MBS LBFAFRTARRY 5 UL 5

# L3k <

Graduate Institute of Networking and Multimedia

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

A TR @ B R

Link Discovery with Unlabeled Data

2

NFIE

Tsung-Ting Kuo

Jfﬁ Wk i w21
Advisor: Shou-De Lin, Ph.D.

PoER R 103 & 17
January, 2014



R 12 K2 2 3
Déikré‘ﬁ @'%Ra

AAZLBE R ZERH
Link Discovery with Unlabeled Data

A thIFER (5% DI7944007) Eliiﬁ;ﬁ‘kﬁ’“%éﬁ]&%
REBBARATRZIBETEMB  PRE-—EGE=F—A 8K
THFRRZBEEFLRBR OAKRAE » FFILFEHA

DRER 71%437“ f{m (E8)
AR
Ak%k kL
5 4




s

I'é R Lr,FJ\mﬂ_‘_. a}{mf—yﬁ s e 7,[,\}3 j—x I y & 3 i*ﬂ{lgﬂm%r"ﬁf’ T‘lz\— i
I3ehg Eofed RN E S FGHF - Fo PP oo o B d Rt E
%éwimﬁﬂioﬁﬁkﬁﬁ%J’%{Ekﬁﬁﬁ’%ﬁﬁm R

LB REHDH L8 TR U ORI T R
W BT RFES S RTER L ERETE BHEREE L § %
5‘_3,—%‘3, nggj\:, B F ot g ;}F];g‘, )fL ﬁaf_l g,« ’é-n, qu 7#}3%’1’573’
TAREEF 0 FROREET 0 PPN EEF 0 R B EEE 0 RAPE KEF o RER K F
%‘-7?5#'5’—"55'?“ PR R AR o TRMAGRTFAFANER R M X Ko
PR B £ FF o BRATR K EF o e KEF o R B0 T KRR o gt ek S B S Y
FAR AR S AR iﬁ’ﬁi:iﬁ’ﬁﬁﬂiﬁ’_ﬂﬁ%ﬁ’ﬁﬁﬁiﬁ’ﬁﬁf%
R e %?{,5;3_4:—“2 oo s BERA ERRE AT
I B LY RARLESF I AFOMIR

F_‘. %
ht!
e
b
N5

N A N L %) N RETBEE CERR A ZE o AEE > P E o EZ
WHEFE ﬁ,ygﬁu HwE L FFH o EegsE, U PATEF R F o ok
Booo # BHPURAR LR o 0 E e k% 1 B 5 & Rahflp o

¢¢ﬁ%§%i’ﬁ%%’ﬁ@%’%ﬂﬁ’%m%,igm,%uﬁ’A%%ﬂﬁ
FrERFRRRBE > FIFEVEZ XL PLEFE o0

a0 B Ak BAAE S F AP R e

ﬁﬁﬁ’uiﬁﬁvﬁéﬁgﬁa:Aﬁﬁ’%ﬁafiﬁimg
EHE ARTHRpAmEg > L mrfERs g i*ﬁ%%ﬁ#’uimﬁ
A ERFLL A REE ’—"'Lry :?{B%“«ﬁ im;.:féf'ft'ﬁ}:@ﬂ

R FA cht FEAE R cho R 0 b 0 §§ 0 MR 0 didks o Ak o 4R
& oo s 28 5 A4k L0 W BE RS o

Botd o H IR AR BT R dod i i Ok iRfodn 3

Wk-hdh2 o BR AR L afFR 2 b EF |



F &

AR A A b o BIBE T KT U Rk gy i o BB RE - g@ 4 Ak
fe R P FELE G ‘J’mlﬂ?g o #X PR T S A AP RS Ra E BoE R
Fe Tl o kY > APFT - BETREFRAEOITG e D FRA
iz @ AP BT BFAL RIFRS AR AR TR RR?
Ftkie 2 MR 2 B R Afie2 Bl o B PAEL D RPVRG R
CARE TR TR ERR Y B B AR o SRR AR
% S ARHDEN S REE LR ROTR o DFRAF TR o APy
AF S EREROTHE L RER R UHREAPIR DD R FRES LR
AT IS 2T RSN S R A RET R LR FRT R AF £ A
e s P e

AN

\? *w
34
Lt
=

MitF:

BREER BB FAES G PEEY AR PEIRUEY U A
3 e



Abstract

Many social, academic, biological, geographical, and information systems can be described
by networks. Link discovery is a kind of task aiming at identifying hidden links in a social
network. However, in some cases, the labels of the links to be discovered is not available. In
this dissertation, we investigate such a novel aspect of the link discovery task: the problem of
discovering unlabeled links. Specifically, we conduct two studies to predict two kinds of
unlabeled links respectively: links that represents unlabeled relationship in heterogeneous
networks, and links that represents unlabeled diffusion in homogeneous networks. The main
challenge of these tasks are the lack of labeled data, thus prevents the direct exploiting of
traditional classification approaches. To address this challenge, we design learning-based
frameworks to integrate diverse information and solve the corresponding link discovery
problems in the two studies. Also, we conduct experiments on various real-world datasets to
evaluate our proposed frameworks. The promising experiment results not only demonstrates
the usefulness of the proposed models, but also indicates that discovering links without
labeled data is feasible in many practical scenarios.

Keywords:

Link discovery; Link prediction; Data mining; Machine learning; Social network;
Probabilistic graphical model; Natural language processing
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Chapter 1 Introduction

1.1 Problem and Motivation

Many social, academic, biological, geographical, and information systems can be
described by networks (tree-structured, homogeneous, heterogeneous, etc.), where nodes
represent individuals, and links denote the relations or interactions between nodes [31]
[32] [39]. Given such networks, Link discovery tries to estimate the likelihood of the

existence of a link between two nodes, based on observed links and the attributes of nodes

[16].

Table 1-1. Summary of two studies of link discovery with unlabeled data.

Study Unlabeled Network Publication
Link prediction using aggregative
P . .g g9req Relationship | Heterogeneous [30]
statistics
Diffusion prediction of novel topics | Diffusion | Homogeneous [28]

However, in some cases, the links to be discovered is not labeled in training data.
Link discovery becomes much more challenging given such scenario. In this dissertation,
we investigate the problem of discovering unlabeled links (links of specific attributes
which are never observed in training data). Specifically, we conduct two studies to predict
two kinds of unlabeled links respectively (Table 1-1): links that represent unlabeled

relationship in heterogeneous networks, and links that represent unlabeled diffusion in



homogeneous networks. An example of unlabeled relationship prediction is to predict the
“like” relationship in Foursquare; due to the privacy policy, labels of the relationship (i.e.,
whether a user like a post or not) is not revealed. On the other hand, an example of
unlabeled diffusion prediction is to predict whether a user will response a post about
“iPhone 6”, before any post about “iPhone 6 actually exists (that is, we only have labels
for posts such as “HTC” and “iPad”, but not for “iPhone 6). The two unlabeled link

prediction studies are described in detail as follows:

(1) Link prediction using aggregative statistics (discovering links of unlabeled
relationship in heterogeneous networks) [30]. Most of the social network services
allow users to express their opinions (such as “like” or “+1”) to messages posted by
other people, and such individual opinions are valuable for many reasons. However,
due to privacy concern, opinion holders are sometimes hard to be determined.
Fortunately, the aggregative statistics of articles (i.e., how many people like this
article) is usually available in such websites. In this study, we target to predict the
links of unlabeled relationship. We try to answer a question: can we predict links
representing a specific relationship in a heterogeneous network without any labeled
data, but using the aggregative statistics as well as some attributes provided by the

heterogeneous social networks only?

(2) Diffusion prediction of novel topics (discovering links of unlabeled diffusion in
homogeneous networks) [28]. Most of the data-driven link discovery approaches
assume that in order to train a model and predict the future diffusion of a topic, it is

required to obtain historical records about how this topic has propagated in a



homogeneous network. We argue that such assumption does not always hold in the
real-world scenario, and being able to forecast the propagation of novel or unlabeled
topics is more valuable in practice. In this study, we try to forecast the link of
unlabeled diffusion. We try to answer a question: can we predict the future diffusion
of without labeled training data about how this kind of diffusion has propagated in a

homogeneous network?



1.2 Challenge

Although discovering links using unlabeled data is valuable, solving the problems of the

two proposed studies it is not trivial because of the following challenges:

(1) Link prediction using aggregative statistics. There are three challenges to solve the
problem in this study. First, the absence of labeled training data prevents us from
performing parameter learning in a straightforward way. Next, in a heterogeneous
network, the information of different types of vertices and links are diverse but
correlated with each other. A suitable model has to carefully model such correlation
together with the aggregative statistics. Finally, since the type is unlabeled,
presumably the possible candidate-link count approaches O(n?) where n is the total
number of nodes. When n is large, this can cause serious sparsity problem, while

finding the links in such a large space can be very challenging.

(2) Diffusion prediction of novel topics. In the problem of this study, the past diffusion
behaviors of novel topics are missing, which makes this problem difficult to be solved.
That is, without historical training data of the novel topics, it is not easy to maintain

reasonable prediction performance.



1.3 Methodology, Dataset and Experiment

To address the challenges for predicting unlabeled links, we design learning-based
frameworks to integrate diverse information and solve the corresponding link discovery
problems in the two studies. Also, we conduct experiments on various real-world datasets
to evaluate our proposed frameworks and get promising results. The two proposed

solutions, datasets, and experiment results, are introduced briefly below.

(1) Link prediction using aggregative statistics. In this study, we cannot apply
supervised learning methods directly, because we do not have any labeled
relationships in the training stage. Instead, we devise a novel unsupervised framework
to integrate three kinds of information: candidate, attribute, and count. The proposed
framework includes three main components: a three-layer factor graph model and
three types of potential functions; a ranked-margin learning algorithm for parameter
tuning; and a two-stage inference algorithm for link prediction. Also, we evaluate our
method on four diverse scenarios using four datasets: preference prediction
(Foursquare), repost prediction (Twitter), response prediction (Plurk), and citation
prediction (DBLP). We further exploit nine unsupervised models to solve this

problem as baseline, and our approach wins out in all scenarios significantly.

(2) Diffusion prediction of novel topics. In this study, we devise a supervised learning
framework to solve the problem, because we do have labels for other kinds of
diffusions. We exploit the latent semantic information among users, topics, and social
connections as features for prediction. Specifically, we integrate four kinds of

information: topic, user, user-topic, and global information. Our supervised-learning-
5



based framework is evaluated on real data collected from public domain. The

experiments show promising AUC improvement over baseline methods.



1.4 Literature

As an important task in recent data mining field, link prediction mainly solves the
following problems [39]: (1) reconstruction of networks [44] [50] [58], which considers
the reconstruction of networks from the observed networks with missing and spurious
links; (2) evaluation of network evolving mechanisms [35] [66], which studies the
evolving models of networks; and (3) classification of partially labeled networks [14] [65],
which is given a network with partial nodes being labeled, predicting the labels of these

unlabeled nodes based on the known labels and the network structure.

In terms of methodology, the link prediction approaches can further be divided into
two categories: supervised learning [4] [11] [18] [37] [40] [56], and unsupervised learning
[1] [3] [6] [17] [22] [24] [43]. However, most of the proposed approaches aim at seen
links (links of seen node, topic, and type), thus cannot be applied directly to solve the
problem of discovering unlabeled links. The literatures and our proposed solutions are

summarized in Table 1-2.

Table 1-2. Summary of literatures and our proposed solutions.

Labeled Data Unlabeled Data
Unsupervised | [1] [3] [6] [17] Link prediction using aggregative statistics
Learning [22] [24] [43] (Chapter 2)
Supervised [4] [11] [18] Diffusion prediction of novel topics
Learning [37] [40] [56] (Chapter 3)




1.5 Contributions

The contributions in this dissertation are three-fold:

Problem. We propose a novel problem of discovering unlabeled links, and conduct
two related studies to predict links of unlabeled relationship in heterogeneous
networks (link prediction using aggregative statistics), and links of unlabeled

diffusion in homogeneous networks (diffusion prediction of novel topics).

Solution. We devise two diverse learning-based frameworks, to integrate the diverse
information and solve the unlabeled link discovery problems. For the link prediction
using aggregative statistics task, we integrate candidate, attribute and count
information in an unsupervised learning framework. For the diffusion prediction of
novel topics task, we integrate the topic, user, user-topic, and global information in a

supervised learning framework.

Experiment. We conduct experiments on real-world datasets (Foursquare, Twitter,
Plurk, and DBLP). The results show that our proposed frameworks provide

reasonably high performance and can solve the unlabeled link prediction problems.



1.6 Dissertation Organization

The remainder of this dissertation is organized as follows. In the next chapter, we present
the link prediction using aggregative statistics problem and explain how we tackle this
problem. In Chapter 3, we introduce and solve the diffusion prediction of novel topics

problem. Then, in Chapter 4, we provide concluding remarks of this dissertation.



Chapter 2 Link Prediction Using

Aggregative Statistics

The concern of privacy has become an important issue for online social networks. In
services such as Foursquare.com, whether a person likes an article is considered private
and therefore not disclosed; only the aggregative statistics of articles (i.e., how many
people like this article) is revealed. This study tries to answer a question: can we predict
the opinion holder in a heterogeneous social network without any labeled data? This
question can be generalized to a link prediction with aggregative statistics problem. This
study devises a novel unsupervised framework to solve this problem, including two main
components: (1) a three-layer factor graph model and three types of potential functions;
(2) a ranked-margin learning and inference algorithm. Finally, we evaluate our method
on four diverse prediction scenarios using four datasets: preference (Foursquare), repost
(Twitter), response (Plurk), and citation (DBLP). We further exploit nine unsupervised
models to solve this problem as baselines. Our approach not only wins out in all scenarios,
but on the average achieves 9.79% AUC and 12.81% NDCG improvement over the best

competitors.

10



2.1 Overview

Most of the social network services allow users to express their opinions (e.g., “like” or
“+1”) to messages posted by other people. Such individual opinions are usually
valuable: companies can identify a specific customer’s preference, and government can

recognize the will or desire of target influential person.

However, due to privacy concern, opinion holders are sometimes concealed. An
example is Foursquare.com, a popular location-based social network websites. In
Foursquare, users can post tips to certain venues of their interest, and other people may
“like” the tips. Nevertheless, the information about which user likes which tip is generally

not available to public due to the privacy concern.

Another example is Pinterest.com, which is a pin-board-style photo sharing website.
In Pinterest, users can “like” or “repin” others’ images, but only a little portion of such
information is available due to internal limitation of Pinterest (only first 24 “like” and
first 8 “repin” are shown on the webpage). Thus, it is difficult to gather a full spectrum of

information about each individual’s opinion under such circumstances.

Fortunately, aggregative statistics of opinions are usually available. For example,
the total count of “like” of each tip in Foursquare is accessible, and the total count of “like”
and “repin” of an image in Pinterest is also obtainable. Such aggregative statistics are
important because it is usually the only available clue to understand the quality of certain
item without violating the policy rule. Hence, this study tries to address a problem: can

we predict a link between a user and an item (e.g., whether a user likes a tip) using the

11



aggregative statistics together with other information in a heterogeneous social network?

We generalize the question to an unseen-type link prediction with aggregative
statistics problem. The term unseen is used because we assume it is not possible to obtain
which person likes which tip from data (therefore, such “like” link can be regarded as a
kind of relationship that is previously unseen). From link prediction point of view, one

can assume there is no labeled training data available of such type of links.

An example we use through this study is a network gathered from Foursquare
(Figure 2-1). There are 7 nodes and 7 links with 3 node types (users, items, and categories)
and 3 link types (be-friend-of, own, and belong-to). We want to predict the existence of
“like” links (e.g., whether user u: likes item r2 or not) using the aggregative statistics (e.g.,
total like count of the item r2 is t(r2) = 1). Note that the links of “like” type is unseen,

which means we do not see such link at all in the data.

12



be-friend-of
<
User 0 )/

/
; 7
like 7,

7

own

t(ry) =2 t(ry) =1

Item tr) =1

belong-to

Category @

Figure 2-1. The unseen-type link prediction with aggregative statistics problem in a

heterogeneous social network.

Most of the link prediction literatures aim at predicting links of seen types (i.e., some
labeled historical links are available as the training data) [35] [39] [62], thus cannot be
applied to our problem. Some researchers predict links of unseen types using external
node group information [33], but those information are not always available. As in the
Foursquare example, the only available information in our problem is the aggregative

statistics. Nevertheless, our problem is non-trivial due to the following three challenges:

e Lack of labeled data. The absence of labeled training data prevents us from

performing parameter learning in a straightforward way.

* Diverse information. In a heterogeneous social network, the information of different
types of nodes and links are diverse but correlated with each other. A suitable model is

needed to represent such correlation with aggregative statistics.

13



» Sparsity of links. Since the type is unseen, presumably the possible candidate-link
count approaches O(n?) where n is the total number of nodes. When n is large, this can
cause serious sparsity problem, while finding the links in such a large space can be

very challenging.

In this study, we try to address these challenges by proposing a novel unsupervised
probabilistic graphical model. First, we devise a factor graph model with three layers of
random variables (candidate, attribute, and count) to infer the existence of unseen-type
links. Second, we define three types of potential functions (attribute-to-candidate,
candidate-to-candidate, and candidate-to-count) to integrate diverse information into the
factor graph model. Third, we design a ranked-margin learning algorithm to automatically
tune the parameters using aggregative statistics. Finally, we design a two-stage inference
algorithm to update the candidate-to-count potential functions, and optimize the outputs.

The main contributions of this study are as below:

* We propose and formulate a novel yet practical problem to predict the links of unseen-

type using aggregative statistics in heterogeneous social networks.

* We devise an unsupervised learning framework to solve the above-mentioned problem.
Note that the framework we propose can be exploited not only for probabilistic
graphical models, but for all kinds of general situations where only aggregative

statistics are available for learning.

14



* We evaluate our method on four diverse scenarios using different heterogeneous social
network datasets: preference prediction (Foursquare), repost prediction (Twitter),
response prediction (Plurk), and citation prediction (DBLP). We also apply nine
unsupervised models for this problem as baseline. Our model not only wins in all
scenarios, but also achieves on the average 9.79% AUC and 12.81% NDCG

improvement over the best comparing methods.

15



2.2 Problem Formulation

We start by formulating the problem.

Definition 1. Heterogeneous social network N = ('V, E, Qv, Q) is a directed graph,
where V is a set of nodes, Qv is a set of node labels, Qe is a set of link labels, and E €Vx

Qe xVis a set of links.

The function type(v) — lv maps node v onto its node label Iv € Qy. Similarly, given
a triplet < source, link-label, target > as a link, the function type(e) — Ie maps link e onto

its link label Ig € Q.

For the example shown in Figure 2-1, there are 7 nodes and 7 links, with Qy =
{ “user”, “item”, “category” } and Qe = { “be-friend-of”, “own”, “belong-to” }. For
brevity, we denote U € Vas the set of node for type = “user”, R € Vfor type = “item”,

and C < Vfor type = “category”.

The relationship between node labels and link labels can be enumerated. For instance,
a user u may “be-friend-of” another user v (i.e., < u, “be-friend-of”, v >); a user u may
“own” an item r (i.e., < u, “own”, r >), and an item r may “belong-to” a category c (i.e.,

<r, “belong-to”, ¢ >).

It should be noted that the number of items, |R|, is equivalent to the total number of
“own” links, and is also equivalent to the total number of “belong-to” links (i.e., each item

can only be owned by one user, and can only belong to one category).

16



Definition 2. Unseen-type links is a set of links with a special type “?’; links of such type
do not appear in a given heterogeneous social network. That is, unseen-type links @ =

{o|p=<source, “?”, target >, type(source) € Qv, type(target) € Qv, “?” € Q¢ }.

For the example in Figure 2-1, the unseen-type links denote the “like” behavior. That
is, @ ={ <u, “like”, r > } denotes the set of links that user u likes item r. We use < u, r >
to denote the candidate pairs of unseen-type links, and there are |U| - |R| = 6 plausible

candidate pairs in Figure 2-1.

Definition 3. Aggregative statistic is the total unseen-type link count of a target node. In
other words, the aggregative statistic of a node v eV is a(v, @) = | { ¢ | ¢ = < source,

“?”, target > € @, target = v } |, which is a non-negative integer.

In our example, the aggregative statistic of an item r. ER isa(r2, @) =|{ ¢ |p =<

u, “like”, r>e @, r=r2}|=1

Definition 4. Aggregative statistics of a heterogeneous social network T(N, @) ={ <\,
a(v, @) > | v €V }is the set of aggregative statistics of the unseen links for a heterogeneous

social network N.

In Figure 2-1, the aggregative statistics of heterogeneous social network N is T(N,

D)={<r,2><r,1><r;1>}

17



Based on above definitions, we formulate the unseen-type link prediction with
aggregative statistics problem as follows: given a heterogeneous social network N and
corresponding aggregative statistics T(N, @), predict the existence of unseen-type links

D,

The relational schema for our example is shown in Figure 2-2: given the
heterogeneous social network (3 types of nodes and 3 types of edges) and aggregative
statistics of “like”, predict whether each < u, “like”, r > exists or not, where u € U and r

€R.

be-friend-of r\

User

like ?

Aggregative own
{ statistics i
: for “like”

............................. I.F Item — Category

belong-to

Figure 2-2. Relational schema of the unseen-type link prediction with aggregative

statistics problem shown in Figure 2-1.

18



2.3 Methodology

We first propose to solve this problem using a probabilistic model. Then, we use an
illustrative example to demonstrate our model. Finally, we describe a novel learning
algorithm utilizing the aggregative statistics to learn the model parameters, as well as a

two-stage inference algorithm to predict unseen-type links.

2.3.1 Factor Graph Model with Aggregative Statistics (FGM-AS)

To handle this problem, we propose a novel probabilistic graphical model: factor graph
model with aggregative statistics (FGM-AS), as shown in Figure 2-3. There are three

layers of variables in FGM-AS:

count T Ct D

H N M | hy

candidate Y '
@D
o B m [y

7~~~

attribute A ‘

Figure 2-3. Factor graph model with aggregative statistics (FGM-AS).

» Candidate: the binary random variables Y in the candidate layer represent all unseen-

type links to be predicted. They either exist (positive) or not exist (negative). Each

19



candidate yi can be regarded as a pair of user and item, < u, r >. Also note that some

y’s might point to the same users while some might share the same item.

* Attribute: the random variables A in the attribute layer carry attribute information
(e.g., a1 represents the degree of the source node and a. represents the degree of the

target node) of the candidate links.

* Count: the random variables T in the count layer encode the aggregative statistics of
the items. Note that t is a one-to-one mapping of an item r, but a one-to-many mapping
of y because there are some y’s sharing the same item (e.g., candidate y; and y, point

to the same t; as they have the same item r).

Together with the random variables, we also propose three types of potential functions:

» Attribute-to-candidate functions: we define this type of potential function as a linear
exponential function

F(AY) =Ziexp{a- £1(A Y} 1)

a

where f’(A, yi) is a vector of functions representing the associations between a
candidate and its attributes (see Section 2.3.3 for a detailed example), « is a vector of
the corresponding weights, and Z, is a normalization factor. Note that each candidate

y can connect to multiple attributes.
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Candidate-to-candidate functions: this type of potential function is defined as

(Y. ) = -exp{B- 9 1Y .y} 2
g

where g (Y, yi) is a vector of functions representing the relationships between candidate
random variables (see Section 2.3.4 for a detailed example),  is a vector of weights,

and Zg is a normalization factor.

Candidate-to-count functions: this type of potential function is defined as

1 :
h(T,yi)=Z—exp{7-h(r,yi)} (3)
4
where h’(T, yi) is a vector of functions representing the constraints of aggregative
statistics (see Section 2.3.5 for a detailed example), y is a vector of weights, and Z, is
a normalization factor. More precisely, this type of potential functions adhere to the
condition: the sum of predicted marginal probability of the candidate random variables

of each item should be as close to the total count of that item as possible.

According to the FGM-AS model, when the candidates, attributes and counts are

known, we can define the joint distribution as

P(AiTvY):Hf(A'yi)'g(Ylyi)'h(T!yi) 4)

Therefore, the marginal probability of candidate random variable y; being positive (e.g.,

like) is
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P(A,T,Y,yi):ZP(A,T,Y,YJ-):YJ eY /{y;} (5)

The marginal probability P(A, T, Y, yi = 1) is the desired output in our problem, as it tells

us for yi = <u, r >, how likely u likes r.

2.3.2 An lllustrative Example of FGM-AS

We believe that FGM-AS is a general graphical model for solving the unseen-type links
prediction problem. The three layers of random variables and the three types of potential
functions can be flexibly defined for different application context. Here we use FGM-AS
to predict whether a user likes an item or not. Figure 2-4 illustrates an example of FGM-
AS, which is built from the heterogeneous social network shown in Figure 2-1. The three

layers of random variables are defined as:
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Figure 2-4. An example of FGM-AS based on Figure 2-1's network.

* Candidate: candidate random variables Y ={vyi|i=1, 2, ..., |U| - |R| } represent the
set of plausible links < u, r > to be predicted. In other words, each pair yi=<u, r >
indicates whether the user u likes the item r. For example, y1 = < u1, r1 > represents

whether user uy likes item r1. Note that uz is not necessarily the owner of ri.

* Attribute: attribute random variables A = U U R U C contain three groups of
information: users U = { ug, Uz, ..., U }, items R ={ ry, I, ..., rr| }, and categories
C={cycC ..., Cc| }. We use u(yi) to denote the corresponding user, r(yi) to denote

the corresponding item, and c(yi) to denote the corresponding category of yi.
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* Count: count random variables T = {ty, tz, ..., tir| } represent the aggregative statistics
(total like count) of each item. Note that |T| = |R| because t is a one-to-one mapping of

r. We use t(yi) to denote the corresponding count of yi.

The design of the three potential functions is described in the following three

subsections.

2.3.3 Attribute-to-Candidate Function

According to Equation (1), we define f (A, yi) = < fur(u(yi)), fio(u(yi), ryi)), fer(c(yi)) >.
The functions fur, fio and fcp are based on user friendship, item ownership, and category

popularity, which are defined below:

» User friendship (UF) function: fur(u(yi)) = the number of friends of u(yi). The
intuition behind UF is that we believe the number of friends of a user can influence his
/ her tendency to like an item. In Figure 2-1, fur(u(y1)) = fur(u1) = 1, because user uz

has only one friend (which is uy).

* Item ownership (10) function: fio(u(yi), r(yi)) = 1 if r(yi) is owned by u(yi), otherwise
0. The intuition behind 10 is that we believe whether a user likes an item or not depends
significantly on whether this item is owned by this user. In Figure 2-1, fio(u(y1), r(y1))

= fio(u1, r1) = 1, because u; owns ri.
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» Category popularity (CP) function: fcp(c(yi)) = the number of items in the whole
dataset that belongs to the same category as c(yi). The intuition behind CP is that users
tend to like items belonging to a hot category (i.e., category which contains many
items). In Figure 2-1, fcp(c(y1)) = fcp(c1) = 2, because there are two items belonging to

C1.

2.3.4 Candidate-to-Candidate Function

According to Equation (2), we define g’(Y, yi) = < Zjdoi(yi, ¥i), Zj 9r1(Yi, Vi), Z j gor(Yi,
¥i)s Zjgee(yi Yi), Zideilyi, Vi) >, ¥i € ¥/ {y}. The functions goi, gr1, gor, gcc and gerare
based on owner, friend, owner-friend, co-category, and common-interest relationships,

which are defined as follows:

e Owner-identification (Ol) function: goi(yi, yj) = 1 if < u(yi), “own”, r(yi) > € E, <
u(yj), “own”, r(y;) > € E, and u(yi) = u(y;); otherwise 0. The intuition is that an owner
tends to like all his / her items. For example in Figure 2-1, u1 likes both r1 and ro,
because u: owns both items. Therefore, there will be a relation between y; and ys in

Figure 2-4.

* Friend-identification (FI) function: gri(yi, yj) = 1 if <v, “own”, r(yi) > € E, <V,
“own”, r(y;) > € E, u(yi) = u(y;), and v € friend(u(yi)); otherwise 0. The intuition is that
a person may like friend’s items. For example, uz likes both r; and r2, because uz’s

friend us owns both items. Therefore, there will be a relation between y, and ys.
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* Owner-friend (OF) function: gor(yi, ¥;) = 1 if <u(yi), “own”, r(yi) > € E, r(yi) = r(y;),
and u(yi) € friend(u(y;)); otherwise 0. The intuition is that if an owner likes his / her
own item, his / her friends tend to like the item too. For example, if uz likes his / her
item r1, then his / her friend uz tends to like r1 as well. In other words, there will be a

relation between y; and y.

» Co-category (CC) function: gec(yi, yj) = 1 if < u(yi), “own”, r(yi) > € E, u(yi) = u(y;),
and c(yi) = c(y;); otherwise 0. The intuition is: the extent an owner likes the item will
be similar to the extent of the owner likes other items in the same category. For
example, if u; tends to like item ry, then uz may also like rs, because r1 and rs are in

the same category c1. Thus, there is a relation between y; and ys.

e Common-Interest (CI) function: gci(yi, yj) = 1 if <u(yi), “be-friend-of”, u(y;) > € E,
and r(yi) = r(y;); otherwise 0. The intuition is that if a user likes an item, his / her friends
tend to like the item too. For example, if uy likes an item rz, then his / her friend u>

tends to like r2 as well. In other words, there will be a relation between ys and ys.

2.3.5 Candidate-to-Count Function
According to Equation (3), we define h’(T, yi) = < her(yi, t(yi)) >. The function hcr is

defined as:

ty)- Y, P(AT.Y.y, :1)‘
her (Y, t(Y,)) =1- YiYr(y)=rtv)
(yi,t(y:) U ‘ ©)
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The summation term in Equation (6) sums up all the probabilities of a certain item r(y;)
being liked by each user, which we hope to be as close to the observed “like” count of
this item as possible. Thus, the difference of this term and t(yi) represents how close the
prediction to the known aggregative statistics is. We divide this difference by |U| for

normalization purpose. Ideally, the difference is 0, and thus hcr(yi, t(yi)) = 1. Also, 0 <

her(yi, t(yi) < 1.

It should be noted that P(A, T, Y, yj = 1) are not random variables anymore but the
posterior probability of them. Therefore, the conventional exact or approximated
inference methods cannot be applied directly. To update accordingly, we design a two-

stage inference algorithm, which is described at the end of Section 2.3.6.

2.3.6 Ranked-Margin Learning for FGM-AS

The key factor that contributes to the success of FGM-AS lies in the algorithm’s capability
of learning the parameters without labeled data. Here we discuss the main idea. Given a
parameter configuration 6 = («, £, y) and based on Equation (1) — (4), the joint probability

P(A, T, Y) can be written as

PAT.Y) =~ [Texp{0-(f (A Y).g' (YY) (T, Y}

1 1
:Eexp{éﬁziS(yi)}=EeXp{9'S} ()

where all potential functions for a yi is written as s(yi) = < f’(A, vi), (Y, yi), A (T, yi) >, Z

=2Z,282Z,, and S =Zis(yi).
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Now, we will discuss how to learn the parameters of the model. Traditionally the
idea of maximum-likelihood estimation (MLE) can be exploited and algorithms such as
EM can be applied to achieve this goal. Alternatively for a factor graph, algorithms such
as gradient decent can be exploited to greedily search in the parameter space. However,
in our scenario, the absence of labels eliminates the possibility of exploiting MLE strategy
for learning. Moreover, even if one can somehow come up with certain approximated
objective to be maximized in the M-step of EM, the total number of hidden variables in
this graph grows to |U| - |R|, which can lead to very high computational cost for parameter

learning.

To effectively and efficiently perform the learning task, we propose a novel idea to
maximize the ranked-margin of the instances, incorporating the aggregative statistics into
the objective function. The intuition is to assume the count for an item r(y;) is t(yi), which

means that among all candidate users, only t(yi) of them like this object.

Therefore, during learning we want to adjust the parameter so that the top t(yi) users
have very high probabilities of liking this item while the rest have very low probabilities
of liking it. To realize this idea, we propose to do the following. For each item r, first rank
each user u; based on the marginal probability of y = < u;, r >. Then, let P(Y/“P"") be the
average positive marginal probabilities for the top t(yi)"" candidate pairs, and P(Y'°*¢") be
the average marginal probabilities for the rest of the candidate pairs, for all yi of which

r(yi) = r. Finally, given t(yi), we want to adjust the parameters to maximize

Diff (Yrmargin) — P(Yrupper) _ P(leower) (8)
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An extreme example is that the marginal probability of the top t(y;) candidate pairs are all
1, while the rest are all 0. In this case Diff(Y,™9"") = 1 — 0 = 1. Another extreme example
is that the marginal probability of all candidate pairs are equal, which results in

Diff(Y,™9") = 0. Thus, 0 < Diff(Y,m") < 1.

Based on the above idea and Equation (8), we define the log-likelihood objective

function to be maximized as

O(6,r)=log P(Y,"™"*") =log > %exp{e-s}

Yrmargm

=log > exp{6-S}-log > exp{0-S}
o o (9)
Besides the intuitiveness of Equation (8) with respect to the count as mentioned, there are
two other advantages of using Equation (9) as our objective function. First, it should be
noted that computing the normalization factor Z in Equation (7) is very time-consuming.
However, for Equation (9), we can essentially eliminate Z to avoid the high computational
cost during learning. Second, the gradient of Equation (9) can be obtained through

sampling using any inference algorithm (as shown below).

To maximize the objective function, we exploit an idea similar to the Stochastic
Gradient Descent (SGD) method, as shown in Algorithm 1. We calculate the gradient and
update the parameters for each item iteratively until convergence, then move on to the
next item (7 is the learning rate of our algorithm). The gradient for each parameter 9 and

item ris
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o0 a{logYZ exp{0-S}-log > exp{H-S}j

rupper leower
060 06
> exp{0-S}S D exp{0-S}-S
_ Yrupper . leower
D exp{f-S} D exp{d-S}
Yrupper leower
= ]EPQ(YruPPeT)S - ]EPH(leower)S (10)
where E_, . ...Sand E_, .. S are two expected values of S. The expected values can be

obtained naturally using approximated inference algorithms, such as Gibbs Sampling or
Contrastive Divergence. It should be noted that the proposed ranked-margin algorithm
can be exploited not just for graphical model, but also for other learning models as long

as the gradient of the expected difference can be calculated.

Input: FGM-AS, learning rate 7

Output: P(A, T,Y,yi=1) forallyie Y

Initialize all elements in parameter configuration 6 = 1

repeat
Run inference method using current 6 to obtain P(A, T, Y, yi= 1)
Compute potential function values S according to Eq. (1) — (7)
foreach r e R do

20(6, _ .
Compute gradient ;9 ") using S according to Eqg. (10)
B 00(6, 1)
0=06+ 20
end

until convergence

Algorithm 2-1. Ranked-margin learning algorithm.
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In Algorithm 2-1, we need to perform an inference algorithm on the factor graph, to
obtain the marginal probability of each candidate pair y. Also, after the parameters are
learned, we need to apply the inference algorithm again to compute the marginal
probability, representing how likely the person likes the item. Unfortunately, such
inference cannot directly be done as P(A, T, Y, yi = 1) in Equation (6) requires the posterior

probabilities of y.

Thus, we design a two-stage inference algorithm (Algorithm 2-2). In the first stage,
we perform general inference method using f(A, yi) and g(Y, yi) only (by assigning all h(T,
yi) = 1) to initialize P(A, T, Y, yi = 1). In the second stage, we compute h(T, yi) using P(A,
T, Y, yi = 1), and then perform inference one more time. This way, we integrate the

posterior information into the inference process.

Input: FGM-AS, parameter configuration 6
Output: P(A, T,Y,yi=1)forallyieY
Initialize all yi = 0, all h(T, yi) =1
stage 1
Calculate f(A, yi) and g(Y, yi) according to Eq. (1), (2)
Run an inference method using & to obtain P(A, T, Y, yi=1)
stage 2
Calculate h(T, yi) using P(A, T, Y, yi = 1) according to Eq. (3), (6)
Run an inference method using 6 to obtain final P(A, T, Y, yi= 1)

Algorithm 2-2. Two-stage inference algorithm.
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2.4 Experiments

Here we want to verify the generalization of our model by testing whether it can be
applied to datasets in four different scenarios. We also want to verify the usefulness of the

potential functions.

2.4.1 Scenarios and Datasets

We study the following four types of scenarios of the unseen-type link prediction problem,

each with a real-world dataset. The statistics of the datasets are shown in Table 2-1.

Table 2-1. Statistics of the datasets.

Property Foursquare Twitter Plurk DBLP
User 71,634 69,026 190,853 | 102,304
Node Item 180,684 55,375 352,376 | 221,935
Category 16,961 100 100 100
Total 269,279 124,501 543,329 | 324,339
Be-friend-of 724378 | 21,979,021 | 2,151,351 | 245,391
Own 180,684 55,375 352,376 | 221,935
Link Belong-to 180,684 55,375 352,376 | 221,935
Unseen 15,758 79,918 804,404 | 123,479
Total 1,101,504 | 22,169,689 | 3,660,507 | 812,740

* Preference prediction. In location-based social network services, we are interested in
predicting whether users like a tip at a venue (i.e., add the tip into their like list). We
extract the social network website Foursquare as the dataset for evaluation and

consider like as the unseen-type link. We select all venues located in New York, collect
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all tips for these venues, and identify users who posted the tips. We regard venues as
categories, and tips as items. Note that due to the privacy policy in Foursquare, only
the total like count of each tip is revealed. There is very limited number (i.e., 15,758)
of unseen-type links revealed, which become ground truth for evaluation (not seen in

training).

Repost prediction. In social network websites, we are interested in predicting whether
users will re-blog or retweet a post. Therefore, we use Twitter as the dataset, which is
collected from [15]. Twitter is one of the most famous micro-blog website, and has
been used to verify several models with different purposes [15] [20] [47]. In this study,
we consider retweet as the unseen-type link. We keep users who have two or more
friends, and have tweeted or retweeted more than once. Then, we perform stemming
to identify 100 most popular terms in tweets as categories while each tweet is regarded
as an item. For example, if a user v posts a tweet r, and later another user u retweets
this tweet (with the “RT@” keyword), we consider an unseen-type link exists from u

tor.

Response prediction. In micro-blog services, we are interested in predicting whether
users will respond to a post. We use Plurk dataset in this scenario. Plurk is a popular
micro-blog service in Asia with more than 5 million users, and has been used in studies
of diffusion prediction [28], diffusion model evaluation [27], and mood classification
[7]. This dataset is collected from 01/2011 to 05/2011. In this study, we consider
response-to-message as the unseen-type link. We manually identify the 100 most

popular topics as categories, and regard messages as items. For example, if a person v
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posts a message r, and later another person u responds to this message, we consider an

unseen-type link exists fromutor.

» Citation prediction. In academic indexing and searching services, we are interested
in predicting whether researchers will cite a paper. Therefore, we use DBLP [34]
dataset collected from ArnetMiner [52], version 5. In this study, we consider citation-
to-paper as the unseen-type link. We first perform stemming, and then identify the 100
most popular terms-in-titles as categories, and regard papers as items. For example, if
a researcher v published a paper r, and later another researcher u cites r, we consider
an unseen-type link exists from u to r. Also, we consider two researchers as friend if

they have been co-authors of at least one paper in the past.

The mapping of the information in the four abovementioned datasets to the random
variables in FGM-AS is shown in Table 2-2. Note that in the above four datasets
(Foursquare, Twitter, Plurk, and DBLP), we hide all unseen-link information as ground
truth to evaluate our proposed framework. Also note that we obfuscate personal

information in all of the datasets.

Table 2-2. Mapping of the random variables for the datasets.

Random Variable | Foursquare Twitter Plurk DBLP
Candidate y Like Retweet Response Citation
u User User User User
Attribute r Tip Tweet Message Paper
c Venue Term Topic Keyword
Likes Retweets Responses Citations
Count t i
per tip per tweet | per message | per paper
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It should be noted that the unseen-type links used as ground truth are actually sparse
comparing to all nodes and relations. For example, in Twitter dataset, the unseen-to-
candidate ratio, |Unseen| / ( |User]| - |Item| ), is merely 0.00002. Thus, predicting unseen-

type links for these datasets is a very challenging task.

2.4.2 Comparing Methods

We use nine unsupervised model for comparison. The first three methods are single
attribute-to-candidate functions: UF, 10, and CP. Another six methods are as follows (note

that all methods are executed on the whole heterogeneous social network):

* Betweenness Centrality (BC). This method is used to measure an edge's importance
in a network. The BC value of an edge equals to the number of shortest paths from all
nodes to all others that pass through that edge. For each candidate pair, we add a pseudo
unseen-type link in network. Then, we generate BC values of pseudo links as their

prediction scores.

» Jaccard Coefficient (JC). This method is used to directly compute the relatedness of
a user u to an item r, which is defined as | neighbor(u) N neighbor(r) | / | neighbor(u)

U neighbor(r) |. This score is used to predict whether u likes r.
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* Preferential Attachment (PA). This method bases on an assumption that popular
users tends to like popular items. Therefore, it is defined as | neighbor(u) | - | neighbor(r)

|, which is used as the prediction scores.

» Attractiveness (AT). This method is designed to compute user-to-user attractiveness
using aggregated count [61]. We transform it to predict unseen-type links. It first
computes owner-item attractiveness Pyr from owner v to item r as

B o(r,®)
Y o o) (11)

c(r)=c(r)

where @ is the set of “like” links, and o(r, @) is the aggregative statistic of item r, as
defined in Section 2.2. Then, it compute the user-owner attractiveness Py from user u

tovas
P =1—]:[(guv -1-R))) (12)
where gw =1 if uand v are friends, otherwise 0. To perform link prediction, we further
compute user-item attractiveness Pyr (the probability of user u likes item r) as
P =P R (13)

* PageRank with Priors (PRP). This method executes PageRank algorithm [59] for |R|
times, once for each item. For specific item r, we set the prior of the item node to 1,
and priors of all other nodes to 0. Thus, the probability of user u likes item r is modeled

using PageRank score of the user node u. We set the random restart probability as 0.15.
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* AT-PRP. We combine the Attractiveness and PageRank with Priors methods by using
the weight of the links. That is, in the heterogeneous social network, we add a link for
each <u, r > pair, with weight equals to Pyr. We then normalize all weights of outgoing

links to sum up to 1, and run PageRank with Priors as mentioned above.

2.4.3 Settings

Because of the sparsity of unseen-links in ground-truth, we use Area Under ROC Curve
(AUC) [9] [36] and Normalized Discounted Cumulative Gain (NDCG) [23] to evaluate
our proposed method. For each item, we rank all the candidate pairs based on their
predicted positive marginal probabilities, and then compare the rankings with the ground-

truths to obtain AUC and NDCG scores. Finally, we average the scores over all items.

We select Loopy Belief Propagation (LBP) as our base inference method [46], utilize
MALLET [42] for LBP inference, and apply LingPipe [2] for stemming. We use JUNG

[45] to compute betweenness centrality and PageRank with Priors algorithms.

In FGM-AS, we set all zero potential function values to a small constant (0.000001),
and use learning rate 7 = 0.0001. We run all experiments on a Linux server with AMD

Opteron 2350 2.0GHz Quad-core CPU and 32GB memory.

2.4.4 Results

The results of different methods using AUC and NDCG are shown in Table 2-3. The
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LEARN method is to exploit Algorithm 1 to perform learning and Algorithm 2 for
inference, while INFER is to exploit Algorithm 2 for inference without learning. In all
cases, LEARN performs best. Note that INFER outperforms all baselines, and LEARN
provides further improvement than INFER. Averaging over the four datasets, our
framework (LEARN) are 9.79% AUC and 12.81% NDCG better than the best comparing
methods. LEARN achieves best result for Foursquare dataset, with improvement of

16.15% in AUC and 29.60% in NDCG.

From Table 2-3, we see that the performance distinction between the three attribute-
to-candidate functions, UF, 10, and CP, varies depending on the dataset used. We believe
that these three functions are complementary to each other, and can be ensembled to
contribute to our integrated framework. BC does not work well in all experiments, JC
performs well for Twitter in terms of NDCG, and PA performs well for DBLP in terms of
AUC. On the other hand, AT is in general the strongest comparing method (performs best
among comparing methods in both metrics for all four datasets); PRP in general does not
perform well; AT-PRP ranks just between AT and PRP. Our framework consistently
outperforms these comparing methods significantly. Based on the above experiment
results, we believe our framework can be a general method to solve the unseen-type link

prediction problem.
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Table 2-3. Experiment results of our framework (FGM-AS) and all comparing

methods (in percentage).

Foursquare Twitter Plurk DBLP
Method AUC |NDCG | AUC |NDCG| AUC |NDCG | AUC |NDCG
UF 76.74 | 21.66 | 73.49 | 18.87 | 71.08 | 35.01 | 70.28 | 25.07
10 81.31 | 51.60 | 69.98 | 18.93 | 69.86 | 35.33 | 6851 | 23.84
CP 74.03 | 20.56 | 67.38 | 17.15 | 70.69 | 36.13 | 69.52 | 24.22
BC 67.01 | 21.26 | 67.65 | 1897 | 69.81 | 3147 | 64.17 | 21.10
JC 64.30 | 26.75 | 65.65 | 21.05 | 70.05 | 35.40 | 69.96 | 28.24
PA 7228 | 27.09 | 62.30 | 16.39 | 6742 | 32.68 | 7141 | 26.12
AT 82.57 | 4454 | 76.95 | 20.28 | 69.62 | 39.29 | 70.95 | 28.48
PRP 57.27 | 1793 | 62.41 | 16.56 | 69.12 | 33.64 | 61.83 | 21.25
AT-PRP| 7106 | 22.38 | 68.17 | 18.11 | 70.99 | 36.03 | 67.86 | 24.27
INFER | 86.87 | 71.27 | 78.58 | 2524 | 7453 | 39.85 | 86.51 | 41.84
LEARN | 98.72 | 81.20 | 80.75 | 26.33 | 74.72 | 42.20 | 86.96 | 41.93
Improve | 16.15 | 29.60 3.80 5.28 3.64 291 | 1555 | 13.45

2.45 Candidate-to-Candidate Verification

In the previous subsection, we evaluate the attribute-to-candidate functions and compare

them to our proposed framework. However, the candidate-to-candidate functions cannot

be evaluated independently (i.e., without attribute-to-candidate functions). Therefore, we

verify the feasibility of the four functions, namely Ol, FI, OF, CC, and CI, by performing

a simple analysis in our datasets. First, we set all “own” links as “like” links. As shown

in Figure 2-1, we set < ug, “like”, ry >, < ug, “like”, r2 >, and< uy, “like”, r3 >, as positive

prediction. Then, we apply the above four candidate-to-candidate functions to extend the

predicted links.
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For example, considering OF function, there will be a link between < uz, “like”, rz >
and < uy, “like”, r3 >. Because < uy, “like”, r3 > is positive (i.e., it is originally an “own”

link), we predict < ug, “like”, r3 > as positive based on OF.

We compare the result of candidate-to-candidate functions using precision and recall
with the unseen-type links in ground-truth, as shown in Table 2-4. We also ensemble the
four functions and examine the effectiveness of the combination (the All row). All of the
candidate-to-candidate functions has low precision (less than 4%), but have some extend
of recall (especially All). For Foursquare and DBLP datasets, the recall of All reaches as
high as 95.00% and 95.15%, respectively. It should be noted that Ol performs bad for
Twitter, Plurk and DBLP datasets, but provides some improvement for Foursquare dataset.
On the other hand, FI seems to be of little use for Twitter dataset, but it does provide
information for other three datasets. Therefore, we regard these four candidate-to-
candidate functions as complementary to each other, and can be ensembled to contribute

to our framework.
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Table 2-4. Verification results of candidate-to-candidate functions (in percentage),

Pre. = precision, Rec. = recall.

Function Foursquare Twitter Plurk DBLP
Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.
Ol 214 | 3750 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
FI 0.33 | 55.00 | 0.00 0.00 | 3.25 | 3355 | 153 | 60.68

OF 0.35 | 40.00 | 0.21 | 20.00 | 3.23 | 37.31 | 1.53 | 60.68
CC 0.20 250 | 0.74 | 20.00 | 1.36 | 18.76 | 2.64 | 86.65
Cl 0.08 | 22.50 | 0.00 0.00 | 0.00 0.00 | 0.12 2.43
All 0.22 | 95.00 | 0.05 | 40.00 | 1.58 | 5143 | 1.24 | 95.15
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2.5 Related Work

In this subsection, we discuss some of works related to unsupervised unseen-link

prediction framework using aggregative statistics.

2.5.1 Link Prediction

Our problem is effectively link prediction in heterogeneous social network. Link
prediction is a well-studied task in social network analysis, and is characterized by graph
topology, testing how proximal nodes are to each other [35]. Many features have been
tested and developed for homogeneous network, using different graph topological
properties [39]. However, such approaches do not consider the sparsity and diversity of
heterogeneous social network. Feature design for heterogeneous social network was
recently explored [62], casting as a supervised learning task [29]. One area of research
interest is to predict actual popularity of a microblog (e.g., tweet) in a social media. In
this case, the task is formulated as a supervised learning problem, where it can be binary
(e.g., whether a tweet will be retweeted or not) or multi-class (e.g., assign the prediction
of how a tweet will be retweeted by popularity category) classification problem [20] [47].
Another approach applies probabilistic model on social media response prediction [64].
This work essentially incorporates collaborative filtering accounting user and item (i.e.,
tweets) features, but still require training data. Another related area is to predict the link
from user to venue (i.e., point of interest recommendation) using geographic information
[63]. However, such method fails to utilize effects of information propagation in social

network.
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Regarding unsupervised link prediction, there have been works such as cold-start
link prediction [33], transfer learning [10], and triad census [8]. They are fundamentally
different from this work. Cold-start link prediction requires category information, and
works only on homogeneous network. Transfer learning assumes another domain of
labeled data is available. Triad census does not consider the aggregative statistics
information in the networks. Pure unsupervised heterogeneous social network link
prediction explores different context of the data by examining probabilistically the
topological features of the reweighed path [8] [62]. However, these works usually predict
links between two entities of the same type, holding the underlying assumption that birds
of a feather flock together. Our work tries to predict links between two different types

(usually users and items) where such assumption is not likely to hold.

2.5.2 Factor Graph and Max-Margin Learning

Factor graph [26] is a unified framework for general probabilistic graphical models.
Recently, factor graphs have been widely adopted to resolve various problems [21] [51]
[55] [57]. Among these applications, factor graphs are suitable for social relationship
prediction tasks. [55] proposed a time-constrained unsupervised probabilistic factor graph
(TPFG) to model the advisor-advisee relationship using time information. Triad Factor
Graph (TriFG) model [21] incorporates the factor graph representations and social
theories over triads into a semi-supervised model. [51] investigates the relationship
prediction problem on heterogeneous social networks. Previous attempts are extended
and integrated into a transfer-based factor graph (TranFG) model. However, these
methods either need additional external information or do not consider the aggregation of

statistics during computation.
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Several margin-based learning methods on probabilistic graphical models have been
proposed. Previous methods require the ground-truth labels to figure out the proper
direction of parameter update. For example, [53] formulates the parameter fitting problem
as a quadratic program and performs Sequential Minimal Optimization (SMO) learning
to solve the problem. For max-margin methods solving similar problems such as
structural support vector machines [54], the ground-truth is also needed to fit these models.
However, in our problem, it is the aggregative statistics instead of the ground-truth labels
that are given. Therefore, our framework maximizes the ranked-margin instead of

traditional margin.
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2.6 Short Summary

Mining on social networks using incomplete information has gained its own value due to
its applicability, as in the real world we cannot always expect all the information to be
observable. In this study, we demonstrate that the unseen-type link prediction can be
solved using an unsupervised framework through exploiting the aggregative statistics. We
showed how various information sources in the heterogeneous social network can be
modeled all together in a factor graph, propose a novel learning algorithm to learn the
parameters using aggregated counts, and devise an inference algorithm to predict unseen-
type links using learnt parameters. With such framework, one can now derive hypotheses
on the individual behavior using the group statistics. Especially, under the growing
concern of personal privacy preservation, we believe our framework provides a means
for applications that tries to distill personal preference information from the statistics. On
the other hand, in the area of biomedicine, our framework can be applied to identify novel
protein-disease relationships, given clinical aggregated observations. To summarize, in
this study we propose an unsupervised framework to discover the links of unlabeled

relationship in heterogeneous networks.
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Chapter 3 Diffusion Prediction of

Novel Topics

This study brings a marriage of two seemly unrelated topics, natural language processing
(NLP) and social network analysis (SNA). We propose a new task in SNA which is to
predict the diffusion of a new topic, and design a learning-based framework to solve this
problem. We exploit the latent semantic information among users, topics, and social
connections as features for prediction. Our framework is evaluated on real data collected
from public domain. The experiments show 16% AUC improvement over baseline

methods.
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3.1 Overview

The diffusion of information on social networks has been studied for decades. Generally,
the proposed strategies can be categorized into two categories, model-driven and data-
driven. The model-driven strategies, such as independent cascade model [25], rely on
certain manually crafted, usually intuitive, models to fit the diffusion data without using
diffusion history. The data-driven strategies usually utilize learning-based approaches to
predict the future propagation given historical records of prediction [13] [15] [48].
Data-driven strategies usually perform better than model-driven approaches because the

past diffusion behavior is used during learning [15].

Recently, researchers started to exploit content information in data-driven diffusion
models [13] [48] [67]. However, most of the data-driven approaches assume that in order
to train a model and predict the future diffusion of a topic, it is required to obtain historical
records about how this topic has propagated in a social network [48] [67]. We argue that
such assumption does not always hold in the real-world scenario, and being able to
forecast the propagation of novel or unseen topics is more valuable in practice. For
example, a company would like to know which users are more likely to be the source of
“viva voce” of a newly released product for advertising purpose. A political party might
want to estimate the potential degree of responses of a half-baked policy before deciding
to bring it up to public. To achieve such goal, it is required to predict the future
propagation behavior of a topic even before any actual diffusion happens on this topic
(i.e., no historical propagation data of this topic are available). Lin et al. also propose an
idea aiming at predicting the inference of implicit diffusions for novel topics [38]. The

main difference between their work and ours is that they focus on implicit diffusions,
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whose data are usually not available. Consequently, they need to rely on a model-driven
approach instead of a data-driven approach. On the other hand, our work focuses on the
prediction of explicit diffusion behaviors. Despite the fact that no diffusion data of novel
topics is available, we can still design a data-driven approach taking advantage of some
explicit diffusion data of known topics. Our experiments show that being able to utilize

such information is critical for diffusion prediction.
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3.2 The Novel-Topic Diffusion Model

We start by assuming an existing social network G = (V, E), where V is the set of nodes
(or user) v, and E is the set of link e. The set of topics is denoted as T. Among them, some
are considered as novel topics (denoted as N), while the rest (R) are used as the training
records. We are also given a set of diffusion records D = {d | d = (src, dest, t)}, where
src is the source node (or diffusion source), dest is the destination node, and t is the topic
of the diffusion that belongs to R but not N. We assume that diffusions cannot occur
between nodes without direct social connection; any diffusion pair implies the existence
of a link e = (src, dest) € E. Finally, we assume there are sets of keywords or tags that
relevant to each topic (including existing and novel topics). Note that the set of keywords
for novel topics should be seen in that of existing topics. From these sets of keywords,
we construct a topic-word matrix TW = (P(wordj | topici))i;j of which the elements stand
for the conditional probabilities that a word appears in the text of a certain topic. Similarly,
we also construct a user-word matrix UW= (P(word; | useri))ij from these sets of keywords.
Given the above information, the goal is to predict whether a given link is active (i.e.,

belongs to a diffusion link) for topics in N.
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Figure 3-1. The novel-topic diffusion model.

3.2.1 The Framework

The main challenge of this problem lays in that the past diffusion behaviors of new topics
are missing. To address this challenge, we propose a supervised diffusion discovery
framework (Figure 3-1) that exploits the latent semantic information among users, topics,
and their explicit / implicit interactions. We take (1) the novel topic with a set of keywords
describing the topic, and (2) diffusion for existing topics as inputs. Next, we extract
features, and finally perform binary classification to predict diffusions for novel topic.

Intuitively, four kinds of information are useful for prediction:

e Topic information: Intuitively, knowing the signatures of a topic (e.g., is it about

politics?) is critical to the success of the prediction.

e User information: The information of a user such as the personality (e.g., whether this

user is aggressive or passive) is generally useful.
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e User-topic interaction: Understanding the users' preference on certain topics can

improve the quality of prediction.

e Global information: We include some global features (e.g., topology info) of social

network.

Below we will describe how these four kinds of information can be modeled in our

framework.

3.2.2 Topic Information

We extract hidden topic category information to model topic signature. In particular, we
exploit the Latent Dirichlet Allocation (LDA) method [5], which is a widely used topic

modeling technique, to decompose the topic-word matrix TW into hidden topic categories:

TW =TH * HW (14)

, Where TH is a topic-hidden matrix, HW is hidden-word matrix, and h is the manually-
chosen parameter to determine the size of hidden topic categories. TH indicates the
distribution of each topic to hidden topic categories, and HW indicates the distribution of
each lexical term to hidden topic categories. Note that TW and TH include both existing
and novel topics. We utilize TH+, the row vector of the topic-hidden matrix TH for a
topic t, as a feature set. In brief, we apply LDA to extract the topic-hidden vector TH¢ to

model topic signature (TG) for both existing and novel topics.
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Topic information can be further exploited. To predict whether a novel topic will be
propagated through a link, we can first enumerate the existing topics that have been
propagated through this link. For each such topic, we can calculate its similarity with the
new topic based on the hidden vectors generated above (e.g., using cosine similarity
between feature vectors). Then, we sum up the similarity values as a new feature: topic
similarity (TS). For example, a link has previously propagated two topics for a total of
three times {ACL, KDD, ACL}, and we would like to know whether a new topic, EMNLP,
will propagate through this link. We can use the topic-hidden vector to generate the
similarity values between EMNLP and the other topics (e.g., {0.6, 0.4, 0.6}), and then

sum them up (1.6) as the value of TS.

3.2.3 User Information

Similar to topic information, we extract latent personal information to model user
signature (the users are anonymized already). We apply LDA on the user-word matrix

Uw:

UW = UM * MW (15)

, Where UM is the user-hidden matrix, MW is the hidden-word matrix, and m is the
manually-chosen size of hidden user categories. UM indicates the distribution of each
user to the hidden user categories (e.g., age). We then use UM, », the row vector of UM
for the user u, as a feature set. In brief, we apply LDA to extract the user-hidden vector

UMy« for both source and destination nodes of a link to model user signature (UG).
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3.2.4 User-Topic Interaction

Modeling user-topic interaction turns out to be non-trivial. It is not useful to exploit latent
semantic analysis directly on the user-topic matrix UR = UQ * QR , where UR represents
how many times each user is diffused for existing topic R (R € T), because UR does not
contain information of novel topics, and neither do UQ and QR. Given no propagation
record about novel topics, we propose a method that allows us to still extract implicit
user-topic information. First, we extract from the matrix TH (described in Section 3.2) a
subset RH that contains only information about existing topics. Next we apply left

division to derive another user-hidden matrix UH:

UH = (RH\URTT = (RHTRH )L RHTURT)T (16)

Using left division, we generate the UH matrix using existing topic information. Finally,
we exploit UHy =, the row vector of the user-hidden matrix UH for the user u, as a feature

set.

Note that novel topics were included in the process of learning the hidden topic
categories on RH; therefore the features learned here do implicitly utilize some latent
information of novel topics, which is not the case for UM. Experiments confirm the
superiority of our approach. Furthermore, our approach ensures that the hidden categories
in topic-hidden and user-hidden matrices are identical. Intuitively, our method directly
models the user’s preference to topics’ signature (e.g., how capable is this user to
propagate topics in politics category?). In contrast, the UM mentioned in Section 3.3

represents the users’ signature (e.g., aggressiveness) and has nothing to do with their
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opinions on a topic. In short, we obtain the user-hidden probability vector UH,~ as a

feature set, which models user preferences to latent categories (UPLC).

3.2.5 Global Features

Given a candidate link, we can extract global social features such as in-degree (ID) and
out-degree (OD). We tried other features such as PageRank values but found them not
useful. Moreover, we extract the number of distinct topics (NDT) for a link as a feature.
The intuition behind this is that the more distinct topics a user has diffused to another, the

more likely the diffusion will happen for novel topics.

3.2.6 Complexity Analysis
The complexity to produce each feature is as below:

(1) Topic information: O(l * |T| * h * By) for LDA using Gibbs sampling, where 1 is # of
the iterations in sampling, |T| is # of topics, and B is the average # of tokens in a

topic.

(2) User information: O(l * |V| * m * By) , where |V| is # of users, and By is the average

# of tokens for a user.
(3) User-topic interaction: the time complexity is O(h® + h? * [T| + h * [T| * |V]).

(4) Global features: O(|D|), where |D| is # of diffusions.
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3.3 Experiments

For evaluation, we try to use the diffusion records of old topics to predict whether a

diffusion link exists between two nodes given a new topic.

3.3.1 Dataset and Evaluation Metric

We first identify 100 most popular topics (e.g., earthquake) in Plurk from 01/2011 to
05/2011. Plurk is a popular micro-blog service in Asia with more than 5 million users
[27]. We manually separate the 100 topics into 7 groups. We use topic-wise 4-fold cross
validation to evaluate our method, because there are only 100 available topics. For each
group, we select 3/4 of the topics as training and 1/4 as validation. For validation set we

remove diffusions not mentioned in training set.

The positive diffusion records are generated based on the post-response behavior.
That is, if a person x posts a message containing one of the selected topic t, and later there
is a person y responding to this message, we consider a diffusion of t has occurred from
xtoy (i.e., (x, Y, t) is a positive instance). Our dataset contains a total of 1,146,995 positive
instances out of 100 distinct topics; the largest and smallest topic contains 210,745 and
1,644 diffusions, respectively. Also, the same amount of negative instances for each topic
(totally 1,146,995) is sampled for binary classification (similar to the setup in KDD Cup
2011 Track 2). The negative links of a topic t are sampled randomly based on the absence

of responses for that given topic.

The underlying social network is created using the post-response behavior as well.

We assume there is an acquaintance link between x and y if and only if x has responded
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to y (or vice versa) on at least one topic. Eventually we generated a social network of
163,034 nodes and 382,878 links. Furthermore, the sets of keywords for each topic are
required to create the TW and UW matrices for latent topic analysis; we simply extract
the content of posts and responses for each topic to create both matrices. We set the hidden

category number h = m =7, which is equal to the number of topic groups.

We use area under ROC curve (AUC) to evaluate our proposed framework [9]; we
rank the testing instances based on their likelihood of being positive, and compare it with

the ground truth to compute AUC.

3.3.2 Implementation and Baseline

After trying many classifiers and obtaining similar results for all of them, we report only
results from LIBLINEAR with ¢=0.0001 [12] due to space limitation. WWe remove stop-
words, use SCWS [19] for tokenization, and MALLET [42] and GibbsLDA++ [49] for

LDA.

There are three baseline models we compare the result with. First, we simply use the
total number of existing diffusions among all topics between two nodes as the single
feature for prediction. Second, we exploit the independent cascading model [25], and
utilize the normalized total number of diffusions as the propagation probability of each
link. Third, we try the heat diffusion model [41], set initial heat proportional to out-degree,
and tune the diffusion time parameter until the best results are obtained. Note that we did
not compare with any data-driven approaches, as we have not identified one that can

predict diffusion of novel topics.
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3.3.3 Results

The result of each model is shown in Table 3-1. All except two features outperform the
baseline. The best single feature is TS. Note that UPLC performs better than UG, which
verifies our hypothesis that maintaining the same hidden features across different LDA
models is better. We further conduct experiments to evaluate different combinations of
features (Table 3-2), and found that the best one (TS + ID + NDT) results in about 16%
improvement over the baseline, and outperforms the combination of all features. As stated
in [60], adding useless features may cause the performance of classifiers to deteriorate.
Intuitively, TS captures both latent topic and historical diffusion information, while 1D

and NDT provide complementary social characteristics of users.

Table 3-1. Single-feature results.

Method Feature AUC
Existing Diffusion 58.25%
Baseline Independent Cascade 51.53%
Heat Diffusion 56.08%
Topic Signature (TG) 50.80%
Topic Similarity (TS) 69.93%
User Signature (UG) 56.59%

. User Preferences to

Learning Latent Categories (UPLC) 61.33%
In-degree (1D) 65.55%
Out-degree (OD) 59.73%

Number of Distinct Topics (NDT) | 55.42%

57



Table 3-2. Feature combination results.

Method Feature AUC
Baseline Existing Diffusion 58.25%
ALL 65.06%
TS+ UPLC + ID + NDT 67.67%
Learning TS+ UPLC+1D 64.80%
TS + UPLC + NDT 66.01%
TS+ ID + NDT 73.95%
UPLC + ID + NDT 67.24%
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3.4 Short Summary

The main contributions of this study are as below:

(1) We propose a novel task of predicting the diffusion of unseen topics, which has wide

applications in real-world.

(2) Compared to the traditional model-driven or content-independent data-driven works
on diffusion analysis, our solution demonstrates how one can bring together ideas

from two different but promising areas, NLP and SNA, to solve a challenging problem.

(3) Promising experiment result (74% in AUC) not only demonstrates the usefulness of
the proposed models, but also indicates that predicting diffusion of unseen topics

without historical diffusion data is feasible.

To summarize, in this study we propose a supervised learning framework to discover

the links of unlabeled diffusion in homogeneous networks.
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Chapter 4 Conclusion

In this dissertation, we investigate two dimensions of the link discovery with unlabeled
data problem: (1) link prediction using aggregative statistics, and (2) diffusion prediction
of novel topics. For each problem, we devise a learning-based frameworks to integrate
the diverse information and solve discover the links. Furthermore, we conduct
experiments on real-world datasets (Foursquare, Twitter, Plurk, DBLP), and the results
show that our proposed frameworks provide reasonably high performance and can solve

the unlabeled link prediction problems.

A plausible future direction is to consider the opinion (e.g., “positive” or “negative”)
of the links to be predicted. An example is to predict the “dislike” link instead of “like”;
the intuitions behind “dislike” may not simply be the inverse of “like”. Another example
is that although two topics are highly related under the computation of LDA, they might
be opposite or competitive to each other (e.g., different mobile phone companies or
different politic parties); thus the diffusion prediction process may also be influenced by
the opinion. In this dissertation we mainly consider the “positive” links, therefore

including the idea of opinion mining may further improve the prediction results.

Another consideration is the efficiency of the proposed algorithms. In the big-data
era, the data are increasing rapidly, and may require shorter computation time to ensure
the effectiveness of the prediction results. However, our proposed methods (e.g., FGM-

AS or LDA-based classification) are computation-intensive, especially for large-scale
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datasets or rapid online data. Therefore, a natural extension of this dissertation is to fasten
the computation process. One plausible method is divide-and-conquer scheme. That is,
cluster the data in to smaller but to some extend independent groups (e.g., divide the
Foursquare data into smaller geographical districts), and then compute each group in
parallel using the state-of-the-art distributed or GPU-based computing approaches. We

believe such methods can alleviate the issue of computational overhead.
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