Synthesis. 402: 372-390.
- Milligan, B. 1989. Purification of chloroplast DNA using hexadecyltrimethylammonium bromide. Plant Mol Biol Rep. 7: 144-149.
- Nickrent, D., R.J. Duff and D.A.M. Konings. 1997a. Structural analyses of plastidderived 16S rRNAs in holoparasitic angiosperms. Plant Mol Biol. 34: 731-743.
- Nickrent, D.L. 1994. From field to film rapid sequencing methods for field-collected plant species. Biotechniques. 16: 470-475.
- Nickrent, D.L., R.J. Duff, A.E. Colwell, A.D. Wolfe, N.D. Young, K.E. Steiner and C.W. dePamphilis. 2000. Molecular phylogenetic and evolutionary studies of parasitic plants. *In* D.E. Soltis, P.S. Soltis, and J.J. Doyle, (eds.). Molecular Systematics of Plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, Massachusetts, USA, pp. 211-241.
- Nickrent, D.L., O.Y. Yan, R.J. Duff and C.W. dePamphilis. 1997b. Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Mol Biol. 34: 717-729.
- Palmer, J.D. 1982. Physical and gene mapping of chloroplast DNA from *Atriplex triangularis* and *Cucumis sativa*. Nucleic Acids Res. 10: 1593-1605.
- Palmer, J.D. 1986. Isolation and structural analysis of chloroplast DNA. *In* H.W. Arthur Weissbach, (ed.). Methods in Enzymology. Academic Press, pp. 167-186.
- Scott, K.D. and J. Playford. 1996. DNA extraction technique for PCR in rain forest plant species. Biotechniques. 20: 974, 977, 979.
- Su, H.J. and J.M. Hu. 2012. Rate heterogeneity in six protein-coding genes from the holoparasite *Balanophora* (Balanophoraceae) and other taxa of Santalales. Ann Bot. 110: 1137-1147.
- Su, H.J., J. Murata and J.M. Hu. 2012. Morphology and phylogenetics of two

holoparasitic plants, *Balanophora japonica* and *Balanophora yakushimensis* (Balanophoraceae), and their hosts in Taiwan and Japan. J Plant Res. 125: 317-326.

- Sytsma, K.J. 1994. DNA extraction from recalcitrant plants: long, pure, and simple? In R.P. Adams, J.S. Miller, E.M. Golenberg, and J.E. Adams, (eds.). Conservation of plant genes II. Missouri Botanical Garden, Missouri, pp. 69-81.
- Triboush, S.O., N.G. Danilenko and O.G. Davydenko. 1998. A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Mol Biol Rep. 16: 183-189.
- Tsai, T.H., G.J. Wang and L.C. Lin. 2008. Vasorelaxing alkaloids and flavonoids from *Cassytha filiformis*. J Nat Prod. 71: 289-291.
- Wang, X., Z. Liu, W. Qiao, R. Cheng, B. Liu and G. She. 2012. Phytochemicals and biological studies of plants from the genus *Balanophora*. Chem Cent J. 6: 79.
- Yu, F.R., Y. Liu, Y.Z. Cui, E.Q. Chan, M.R. Xie, P.P. McGuire and F.H. Yu. 2010. Effects of a flavonoid extract from *Cynomorium songaricum* on the swimming endurance of rats. Am J Chin Med. 38: 65-73.

Supplementary data

Table S2-1. Other methods have been tested in this study.

Method	Reference
DNA isolation	
Column-based commercial kit	Fast ID Genomic DNA Extraction Kit, Genetic ID, Fairfield, IA, USA ^a
Column-based commercial kit	Plant Genomic DNA Mini Kit, BIOMAN, New Taipei City, Taiwan ^a
Column-based commercial kit	Plant Genomic DNA Purification Kit, GeneMark, Taichung City, Taiwan ^a
Particular reagent- based commercial kit	TRIzol® Reagent, Invitrogen, Carlsbad, CA, USA ^b
The rainforest method	Scott and Playford, 1996 ^c
Modified CTAB methods	Doyle and Doyle, 1987; Croy et al., 1993; Sytsma, 1994 ^c
Plastid DNA enrichment	
The sunflower method	Triboush et al., 1998 ^b

^a The yields of DNA from these methods were very low, and A_{260/280} ratios of DNAs were below 1.2.

^b The methods failed to extract DNA from *B. japonica* and *M. kanehirai*.

^c The methods failed to improve DNA quality compared with *Method 4*.

Chapter 3.

Formatted for submission to Botanical Studies (Accepted June 05, 2013)

Heterogeneous evolutionary rates of nuclear and organelle small-subunit rDNAs in heterotrophic plants

Shin-Yi Shyu¹ and Jer-Ming Hu¹

¹Institute of Ecology and Evolutionary Biology, National Taiwan University, Taiwan

Authors' contributions:

Shin-Yi Shyu designed and performed the experiments, analyzed data and drafted the manuscript. Jer-Ming Hu administered the experiments and edited the manuscript.

Abstract

High rates of nucleotide substitution within small-subunit rRNA genes from all three genomes have been reported in various angiosperms, particularly for the lineages with a heterotrophic mode of life. However, substitution rates of rDNA sequences vary among subcellular genomes and among taxa. In order to elucidate patterns of evolutionary rates among the three subcellular SSU rDNAs in heterotrophic plants, we examined mitochondrial 19S, plastid 16S and nuclear 18S rDNA sequences from one hemiparasitic, five holoparasitic and three mycoheterotrophic plants. Among these nine heterotrophic plants, six of them are non-photosynthetic, while others retain partial photosynthetic ability. Rate heterogeneity was estimated with relative rate tests and phylogenetic analyses. Our results show that both pt16S and nr18S rDNA sequences of nonphotosynthetic species have significantly increased substitution rates in comparison with their autotrophic relatives. However, this phenomenon was not found in mt19S rDNA. The pronounced divergent pt16S and nr18S rDNA sequences were only found in Balanophora japonica and Mitrastemon kanehirai, and accompanied by a decrease in GC contents of the rDNA sequences. In contrast, Aeginetia indica, Cassytha filiformis, Cheilotheca humilis, Cheilotheca macrocarpa, Cuscuta australis, Galeola lindleyana and Orobanche coerulescens, do not exhibit consistent patterns between pt16S and nr18S rDNA substitution rates, indicating that the accelerated evolutionary rates are not synchronized among the three subcellular SSU.

Keywords: heterotrophic plant, non-photosynthetic plant, small-subunit rDNA, substitution rate.

Introduction

Ribosomes, each is composed of a large and small subunit containing rRNA and proteins, are the sites of protein synthesis and essential for all living organisms (Weider et al., 2005). The structural conservation and functional constrains of ribosome also provide the common uses of the sequences of rDNA as a molecular marker for phylogenetic reconstruction among organisms (Hillis and Dixon, 1991). The nuclear 18S (nr18S) rDNA and the lesser used plastid 16S (pt16S) mitochondrial 19S (mt19S) sequences have been widely used to examine higher-level phylogenetic relationships of the land plants (Duff and Nickrent, 1999; Soltis et al., 1999; Soltis and Soltis, 2000a).

In eukaryotes, nuclear genes encoding 18S, 5.8S and 28S rRNA are generally in tandem arrays of repeat units (rDNA) separated by intergenic spacers (IGS) (Kupriyanova, 2000). The sequences among the repeats usually show high degree of homogeneity through a process of concerted evolution (Richard et al., 2008), although polymorphism within individuals does occur occasionally, especially in the spacer regions or non-functional rDNA copies (Bailey et al., 2003). Nevertheless, the rDNA sequences are still the most conserved DNA segment in all living organisms and widely used for higher level phylogenetic reconstruction (Soltis et al., 1999; Soltis & Soltis, 2000a, 2000b; Weisburg et al., 1991).

Although rDNA sequences generally show quite low variations, several studies

documented the accelerated evolutionary rates of nr18S in lineages of heterotrophic plants, including parasitic and mycoheterotrophic plants (Nickrent and Starr, 1994; Nickrent and Duff, 1996; Lemaire et al., 2010; Su and Hu, 2012). Similarly, substitution rate acceleration is found in some heterotrophic plants for pt16S genes (Nickrent et al., 1997a). However, these increases of substitution rates are not corresponding to any particular nutrient-uptake mode because not all achlorophyllus plants display such increased substitution rates (Lemaire et al., 2010; Young & dePamphilis, 2005). The holoparasitic plants *Cynomorium coccineum* (Cynomoriaceae) and *Orobanche fasciculata* (Orobanchaceae), for examples, do not show significantly accelerated substitution in nr18S rDNA sequence (dePamphilis et al., 1997; Lemaire et al., 2010).

Most of the sequence variation in those with accelerated evolutionary rates are not in the functionally or structurally important regions of rDNA (Lemaire et al., 2010), suggesting that the elevated substitution rates in rDNA might reflect an overall increases of mutations in the genome. Several hypotheses have been proposed to explain the rate acceleration in certain plants, like the presence of defective DNA repair efficiency, shorter generation time, higher speciation rates and smaller effective population size (Nickrent and Starr, 1994; Nickrent et al., 1998; Lemaire et al., 2010). Such scenarios would predict similar rate acceleration patterns in the same genome, and also for the genes with similar selection pressures under the same functional constraints. The nuclear and organelle ribosomal genes thus have similar substitution rate patterns under this speculation. It has been shown that in nonasterid holoparasites the rate acceleration are coincident among mt19S, pt16S and nr18S rDNA sequences (Duff and Nickrent, 1997). However, such pattern does not hold in our preliminary survey for the holoparasitic plant *Balanophora* in that it has a relatively slow substitution rate in mt19S, but extremely high for pt16S and nr18S rDNA sequences. It suggested a more comprehensive survey is needed to evaluate the patterns of substitution rates in heterotrophic plants.

In this study we examined whether there is any correlation of evolutionary rate patterns among the three subcellular SSU rDNAs in heterotrophic plants. The mt19S, pt16S and nr18S rDNAs were amplified and evaluated, including one hemiparasite *Cassytha filiformis* (Lauraceae), five holoparasites: *Aeginetia indica, Orobanche coerulescens* (both Orobanchaceae), *Balanophora japonica* (Balanophoraceae), *Cuscuta australis* (Convolulaceae, retains partial photosynthetic ability), *Mitrastemon kanehirai* (Mitrastemonaceae) and three mycoheterotrophic plants: *Cheilotheca humilis*, *Cheilotheca macrocarpa* (both Ericaceae-Monotropoideae), *Galeola lindleyana* (Orchidaceae, retains partial photosynthetic ability). Relative rate tests were performed for all three groups of SSU rDNA-sequences among selected heterotrophic taxa and related autotrophic lineages in order to examine their evolutionary rate variation.

Materials and Methods

Plant materials and DNA extraction

The lifestyle and GenBank accession numbers of all selected heterotrophic lineages for the three genes is listed in Table 3-1. Fresh samples of the nine species, including one hemiparasite, five holoparasities and three mycoheterotrophic plants, were collected from Taiwan and stored at -20°C for DNA extraction and further experiments. Total genomic DNA of *B. japonica* and *M. kanehirai* were isolated using a modified CTAB methods (Barnwell et al., 1998), while the remaining samples were isolated following a standard CTAB method (Doyle and Doyle, 1987). The PCR products for the different SSU rDNA regions were amplified by using different primers listed in Table 3-2. Because some of the PCR produced more than one product, the PCR products with the corrected size were then cloned into the pGEM-T Vector (Promega, Madison, WI, USA). The sequences were determined by an automatic DNA analyzer at Academia Sinica, and both strands of sequences were further examined by Sequencher 4.5 (Gene Code Corp., USA).

Evolutionary rate analyses

For all mt19S, pt16S and nr18S rDNA sequences the closest related taxa to the nine heterotrophic plants in this study were selected and downloaded from NCBI GenBank (accession numbers see Appendix Table A1). Three data matrices were constructed, and the alignments were conducted by ClustalX 1.83 (Thompson et al., 1997) and visually confirmed using MacClade 4.06 (Maddison and Maddison, 2000). The V1 and V7 regions of mt19S rDNA, corresponded to positions 71-240 and 1214-1447 on the Phaeoceros structure model (Duff and Nickrent, 1999), were excluded since they are too variable in the sequence and in length. Other regions that vary in length among the selected land plants did not interfere with the alignment, and therefore were included in the analysis. Evolutionary divergence, including nucleotide composition and genetic distance, among the rDNA sequences was determined using MEGA version 5 (Tamura et al., 2011). The nucleotide substitution rates of three rDNAs were estimated simply by the number of substitutions per site compared with Glycine max sequences in order to compare with previous studies. Relative rate tests were conducted using RRTree under Phylemon 2.0 (Sánchez et al., 2011) with Kimura 2-parameter model (Kimura, 1980), to compare the substitution rates between the heterotrophic species and the corresponding autotrophic relatives.

Patterns of nucleotide substitution in SSU rDNAs

Conserved and variable nucleotides in the SSU rDNA datasets were identified using the CHART option of MacClade 4.06. The maximum parsimony trees were constructed based on three rDNA datasets with *Amborella* as outgroup. The topology of the trees was adjusted according to APG III system (Chase and Reveal, 2009), and then the trees were used as the backbone for evaluation. The patterns were examined within heterotrophic (Table 3-1) and autotrophic species (Table 3-4) separately, and both groups included six taxa. The heterotrophic species that retain partial photosynthetic ability were eliminated from the analyses. The difference between two groups was calculated and values of steps per nucleotide site were depicted on a histograms. Positive and negative values represent character substitutions contributed by heterotrophic and autotrophic species, respectively.

Results

SSU rDNAs in the selected heterotrophic plants

All nuclear and organelle rDNA sequences were successfully amplified and identified for the nine selected heterotrophic plants (Table 3-1). The SSU rDNA sequences all show conserved and variable regions roughly corresponding to the ones described by previous studies (Duff and Nickrent, 1997; Nickrent et al., 1997a; Soltis and Soltis, 2000b). For example, the mt19S rDNA of heterotrophic species have a conserved 'core' region and the V1-V7 variable regions similar to their autotrophic relatives (Fig. 3-1). In contrast, the nr18S and pt16S rDNAs in heterotrophic plants are more variable than their autotrophic counterparts (Fig. 3-1). All nine heterotrophic species are prone to small insertion/deletion (indels) in their pt16S rDNA sequences, and large indels are only found in *A. indica* (14 bp insert), *B. japonica* (17 bp deletion) and *M. kanehirai* (20 bp deletion) (Supplementary data Fig. S3-2).

Sequences composition bias and substitution

The GC contents of mt19S, pt16S and nr18S rDNA sequences in the heterotrophic plants are 51-56%, 24-57% and 42-50%, respectively. The lowest GC% of mt19S rDNA we sampled is in *Cu. australis* (50.5%). In comparison, *B. japonica* has the lowest pt16S (GC=24.1%) and nr18S (GC=41.5%) in plastid and nuclear rDNA, respectively (Table 3-3). Overall the GC% of mt19S rDNA in heterotrophic plants is close to the GC content of mt19S sequences in angiosperms (53.7 \pm 1%) (Duff and Nickrent, 1997) and the GC contents of pt16S and nr18S rDNAs are both lower than the averages of green plants (Table 3-3).

In order to examine the rate variation patterns of the SSU rDNA sequences in the selected heterotrophic plants, we estimated the nucleotide substitutions of the three rDNAs from these plants by comparing with mitochondrial, plastid and nuclear rDNA sequences of *Glycine max* (Table 3-3). Four of the nine identified pt16S rDNAs in heterotrophic plants show much higher substitution rate than those in green plants, i.e. *B. japonica* (33.73%), *Ch. humilis* (6.56%), *Ch. macrocarpa* (6.43%) and *M. kanehirai* (14.49%). In comparison, a different set of the taxa show the elevated rate in nr18S rDNAs, i.e. *B. japonica* (12.02%), *Cu. australis* (6.17%), *G. lindleyana* (5.57%) and *M. kanehirai* (7.26%). Nevertheless, the divergences of pt16S and nr18S sequences of these taxa are both higher than the average of sequence variation in the green plants (2-3% and

3.6%, respectively) (Nickrent and Starr, 1994; Nickrent et al., 1997a). Moreover, only *G*. *lindleyana* shows distinct variation among the mt19S rDNA sequences we sampled (Table 3-3). Based on the comparison of the ratios of substitution rates among three rDNAs, it shows that the rate substitution patterns varied among species, i.e. they are not synchronized within species. The divergence could be higher in plastid rDNAs in some species, e.g. *Ch. humilis* and *Ch. macrocarpa*, but higher in nuclear rDNAs in the other heterotrophic plants like *Ca. filiformis* or *A. indica* (Table 3-3).

The transition/transversion (T_S/T_V) ratios of mt19S in the heterotrophic plants are within the range of photosynthetic plants, while several species have much higher T_S/T_V ratio in their nr18S or pt16S. The highest T_S/T_V ratios of pt16S and nr18S are found in *Ca. filiformis* (4.571) and *Ch. macrocarpa* (3.923) respectively. Transition biases present in plant nuclear and chloroplast genomes have been described, and transition bias in rDNA stem regions may help maintain secondary structure (Soltis and Soltis, 2000b). However, the T_S/T_V ratio does not show any correlation among the three SSU rDNAs and the corresponding trophic modes. This result shows that the pt16S rDNA of *B. japonica* has the most extreme divergence among all the identified sequences (Table 3-3 and Supplementary data Fig. S3-2). In addition, there is an inverse correlation between GC content and substitution in pt16S rDNAs and is not shown in the other two genes (mt19S and nr18S).

Relative rate tests

The results of relative rate tests for the pt16S and nr18S rDNA datasets show similar pattern indicating significant higher rates for all heterotrophic plants, except for *Ca. filiformis* (Table 3-4). In mt19S rDNAs, however, eight out of the twelve heterotrophic taxa show rates significantly diverged from their autotrophic counterparts, but the substitution rates of heterotrophic taxa are not always higher than autotrophic taxa. For examples, *B. japonica*, *M. kanehirai*, *O. coerulescens*, *Ch. humilis* and *Ch. macrocarpa* all show significant lower substitution rates than their autotrophic relatives (Table 3-4).

Discussion

The identified SSU rDNAs from heterotrophic plants show various degrees of sequence divergence among the nuclear and organelle genomes. However, there is no clear pattern of the rate heterogeneity associated with the trophic form, i.e. how much photosynthetic ability the heterotrophic plants retained. In general, mitochondrial 19S sequences are most conserved, with substitution rate only up to 3% (*G. lindleyana*), compared with nuclear and plastid SSU rDNAs. In comparison, the non-photosynthetic parasite *B. japonica* shows extreme substitutions in both of the nr18S and pt16S rDNAs among the studied plants.

Although nearly all the heterotrophic plants show significantly elevated substitution

rate in their pt16S and nr18S rDNAs, for most of them the rates do not increase dramatically like previous studies described for non-photosynthetic plants like *Corynaea*, *Cytinus*, or *Hydnora* (Nickrent and Starr, 1994; Nickrent et al., 1997a). The magnitudes of pt16S rDNA rate variations in *A. indica* and *O. coerulescens*, that both are achlorophyllous, fall into the range of most angiosperms, whereas *B. japonica* nr18S rDNA is the only one that evolved more than three times faster compared to the nonparasitic plants (Nickrent and Starr, 1994; Nickrent et al., 2000). The result is congruent with previous studies using another *Balanophora* species, *B. fungosa* for the analysis (Su and Hu, 2012). Although previous study indicated that nonasterid holoparasites show significantly increased substitution rates in their core mt19S rDNA sequences (2.3~7.6%) (Duff and Nickrent, 1997), in our study mt19S rDNA exhibits little divergence among the nine heterotrophic plants.

Several holoparasites have been reported that all three SSU rDNAs show increased substitution rates (Nickrent and Starr, 1994; Duff and Nickrent, 1997; Nickrent et al., 1997a; Nickrent et al., 2000), and an acceleration of plastid genomes parallel to high mitochondrial divergence is also described in some autotrophic plants (Soria-Hernanz et al., 2008; Sloan et al., 2012). Since our results are somewhat different from those studies, we re-evaluated the substitution and relative rates of three holoparasites (*Corynaea, Cytinus, Hydnora*) by using the same methods in this study (Tables 3-3, -4). Our results

show the three holoparasites indeed revealed much higher substitution in their three SSU rDNAs; however, the rate increases of *Cytinus* mt19S rDNA is not significant compared with their autotrophic counterparts in the RRTree test. The mt19S rDNA sequences of all selected taxa (excepted *G. lindleyana*) are not prone to high-elevated substitution rates, even in *B. japonica* where pt16S and nr18S rDNAs are more divergent than *Corynaea*. Therefore, our observations suggest that rate heterogeneity among genomes is distinct for selected taxa. Similar unequal rate accelerations between mitochondrial and plastid sequences have been reported in *Silene vulgaris*, but for the protein coding genes, e.g. comparatively high variation in mitochondrial *atp1* and *atp9* than others mt genes (Houliston and Olson, 2006).

Previous studies have found that the relative rate of synonymous substitutions of mitochondrial, plastid and nuclear genes of angiosperms is 1:3:16 and that the ratio can go up to 1:16:75 in *Arabidopsis* for protein-coding genes (Drouin et al., 2008; Huang et al., 2012). If the rate acceleration prevails across the three genomes, the ratio in heterotrophic plants should be similar to the value of angiosperms. However, the substitution ratios of the three SSU rDNAs in heterotrophic plants are different from the ratio patterns of other angiosperms. One of the reasons that none of the nine heterotrophic plants show such pattern in our study could be due to the differences between substitution models between rDNA and protein-coding genes. The synonymous substitutions per sites

 (K_s) were obtained with Li's methods (Li et al., 1985; Li, 1993), whereas the substitution rates of rDNAs were simply compared with the sequence of Glycine in our study. Therefore, we re-estimated the ratio of three SSU rDNAs from previous studies (Nickrent and Starr, 1994; Duff and Nickrent, 1997; Nickrent et al., 1997a) and compared them with Glycine sequences, and found the substitution ratio is 1:2.6:3.8 in autotrophic plants. This ratio is closer to our results. In addition, from the ratio we found seven out of the twelve heterotrophic plants have higher substitutions in their 16S rDNA than in 18S, and all taxa show their pt16S rDNA evolved relatively faster than nr18S in RRTree test (K1/K2 value in Table 3-4). It indicates that the plastome of heterotrophic plants might evolve faster than other two subcellular genomes. But there is no clear pattern on substitution and relative rates among genomes, and an accelerated rate in one SSU rDNA does not imply increasing rates for rDNAs of the other genomes. These results suggest that the three subcellular genomes are under independent evolutionary trajectories in both autotrophic and heterotrophic plants.

For the nucleotide composition, significant decreases in GC contents of pt16S rDNA are found in *B. japonica*, *M. kanehirai*, *Ch. Humilis* and *Ch. macrocarpa*. In plastid genome, rRNA genes have the highest GC content of any coding regions; however, GC content of *B. japonica* pt16S rDNA (24.1%) is even lower than whole chloroplast genome in green plants (35.4-39.6%) (Jansen and Ruhlman, 2012). The decreased of GC content

of SSU rDNAs is accompanied by high substitution rates. The inverse correlation between GC content and substitution rate of pt16S rDNA in these four species is congruent with the pattern in other holoparasitic angiosperms (Nickrent et al., 1997a). However, in the other rDNAs, this phenomenon is only found in *B. japonica* nr18S rDNA.

We also found that there are frequent indels in pt16S rDNA sequences of selected heterotrophic plants (Supplementary data Fig. S3-2), which have been found in other holoparasitic plants (Nickrent et al., 1997a) and even more pronounced in non-photosynthetic green algae (Nedelcu, 2001). In comparison, angiosperm nr18S rDNA has fewer indels and most indels are only one or two nucleotides in length (Supplementary data Fig. S3-3) (Soltis and Soltis, 2000b). Whether or not high substitution rate and the larger indels of the sequences affect the structure and function of pt16S rDNA, it requires further structure analysis of sequences and RNA expression experiment.

Transition biases have been observed in pt16S and nr18S rDNA sequences for both autotrophic and heterotrophic plants, and vary in magnitude (Nickrent et al., 1997a; Soltis and Soltis, 2000b). The nr18S and pt16S rDNAs of all species examined reveal a strong bias towards transitional mutations. On the contrary, mt19S rDNA does not show the same base composition bias.

Relaxation of selection pressure as a consequence of loss of photosynthetic ability might be the main factor for increased substitution rates found in plastid, but the mutations in mt19S, nr18S rDNAs of heterotrophic plants is not clear at present. It is generally assumed that rate increases in nr18S rDNA sequences are due to an overall elevated mutation rate in the genome, by mechanisms like defective DNA repair efficiency or rapid generation time (Nickrent and Starr, 1994; Lemaire et al., 2010). It should be noted that such mechanisms that previous speculated for accelerated substitution rates in a particular organism mostly have the effects applied to whole genome. Changes in the substitution rate pattern among the genomes (mt, pt, and nr) of the same species would violate these hypotheses. In addition, the organelle DNA replications are generally assumed to be controlled by nucleus since almost all genes for proteins involved in the replication machinery are located in the nucleus (Heinhorst and Cannon, 1993; Nielsen et al., 2010), and so may applied to DNA repairing in organelles (Kimura and Sakaguchi, 2006). Therefore, it seems that the substitution rates of rDNAs should be in congruence among nuclear and organelle genomes. Our recent study also shows that substitution rate heterogeneity within the nuclear genome (i.e. 18S rDNA) of Balanophora, is not associated with rate increases in other nuclear protein coding genes (Su and Hu, 2012). Therefore, the rate heterogeneity among the three genomes for heterotrophic plants could involve different mechanisms working on the three rDNA genes.

The organelle DNA replications are generally assumed to be controlled by nuclear genome since almost all genes for proteins involved in the replication machinery are located in the nucleus (Heinhorst and Cannon, 1993; Nielsen et al., 2010) and similarly for proteins of DNA repairing in organelles (Kimura and Sakaguchi, 2006). The two organelles are prokaryote origin; therefore, it seems that the substitution rates of rDNAs should be in congruence between organelle genomes. However, the actual controls for organelle replication initiation, replication and copy number are still not well understood (Nielsen et al., 2010). Interestingly, there are indeed specialized organelle nuclei found in plants, hinted complex dynamics of interactions between the three genomes (nr, pt and mt) (Sakai et al., 2004). Our results clearly show rate heterogeneity in the substitution rate pattern among the nuclear, plastid and mitochondrial genomes of selected heterotrophic plants. Much is still unknown for the function and biogenesis of the plastids in these heterotrophic plants, thus quite difficult to speculate the driving forces on the rate heterogeneity. With more understanding of the variations on the DNA replication/repair machineries among genome compartments and among diverse species could thus elucidate the discrepancy among rate acceleration of three subcellular genomes

Species	Family	Trophic mode ^a	Accession no.			
			nr18S	pt16S	mt19S	
Cassytha filiformis ^b	Lauraceae	HE	KC588400	KC588391	KC588409	
Balanophora japonica	Balanophoraceae	НО	KC588399	KC588390	KC588408	
Cuscuta australis ^b	Convolvulaceae	НО	KC588403	KC588394	KC588412	
Mitrastemon kanehirai	Mitrastemonaceae	НО	KC588405	KC588396	KC588414	
Aeginetia indica	Orobanchaceae	НО	KC588398	KC588389	KC588407	
Orobanche coerulescens	Orobanchaceae	НО	KC588406	KC588397	KC588415	
Cheilotheca humilis	Ericaceae	MY	KC588401	KC588392	KC588410	
Cheilotheca macrocarpa	Ericaceae	MY	KC588402	KC588393	KC588411	
Galeola lindleyana ^b	Orchidaceae	MY	KC588404	KC588395	KC588413	

Table 3-1. The information for source materials of SSU rDNA sequences.

^a Trophic mode: HE, hemiparasitic; HO, holoparasitic; MY, mycoheterotrophic

^b Species retain some photosynthetic ability, and was excluded from the analyses of nucleotide pattern.

Table 3-2. Prir	ners used in thi	× 10 2		
Position	Primer name	Sequence from 5' to 3'	Reference	
Plastid	16S F ^{ade}	AACAAGGAAGCTATAAGTAATGCAA		
	16S 8Fbc	GGAGAGTTCGATCCTGGCTCAG	Nickrent et al., 1997b	
	16S 734F ^c	TGGGATTAGAGACCCCAGTA		
	16S 878R ^c	GCCCCCGYCAATTCCT		
	16S 1461R°	GGTATTCTAGCCACACTTTCCAG		
	16S 1508R ^a	ACCAAAATACCCAACAAGCA		
	16S 1508R1 ^e	CCCAAAAAACCCAACAAGCA		
	16S R ^d	ACATGGGGACGTAAAACAGG		
	238 459R ^b	CTT TCC CTC ACG GTA		
Mitochondrion	m19S-9F ^f	GAGTTTGATCCTGGCTCAGA	Duff and Nickrent, 1997, 1999	
	m19S-434F ^c	GCCGCTTGTAAAGCTC	Duff and Nickrent, 1997, 1999	
	m19S-950R°	AAGGTTTTGCGCGTTGTATC		
	m19S-1949R ^f	GCCACAGGTTCCCCTACGGCT	Duff and Nickrent, 1997, 1999	
Nucleus	SSU4F ^{abcd}	TTGGTTGATCCTGCCAGTAG		
	SSU12F ^e	TCCTGCCAGTASTCATATGC	Malécot and Nickrent, 2008	
	SSU1769R ^f	CACCTACGGAAACCTTGTT	Nickrent and Starr, 1994	

^a Primers used in A. indica, Ch. humilis, Cu. australis, G. lindleyana and O. coerulescens.

^b Primers used in *M. kanehirai*.

^c Primers used in *B. japonica*.

^d Primers used in *Ca. filiformis*.

^e Primers used in *Ch. macrocarpa*.

^f Primers used in all species.

								1410	0	E
Towo	GC%			Substitution rate (%) ^a				T_{S}/T_{V}^{a}		
Таха	19S	16S	18S	19S ^b	16S	18S	Ratio ^c	19S ^b	A 16S	18S
Green plants	53.7±1°	55.6 ^e	49.4±2e	0.6~1.4°	2~3 ^f	3.6 ^g	1:3:16 ^h	0.10~1.14°	2 ^e	2 ^e
									7010101010	
Ca. filiformis	52.6	56.1	50.3	1.43	2.44	4.42	1:1.7:3.1	0.374	4.672	1.748
A. indica	52.4	54.6	48.3	1.37	2.81	4.81	1:2.1:3.5	1.343	2.039	2.612
B. japonica	53.6	24.1	41.5	0.85	33.73	12.02	1:39.9:14.2	0.860	1.704	2.952
Cu. australis	50.5	56.6	47.2	1.17	2.25	6.17	1:1.9:5.3	1.257	1.795	3.349
M. kanehirai	54.3	44.6	48.6	1.37	14.49	7.26	1:10.6:5.3	0.753	2.861	3.088
O. coerulescens	53.6	56.6	49.5	1.24	1.81	3.06	1:1.5:2.5	0.904	1.923	1.988
Ch. humilis	54.3	52.7	48.3	1.37	6.56	3.88	1:4.8:2.8	0.753	2.511	3.277
Ch. macrocarpa	54.4	52.3	48.2	1.43	6.43	3.50	1:4.5:2.4	0.694	3.124	4.041
G. lindleyana	56.2	55.7	49.6	2.73	3.12	5.57	1:1.1:2.0	0.398	3.249	1.603
Corynaea ^d	53.3	26.2	46.4	3.39	31.41	6.92	1:9.3:2.0	0.973	2.328	2.178
Cytinus ^d	54.7	49.6	47.2	2.49	7.88	6.32	1:3.2:2.5	0.566	2.290	3.272
Hydnora ^d	54.5	42.3	47.1	3.25	19.36	7.03	1:6.0:2.2	0.422	3.147	2.002

Table 3-3. Features of mt19S, pt16S and nr18S rDNAs from heterotrophic plants.

^a Substitution rates and T_S/T_V of SSU rDNAs were compared with *Glycine max*.

^b Calculation of mitochondrial 19S rDNA sequences excluded the V1 and V7 regions.

^c Ratios of substitution rate between mt19S and pt16S, nr18S rDNAs.

^d Sequences of SSU rDNAs were obtained from GenBank.

^e Duff and Nickrent, 1997

^f Nickrent et al., 1997a

^g Nickrent and Starr, 1994

^h Drouin et al., 2008

Lineage 1	Lineage 2	K1-K2 ^a	K1/K2 ^a	<i>P</i> value ^b
mt19S			AL.	
Ca. filiformis	Cinnamomum, Laurus	0.006	1.34	6.4×10^{-2}
A. indica	Digitalis ^c , Veronica ^c	-0.005	0.82	1.4×10^{-1}
B. japonica	Lepidoceras ^c , Vitis	-0.005	0.74	1.0×10^{-2}
Cu. australis	Nicotiana	-0.001	0.97	7.6×10^{-1}
M. kanehirai	Beta ^c , Silene latifolia ^c , Silene vulgaris ^c	-0.014	0.75	1.7×10^{-2}
O. coerulescens	Digitalis ^c , Veronica ^c	-0.008	0.66	1.8×10^{-3}
Ch. humilis	Beta ^c , Silene latifolia ^c , Silene vulgaris ^c	-0.014	0.76	$2.0 imes 10^{-2}$
Ch. macrocarpa	Beta ^c , Silene latifolia ^c , Silene vulgaris ^c	-0.014	0.76	2.0×10^{-2}
G. lindleyana	Asparagus, Iris	0.015	1.62	1.0×10^{-3}
Corynaea	Lepidoceras, Vitis	0.027	2.46	5.5 × 10 ⁻⁷
Cytinus	Brassica, Raphanus	0.011	0.76	1.0×10^{-1}
Hydnora	Aristolochia, Dr. winteri, Saururus	0.019	2.03	3.4×10^{-5}
pt16S				
Ca. filiformis	Cinnamomum	0.003	1.25	$2.5 imes 10^{-1}$
A. indica	Antirrhinum ^c , Olea, Sesamum ^c	0.020	3.67	2.3×10^{-7}
B. japonica	Heisteria ^c , Ximenia	0.552	62.18	1.0×10^{-7}
Cu. australis	Ipomoea, Nicotiana, Solanum	0.014	2.77	1.5×10^{-5}
M. kanehirai	Camellia ^c , Stewartia ^c , Symplocos ^c	0.180	27.79	1.0×10^{-7}
O. coerulescens	Antirrhinum ^c , Olea, Sesamum ^c	0.008	2.17	7.0×10^{-4}
Ch. humilis	Camellia ^c , Stewartia ^c , Symplocos ^c	0.070	10.67	1.0×10^{-7}
Ch. macrocarpa	Camellia ^c , Stewartia ^c , Symplocos ^c	0.068	10.48	1.0×10^{-7}
G. lindleyana	Apostasia, Oncidium, Phalaenopsis	0.017	3.12	3.7 × 10 ⁻⁶
Corynaea	Heisteria, Ximenia	0.516	53.85	1.0×10^{-7}
Cytinus	Arabidopsis, Carica	0.087	11.59	1.0×10^{-7}
Hydnora	Aristolochia, Dr. granadensis, Saururus	0.264	52.54	1.0×10^{-7}
nr18S				
Ca. filiformis	Cinnamomum, Laurus, Sassafras	0.006	1.16	$1.1 imes 10^{-1}$
A. indica	Antirrhinum ^c , Olea, Sesamum ^c	0.020	1.51	$1.0 imes 10^{-5}$
B. japonica	Heisteria ^c , Santalum , Ximenia	0.111	3.88	1.0×10^{-7}
Cu. australis	Convolvulus, Ipomoea	0.036	1.83	1.0×10^{-7}
M. kanehirai	Clethra ^c , Pyrola ^c , Symplocos ^c	0.041	2.03	1.0×10^{-7}
O. coerulescens	Antirrhinum ^c , Olea, Sesamum ^c	0.007	1.17	$2.2 imes 10^{-2}$
Ch. humilis	Clethra ^c , Pyrola ^c , Symplocos ^c	0.009	1.22	2.2×10^{-2}
Ch. macrocarpa	Clethra ^c , Pyrola ^c , Symplocos ^c	0.007	1.17	4.9×10^{-2}
G. lindleyana	Apostasia, Cymbidium, Oncidium	0.021	1.55	3.9 × 10 ⁻⁵
Corynaea	Heisteria, Santalum , Ximenia	0.048	2.20	1.0×10^{-7}
Cytinus	Arabidopsis, Carica	0.038	1.90	1.0×10^{-7}
Hydnora	Aristolochia, Dr. winteri, Saururus	0.046	2.23	1.0×10^{-7}

Table 3-4. Results of relative rate tests for comparing SSU rDNA substitution rates between heterotrophic lineages (Lineage 1) and their autotrophic relatives (Lineage 2).

^a *Amborella* is used as outgroup for all of SSU rDNAs; relative rate tests of mt19S rDNA sequences exclude V1 and V7 regions.

^b Significance of the *P* values < 0.05.

^c Autotrophic species included in the analyses of nucleotide pattern.

Figure 3-1. Patterns of nucleotide substitution in A: mt19S, B: pt16S and C: nr18S rDNAs across selected taxa. The histograms above the x-axis are patterns of the heterotrophic plants that completely lost their photosynthetic ability, and the histograms below are patterns of their autotrophic counterparts.

References

Bailey, C.D., T.G. Carr, S.A. Harris, and C.E. Hughes. 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol. 29: 435-455.

臺

- Barnwell, P., A.N. Blanchard, J.A. Bryant, N. Smirnoff and A.F. Weir. 1998. Isolation of DNA from the highly mucilagenous succulent plant *Sedum telephium*. Plant Mol Biol Rep. 16: 133-138.
- Chase, M.W. and J.L. Reveal. 2009. A phylogenetic classification of the land plants to accompany APG III. Bot J Linn Soc. 161: 122-127.
- dePamphilis, C.W., N.D. Young and A.D. Wolfe. 1997. Evolution of plastid gene *rps2* in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns of rate variation. Proc Nat Acad Sci USA. 94: 7367-7372.
- Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19: 11-15.
- Drouin, G., H. Daoud and J. Xia. 2008. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol. 49: 827-831.
- Duff, R.J. and D.L. Nickrent. 1997. Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants. J Mol Evol. 45: 631-639.
- Duff, R.J. and D.L. Nickrent. 1999. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Am J Bot. 86: 372-386.
- Heinhorst, S. and G.C. Cannon. 1993. DNA replication in chloroplasts. J. Cell Sci. 104: 1-9.
- Hillis, D.M. and M.T. Dixon. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quart Rev Biol. 66: 411-453.
- Houliston, G.J. and M.S. Olson. 2006. Nonneutral evolution of organelle genes in *Silene vulgaris*. Genetics. 174: 1983-1994.
- Huang, C.C., K.H. Hung, W.K. Wang, C.W. Ho, C.L. Huang, T.W. Hsu, N. Osada, C.C.
 Hwang and T.Y. Chiang. 2012. Evolutionary rates of commonly used nuclear and organelle markers of *Arabidopsis* relatives (Brassicaceae). Gene. 499: 194-201.
- Jansen, R.K. and T.A. Ruhlman. 2012. Plastid genomes of seed plants. In R. Bock and V. Knoop (eds.), Genomics of chloroplasts and mitochondria. Springer Science Business Media, Dordrecht, Heidelberg, New York, London, pp. 103-126.

Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16: 111-120.

Kimura, S. and K. Sakaguchi. 2006. DNA repair in plants. Chem Rev. 106: 753-766.

- Kupriyanova, N.S. 2000. Conservation and variation of ribosomal DNA in eukaryotes. Mol Biol. 34: 753-765.
- Lemaire, B., S. Huysmans, E. Smets and V. Merckx. 2010. Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J Plant Res. 124: 561-576.
- Li, W.H. 1993. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 36: 96-99.
- Li, W.H., C.I. Wu and C.C. Luo. 1985. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol. 2: 150-174.
- Maddison, D.R. and W.P. Maddison. 2000. MacClade 4: Analysis of phylogeny and character evolution, Version 4. Sinauer Associates, Sunderland, MA, USA.
- Malécot, V. and D.L. Nickrent. 2008. Molecular phylogenetic relationships of Olacaceae and related Santalales. Syst Bot. 33: 97-106.
- Nedelcu, A.M. 2001. Complex patterns of plastid 16S rRNA gene evolution in nonphotosynthetic green algae. J Mol Evol. 53: 670-679.
- Nickrent, D.L. 2002. Parasitic plants of the world. In J.A. López-Sáez, P. Catalán and L. Sáez (eds.), Parasitic plants of the Iberian Peninsula and Balearic Islands. Mundi-Prensa Libros, S. A., Madrid, Spain, pp. 7-27.
- Nickrent, D.L. and R.J. Duff. 1996. Molecular studies of parasitic plants using ribosomal RNA. In M.T. Moreno, J.I. Cubero, D. Berner, D. Joel, L.J. Musselman, and C. Parker (eds.), Advances in Parasitic Plant Research. Dirección General de Investigación Agraria, Servicio de Publicaciones y Divulgación, Cordoba, Spain, pp. 28-52.
- Nickrent, D.L., R.J. Duff, A.E. Colwell, A.D. Wolfe, N.D. Young, K.E. Steiner and C.W. dePamphilis. 2000. Molecular phylogenetic and evolutionary studies of parasitic plants. In D.E. Soltis, P.S. Soltis, and J.J. Doyle (eds.), Molecular Systematics of Plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, Massachusetts, USA, pp. 211-241.
- Nickrent, D.L., R.J. Duff and D.A.M. Konings. 1997a. Structural analyses of plastidderived 16S rRNAs in holoparasitic angiosperms. Plant Mol Biol. 34: 731-743.

- Nickrent, D.L. and E.M. Starr. 1994. High-rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. J Mol Evol 39: 62-70.
- Nickrent, D.L., O.Y. Yan, R.J. Duff and C.W. dePamphilis. 1997b. Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Mol Biol. 34: 717-729.
- Nielsen, B.L., J.D. Cupp and J. Brammer. 2010. Mechanisms for maintenance, replication, and repair of the chloroplast genome in plants. J Exp Bot. 61: 2535-2537.
- Richard, G.F., A. Kerrest, and B. Dujon. 2008. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev. 72: 686-727.
- Sánchez, R., F. Serra, J. Tárraga, I. Medina, J. Carbonell, L. Pulido, A. de María, S. Capella-Gutíerrez, J. Huerta-Cepas, T. Gabaldón, J. Dopazo and H. Dopazo. 2011.
 Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res. 39: W470-W474.
- Sakai, A., H. Takano and T. Kuroiwa. 2004. Organelle nuclei in higher plants: structure, composition, function, and evolution. Int Rev Cytol. 238: 59-118.
- Sloan, D. and D. Taylor. 2012. Evolutionary rate variation in organelle genomes: The role of mutational processes. In C.E. Bullerwell (ed.), Organelle genetics. Springer, Berlin, Heidelberg, pp. 123-146.
- Sloan, D.B., A.J. Alverson, M. Wu, J.D. Palmer and D.R. Taylor. 2012. Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus *Silene*. Genome Biol Evol. 4: 294-306.
- Soltis, D.E. and P.S. Soltis. 2000a. Choosing an approach and an appropriate gene for phylogenetic analysis. In D.E. Soltis, P.S. Soltis, and J.J. Doyle (eds.), Molecular Systematics of Plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, Massachusetts, USA, pp. 1-42.
- Soltis, P.S. and D.E. Soltis. 2000b. Molecular evolution of 18S rDNA in angiosperms: implications for character weighting in phylogenetic analysis. In D.E. Soltis, P.S. Soltis, and J.J. Doyle (eds.), Molecular Systematics of Plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, Massachusetts, USA, pp. 188-210.
- Soltis, P.S., D.E. Soltis, P.G. Wolf, D.L. Nickrent, S.M. Chaw and R.L. Chapman. 1999. The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? Mol Biol Evol. 16: 1774-1784.
- Soria-Hernanz, D.F., J.M. Braverman and M.B. Hamilton. 2008. Parallel rate

heterogeneity in chloroplast and mitochondrial genomes of Brazil nut trees (Lecythidaceae) is consistent with lineage effects. Mol Biol Evol. 25: 1282-1296.

- Su, H.J. and J.M. Hu. 2012. Rate heterogeneity in six protein-coding genes from the holoparasite *Balanophora* (Balanophoraceae) and other taxa of Santalales. Ann Bot. 110: 1137-1147.
- Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28: 2731-2739.
- Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
- Weider, L.J., J.J. Elser, T.J. Crease, M. Mateos, J.B. Cotner, and T.A. Markow. 2005. The functional significance of ribosomal (r)DNA variation: impacts on the evolutionary ecology of organisms. Ann Rev Ecol Evol. 36: 219-242.
- Weisburg, W.G., S.M. Barns, D.A. Pelletier, D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 173: 697-703.
- Wolfe, K.H., D.S. Katz-Downie, C.W. Morden and J.D. Palmer. 1992. Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: Accelerated sequence evolution, altered promoter structure, and tRNA pseudogenes. Plant Mol Biol. 18: 1037-1048.
- Young, N.D. and C.W. dePamphilis. 2005. Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function. BMC Evol Biol. 5: 16-25.

Supplementary Data

臺

Figure S3-2. The alignment of pt16S rDNA sequences in the nine heterotrophic plants.

Figure S3-3. The alignment of nr18S rDNA sequences in the nine heterotrophic plants.
Chapter 4

Complete plastid genome sequence of the non-photosynthetic plant

Mitrastemon kanehirai

Abstract

Plastids in most green plants are where photosynthesis takes place, and it is believed that plastid is derived from an ancient endosymbiosis of cyanobacteria. The size of plastome ranges from 100 to 200 kb in most land plants, and the gene content and organization of the genome are highly conserved within land plants. Previous studies have shown that the non-photosynthetic plants only retain a reduced plastome and lost most of the photosynthesis related genes. In this study, I sequenced the complete plastid genome of a non-photosynthetic plant, Mitrastemon kanehirai, by using next generation sequencing technology. Mitrastemon kanehirai possesses a plastome of 25,740 bp, which is smallest plastome that have been described in land plants. All genes related to photosynthesis are lost and the inverted repeat region is absent. Only 26 genes were retained, including 4 rRNAs, 4 tRNAs and 18 protein-coding genes. Most of these genes are involved in translation machinery. Despite the enormous reduction, the M. kanehirai plastome still retain a functional gene expression system. DNA transfer from the plastid to the nucleus and horizontal transfer from the host to the parasite were also observed in M. kanehirai. In addition, we found that the plastome size of non-photosynthetic plants is inversely related to their pt16S rDNA substitution rate. Based on this observation, we speculated that *M. kanehirai* has almost reached a minimum limit of plastid genome size.

Keywords: heterotrophic plant, *Mitrastemon kanehirai*, non-photosynthetic plant, plastid gene, plastome.

Introduction

Plastid genome

Plastids are the eukaryotic organelles responsible for photosynthesis and derived from an initial endosymbiosis of a cyanobacteria about 1-1.5 billion years ago (Martin and Kowallik, 1999; Butterfield, 2000; McFadden, 2001; Douzery et al., 2004; Keeling, 2004; Yoon et al., 2004; Waters and Langdale, 2009). Plastomes (i.e., plastid genomes) have experienced a process of severe genome reduction during the course of endosymbiosis and plant evolution. The ptDNAs are circular molecules ranging in size from 100 to 200 kb and can be divided into four parts with two inverted repeats (IR, about 25 kb) separating large single copy region (LSC) and small single copy region (SSC) of land plant plastomes (Palmer and Delwiche, 2000; Raubeson and Jansen, 2005). Plastid genomes encode only about 5~10% as many genes as the free-living cyanobacteria, indicating that many genes were either lost or transferred to the nucleus during the process of genome reduction. It should be noted that plastids contain just about as many proteins as their cyanobacterial relatives, and previous studies suggested that about 1,000 to 5,000 proteins in higher plants are targeted to plastids (Abdallah et al., 2000; Cavalier-Smith, 2000; Rujan and Martin, 2001; Martin et al., 2002). The genes for these proteins are likely re-located in the nuclear genome and it has been estimated that about 4,500 of Arabidopsis protein-coding genes (about 18% of the total) were obtained from the cyanobacterial

ancestor of plastids (Martin et al., 2002).

The transfer of plastid genes to the nucleus mostly occurred at the initiation stage of endosymbiosis; however, several studies have shown that the plastid-to-nucleus DNA transfer is a prevailing, continuing and natural process at unpredictably high frequency (Timmis et al., 2004). The core gene sets of plastids remain mostly the same, although the gene relocation process happened massively and in parallel during the early evolution of algal diversification. It suggests that the relocation of plastid genomes was under similar selective pressures but not reduced randomly.

The genes that retained in plastids can be divided into three categories: (1) transcription and translation related genes; (2) photosynthetic genes; and (3) other biosynthetic genes (Lohan and Wolfe, 1998; Martin et al., 2002; Odintsova and Yurina, 2003). Two main theories have been proposed to explain why these genes retained in plastids: the 'hydrophobicity' and 'redox control' (Race et al., 1999; Timmis et al., 2004). The former one suggests that hydrophobic proteins are difficult to import into organelles, and so must be retained in organelle genomes, rather than transferred to the nuclear genome. The 'redox control' theory assumes that it is necessary for organelles to retain genes involved in their electron-transfer chain and gene expression machinery in response to redox state, and hence they can maintain redox balance avoiding the production of highly toxic reactive oxygen species (Timmis et al., 2004).

In addition, a 'co-inheritance' theory describes that gene co-inheritance probably is essential to successful functional gene transfer and thus restricts the transfer of organellar genes to the nucleus (Brandvain et al., 2007). However, these theories address primarily the need to keep photosynthetic genes in plastids. Other hypotheses, such as the 'essential tRNAs' and 'limited transfer window' hypothesis, which account for the retention of a plastome in non-photosynthetic species, have been proposed as well (Barbrook et al., 2006). For example, the 'essential tRNAs' hypothesis speculated that plastid tRNA^{Glu} is essential for heme biosynthesis in plants and algae, so the gene *trnE* must be retained in the plastome. Similarly in apicomplexan parasites, plastid tRNA^{fMet} is essential for mitochondrial protein synthesis, and therefore the *trnfM* gene is retained. The 'limited transfer window' hypothesis argues that the opportunity for DNA transfer is greatly reduced in protists such as the apicomplexans and *Chlamydomonas* because they possess only a single plastid per cell, and such transfers mostly would be lethal to the cell. Therefore, the retention of genes in apicoplast genomes might just be incapable to get them out.

The plastomes of non-photosynthetic plants

Non-photosynthetic plants lost photosynthetic ability and relied on other sources for carbon hydrates. These heterotrophic plants can be either parasitic or mycoheterotrophic, depends on the mode of nutrient uptake and if they have direct contact with host plants. Non-photosynthetic plants retain remnant plastids and their plastome is usually highly reduced (Barbrook et al., 2006). Until now, there are only four complete plastid sequences available for non-photosynthetic plants, *Cistanche deserticola* (102,657 bp, Orobanchaceae) (Li et al., 2013), *Epifagus virginiana* (70,028 bp, Orobanchaceae) (Wolfe et al., 1992), *Rhizanthella gardneri* (59,190 bp, Orchidaceae) (Delannoy et al., 2011) and *Neottia nidus-avis* (92,060 bp, Orchidaceae) (Logacheva et al., 2011). Among these, *C. deserticola* and *E. virginiana* are holoparasitic, while the others are mycoheterotrophic plants. In addition, it has been estimated that *Conopholis americana* has the plastome of 43 kb (Colwell, 1994) and *Cytinus ruber* plastome is approximately 20 kb which is the smallest documented for angiosperms so far (Nickrent et al., 1997b).

All of the plastid genomes of these non-photosynthetic plants are smaller than half the size of *Nicotiana tabacum* plastome (156 kb) or other green seed plants. Among these, *C. deserticola, E. virginiana* and *N. nidus-avis* plastomes all retain nearly full-sized inverted repeat regions (22 to 24 kb), but the IRs of *R. gardneri* plastome are less than 10 kb, which is much shorter than the other non-photosynthetic plants. In the four plastomes with complete sequence, nearly all of their photosynthesis related genes were either lost or became pseudogenes. Despite the size variation, the four plastomes share a very similar gene content and gene order structure. Furthermore, several studies have revealed that plastid genes of the non-photosynthetic show accelerated evolutionary rate in some nonphotosynthetic plants (dePamphilis et al., 1997; Nickrent et al., 1997a). Given that the unique characteristics described above, non-photosynthetic plants can be seen as the perfect natural mutants to study the functional aspects on evolution of plastomes. However, little is known about the genome structure of the plastome in nonphotosynthetic plants. To date, the analysis of complete plastome from nonphotosynthetic plants has been restricted to two families, Orobanchaceae and Orchidaceae. Here, I presented the entire plastome of a holoparasitic plant, *Mitrastemon kanehirai* Yamamoto, to increase the understanding of parallel genome reduction in plastid evolution.

Mitrastemon kanehirai is a root holoparasitic plant parasitized on roots of Fagaceae species, is endemic to Taiwan (Yang and Lu, 1996). The genus *Mitrastemon* contains only 2-4 species, and *M. kanehirai* sometimes was treated as a variety or as synonym of *Mitrastemon yamamotoi* (Matuda, 1947; Meijer and Veldkamp, 1993). There is only one plastid sequence (16S rDNA) of *Mitrastemon* that was available on GenBank. The 16S sequence showed higher accelerated substitution rate than the pt16S of *E. virginiana*, which is a holoparasite with a reduced plastome of size 70 kb (Nickrent et al., 1997a; Nickrent et al., 2000). In this study, I sequenced the complete plastid genome of *M. kanehirai* by using next generation sequencing technology. By analyzing and comparing the *M. kanehirai* plastome sequence with other plants, it provides a more comprehensive

insight into the evolution of plastid genome in non-photosynthetic plants.

Materials and methods

Plant material and DNA extraction methods

Mitrastemon kanehirai is a non-photosynthetic root endoparasite native to Taiwan. The material used in this study (*M. kanehirai*: Lienhuachih, Nantou County, Oct. 12, 2010, *Hu1810*) was collected in fresh and immediately immersed in liquid nitrogen, and subsequently stored in -20°C. Frozen tissues were used for the following DNA and RNA extraction methods.

Total genomic DNA was isolated using a modified CTAB method developed by Barnwell et al. (1998) for the highly mucilaginous succulent plant. Plastid DNA was enriched by combining Milligan's protocol (Milligan, 1989) with the Tri-Plant Genomic DNA Reagent Kit (Geneaid). Plastid pellet was isolated by centrifugation at 6,000 g for 20 min instead of 3,000 g for 10 min in Milligan's protocol, and then the DNA was extracted from pellet by using Tri-Plant Genomic DNA Reagent Kit. Details of the extraction method can been seen in Chapter 2.

Long PCR and reverse transcription-PCR

Long PCR was performed by using BD AdvantageTM 2 Polymerase mix (Clontech) according to manufacturer's instructions, and the primers used are listed in supplementary

data Table S4-1. The PCR products were then cloned into the pCR[®]-XL-TOPO[®] vector (Invitrogen) following user manual. One Taq^{TM} DNA Polymerase (New England Biolabs) was used to amplify the DNA fragments of *M. kanehirai* plastome to further confirm its sequence.

Total RNAs were extracted using Plant Concert Reagent (Invitrogen). The cDNA was synthesized using the SuperScriptTM III RNase H⁻ Reverse Transcriptase Kit (Invitrogen), and then used as a template in the following PCR.

Real-time quantitative PCR and Southern blot analyses

Real-time PCR and data analysis were performed in the CFX96TM Real-Time PCR Detection Systems (Bio-Rad Laboratories). The PCR mixture (20 µL) contained 10 µL KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems), 50 nM or 100 nM of each primers (Supplementary data Table S4-1) and 20 ng of extracted DNA was used as template. The amplification program initiated at 95°C for 3 min, followed by 40 cycles at 95°C for 10 s and 64°C for 30 s, and finally 95°C for 10 s. Melting curve analysis was carried out after PCR amplification. All experiments were performed in triplicate.

For Southern blot analyses, the genomic DNA of *M. kanehirai* was digested with *Bam*HI, *Eco*RI and *Hind*III separately (10 µg/reaction; 2 U enzyme/µg DNA) for 1 h at 37°C, and then were separated on a 0.7% TAE agarose gel. The hybridization probes were labeled with DIG by containing DIG-11-dUTP (Roche Applied Science) in the PCR

reaction mixture. CDP-*Star* (Roche Applied Science) was used for detecting the probe signal on blots. The procedures of DIG labeling, blot transfer, hybridization (at 65°C) and detection all followed DIG Application Manual for Filter Hybridization (Roche Applied Science).

Next generation sequencing and assembly

The next generation sequencing was provided by the sequencing service of National Yang-Ming University VYM Genome Research Center (VYMGC). A pairedend library was prepared from the plastid DNA-enriched sample and sequenced using the GAII platform (Illumina). The *de novo* assembly was carried out using CLC Genomics Workbench 4.0.2 (CLC Bio) by VYMGC. The plastid genome was also assembled using Velvet 1.2.07 (Zerbino and Birney, 2008) with the assembly parameter was set to k = 89.

Annotation and plastome map drawing

The initial annotation of *M. kanehirai* plastome was produced using online automatic annotator DOGMA (Wyman et al., 2004). The gene annotation was further surveyed by the orf prediction of web server WebMGA (Wu et al., 2011) and NCBI Conserved Domain-Search (CD-Search); and the identification of tRNAs was done by tRNAscan-SE 1.21 (Schattner et al., 2005). The RNAs were then verified by NCBI BLAST search for final adjustment of gene annotation. The map of the plastome was drawn using OGDRAW online tool (Lohse et al., 2013). We selected four plastomes for comparison: *N. tabacum* (the reference, NC_001879), *Ardisia polysticta* (the closest relative in Ericales, NC_021121), and two other non-photosynthetic plants, *E. virginiana* (NC_001568) and *R. gardneri* (NC_014874). The comparison of plastomes was performed using Progressive Mauve (Darling et al., 2010) with default parameters and minor manual modification.

Results

Plastome sequence

Initially, I obtained a large fragment (Fragment A, 4,585 bp) of *M. kanehirai* plastid sequence by performing long PCR with universal primers which locate at 16S rDNA and 5S rDNA (Supplementary data Table S4-1). Part of the obtained sequence is highly similar to *M. yamamotoi* pt16S rDNA sequence that has been reported on GenBank (Nickrent et al., 1997a). Most NGS contigs larger than 10 kb assembled by both software are mitochondrial sequences. Nonetheless, there are contigs that their sequences overlapping with Fragment A from both assemblies. The largest contig that contains *M. kanehirai* plastid sequence yield from CLC Genomics Workbench is 16,032 bp (coverage = 3127.77X) at size, and 15,116 bp (coverage = 386.20X) from Velvet. The two contigs could be further assembled to form a circular genome of 25,740 bp (Fig. 4-1). Primers (Supplementary data Table S4-1) designed based on this plastome sequence were used to

perform PCR in order to further confirm the sequence.

The *M. kanehirai* plastome is smaller than the plastome of the non-photosynthetic orchid R. gardneri (Delannoy et al., 2011), which makes this genome the smallest sequenced plastid genome of land plants. The IR was absent in the plastome, but the regions corresponding to the large single-copy region and the small single-copy region can still be recognized. All genes related to photosynthesis as well as the transcriptionrelated genes were lost. The M. kanehirai plastome contains only 26 genes encoding 18 proteins, 4 rRNAs and 4 tRNAs (Table 4-1). The overall GC content of the plastome is 22.5%, and rRNA genes has the highest GC content of 39.2% (Fig. 4-1 and Table 4-2). All four rRNA genes are present in the genome, but their sequences are much more divergent from other green plants (Table 3-3). There are only four tRNA genes retained: trnfM-cau, trnC-gca, trnE-uuc and trnI-cau. Fourteen of the M. kanehirai plastid genes encode proteins of the translation machinery, including 3 rpl genes, 10 rps genes and an initiation factor (infA). The other four protein-coding genes, accD, clpP, ycf1 and ycf2, are also retained in other non-photosynthetic plants (Table 4-1). Despite size variation and sequence divergence compared with other green plants, the CD-Search results of most of these deduced proteins met the criteria of specific hit suggests that they still maintain their functions. It is less certain with rps8 and rps18 since CD-Search found only nonspecific hit for these two putative proteins. The functionality of *ycf2* remained uncertain because of its highly divergent sequence and lacking intact functional domain.

I examined the RNA expression of several genes to further explore the functionality of *M. kanehirai* plastid genes. The expression of five translation-related genes which include *infA*, *rrn16* and 3 *rps* genes (*rps3*, 7, 14) were detected, as well as the other four genes — *accD*, *clpP*, *ycf1* and *ycf2*. (Fig. 4-2). It indicates that the two large ORFs, *ycf1* and *ycf2*, are very likely functional. In addition, detection of the correctly spliced cDNA of *clpP* shows that RNA splicing is also occurring in *M. kanehirai* plastids.

Other large DNA fragments

In my preliminary experiment, long PCR was used to amplify *M. kanehirai* plastid sequence with universal primers from the conserved regions. In addition to the sequence of Fragment A matches the *M. yamamotoi* pt16S rDNA (U67742), I also found other ptDNA-like sequences by using primers based on the IR region (Dhingra and Folta, 2005) (Fig. 4-3). One of these DNA fragments (Fragment B, amplified by primers 16S977F and IRB27R), its sequence is highly similar to the plastid IR segment ranging from *rrn16* to *ycf1* in green plants (Supplementary data Table S4-2). Fragment A and B both contain four rDNA sequences. Southern blots were performed with hybridization probes specific to these two fragments (Probe A to Frag. A, Probe B to Frag. B, Supplementary data Table S4-1). The result of Southern bolts showed that signals of Probe B were much weaker than Probe A from all three restriction enzymes (Fig. 4-4, compared with the marker

signals), it suggests that Frag. A and B might be not located in the same genome, i.e. Frag. B might be from nuclear genome, or other organelle genome. The blots showed hybridization to a fragment about 8 kb for *Eco*RI digestion and about 1 kb for *Hind*III (Fig. 4-4A), which is corresponding well with the cutting map of *M. kanehirai* plastome (Fig. 4-1). In Fig. 4-4, there is no signal yielded for *Bam*HI digestion, it might be due to the enzyme produced only one full-size fragment which was too large that its transfer from the gel to membrane was inefficient.

In addition, real-time quantitative PCR was performed to further examine the two fragments by comparing their content with nr18S rDNA in the total genomic DNA (Fig. 4-5). The signal of nr18S rDNA emerged first, followed by Frag. A and Frag. B was the last. Although the Cq (quantification cycle) values of Frag. A and nr18S rDNA were close, nr18S rDNA is a multiple-copy nuclear gene; it indicates Fragment A isn't located in the nuclear genome (Fig. 4-6A). And the Cq value difference between Frag. A and B confirms that the two fragment are indeed not located in the same genome. The content of Frag. B is lowest since Cq inversely correlated with starting copies (Fig. 4-6B). Also, numbers of mitochondrial genome per cell is high in meristematic and reproductive tissues where the total DNA extracted from, so Frag. B is unlikely to reside in mitochondrial genomes. It is reasonable to assume Frag. B locates in the *M. kanehirai* nuclear genome.

Discussion

Plastid genes retained in M. kanehirai

Mitrastemon kanehirai plastome contains only 26 genes and is the smallest confirmed plastid genome, being smaller than the apicoplastat genome of the malaria parasite Plasmodium vivax (30 kb, NC_017932). All the genes required for photosynthesis were lost, as well as five genes related to RNA metabolism. The loss of the matK and rpo genes was not surprised since they were lost or turned into pseudogenes in some other non-photosynthetic plants (Table 4-1). Despite the loss of matK, M. kanehirai plastome retains four group II introns, one of which was shown to be correctly spliced (*clpP*). The loss of *matK* has been observed in *Cuscuta* species from subgenus Grammica, which have also lost group IIa introns (McNeal et al., 2009). In addition, it has been reported that *matK* became a pseudogene in many orchids and is completely lacked in *R. gardneri* (Kores et al., 2001; Delannoy et al., 2011; Logacheva et al., 2011). The result suggests that the role of matK for splicing in M. kanehirai is likely nonessential as in these mycoheterotrophic orchids.

All four rRNA genes are present in *M. kanehirai*, but unlike in *R. gardneri* they do not share high similarity with their orthologs from other Ericales species. The same phenomenon was also observed in ribosomal protein genes. *Mitrastemon kanehirai* plastome encodes 14 ribosomal protein genes, three less *rpl* genes than *R. gardneri* plastome (*rpl14, 20, 23*). Although these genes maintain their functional domain in the

predicted amino acid sequences, their nucleotide sequences are highly divergent from their Ericales orthologs. There are only four tRNA genes retained in M. kanehirai: trnC, trnE, trnfM and trnI. The later three are preserved in all examined non-photosynthetic plants (Table 4-1). Plastid tRNA^{Glu}, encoded by the *trnE* gene, is essential for protein and tetrapyrrole synthesis (Barbrook et al., 2006). In all plants, it is required in heme biosynthesis for mitochondrial respiratory complexes and other essential proteins. Because plastid tRNA^{Glu} has to interact with glutamyl-tRNA reductase, glutamyl-tRNA synthetase and elongation factor EF-Tu, the cytosolic counterpart couldn't easily replace this tRNA (Barbrook et al., 2006). In prokaryotic systems, the initiator tRNA is encoded by *trnfM*, which is different from eukaryotic systems. Organellar tRNA^{lle} with a CAU anticodon in which C carries a lysidine modification, hence organellar isoleucyl-tRNA synthetase wouldn't recognized its cytosolic counterpart. Therefore, it would be difficult to replace these tRNAs with importing cytosolic tRNAs.

Two genes, *accD* and *clpP*, involved in plastid metabolism are retained, as well as two large ORF, *ycf1* and *ycf2*, which their functions are still unknown. The *accD* gene encodes a carboxylase (ACCase), which provides malonyl-CoA for the biosynthesis of fatty acid, and *clpP* codes for a catalytic subunit of a multimeric protease. The genes *accD*, *ycf1* and *ycf2* are conserved in almost all land plants, and *clpP* is the only protein-coding gene presented in all land plants. The *ycf1* and *ycf2* sequence similarity among land plants is extraordinarily low compared to other plastid genes, but they are functional and essential for cell survival in plants (Drescher et al., 2000). The nucleotide sequence of *ycf2* in *M. kanehieai* is highly divergent and it is the only protein-coding gene which sequence did not possess intact functional domain in the result of NCBI Protein BLAST search. Despite the enormous reduction, my results indicated that *M. kanehirai* plastome is a functional gene expression system, but its sequence is too divergent to be suitable molecular markers for phylogenetic analysis.

Comparison of the plastome with other non-photosynthetic plants

I compared the plastomes of three non-photosynthetic plants with two green plants. The result shows different degree of plastome reduction among non-photosynthetic plants (Fig. 4-7). *Epifagus virginiana* lost most of its photosynthetic genes in the LSC and retains nearly full-sized IR, while the IR were further contracted in *R. gardneri*, and then *M. kanehirai* plastome lacks the IR. These plastomes represent three stages in the progress of the plastome reduction in non-photosynthetic plants. Also, non-photosynthetic plant plastomes show the existence of a gene core set, and the gene order among them is well conserved. It suggests that the evolution of plastomes in different non-photosynthetic plants is under similar constraints. The reduction of *M. kanehirai* plastome occurred majorly in the LSC and the IR (Fig. 4-7). *Mitrastemon kanehirai* plastome lacks the IR, i.e. lost the *ycf2* part of the IRa and the rDNA part of the IRb, compared with other green plants. The absence of the IR and more compact genome make *M. kanehirai* plastome the smallest plastid genome that have been described.

However, the plastome size might not reach the minimum yet. I analyzed two factors, the rDNA sequence variation and the genome size, in heterotrophic plants which plastome sizes were available in GenBank. The result shows that the substitution rate is inversely related to plastome size (Fig. 4-8). According to the correlation between the pt16S divergence and the plastome size, the possible candidates with small plastid genomes are *Balanophora japonica*, *Corymaea* and *Hydnora*. If the trends can apply to all other plants, the plastome size of *Cytinus* might not as small as the previous study suggested (Nickrent and Duff, 1996) (Table. 3-3).

Apart from photosynthesis related genes, the pattern of plastid gene lost in nonphotosynthetic plants is inconsistent. The *rpo* genes which encode the plastid RNA polymerase were lost or became pseudogenes in *M. kanehirai*. The shortening of the IR did not show preference for the IRa or the IRb, *R. gardneri* and *M. kanehirai* retained the rDNA operon from the different copies of the IR.

In the tRNA genes among the examined non-photosynthetic plants, the patterning is not always consistent. The 'essential tRNAs' hypothesis which was introduced by Barbrook *et al* (2006) that describes plastid tRNA^{Glu} is essential for heme biosynthesis, so retention of the gene *trnE* in the plastome is necessary to non-photosynthetic plants. However, two other tRNA genes, *trnY* and *trnQ*, which was described difficult to be replaced by their cytosolic counterparts (Delannoy et al., 2011), were absent in *M*. *kanehirai*, although retained in *R. gardneri* (Table 4-1).

The *accD*, *ycf1* and *ycf2* genes have been reported lost in some land plant lineages, as well as evidences for transferred of ribosomal protein genes from plastid to nucleus (Xiong et al., 2009; Fleischmann et al., 2011). All these studies and non-photosynthetic plant plastome sequences support the 'essential tRNAs' hypothesis that all the plastid genes of non-photosynthetic plant eventually would be all lost, with only *trnE* maintained in the plastid in a replicating DNA minicircle transcribed by the imported nuclear-encoded plastid RNA polymerase.

The plastome GC content of non-photosynthetic plants

Except for *M. kanehirai*, the plastome GC content of non-photosynthetic plants ranges from 34.2% to 36.8%, which is within the range of 34-40% GC content among most seed plant plastomes (Table 4-2) (Jansen and Ruhlman, 2012). The GC content of their rRNA genes is close to the average value of 52.9% among 150 plastomes (Smith, 2009). The GC content is correlated to the length in the single copy regions of plastid genomes, especially in the SSC (Table 4-2). In general, GC content is higher in coding regions than in non-coding regions (Cai et al., 2006; Jansen and Ruhlman, 2012). In comparison, *N. nidus-avis* has 27 pseudogenes in its plastome of 92 kb, and *E. virginiana*

plastome has 15 of 70 kb (Li et al., 2013). *Neottia nidus-avis* plastome contains much more non-coding regions than *E. virginiana* plastome, which is probably the reason that *N. nidus-avis* has lower plastome GC content than *E. virginiana* (Burger and Lang, 2003).

The GC content is usually highest in the IR regions and lowest in the SSC of plastid genome. The higher GC content in the IR is due to the presence of rRNA genes that have the highest GC content of any coding regions (Cai et al., 2006; Jansen and Ruhlman, 2012). Therefore, if a plastome lacks the IR regions, i.e., having only one copy of rRNA genes, would lower its GC content (Smith et al., 2011). For example, an IR-lost legume - *Medicago truncatula*, has one of the lowest GC content plastome among seed plants (Cai et al., 2006; Smith et al., 2011). In addition, the unusual high GC content of the SSC region in *R. gardneri* is due to the residence of rRNA genes in its SSC. Both *M. kanehirai* and *R. gardneri* plastome have only one copy of rRNA genes; however, *M. kanehirai* has much lower plastome GC content than *R. gardneri*. Although there is no clear correlation between GC content and genome size of plastids, plastids with small genome size indeed tend to have lower GC content (Smith, 2009).

One of the common feature of the plastome is its low overall GC content (Howe et al., 2003). The factors causing the low GC content in plastomes are poorly understood and probably differ both among and within lineages. Several hypotheses have been proposed. For instance, some argue that AT mutation pressure coupled with inefficient

plastid DNA repair process caused the low GC content of ptDNA (Howe et al., 2003; Kusumi and Tachida, 2005; Khakhlova and Bock, 2006; Lynch, 2007). Other studies invoke selection for translational efficiency to explain the high levels of AT in plastomes (Morton, 1993, 1998; Lynch, 2007). However, since the plastomes from nonphotosynthetic plants are no longer exposed to high levels of reactive oxygen species and often have a reduced tRNA set, it suggests that there are a diversity of factors biasing plastomes towards A and T (Smith et al., 2011).

In addition, low GC content of the sequence would interfere with the amplification of PCR, which caused difficulties to obtain complete plastid sequence by using ordinary PCR-based amplification. It also thus difficult to verify NGS data by proceeding PCR, until the One*Taq*TM DNA Polymerase (New England Biolabs) was used to overcome the difficulties in PCR amplification.

Plastid DNA transfers

DNA transfer from the plastid to the nucleus has occurred during the course of endosymbiosis and the plant evolution. In *Arabidopsis*, it has been estimated that about 18% of nuclear genes are derived from plastid (Martin et al., 2002). DNA transfer from organellar genomes to the nucleus has been thought to be an important driving force in eukaryotic evolution (Martin et al., 2002; Huang et al., 2003; Reyes-Prieto et al., 2006; Sheppard and Timmis, 2009). Both functional gene and non-functional DNA transfer from the plastid to the nucleus have been reported and the process continues at high frequency (Martin, 2003; Stegemann et al., 2003; Sheppard et al., 2008; Sheppard and Timmis, 2009; Xiong et al., 2009; Wicke et al., 2011; Wang et al., 2012). The transfer of plastid DNA to the nucleus could be in forms as 'bulk DNA' or through 'cDNA intermediates' (Adams et al., 2000; Adams and Palmer, 2003; Huang et al., 2003; Martin, 2003; Stegemann et al., 2003; Timmis et al., 2004). My results suggest the transfer of a contiguous piece of bulk ptDNA was also present in *M. kanehirai*. I obtained several large DNA fragments (> 4.5 kb) in my attempt to amplifying and sequencing *M. kanehirai* plastome (Supplementary data Table S4-2, Fig. 4-3). Three fragments were found that their sequences are highly similar to ptDNA of green plants, and the closest sequences of two fragments are from Ericales species. There are other fragments of sequences show only a short region (400-700 bp) similar to ptDNA.

One of these fragments carries a short ptDNA-like sequence which is most similar to ptDNA of Fagales, the order *M. kanehirai*'s host belongs to (Fig. 4-3). Massive horizontal gene transfer (HGT) in mitochondrial DNA has been observed (Goremykin et al., 2009; Keeling, 2010; Xi et al., 2012; Xi et al., 2013). In contrast, HGT was much less described in plastid DNA (Park et al., 2007; Stegemann et al., 2012; Li et al., 2013). And HGT appears to be facilitated by the intimate physical association between the parasitic plants and their hosts. It seems that *M. kanehirai* obtained ptDNA from its host via HGT. Among the three fragments which whole sequences are similar to green plants, Fragment B was shown to reside in the nuclear genome based on the results of Southern blots and real-time quantitative PCR experiments (Fig. 4-4, -5 and -6). The other two fragments are likely to locate in the nucleus; however, we cannot exclude the possibility that they are resident in mitochondria as has been found in several species (Timmis et al., 2004; Goremykin et al., 2009; Iorizzo et al., 2012). And from their sequence similarity with green plants, these transfer events is not occurred in recent times. As for the fragments that contain short ptDNA sequences, their location are uncertain. They could reside either in the nucleus or mitochondria. In addition, the short ptDNA sequences of these fragments contain both coding and non-coding regions. It suggests that they were also transferred as the form 'bulk DNA' whether the ptDNAs were obtained from the host or not.

There are several complete non-photosynthetic plant plastome sequences have been described, and among them the smallest plastome was found in *R. gardneri* with size less than 60 kb. In this study, I present that *M. kanehirai* plastome of 25,740 bp smaller than *R. gardneri* plastome, which makes it the smallest sequenced plastid genome. There are only 26 genes, encoding 4 rRNAs, 4 tRNAs and 18 proteins, retained in *M. kanehirai* plastome, and also, the IR was absent in this plastome. Despite the enormous size reduction, *M. kanehirai* plastome shares the same core gene set with other non-

photosynthetic plants and has the gene order corresponding well to *N. tabacum*. Based on the result of plastid gene expression, *M. kanehirai* plastome is a functional gene expression system. In addition, ptDNA fragments which reside in genomes other than the plastome were found, and one of these fragments carries a short ptDNA sequence which is most similar to Fagales ptDNA. It implies that transfers of plastid DNA to other genomes and HGT from the host to the parasite has occurred in *M. kanehirai*.

Table 4-1. Gene contents (without photosynthesis related genes) of plastomes in 5 non-

臺

		Prote	ein Synt	hesis			Transfer RNA Genes					
	Cd	Nn	Ev	Rg	Mk		Cd	Nn	Ev	Rg	Mk	
infA	+	+	+	+	+	trnA-ugc	+	+	φ			
rpl2	+	+	+	+	+	trnC-gca	+	+	φ	+	+	
rpl14	+	+	φ	+	_	trnD-guc	+	+	+	+	_	
rpl16	+	+	+	+	+	trnE-uuc	+	+	+	+	+	
rpl20	+	+	+	+	_	trnF-gaa	+	+	+	+	_	
rpl22	+	+	_	_	_	trnfM-cau	+	+	+	+	+	
rpl23	φ	+	φ	+	_	trnG-gcc	+	+	_	_	_	
rpl32	+	+	_	_	_	trnG-ucc	+	+	_	_	_	
rpl33	+	+	+	φ	_	trnH-gug	+	+	+	_	_	
rpl36	+	+	+	+	+	trnI-cau	+	+	+	+	+	
rps2	+	+	+	+	+	trnI-gau	+	-	φ	_	_	
rps3	+	+	+	+	+	trnK-uuu	+	-	_	_	_	
rps4	+	+	+	+	+	trnL-caa	+	+	+	_	_	
rps7	+	+	+	+	+	trnL-uaa	+	+	-	φ	_	
rps8	+	+	+	+	+	trnL-uag	+	+	+	_	_	
rps11	+	+	+	+	+	trnM-cau	+	+	+	_	_	
rps12	+	+	+	φ	+	trnN-guu	+	+	+	_	_	
rps14	+	+	+	+	+	trnP-ugg	+	φ	+	-	-	
rps15	+	+	-	-	_	trnQ-uug	+	+	+	+	-	
rps16	+	+	-	-	_	trnR-acg	+	+	+	-	-	
rps18	+	φ	+	+	+	trnR-ucu	+	+	φ	_	_	
rps19	+	+	+	+	+	trnS-gcu	+	+	+	_	_	
						trnS-gga	+	+	φ		-	
		RNA	Metab	olism		trnS-uga	+	+	+	_	-	
	Cd	Nn	Ev	Rg	Mk	trnT-ggu	+	+	-	_	-	
matK	+	φ	+	-	-	trnT-ugu	+	+	-	—	-	
rpoA -	φ	_	φ	-	-	trnV-gac	+	+	-	_	-	
rpoB	φ	φ	-	-	-	trnV-uac	+	φ	-	_	-	
rpoC1	-	-	-	-	-	trnW-cca	+	+	+	+	_	
rpoC2	φ	φ	_	_		trnY-gua	+	+	+	+	_	
	Essential Genes						Ribosomal RNA Genes					
	Cd	Nn	Ev	Rg	Mk		Cd	Nn	Ev	Rg	Mk	
clpP	+	+	+	+	+	rrn16	+	+	+	+	+	
accD	φ	+	+	+	+	rrn23	+	+	+	+	+	
ycf1	φ	+	+	+	+	rrn4.5	+	+	+	+	+	
ycf2	+	+	+	+	+	rrn5	+	+	+	+	+	

photosynthetic plants.

* Cd, Cistanche deserticola; Nn, Neottia nidus-avis; Ev, Epifagus virginiana; Rg, Rhizanthella gardneri; Mk, Mitrastemon kanehirai; φ, pseudogene; +, present; -, missing. Genes present in all 5 plastomes are indicated in bold.

Table 4-2. Length and GC content of plastid regions in 2 photosynthetic and 5 non-photosynthetic plants.

T	Length (kb)/GC content (%)									
Taxa -	Total	LSC	SSC	IR	rDNA ^a					
Photosynthetic plant										
Nicotiana tabacum ^b	155.9/37.8	86.7/36.0	18.6/32.1	25.3/43.2	55.4					
Medicago truncatula ^c	124.0/34.0	-	-	-	54.3					
Non-photosynthetic plant										
Cistanche deserticola ^d	102.7/36.8	49.1/32.8	8.8/27.5	22.4/43.0	55.0					
Neottia nidus-avis ^e	92.1/34.4	36.4/29.2	7.8/25.3	23.9/39.9	54.4					
Epifagus virginiana ^f	70.0/36.0	19.8/29.2	4.8/22.7	22.7/40.3	54.2					
Rhizanthella gardneri ^g	59.2/34.2	26.4/29.3	13.3/37.0	9.8/38.7	51.8					
Mitrastemon kanehirai	25.7/22.5	-	-	-	40.4					

* LSC, large single copy region; SSC, small single copy region; IR, inverted repeats.

^a GC content of rRNA genes.

^b NC_001879 (Kunnimalaiyaan and Nielsen, 1997).

^c NC_003119, an IR-lost legume.

^d NC_021111 (Li et al., 2013).

^e NC_016471 (Logacheva et al., 2011).

^f NC_001568 (Wolfe et al., 1992).

^g NC_014874 (Delannoy et al., 2011).

Figure 4-1. Circular map of *Mitrastemon kanehirai* **plastome.** Genes shown inside the circle are transcribed clockwise, those outside the circle are transcribed counterclockwise. The GC content is indicated in the inner circle. The restriction enzyme, *Bam*HI, *Eco*RI and *Hind*III, cutting sites are also shown in the map.

Figure 4-2. Expression of the plastid genes in *Miteastemon kanehirai.* A. Expression of five translation-related genes include one rRNA gene. B. Expression of the four essential genes. DNA, total genomic DNA was used as template in PCR; RNA, cDNA was synthesized from RNA by using gene specific primers, and then was used as template in PCR; –, negative control.

Fragment A rrn16 rrn23 100 rrn4.5rrn5 Fragment B rrn16 tmI-GAU tml-GAU tmA-UGC tmA-UGC rm23 trnN-GUU rrn5 trnR-ACG rrn4 ycf1 9000 10000 11000 Fragment C 1000 petN 400

Figure 4-3. Maps of three large DNA fragments. Fragment A: amplified by primers 16S34F and IRB27R; Fragment B: amplified by primers 16S977F and IRB27R; Fragment C: amplified by primers IRB2F and IRB27R. These maps were produced by online automatic annotator DOGMA with minor modification.

Figure 4-4. Results of Southern blot analyses of *Mitrastemon kanehirai***.** A. Blot using a probe specific to a *M. kanehirai* fragment (Fragment A) (3-min exposure). B. Blot using a probe specific to a ptDNA-like fragment (Fragment B) (12-min exposure). M, DNA ladder; B, *Bam*HI-digested DNA; E, *Eco*RI-digested DNA; H, *Hind*III-digested DNA.

Figure 4-5. The real-time PCR amplification plot of three *Mitrastemon kanehirai* **DNA fragments.** The primers were designed specific to the three fragments: 18S rDNA, nuclear 18S rDNA; Frag. A, the plastid fragment similar to *M. yamamotoi* 16S rDNA sequence; Frag. B, the fragment which sequence is highly similar to plastid IR of green plants.

Figure 4-6. The histogram of real-time PCR amplification of three *Mitrastemon kanehirai* DNA fragments. A. The Cq values of three fragments. B. Relative quantification of Fragment A and B. The content of Fragment A and B was compared with nr18S rDNA content.

Nicotiana tabacum	30000	40000	50000	60000	70000	80000	90000	100000	110000	120000	130000	140000 1	50000
Alcollana tabacum	The state		NH N	phillips of the	al al and	nor and the second		T			Rig.		
	9 [<u> </u>								_	
אם וא ויין ויא סעב	⊐"₁∎'∝)][0000000 kW	'ol ⁰¹¹ œ 1Å=		₩ ₩ 110 _{0 ₪ 4} ⊂	uroro T	Ru) (₁₀₄₀₀₀ (100 00				נוני <mark>שו</mark> ל מ ^{ממס} ל כ	BR1
80boo -70boo -60boo Epifagus virginiana	-50000	-40000	-30000	-20'000	-10000	b [[]]	10000	20000	30000	40000	50000	60000	702
							∍∎₀□╹□µ₽₀	ונגא מנו גאמניגע און	1 01	• •••	¹	∎ ■ 0 ^{₽ 1} ⊂	10°Q
-80000 -70000 Rhizanthella gardnei	-60'000 r i	-50000	-40000	-30000	-20000	-10b00	b I	10000	20000	30000	40000	50000]
							¹ 10 ¹		ו וים גאומננסאנ				סי
Mitrastemon kanehir	-80'000 ai	-70000	-60000	-50000	-40000	-30000	-20000	-10000		10000	20000		
									U Groca			I	
10000 20000	30000	40000	50000	60000	70000	80000	90000	100'000	110000	120000	130000	140000	50000
nioisia polysilola	All All		Alex Inc. 1		(Winner)	W P Lett p					N.		
	□ ",,'□					rora	10	, ICADO I			! _	נו ושון גרייס ו	070

Figure 4-7. The comparison of three non-photosynthetic and two green plant plastomes. The homologous regions are depicted in the same color blocks at the upper part of each plastome, and annotated genes are shown as white boxes, rDNA as red at the lower part. The gray bars at lower part indicate the IRs.

Figure 4-8. Relationship between plastome size and pt16S rDNA substitution rate among heterotrophic plants. Cd, *Cistanche deserticola*; Ce, *Cuscuta exaltata*; Cg, *Cuscuta gronovii*; Co, *Cuscuta obtusiflora*; Cr, *Cuscuta reflexa*; Ev, *Epifagus virginiana*; Mk, *Mitrastemon kanehirai*; Nn, *Neottia nidus-avis*; Rg, *Rhizanthella gardneri*.

References

Abdallah, F., F. Salamini and D. Leister. 2000. A prediction of the size and evolutionary origin of the proteome of chloroplasts of *Arabidopsis*. Trends Plant Sci. 5: 141-142.

臺

- Adams, K.L., D.O. Daley, Y.L. Qiu, J. Whelan and J.D. Palmer. 2000. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature. 408: 354-357.
- Adams, K.L. and J.D. Palmer. 2003. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol. 29: 380-395.
- Barbrook, A.C., C.J. Howe and S. Purton. 2006. Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci. 11: 101-108.
- Brandvain, Y., M.S. Barker and M.J. Wade. 2007. Gene co-inheritance and gene transfer. Science. 315: 1685.
- Burger, G. and B.F. Lang. 2003. Parallels in genome evolution in mitochondria and bacterial symbionts. IUBMB Life. 55: 205-212.
- Butterfield, N.J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology. 26: 386-404.
- Cai, Z., C. Penaflor, J. Kuehl, J. Leebens-Mack, J. Carlson, C. dePamphilis, J. Boore and R. Jansen. 2006. Complete plastid genome sequences of *Drimys*, *Liriodendron*, and *Piper*: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol. 6: 77.
- Cavalier-Smith, T. 2000. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 5: 174-182.
- Colwell, A.E. 1994. Genome evolution in a non-photosynthetic plant, *Conopholis americana*. Ph.D. dissertation. Washington University, St. Louis, MO.
- Darling, A.E., B. Mau and N.T. Perna. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 5: e11147.
- Delannoy, E., S. Fujii, C. Colas des Francs-Small, M. Brundrett and I. Small. 2011. Rampant gene loss in the underground orchid *Rhizanthella gardneri* highlights evolutionary constraints on plastid genomes. Mol Biol Evol. 28: 2077-2086.
- dePamphilis, C.W., N.D. Young and A.D. Wolfe. 1997. Evolution of plastid gene *rps2* in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis

and complex patterns of rate variation. Proc Nat Acad Sci USA. 94: 7367-7372.

- Dhingra, A. and K.M. Folta. 2005. ASAP: amplification, sequencing & annotation of plastomes. BMC Genomics. 6: 176-188.
- Douzery, E.J.P., E.A. Snell, E. Bapteste, F. Delsuc and H. Philippe. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Nat Acad Sci USA. 101: 15386-15391.
- Drescher, A., S. Ruf, T. Calsa, H. Carrer and R. Bock. 2000. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22: 97-104.
- Fleischmann, T.T., L.B. Scharff, S. Alkatib, S. Hasdorf, M.A. Schöttler and R. Bock. 2011. Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution. Plant Cell. 23: 3137-3155.
- Goremykin, V.V., F. Salamini, R. Velasco and R. Viola. 2009. Mitochondrial DNA of *Vitis vinifera* and the issue of rampant horizontal gene transfer. Mol Biol Evol. 26: 99-110.
- Howe, C.J., A.C. Barbrook, V.L. Koumandou, R.E.R. Nisbet, H.A. Symington and T.F. Wightman. 2003. Evolution of the chloroplast genome. Philos Trans R Soc B-Biol Sci. 358: 99-107.
- Huang, C.Y., M.A. Ayliffe and J.N. Timmis. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature. 422: 72-76.
- Iorizzo, M., D. Senalik, M. Szklarczyk, D. Grzebelus, D. Spooner and P. Simon. 2012. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol. 12: 61-77.
- Jansen, R.K. and T.A. Ruhlman. 2012. Plastid genomes of seed plants. In R. Bock, and V. Knoop, (eds.). Genomics of Chloroplasts and Mitochondria. Springer Science+Business Media, Dordrecht Heidelberg New York London, pp. 103-126.
- Keeling, P.J. 2004. Diversity and evolutionary history of plastids and their hosts. Am J Bot. 91: 1481-1493.
- Keeling, P.J. 2010. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc B-Biol Sci. 365: 729-748.
- Khakhlova, O. and R. Bock. 2006. Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J. 46: 85-94.
- Kores, P.J., M. Molvray, P.H. Weston, S.D. Hopper, A.P. Brown, K.M. Cameron and M.W. Chase. 2001. A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data. Am J Bot. 88: 1903-1914.
- Kunnimalaiyaan, M. and B.L. Nielsen. 1997. Fine mapping of replication origins (oriA and oriB) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res. 25: 3681-3686.
- Kusumi, J. and H. Tachida. 2005. Compositional properties of green-plant plastid genomes. J Mol Evol. 60: 417-425.
- Li, X., T.C. Zhang, Q. Qiao, Z.M. Ren, J.Y. Zhao, T. Yonezawa, M. Hasegawa, M.J.C. Crabbe, J.Q. Li and Y. Zhong. 2013. Complete chloroplast genome sequence of holoparasite *Cistanche deserticola* (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host *Haloxylon ammodendron* (Chenopodiaceae). PLoS ONE. 8.
- Logacheva, M.D., M.I. Schelkunov and A.A. Penin. 2011. Sequencing and analysis of plastid genome in mycoheterotrophic orchid *Neottia nidus-avis*. Genome Biol Evol. 3: 1296-1303.
- Lohan, A.J. and K.H. Wolfe. 1998. A subset of conserved tRNA genes in plastid DNA of nongreen plants. Genetics. 150: 425-433.
- Lohse, M., O. Drechsel, S. Kahlau and R. Bock. 2013. OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41: W575-581.
- Lynch, M. 2007. The Origins of Genome Architecture, Sinauer Associates Inc.
- Martin, W. 2003. Gene transfer from organelles to the nucleus: Frequent and in big chunks. Proc Nat Acad Sci USA. 100: 8612-8614.
- Martin, W. and K. Kowallik. 1999. Annotated English translation of Mereschkowsky's 1905 paper 'Über Natur und Ursprung der Chromatophoren imPflanzenreiche'. Eur J Phycol. 34: 287-295.
- Martin, W., T. Rujan, E. Richly, A. Hansen, S. Cornelsen, T. Lins, D. Leister, B. Stoebe,
 M. Hasegawa and D. Penny. 2002. Evolutionary analysis of *Arabidopsis*,
 cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands
 of cyanobacterial genes in the nucleus. Proc Nat Acad Sci USA. 99: 12246-12251.
- Matuda, E. 1947. On the genus *Mitrastemon*. Bulletin of the Torrey Botanical Club. 74: 133-141.
- McFadden, G.I. 2001. Primary and secondary endosymbiosis and the origin of plastids. J

Phycol. 37: 951-959.

McNeal, J.R., J.V. Kuehl, J.L. Boore, J. Leebens-Mack and C.W. dePamphilis. 2009. Parallel loss of plastid introns and their maturase in the Genus *Cuscuta*. PLoS ONE. 4: e5982.

臺

- Meijer, W. and J.F. Veldkamp. 1993. A revision of *Mitrastema* (Rafflesiaceae). Blumea. 38: 221-229.
- Milligan, B. 1989. Purification of chloroplast DNA using hexadecyltrimethylammonium bromide. Plant Mol Biol Rep. 7: 144-149.
- Morton, B. 1993. Chloroplast DNA codon use: evidence for selection at the *psb* A locus based on tRNA availability. J Mol Evol. 37: 273-280.
- Morton, B. 1998. Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. Mol Evol. 46: 449-459.
- Nickrent, D.L. and R.J. Duff. 1996. Molecular studies of parasitic plants using ribosomal RNA. *In* M.T. Moreno, J.I. Cubero, D. Berner, D. Joel, L.J. Musselman, and C. Parker, (eds.). Advances in Parasitic Plant Research, pp. 28-52.
- Nickrent, D.L., R.J. Duff and D.A.M. Konings. 1997a. Structural analyses of plastidderived 16S rRNAs in holoparasitic angiosperms. Plant Mol Biol. 34: 731-743.
- Nickrent, D.L., O.Y. Yan, R.J. Duff and C.W. dePamphilis. 1997b. Do nonasterid holoparasitic flowering plants have plastid genomes? Plant Mol Biol. 34: 717-729.
- Odintsova, M.S. and N.P. Yurina. 2003. Plastid genomes of higher plants and algae: structure and functions. Mol Biol. 37: 649-662.
- Palmer, J.D. and C.F. Delwiche. 2000. The origin and evolution of plastids and their genomes. *In* D.E. Soltis, P.S. Soltis, and J.J. Doyle, (eds.). Molecular Systematics of Plants II: DNA sequencing. Kluwer Academic Publishers, Norwell, Massachusetts, USA, pp. 375-409.
- Park, J.M., J.F. Manen and G.M. Schneeweiss. 2007. Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants *Orobanche* and *Phelipanche* (Orobanchaceae). Mol Phylogenet Evol. 43: 974-985.
- Race, H.L., R.G. Herrmann and W. Martin. 1999. Why have organelles retained genomes? Trends Genet. 15: 364-370.
- Raubeson, L.A. and R.K. Jansen. 2005. Chloroplast genomes of plants. *In* R.J. Henry, (eds.). Plant Diversity and Evolution: genotypic and phenotypic variation in higher plants. CABI Publishing, Cambridge, Mass., pp. 45-68.
- Reyes-Prieto, A., J.D. Hackett, M.B. Soares, M.F. Bonaldo and D. Bhattacharya. 2006.

Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol. 16: 2320-2325.

- Rujan, T. and W. Martin. 2001. How many genes in *Arabidopsis* come from cyanobacteria? An estimate from 386 protein phylogenies. Trends Genet. 17: 113-120.
- Schattner, P., A.N. Brooks and T.M. Lowe. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33: W686-W689.
- Sheppard, A.E., M.A. Ayliffe, L. Blatch, A. Day, S.K. Delaney, N. Khairul-Fahmy, Y. Li, P. Madesis, A.J. Pryor and J.N. Timmis. 2008. Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Physiol. 148: 328-336.
- Sheppard, A.E. and J.N. Timmis. 2009. Instability of plastid DNA in the nuclear genome. PLoS Genet. 5: e1000323.
- Smith, D. 2009. Unparalleled GC content in the plastid DNA of *Selaginella*. Plant Mol Biol. 71: 627-639.
- Smith, D.R., F. Burki, T. Yamada, J. Grimwood, I.V. Grigoriev, J.L. Van Etten and P.J. Keeling. 2011. The GC-rich mitochondrial and plastid genomes of the green alga *Coccomyxa* give insight into the evolution of organelle DNA nucleotide landscape. PLoS ONE. 6: e23624.
- Stegemann, S., S. Hartmann, S. Ruf and R. Bock. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Nat Acad Sci USA. 100: 8828-8833.
- Stegemann, S., M. Keuthe, S. Greiner and R. Bock. 2012. Horizontal transfer of chloroplast genomes between plant species. Proc Nat Acad Sci USA. 109: 2434-2438.
- Timmis, J.N., M.A. Ayliffe, C.Y. Huang and W. Martin. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5: 123-135.
- Wang, D., A.H. Lloyd and J.N. Timmis. 2012. Environmental stress increases the entry of cytoplasmic organellar DNA into the nucleus in plants. Proc Nat Acad Sci USA. 109: 2444-2448.
- Waters, M.T. and J.A. Langdale. 2009. The making of a chloroplast. EMBO J. 28: 2861-2873.
- Wicke, S., G. Schneeweiss, C. dePamphilis, K. Müller and D. Quandt. 2011. The

evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 76: 273-297.

- Wolfe, K.H., C.W. Morden and J.D. Palmer. 1992. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Nat Acad Sci USA. 89: 10648-10652.
- Wu, S., Z. Zhu, L. Fu, B. Niu and W. Li. 2011. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 12: 444.
- Xi, Z., R. Bradley, K. Wurdack, K. Wong, M. Sugumaran, K. Bomblies, J. Rest and C. Davis. 2012. Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics. 13: 227.
- Xi, Z., Y. Wang, R.K. Bradley, M. Sugumaran, C.J. Marx, J.S. Rest and C.C. Davis. 2013. Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genet. 9: e1003265.
- Xiong, A.S., R.H. Peng, J. Zhuang, F. Gao, B. Zhu, X.Y. Fu, Y. Xue, X.F. Jin, Y.S. Tian,W. Zhao and Q.H. Yao. 2009. Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol Adv. 27: 340-347.
- Yang, Y.P. and S.Y. Lu. 1996. Rafflesiaceae. *In* Editorial Committee of the Flora of Taiwan, (eds.). Flora of Taiwan, second edition. Editorial Committee of the Flora of Taiwan, Taipei, Taiwan, pp. 652-655.
- Yoon, H.S., J.D. Hackett, C. Ciniglia, G. Pinto and D. Bhattacharya. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 21: 809-818.

Supplementary Data

Table S4-1. Primers list.

	1. I Inners nst.		
Primer (F)	Sequence from 5' to 3'	Primer (R)	Sequence from 5' to 3'
Real-time qu	antitative PCR & Southern blots ^a		
SSU1594F	CTACGTCCCTGCCCTTTGTA	SSU1703R	GGACTTCTCGCGGCATCACGAG
ProbeA-F	GGAAACAGCCCAGATCATCA	ProbeA-R	GCCGACATTCTCACTTCTGC
ProbeB-F	TGCCATGGTAAGGAAGAAGG	ProbeB-R	TGCATGAAGGAGTCAGATGC
Reverse trans	scription-PCR		
16S8F	GGAGAGTTCGATCCTGGCTCAG	16S1462R	GGTTGATCCAGCTACACCTTCCAG
infA-F	TTTTAGGTTATGTTTCTGGGAAAA	infA-R	TCCTTTGTCGGGATCGTATT
rps3-90F	TCAAAATTTTCAAGAAGATCAAAAA	rps3-554R	ACTTGTCCCTTTCGAATCCA
rps7-22F	AAAAACAAAATTATAAAAACCAGATCC	rps7-399R	AGCTTCACCCCTTCCCTTAG
rps14-52F	TGCAAATATAAAAATATTCGTAAGTCA	rps14-296R	TTTGGTTTTGTCACTCCTGGT
clpP-F	TGAAATTTCTAATCAACTTACTGGTC	clpP-R	TTCCATGTCTTCAGATAAAATCCA
accD-F	GCATGCCATGGATGAAAATC	accD-R	GCTCGATAACCCTTTTACCG
ycf1-F	TTTCTTTATTTTGCGGATCACA	ycf1-R	CAAATTTTGTGAATTTTCTTCTTCTG
ycf2-F	TTTTCCGGATTTATAAGTCATACAAG	ycf2-R	AAAGATCTTGTGTATGGAAAACCA
Long PCR ^b			
16S34F	CTGGCGGCTGTATGCTTAAC	5S58R	TAACCACCAAGTTCGGGATG
16S977F	AGTGCCTTAGGGAACGCGAACACAG	IRB27R	CCAATGCTAGATGCAGAGGCGCATA
IRB2F	CATCTGGCTTATGTTCTTCATGTAGC	IRB6R	TGAATATGTTAGATACCTGTGACTCG
IRB6F	TTCTCGAACCGAGAGATCCA	IRB12R	ATGCTTGCGTATTCGTCCAT
IRB12F	GGTCTGTCCCGGTATGGAAT	16S1307R	ACCGGCGATTACTAGCGATT
Plastome seq	uence confirmation		
Mit1F	CCATTTCGAACTTGGTGGTT	Mit1R	AACCTTGTAATTTTGATTTATCTTACG
Mit2F	TTATAAAATACGTATGCTTGTGTTACG	Mit2R	AATAGCCGAAGCTTGGAATG
Mit3F	CAAATTTTGTGAATTTTCTTCTTCTG	Mit3R	TTTCTTTATTTTGCGGATCACA
Mit4F	TTAAATTGAAAGTTTCTTGTTCTTGA	Mit4R	AAAATGGAAAAATTTGACACATAAA
Mit5F	GGAAAAGGCATTCTACCTAAATTAAA	Mit5R	ATCCCGCGGATCCTTTTT
Mit6F	TTTGGGTGTATATTTTTGTTGATAGG	Mit6R	TTGATCCTATATTAATAGCTCCAACA
Mit7F	AAAGATCTTGTGTATGGAAAACCA	Mit7R	TTTTCCGGATTTATAAGTCATACAAG
Mit8F	ATTCCGGGTTGTTCTATATTTTT	Mit8R	CCAGAAATGGGATTATTTTCTGA
Mit9F	TCCGCTAAAGGTAAGAAACCA	Mit9R	AAAATTTTATCATATCCCGAAAAA
Mit10F	AAGGGGTTATCAAACGTTATTTTT	Mit10R	GTTATGAGCCTTGCGAGCTT
Mit11F	ATGCGCAGGTTCAATTCCTA	Mit11R	TGGTTAACATACCACCAATCCA
Mit12F	GCTTGTCATTTAGTTTTTGATGC	Mit12R	TGGATTATTGCCAGGTCTCA
Mit13F	AACCCGTCGAACCTTTAAAAT	Mit13R	TCCCATACTACCGCCCATAA
Mit14F	GCATGCCATGGATGAAAATC	Mit14R	CATTTAGAAATCTCCGGTTATAGAAAA
Mit15F	TTCAGGCTTTAGCTACTATAACTTTCC	Mit15R	GTTTTGCATTCCCTCATGCT
Mit16F	AAATTCCCCAGCCTGTGTTT	Mit16R	GAAGGGGAAGAACCCTCTTG
Mit17F	CCAGGTATTAAAAGCCCTCCA	Mit17R	AATACGATCCCGACAAAGGA
Mit18F	TCGCCGAGGTGAAGTTTTTA	Mit18R	GAATGGATTCGAAAGGGACA
Mit19F	TTGATATTCCAGATATTCTGCCTCT	Mit19R	CCGCAGGTACCTTAGCAAAA
Mit20F	GGCCGTTTTCCTAACCATCT	Mit20R	AGCTAAGGGAAGGGGTGAAG
Mit21F	GCCAGAGTTCTACTTGATTCTGC	Mit21R	CCCCCGTACTTAGGGGTAGA

^a Primers were used for RT qPCR and probe syntheses of Southern blot. SSU1594F and SSU1703R were primers for amplifying nr18S rDNA fragment.

^b Primers were used in order for obtaining Frag. A, B, C, D and E (Table S4-2).

1000 D+ 2. Deq		ation of large fragments obtained in this study.
	Size (bp)	Sequence information
Obtained from I	Long PCR	
Fragment A	4,585	Contained Mitrastemon 16S sequence
Fragment B	8,019	Highly similar to IRs of Ericales species
Fragment C	5,603	Contained a short ptDNA fragment
Fragment D	6,227	Highly similar to IRs of green plants
Fragment E	7,675	Highly similar to IRs of Ericales species
Obtained from N	NGS	
Contig A	15,116	Contained Fragment A
Contig B	16,032	Contained Fragment A
Contig C	11,882	Contained a short ptDNA fragment
Contig D	18,673	Contained a short Fagales-like ptDNA fragment
A	25 740	The M Low disciplestance accombined from Contin A and D
Assembly A	25,740	The <i>M. kanenirai</i> plastome, assembled from Contig A and B
Assembly B	15,448	Assembled from Frag. B and E
Assembly C	17,050	Assembled from Frag. C and Contig C

Table S4-2. Sequence information of large fragments obtained in this study.

E'	4.1. Carr				с л <i>л</i> .,	1	1 · · ·		[6]6]6]6]6]6] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	
Figure S	4-1. Com	ipiete pla	stome see	quence of	I Mitrast	emon kar	iehirai.	EK.		THE I
1 trnfM-CAU	gcggagtaga	gtagtctgga	agetegeaag	gctcataacc	ttgaaatcgc	aggttcaaat	cccgtctccg	ttattaatta	aattaaatag	ttaacattta
101 rps14	tttaccaatt	tggttttgtc	actcctggta	ataaacaagc	attaaccatt	ttaaaaagta	taattctcga	taaattaaaa	aatctaaaat	ttgctcgtgg
201	tcgaccagtt	aaaaacagc	gtcggcgaag	acgcgtagat	gaactatttc	taggtaataa	ttgaaattca	atattaattt	tcatttttc	ttttaataaa
301 301	aaagtacttt	tattttttt	ttttaatgac	ttacgaatat	ttttatattt	gcattccatt	tttttttt	tttcttcttt	ttgaattaaa	ctttttttg
401 rps14	acattgttat	tttaatagta	aatataaaaa	atatataata	tatatataat	atattatata	tgcccctatc	gtctagtggt	ttaaagactt	ctctttttaa
trnE-UUC <mark>501</mark> trnE-UUC	aagaggcaac	ggggattcga	attcctttag	gggtaatgta	ataataatac	aataatacgg	∎ gcgatatagc	ttaattaatt	ggtaaagcaa	tggactgcaa
trnC-GCA 601 trnC-GCA	accetetatt	tctcagttca	aatctgagta	tcgtctatat	aaatttaaac	ttaaaaagtt	t gataattat	atatttaaag	tatatttaaa	atggaaagga
701	aactaaaaat	gaaatattgg	aacataaatt	taaaagatat	gattgaagca	agagttcatt	taggttatgt	tataaaaaa	aaaaatgga	atttaaaaaa
rps2 801	cgaacctttt	ttttataaaa	tacaccacga	tttatatatt	ataaatattc	taaaaactgc	tcgtttttta	tcagaagctt	gtcatttagt	ttttgatgca
901	gctaaaaaaa	aaaaacaatt	tttaattgtt	tgtactaaaa	aaaaatatat	atctgaatta	ataacatgtg	cttcattaat	cgctagatgt	cattatatta
1001	ataaaaatg	gattggtggt	atgttaacca	attggtccca	aacagaaaaa	aaacttagaa	cattaaatta	ttataaatta	aactatttaa	aaaaaaaaa
rps2 1101	aaagttacgt	aatttaaata	tatatttaga	aggtattaaa	tatatgaaaa	aattacccga	tattgtaata	attattaacc	cacaagatga	atacatgact
rps2 1201	cttaaagaat	gtattacttt	aaaaatacca	acaatttgct	taattgatat	taaagattat	ccttatatta	atggggatat	tttaatccca	ataaatatta
rps2 1301	atteeettag	ttcaataaaa	tttattataa	ataaaatttt	tttagctatt	tgtgaaggaa	attatcagta	atttaattaa	tttaaaatta	acgagaataa
rps2 rps4								+	←	
1401 rps4	tgttctacaa	ttaataattc	ttttatttt	aaagtatttt	ttttaatatt	taatatttta	taaatcaacc	ccttatttt	atttaatttt	attaaatcta
1501 rps4	agggatttt	tttatctatt	aacttcaatt	taacaatatc	tctatattta	caatgaaaac	tgggtatatt	tactatagag	tcattaacta	aaatatgcct
1601 rps4	atggttaatt	aattgtctag	cttcattaat	agtettaget	atttttaatt	gataaataat	attatctaaa	cgcatttcga	ttaattgtaa	taaaatataa
1701 rps4	cccgtcgaac	ctttaaaatt	tttcgcaata	ttaaaatatt	ttcttaattg	atggtctgta	agaccataat	taaatcgtaa	tttttgtttt	tcttctaaac
1801 rps4	aaagacggta	ttgagatttt	tttttattat	aaaaattttt	tttttataa	catttgtttg	tgagacctgg	caataatcca	agataacgta	tttttttaa
1901 rps4	acgtggtcct	ataaagcgtg	acaaaatatt	cctcctaatt	ttttatataa	tatattttaa	tagattcaat	tactcgttta	tttttatgt	atttaacata
accD 2001	taatttaaca	tatataacat	ataacaattt	tatgaaaaaa	aaacatgtta	atttatttaa	tttaaaatta	ttaaatttta	t aaaaataa	attcaaatgt
accD 2101	aaatgttact	cattaaataa	tataaataat	aatttagata	gtgataatat	aaatctaact	aagacttata	ataaatatta	taatgacata	atatttttaa
accD 2201	ttttttaaa	tattaaaatt	aaagctaaag	aaaatcatag	agattttatt	gatcgttgca	tttatcatta	tttttattca	aaaatttata	aatatattat
accD 2301	aatatggatt	ggttttttt	ttttaatac	tttatttgat	atagcatttg	aagatactga	tgatgaagat	gatctttatg	aagatactga	tgatgaagat
accD 2401	gatctttatg	aagatactga	tgatgaagat	gatctttatg	aagatactga	tgatttatct	tctgaaaaaa	aaaactgtac	tgtaattata	aaagatttaa
accD 2501	aaaaatatag	acatttatgg	gttcaatgtg	aacattgtta	taggtcaaat	ttaaaaaaaa	aatttaaaag	taaaatgaat	atttgtgaac	actgtggttc
accD 2601	acacttaaaa	atgaatagtt	tagatagaat	tgaattatta	ctagatactg	gaacgtggca	tgccatggat	gaaaatctaa	attecetega	tcctatagaa
accD 2701	tttcattccg	aagaagatcc	ctataaagat	cgtcttaagg	aatatcaaaa	aataacagga	tttctcgaag	ctattcaaac	aggtacagga	cttttacatg
accD 2801	gtcttaaggt	agcaataggt	tttatggatt	tccaatttat	gggcggtagt	atgggatcgg	tagttggaga	aaaaataact	cgtttaattg	aatatgctgg
accD 2901	aaaaaggaa	ttacctttaa	ttttagtgtg	tgcttctggt	ggagetegta	tgcaagaggg	gagtttaagt	ttaatgcaaa	tggcaaaaat	ttcatctgct
accD 3001	ctatataatt	atcaattaaa	taaaaatta	ttatatattt	caatattaac	ttctcctact	acgggtggag	taactgcaag	ttttggtatg	ttaggagata
accD 3101	taataattqc	qqaacccqac	gcttatattg	catttqccqq	taaaaqqqtt	atcgagcaaa	ctttaaatat	aataqtqcct	gatggagtac	agacatctga
accD 3201	atatttattt	acaaaaqqtt	tatttgatct	aatogtacog	cqttatttt	tqaaatatac	tttaactgag	ttattaaaat	ttcatattta	aaataaaaac
accD 3301	taatattggt	atatgttaag	catacegeea	gatatacaaa	attataatat	cttatttata	attaaattat	taatatatat	aaatatgtat	→ aataatatat
3401 rps18	atttatatat	attatatttt	teettttta	tatttttat	atttatgttt	atcatattta	tatttatcta	aattaacatt	ttotaaatta	atccatttat
3501 rps18	LTTTACTAAA	aggtattaää	yctaatgttc	icaaaatctt	iatagcaata		LUGICUU	aaaagttaat	tattaattt	LACTOGATAA
3601 rps18	tatttaccc	cgttcgctaa	taaatttagt	tattaattct	atattttat	agtcaatttt	agtatttaat	cttttttt	tCattaatat	aaattaaatt
3701 3801	aatataaatt gctttagcta	aatataaata ctataacttt	aaattattat cctattaata	tttaaataat atttttttaa	aataattata ttactaattt	cgtgatattt catcgttatt	tataagtoot atgatttata	aatgtccaat ataattttt	gtataataaa ttttaagttt	taaatttcaa tttctataac
3901	cggagatttc	raaatgttaa	ırıgtatagt	taacatgatt	aaatttaaac	ictacttatt	aaattttgta	agıtacgata	gttaattaaa	itttaattaa

Figure S4-1. Complete plastome sequence of *Mitrastemon kanehirai*.

									101010101010	
4001	aataactata	attaatttat	ttatttatat	attatttatt	ttcaccgett	ttatttataa	ttttttttt	асааддаааа	ataatataca	tatataatat
4101	ataatcataa	tattatatat	acatatatat	atacatattt	actataatat	aattatatat	atattatata	tttattataa	tataattata	atataacgag
4201	togcacatac	accctataac	attttcctct	tagttgaggg	catcccttta	aggctgaatt	tttattttt	aatttttta	aatatcttgg	atttttatt
rps12_5'	-									
4301	atttgtttta	aagttggcat	aaaaattat	tcattaacta	taatagaatc	aataattcca	taaaatttag	cttctagtac	tgacataaaa	gaatctcttt
rps12_5			_							
C1pr	ccatgtette	agataaaato	cataaaggtt	tacctgttct	ttotgoataa	acttttgtga	tatecteacq	tattttaaa	agttettegg	cttctaataa
	ceatgrette	agataaaate	cataaaggtt	tacetyttet	ttetgeataa	actitigiga	tatecteacy	tattttaaa	agricitegg	cttetaataa
4501	aaatteecca	gcctgtgttt	cataaaacca	acacataggt	tggtgaatca	ttaccctaaa	aattttataa	taatttaaaa	aatattataa	actataatcg
clpP										_
4601	tacaggettt	ttttgcatac	ggctattatt	taaaatattt	aatttttat	catctttaat	taaaattaat	tatttataat	ttaattataa	tactatgtaa
4701	tactatgatg	attcaaaata	tttagtctaa	tatttaatat	ttaactaata	taatgttaca	taatacttag	tgaaaataaa	tataatatta	tttatatatt
4801	tataaataca	tattttttt	ttaatatatt	tctcagtatt	tttaattata	atcatattaa	tattatgatg	ctatgatata	ttttttgaat	taaagatata
4901	taatttgata	attttacaa	tgaatatcga	taatattgtc	atgctatttt	tacttaaatt	actataatta	aagtaatttt	taacttattt	aagttaagac
clpP	llaallilai	laalillala	aaatatteea	aayacyciya	gcatgaggga	argeaaaacg	titaytaaat	teteegeeaa	ttaaaataaa	ggaacetaat
5101	gaagcagcta	qtccaataca	aaqtqtttqt	acqtttqatt	ttataaattq	cataqtatca	taaaqqcaca	caccaggtat	taaaaqccct	ccaggagagt
clpP		2		2 2	5	2	22		-	
5201	ttataaataa	aaaaatatcc	ttagtattat	catcaatatt	taaaaataac	ataagaccag	taagttgatt	agaaatttca	ctatttatgt	cttgacataa
clpP										
5301	aaaaagtaat	cgttctttat	aaagtcgatt	gattaatatt	aatatttata	attaatttaa	tatttataaa	actatacgtg	catatttaaa	tgcatatagt
clpP				-8						
5401	ttaaaaata	aattaacgtg	atgttttatt	aaattatatt	ttgtaaagtt	ttaggtttta	tacgtcctaa	tattettaaa	aataaatata	aataaataaa
5501	atasattatt	dataatta	attactteaa		adtitadttt	tgacaaaaa	aattatataa	aaaaaatttt	taatacatg	attttaaacc
5001	aaagtttaca	gtacgcacta	tatatogago	caagagggtt	ettecette	accocaagaa	aaaggtattt	ttggaacacc	aacaggcata	taaaagattt
clpP	adageeedaa	y:000y000000		00030333300		accocacyaa	aaayytatto			COCCUPATION OF
5801	ttatgccatt	aaaaatttaa	taagagcgta	atcccatatt	tatattcgtc	ttatttttgg	aggtcgacag	ccgttataag	gcatatgggt	tacatctttt
rps11				+						
5901	atagaaatta	cttttatatt	ttttcgaata	atttgtaaag	cagcatetet	acctataccg	ggtcctttta	ttaatatttc	aacttgttgc	atacttttat
rps11										
6001	tttttatttt	tttaataata	gtataagctg	atgtttgggc	agcgaagggt	gtteetetee	ttttaccttt	aaatccacaa	atacctgcag	atgtaaaaaa
rps11 (101	taaaatttat	ctttttcat	ttataataat	taaaataata	ttattaatac	ttgattggat	ataaataatt		ttttctagat	atatatattt
rps11	caadatterge	controlat	erg caacage		ctattaatae	cogacoggac	00000000000	0000000000		acacacacte
6201	tttttagata	attttaattt	ttttttcatt	attatatata	tataatatat	atataaatta	tttattttat	atatttatta	tttaattcat	tgatacatat
rps11										
6301	atatttatat	atatttatat	atttttatat	tattttata	tatttaatat	atatttaatt	atttaatata	tatttaataa	tatatattta	atttatcctt
rp136										
6401 mp126	gtttttgttt	gtgttttaaa	ttaatacaaa	ttattacaaa	tCIIIIIII	ctaaaaatta	atttacaatt	tttgcaaatt	cgccgaggtg	aagtttttat
6501	tttcatttta	atotataaat	tatacqteet	ttategggat	ogtatttact	tatttetatt	tttactttat	caccotttaa	taatttaata	gaattatato
rp136			tataby teet		egtattidet			0000000000		gaarrarare
infA	•									
6601	ttattttccc	agaaacataa	cctaaaacat	aattttttt	acctttatat	aaatgtactt	taaacatacc	attactaaag	gattctgtaa	ttaaacctat
infA										
6701	attaacttct	ttttttctt	tttgataatt	taatttttt	ttcattataa	tatatata	tatttaatat	ttattattta	ttttaaatta	ccatatataa
infA									-	
rps8			*****			*******		***-**	+	tatasaata
6801 rps8	Cataaaattt	CICCACCIAI	titteaagt	LUGCULU	gateggteat	taaacettta	yaaytayaaa	taattataat	teccatacet	ICIAAAACIC
6901	qtqqaatttt	tttataatta	qaataaattt	qtcqaccaqa	atgactaatt	tqtttaatat	taaaqttatt	atattttaaa	tttaatatat	aacctttatt
rps8	5.555		2	555.						
7001	attatgatct	ttatgtatga	aaataaaacc	ttcttgaact	aaaatagtta	taatatttt	agtcattttg	tttattttgt	ttaatgataa	aaaaatataa
rps8										
7101	ttatttttt	tagtatttt	atttttatt	cttgttatta	aattgctaat	acttttcatt	ttaatatgta	tgtatcccag	tgattatatt	taattattaa
rps8										
7201	ataaataata	ttaattatta	aataaataat	aaatattata	attcataget	tataatattt	taattttagt	ttttataggt	attttatata	aagccaaagt
7301	tatageettt	tttgctattt	tttcgtttac	tettecaatt	tcataaatta	tttttccaga	tttaataaca	aatatccaat	cttgaatagg	teetttteee
rpl16										
7401	gateccatae	gcgtttctct	gggtttttt	gtaattggtt	tattagggaa	aatacgtatc	catactttc	cttcacgacg	tatatttta	attaatgttt
rpl16										
7501	gtcgtcctgc	ttctatttgt	ctataggtaa	tataagctgg	ttecataget	tgaagagcat	atttaccaaa	acaaatatta	gtaccttttt	ttgatattcc
rpl16					****					
7601	agatattctg	cctctatgta	ttttattaaa	ttttaccttt	ttaggtttat	ttttcataat	ctttatcttt	taaaaaatc	caaatttta	tacctaaaat
rpile rps3					-					
7701	tccagagata	gttctaatgg	aataagaaca	ataatttato	ttagcttgaa	tcatttgtaa	aggaacttot	ccctttegaa	tocattocat	acgtgaatta
rps3		20000099								
7801	ttttaccaa	ttcgtcctga	aatttgtatt	tgaattcctt	taatatccga	cttttcagct	aattctatag	atttttcat	agctttattg	catgatactt
rps3										
7901	tatttttag	ttgattggat	ataaattctg	caatgatttt	tgggtttcta	taaggttttt	taatctttt	tataataaat	attaatttt	tttttcaaa
rps3										

									16010101010	
8001	agttaataat	aaaattaatc	tttttttaa	tteetgtggt	gaatttttt	ttaataattt	agtaaaacct	ataaataata	ttattttaat	aaaattaatt
rps3 8101	tttttttaa	tttttatacg	tgtaattcct	tcaattaggt	taatatcata	agaaatttta	taaatttgtt	gtttactaaa	aaaaaattt	ataaaatttc
rps3 8201	ttatttttg	atcttcttga	aaattttgaa	aataattttt	cttcttagag	aaccaaaaag	aatcataatt	tattgttata	ccaagtctat	agattaatgg
rps3						_		_	_	
8301 rps3	attaattttt	tgtcccataa	aatttttat	gactagattt	attatcacct	tttaattttg	tatgccctct	aaaatttata	gtaggtgaaa	atteteetaa
rps19	+++=		+	assastata	tastatatas		agoaatagtt	tatooastos	togtagetat	aatattogat
rps19	CCC9C9ACCC	attadatade	tagttataaa	aagaggtata	igereretae	Cattatatac	agcaatagtt	tyteeyatea	togtaggtat	aatattegat
8501	gatcgagacc	aagtttttat	gaatttttt	tttttttta	agagtttatg	tgaaacaaaa	ggatttttt	ttaaagaacg	tgccataact	taatattatt
8601	ttatattatt	aatctttgct	attaattata	tttattttt	aatgcgtcta	tgaataataa	aattattact	atatttttt	tttttctgc	ttttttccc
8701	caacgtggga	aaaccccagg	gagttacggg	ttttttcta	cctattgaag	atttaccttc	accgccccca	tgtggatgat	ccacagaatt	catagcgagt
8801	cctcttactt	ttggccgttt	tcctaaccat	cttttagatc	ctgctttaaa	aaaatgttta	tttttttt	ctatgtttcc	tacttgacct	atagttgctg
8901	tacagetttt	aaatataaac	ctaaaatttc	ctgaaggtaa	ttttaccata	acataattat	tattttttga	tattaatttt	gctaaggtac	ctgcggatct
9001	aactaattga	ccgccctttc	cgagtgttat	ttctatatta	tgaataaatg	ttcctaaagg	aatattggat	gaaatagatt	taaaaatct	tttcccaaac
9101	tgtacaagct	tttttacaaa	acatacaget	ttccagatat	atttcatata	taaatatatt	gtataataaa	ttataataat	taacateeta	aaattattgt
9201	ttcatcatca	tctggcttaa	tagcatacag	attgaatgac	tccatggaat	cacgctaaat	gataacttag	gggatattt	taatatattt	tatataagtt
9301	tttaaattgc	ctttgaccat	caaattaaaa	ttatttatat	attttattgt	taatttcccc	atattatagt	tattatagta	atattatagt	attaaataaa
9401	taaaataaat	attaaattaa	tcacttgctt	atatatttat	atattttat	ttttaaatta	agtgataatt	ttataagttt	tatcgtaaac	ttaattggta
9501	taaatttcca	attacgtgta	aataacatag	ttcaaaccgc	actcaaaggt	aaaacatttc	ctattttaa	agaaacttct	gtaccagata	taataatatc
rp12 9601	tcctattgta	aaacctctag	tatgtaaaat	atatctttta	← tcaccatctt	cataatatac	tagacaaata	tatgaatttc	tattagggtc	atattcaata
9701	gttttaattt	taccatataa	atttatattt	tctcgtttaa	aatctatttt	acgatataaa	cgtttatggc	ccccacctct	atgtcttgta	gaaattgttc
9801	ctttattatt	tcgaccatta	ctttttccat	actgtccaga	agttaaattc	ttatatggat	ttaaagtttt	taaattacta	atcataaaat	aatcataaaa
9901	tttttaatgt	attgaatttg	atagtattta	aattataaga	ttatttgaaa	ttagccagag	ttctacttga	ttctgcaatt	- ttatgaatta	attctttttt
10001	tcgtatagct	tcaccccttc	ccttagctgc	atctattaat	tccgaactaa	attttaaaga	catattttt	ccaaatcttt	tttttgatgc	agttaataac
10101	catcgtatag	caagtatttt	tccttttgta	gattttattt	caataggaat	tttaaaaatt	gatccacgtt	tatgttttgt	ttgtactgat	aacttggggg
10201	ttactctatt	tattgcctta	tttaaaataa	aaagtggttt	tttttttt	ttacaaatat	tatttagggt	attatatata	ataaaataag	ctaatgattt
10301	ttttccattt	ttcataatat	gattaattaa	tatattaatg	gatttattat	aataaatagg	atctggtttt	ataattttgt	tttttaaaag	tctatgtcgt
10401	gacataataa	ttaataattt	taaaaagatt	ttatattaaa	ttttttaact	ccatacttag	aacgactctt	tttacgatct	tgtactccga	tagcatcaag
rps7										
rps12_3										
10501 rps12_3'	ggeteetett	ataacgtgat	atettaegee	tggtaaatct	ttaaccetee	CICCCCITAI	taaaactaca	gaatgttett	ttaaagtatg	tectatgeeg
10601 rps12_3'	ggtatataag	cagtaacttc	aaatccagag	gttaatttta	ctctaacaac	tttacgtaaa	gcagaatttg	gttttttagg	ggtaatagtg	gaaaagttga
10701	ctaacaatat	ttatataaaa	tattataatt	aaattttata	ttttgtaagc	cacttctaca	gaaacgtaca	tgaaattttc	atttcatacg	gctcctcagc
10801	ttaatcatat	ccatagatta	tttagtattt	taatatatat	aaatataaat	tactaaatta	ctaaatgtag	tattaattta	aattattaaa	taattaaata
10901	ataatataat	ataaatattt	atgaataatt	gagttaacat	aagettatee	tgataattat	atatataaat	tatatata	aataagatta	tatataatat
11001	acatattaaa	tattatatta	atatattata	tattattata	tattattatt	atatattatt	ttgatgcttt	tatgctttaa	aaaaaattta	aaatttaacg
11101 rrn16	tagctataac	ataatataac	tataattact	aaggagagtt	tgatcctage	tcaggatgaa	cgctggcggt	atgettaaca	catgcaagtc	ttactataaa
11201 rrn16	tttagtggcg	aacgggtgag	tgatgcgtaa	gaatctaccc	ctaagtacgg	gggagaaaac	agtgggaaac	tattgctaat	atcccatata	ggctgaaaag
11301 rrn16	ttaaaagaat	aataattctc	tacagggaag	agcttacgtc	tgattagcta	gttggtaaga	taatagetta	ccaaggctgt	gatcgggagc	tagttcgaga
11401	ggatgattag	ccacattgga	actgagacaa	ggtccagact	tctatgggag	gcagcagtgg	ggaattttcc	gcaatgagcg	aaagcttgac	ggggcaatac
11501	cgcgtgaagg	tagaaggeet	acgggtcgta	aacttetttt	accaaaaaag	aaaactaaca	gtatttgggg	aataagtatc	ggctaacttt	gtgccagcag
rrn16 11601	ccgcggtaat	acaaaggatg	caagcgttat	ccggaatgat	tgggcgtaaa	gagtctgtag	gtaacttttt	aagtotgaog	tcaaatacct	aggeteaace
rrn16 11701	gaggaaaggc	atcagaaact	aaaaagcttg	agtatattaa	agggaagagg	gaatttctga	aggagcgatg	aaatgcatag	atatcagaaa	gaacgccgaa
rrn16 11801	ggtgaaaacg	ctcttctgta	ttgatactga	cattgagaga	cgaaagctag	ggtagcaaat	gggattagag	accccagtag	teetagetgt	aaacgatgga
rrn16 11901	tattaagtat	tgtgtgtatt	gatccattca	gtactacaac	taacgtgtta	aatateeege	ctggggagta	cgttcgcaag	aatgaaactc	aaaggaattg
rrn16										

									610101010	
12001	acggggggtcc	gcacaagcgg	tggagcatgt	ggtttaattc	gatgcaaagc	gaagaacctt	accagggctt	gacatgatcg	tgaatctttt	tgaaaattaa
12101	gagtgcctta	gggaacgcga	acacaggtgg	tgcatggctg	tcgtcagctc	gtgccgtcag	gtgttgagtt	aagtcccgca	acgagcgcaa	cccttatgtt
12201	tagttacctt	tttggaactc	taaacagact	gctagaaata	atctggagga	aggagaggat	tacgtcaagt	catcatgeee	cttatgccct	gggcaacaca
12301	cgtgctacaa	tggtcgagac	aaagaataat	tcgtgaactt	gcaagagtaa	actaatttca	aaaactcgat	cacagttoga	attgcaggct	gaaactogco
12401	tgcatgaagt	aggaatcgct	agtaatcgcc	ggtcagctat	acggcggtga	atacgttacc	gggccttgta	cacacegeee	gtcacactct	gaaagttatc
12501	cctgtcctaa	atcaaaaaat	gattaagaca	gagttagtga	ttagagtgaa	gtcgtaacaa	ggtagctgta	ctggaaggtg	tagctggatc	aacctcctta
12601	ataaatttat	ggagatttat	aaaattttt	cctagatcaa	aaattcaaaa	aacaaatata	aatattataa	taacttatgg	tggataccta	ggcactcaga
12701	gatgatgaag	ggcgtttta	aaccgaaaag	ttgcggggaa	aaataaaata	tagatcogta	gattecetaa	- taagtaaact	ttttaaaac	cccgatgtta
12801	aaataaaagg	gagataacct	ggaaaactga	aacatcttag	tatccagagg	aaaaaaaat	aaaaatgatt	cccttagtag	tggcgagcga	aaagggaaaa
12901	taagcctata	attttacta	tagaaattac	atataatttt	atacatatgt	attttgtact	gtgctaggtg	aaacaatatt	atagaatact	gtatcttaga
13001	tggtgaaaat	ccagtaacca	ttagcataaa	aattttataa	aaaataatct	aaataattta	tttatttatt	taatttattt	atttaaaagt	aacatgggac
13101	acgtgcaatc	ccgtgtgaat	ttaacaagga	ccaccttgta	aggctaaata	ctactgtgtg	accgatagtg	aattagtacc	gtgagggaaa	ggtgaaaaga
13201	accettaata	gggagtgaaa	tagaacttaa	aaccataagt	tttcaatctg	tgggaggaga	aattttttct	gaccgtatgc	ctgttgaaga	atgageegge
13301	gacttatagg	cagtggcttg	gtaagggaaa	attaccgaag	ccttagcgaa	agcaattaag	tttttataga	gctttattct	atgtcattgt	ttataaaccc
13401	gaaaccggag	tgatctatcc	ctgaccagga	tgaagctgag	gtgaaactta	gtgaaggtcc	gaaccgacta	atgttgaaga	attagoggat	gagttggaga
13501	tagaggtgaa	atgccaatcg	aaccoggago	tagctggttc	tccccgaaat	gtgttgaggc	acagcagtta	actgtaatat	ctaggggtaa	agcactattt
13601	tgatacggat	tgtgaaaatg	atactaattc	aaaacaaact	ctgaatacta	gattaagaaa	ataaaattta	ttattattt	aagttaatta	gtgagacagt
13701	gagggataag	cttcattgtc	gagagggaaa	cagcccagat	catcagctaa	ggccccaaaa	tgattattta	agtgataaag	gtgtagtcgc	acatatacac
13801 rrn23	ccagtaggtt	tgcttagaag	cagccaacct	ttaaagagtg	cgtaagagct	cactgattaa	gtgttactgc	gccgaaaatt	aaagggactt	aaatataatt
13901 rrn23	ctgccgaagc	tacgagatta	tattatcggt	attatcggta	ggggagcgtt	ctgcaataaa	tgcagaagtg	agaatgtcgg	ctttagtaac	gaaaacattg
14001 rrn23	gtgagaatcc	aatgccccga	aagccaaagg	attcccccgc	aaggttcgtc	cacggagggt	tagtcaggcc	ctaaaataag	tccgaaagga	gtaattgatg
14101 rrn23	gataacaagt	aaaaatattc	ttgtactact	ttaaataatt	ataattcatt	ataatttaat	taatatgatt	aatttatata	ttgttacgag	ggacgaagaa
14201 rrn23	ggctagggtt	agccgaagga	tggttatcgg	ttcaagataa	aaggcgattt	tggtctttat	tttaacgatc	aaaaataaa	ataggtagcg	aaaatactta
14301 rrn23	gagcccataa	ttaagcacta	tattaagtaa	cctcatgcca	tacttccagg	aaaagctcga	agaacataaa	atttaaagta	tctgtaccaa	aaaccaacac
14401 rrn23	aggttggtgg	gttgagaata	cctaggggcg	cgagataatt	ctctctaagg	aactcggcaa	aataactccg	taactttggg	agaaggagta	cctcaaaaaa
14501 rrn23	gaggttgcag	tgactaggcc	tggacgactg	tttaacaaaa	acacaggtet	cegeaaatte	gtaagatgaa	gtatgggggc	tgacgcctgc	ccagtgccgg
14601 rrn23	aaagttaaaa	aagttggtga	tctttttggt	gaagctagca	attgaagett	cggtaaacgg	cggctgtaac	tatgacagtc	ctaaggtagc	aaaattcttt
14701 rrn23	gtcgggtaag	ttccgacttg	catgaaaggc	gtaacgatct	gggcactgtc	ttagagagaa	actcggtgaa	aaagacatgt	ctgtgaagat	acggactact
14801 rrn23	tgcaccagga	cagaaagacc	ctatgaagct	ttactgttat	ctgaaattgg	tttttgctt	ttcttgtaca	gatttaggtg	gaaggaattt	taatccatta
14901 rrn23	gtgagatacc	acccccgaag	agttaaaaat	ctaaccttta	aaaaggaaaa	gtttcagata	gacagtttct	atggggcgta	ggceteetaa	aaagtaacgg
15001 rrn23	aggcgtgtat	gagtttcctc	aatccagtca	gagattggtt	ttagagtata	aaggcaaaag	gaaatttgac	tgtaagacat	acatatogag	cagggatgaa
15101 rrn23	agtcggtctt	agtgatccga	cggtactgag	tggaagggcc	gtcgctcaac	gaataaaagt	tactctaggg	ataacaggct	gatetteece	aagagatcac
15201 rrn23	atcgacggga	aggtttggca	cctcgatgtc	ggttcttcgc	tacctggagc	tgaaatttgt	tcctagggtt	aggctgttcg	cctattaaag	cggtacgtga
15301 rrn23	gctgggttca	gaacgtcgtg	agacagtttg	gtccatatcc	ggtgtgagcg	tgagaatatt	gaggggagtc	ttctttagta	cgagaggatc	gagaagaaaa
15401 rrn23	cacctatagt	gtaccagtta	ttgtacctac	agtaaatgct	gggtagccac	gtgttgagtg	gataattgct	gaaagcatat	aagtaagaag	cccacctcaa
15501 rrn23	gatgagtgtt	ctttaagatt	tgatagttta	attaattata	aattaaatta	tattaattaa	ttaaattatc	aatgaggtaa	tagctagact	agcttttaaa
rrn4.5 15601	ttataaaata	ggtattaagt	ataagtacag	taatgtatta	agctaagata	tactaataaa	ccaaaaatat	 ttttttatta	aataatttaa	aattctggtg
rrn4.5 15701	tatataagta	tatatgaact	acaccaaaaa	tccatttcga	acttggtggt	taaattttat	→ tgcggtaaaa	atactataga	agatattctt	tggaaaaata
rrn5 15801	actttatgcc	aggataatat	∎ tattataatt	atgatattta	attaatttat	atattatatt	tatactatat	acacatatac	atacatacat	ttaacatact
rrn5 ycf1		→								
15901 ycf1	aagatgtata	cctttactag	tattaaacca	gtatctattg	atacaggeta	aatcetetaa	tctataattt	ggccataaaa	aagatettaa	aagtgettet

									1010101010	
16001 ycf1	tttttatcat	aatcattatt	ataattataa	ttaatataat	tattaaaatt	attattttt	ttctttaatg	taaaagtaaa	acaacttaaa	attctaaatt
16101 ycf1	ctctacggcg	attatatagt	aaaatatttt	caataattaa	agaaaaaaaa	taatttttac	tttttttt	taaatataaa	gatatttta	cagtttgata
16201 ycf1	cataatacta	tatccacttt	cctgtaaata	tttactaaaa	ttatctatat	taactattcc	cctttctata	agttcaattt	ttagtacatt	ttctccactt
16301 vcf1	cctattatat	ttaaattaaa	ttcatctcta	agaattgatg	aaagaataat	ttttttagta	ttttgtcttg	attgaaaaat	taaactatat	attttaaat
16401 vcf1	ttttaaaaat	tttttcatat	attttaagtt	tatattgatt	aaaagaattc	gataatttac	tttctttttc	ggtatcttcg	gtttttacat	taattttaat
16501 vcf1	ttctttttca	taaaaaatt	tcatattcgg	tataaaatat	ggttttaatt	catatattt	tttctttaat	atcaagtctg	atagtatatt	ataatcataa
16601 vcf1	ttactattaa	tttgttttt	taataaatta	ttatttttat	aattttcaaa	attaatatat	ttatagcata	gaaaattata	tctataactt	tttttatct
16701 vcf1	taatttgttt	ttttaataaa	tttaatttta	ataacgaata	tttattaaat	ttacttttta	attttttat	ttgatataag	ttgtattgat	aataaaactt
16801 vcf1	taatttttt	tttattgaat	ttttaatata	aaaagatgtt	cctttatatt	ttaaaataaa	tettaatteg	tttttagata	tattattaat	ttctgtttgt
16901 vcf1	gctaatttat	aaaatacgta	tgcttgtgtt	acgtaagata	aatcaaaatt	acaaggttta	tatttatttt	tattattaac	ttttgaaatt	ttaatataaa
17001 vcf1	ttttacaagc	tttaataata	aaaataaata	tatttttat	tattaatttt	tttattaatt	taaaatttcg	aataaatcta	gtttttttt	ttaaagtttt
17101 vcf1	tatattaaat	tttatatata	atttaatatt	ttgataaaaa	aaaaatattt	tatttttaa	tttaaaatca	aaaataaatt	taataaattt	atcaaaataa
17201	aatttatatt	ttttttctt	ttttttatt	ttataggttc	taagtttaaa	attgatattt	ttgattttag	aaatatcctt	aattacgtca	tccgttacgt
17301	catcgattct	tcttctttt	tgttttatta	taattacatt	tttattttta	cttactttta	ctttacttat	attatatata	atcacatata	tattattaaa
17401	tatatttaat	aaatttaaat	atatactttt	aaaatatata	atatatatat	ttatatatat	attatatatt	aatttttta	tatttttat	atatttatat
17501	ttatgtaggt	ttactttaca	attaataata	tttaagtaaa	aaaatatata	tatttttta	cttaatatat	ttatttttaa	atatattata	tttcttaata
17601	tatatataca	attttaaaa	gatattatta	tatttatatt	tattatatct	ttataatttt	tatgtaaata	tgtatttaaa	tatgtattta	ataatttatt
17701	aataatataa	ttaaaataat	ttttttcaa	ataaaaaat	atatatatat	tatatata	tttatctttt	ttacttttta	gtttttaaa	aatgggttga
17801	aaaatagatt	taaaagtaga	ttgacgctta	cggttggggc	caaaaggatg	ttttgcttct	cctccccaaa	ctgttaaaaa	aacatattga	aattttttt
17901	tttgtcctat	ttttaattgg	aaaggggata	aaattttat	ttgaaatcct	tttattaaca	aattttgtga	attttcttct	tctgataatg	gaatacette
18001	ataagtacat	tttatatata	tttctttttt	taaacgtttt	aaatcttcat	accattcggt	agattcaaaa	aaaaatatac	ggataatatt	tttgattatt
18101	ataaaaaat	aaagtttaat	atattttctt	aaaaataatt	gagttattaa	cataactccc	cttactattt	gaccaaaaat	aataccattc	caagcttcgg
18201	ctattttaa	tcttgatttt	tctttatata	atttttaaa	tttttcgtag	tgtaattttt	ttttataaat	attattttt	tttttaagg	attttatgtt
18301	aacaaagaaa	tttatatact	ttttaaaata	attatatatt	atatcaaaaa	atctaaaaag	aggccatttt	cttattctat	ctaaaaaaat	aggagaatgt
18401 vcf1	acatttattt	gaatatttt	aaaagtaaca	gtttttcgtc	ttttaacccg	tatagaacct	tttattaatc	ctcgtctaaa	atctgatttt	tcaaaataac
18501 vcf1	gtggagtaat	aatagtcgtc	tgttcactat	tttcactact	attactagta	ttttcattat	caatatcaga	cttaccggta	aaccctatta	cactttttaa
18601	ttttcttgta	cgtagttgac	gtagaaataa	atgtctagct	tctctttcat	ctttttctat	taagttcatg	tctatgtctt	cgatcaattt	atatggccat
18701	agaggaattt	tttttttac	tttttctatt	tttatctttt	cagttaattc	tattgcagga	aaattaataa	ttagcattaa	gatttttgc	ataattattt
18801 vcf1	ttaaattgaa	agtttcttgt	tcttgataaa	gtttttata	tattttattg	aatttattaa	attttttt	ataaatatta	tttgaataat	aatataattc
18901 vcf1	tttagaaacg	ggataaacat	cggtaattat	tctacgatgt	gatccgcaaa	ataaagaaaa	taaagggtca	taaattatgg	gtaaatattt	ttttttctt
19001	ttatttttac	ataattgttt	tttttttct	agtattatta	ttagtattgt	ttctaataat	tttaaatttt	gtggaaattt	atttaatttt	aataataata
19101	aactttcatc	caatttttct	atttttattt	taattttagc	tttaaaaatt	tcaaatttat	tattatttt	taaaatccac	tctgtatcat	cttgtgtaaa
19201	gtctatttta	aaatcaaaaa	cttttactat	tatttgatta	aatttttta	aacttggtgg	aaaggtgaaa	gatattcttt	tttttccata	actctggcaa
19301	gtattaaaaa	aatactgtga	aactteettt	tttatagcat	ttgtttgctt	atttatttca	tcatctaaaa	tatttatgta	togtaaaggt	tgattecate
19401	tattataatt	aaatagtagt	attacaagag	gtttttcaaa	ccaataaggt	cttattctat	ttagtaaata	aatcgatagt	gaagggttgg	gtattttata
19501	aaaaatata	ctttttttt	cgttaaatag	tttacgtaaa	tattcttctc	tatcattgtt	taaattaatt	ttttttta	aataattttt	aataaattct
19601	agaatagatt	catccaaagt	taaagatatt	ttttcagagt	ttaaattata	tatattttct	attttttt	ctttttggg	tattgttaat	ataaattttc
19701	tagtaagaat	aggaaaaggc	attctaccta	aattaaaaag	acataaaata	aatagaataa	tattaaaaat	ttgagtaact	gacatttta	aatttattat
ycr1 19801	aaaatattta	tgtgtcaaat	ttttccattt	taatttttt	aatctattaa	acaatatagg	atttaattta	attaatccaa	cttttactaa	atatttaaaa
19901	aaaaatttc	taattttaaa	aaaaaatat	ttaaataaat	ttaatataaa	tttactactt	atcttattaa	tattactaat	attttttt	ttaaatataa
y u z z										

21000attatage astictyt i kittikat i kassats aktikika Casgetassa astictyt iasakiski astikika astictyt iasakiski i kittika2101iasacsi i kastiki katactiss iasakitki attactus iasastiki iasakity iasakiski ikitikas2101iasacsi iasactictyt iattikas astictyt iastissa issakiki iasakity issakiski issakity issakit										1010101010	010
2011 2011 2011 2011Consequence and a standard a sta	20001 ycf1	aatttaatgc	aatctctgta	tattttaata	taaaaatata	aattattaac	caagctaaaa	aagtacttgt	tagaaataga	aatttatcat	tatttttaaa
20103pt casat is activate a trapta casat is activate a trapta casat is activate a sample in trapta casat is activate in trapta casat in trapta casat in trapta casat is activate in trapta casat is a	20101 ycf1	tctaaacata	tatatattta	ataacctaaa	aaaaaccgaa	cttggcaaaa	taaaattatt	taaaatttga	aaaataaaat	tattaataaa	agtaaaaata
2011 20112012 20132013 20142011 2014144agtig (classes a laggigaas cotatigg) tatiging (griggias satisatic laggiggig (alasses) a laggiggig)2014 2017 2017 	20201 vcf1	atggtaaaat	ctctaaaata	attagtatta	ttaattaatt	tattattaga	ttttttaat	aagaatccct	tgaaagattt	ttctttttta	ggatttttt
2001 2011 20111etasgigi cotagantaa aactitat ageogetut citittee gypettiti titteecet tegettita aataaaat ataageogt 2011 	20301 vcf1	taaaaaaat	aaataaccaa	tatggtaaaa	ccataatggt	tattgtatgt	ggttggtaaa	aaattaaata	taagggtgta	taataaattg	aaaataatat
2011 2011Consequent and a sequence an	20401 vcf1	tataagttgt	cctagaataa	aacctgttat	agcagctatt	cttttttcat	gtgcttttt	ttcttccact	tgcgcttgta	aaataaaaat	ataagcaggt
1001 1012atasatosi tejagitaco locitotit tititiatas italitigi optatinga tititata ataitasa atticaga asatacost1011 1012optiticit atasagiti tatitati italitasi gitogitag tagasasat tingataat oligatata ataitaga atticgig1011 1012optiticit atasigiti tatitati atticaga tipgatata tititata agatocia gitatata atticaga tagasasat tingataat atticgi ataitaga atticgi aggitaga1011 	20501 vcf1	tcaacagata	ttgtagtaat	taatccaaaa	tataatccaa	tcacaaatat	ggaatttatt	attttttac	ttaatgtaat	taaaattttt	ttttgtaagt
2011 vi2 vi2 vi2 	20601 vof2	ataaaatcat	tgtagttacc	teettaettt	tttttataa	ttattttgtt	cgtatttgat	ttctttacat	aatatttcaa	tttcttcaga	aaataaccat
2001 2001 2001glassgatte litiatitti astadgasi liggsitati asgataccia igattatia titticaci gaatatitti tocicasiae laititta 2001 	20701	cgttttctta	ataatgtttt	tattattta	tttaaaatat	gttcgttaag	taagaaaatt	ttagataaat	cttgatatat	aatatataaa	atattagagt
2011 21201 21201cogtaatti aalagagatt iggigigiala tititgilga taggiaaaaa tiigattata tattictala tattictala ticlaaagat attitagit fittistaat 21201 21201aagataaat tattitig ticottaaa tiaaaaagga ticgooggat tocaaataaa tigacttaag citaattaa atatattig ticottaaaa taasaggig 21201 2	20801	gtaaagattc	tttatatttt	aataatgaat	ttgaattatt	aagataccta	tgattattaa	tttttaactc	gaaatatttt	tctctaatac	tattttaaa
<pre>aigaicaat tatcittag taaaaagga toogoggat toosataa tigacttag citaatitag tootaasa taaaggat yi2 2101 2101 2101 2101 2101 2101 2101 21</pre>	20901	ccagtaattt	aatagagatt	tgggtgtata	tttttgttga	taggtaaaaa	tttgattata	tatttctata	tctaaagata	atttatcgtt	ttttataaat
<pre>1111 Ittigotaa gitattitti gitottitti titgatoati attottoa attotaaa ottotoosto attittatti tittiataa aastatatti 1111 aastitaa aattoattaa attottitti tittigatoatti attottoa tattotaaa ottotoosto attittatti tittiataa aastattitti 1111 aastitaa aattoattaa attottitti titgatoatti attottoa tattotaa tataaasti attottoa tattotto atattitaa tottoosto attittatti tittigatoaa aastittit 1111 aasaastigi tattotaa toostoosa taaaasggto cooggotgoo atatottag agottigot ataaagaaaa ataaagtitti atcoatatot tottogtat 1111 aasaasgitti toottitta titgatotta catacoatat attatoa toottatta catacoa tgaacaasti citgagotato colggotgoo 1111 aasaasgitti toottitta titgattita tataatti totaataga tittottit tastatoca tgaacaasti citgagotato colggotgoo 1111 aasaasgitti taattitaa tataatti totaataga citcoottig ataaaasaa agottogoo taagotgogta taaaasta agotagog 1111 aasaasgitti taattitaa tattatatti toaataga tittottig tataaasta aagotagog taagotagoo tattigga 1111 aasaasgitti taattitaa aattotata aattotatti tataataat tittitatta tatatata agotaggot tattiggagaa 1111 aagaaagoo agottigto tattitagaa aasottigg tocoostits toottitig ataaasaa tatagotag tattiggagaa 11211 aagaagoo agottigto tattitagaa aasottig gitaaasaa tattitti titottaa aastocotto gitataaaa gogtaaasaa 1122222 aagtisaasg attitggagaacoo tattitaggi cocquitta toatattii titottaata agatagga cactitad giggataasa 112222 aagtisaasg attitggag aasottig gitaaatatti tagaatatti tataaasti tittoaaggi taastootto gitataaaa gogtaaasaa 12222 aagtisaasg attitggag aasottig gitaaatatti tataaggi tattootti titaaataat tiggacaasti coccaagta agataggi 12222 aastitatto attoatti taasaatatti acgisaatta titaaaggi tattootti titaaasatti tittaaata tagataggi gadootti ataataga 12220 attoittata cocaagaggit aastitatti tataaasa attattiti taasaatatti titagaga attiggagaa aattootti 12220 aastitatto attoatti taasaaagit tittoosaa tatattiti taasaaattatti titagaa attatatti titagaagaat atgaagaaa attootti 12220 aastitatto attoatti tataaasa cattatatti taasaaa attaacti titggagaaa attagaagat agagaagaa 12200 aastitatto attoatti taasaaasta attaaas</pre>	21001	aatgataaat	tatctttaga	taaaaagga	tccgcgggat	tccaaataaa	ttgacttaag	cttaatttaa	ataatatttg	ttccttaaaa	ttaaagggta
12101 assettiats asticutta asticutti tytatotti tytatotti tatotti tatottati tatottatati tatatotti tatotti tatottatatati tatotti tatotti t	21101	tttttgctaa	gttattttt	gttcttttat	tttgatcatt	attattttca	tattotacaa	cttctccatc	atttttattt	tttttaataa	aaatattatt
1001 tastiticas tocastosa tasasagic cacgocigo: atatoling agotitigto atasagasa atasagitit atocatato totitogia 1001 tastiticas tocastosa tasasagic cacgocigo: atatoling agotitigto tasasgasa atasagitit atocatato totitogia 1001 tattatoo tatatita tocastosa tasasagic cacgocigo: atatoling agotitigto tasasgasa atasagitit atocatato totitogia 1001 tattitita ciagastati tattatasti tatatatti catastiti casastata ciagatosa tatastiti 1001 casggatasa gtastigtit ticattitia titattati tatatatti casastata agotiggi tattatata tagataggi 1001 asasagigi taattitia aggittotic casgitosa atacatiga tataatasa aggitagas tataasta tagataggi 1001 tagasago aggitgit atattisaci astoatas astitig tigasago aggitgit atattisaci astoatas astitiati tasastata tagataggi cacitigas aggitagas 1101 tagasago aggitgit atattisaci astoatas astitiati ataasaacti tactatig tigasaacci tattitaggi aggitagas 1101 tagasago aggitgit atattisaci astoatas astitiati tataasaati tititatita agataggi cacitigas aggitagas 1101 tagasago aggitgit atattisaci astoatagi taattitagi cacgata aggitagasi tatasaggitaga 1101 tagasaga attiggi agaatagi agattagi agaattagi tagasatagi tatatti tataggi agattaga 1101 tagasaga attiggi agaatagi agattagi agattagi agattaga 1101 tagaagaa attiggi agattaga tatatagi agaatagi 1102 tagaagaa attiggi agaattaga tatatagag	21201	aaaatttata	aattcattaa	attcttttt	tgtatcttta	tccttattta	tatctatatt	tatatcttct	atatttatat	ctatactagg	aaaatttta
yptic 21401tatiatocal attatitata icoatatital catacatital catacatitat catacatitat catacatitat isasastiga igatcasasa isastitut yptic 21501tatiatocal attatitata icoatatital catacatitat catacatitat catacatitat catacatitat isasastiga igatcasasa isastitut yptic 2150121601 21701 	21301	taattttcaa	tccaatcaaa	taaaaaggtc	cacggetgee	atatcttagg	agctttgtct	ataaagaaaa	ataaagtttt	atccatatct	tctttcgtat
21501 tattitti a ciagatati tataati tataatit ciasataga titotatit tatatatoo igaactaati cigaactaati asaagataa 21601 aaaaaagigi taatiitia cigaactati attataati tatatatii ciasataaa aagitaga tittiatia aggitaga aaaatta agaagaga titti tittia aggitaga aaaattaga agitaaaataa agaagaga titti tittia aggitagaa agitaaagi titgaaaaaa attitigi tigaaaaaat attataa agaagaga titti tittia tittigaa aaataatti agaataaga agitaaaaat attataa agaagaga too tactatii tittiatia agaataaga agitaaaaa agitaaaaata attataa agaagaga too tactataa agatagag too tactigaa 21001 aaaaaaagigi taatitia tataaatti tataaatta tagaaaaaa aaattatii tittaaaaatta tittaaaaatta too tactataa attaaaaata tittaaaaatta agaacaaat agaacaaatta agaacaaatta aaaaaatta tittaaaatta tittaaaaatta tittaa acaagaga aaaatta tittaaaaatta tittaaaaatta tittaaaaatta tittaaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaaatta tigaaaataatta tittaaaaatta tittaaaatta tittaaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaaaatta tittaaaaatta tittaaaaatta tittaaaatta tittaaaaatta tittaaaaataatta tittaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaaatta tittaaattaa agaagaga aattittaattaaaatta tittaaaatta tittaaaattaa tittaaaattaa tittaaaattaa tittaaaattaa tittaaaattaa tittaaaatta tittaaaattaa tittaaaatta tittaaaaatta tittaaaaatta tittaaaattaaaaaaaa	21401	tattatccat	attatttata	tccatattat	catacatatt	attaatatca	tcattattat	cataattata	taaaaattga	tgatcaaaaa	tataattttg
21601 caseguatas gtaatigtii ticatitii ittigiittas tatcatata agaccasaga tottotgota cigaacciga ggaasastia sasagatasa 21701 caseguatas gtaatigtii ticatitii aggittoti coegitosas ataccatiga istasatasa sagitogao tasgiggita itasastasi tagatatagg 21801 attitataga asasagigi tasittiita aggittoti coegitosas ataccatiga istasatasa sagitogao tasgiggita itasastasi tagatatagg 21801 attitataga asasagigi tasittiita aggittoti coegitosas ataccatiga istasatasa sagitogao tasgiggita itasastasi tagatatagg 21801 aggitasas gitataga dittigigi iggaasacca istitatagg otcogattia tastatigi iggagotat astatagga coecitic ggaatagg 21801 aggitasas gitataga asasatifi aggitasti atacatigi isgaasaat isgaasaati iggaasata 21801 aggitasas gitataga aductigigi iggaasacca istitatagg otcogattia isaatingi iggagotat astatagga coecitic ggaatagg 21801 aggitasa taccataga attigga asactifi gitasatifi igaasatata itgaatata 21801 attitata coegagaga asagtifi gitastati agtaatifi igaasatata itgaatata 21801 aattaatti cattactati isaasatagi itacoasat itatitii asagtig itagatasat attigga gatitasat itagaatai 21801 aattaatti cattactati isaasatagi itacoasat itatitii asagtig coigotiti iggaactat isaasaaati aggaagaa asagtitig 21801 aattaatti cattactati isaasatagi itacoasat itatatiti asaacaati iggaagag asaatititi 21801 aattaatti cattactati isaasatagi itacoasat itatatiti asaacaatiti itagaata aiggaagaas asitotititi 21801	21501	tatttttta	ctagaatatt	tattataatt	tatatatttt	ctaaatagac	tttctatttt	taatatacca	tgaactaatt	ctgagtcatc	ccttgcatgc
yp:1221001yp:1221001yp:1221001yp:1221001yp:1221001yp:1221001yp:1221001yp:1221001yp:122101yp:122101yp:122101yp:122101yp:122101yp:122101yp:122101yp:122101yp:122101	21601	caaggataaa	gtaattgttt	ttcattttta	tttgttttaa	tatcatatac	agaccaaaga	tcttctgcta	ctgaacctga	ggaaaaatta	aaaagataaa
ypi221001210012100121001210012100121001211121112111 <th>21701</th> <th>aaaaagtgt</th> <th>taattttta</th> <th>aggtttcttc</th> <th>caagttcaaa</th> <th>ataccattga</th> <th>tataaataaa</th> <th>aagtatcgac</th> <th>taagtggtta</th> <th>ttaaaatata</th> <th>tagatatagg</th>	21701	aaaaagtgt	taattttta	aggtttcttc	caagttcaaa	ataccattga	tataaataaa	aagtatcgac	taagtggtta	ttaaaatata	tagatatagg
ypi221901ypi222001	21801	atttatatga	aaaatataaa	attttgaaaa	aaaattttgt	gtaaaaactc	tacctatttg	atataaaatt	atttccggaa	tttttttaa	tgttgtagaa
ypic2001aagttaaaag atcitigtgia iggaaaacca tattaagg ciccgattia tcattattit tittottaaa aaatcoctic giatataaaa gagtaaaaaa2011atgittacut tottgataa taaatatti acgtaatta atacatgia taaattii tittottaaa aaattaaga caacttaac gggaatagg20201gitgaagcaa tacaataac tittitagat aaattagti giaaattatt taaagaaaat aaattaaact tagtoatagi aatgitaga atattiggaa20201gitgaagcaa tacaataac tittitagat aaattagti giaaattatt taaagaaaat aaattaaatt	21901	tgagaaagcc	aagtttgtct	atatttaact	aattcaatta	aatttttatt	tataataaat	tttttattta	taatattaat	agatagagtc	tcatttgcaa
yper22101yper2yper2yper221201yper2 </th <th>22001</th> <th>aagttaaaag</th> <th>atcttgtgta</th> <th>tggaaaacca</th> <th>tatttatagg</th> <th>ctccgattta</th> <th>tcattatttt</th> <th>tttctttaaa</th> <th>aaatcccttc</th> <th>gtatataaaa</th> <th>gagtaaaaaa</th>	22001	aagttaaaag	atcttgtgta	tggaaaacca	tatttatagg	ctccgattta	tcattatttt	tttctttaaa	aaatcccttc	gtatataaaa	gagtaaaaaa
git22201gitgitgitgitgit2201git<	22101	atgtttactt	tcttgattaa	taaataattt	acgtaattta	atacatgtat	taaattttgt	tggagctatt	aatataggat	caactttact	gggaatatgg
ypic22301 ypicypic22401 ypicypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 ypic22501 tacaggaat atatgaggt gaagtaaa tacatatt taaaatagt ttatcaaa tattatt ttatttt22501 ypic22501 tacaggaat atatgaggt gaagtaaa tacatatt ttattatt22501 ypic22501 tacatgag gtaaattct ttigaaat attaaaaa tacatatat taaaaaaa ttigaaagaa attattat ttigaaagaa attattat ttigaaagaa ttigaaagaa ttigaaagaa22601 ypic22601 typic22601 <b< th=""><th>22201</th><th>gttgaagcaa</th><th>ttacaataac</th><th>tttttagat</th><th>aaattagtta</th><th>gtaaattatt</th><th>taaagaaaat</th><th>aaattaaact</th><th>tagtcatagt</th><th>aatgttatga</th><th>atatttggaa</th></b<>	22201	gttgaagcaa	ttacaataac	tttttagat	aaattagtta	gtaaattatt	taaagaaaat	aaattaaact	tagtcatagt	aatgttatga	atatttggaa
yc1222401atotttata cicatataaa tatotacagg taatatata titataaggi tiaaticti titoaatiti titataat tagtatota ataaaatayc12aaattaatti cattactati taaaatagi tiatcaaat titattitti aaaacoctti tigaggaatag gattitaaa titatcaa aataagtagiyc12taacaggaat atatgaggit gaagtaaat attaacaaa ataagatti citycticti tiggaacotat taaaaaaati ciccoccaagta aacgtaaatiyc12taacaggaat atatgaggit gaagtaaat attaacaaa ataagattig citycticti tiggaacotat taaaaaaati ciccoccaagta aacgtaaatiyc12taacaggaat atatgaggit gaagtaaat attaacaaa ataagattig citycticti tiggaacotat taaaaaaati ciccoccaagta aacgtaaatiyc12taactgaga gtaaattoti titytaaati tittattit aaattoatti catottocaa ataattati titagataat atgaaagaaa aattottityc12taactaago aagatgggit aaattaata taagaagaa cattitggi tagattaaat aatactita tityttitaa tictitgiti aaaacagaat titgaactaayc12aaaattaata atcattiti gataaagaat cattitggi tagattaaat aatactaa attaatat tittaatti tictitaatti tattatatyc12aaaactitti toattaati tattataaa coattacto titaaataca aatactata tittatatti tigaactaayc12aaaactitti toattaatti tattataaaa coattacto titaaataa aataaatta tittaatat tittaattiyc12aaaactitti toattaatti tattataaaa coattacto titaaataca aataaatti titaaaaaaataa attatata tittaatatyc12aaaattaata attaatti tattataaa accattaaa attactaa attaaaaaatta attaaaaaatta attaaaaaatta tittaataayc12aaaattatti tattataaa attaatat tattaaaaa attatata tittaaaaaaaa	22301	cccatattat	acaaggagat	aaagcttttg	ctaattctaa	ttgaatacta	ataaaaattt	gttctaaata	gaacaaattt	ttattagtag	gattaaacat
yci222501yci222601yci222701taacaggaat atatgaggtt gaagttaaat atttaacaaa ataagattgt cctgcttett tggaacetat taaaaaaatt cccccaagta aacgtaaattyci2yci222701taacaggaat atatgaggtt gaagttaaat atttaacaaa ataagattgt cctgettett tggaacetat taaaaaaatt cccccaagta aacgtaaattyci2yci2teactgtaga gtaaattett tittgtaaatt tittattitt aaatteatt cattetta attattit tittgtaaat atgaagaaa aattettetyci2yci2teactgtaga gtaaattett tittgtaaatt tittattit aaatteatt cattetta aatattat teegggtit aaattaata titagaagaa attittittig aagattaaat aaatgtigta aatatatta teegggtigt teetatattityci2yci2yci2yci2aaattaatt teetattit teetattaat tatagaagat extittiggt tagattaaat aaatteeta tittattit teetattaatt teetattit teetattaatt teetatteetaa atteetaattit teetattaattit teetattaattit teetattaattit teetattaattit teetattaattit teetattaattit teetattaattit teetattaaa atteetaatti attittaattit teetataaaaaatteeta tittaaaaaaatteeta tittaaaaaaatteeta attaatatti attittaattit teetataaaaaatteeta attaatatti titteetataaaaaaaaaa	22401	atcttttata	ctcatataaa	tatctacagg	taatatatta	tttataaggt	ttaattcttt	tttcaatttt	ttattataat	tagtatctat	attaaaatta
yci222001taacaggaat atatgaggtt gaagttaaat atttaacaaa ataagattgt cctgcttett tggaacetat taaaaaatt cccccaagta aacgtaaattyci2taactgtaga gtaaattett titgtaaatt tittattit aaatteatt catetteaa ataagttgt aatatattat titggaagaa aattettettyci2tetactaage aagatgggt aaattaata taagaagaat attittittg aagattaaat aaatgtigta aatatattat teegggtigt tetaattityci2tetactaage aagatgggt aaattaata taagaagaat eattitggt tagattaaat aateettat titgtittaa tiettigtit aaaacagaat titgaactaayci2tetactaage aagatgggt aaattaata taagaagaat eattitggt tagattaaat aateettat tigttittaa tiettigtit aaaacagaat titgaactaayci2aaaaetttt teattaatt tattaaaaa ecattaete titaatate aateettat tigttittaa tiettigtit aaaaaaatte tittaattayci2aaaaetttt teattaatt tattataaaa ecattaete titaaaaaaatte titaaaaaaatte tittaatteyci2aataataatg aataaatte tittaataa actatteta tattaaaaaaatte tittaaaaaaatte tittaaaaaaatteyci2aataataata ataattit aettitaaa aattateta aatteetaa ateeggaaaa taaaagtaa attattetayci2aataataete titaaaaaatte tittaaaaaaaatteetaa aataaatte tittaaaaaaaatteetyci2aataataete titaaaaaaa attaatta aatteetaa aatteetaa aataaattee titaaaaaaaataa attaatteetaayci2aataataeet titaaaaaaattee tittaaaaaaaa attaatteeta aatteetaa aataaagtaa attateetaayci2aataataeet titaaaaaaaa attaatteetaa aatteetaa aatteetaa aatteetaa attaaaaaaaa	22501	aaattaattt	cattactatt	taaaatatgt	ttatcaaatt	ttatttttt	aaaacccttt	tgaggaatag	gatttttaaa	tttattcata	aatatagtaa
ypt222701taactgtaga gtaaattott tttgtaaatt ttttatttt aaattoatt catottoata ataattatt ttatgataat atgaaagaaa aattottottypt2totactaago aagatgggt aaattaata ttaagaagat atttttttg aagattaaat aaatgttgta aataatatt tcogggttgt totatatttypt2totactaago aagatgggt aaattaata ttaagaagat atttttttg aagattaaat aaatgttgta aatatatat	22601	taacaggaat	atatgaggtt	gaagttaaat	atttaacaaa	ataagattgt	cctgcttctt	tggaacctat	taaaaaatt	cccccaagta	aacgtaaatt
yc1222801totactaago aagatgggtt aaatttaata ttaagaagat attttttt gaagattaaat aaatgttgta aatatatta toogggttgt totatatttycf2taaatacata atoattttt gataaagaat catttggt tagattaaat aatacttat ttgttttaa ttottgtt aaaacagata ttgaactaaycf2aaaactttt toattaatt tattaaaaa coatttacto tttaatata aatacatt ttgttttaa ttottgtt aaaacagata tttgaactaaycf2aaaactttt toattaatt tattaaaaa coatttacto tttaatata aatacatt ttaaaatat otttaattycf2ataataata aataaatto tttacttgta tgacttaaa atooggaaaa taaaaattt ttaaaaaa aataaatga attaatat ttttaattycf2aataataaa attaatatt actttaata aattttaat attttaaaaa attaaaaa attaatatt actttaaat aattattotycf2aataatacot ttaaaaagat tataaaataa attatotat attaaaaaa attaatata aattatta tataaaaaa	22701	taactgtaga	gtaaattett	tttgtaaatt	ttttatttt	aaattcattt	catcttcata	ataatttatt	ttatgataat	atgaaagaaa	aattettett
taaatacatatatatatatatattatatatatattatatatatatatatatatattatatatatatatatatatatatatatatatata	22801	tctactaagc	aagatgggtt	aaatttaata	ttaagaagat	atttttttg	aagattaaat	aaatgttgta	aatatattat	tccgggttgt	tctatatttt
23001 23101 ycf2aaaactttt toattaatt tattataaaa ocattacto tttaataca aatattoaa tttaatto attaatt tttaatt ttaataata aataaatto tttaatta ttttaatt ttaataata aataaatto tttaatta ttttaatt ttaataataa aataaatto tttaatta ttttaatt ttaataataa aataaatto tttaatta aattaataa aataatacot ttaaaaaataa attatta aattaataa aattaataa	22901	taaatacata	atcattttt	gataaagaat	cattttgagt	tagattaaat	aatactttat	ttgtttttaa	ttctttgttt	aaaacagata	tttgaactaa
23101 ycf2ataattaatg aataaattte titaettigta tigaettataa ateegagaaa taaaaattte titaataaa aataaatgta atttaataa tittitaataa taataataa attaattt aetttaataa aattaatte tittaataa attaataa attaataa attaataa aataataace titaaaaagat tataaaataa attaettaa attaaaaaaa ataaaagaa ataataataa aaaatttta eetttaaaa attaetaata attaetaa aattaaaaaaaa	23001	aaaacttttt	tcatttaatt	tattataaaa	ccatttactc	tttaatatca	aatattcaat	tttataatct	attaaatatt	cttttaattt	atttttattt
yc12 23201 ycf2 23301 aataatacct ttaaaaagat tataaataa attattat tattataa attattat tattat	23101	ataattaatg	aataaatttc	tttacttgta	tgacttataa	atccggaaaa	taaaatttt	ttaataataa	aataaatgta	atttaatata	tttttaatat
23301 aataatacct ttaaaaagat tataaaataa attatcata ttaagaaaat ataaagtata attatccgt tttaactcaa ttatataga aggtatcata ycf2 23401 aaaatttta ctttcataaa tgttgtacgt aattcattag agtattcata aactgaaaaa ataaatgaac ttaaaaaata aaaaattaat attaaaaaaa ycf2 23501 aatatattt tggtaataca aaaattttt tttctttaat taaaaaaatt tcttcgtata aaataatatt ttttaataa ttatttta tttcgactac ycf2 23601 catatttaac tttaatttg tagtatata attaataaaa ttttttaat aattaaaaat aataaaatt ctattatta taataaaat aataaattt ycf2 23701 attttttca ttaataata aattaaagta attagatttt gaaaaataaa taaaaataaa ataatatat ttttaatac gctaaagta agaaaccaaa ycf2 23801 attatattt ttttaataa ttaaattaa attaaataa tagaataaa taataataa attattt ttatattt tttttt	23201	aattaataaa	attaatattt	actttataat	aatttttact	atttaaaata	atattattta	tatttttaaa	ccttaaaaaa	taataagaat	atattattct
yof2 aaaatttta ctttcataaa tgttgtacgt aattcattag agtattcata aactgaaaaa ataaatgaac ttaaaaaata aaaaattaat attaaaaaaa yof2 atatatatt tggtaataca aaaattttt tttctttaat taaaaaaatt tcttcgtata aaataatt ttttaataat ttattttta tttcgactac yof2 catattaac tttaatttt tggtaataca aaaattttt tttctttaat taaaaaaatt tcttcgtata aaataattt ttttaataat ttatttta tttcgactac yof2 catatttaac tttaatttt tggtaataca aaaattttt tttctttaat taaaaaaatt tcttcgtata aaataattt ttttaataat ttatttta tttcgactac yof2 catatttaac tttaatttg tagtatata attaataaaa tttttt gaaaaataaa taaaaataaa ataaaataa ataatatt ttttatta	23301	aataatacct	ttaaaaagat	tataaaataa	attatctata	ttaagaaaat	ataaagtata	atttatccgt	tttaactcaa	ttatatatga	aggtatcata
23501 atatatatt tggtaataca aaaattttt tttotttaat taaaaaaatt tottogtata aaataatatt ttttaataat ttattttta tttogaotac 23601 catatttaac tttaatttg tagtatata attaataaaa ttttttaata aattaaaaat aataaaatt tottogtata aaataattt ttttaataaat ttattttta tttogaotac 23601 catatttaac tttaatttg tagtatatat attaataaaa ttttttatat aattaaaaat aataat	23401	aaaatttta	ctttcataaa	tgttgtacgt	aattcattag	agtattcata	aactgaaaaa	ataaatgaac	ttaaaaaata	aaaaattaat	attaaaaaaa
23601 catatttaac tttaatttg tagtatatat attaataaaa ttttttatat aattaaaaat ataata	23501	atatatattt	tggtaataca	aaaattttt	tttctttaat	taaaaaatt	tcttcgtata	aaataatatt	ttttaataat	ttattttta	tttcgactac
yorz 23701 attttttca ttaataatat aattaaagta attagatttt gaaaaaataaa taaaaataaa atatatat	23601	catatttaac	tttaattttg	tagtatatat	attaataaaa	tttttatat	aattaaaaat	ataataattt	ctattattta	taatataaat	aataatattt
23801 atatatatt tittaataaa taaatttaa atttaataaa tagaataata tatttitti titatggtigt attittaata attittitti catttaaatt ycf2 23901 gggtaaatta ataatttit titcatttaa attgggtaaa taataatti tittitcatt taaattgggt aaattaataa tittittitc aaaatticca	23701	attttttca	ttaataatat	aattaaagta	attagatttt	gaaaaataaa	taaaaataaa	atatatatat	ttttatatcc	gctaaaggta	agaaaccaaa
23901 gggtaaatta ataatttttt tttcatttaa attgggtaaa ttaataattt ttttttcatt taaattgggt aaattaataa tttttttttc aaaatttcca	23801	atatatattt	ttttaataaa	ttaaatttaa	atttaataaa	tagaataata	tattttttt	ttatggttgt	attttaata	attttttt	catttaaatt
vet2	23901 vcf2	gggtaaatta	ataattttt	tttcatttaa	attgggtaaa	ttaataattt	tttttcatt	taaattgggt	aaattaataa	tttttttc	aaaatttcca

									1010101010	0100
24001 f2	gaaatattta	taaatgaatt	aatatcttta	taataattat	tataagaatt	aaaggattta	tataaactat	aactatattt	ataactattt	ttttttta
24101	atatataatt	atatattaat	ttattattat	taaatatttt	aatactgatt	ttatgtttaa	taaaatcagt	attaaaatat	ttaataagat	tattataaag
24201	aaaattatca	atgttaatag	tttttttat	aataaaagga	aattttttt	tacataataa	aagattatta	agtgttttaa	aattattaaa	tttatttgac
4301	ttataaaacg	aagatattaa	tgattttta	taaaaatat	tattttcaga	aaataatccc	atttctggaa	tacaaacaaa	tattgtgtat	aaataataag
401	gattattata	tttataattt	aataatttat	ttttttaga	atatttattc	gaataattat	aatcataatt	taataataag	tactttttaa	tattatttt
01	aatattaata	cttattgaat	ttaatttaat	atttttaaa	ttaataatta	aacttttaaa	aatttcaaaa	gttttaataa	ttagtctatc	tctcgaaaca
01	aaataaaata	aaaattcttt	aattcttaaa	tttattattt	ttaattttt	gaggcagagt	ttattaaatt	tatttatatt	tataataata	ttatgtatat
1	ttataataat	attatgtaat	attttttt	tataaattaa	ggggttatca	aacgttattt	ttatatattt	aaagtttgat	tttttattat	attttaattt
1	atatttagtt	cttaataata	attctgaaaa	atatgataaa	attttatta	tatatatatc	tatagatata	tatttttcgg	gatatgataa	aattttttga
1	attgatatag	tatttttaa	ataaataatt	atttttagta	tattaaaaat	ttctttattt	tcatattgtt	taaaaaata	tagttcaata	tttttataa
	acttatttt	atttaaatta	ttttttcta	taattaaatt	aagttcagac	atataatctg	aatttaattt	attatgttta	ttataactat	taaaagtttc
	ttttaaagaa	atatttttg	ataataaaga	aaaactaaat	ttattggaaa	catagaaatg	aggctttta	tttttttaa	taacttttat	agataaagga
1	agaagtttta	ttaaatatat	attttattt	tcaattaaat	ttttattact	aatatgaaaa	aaaaaaaaa	atgataaaac	taaaaaatt	aaacctttaa
1	ttttaagtat	taaacatttt	ttttctcctt	ttgattttaa	taatgaattt	aaaatagtta	aatttcttat	attaaaaatc	tttaaaaaac	gctccggatt
1	taatataaaa	ttaattatat	ttattataaa	atttaaatta	atccataaat	attgataatc	ttttatttct	ctaaaaactt	cttttaattc	taaaaataa
1	aaatgaaatt	gacttttata	tttttcata	aaattootoo	ttatatgttt	atttatatgt	ttatgtgtta	tactaattta	tatattatat	tttttagca
)1	tccatggctg	agtggttaaa	gcgcccaact	cataattggt	gaatgcgcag	gttcaattcc	tactggatgc	atatgtttat	ttatatttat	tatttatata
U 1	tatatataat	atatataaat	ttttattta	aaatattttc						

Chapter 5. Summary

In this dissertation, a successful application of ptDNA enrichment protocols in *Mitrastemon kanehirai* was reported. These protocols are inexpensive, not timeconsuming and do not need large amount of plant materials. These protocols can be very likely applied to other non-photosynthetic plants, to facilitate the studies of the plastid genome of heterotrophic plants.

By examining mt19S, pt16S and nr18S rDNA sequences from several heterotrophic plants, I found there is no correlation of evolutionary rate patterns among the three subcellular SSU rDNAs in heterotrophic plants. Although this research did not cover all of heterotrophic plants, it is the first study to analyze substitution rates of all three SSU rDNAs in heterotrophic plants. The result indicates that the accelerated evolutionary rate is not synchronized among the three subcellular SSU rDNAs for the same species, and the phenomenon is not ubiquitous in heterotrophic plants. It seems that the non-photosynthetic lifestyle has less impact on nucleotide substitutions in mitochondrial genome compared to the nuclear and plastid genomes. However, many factors could affect the evolutionary rate of plant genomes. I am looking forward having one non-photosynthetic plant with its three genome sequenced in the near future to give us a comprehensive view of subcellular genomes interaction in non-photosynthetic plants.

I reported the smallest plant plastome from *M. kanehirai*, with size of 25,740 bp, which encodes 4 rRNAs, 4 tRNAs and 18 protein-coding genes. The inverted repeat region is absent in *M. kanehirai* plastome, and *ycf2* and *rrn* genes included in IR were retained. This research gives us a broader view and deeper insight into the process of plastome evolution in heterotrophic plants, and provides more evidence to the 'enssential tRNAs' hypothesis. In addition, I addressed the challenge in sequencing non-photosynthetic plant plastomes. The sequence divergence, as well as the high AT content would be problematic in PCR-based amplification and the following sequencing. Also, I pointed out the correlation between the pt16S substitution rate and the plastome size in heterotrophic plants. The variation of pt16S sequence will serve as a good indicator for plastome size, helping researchers to evaluate appropriate targets for studying heterotrophic plant plastomes.

This dissertation described a practical application of plastid enrichment protocols in heterotrophic plants and evolutionary rate heterogeneity among SSU rDNAs in heterotrophic plants. It provides very useful experimental information of studying heterotrophic plant plastomes and the results confirmed that there is no pattern of the rate heterogeneity associated with plant life form. More important, this dissertation reported the smallest plastid genome that have been described and it helps us further understand the process of plastome evolution in heterotrophic plants.

Appendix

Amaranthaceae

Species nr18S Taxa mt19S pt16S **Basal angiosperm** Amborellales Amborellaceae Amborella trichopoda AF193987 NC005086 U42497 Piperales Aristolochiaceae Aristolochia macrophylla DQ008674 DQ629461 AF206855 Hydnoraceae Hydnora africana U82637 U67745 L25681 Saururaceae Saururus cernuus DQ008732 HQ664635 U42805 Winteraceae NC_008456 Drimys granadensis Winteraceae Drimys winteri AF197162 U42823 Laurales HQ664631 Lauraceae Cinnamomum camphora DQ008711 AF206888 Laurus nobilis AF193990 AF197580 Lauraceae Lauraceae Sassafras albidum U52031 **Monocots** Asparagales Asparagaceae Asparagus officinalis DQ008678 Iridaceae Iris sp. AF161087 Orchidaceae HM640780 Apostasia wallichii HQ183491 Orchidaceae Cymbidium goeringii AJ271248 Oncidium ensatum Orchidaceae HM640779 Orchidaceae Oncidium Gower Ramsey NC014056 Orchidaceae Phalaenopsis equestris NC017609 **Eudicots** Brassicales Brassicaceae NC_000932 X16077 Arabidopsis thaliana Brassicaceae NC_016123 Brassica juncea Brassicaceae Raphanus sativus AB694743 NC_010323 Caricaceae Carica papaya U42514 Caryophyllales

FQ014226

Beta vulgaris

				10 4:4 10 0
Caryophyllaceae	Silene latifolia	NC014487	NC016730	X Y
Caryophyllaceae	Silene vulgaris	HM562728		(AA)
Ericales			Y	A A
Clethraceae	Clethra alnifolia		A. A	AF419793
Monotropoideae	Pyrola picta			U59936
Symplocaceae	Symplocos paniculata		HM164068	SPU43297
Theaceae	Camellia obtusifolia		HM164060	
Theaceae	Stewartia malacodendron		HM164067	
Lamiales				
Oleaceae	Olea europaea			L49289
Oleaceae	Olea woodiana		NC015608	
Pedaliaceae	Sesamum indicum		NC016433	AJ236041
Plantaginaceae	Antirrhinum majus		GQ997041	AJ236047
Plantaginaceae	Digitalis purpurea	AF193999		
Plantaginaceae	Veronica agrestis	AY818950		
Malvales				
Cytinaceae	Cytinus ruber	U82639	U47845	L24085
Solanales				
Convolvulaceae	Convolvulus arvensis			AJ236013
Convolvulaceae	Ipomoea hederacea			U38310
Convolvulaceae	Ipomoea purpurea		NC009808	
Solanaceae	Nicotiana tabacum	BA000042	NC001879	
Solanaceae	Solanum tuberosum		NC008096	
Santalales				
Balanophoraceae	Corynaea crassa	U82636	U67744	L24400
Erythropalaceae	Heisteria concinna		HQ664616	L24146
Santalaceae	Lepidoceras chilense	U82641		
Santalaceae	Santalum album			L24416
Ximeniaceae	Ximenia americana		GQ997924	L24428
Vitales				
Vitaceae	Vitis vinifera	NC012119		