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中文摘要 

本文研究線上決策問題，其問題設定如下。玩家需要在一個環境中重複決

定要採取什麼行動，並得知該行動所帶來的影響的訊息。玩家希望有一個線上

演算法，可以從過往的歷史中學習，並且在往後能夠作出更好的決策。我們使

用後悔度來衡量一個演算法的優劣。 

近來的研究著重於線上最佳化(傳統最佳化問題的變形)以及專家問題(有限

數目的專家可供選擇)，因為這些問題模型可以用來模擬許多現實生活中的挑

戰。本文將報告我們在這個方向上的貢獻。 

首先，我們研究逐漸改變的環境。我們定義一個新測度稱為偏離度來衡量

環境的變化程度。在這個新的問題模型中，我們藉由修改一個廣受研究的 FTRL

演算法來設計我們的演算法，並證明其表現能以偏離度的函數表示。因此我們

的演算法在變化和緩的環境中，能夠表現得比以往的演算法更好。 

接著，我們研究逐漸改變的環境，並假設玩家所能獲得的只有部分的訊息。

我們希望得知在什麼樣的回饋訊息下，依舊能夠表現得和得知完整訊息的玩家

一樣好。我們設計了一個新穎的抽樣機制，並且使用取得的訊息估計未知的梯

度向量。我們的研究成果顯示，每回合僅需知道損益函數的兩個點的值，我們

演算法的表現便能與得到所有訊息的玩家一樣好。 

在第三部分中，我們允許玩家可以主動探詢他想要的部分訊息。我們提出

一個新的問題模型，讓玩家可以在某個上限內探詢他所需的訊息。這個問題模

型推廣以往不能允許主動探詢的問題。在這個新的問題模型下，我們設計幾乎

完美的演算法並且將其表現以玩家的探詢上限的函數表示。 

最後在第四部份，我們研究含有文意的最少訊息問題。與傳統最小訊息問

題的差別在於，玩家在選擇策略之前可以得知額外的訊息。由於擁有所有訊息

可以讓演算法有更好的表現，所以我們定義一種新訊息稱為虛擬獲益，並使用

虛擬獲益來估計未知的訊息，協助演算法學習。我們設計並分析一個名為
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LINPRUCB的新演算法，它是目前已知最好的 LINUCB演算法的衍伸。 
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Abstract 

We study the online decision problem in which a player iteratively chooses an 

action and then receives certain loss information from the environment for a number 

of rounds. The player would like to have an online algorithm that makes it possible to 

learn from past experiences, make better decisions as time goes by, and achieve small 

regret which is defined as the difference between the total loss of the algorithm and 

that of the best fixed action. 

Recently, a class of studies consider variants of the Online Convex Optimization 

(OCO, which is a variant of the classical convex optimization problem) and the 

Prediction with Expert Advice (PEA, which models an online decision problem in 

which the set of actions consists of finite number of actions) problems that can be 

used to model more realistic challenges. In this thesis, we will present our 

contributions in this direction. 

In the first part, we study instances of gradually changing environments in our 

daily life. We define a new notion that is referred to as the deviation that measures 

the total difference between consecutive loss functions in order to describe a 

gradually changing environment. We show that a modification of the well understood 

FOLLOW THE REGULARIZED LEADER algorithm leads to regret in terms of 

deviation, thereby implying a small regret for environments with small deviations. 

In the second part, we ask the same question in a setting where there is partial 

information. Our goal is to determine how much information is needed, in situations 

where the deviation constraint is in effect, in order to obtain regret bounds that are 

close to the regret bounds that were obtained in our previous study [28]. A novel 

sampling scheme is designed in order to estimate the unknown gradient information 

that is needed in order to apply the algorithms that are introduced in [28]. We 

construct two-point bandit algorithms that are able to achieve regret bounds that are 

close to the regret bounds from our previous study [28] that were based on the full 

information setting. 
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In the third part, we consider the possibility of active players, since there are 

scenarios where it seems possible for the player to spend some effort or resources to 

actively collect some intentionally selected information about the loss functions. We 

describe a new scenario where the player is allowed to actively issue a limited 

number of queries in order to obtain the loss information she needs in each round 

before making a decision. This scenario generalizes the previous problem models in 

which no query is allowed to be issued before a decision is made. We design an 

algorithm that achieves the regret as a function of the number of bits that can be 

queried in one round and provide lower bounds showing that the upper bound in 

general cannot be improved. 

In the last part, we study the contextual bandit problem, which is different from the 

traditional bandit problem, the learner can access additional information about the 

environment (i.e., context) before making selections. Motivated by the better regret 

bounds that are available in settings with full information, we create a new notion 

called pseudo-reward that can be employed for making guesses about unseen rewards 

and develop a forgetting mechanism for handling fallacious rewards that were 

computed in the early rounds. Combining the pseudo-rewards and the forgetting 

mechanism, we propose and analyze a new algorithm called LINPRUCB that is an 

extension of a state-of-the-art algorithm called LINUCB. 

 

 

 

 

 

 

 

 

Keywords: Online Learning, Regret, Query, Deviation, Bandit, Contextual Bandit 
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Abstract

We study the online decision problem in which a player iteratively chooses an

action and then receives certain loss information from the environment for a number

of rounds. The player would like to have an online algorithm that makes it possible

to learn from past experiences, make better decisions as time goes by, and achieve

small regret which is defined as the difference between the total loss of the algorithm

and that of the best fixed action.

Recently, a class of studies consider variants of the Online Convex Optimization
(OCO, which is a variant of the classical convex optimization problem) and the Pre-
diction with Expert Advice (PEA, which models an online decision problem in which

the set of actions consists of finite number of actions) problems that can be used to

model more realistic challenges. In this thesis, we will present our contributions in

this direction.

In the first part, we study instances of gradually changing environments in our

daily life. We define a new notion that is referred to as the deviation that measures the

total difference between consecutive loss functions in order to describe a gradually

changing environment. We show that a modification of the well understood FOLLOW

THE REGULARIZED LEADER algorithm leads to regret in terms of deviation, thereby

implying a small regret for environments with small deviations.

In the second part, we ask the same question in a setting where there is partial
information. Our goal is to determine how much information is needed, in situations

where the deviation constraint is in effect, in order to obtain regret bounds that are

close to the regret bounds that were obtained in our previous study [28]. A novel

sampling scheme is designed in order to estimate the unknown gradient informa-

tion that is needed in order to apply the algorithms that are introduced in [28]. We

construct two-point bandit algorithms that are able to achieve regret bounds that are

close to the regret bounds from our previous study [28] that were based on the full

information setting.

In the third part, we consider the possibility of active players, since there are

scenarios where it seems possible for the player to spend some effort or resources

to actively collect some intentionally selected information about the loss functions.

We describe a new scenario where the player is allowed to actively issue a limited

number of queries in order to obtain the loss information she needs in each round

before making a decision. This scenario generalizes the previous problem models

in which no query is allowed to be issued before a decision is made. We design

an algorithm that achieves the regret as a function of the number of bits that can



be queried in one round and provide lower bounds showing that the upper bound in

general cannot be improved.

In the last part, we study the contextual bandit problem, which is different from

the traditional bandit problem, the learner can access additional information about

the environment (i.e., context) before making selections. Motivated by the better

regret bounds that are available in settings with full information, we create a new

notion called pseudo-reward that can be employed for making guesses about unseen

rewards and develop a forgetting mechanism for handling fallacious rewards that

were computed in the early rounds. Combining the pseudo-rewards and the forget-

ting mechanism, we propose and analyze a new algorithm called LINPRUCB that

is an extension of a state-of-the-art algorithm called LINUCB.
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Chapter 1

Introduction

Many situations in daily life involve repeated decisions in unknown and changing environments.

Examples include trading stocks, commuting to work, routing in a network, forecasting the

weather, playing games, etc. These are the types of problems that are studied in the Online

Learning community and that motivate the study of the online decision problem [21] in which a

player iteratively chooses an action and then receives certain loss information from the environ-

ment for a number of rounds. The player would like to have an online algorithm that makes it

possible to learn from past experiences, make better decisions as time goes by, and keep the total

accumulated loss small 1. The standard notion for evaluating online algorithms is called regret,

which is defined as the difference between the total loss of the algorithm and that of the best fixed

action. The goal of the player is to find an algorithm that achieves the minimum level of regret.

1.1 Problem Models and Previous Works

There are several ways to specify an online decision problem. In the beginning, studies consid-

ered the most general cases in order to build up the fundamental understanding and to discover

important properties of the online decision problem. The two most basic and important problems

that have been studied extensively are the Online Convex Optimization (OCO) problem [68] and

the Prediction with Expert Advice (PEA) problem [6]. In OCO, the set of actions is a convex set

with a bounded diameter, the loss of each action is defined by a convex function with a bounded

gradient, and the feedback information that the player receives is the entire loss function. In

1One can also consider the feedback information as reward, and the goal is to maximize the total reward. More-

over, as explained in Remark 2.1, in this thesis we only consider loss information rather than reward. The results in

this thesis can be extended easily to scenarios where feedback is considered as reward information.
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PEA, the number of actions is finite, the loss function is an arbitrary function with bounded

function values that can be represented by a loss vector with each entry being the loss from the

corresponding action, and the feedback information is the entire loss vector.

Once a fundamental understanding of the OCO and the PEA problems was established, stud-

ies started considering variants that could be used to model more realistic challenges. For in-

stance, different types of problems can be modeled by different classes of loss functions. In

different environments, the player may receive different kinds of information. Further, there

maybe specific patterns among loss functions that can be utilized to improve the algorithms.

Moreover, there can be other variants of OCO and PEA that are derived to model other natural

scenarios. Thus we list the following four approaches that are related to this thesis. In the first

approach, [46] and [42] studied specific classes of loss functions and proposed new algorithms

for achieving better regret bounds.

In the second approach, researchers considered specific patterns in the sequences of the loss

functions where the observed loss values for each action were close to the corresponding mean.

These approaches try to describe the properties that obtain between the loss functions in order

to model more natural and realistic problems where the loss functions are generated by benign

systems (or natural environments) rather than by adversaries (studied in worse case analysis).

The resulting property is subsequently used to obtain a smaller regret bound. The studies of [41]

and [42] in this approach showed that better regret bounds could be achieved for several benign

environments, and their improved results could be applied to the online portfolio management

problem.

In the third approach, researchers transitioned to more challenging and natural scenarios that

are referred to as partial feedback settings where the feedback in each round is no longer the

entire loss function or loss vector, but only the loss from a subset of actions. The studies of

[3, 4, 43] showed that even in situations where the feedback information is limited, there are still

algorithms that can achieve small regret bounds.

In the last approach, researchers studied variants of the OCO and PEA problems. For in-

stance, in the contextual bandit problem [65], the player is allowed to have access to additional

information from the environment before making a decision. Another variant studied extensively

is the selective sampling [23, 25] problem which is intrinsically an online binary classification

problem, but the player has to issue a query to obtain feedback information for learning.

The high level goal of the previous studies were to define suitable problems for modeling

realistic learning scenarios, to determine what types of additional information (such as specific

classes of loss functions, special properties between loss functions, or actively queried informa-
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tion) from different models were helpful during the learning process, and to determine how to

exploit this information and use it to construct algorithms with small regret bounds. In the next

section, we will continue this high level goal and present our contributions along this direction.

1.2 Main Contributions

In this thesis, we make four contributions that propose new problem models and develop new

algorithms that bring us one step toward the understanding of realistic online learning scenarios.

1.2.1 Online Learning in Gradually Evolving Worlds

The approaches that are mentioned above are not able to model certain classes of natural environ-

ments in which the loss functions change gradually from time to time. There are many instances

of gradually changing environments in our daily life. Examples include the weather system and

the stock market. The prevailing weather conditions and the stock prices at one moment are

usually correlated with the conditions at the next moment and the differences from one moment

to the next are usually small. Drastic and abrupt changes only occur sporadically. Thus, we

define a new notion that is referred to as the deviation that measures the total difference between

consecutive loss functions in order to describe a gradually changing environment. Inspired by

the natural property of gradually changing loss functions, we show that a simple, but clever,

modification of the FOLLOW THE REGULARIZED LEADER algorithm leads to regret in terms

of deviation, thereby implying a small regret for environments with small deviations (when the

changes in the loss functions are mild). We use a meta-algorithm that is a variant of the MIRROR

DESCENT algorithm [14, 59] to unify all of our algorithms. The meta algorithm is based on the

notion of Bregman divergence with respect to a regularization function. We also derive different

algorithms for different situations by simply combining the meta algorithm with different choices

for the regularization function.

1.2.2 Beating Bandits in Gradually Evolving Worlds

Next, we ask the same question in a setting where there is partial information. That is, for the

OCO problem, when the loss functions satisfy the deviation constraint and the player receives

only partial or bandit information, can we design algorithms that achieve small regret bounds?

The works of [36, 47, 62] showed that a lack of information about the loss functions affects
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the resulting regret bounds. Thus, our goal is to determine how much information is needed,

in situations where the deviation constraint is in effect, in order to obtain regret bounds that are

close to the regret bounds that were obtained in our previous study [28]. We consider a partial

information setting, the two-point bandit setting of [4], where the player is allowed to take two

actions, instead of just one, in a given round and is allowed to know their respective loss values

and the average of the loss values is counted as the loss for that round. We answer the previous

question affirmatively. A novel sampling scheme is designed in order to estimate the unknown

gradient information that is needed in order to apply the algorithms that are introduced in [28].

With a sampling scheme like this in hand, we construct two-point bandit algorithms that are able

to achieve regret bounds that are close to the regret bounds from our previous study [28] that

were based on the full information setting 2.

1.2.3 Online Learning with Queries

In all of the situations that are mentioned above, the player seems to be passive and seems to

have no control over the information from the loss functions. However, there are scenarios

where it seems possible for the player to spend some effort or resources to actively collect some

intentionally selected information about the loss functions. This observation has inspired a new

branch of approaches that consider the possibility of active players. We describe a new scenario

in [27] where the player is allowed to actively issue a limited number of queries in order to

obtain the loss information she needs in each round before making a decision. This scenario

generalizes the previous approaches in which no query is allowed to be issued before a decision

is made. There are two contributions in this study. The first is an algorithm that achieves the

regret as a function of the number of bits that can be queried in one round and the second is a set

of lower bounds that establish that the upper bound in general cannot be improved.

1.2.4 Pseudo-Reward for Linear Contextual Bandits

In the contextual bandit problem, which is different from the traditional bandit problem [50], the

learner can access additional information about the environment (i.e., context) before making

selections. Motivated by the better regret bounds that are available in settings with full infor-

mation, we create a new notion called pseudo-reward that can be employed for making guesses

about unseen rewards and develop a forgetting mechanism for handling fallacious rewards that

2In the full information setting, the feedback information in each round is the entire loss function.
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were computed in the early rounds. Combining the pseudo-rewards and the forgetting mecha-

nism, we propose a new algorithm called LINPRUCB that is an extension of the LINUCB [52]

algorithm. This new algorithm has the following two advantages. First, LINPRUCB is able to

update the linear models of all actions in each round and results in sharper confidence intervals in

the earlier rounds as compared to LINUCB. Second, it computes the uncertainty of each action

that will be used for exploration during the model updating stage, allowing for flexibility and

quick selections of actions. To the best of our knowledge, these interesting ideas, which involve

making guesses about unseen rewards and moving the exploration from the action selection stage

to the modeling stage, have not been studied seriously before.

1.3 Thesis Structure

In Chapter 2, the online decision problem and its four variants will be reviewed. A review of the

recent progress related to the variants will be included as well. This chapter will provide a global

view of the connections between the various results and our studies that have been derived from

the online decision problem.

We will present our four studies in the following chapters. The study that was mentioned in

Subsection 1.2.1 will be the topic of Chapter 3. In Chapter 4, we will discuss our study that was

mentioned in Subsection 1.2.2 in detail. The topic of Chapter 5 is our study that was mentioned

in Subsection 1.2.3. Finally, the study that was mentioned in Subsection 1.2.4 will be discussed

thoroughly in Chapter 6.
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Chapter 2

The Online Decision Problem

This chapter discusses the online decision problem. It will begin with a formal definition of the

online decision problem. The relations between online learning, other philosophies of learning,

and the philosophy of regret minimization will be clarified in Section 2.1. In Section 2.3, the four

basic instances of the online decision problem and two fundamental algorithms will be reviewed.

Finally, we will cover recent progress related to the online decision problem in Section 2.4.

This will include studies that have been derived from the basic problems that are described in

Section 2.3 and from our studies as well, in order to provide a global view of the positions

and contributions of our studies and to point out future directions. Let us begin with a formal

definition of the online decision problem.

The online decision problem is an abstract framework that covers many online problems and

can be formulated as follows. There is a player facing an unknown environment who has to make

iterative decisions for T rounds in the following way: In each round, t ∈ {1, 2, · · · , T},

1. The environment secretly chooses a loss function ft : X → R that assigns each action in

X a loss.

2. The player decides an action xt to play from a feasible set X ⊆ R
n based on her decision

strategy.

3. After taking the action xt, the player receives certain loss information from the environ-

ment, and then

4. The player uses the loss information obtained in this round to adjust her decision strategy

for the next round.

The player would like to have an online algorithm that can learn from the past, make better

decisions as time goes by, and keep the total accumulated loss small. The standard notion for
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evaluating such an online algorithm is called regret. It is defined as

T∑
t=1

ft(xt)− argmin
π∈X

T∑
t=1

ft(π),

and is the difference between the total loss of the algorithm and that of the best fixed action

π ∈ X . The goal of an online algorithm is to minimize regret.

2.1 Relations Between Other Areas

In the field of online learning, the learning examples are presented in an online fashion (i.e.,

one example per round). This characteristic makes online learning different from batch learning

because the input in batch learning is a pool of training examples that are given at the beginning

of the learning process.

Furthermore, it is assumed that there exists an unknown model that generates examples for

learning and testing in batch learning. Thus, in batch learning, the goal is to learn the hidden tar-

get model. On the other hand, in online learning there is no such an assumption for an unknown

model. Therefore, in online learning, the performance of an online algorithm is compared to an

off-line algorithm and is measured by the regret. However, online learning and batch learning are

closely related. For example, there are online algorithms that can be used to solve batch learning

problems (e.g., classification with perceptron).

Online learning is also different from reinforcement learning because the concepts of state

is considered in reinforcement learning. In an instance of reinforcement learning, the player is

transited from one state to another according to an unknown Markov process. In different states,

the player’s action sets and loss functions will be different, and a different action will lead to a

different next state as well. On the other hand, an instance of online learning can be viewed as a

special case of reinforcement learning where there is only one single state and one single action

set.

2.2 Justification of Regret

There is more than one way to measure the performance of an online algorithm. Different form

the regret, the competitive ratio is the ratio between the total loss of the algorithm and the total

loss from the best actions in each round (the loss in each round is the loss of the best action in
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the corresponding round). Although regrets and competitive ratios are both reasonable measure-

ments, studies of competitive ratios showed that many problems are hard or not possible to design

algorithms to achieve satisfying ratios. This is because the comparator in the competitive ratio

is allowed to choose the best action in each round. If we consider another scenario, the regret

minimization problem, in which the comparator can only fix one action to play in every round,

then many problems were proved to have average regret bounds converging to zero as the number

of rounds grows larger, showing certain sense of learnability. Furthermore, the study of regret

bounds leads to the discovery of the following interesting connections. An online learning algo-

rithm is called a no-regret algorithm if its average regret converges to zero as T increases. Study

in [16] showed that there are no-regret algorithms for the PEA problem (which will be defined in

Section 2.3) that can be used to achieve the minimax value for a zero-sum game and provided a

proof for von Neumann’s minimax theorem. They also showed that no-regret algorithms can be

used to find a ε-correlated equilibrium.

2.3 Instances of the Online Decision Problem and Two Basic

Algorithms

We can define different learning problems by specifying different types of loss functions and

feasible sets and by considering the different amounts of loss information that a player can obtain.

We list four basic and important instances of the online decision problem in Table 2.1.

If the loss function ft is a convex function, the set of actions X is a convex body, and the

player’s feedback information is the entire loss function ft (which is referred to as the full infor-

mation setting), then the problem is called the online convex optimization (OCO). If the player

only knows the loss for the chosen action ft(xt) (which is referred to as the bandit information

setting), then the problem is called OCO with bandit feedback (OCOBF). If the set of actions X
is a finite set and the loss function ft is an arbitrary function, then the problem with full infor-

mation feedback is called prediction with expert advice (PEA). The PEA with bandit feedback is

called the multi-armed bandit (MAB) problem.

From the player’s perspective, it is clear that one is more likely to take better actions if

one has more information about the loss functions. On the other hand, different environments

generate different types of loss functions and release different amounts of loss information to the

player. Therefore, different problem models are required in order to formulate different types of

loss functions and different amounts of loss information so that one can design algorithms that
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ft: a convex function

X : a convex body

ft: an arbitrary function

X : a finite set

full

information

online convex optimization

(OCO)

prediction with

expert advice (PEA)

bandit

information

OCO with bandit

information (OCOBF)

multi-armed bandit

(MAB)

Table 2.1: Instances of the online decision problem.

achieve low regret bounds or provide lower bounds for these problems.

Remark 2.1. Note that we can denote a reward function using a concave function to formulate

an OCO problem whose goal is to maximize the total reward. Further, the problem of maximizing

the total reward can be converted into a problem of minimizing the total loss by simply putting a

negative sign before the concave reward function. Thus, for a clearer and simpler presentation,

from now on we only focus on problems that consider convex loss functions and aim to minimize

the total loss.

In the following subsections, we will review two important and optimal algorithms, the GRA-

DIENT DESCENT and the MULTIPLICATIVE WEIGHTS UPDATE, for the OCO and PEA prob-

lems respectively.

2.3.1 The GRADIENT DESCENT Algorithm

For the OCO problem, [68] designed the GRADIENT DESCENT algorithm that is shown in Al-

gorithm 1 achieving the optimal regret of order O
(
|X |G√

T
)

when the diameter of the feasible

set X has a constant upper bound |X |, and for all t and x ∈ X , the L2-norm of the gradient of

ft(x) is upper bounded by a constant G.

Algorithm 1 GRADIENT DESCENT

1: Initially, set η = |X |
G
√
T

and let x1 = (0, · · · , 0)�.

2: In round t ∈ {1, · · · , T}:

2(a): Play xt.

2(b): Receive ft(·) and compute yt+1 = xt − η∇ft(xt).
2(c): Update xt+1 = ΠX (yt+1).

The GRADIENT DESCENT algorithm plays an action xt in round t that is computed by loss

functions f1(·), · · · , ft−1(·) that were gathered in the previous rounds. After taking an action,
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the loss function ft(·) is revealed. The algorithm computes the action for the next round xt+1

by moving one step in the opposite direction of the gradient of ft(·) with a step size η. If this

process results in a non-feasible action (i.e., yy+1 /∈ X ), then the algorithm uses the projection

ΠX (yt+1), which is argminx∈X ‖x− yt+1‖2, to compute the closest point in X to find xt+1.

The GRADIENT DESCENT algorithm is based on the property of the gradient. The gradient of

the loss function ft(·) at point xt gives the direction of the fastest ascent starting from xt. Thus,

in order to minimize the loss that is suffered, it makes sense to choose a point that is located

at the minimum value of the convex loss function. The negative gradient, −∇ft(xt), provides

a possible direction for moving toward the point that is at the minimum value, and a carefully

chosen step size η prevents the algorithm from overreacting. A step size that is too large may

result in a point that is far from the minimum.

The GRADIENT DESCENT algorithm and the idea behind it have inspired the development of

other more general or sophisticated algorithms such as the MIRROR DESCENT [14], the ONLINE

NEWTON STEP [45], and many other successful algorithms. For more information about the

GRADIENT DESCENT algorithm, please refer to an excellent survey in [40].

2.3.2 The MULTIPLICATIVE WEIGHTS UPDATE Algorithm

Assume there are N actions in the feasible set X (i.e., X = {1, 2, · · · , N}). The loss function ft

in round t is an N -dimensional vector and its ith entry ft(i) represents the loss of the action i.

In each round, the MULTIPLICATIVE WEIGHTS UPDATE algorithm maintains a weight wt(i) for

each action i ∈ {1, 2, · · · , N}. On seeing the loss values ft(1), ft(2), · · · , ft(N), the algorithm

updates the weight of action i using wt+1(i) = wt(i)e
−ηft(i), where wt(i) is the weight and �t(i)

is the loss for action i in round t.

Algorithm 2 MULTIPLICATIVE WEIGHTS UPDATE

1: Initially, set η =
√

lnN
T

and set the initial weight vector w1 = ( 1
N
, · · · , 1

N
)�.

2: In round t ∈ {1, · · · , T}:

2(a): Select an action according to pt.
2(b): Receive ft and update wt+1(i) = wt(i)e

−ηft(i) for each i ∈ {1, 2, · · · , N}.

2(c): Compute pt+1(i) =
wt+1(i)∑N

j=1 wt+1(j)
.

For the PEA problem which has N actions to choose from and T rounds to play, the MUL-

TIPLICATIVE WEIGHTS UPDATE algorithm achieves a regret of O(
√
T lnN). The bound is, in

fact, as tight as a matching lower bound of Ω(
√
T lnN) as can be shown (see e.g. [21]). The intu-
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ition that forms the basis of the MULTIPLICATIVE WEIGHTS UPDATE algorithm is very simple:

When an action i leads to a large loss ft(i) in round t, then in the next round the update scheme

reduces the weight for that action heavily. For more information about the MULTIPLICATIVE

WEIGHTS UPDATE algorithm, please refer to the excellent survey in [49].

2.4 Recent Progress

Next, we will summarize the existing studies that are related to this thesis. In Section 2.4.1, we

will discuss studies that are related to the OCO and the OCOBF problems that are originally

listed in the middle column of Table 2.1. Then, in Section 2.4.2, we will discuss studies that

are related to the PEA and the MAB problems that are originally listed in the third column of

Table 2.1. We will also discuss studies that extend the PEA and the MAB problems to the online

combinatorial problems in this section.

2.4.1 Online Convex Optimization

Studies that are related to the online convex optimization (OCO) problem and this thesis are

summarized in Table 2.2. These problems are motivated by two factors. The first one is the

pattern between the loss functions and the second one is the amount of feedback information.

For instance, early studies considered the most general assumptions, such as assumptions that

the loss functions could be arbitrary and possibly chosen in an adversarial way. Thus, we list

studies that head in this direction in the “adversarial setting” column in Table 2.2. A new row for

“partial information” has been added because this concept allows researchers to define different,

but reasonable, feedback information settings other than the full or bandit information settings.

The most general and simplest setting for the OCO problem was studied in [68]. In [68],

the loss functions are convex and the player receives the entire loss function after the player has

made a decision. The main contribution of [68] is the classic GRADIENT DESCENT algorithm

that achieves an optimal regret of O(
√
T ) (minor parameters are omitted). Later, restricted sets of

loss functions were studied to determine if knowledge of specific properties of the loss functions

was helpful for achieving smaller regret bounds. The study of [45] showed that a smaller regret

of order O(lnT ) (some minor parameters are omitted) was achievable when the loss functions

satisfied certain strongly convex properties.

However, natural environments are not always adversarial and the loss functions sometimes

follow patterns that can be exploited in order to achieve smaller regret bounds. These observa-
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adversarial

setting

variation

setting

deviation

setting

full

information

linear and convex functions:

Zinkevich [68]

linear functions:

Hazan and Kale [41] Chiang et al. [28]

strictly convex functions:

Hazan et al. [45]

strictly convex functions:

Hazan and Kale [42]

partial

information
Agarwal et al. [4] Chiang et al. [29]

bandit

information

linear functions:

Dani et al. [33]

Abernethy et al. [3]

Abernethy and Rakhlin [1]

Bubeck et al. [19]

linear functions:

Hazan and Kale [43]

convex functions:

Flaxman et al. [36]

Saha and Tewari [62]

strongly convex functions:

Jamieson et al. [47]

strongly convex functions:

lower bounded by

Jamieson et al. [47]

Table 2.2: Studies related to the OCO problem.

tions have inspired a new branch of studies that consider the patterns between loss functions.

Studies that are headed in this direction are listed in the “variation setting” and the “deviation

setting” columns in Table 2.2.

The first problem that tried to model natural environments more accurately was proposed by

[24]. Study of [41] (listed in the first entry of the variation setting column in Table 2.2) was

the first one that proposed a notion called variation that described a kind of pattern between loss

functions. The variation V was defined as
∑T

t=1 ‖ft−μ‖22, where μ =
∑T

t=1 ft/T was the average

of the loss functions. One can view the variation as the sum of the “similarity” between each loss

function and the average of all loss functions. They studied the PEA problem and the online

linear optimization problem (OCO with each ft being linear) for the full information setting and

assumed that the loss functions satisfied the variation constraint V . Their results extended the

previous results that considered arbitrary sequences of loss functions. Their algorithms showed
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that it is possible to achieve regret bounds of order O(
√
V ) for a sequence of T loss functions

with variation V . Note that the bounds are independent of the number of rounds T . Moreover, the

O(
√
V ) bound is much better than the O(

√
T ) bound in the original adversarial setting when the

loss functions have variations that are strictly smaller than the number of rounds (i.e., V = o(T )).

When the loss functions are generated without any pattern, the variation V can be of order O(T ),

and thus the O(
√
V ) bound recovers the O(

√
T ) bound that is found in [68].

After studying the PEA and OCO with linear functions, a restricted set of loss functions was

studied using the variation setting. For example, in the Portfolio Management problem [32],

the player has to design an investment strategy for accumulating wealth from each investment

round. In this problem, all reward functions have certain pattern; meanwhile, each loss function is

negative logarithmic exhibiting certain strongly convex property. The study of [42] (listed in the

second entry of the variation setting column in Table 2.2) proposed an algorithm for achieving

a regret of O (lnQ), where Q is the variation of a sequence of loss functions in the portfolio

management problem.

According to the definition of the variation, a small variation V means that most of the loss

functions center around some fixed loss function μ. This seems to model a stationary environ-

ment where the loss functions are produced based on a fixed distribution. Therefore, we are

interested in a more general scenario, where the environment is evolving in a gradual way. For

example, the weather conditions or the stock prices at one moment may be correlated with the

conditions or the prices at next moment and the differences are usually small. Abrupt changes

usually occur only sporadically. In order to model this, we introduce a new measure for the loss

functions that is called deviation. It is defined as

Dp =
T∑
t=1

max
x∈X

‖∇ft(x)−∇ft−1(x)‖2p .

We construct a meta algorithm for the PEA and the OCO problems with different classes of

convex functions and show that this algorithm achieves regret bounds in terms of Dp. As one

can show that D2 = O(V ) and D1 = O(Q), our results extend the results of [41, 42, 45, 68].

We also unify all of our algorithms into a meta-algorithm that is as a type of the mirror descent

algorithm that was developed by [59] and [14]. The analysis of the meta algorithm provides a

framework for analyzing many of the existing algorithms in Abernethy et al. [3], Audibert and

Bubeck [7], Bubeck et al. [19], Freund and Schapire [37], Zinkevich [68]. This study (listed

in the first entry of the deviation setting column in Table 2.2) will be discussed thoroughly in

Chapter 3.
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After completing the full information row in Table 2.2, we advance to partial or bandit in-

formation settings in which the player only receives partial or bandit information about the loss

function. A player receives bandit information if the feedback information is the loss for the

chosen action rather than the entire loss function in the full information setting. In the bandit

setting, one can ask the same questions that are brought up in the full information setting. The

bandit setting appears to be much more challenging. The major challenge is the tradeoff between

exploitation (exploiting the best action that is known by far) and exploration (attempting to dis-

cover new actions that are better than the current best one). Next, we will review the positive and

negative results from several related studies that consider partial or bandit settings.

For convex loss functions, [36] introduced an algorithm that estimates the gradient of a con-

vex loss function and achieves a regret of order O(T 3/4). If the loss functions were linear, then

[3] combined the mirror descent algorithm with self-concordant barrier functions in order to

achieve a regret of O(N
√
T lnT ). Later, [62] combined the ideas of [36] and [3] in order to

obtain a regret of order O(T 2/3) for smooth convex functions. In [7], the authors established a

regret of order O(
√
NT ) for the MAB problem. There are also other helpful studies, such as

[1] that provided high probability bounds and [19] that improved the regret that is found in [3].

Like [41], [43] also considered loss functions with small variations in the bandit setting. Their

result extended the work of [3] (listed to the left of Hazan and Kale [43] in Table 2.2) that con-

sidered arbitrary sequence loss functions and the work of [41] (listed above [43] in Table 2.2)

that assumed full information feedback at the same time.

The studies of [36, 47, 62] (listed in the last two entries of the adversarial setting column

in Table 2.2) showed that lack of information about the loss functions affects the regret bounds.

Even worse, the Ω(
√
T ) lower bound for the strongly convex loss functions by [47] was a sur-

prisingly negative result that showed that in bandit setting it is impossible to achieve the O(lnT )

regret that is possible in full information settings. Thus, [4] studied multi-point bandit problems

that allow the player to take multiple actions in one round. Likewise, we were also motivated to

determine how much information is needed in situations, where the deviation constraint holds,

in order to obtain regret bounds close to the ones from our previous study [28] that assumes full

information feedback.

In our study [29], we consider a specific type of partial information setting, the two-point

bandit setting of [4], in which the player can take two actions in a given round, instead of just

one, and obtain their respective loss values, and the average loss is counted as the loss of that

round. We answer the previous question affirmatively. That is, we provide two-point bandit

algorithms that achieve regret bounds that are close to the regret bounds that are found in [28].
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The dependencies on D2 in our regret bounds match those of [28] in the full information setting.

Compared to the regrets of [4] in the two-point bandit setting, we recover their results in

the extreme case where D2 = Ω(T ), but our regret bounds are much smaller when D2 is much

smaller than T . The contrast to regrets in the (one-point) bandit setting is even sharper, as the re-

gret of [62] for convex functions is substantially higher than ours. For strongly convex functions,

there is actually an Ω(
√
D2) lower bound 1 that is exponentially higher than our upper bound.

Moreover, all of our algorithms are simple and efficient, which again demonstrates the power

of two-point bandit algorithms. Finally, since our algorithms are based on the full information

algorithms of [28], we inherit two important properties. First, all our algorithms can be derived

from a single meta algorithm. Second, the regret bounds can all be analyzed in a single frame-

work. We will discuss this study (listed in the second entry of the deviation setting column in

Table 2.2) thoroughly in Chapter 4.

2.4.2 Prediction with Expert Advice and Multi-Armed Bandit

Existing studies of the Prediction with Expert Advice (PEA) and the Multi-Armed Bandit (MAB)

problems that are related to this thesis are summarized in Table 2.3. The PEA problem is studied

by [56] and [37] in adversarial settings and [6] presented an extensive survey.

For the MAB approach, [12] studied the adversarial MAB in which the loss values are gener-

ated in an adversarial way. On the other hand, [10] studied the stochastic MAB in which the loss

values were generated by an unknown stochastic model. An extensive survey of [18] collects and

discusses several types of MAB approaches. In [1], the adversarial MAB problem was studied

from a viewpoint of OCO and improved the result of [12]. Recently, [20] studied the stochastic

MAB approach with additional information. They assumed that the value of the best arm and a

lower bound for the gap between the value of the best arm and that of the second best arm were

given to the player in advance.

There are also studies that define new feedback information for extending the MAB approach.

The stochastic and adversarial bandit problems are studied in [7]. They considered four types of

feedback information, namely, full information, bandit information, label efficient information

(the player needs to issue a query in order to obtain the loss values for each action), and bandit

label efficient information (the player needs to issue a query in order to obtain the loss of the

chosen action). They developed a meta algorithm for the bandit problems and a unified analysis

for the corresponding algorithms. In [58], the feedback information is modeled using a graph. In

1Such a lower bound can be easily modified from that of [47].
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stochastic or adversarial

setting

deviation

setting

full

information

Littlestone and Warmuth [56]

Freund and Schapire [37]

Arora et al. [6]

Hazan and Kale [41]

Audibert and Bubeck [7]

Chiang et al. [28]

partial or

bandit

information

Auer et al. [12]

Auer et al. [10]

Abernethy and Rakhlin [1]

Audibert and Bubeck [7]

Mannor and Shamir [58]

Bubeck and Cesa-Bianchi [18]

Bubeck et al. [20]

queried

information
Chiang and Lu [27]

Table 2.3: Studies related to the PEA and the MAB problems.

particular, after choosing an action, the loss values of the chosen action and every neighbor that

that were connected by an edge were revealed to the player. This approach included the PEA and

the MAB approaches as special cases.

There are studies that extend the PEA and the MAB problems to combinatorial problems. We

list the existing studies in Table 2.4. The major issue in the combinatorial problems is the size of

the feasible set. For instance, in the shortest path problem, the number of paths is exponential in

the number of edges in the graph. As are result, the size of the feasible set is too large and it is not

easy to design an efficient algorithm that achieves a small regret bound. Computationally efficient

algorithms for the combinatorial approaches under the full information setting were introduced

in [64] and [48]. On the other hand, [13] and [22] studied the combinatorial approaches under

the bandit information setting. A better regret bound that is not improvable, in general, for the

feasible set X ⊆ {0, 1}n was proved in [22]. Computationally efficient implementations for

certain interesting feasible sets were also presented.

In [8], the authors considered the feasible set X ⊆ {0, 1}n and assumed that the loss function

ft ∈ [0,+∞)n in each round is a vector. They studied a new type of feedback, called the semi-
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adversarial

setting

deviation

setting

full

information

Takimoto and Warmuth [64]

Kalai and Vempala [48]

Audibert et al. [8]

partial or bandit

information

Awerbuch and Kleinberg [13]

Cesa-Bianchi and Lugosi [22]

Audibert et al. [8]

Table 2.4: Online combinatorial problems.

bandit setting, in which the player receives the entries ft(i){xt(i) = 1} where i = 1, · · · , d and

{·} is the indicator function. For instance, for the routing problem, the semi-bandit setting allows

the player to know the cost of each edge in the chosen path. They also considered the full and

bandit information settings. In the full information setting, the feedback information is ft. This

can be used to model situations where the player knows the cost of each edge in the graph after

choosing a path. In the bandit setting, the feedback is the inner product xt
�ft that is used to

model the case where the player only knows the cost of the chosen path.

In all of the problem settings that are mentioned above, the player takes a passive role in the

environment and has no control over the information from the loss functions. However, there are

scenarios where it seems that it is possible for the player to spend some effort or resources to ac-

tively collect some intentionally selected information about the loss functions. This observation

has inspired a new branch of problems that consider the possibility of active players.

In our work [27], we study a modified prediction with expert advice (PEA) problem in the

following way. In each round, we gave the player a B-bit budget that allowed her to choose a

query for B bits of information about the loss vector before choosing her action. We assume that

each loss value was represented by a K-bit string and that distinct loss values differ by at least

δ. This approach has the original PEA problem as a special case, when B = 0. On the other

hand, when B = NK, one can achieve a zero regret because one has a large enough budget to

determine the whole loss vector and choose the best action in each round.

The interesting cases occur when the values of B lie in the middle. With a limited number of

queries, where should one spend them? Moreover, what does the regret look like as a function

of the budget bound B? The regret which our algorithm achieves depends on B in the following

way. Before B approaches the bound B1 = NK/2, the regret remains at O(
√
T lnN). After
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B passes the bound B1 but before it approaches the bound B2 = NK/2 + 3K/2 − 1, there is

a noticeable drop of the regret to O(
√
(T lnN)/N). Finally, after B passes the bound B2, the

regret takes a dramatic drop to (N lnN)/δ, which is independent of T . We also provide a lower

bound to show that the regret is in general cannot be improved. This study (listed in the last entry

of the adversarial setting column in Table 2.3) will be discussed thoroughly in Chapter 5.

There is another scenario that can be viewed as a variant of the multi-armed bandit (MAB)

in which the player knows certain information before making her decision. For instance, con-

sider online advertising. When a user logs into a website, the advertising algorithm is able to

obtain certain information (such as habits, preferences, etc.) about the user, and then display an

advertisement based on the observed information. Examples like this have inspired the study of

the contextual bandit problem [65] in which the information that is revealed or gathered before a

decision is modeled using a new notion that is referred to as context. For many applications, the

contextual bandit problem is more realistic than the classical bandit problem of [50]. Examples

where it is more appropriate include advertising, recommendations, and other Web applications

[52, 55, 61].

Motivated by the better regret bounds in full information settings, we develop a new scheme

called pseudo-rewards for making guesses about unseen rewards. Furthermore, we develop a

forgetting mechanism for handling the imprecisely estimated rewards that are computed in the

early iterations. Combining the pseudo-rewards and the forgetting mechanism, we propose a

new algorithm called LINPRUCB that is an extension of the LINUCB [52] algorithm. The

LINPRUCB algorithm is able to update the linear models that are associated with all actions in

each iteration. This results in sharper confidence intervals in the earlier iterations as compared to

LINUCB. Further, it computes the uncertainty for each action that will be used in the exploration

during the model updating stage, allowing for flexibility in fast action selection. To the best of

our knowledge, these interesting ideas, which involve making guesses about unseen rewards and

moving the exploration from the action selection stage to the modeling stage, have not been

studied seriously before. We will discuss this work thoroughly in Chapter 6.

We have focused on some specific directions for the online decision problem in this thesis.

There have been many other wonderful studies that have also focused on it and as a result, it has

grown into a rich topic with contributions coming from several fields, such as machine learning,

algorithms design, and statistics. More information can be found in survey papers, such as [6, 16]

or the book [21]. A sample of more recent works includes [2, 5, 15, 34, 35, 38, 39, 44, 57, 66].
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Chapter 3

Online Learning in Gradually Evolving
Worlds

As we mentioned in Subsection 2.4.1, the classic online convex optimization problem considers

the most general setting in which the sequence of loss functions could be arbitrary and possibly

chosen in an adversarial way. However, the environments around us may not always be adversar-

ial, and the loss functions may have some patterns which can be exploited for achieving a smaller

regret. This observation inspires new ideas to consider scenarios in which the sequence of loss

functions have specific properties that can be used to model some non adversarial environment

and see if such properties can be used to develop algorithms achieving small regret.

In this chapter we will first review several related works that consider certain properties in a

sequence of loss functions in Section 3.1. Then, we will present the main course of this chapter,

our work [28] that considers a more general scenario in Section 3.2 to Section 3.7.

3.1 Regret Bounded by Variation

The work [41] studied the online linear optimization problem, in which each loss function is

linear and can be seen as a vector ft ∈ [0, 1]N . The authors considered the case in which the loss

functions have a small variation, defined as V =
∑T

t=1 ‖ft − μ‖22, where μ =
∑T

t=1 ft/T is the

average of the loss functions. Note that if the variation of a sequence of loss functions V is small

(say, V 	 T ), meaning most of the loss function ft center around some fixed loss function μ,

then in this kind of environment, a smart algorithm should achieve regret in terms of variation

V rather than the time horizon T . For this problem, they showed that a simple modification, by
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setting the step size η to be Θ
(

1√
V

)
, to the GRADIENT DESCENT algorithm can achieve a regret

of order O
(√

V
)

.

Another work studying the similar scenario is the work of [42]. They considered the portfolio

management problem in which each loss function has the form ft(x) = − ln 〈vt, x〉 with vt ∈
[δ, 1]N for some constant δ ∈ (0, 1), and they showed how to achieve a regret of O(N logQ),

with Q =
∑T

t=1 ‖vt − μ‖22 and μ =
∑T

t=1 vt/T . Note that according to their definition, a small

Q also means that most of the loss functions center around some fixed loss function μ, which is

similar to the scenario that is modeled by variation V .

However, both results above seem to model a stationary environment, in which all the loss

functions are produced according to some fixed distribution. Hence we consider a more general

model for a gradually changing environment.

3.2 Online Learning in Gradually Evolving Worlds

In the work [28], we are interested in a more general scenario, in which the environment may be

evolving but in a somewhat gradual way. For example, the weather condition or the stock price at

one moment may have some correlation with the next and their difference is usually small, while

abrupt changes only occur sporadically. To model this, we introduce a new measure, which we

call Lp-deviation, for the loss functions, defined as

Dp =
T∑
t=1

max
x∈X

‖∇ft(x)−∇ft−1(x)‖2p , (3.1)

using the convention that f0 is the all-0 function. For linear functions, this definition becomes

Dp =
∑T

t=1 ‖ft − ft−1‖2p, and it can be shown that D2 ≤ O(V ) while there are loss functions

with D2 ≤ O(1) and V = Ω(T ). Thus, one can argue that our constraint of a small deviation

is strictly easier to satisfy than that of a small variation in [41]. For the portfolio management

problem, a natural measure of deviation is
∑T

t=1 ‖vt − vt−1‖22, and one can show that D2 ≤
O(N) ·∑T

t=1 ‖vt − vt−1‖22 ≤ O(NQ), so one can again argue that our constraint is easier to

satisfy than that of [42].

In this paper, we consider loss functions with such deviation constraints and obtain the fol-

lowing results. First, for the online linear optimization problem, we provide an algorithm which,

when given loss functions with L2-deviation D2, can achieve a regret of O(
√
D2). This is in

fact optimal as a matching lower bound can be shown. Since D2 ≤ O(TN), we immediately

recover the result of [68]. Furthermore, as discussed before, since one can upper-bound D2 in
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terms of V but not vice versa, our result is arguably stronger than that of [41]; interestingly, our

analysis even looks simpler than theirs. Next, for the prediction with expert advice problem, we

provide an algorithm such that when given loss functions with L∞-deviation D∞, it achieves a

regret of O(
√
D∞ lnN), which is also optimal with a matching lower bound. Note that since

D∞ ≤ O(T ), we also recover the O(
√
T lnN) regret bound of [37], but our result seems in-

comparable to that of [41]. Finally, we provide an algorithm for the online convex optimization

problem studied by [46], in which the loss functions are strictly convex. Our algorithm achieves

a regret of O(N lnT ) which matches that of an algorithm in [46], and when the loss functions

have L2-deviation D2, for a large enough D2, and satisfy some smoothness condition, our algo-

rithm achieves a regret of O(N lnD2). This can be applied to the portfolio management problem

considered by [42] as the corresponding loss functions in fact satisfy our smoothness condition,

and we can achieve a regret of O(N lnD) when
∑T

t=1 ‖vt − vt−1‖22 ≤ D. As discussed before,

one can again argue that our result is stronger than that of [42].

All of our algorithms are based on the following idea, which we illustrate using the online

linear optimization problem as an example. For general linear functions, the gradient descent

algorithm is known to achieve an optimal regret, which plays in round t the point xt = ΠX (xt−1−
ηft−1), the projection of xt−1 − ηft−1 to the feasible set X . Now, if the loss functions have a

small deviation, ft−1 may be close to ft, so in round t, it may be a good idea to play a point

which moves further in the direction of −ft−1 as it may make its inner product with ft (which

is its loss with respect to ft) smaller. In fact, it can be shown that if one could play the point

xt+1 = ΠX (xt − ηft) in round t, a very small regret could be achieved, but in reality one does

not have ft available before round to compute xt+1. On the other hand, if ft−1 is a good estimate

of ft, the point x̂t = ΠX (xt − ηft−1) should be a good estimate of xt+1 too. The point x̂t can

actually be computed before round t since ft−1 is available, so our algorithm plays x̂t in round t.

Our algorithms for the prediction with expert advice problem and the online convex optimization

problem use the same idea. We unify all our algorithms by a meta algorithm, which can be

seen as a type of mirror descent algorithm [14], using the notion of Bregman divergence with

respect to some function R. Then we derive different algorithms for the three different problems

simply by substantiating the meta algorithm with different choices for the function R. For the

online linear optimization problem, the prediction with expert advice problem, and the online

convex optimization problem, respectively, the algorithms we derive can be seen as modified

from the gradient descent algorithm of [68], the multiplicative algorithm of [37, 56], and the

online Newton step of [46], with the modification based on the idea of moving further in the

direction of −ft−1 discussed above.
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3.3 Preliminaries

For a positive integer n, let [n] denote the set {1, 2, · · · , n}. Let R denote the set of real numbers,

R
N the set of N -dimensional vectors over R, and R

N×N the set of N ×N matrices over R. We

will see a vector x as a column vector and see its transpose, denoted by x�, as a row vector. For

a vector x ∈ R
N and an index i ∈ [N ], let x(i) denote the ith component of x. For x, y ∈ R

N ,

let 〈x, y〉 = ∑N
i=1 x(i)y(i) and let RE (x‖y) = ∑N

i=1 x(i) ln
x(i)
y(i)

. All the matrices considered in

this paper will be symmetric and we will assume this without stating it later. For two matrices A

and B, we write A  B if A− B is a positive semidefinite (PSD) matrix. For x ∈ R
N , let ‖x‖p

denote the Lp-norm of x, and for a PSD matrix H ∈ R
N×N , define the norm ‖x‖H by

√
x�Hx.

Note that if H is the identity matrix, then ‖x‖H = ‖x‖2. We will need the following simple fact.

Proposition 3.1. For any y, z ∈ R
N and any PSD H ∈ R

N×N , ‖y + z‖2H ≤ 2 ‖y‖2H + 2 ‖z‖2H .

Proof. By definition,

2 ‖y‖2H + 2 ‖z‖2H − ‖y + z‖2H = ‖y‖2H + ‖z‖2H − 2y�Hz = ‖y − z‖2H ≥ 0,

which implies that 2 ‖y‖2H + 2 ‖z‖2H ≥ ‖y + z‖2H .

We will need the notion of Bregman divergence and the projection according to it.

Definition 3.1. Let R : R
N → R be a differentiable function and X ⊆ R

N a convex set.

Define the Bregman divergence of x, y ∈ R
N with respect to R by BR(x, y) = R(x)−R(y)−

〈∇R(y), x− y〉 . Define the projection of y ∈ R
N onto X according to BR by ΠX ,R(y) =

argminx∈X BR(x, y).

We consider the online convex optimization problem, in which an online algorithm must play

in T rounds in the following way. In each round t ∈ [T ], it plays a point xt ∈ X , for some convex

feasible set X ⊆ R
N , and after that, it receives a loss function ft : X → R and suffers a loss of

ft(xt). The goal is to minimize its regret, defined as

T∑
t=1

ft(xt)− argmin
π∈X

T∑
t=1

ft(π),

which is the difference between its total loss and that of the best offline algorithm playing a single

point π ∈ X for all T rounds. We study four special cases of this problem. The first is the online

linear optimization problem, in which each loss function ft is linear. The second case is the

prediction with expert advice problem, which can be seen as a special case of the online linear

optimization problem with the set of probability distributions over N actions as the feasible set
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X . The third case is when the loss functions are convex and smooth which is a generalization of

the linear optimization setting. Finally, we consider the case when the loss functions are strictly

convex in the sense defined as follows.

Definition 3.2. For β > 0, we say that a function f : X → R is β-convex, if for all x, y ∈ X ,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ β 〈∇f(y), x− y〉2 .

As shown in [46], all the convex functions considered there are in fact β-convex, and thus

our result also applies to those convex functions.

For simplicity of presentation, we will assume throughout the paper that the feasible set X is

a closed convex set contained in the unit ball {x ∈ R
n : ‖x‖2 ≤ 1}; the extension to the general

case is straightforward.

3.4 Meta Algorithm

All of our algorithms in the coming sections are based on the META algorithm, given in Algo-

rithm 3, which has the parameter Rt for t ∈ [T ]. For different types of problems, we will have

different choices of Rt, which will be specified later in the respective sections. Here we allow

Rt to depend on t, although we do not need this freedom for linear functions and general convex

functions; we only need this for strictly convex functions. Note that we define xt+1 using Rt

instead of Rt+1 for some technical reason which will be discussed soon and will become clear in

the proof Lemma 3.3.

Algorithm 3 META algorithm

1: Initially, let x1 = x̂1 = (1/N, . . . , 1/N)�.

2: In round t ∈ [T ]:
2(a): Play x̂t.

2(b): Receive ft and compute �t = ∇ft(x̂t).
2(c): Update

xt+1 = argminx∈X
(〈�t, x〉+ BRt (x, xt)

)
,

x̂t+1 = argminx̂∈X
(〈�t, x̂〉+ BRt+1 (x̂, xt+1)

)
.

Our META algorithm is related to the mirror descent algorithm, as it can be shown to have

the following equivalent form, which will be proved in Appendix A.1.

Lemma 3.1. Suppose yt+1 and ŷt+1 satisfy the conditions ∇Rt(yt+1) = ∇Rt(xt) − �t and

∇Rt+1(ŷt+1) = ∇Rt+1(xt+1) − �t, respectively, for a strictly convex Rt. Then the update in
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Step 2(c) of the META algorithm is identical to

xt+1 = ΠX ,Rt
(yt+1) = argminx∈X BRt (x, yt+1) ,

x̂t+1 = ΠX ,Rt+1
(ŷt+1) = argminx̂∈X BRt+1 (x̂, ŷt+1) .

Note that a typical mirror descent algorithm plays in round t a point roughly correspond-

ing to our xt, while we move one step further along the direction of −�t−1 and play x̂t =

argminx̂∈X
(〈�t−1, x̂〉+ BRt(x̂, xt)

)
instead. The intuition behind our algorithm is the follow-

ing. It can be shown that if one could play xt+1 = argminx∈X
(〈�t, x〉+ BRt(x, xt)

)
in round

t, then a small regret could be achieved, but in reality one does not have ft available to compute

xt+1 before round t. Nevertheless, if the loss vectors have a small deviation, �t−1 is likely to be

close to �t, and so is x̂t to xt+1, which is made possible by defining xt+1 and x̂t both using Rt.

Based on this idea, we let our algorithm play x̂t in round t.

Now let us see how to bound the regret of the algorithm. Consider any π ∈ X taken by the

offline algorithm. Then for a β-convex function ft, we know from the definition that

ft (x̂t)− ft (π) ≤ 〈�t, x̂t − π〉 − β ‖x̂t − π‖2ht
, where ht = �t�t�, (3.2)

while for a linear or a general convex ft, the above still holds with β = 0. Thus, the key is to

bound 〈�t, x̂t − π〉, which is given by the following lemma. We give the proof in Appendix A.2.

Lemma 3.2. Let St = 〈�t − �t−1, x̂t − xt+1〉, At = BRt(π, xt) − BRt(π, xt+1) and Bt =

BRt(xt+1, x̂t) + BRt(x̂t, xt). Then

〈�t, x̂t − π〉 ≤ St + At − Bt.

The following lemma provides an upper bound for St.

Lemma 3.3. Suppose ‖·‖ is a norm, with dual norm ‖·‖∗, such that 1
2
‖x− x′‖2 ≤ BRt(x, x′)

for any x, x′ ∈ X . Then,

St = 〈�t − �t−1, x̂t − xt+1〉 ≤ ‖�t − �t−1‖2∗ .

Proof. By a generalized Cauchy-Schwartz inequality,

St = 〈�t − �t−1, x̂t − xt+1〉 ≤ ‖�t − �t−1‖∗ ‖x̂t − xt+1‖ .

Then we need the following proposition.

Proposition 3.2. ‖x̂t − xt+1‖ ≤ ‖∇Rt(ŷt)−∇Rt(yt+1)‖∗.
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Proof. To simplify the notation, let R = Rt, x = x̂t, x
′ = xt+1, y = ŷt, and y′ = yt+1. Then,

from the property of the norm, we know that

1

2
‖x− x′‖2 ≤ R(x)−R(x′)− 〈∇R(x′), x− x′〉 ,

and also
1

2
‖x′ − x‖2 ≤ R(x′)−R(x)− 〈∇R(x), x′ − x〉 .

Adding these two bounds, we obtain

‖x− x′‖2 ≤ 〈∇R(x)−∇R(x′), x− x′〉 . (3.3)

Next, we show that

〈∇R(x)−∇R(x′), x− x′〉 ≤ 〈∇R(y)−∇R(y′), x− x′〉 . (3.4)

For this, we need Fact A.1 in Appendix A.2. By letting φ(z) = BR(z, y), we have x =

argminz∈X φ(z), ∇φ(x) = ∇R(x)−∇R(y), and

〈∇R(x)−∇R(y), x′ − x〉 ≥ 0.

On the other hand, by letting φ(z) = BR(z, y′), we have x′ = argminz∈X φ(z), ∇φ(x′) =

∇R(x′)−∇R(y′), and

〈∇R(x′)−∇R(y′), x− x′〉 ≥ 0.

Combining these two bounds, we have

〈(∇R(y)−∇R(y′))− (∇R(x)−∇R(x′)) , x− x′〉 ≥ 0,

which implies the inequality in (3.4).

Finally, by combining (3.3) and (3.4), we obtain

‖x− x′‖2 ≤ 〈∇R(y)−∇R(y′), x− x′〉 ≤ ‖∇R(y)−∇R(y′)‖∗ ‖x− x′‖ ,

by a generalized Cauchy-Schwartz inequality. Dividing both sides by ‖x− x′‖, we have the

proposition.

From this proposition, we have

‖x̂t − xt+1‖ ≤ ‖(∇Rt(xt)− �t−1)− (∇Rt(xt)− �t)‖∗ = ‖�t − �t−1‖∗ . (3.5)

This is why we define xt+1 and yt+1 using Rt instead of Rt+1. Finally, by combining these

bounds together, we have the lemma.
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Taking the sum over t of the bounds in Lemma 3.2 and Lemma 3.3, we obtain a general regret

bound for the META algorithm. In the following sections, we will make different choices of Rt

and the norms for different types of loss functions, and we will derive the corresponding regret

bounds.

3.5 Linear Loss Functions

In this section, we consider the case that each loss function ft is linear, which can be seen as an

N -dimensional vector in R
N with ft(x) = 〈ft, x〉 and ∇ft(x) = ft. We measure the deviation

of the loss functions by their Lp-deviation, defined in (3.1), which becomes
∑T

t=1 ‖ft − ft−1‖2p
for linear functions. To bound the regret suffered in each round, we can use the bound in (3.2)

with β = 0 and we drop the term Bt from the bound in Lemma 3.2. By summing the bound over

t, we have

T∑
t=1

ft (x̂t)− ft (π) ≤
T∑
t=1

St +
T∑
t=1

At, (3.6)

where St = 〈ft − ft−1, x̂t − xt+1〉 and At = BRt(π, xt) − BRt(π, xt+1). In the following two

sections, we will consider the online linear optimization problem and the prediction with expert

advice problem, respectively, in which we will have different choices of Rt and use different

measures of deviation.

3.5.1 Online Linear Optimization Problem

In this section, we consider the online linear optimization problem, and we consider loss func-

tions with L2-deviation D2. To instantiate the META algorithm for such loss functions, we choose

• Rt(x) =
1
2η

‖x‖22, for every t ∈ [T ],

where η is the learning rate to be determined later; in fact, it can also be adjusted in the algorithm

using the standard doubling trick by keeping track of the deviation accumulated so far. It is easy

to show that with this choice of Rt,

• ∇Rt(x) =
x
η
, BRt(x, y) = 1

2η
‖x− y‖22, and ΠX ,Rt

(y) = argminx∈X ‖x− y‖22.
Then, according to Lemma 3.1, the update in Step 2(c) of META algorithm becomes:

• xt+1 = argminx∈X ‖x− yt+1‖22 , with yt+1 = xt − ηft,

x̂t+1 = argminx̂∈X ‖x̂− ŷt+1‖22 , with ŷt+1 = xt+1 − ηft.

The regret achieved by our algorithm is guaranteed by the following.
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Theorem 3.1. When the L2-deviation of the loss functions is D2, the regret of our algorithm is

at most O(
√
D2).

Proof. We start by bounding the first sum in (3.6). Note that we can apply Lemma 3.3 with the

norm ‖·‖ = 1√
η
‖·‖2, since 1

2
‖x− x′‖2 = 1

2η
‖x− x′‖22 = BRt(x, x′) for any x, x′ ∈ X . As the

dual norm is ‖·‖∗ =
√
η ‖·‖2, Lemma 3.3 gives us

T∑
t=1

St ≤
T∑
t=1

‖ft − ft−1‖2∗ ≤
T∑
t=1

η ‖ft − ft−1‖22 ≤ ηD2.

Next, note that At =
1
2η

‖π − xt‖22 − 1
2η

‖π − xt+1‖22, so the second sum in (3.6) is

T∑
t=1

At =
1

2η

(‖π − x1‖22 − ‖π − xT+1‖22
) ≤ 2

η
,

by telescoping and then using the fact that ‖π − x1‖22 ≤ 4 and ‖π − xT+1‖22 ≥ 0. Finally, by

substituting these two bounds into (3.6), we have

T∑
t=1

(ft(x̂t)− ft(π)) ≤ ηD2 +
2

η
≤ O

(√
D2

)
,

by choosing η =
√

2/D2, which proves the theorem.

Let us make three remarks about Theorem 3.1. First, as mentioned in the introduction, one

can argue that our result is strictly stronger than that of [41] as our deviation bound is easier to

satisfy. This is because by Proposition 3.1, we have ‖ft − ft−1‖22 ≤ 2(‖ft − μ‖22 + ‖μ− ft−1‖22)
and thus D2 ≤ 4V +O(1), while, for example, with N = 1, ft = 0 for 1 ≤ t ≤ T/2 and ft = 1

for T/2 < t ≤ T , we have D2 ≤ O(1) and V ≥ Ω(T ). Next, we claim that the regret achieved

by our algorithm is optimal. This is because a matching lower bound can be shown by simply

setting the loss functions of all but the first r = D2 rounds to be the all-0 function, and then

applying the known Ω(
√
r) regret lower bound on the first r rounds. Finally, our algorithm can

be seen as a modification of the gradient descent (GD) algorithm of [68], which plays xt, instead

of our x̂t, in round t. Then one may wonder if GD already performs as well as our algorithm

does. The following lemma provides a negative answer, which means that our modification is in

fact necessary.

Lemma 3.4. The regret of the GD algorithm is at least Ω(min{D2,
√
T}).
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Proof. One may wonder if the GD algorithm can also achieve the same regret as our algorithm’s

by choosing the learning rate η properly. We show that no matter what the learning rate η the GD

algorithm chooses, there exists a sequence of loss vectors which can cause a large regret. Let f

be any unit vector passing through x1. Let s = �1/η�, so that if we use ft = f for every t ≤ s,

each such yt+1 = x1 − tηf still remains in X and thus xt+1 = yt+1. Next, we analyze the regret

by considering the following three cases depending on the range of s.

First, when s ≥ √
T , we choose ft = f for t from 1 to �s/2� and ft = 0 for the remaining t.

Clearly, the best strategy of the offline algorithm is to play π = −f . On the other hand, since the

learning rate η is too small, the strategy xt played by GD, for t ≤ �s/2�, is far away from π, so

that 〈ft, xt − π〉 ≥ 1− tη ≥ 1/2. Therefore, the regret is at least �s/2� (1/2) = Ω(
√
T ).

Second, when 0 < s <
√
T , the learning rate is high enough so that GD may overreact to

each loss vector, and we make it pay by flipping the direction of loss vectors frequently. More

precisely, we use the vector f for the first s rounds so that xt+1 = x1 − tηf for any t ≤ s,

but just as xs+1 moves far enough in the direction of −f , we make it pay by switching the

loss vector to −f , which we continue to use for s rounds. Note that xs+1+r = xs+1−r but

fs+1+r = −fs+1−r for any r ≤ s, so
∑2s

t=1 〈ft, xt − x1〉 = 〈fs+1, xs+1 − x1〉 ≥ Ω(1). As x2s+1

returns back to x1, we can see the first 2s rounds as a period, which only contributes ‖2f‖22 = 4

to the deviation. Then we repeat the period for τ times, where τ = �D2/4� if there are enough

rounds, with �T/(2s)� ≥ �D2/4�, to use up the deviation D2, and τ = �T/(2s)� otherwise.

For any remaining round t, we simply choose ft = 0. As a result, the total regret is at least

Ω(1) · τ = Ω(min{D2/4, T/(2s)}) = Ω(min{D2,
√
T}).

Finally, when s = 0, the learning rate is so high that we can easily make GD pay by flipping

the direction of the loss vector in each round. More precisely, by starting with f1 = −f , we can

have x2 on the boundary of X , which means that if we then alternate between f and −f , the

strategies GD plays will alternate between x3 and x2 which have a constant distance from each

other. Then following the analysis in the second case, one can show that the total regret is at least

Ω(min{D2, T}).

3.5.2 Prediction with Expert Advice

In this section, we consider the prediction with expert advice problem. Now, the feasible set

X is the set of probability distributions over N actions, which can also be represented as N -

dimensional vectors. Although this problem can be seen as a special case of that in Subsec-

tion 3.5.1 and Theorem 3.1 there also applies here, we would like to obtain a stronger result.
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More precisely, now we consider L∞-deviation instead of L2-deviation, and we assume that the

loss functions have L∞-deviation D∞. Note that with D2 ≤ D∞N , Theorem 3.1 only gives a

regret bound of O(
√
D∞N). To obtain a smaller regret, we instantiate the META algorithm with

• Rt(x) =
1
η

∑N
i=1 x(i) (ln x(i)− 1), for every t ∈ [T ],

where η is the learning rate to be determined later and recall that x(i) denotes the ith component

of the vector x. It is easy to show that with this choice,

• ∇Rt(x) =
1
η
(ln x(1), . . . , ln x(N))�, BRt(x, y) = 1

η
RE (x‖y), and ΠX ,Rt

(y) = y/Z with

the normalization factor Z =
∑N

j=1 y(j).

Then, according to Lemma 3.1, the update in Step 2(c) of the META algorithm becomes:

• xt+1(i) = xt(i)e
−ηft(i)/Zt+1, for each i ∈ [N ], with Zt+1 =

∑N
j=1 xt(j)e

−ηft(j),

x̂t+1(i) = xt+1(i)e
−ηft(i)/Ẑt+1, for each i ∈ [N ], with Ẑt+1 =

∑N
j=1 xt+1(j)e

−ηft(j).

Note that our algorithm can be seen as a modification of the multiplicative updates algorithm

[37, 56] which plays xt, instead of our x̂t, in round t. The regret achieved by our algorithm is

guaranteed by the following.

Theorem 3.2. When the L∞-deviation of the loss functions is D∞, the regret of our algorithm is

at most O(
√
D∞ lnN).

Proof. We start by bounding the first sum in (3.6). Note that we can apply Lemma 3.3 with the

norm ‖·‖ = 1√
η
‖·‖1, since for any x, x′ ∈ X , 1

2
‖x− x′‖2 = 1

2η
‖x− x′‖21 ≤ 1

η
RE (x‖x′) =

BRt(x, x′), by Pinsker’s inequality. As the dual norm is ‖·‖∗ =
√
η ‖·‖∞, Lemma 3.3 gives us

T∑
t=1

St ≤
T∑
t=1

‖ft − ft−1‖2∗ ≤
T∑
t=1

η ‖ft − ft−1‖2∞ ≤ ηD∞.

Next, note that At =
1
η
RE (π‖xt)− 1

η
RE (π‖xt+1), so the second sum in (3.6) is

T∑
t=1

At =
1

η
(RE (π‖x1)− RE (π‖xT+1)) ≤ 1

η
lnN,

by telescoping and then using the fact that RE (π‖x1) ≤ lnN and RE (π‖xT+1) ≥ 0. Finally, by

substituting these two bounds into (3.6), we have

T∑
t=1

(ft(x̂t)− ft(π)) ≤ ηD∞ +
1

η
lnN ≤ O

(√
D∞ lnN

)
,

by choosing η =
√

(lnN)/D∞, which proves the theorem.
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We remark that the regret achieved by our algorithm is also optimal. This is because a match-

ing lower bound can be shown by simply setting the loss functions of all but the first r = D∞
rounds to be the all-0 function, and then applying the known Ω(

√
r lnN) regret lower bound on

the first r rounds.

3.6 General Convex Loss Functions

In this section, we consider general convex loss functions. We measure the deviation of loss

functions by their L2-deviation defined in (3.1), which is
∑T

t=1 maxx∈X ‖∇ft(x)−∇ft−1(x)‖22 .
Our algorithm for such loss functions is the same algorithm for linear functions. To bound its

regret, now we need the help of the term Bt in Lemma 3.2, and we have

T∑
t=1

(ft (x̂t)− ft (π)) ≤
T∑
t=1

St +
T∑
t=1

At −
T∑
t=1

Bt. (3.7)

From the proof of Theorem 3.1, we know that
∑T

t=1 At ≤ 2
η

and
∑T

t=1 St ≤
∑T

t=1 η ‖�t − �t−1‖22
which, unlike in Theorem 3.1, can not be immediately bounded by L2-deviation. This is be-

cause ‖�t − �t−1‖22 = ‖∇ft(x̂t)−∇ft−1(x̂t−1)‖22, where the two gradients are taken at different

points. To handle this issue, we further assume that each gradient ∇ft satisfies the following

λ-smoothness condition:

‖∇ft(x)−∇ft(y)‖2 ≤ λ ‖x− y‖2 , for any x, y ∈ X . (3.8)

We emphasize that our assumption about the smoothness of loss functions is necessary to

achieve the desired bound. To see this, consider the special case of f1(x) = · · · = fT (x) = f(x).

If the deviation bound O(
√
D2) holds for any sequence of convex functions, then for the special

case where all loss functions are identical, we will have

T∑
t=1

f(x̂t) ≤ min
π∈X

T∑
t=1

f(π) +O(1),

implying that (1/T )
∑T

t=1 x̂t approaches the optimal solution at the rate of O(1/T ). This con-

tradicts the lower complexity bound (i.e. Ω(1/
√
T )) for any first order optimization method [60,

Theorem 3.2.1] and therefore smoothness assumption is necessary to extend our results to gen-

eral convex loss functions.

Our main result of this section is the following theorem which establishes the deviation bound

for general smooth convex loss functions applying META algorithm.
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Theorem 3.3. When the loss functions have L2-deviation D2 and the gradient of each loss func-

tion is λ-smooth, with λ ≤ 1/
√
8D2, the regret of our algorithm is at most O(

√
D2).

The proof of Theorem 3.3 immediately results from the following two lemmas. First, we

need the following to bound
∑T

t=1 St in terms of D2.

Lemma 3.5.
∑T

t=1 ‖�t − �t−1‖22 ≤ 2D2 + 2λ2
∑T

t=1 ‖x̂t − x̂t−1‖22 .

Proof. ‖�t − �t−1‖22 = ‖∇ft(x̂t)−∇ft−1(x̂t−1)‖22, which by Proposition 3.1 is at most

2 ‖∇ft(x̂t)−∇ft−1(x̂t)‖22 + 2 ‖∇ft−1(x̂t)−∇ft−1(x̂t−1)‖22 ,

where the second term above is at most 2λ2 ‖x̂t − x̂t−1‖22 by the λ-smoothness condition. By

summing the bound over t, we have the lemma.

To eliminate the undesirable term 2λ2
∑T

t=1 ‖x̂t − x̂t−1‖22 in the lemma, we use the help from

the sum
∑T

t=1 Bt, which has the following bound.

Lemma 3.6.
∑T

t=1 Bt ≥ 1
4η

∑T
t=1 ‖x̂t − x̂t−1‖22 −O(1).

Proof. Recall that Bt =
1
2η

‖xt+1 − x̂t‖22 + 1
2η

‖x̂t − xt‖22, so we can write
∑T

t=1 Bt as

1

2η

T+1∑
t=2

‖xt − x̂t−1‖22 +
1

2η

T∑
t=1

‖x̂t − xt‖22 ≥ 1

2η

T∑
t=2

(‖xt − x̂t−1‖22 + ‖x̂t − xt‖22
)

≥ 1

4η

T∑
t=2

‖x̂t − x̂t−1‖22 ,

by Proposition 3.1, with H being the identity matrix so that ‖x‖2H = ‖x‖22. Then the lemma

follows as ‖x̂2 − x̂1‖22 ≤ O(1).

According to the bounds obtained so far, the regret of our algorithm is at most

2ηD2+2ηλ2

T∑
t=1

‖x̂t − x̂t−1‖22−
1

4η

T∑
t=1

‖x̂t − x̂t−1‖22+O(1)+
2

η
≤ O

(
ηD2 +

1

η

)
≤ O

(√
D2

)
,

when λ ≤ 1/
√
8η2 and η = 1/

√
D2.

3.7 Strictly Convex Loss Functions

In this section, we consider convex functions which are strictly convex. More precisely, suppose

for some β > 0, each loss function is β-convex, so that

ft (x̂t)− ft (π) ≤ 〈�t, x̂t − π〉 − β ‖π − x̂t‖2ht
, where ht = �t�t�. (3.9)
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Again, we measure the deviation of loss functions by their L2-deviation, defined in (3.1). To

instantiate the META algorithm for such loss functions, we choose

• Rt(x) =
1
2
‖x‖2Ht

, with Ht = I + βγ2I + β
∑t−1

τ=1 �τ�τ�,

where I is the N × N identity matrix, and γ is an upper bound of ‖�t‖2, for every t, so that

γ2I  �t�t�. It is easy to show that with this choice,

• ∇Rt(x) = Htx, BRt(x, y) = 1
2
‖x− y‖2Ht

, and ΠX ,Rt
(y) = argminx∈X ‖x− y‖2Ht

.

Then, according to Lemma 3.1, the update in Step 2(c) of the META algorithm becomes:

• xt+1 = argminx∈X ‖x− yt+1‖2Ht
, with yt+1 = xt −H−1

t �t,

x̂t+1 = argminx̂∈X ‖x̂ − ŷt+1‖2Ht+1
, with ŷt+1 = xt+1 −H−1

t+1�t.

We remark that our algorithm is related to the online Newton step algorithm in [46], except that

our matrix Ht is slightly different from theirs and we play x̂t in round t while they play a point

roughly corresponding to our xt. It is easy to verify that the update of our algorithm can be

computed at the end of round t, because we have �1, . . . , �t available to compute Ht and Ht+1.

To bound the regret of our algorithm, note that by substituting the bound of Lemma 3.2 into

(3.9) and then taking the sum over t, we obtain

T∑
t=1

(ft (x̂t)− ft (π)) ≤
T∑
t=1

St +
T∑
t=1

At −
T∑
t=1

Bt −
T∑
t=1

Ct, (3.10)

with St = 〈�t − �t−1, x̂t − xt+1〉, At =
1
2
‖π − xt‖2Ht

− 1
2
‖π − xt+1‖2Ht

, Bt =
1
2
‖xt+1 − x̂t‖2Ht

+
1
2
‖x̂t − xt‖2Ht

, and Ct = β ‖π − x̂t‖2ht
. Then our key lemma is the following.

Lemma 3.7. Suppose the loss functions are β-convex for some β > 0. Then

T∑
t=1

St +
T∑
t=1

At −
T∑
t=1

Ct ≤ O(1 + βγ2) +
8N

β
ln

(
1 +

β

4

T∑
t=1

‖�t − �t−1‖22
)
.

Proof. We start by bounding the first sum in (3.10). Note that we can apply Lemma 3.3 with the

norm ‖·‖ = ‖·‖Ht
, since 1

2
‖x− x′‖2 = 1

2
‖x− x′‖2Ht

= BRt(x, x′) for any x, x′ ∈ X . As the

dual norm is ‖·‖∗ = ‖·‖H−1
t

, Lemma 3.3 gives us

T∑
t=1

St ≤
T∑
t=1

‖�t − �t−1‖2∗ ≤
T∑
t=1

‖�t − �t−1‖2H−1
t

.

Next, we bound the second sum
∑T

t=1 At in (3.10), which can be written as

1

2
‖π − x1‖2H1

− 1

2
‖π − xT+1‖2HT+1

+
1

2

T∑
t=1

(
‖π − xt+1‖2Ht+1

− ‖π − xt+1‖2Ht

)
.
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Since ‖π − x1‖2H1
= O (1 + βγ2), ‖π − xT+1‖2HT+1

≥ 0, and Ht+1 −Ht = βht, we have

T∑
t=1

At ≤ O
(
1 + βγ2

)
+

β

2

T∑
t=1

‖π − xt+1‖2ht
.

Note that unlike in the case of linear functions, here the sum does not telescope and hence we

do not have a small bound for it. The last sum
∑T

t=1 Ct in (3.10) now comes to help. Recall that

Ct = β ‖π − x̂t‖2ht
, so by Proposition 3.1,

β

2
‖π − xt+1‖2ht

− Ct ≤ β ‖π − x̂t‖2ht
+ β ‖x̂t − xt+1‖2ht

− Ct = β ‖x̂t − xt+1‖2ht
,

which, by the fact that Ht  βγ2I  βht and the bound in (3.5), is at most

‖x̂t − xt+1‖2Ht
≤ ‖�t − �t−1‖2H−1

t
.

Combining the bounds derived so far, we obtain

T∑
t=1

St +
T∑
t=1

At −
T∑
t=1

Ct ≤ O(1 + βγ2) + 2
T∑
t=1

‖�t − �t−1‖2H−1
t

. (3.11)

Finally, to complete our proof of Lemma 3.7, we rely on the following, which provides a

bound for the last term in (3.11) and will be proved in Appendix A.3.

Lemma 3.8.
∑T

t=1 ‖�t − �t−1‖2H−1
t

≤ 4N
β
ln
(
1 + β

4

∑T
t=1 ‖�t − �t−1‖22

)
.

Note that the lemma does not use the nonnegative sum
∑T

t=1 Bt but it already provides a

regret bound matching that in [46]. To bound
∑T

t=1 ‖�t − �t−1‖22 in terms of L2-deviation, we

again assume that each gradient ∇ft satisfies the λ-smoothness condition defined in (4.3), and

we will also use the help from the sum
∑T

t=1 Bt. To get a cleaner regret bound, let us assume

without loss of generality that λ ≥ 1 and β ≤ 1, because otherwise we can set λ = 1 and β = 1

and the inequalities in (4.3) and (3.9) still hold. Our main result of this section is the following

theorem.

Theorem 3.4. Suppose the loss functions are β-convex and their L2-deviation is D2, with β ≤
1 and D2 ≥ 1. Furthermore, suppose the gradient of each loss function is λ-smooth, with

λ ≥ 1, and has L2-norm at most γ. Then the regret of our algorithm is at most O(βγ2 +

(N/β) ln(λND2)), which becomes O((N/β) lnD2) for a large enough D2.
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Proof. To bound the last term in the bound of Lemma 3.7 in terms of our deviation bound D2, we

use Lemma 3.5 in Section 3.6. Combining this with (3.10), we can upper-bound
∑T

t=1(ft(x̂t)−
ft(π)) by

O(1 + βγ2) +
8N

β
ln

(
1 +

β

2
D2 +

βλ2

2

T∑
t=1

‖x̂t − x̂t−1‖22
)

−
T∑
t=1

Bt. (3.12)

To eliminate the undesirable last term inside the parenthesis above, we need the help from the

sum
∑T

t=1 Bt, which has the following bound.

Lemma 3.9.
∑T

t=1 Bt ≥ 1
4

∑T
t=1 ‖x̂t − x̂t−1‖22 −O(1).

Proof. Recall that Bt =
1
2
‖xt+1 − x̂t‖2Ht

+ 1
2
‖x̂t − xt‖2Ht

, so we can write
∑T

t=1 Bt as

1

2

T+1∑
t=2

‖xt − x̂t−1‖2Ht−1
+

1

2

T∑
t=1

‖x̂t − xt‖2Ht
≥ 1

2

T∑
t=2

‖xt − x̂t−1‖2Ht−1
+

1

2

T∑
t=2

‖x̂t − xt‖2Ht−1

since Ht  Ht−1 and ‖xT+1 − x̂T‖2HT
, ‖x̂1 − x1‖2H1

≥ 0. By Proposition 3.1, this is at least

1

4

T∑
t=2

‖x̂t − x̂t−1‖2Ht−1
≥ 1

4

T∑
t=2

‖x̂t − x̂t−1‖2I =
1

4

T∑
t=2

‖x̂t − x̂t−1‖22

as Ht−1  I and I is the identity matrix. Then the lemma follows as ‖x̂2 − x̂1‖22 ≤ O(1).

Applying this lemma to (3.12), we obtain a regret bound of the form

O(1 + βγ2) +
8N

β
ln

(
1 +

β

2
D2 +

βλ2

2
W

)
− 1

4
W

where W =
∑T

t=1 ‖x̂t − x̂t−1‖22. Observe that the combination of the last two terms above

become negative when W ≥ (λND2)
c/β for some large enough constant c, as we assume β ≤ 1

and λ,D2 ≥ 1. Thus, the regret bound is at most O(βγ2 + (N/β) ln(λND2)), which completes

the proof of Theorem 3.4.

An immediate application of Theorem 3.4 is to the portfolio management problem considered

in [42]. In the problem, the feasible set X is the N -dimensional probability simplex and each

loss function has the form ft(x) = − ln 〈vt, x〉, with vt ∈ [δ, 1]N for some δ ∈ (0, 1). A natural

measure of deviation, extending that of [42], for such loss functions is D =
∑T

t=1 ‖vt − vt−1‖22.
By applying Theorem 3.4 to this problem, we have the following result.

Corollary 3.1. For the portfolio management problem described above, there is an online algo-

rithm which achieves a regret of O((N/δ2) ln((N/δ)D)).
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Proof. Recall that each loss function has the form ft(x) = − ln 〈vt, x〉 for some vt ∈ [δ, 1]N with

δ ∈ (0, 1), and note that ∇ft(x) = −vt/ 〈vt, x〉. To apply Theorem 3.4, we need to determine

the parameters β, γ, λ,D2.

First, by a Taylor expansion, we know that for any x, y ∈ X , there is some ξt on the line

between x and y such that

ft(x) = ft(y) + 〈∇ft(y), x− y〉+ 1

2 〈vt, ξt〉2
(x− y)�vtv�t (x− y),

where the last term above equals

1

2 〈vt, ξt〉2
〈vt, x− y〉2 = 〈vt, y〉2

2 〈vt, ξt〉2
〈∇ft(y), x− y〉2 ≥ δ2

2
〈∇ft(y), x− y〉2 .

Thus, we can choose β = δ2/2. Next, since ‖∇ft(x)‖2 = ‖vt‖2 / 〈vt, x〉 ≤ √
N/δ, we can

choose γ =
√
N/δ. Third, note that

‖∇ft(x)−∇ft(y)‖2 =
∥∥∥∥ vt
〈vt, x〉 −

vt
〈vt, y〉

∥∥∥∥
2

=
‖vt‖2 |〈vt, x− y〉|
〈vt, x〉 〈vt, y〉 ,

which by a Cauchy-Schwarz inequality is at most

‖vt‖22
〈vt, x〉 〈vt, y〉 ‖x− y‖2 ≤

N

δ2
‖x− y‖2 .

Thus, we can choose λ = N/δ2. Finally, note that for any x ∈ X ,

‖∇ft(x)−∇ft−1(x)‖2 =
∥∥∥∥ vt
〈vt, x〉 −

vt−1

〈vt−1, x〉
∥∥∥∥
2

=

∥∥∥∥vt − vt−1

〈vt, x〉 +
vt−1 (〈vt−1, x〉 − 〈vt, x〉)

〈vt, x〉 〈vt−1, x〉
∥∥∥∥
2

,

which by a triangle inequality and then a Cauchy-Schwarz inequality is at most

‖vt − vt−1‖2
〈vt, x〉 +

‖vt−1‖2 | 〈vt−1 − vt, x〉 |
〈vt, x〉 〈vt−1, x〉 ≤ ‖vt − vt−1‖2

〈vt, x〉 +
‖vt−1‖2 ‖x‖2 ‖vt − vt−1‖2

〈vt, x〉 〈vt−1, x〉 ,

which in turn is at most
(

1
δ
+

√
N
δ2

)
‖vt − vt−1‖2 ≤ 2

√
N

δ2
‖vt − vt−1‖2. This implies

T∑
t=1

max
x∈X

‖∇ft(x)−∇ft−1(x)‖22 ≤
T∑
t=1

(
2
√
N

δ2

)2

‖vt − vt−1‖22 ≤
(
4N

δ4

)
D.

Thus, we can choose D2 = (4N/δ4)D. Using these bounds in Theorem 3.4, we have the corol-

lary.
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Chapter 4

Beating Bandits in Gradually Evolving
Worlds

In this chapter, we will extend our work [28] which considers the full information feedback

setting to the partial information feedback setting. We will start by reviewing several previous

works in Section 4.1 , and then present the main topic of this chapter which is our work [29]

from Section 4.2 to Section 4.6.

4.1 Previous Works

For general convex loss functions, a regret of O(
√
nT ) can be achieved [68], while for strongly

convex loss functions, a smaller regret of O (n lnT ) becomes possible [46]. These two results,

as well as many others, considered only the worst-case scenario, in which the loss functions have

no pattern or are even generated in a malicious way. However, the environments we are in may

not always be adversarial, so a research direction is to identify natural patterns or properties of

loss functions and to design online algorithms with smaller regrets for them. For loss functions

which are linear (and can be seen as vectors), Hazan and Kale [41] considered a measure called

variation, defined as V =
∑T

t=1 ‖ft − μ‖22, where μ is the average of the loss functions, and

they provided an algorithm achieving a regret of O(
√
V ). In another work, Hazan and Kale [42]

considered the online portfolio management problem [32] and achieved a logarithmic regret in

terms of a similar measure. Note that loss functions with small variation can be seen as basically

centered around their average, which models a stationary environment with loss functions com-

ing from some fixed distribution. Chiang et al. [28] introduced a more general measure called
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deviation which models a dynamic environment that usually evolves gradually, including exam-

ples such as weather conditions and stock markets. More precisely, Chiang et al. [28] considered

not only linear functions but also convex functions, and defined the deviation as

D2 =
T∑
t=1

max
x∈K

‖∇ft(x)−∇ft−1(x)‖22 , (4.1)

using the convention that f0 is the all-0 function, where ∇fτ (x) denotes the gradient of fτ at

x. With this, they provided algorithms achieving a regret of O(
√
D) for convex functions and

a smaller regret of O(n lnD) for strongly convex loss functions. Since one can show that D ≤
O(V ) but not the other way around [28], results with regrets in terms of D are arguably stronger

than those in terms of V .

4.2 Beating Bandits in Gradually Evolving Worlds

The bandit setting appears much more challenging. For linear functions, Abernethy et al. [3]

achieved a regret of O(n
√
ϑT lnT ) using a somewhat involved method of ϑ-self-concordant bar-

riers, while Bubeck et al. [19] slightly improved the regret to O(n
√
T lnT ) but with an inefficient

algorithm. For general convex functions, the best regret currently achieved is O(T 2/3(lnT )1/3)

by Saha and Tewari [62], which is far from the O(
√
nT ) regret achieved in the full-information

setting. Even worse, for strongly convex functions, there is actually an Ω(
√
T ) regret lower

bound in the bandit setting [47], compared to the O (n lnT ) regret upper bound achievable in

the full information case. For linear functions with variation V , Hazan and Kale [43] achieved

a regret of O(n
√
ϑV lnT ), but no such result is known for convex functions or strongly convex

ones. None is known either for loss functions with small deviation, even for linear functions.

Our goal is to have bandit algorithms for loss functions with small deviation, but it turns out

to be difficult as we discuss next. The standard approach for designing a bandit algorithm is to

run a full-information algorithm and replace the information it needs by estimated one. For loss

functions with small deviation, we would like to apply this to the full-information algorithm of

[28], and what it needs in round t is the gradient of the loss function at the action it plays, denoted

as �t. To have a bandit algorithm, a natural attempt is to replace �t by an estimator gt using bandit

information, which would achieve regrets in terms of
∑

t ‖gt − gt−1‖22. However, this deviation

of the estimated gradients can be large even when the deviation of the true gradients is small.

The reason is that in most previous works, such as [1, 3, 19, 36], the estimator gt typically takes

the form of ctut for some value ct ∈ R and some vector ut sampled independently in each round
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from a set which spans Rn. As a result, ut and ut−1 are very different with high probability, and

so are gt and gt−1, even when �t and �t−1 are close. A possible way around this is to use estimators

of a different form. For linear loss functions with small variation, with loss functions centering

around their average, Hazan and Kale [43] considered estimators of the form gt = ctut + μ̃t

where μ̃t is an estimator of the average, and their success relies on the fact that the average can

be estimated accurately with high probability by an online algorithm. This suggests us to use

estimators of the form gt = ctut + g̃t−1 where g̃t−1 is an estimator of �t−1, but it is not clear if it

is possible to have an accurate estimator for each �t−1 with high probability as each loss function

may only appear once. Another issue is the choice of the exploration scheme. Take that of [36] as

an example. In each round, it explores randomly in a neighborhood of diameter δ in order to get

a good estimator, but this adds to the regret a term (corresponding to the length of the estimator)

which is proportional to 1/δ2 as well as a term which is proportional to δ. Then no good choice

of δ can lead to a regret characterized by D instead of by T .

To avoid some of the difficulties, we consider the relaxed two-point bandit setting of [4], in

which one can play two actions, instead of just one, in a given round and get to know their respec-

tive loss values, while their average is counted as the loss of that round. In fact, such a relaxation

is necessary if we want to achieve a regret comparable to that in the full-information setting for

strongly convex functions [46], according to the lower bound of [47]. In such a two-point bandit

setting, Agarwal et al. [4] showed that regrets close to those in the full-information setting can

indeed be achieved: O(n2
√
T ) for convex functions and O(n2 lnT ) for strongly convex func-

tions. One may wonder if their results can be generalized to having regrets characterized by the

more refined measure D2, instead of simply by T , just as those of [28] in the full-information

setting.

We answer this affirmatively. That is, we provide two-point bandit algorithms which achieve

regrets close to the full-information ones in [28]. For linear functions, our regret is O(n3/2
√
D2).

For convex functions, our regret is O(n2
√
D2 + lnT ), which becomes O(n2

√
D2) when D2 ≥

Ω(lnT ). For strongly convex functions, our regret is O(n2(ln(D2 + lnT )), which becomes

O(n2 lnD2) when D2 ≥ Ω(lnT ). Note that the dependencies on D2 in our regret bounds match

those of [28] in the full-information setting. Compared to the regrets of [4] in the two-point

bandit setting, we recover their results in the extreme case with D = Ω(T ), but our regrets

become much smaller when D is much smaller than T . The contrast to regrets in the (one-point)

bandit setting is even sharper, as the regret of [62] for convex functions is substantially higher
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than ours, while for strongly convex functions, there is actually an Ω(
√
D) lower bound1 which

is exponentially higher than our upper bound. Moreover, all of our algorithms are simple and

efficient, which again demonstrates the power of two-point bandit algorithms. Finally, as our

algorithms are based on the full-information ones of [28], we inherit their nice property that

all our algorithms can be derived from one single meta algorithm and their regrets can all be

analyzed in one single framework.

Preliminaries

Let N denote the set of positive integers and R the set of real numbers. For n ∈ N, let [n] denote

the set {1, 2, · · · , n} and R
n the set of n-dimensional vectors over R. For vectors x, y ∈ R

n,

denote the inner product of x and y by 〈x, y〉 and the Euclidean norm of x by ‖x‖2. For a convex

set X ⊆ R
n and some y ∈ R

n, let ΠX (y) = argminx∈X ‖x− y‖2, which we call the projection

of y onto X . Let {e1, · · · , en} be the set of standard basis for Rn.

We consider the online convex optimization problem with two-point bandit feedback, in which

an online algorithm must play T rounds in the following way. In each round t, it plays two ac-

tions wt and w′
t from a convex feasible set K ⊆ R

n, and after that, it receives the loss information

ft(wt) and ft(w
′
t) and suffers a loss of 1

2
(ft(wt) + ft(w

′
t)) according to some convex loss func-

tion ft : K → R. The goal is to minimize the expected regret:

E

[
T∑
t=1

1

2
(ft(wt) + ft(w

′
t))

]
−min

π∈K

T∑
t=1

ft(π), (4.2)

which is the expected total loss of the online algorithm minus that of the best offline algorithm

playing a fixed action π ∈ K for all T rounds, where the expectation is over the randomness of

the algorithm.

As in [36], we assume that the feasible set satisfies the condition that rB ⊆ K ⊆ RB, for

some positive constants r ≤ R, where B = {x ∈ R
n : ‖x‖2 ≤ 1} is the unit ball centered at

0. We assume that each loss function ft has bounded gradient ‖∇ft(x)‖2 ≤ G for any x ∈ K,

where ∇ft(x) denotes the gradient of ft at x, and note that this implies the G-Lipschitz condition:

|ft(x)− ft(y)| ≤ G ‖x− y‖2 for any x, y ∈ K. As in previous works, we also assume that each

loss function is λ-smooth:

‖∇ft(x)−∇ft(y)‖2 ≤ λ ‖x− y‖2 . (4.3)

1Such a lower bound can be easily modified from that of [47].
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In addition, we will also consider loss functions which are H-strongly convex. Formally, a func-

tion f : K → R is called H-strongly convex, for some H > 0, if

∀x, y ∈ K : f(x) ≥ f(y) + 〈∇f(y), x− y〉+ H

2
‖x− y‖22 . (4.4)

Finally, we will need the following two simple facts.

Proposition 4.1. (a) For m ∈ N and a1, . . . , am ∈ R, (
∑m

t=1 at)
2 ≤ m

∑m
t=1 a

2
t . (b) For n ∈ N

and x, y ∈ R
n, ‖x+ y‖22 ≤ 2 ‖x‖22 + 2 ‖y‖22 .

Proof. To prove (a), we let u be the all-1 vector and v the vector (a1, . . . , am), and by the Cauchy-

Schwarz inequality, we have (
∑m

t=1 at)
2
= 〈u, v〉2 ≤ ‖u‖22 ‖v‖22 = m

∑m
t=1 a

2
t . To prove (b),

simply note that 2 ‖x‖22 + 2 ‖y‖22 − ‖x+ y‖22 = ‖x− y‖22 ≥ 0.

4.3 Meta Algorithm

All the algorithms in the coming sections are based on the following META algorithm, given

in Algorithm 4. It is in turn based on the full-information algorithm of [28], which follows the

gradient descent algorithm to update xt+1 = ΠX (xt − η�t) after seeing �t, but plays x̂t+1 =

ΠX (xt+1 − η�t) instead in round t + 1, where �t = ∇ft(x̂t). The idea is that in the case of

small deviation, one could use �t as an approximation of the next �t+1, and play x̂t+1 which

moves further in the direction of −�t, and this can indeed be shown to achieve regrets in terms

of the deviation
∑

t ‖�t − �t−1‖22. In the bandit setting, we do not have �t available, and the

standard approach is to feed the full-information algorithm with an estimator for �t using the

bandit information. An easy way to estimate �t based on that of [4] is to choose a standard basis

vector eit randomly, play two actions wt = x̂t + δeit and w′
t = x̂t − δeit , compute vt,it =

1
2δ
(ft(wt)− ft(w

′
t)), and use g̃t = (nvt,it)eit as the estimator. It can be shown that E [g̃t] is close

to �t. If we feed this estimator g̃t to the algorithm of [28], we obtain regret bounds in terms of∑
t ‖g̃t − g̃t−1‖22, which unfortunately may be much larger than deviation. The reason is that

even when ‖�t − �t−1‖22 is small, ‖g̃t − g̃t−1‖22 =
∥∥(nvt,it)eit − (nvt−1,it−1)eit−1

∥∥2
2

may be large

if it �= it−1. Thus, in our algorithm, we only follow the idea of [4] up to computing vt,it , in

our first three steps, and then we use different estimators. Our key observation is that in the

regret term ‖�t − �t−1‖22 of [28], �t comes from using gradient descent to update xt+1, while �t−1

comes from using it as an approximation of �t to move from xt to x̂t. Therefore, we distinguish

the two different uses and compute two different estimators for them, as shown in step 4 of our

algorithm, with gt as an estimator of �t which needs to have E [gt] close to �t, and with ĝt as an
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approximation of �t+1. Note that gt and ĝt computed there are obtained from ĝt−1 by modifying

only its itth entry, where ĝτ,i denotes the ith entry of the vector ĝτ . Then we do the the update

in step 5, which can be seen as that of [28] using the estimators gt and ĝt. The parameter ηt is

the learning rate, which will be chosen differently for different classes of loss functions in the

following sections.

Algorithm 4 META algorithm

Let X = (1− μ)K. Let x1 = x̂1 = 0 and ĝ0 = 0.

In round t ∈ [T ]:
1: Choose it uniformly from [n].
2: Play two actions wt = x̂t + δeit and w′

t = x̂t − δeit .
3: Observe partial information ft(wt) and ft(w

′
t). Let vt,it =

1
2δ
(ft(wt)− ft(w

′
t)).

4: Compute

gt = n (vt,it − ĝt−1,it) eit + ĝt−1 and ĝt = (vt,it − ĝt−1,it) eit + ĝt−1.

5: Update

xt+1 = ΠX (xt − ηtgt) and x̂t+1 = ΠX (xt+1 − ηt+1ĝt).

Next, we derive a general regret bound for our algorithm. Following [4], we consider a

smaller feasible set X = (1− μ)K for x̂t, with μ = δ/r, so that wt and w′
t played in step 2

are feasible points in K, according to Observation 3.2 of [36]. As in [4], we can choose an

arbitrarily small δ > 0, which is the advantage one can have in the two-point bandit setting2;

for our purpose, any δ such that δ(λGRn2/r) ≤ o(1/T ) suffices. Similarly to [4], to bound the

regret of our algorithm against π̄ = argminx∈K
∑T

t=1 ft(x), which is the best fixed action in K,

it suffices to bound the regret according to the actions x̂t’s against π = argminx∈X
∑T

t=1 ft(x),

which is the best fixed action in X . This is established by the following lemma.

Lemma 4.1.
∑T

t=1

(
1
2
(ft(wt) + ft(w

′
t))− ft(π̄)

) ≤∑T
t=1 (ft(x̂t)− ft(π)) + o(1).

Proof. Observe that it suffices to prove that both
∑T

t=1

(
1
2
(ft(wt) + ft(w

′
t))− ft(x̂t)

) ≤ o(1)

and
∑T

t=1 (ft(π)− ft(π̄)) ≤ o(1) hold.

First, from the G-Lipschitz condition, ft(wt)− ft(x̂t) ≤ G ‖wt − x̂t‖2 ≤ Gδ, and similarly,

ft(w
′
t)− ft(x̂t) ≤ Gδ. Thus

T∑
t=1

(
1

2
(ft(wt) + ft(w

′
t))− ft(x̂t)

)
≤ TGδ ≤ o(1).

2This is because the estimator gt now can have a bounded length, unlike the (one-point) bandit setting in which

the estimator’s length and consequently the regret grows proportionally to 1/δ2.
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Next, following the idea in [36], we know that as a convex function, ft((1− μ) π̄) = ft((1−
μ)π̄ + μ0) ≤ (1− μ) ft(π̄) + μft(0) = ft(π̄) + μ (ft(0)− ft(π̄)), where the second term is at

most μGR ≤ o(1/T ). By summing over t, we have

T∑
t=1

ft(π) ≤
T∑
t=1

ft((1− μ) π̄) ≤
T∑
t=1

ft(π̄) + o(1),

where the first inequality holds since (1− μ) π̄ ∈ X and π = argminx∈X
∑T

t=1 ft(x). This

implies that
∑T

t=1 (ft(π)− ft(π̄)) ≤ o(1), and we have the lemma.

This allows us to turn our attention to bound the sum
∑T

t=1 (ft(x̂t)− ft(π)). Recall that

�t = ∇ft(x̂t) and let �t,i denote the ith entry of the vector �t which equals ∇ift(x̂t), where

∇ift(x̂t) denotes the ith entry of ∇ft(x̂t). Note that ft(x̂t) − ft(π) is at most 〈�t, x̂t − π〉 for

convex ft and at most 〈�t, x̂t − π〉 − H
2
‖x̂t − π‖22 for H-strongly convex ft. Thus, we have the

following.

Lemma 4.2. Let Ct = 0 for convex ft and Ct =
H
2
‖x̂t − π‖22 for H-strongly convex ft. Then we

have ft(x̂t)− ft(π) ≤ 〈�t, x̂t − π〉 − Ct.

Next, recall that the update rule of our algorithm can be seen as that of Chiang et al. [28]

using gt as an estimator of the gradient �t and using ĝt as an approximation of �t+1. Then we

have the following from [28]; for completeness, we provide the proof in Appendix B.1.

Lemma 4.3. Let St = ηt ‖gt − ĝt−1‖22, At = 1
2ηt

‖π − xt‖22 − 1
2ηt

‖π − xt+1‖22, and Bt =
1
2ηt

‖xt+1 − x̂t‖22 + 1
2ηt

‖x̂t − xt‖22. Then we have 〈gt, x̂t − π〉 ≤ St + At − Bt.

To connect Lemma 4.2 with Lemma 4.3, we rely on the following lemma. Note that this

justifies our use of gt as an estimator of �t.

Lemma 4.4. E [〈�t, x̂t − π〉] ≤ E [〈gt, x̂t − π〉] + o(1/T ).

Proof. Let vt,i =
1
2δ
(ft(x̂t + δei)− ft(x̂t − δei)) so that vt,it =

1
2δ
(ft(wt)− ft(w

′
t)) and gt =

n(vt,it − ĝt−1,it)eit + ĝt−1.

Let us first consider any fixed choice of i[t−1] = (i1, . . . , it−1), which has x̂t, �t = ∇ft(x̂t),

and ĝt−1 fixed, with it still left random. Let Et [·] denote the expectation over the random it,

conditioned on the fixed i[t−1]. Note that

Et [gt] = Et [nvt,iteit ]− Et [(nĝt−1,it) eit − ĝt−1] ,

where the second term above is zero since it is chosen uniformly over [n], and the first term

above is

Et [nvt,iteit ] =
n∑

i=1

vt,iei =
n∑

i=1

1

2δ
(ft(x̂t + δei)− ft(x̂t − δei)) ei.
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Then our goal becomes to show that the above is close to �t = ∇ft(x̂t), and for that it suffices

to show that each vt,i is close to �t,i = ∇ift(x̂t). Note that by Taylor’s expansion, ft(x̂t + δei)−
ft(x̂t − δei) = 〈∇ft(ξt,i), 2δei〉 for some ξt,i on the line between x̂t + δei and x̂t − δei, which

implies that

vt,i =
1

2δ
〈∇ft(ξt,i), 2δei〉 = ∇ift(ξt,i).

Then by the λ-smoothness assumption, we have

|�t,i − vt,i| = |∇ift(x̂t)−∇ift(ξt,i)| ≤ ‖∇ft(x̂t)−∇ft(ξt,i)‖2 ≤ λ ‖x̂t − ξt,i‖2 ≤ λδ, (4.5)

which implies that

‖�t − Et [gt]‖22 = ‖�t − Et [nvt,iteit ]‖22 =
n∑

i=1

(�t,i − vt,i)
2 ≤ n (λδ)2 ,

and thus by the Cauchy-Schwarz inequality,

〈�t − Et [gt] , x̂t − π〉 ≤ ‖�t − Et [gt]‖2 · ‖x̂t − π‖2 ≤
√
nλδ · 2R ≤ o(1/T ).

Finally, let us go back to have i[t−1] = (i1, . . . , it−1) randomly chosen, and let E[t−1] [·] denote

the expectation over the randomly chosen i[t−1]. Then, we have the lemma as

E [〈�t, x̂t − π〉]− E [〈gt, x̂t − π〉] = E[t−1] [〈�t − Et [gt] , x̂t − π〉] ≤ o(1/T ).

Finally, by taking expectation on the bound in Lemma 4.1 and combining the bounds in the

previous three lemmas, we have the following theorem.

Theorem 4.1. The expected regret of the META algorithm is

E

[
T∑
t=1

(
1

2
(ft(wt) + ft(w

′
t))− ft(π̄)

)]
≤ E

[
T∑
t=1

(St + At − Bt − Ct)

]
+ o(1).

In the following sections, we will consider different classes of loss functions and instantiate

the META algorithm accordingly, and then concrete regret bounds will be derived. Note that the

key term in the regret bound of Theorem 4.1 is the sum of St = ηt ‖gt − ĝt−1‖22, as it is related

to the deviation according to the following lemma.

Lemma 4.5. For any t ∈ [T ], let αt be the smallest integer such that 0 ≤ αt < t and iτ �= it for

any αt < τ < t, and let D̂t = (�t,it − �αt,it)
2. Then, ‖gt − ĝt−1‖22 ≤ n2D̂t + o(1/T ).
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Proof. Recall that

‖gt − ĝt−1‖22 = ‖n (vt,it − ĝt−1,it) eit‖22 = n2 (vt,it − ĝt−1,it)
2 ,

and from the definition of αt, we know that ĝt−1,it = ĝαt,it = vαt,it . Thus, we have (vt,it −
ĝt−1,it)

2 = (vt,it − vαt,it)
2, and we show next that it is close to (�t,it − �αt,it)

2
.

Let ε = |vt,it − �t,it | + |�αt,it − vαt,it |, and note that ε ≤ 2λδ by inequality (4.5). Then we

can express (vt,it − vαt,it)
2

as

((�t,it − �αt,it) + (vt,it − �t,it) + (�αt,it − vαt,it))
2 ≤ (|�t,it − �αt,it |+ ε)2 ,

which is

(�t,it − �αt,it)
2 + 2ε |�t,it − �αt,it |+ ε2 ≤ (�t,it − �αt,it)

2 + 8λδG+ (2λδ)2

where the last two terms are both o(1/(Tn2)). Then the lemma follows as

‖gt − ĝt−1‖22 = n2 (vt,it − vαt,it)
2 ≤ n2 (�t,it − �αt,it)

2 + o(1/T ).

Note that D̂t is related to the difference between two gradients t− αt rounds away, which is

related to the deviation accumulated through those rounds. Thus, to have a small D̂t, we would

like to have αt close to t. This leads us to adopt the exploration scheme of [4] but modify it to

sample each ei with equal probability, so that t−αt can be shown to have a small expected value.

4.4 Linear Loss Functions

In this section, we consider linear loss functions. The deviation of such a sequence of loss

functions according to (4.1) now turns into D =
∑T

t=1 ‖�t − �t−1‖22 =
∑T

t=1 ‖ft − ft−1‖22 , where

we let f0 = �0 be the all-0 vector 0. To instantiate the META algorithm, we set ηt = η for all t,

for some η be chosen later.

To bound the expected regret of our algorithm, we know from Theorem 4.1 that it suffices to

bound

E

[
T∑
t=1

(St + At − Bt − Ct)

]
≤ E

[
T∑
t=1

St

]
+ E

[
T∑
t=1

At

]
,
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as Bt ≥ 0 and Ct = 0 for linear functions. Note that with At =
1
2η

‖π − xt‖22 − 1
2η
‖π − xt+1‖22,

we have by telescoping that

T∑
t=1

At =
1

2η
‖π − x1‖22 −

1

2η
‖π − xT+1‖22 ≤

R2

2η
,

as ‖π − x1‖22 ≤ R2 and ‖π − xT+1‖22 ≥ 0. It remains to bound E

[∑T
t=1 St

]
.

We know from Lemma 4.5 that St = η ‖gt − ĝt−1‖22 ≤ ηn2D̂t + o(1/T ), where D̂t =

(�t,it − �αt,it)
2
, which is related to the difference between two loss functions several rounds away,

instead of just between two consecutive ones as used by the definition of deviation. To bridge

the gap, we need the following.

Lemma 4.6. For t ∈ [T ] and i ∈ [n], let ρt,i = max{τ2 − τ1 : 0 ≤ τ1 < t ≤ τ2 ≤ T and iτ �=
i for any τ1 < τ < τ2}. Then,

T∑
t=1

D̂t ≤
T∑
t=1

n∑
i=1

ρt,i (�t,i − �t−1,i)
2 .

Proof. From the definition, αt is the most recent round before round t such that iαt = it, or

αt = 0 if there is no such round. Then for any t ∈ [T ] and i ∈ [n] such that it = i, we can rewrite

D̂t = (�t,i − �αt,i)
2

as(
t∑

τ=αt+1

(�τ,i − �τ−1,i)

)2

≤ (t− αt)
t∑

τ=αt+1

(�τ,i − �τ−1,i)
2 =

t∑
τ=αt+1

ρτ,i (�τ,i − �τ−1,i)
2 ,

where the inequality follows from Proposition 4.1(a), and the equality follows from the fact that

ρτ,i = (t− αt) for any αt + 1 ≤ τ ≤ t. Therefore,

T∑
t=1

D̂t =
n∑

i=1

∑
t:it=i

D̂t ≤
n∑

i=1

∑
t:it=i

t∑
τ=αt+1

ρτ,i (�τ,i − �τ−1,i)
2 ≤

n∑
i=1

T∑
τ=1

ρτ,i (�τ,i − �τ−1,i)
2 ,

where the last inequality holds since for any i, the intervals [αt + 1, t], for t with it = i, have no

intersection, according to the definition of αt.

With this lemma, we can have the following, which links regret to deviation.

Lemma 4.7. E
[∑T

t=1 D̂t

]
≤ 2nD.

Proof. From Lemma 4.6, we know that

E

[
T∑
t=1

D̂t

]
≤

n∑
i=1

T∑
t=1

E
[
ρt,i (�t,i − �t−1,i)

2] = n∑
i=1

T∑
t=1

E [ρt,i] (�t,i − �t−1,i)
2 ,
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where the last equality follows from the fact that the gradient of a linear function does not depend

on where it is taken, so each (�t,i − �t−1,i)
2

is a fixed value independent of the randomness of the

expectation. It remains to bound E [ρt,i]. Recall the definition of ρt,i, and suppose ρt,i = τ2 − τ1

where 0 ≤ τ1 < t ≤ τ2 ≤ T and iτ �= i for τ1 < τ < τ2. Then we can write the random variable

ρt,i as the sum of two random variables t− τ1 and τ2 − t, and observe that both can be bounded

by a geometric random variable, denoted by Z, with Pr [Z = k] = (1/n)(1− 1/n)k−1 for k ≥ 1

and E [Z] = n; in fact, t− τ1 = min{Z, t} ≤ Z and τ2 − t = min{Z − 1, T − t} ≤ Z. Thus,

E [ρt,i] = E [t− τ1] + E [τ2 − t] ≤ 2n. (4.6)

Consequently, we have

E

[
T∑
t=1

D̂t

]
≤

n∑
i=1

T∑
t=1

E [ρt,i] (�t,i − �t−1,i)
2 ≤ 2n

n∑
i=1

T∑
t=1

(�t,i − �t−1,i)
2 = 2nD.

Since E

[∑T
t=1 St

]
≤ ηn2

E

[∑T
t=1 D̂t

]
+ o(1) ≤ 2ηn3D + o(1), we can conclude that the

expected regret of our algorithm is at most

2ηn3D +
R2

2η
+ o(1) ≤ O

(
Rn3/2

√
D
)
,

by choosing η = R/
√
n3D, which gives us the following.

Theorem 4.2. Suppose the loss functions are linear and have deviation D. Then the expected

regret of our algorithm is at most O(Rn3/2
√
D).

4.5 Convex Loss Functions

In this section we consider convex loss functions. The deviation D of loss functions is measured

by (4.1), which is
∑T

t=1 maxx∈K ‖∇ft(x)−∇ft−1(x)‖22 . To instantiate the META algorithm for

such loss functions, we again set ηt = η for all t, for some η to be chosen later.

To bound the expected regret of our algorithm, we know from Theorem 4.1 that it suffices to

bound

E

[
T∑
t=1

(St + At − Bt − Ct)

]
= E

[
T∑
t=1

St

]
+ E

[
T∑
t=1

At

]
− E

[
T∑
t=1

Bt

]
, (4.7)

as Ct = 0 for convex functions. As in Section 4.4, we have
∑T

t=1 At ≤ R2

2η
. On the other hand,

we will need the help of E
[∑T

t=1 Bt

]
here. The following lemma from [28] provides a lower

bound for it; for completeness, we give the proof in Appendix B.2.
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Lemma 4.8. E
[∑T

t=1 Bt

]
≥ 1

4η
E

[∑T
t=1 ‖x̂t − x̂t−1‖22

]
−O(1).

Next, to bound E

[∑T
t=1 St

]
, we again turn to bound E

[∑T
t=1 D̂t

]
, as St ≤ ηn2D̂t+o(1/T ).

Note that unlike a linear function, the gradient of a convex function now depends on where the

gradient is taken, and Lemma 4.7, which works for linear functions, does not work here for

convex functions. As in previous works, we assume that each ft satisfies the λ-smoothness

condition given in (4.3), and note that according to the discussion in Section 5 of [28], the

smoothness condition is in fact necessary in order to achieve a regret bound in terms of deviation.

To obtain a cleaner bound, let us assume that the parameters λ and R are constants, while the

parameters T and D are large, with T,D ≥ n, λ,R. Our key lemma is the following.

Lemma 4.9. E
[∑T

t=1 D̂t

]
≤ O(n2D) +O(n lnT ) · E

[∑T
t=1 ‖x̂t − x̂t−1‖22

]
.

Proof. We know from Lemma 4.6 that

T∑
t=1

D̂t ≤
T∑
t=1

n∑
i=1

ρt,i (�t,i − �t−1,i)
2 .

By definition, (�t,i − �t−1,i)
2 = (∇ift(x̂t)−∇ift−1(x̂t−1))

2
, which does not correspond to a

term in deviation because the gradients are taken at different points. To relate it to deviation, let

�̂t−1 = ∇ft−1(x̂t) with �̂t−1,i = ∇ift−1(x̂t), and rewrite (�t,i − �t−1,i)
2

as (�t,i − �̂t−1,i + �̂t−1,i −
�t−1,i)

2, which is at most 2(�t,i − �̂t−1,i)
2 + 2(�̂t−1,i − �t−1,i)

2 by Proposition 4.1(a). Then

E

[
T∑
t=1

D̂t

]
≤ 2E

[
T∑
t=1

n∑
i=1

ρt,i

(
�t,i − �̂t−1,i

)2
]
+ 2E

[
T−1∑
t=0

n∑
i=1

ρt,i

(
�̂t,i − �t,i

)2
]
. (4.8)

The first expectation in (4.8) is now related to deviation since (�t,i − �̂t−1,i)
2 = (∇ift(x̂t) −

∇ift−1(x̂t))
2, with the two gradients taken at the same point. However, unlike in the case of linear

functions, (�t,i − �̂t−1,i)
2 is now itself a random variable, which depends on the randomness of

the expectation and has correlation with ρt,i. To overcome this problem, we use the upper bound(
�t,i − �̂t−1,i

)2

≤ ‖∇ft(x̂t)−∇ft−1(x̂t)‖22 ≤ Dt,

where Dt = maxx∈K ‖∇ft(x)−∇ft−1(x)‖22 is a fixed value. Then the first expectation in (4.8)

can be bounded from above by

E

[
T∑
t=1

n∑
i=1

ρt,iDt

]
=

T∑
t=1

n∑
i=1

E [ρt,i]Dt ≤
T∑
t=1

n∑
i=1

(2n)Dt = 2n2D,

where the first inequality uses the inequality (4.6) from Section 4.4, and the second equality uses

the fact that D =
∑T

t=1 Dt.
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The second expectation in (4.8) is slightly harder to bound. As before, the complication

comes from the correlation between the two random variables ρt,i and (�̂t,i − �t,i)
2, but here we

do not have a fixed upper bound for (�̂t,i− �t,i)
2 which is good enough. Instead, we turn to bound

ρt,i. Let ρ̄ = 4n lnT and let Q denote the bad event that ρt,i > ρ̄ for some t ∈ [T ] and i ∈ [n],

which only happens with probability

Pr [Q] ≤ Tn

(
1− 1

n

)4n lnT

≤ Tn · e−4 lnT =
n

T 3
.

Then the second expectation in (4.8) can be expressed as

Pr [¬Q] · E
[
T−1∑
t=0

n∑
i=1

ρt,i

(
�̂t,i − �t,i

)2

∣∣∣∣∣¬Q
]
+ Pr [Q] · E

[
T−1∑
t=0

n∑
i=1

ρt,i

(
�̂t,i − �t,i

)2

∣∣∣∣∣Q
]
,

where the first term is at most

Pr [¬Q] · ρ̄ · E
[
T−1∑
t=0

n∑
i=1

(
�̂t,i − �t,i

)2

∣∣∣∣∣¬Q
]
≤ ρ̄ · E

[
T−1∑
t=0

n∑
i=1

(
�̂t,i − �t,i

)2
]
,

and the second term is at most

Pr [Q] · T · E
[
T−1∑
t=0

n∑
i=1

(
�̂t,i − �t,i

)2

∣∣∣∣∣Q
]
.

Note that by the definition of �̂t and by the λ-smoothness condition,

n∑
i=1

(
�̂t,i − �t,i

)2

= ‖∇ft(x̂t+1)−∇ft(x̂t)‖22 ≤ λ2 · ‖x̂t+1 − x̂t‖22 ,

with ‖x̂t+1 − x̂t‖2 ≤ 2R. Thus, the second expectation in (4.8) is at most

ρ̄ · λ2 · E
[
T−1∑
t=0

‖x̂t+1 − x̂t‖22
]
+

n

T 3
· T 2λ24R2 ≤ O(n lnT ) · E

[
T∑
t=1

‖x̂t − x̂t−1‖22
]
+ o(1).

Finally, by combining the bounds for the two expectations in (4.8), we have the lemma.

With this lemma, we obtain

E

[
T∑
t=1

St

]
≤ O(ηn4D) +O(ηn3 lnT ) · E

[
T∑
t=1

‖x̂t − x̂t−1‖22
]
+ o(1).

For some η ≤ O(1/(n2
√
D + lnT )), we can have O(ηn3 lnT ) ≤ 1

4η
so that the second term

above is at most E
[∑T

t=1 Bt

]
+ O(1) by Lemma 4.8, and the expected regret of our algorithm,

according to (4.7), can be bounded from above by

O

(
ηn4D +

1

η

)
≤ O

(
n2
√
D + lnT

)
.

As a result, we have the following theorem.
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Theorem 4.3. When the loss functions are convex and have deviation D, the expected regret of

our algorithm is at most O
(
n2
√
D + lnT

)
, where the hiding constant factor is a small polyno-

mial of the constants λ and R.

4.6 Strongly Convex Loss Functions

In this section we consider H-strongly convex functions. That is, we suppose that for some

constant H > 0, each loss function ft is H-strongly convex, so that

ft(x̂t)− ft(π) ≤ 〈�t, x̂t − π〉 − H

2
‖π − x̂t‖22 . (4.9)

The deviation D of the loss functions is again measured by (4.1). To instantiate the META

algorithm for such loss functions, now we choose the learning rate

ηt = 1

/(
1 +

H

2
+

H

2γ

t−1∑
τ=1

‖gτ − ĝτ−1‖22
)

,

with γ = 5n2G2 so that γ ≥ ‖gt − ĝt−1‖22 for any t ∈ [T ].3 It is easy to verify that ηt+1 can be

computed at the end of round t for updating x̂t+1, as gt and ĝt−1 are available then.

To bound the expected regret of our algorithm, we know from Theorem 4.1 that it suffices to

bound

E

[
T∑
t=1

(St + At − Bt − Ct)

]
= E

[
T∑
t=1

(St + At − Ct)

]
− E

[
T∑
t=1

Bt

]
,

where Ct = H
2
‖π − x̂t‖22 for H-strongly convex functions. With the help of such Ct, we can

reduce the regret down to only logarithmic in D. Our key lemma is the following, and we give

the proof in Appendix B.3, which follows closely a similar one in [28].

Lemma 4.10.
∑T

t=1 (St + At − Ct) ≤ 4γ
H
ln
(
1 + H

2γ

∑T
t=1 ‖gt − ĝt−1‖22

)
+O(1).

From Lemma 4.5, we know that ‖gt − ĝt−1‖22 ≤ n2D̂t + o(1/T ). Furthermore, as in Sec-

tion 4.5, we assume that each ft satisfies the λ-smoothness condition given in (4.3), so we can

use the upper bound for E
[∑T

t=1 D̂t

]
in Lemma 4.9. As before, to obtain a cleaner bound, we

assume that the parameters λ,R,G,H are all constants, and the parameters T,D are large, with

3From Lemma 4.5, we know that ‖gt − ĝt−1‖22 ≤ n2 ‖�t − �αt‖22 + o(1/T ), which by Proposition 4.1(b) is at

most n2
(
2 ‖�t‖22 + 2 ‖�αt‖22

)
+ o(1/T ) ≤ 5n2G2, as each gradient is assumed to have L2-norm at most G.
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T,D ≥ n, λ,R,G,H . Then since the logarithm function is concave,

E

[
T∑
t=1

St + At − Ct

]
≤ 4γ

H
ln

(
1 +

H

2γ
E

[
T∑
t=1

‖gt − ĝt‖22
])

+O(1)

≤ 4γ

H
ln

(
O(n2D) +O(n lnT ) · E

[
T∑
t=1

‖x̂t − x̂t−1‖22
])

,

by Lemma 4.9. If E
[∑T

t=1 ‖x̂t − x̂t−1‖22
]
≤ O(1), we immediately have

E

[
T∑
t=1

St + At − Ct

]
≤ 4γ

H
ln
(
O(n2D + n lnT )

) ≤ O(γ ln(D + lnT )).

Thus, let us assume otherwise. Then, we have

E

[
T∑
t=1

St + At − Ct

]
≤ 4γ

H
ln

(
O(n2D + n lnT ) · E

[
T∑
t=1

‖x̂t − x̂t−1‖22
])

≤ O(γ ln(D + lnT )) +
4γ

H
lnE

[
T∑
t=1

‖x̂t − x̂t−1‖22
]
.

The second term above may be large, and to cancel it, we rely on the following lemma, which

we prove in Appendix B.4.

Lemma 4.11. E
[∑T

t=1 Bt

]
≥ 1

4
E

[∑T
t=1 ‖x̂t − x̂t−1‖22

]
−O(1).

Let W = E

[∑T
t=1 ‖x̂t − x̂t−1‖22

]
, and note that 1

4
W ≥ 4γ

H
lnW when W ≥ ( γ

H
)c for some

constant c, which implies that 4γ
H
lnW − 1

4
W ≤ O(γ ln γ). Thus, we can conclude that

E

[
T∑
t=1

St + At − Ct − Bt

]
≤ O (γ ln (D + lnT )) +O (γ ln γ) ≤ O(n2 ln(D + lnT )).

As a result, we have the following theorem.

Theorem 4.4. When the loss functions are H-strongly convex and have deviation D, the expected

regret of our algorithm is at most O(n2 ln(D+lnT )), where the hiding constant factor is a small

polynomial of the constants λ, R, G, and 1/H .
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Chapter 5

Online Learning with Queries

In [27], we slightly modify the prediction with expert advice (PEA) problem to model an active

player. We allowed the player to have the ability to query information, but with a limited budget

of queries, from the loss vector before taking an action.

Our work is motivated by the following observations. In the routing-to-work problem, before

deciding which route to take, a driver may first select some routes and try to collect their traffic

conditions. In the stock trading problem, before deciding which stocks to trade, an investor may

first select some stocks and try to do some research on their potential. In some games, before

choosing the next move in a game, a player may first select some moves and try to evaluate how

good they are. However, in most situations, one is unlikely to have an unlimited amount of effort

or resources to collect all the information one wants; therefore, one needs to decide how to spend

the limited effort or resources in an efficient way.

Our new setting consider a modified PEA problem in the following way. In each round, we

give the player a B-bit budget which allows her to query B bits of her choice on the loss vector

before choosing her action, where we assume that each loss value is represented by a K bits

string and distinct loss values differ by at least δ. This has the original PEA problem as a special

case, when B = 0. On the other hand, when B = NK, one can achieve a zero regret since one

has enough budget to figure out the whole loss vector and choose the best action in each round.

The interesting case is when the value of B lies in the middle, and some questions arise. With

a limited number of queries, where should one spend them? It is natural to expect that with a

larger B, one can obtain more information about the loss vectors and achieve a smaller regret, but

how does the regret look like as a function of the budget bound B? We will try to answer these

questions in this paper, by providing an algorithm for this problem together with lower bounds

on the regret which almost match those achieved by the algorithm.
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Our algorithm is based on the well-known MULTIPLICATIVE WEIGHTS UPDATE algorithm,

which achieves an optimal regret for the original PEA problem. To work in our new setting,

we add a step for making the queries and modify how an action is chosen in each round (while

keeping the weights updated in the same multiplicative way). Instead of using the probability

distribution pt of the MULTIPLICATIVE WEIGHTS UPDATE algorithm to choose an action in each

round t, we use pt to guide our queries, and from the query result, we modify the distribution pt

by moving probabilities around among some actions. Our strategy is to use queries to find out

actions with different loss values so that by moving the probabilities to actions with a smaller

loss, the expected loss in that step can be reduced from that of the MULTIPLICATIVE WEIGHTS

UPDATE algorithm. We start the queries on actions with larger probabilities in pt, hoping that a

larger amount of probabilities can be moved around so that a larger reduction on the loss can be

achieved.

The regret which our algorithm achieves depends on the budget bound B in the following

way. Before B approaches the bound B1 = NK/2, the regret remains at

O
(√

T lnN
)

which is within the same order as that of the no-query case (B = 0). After B passes the bound

B1 but before it approaches the bound B2 = NK/2 + 3K/2 − 1, there is a noticeable drop of

the regret to

O
(√

(T lnN)/N
)
.

Finally, after B passes the bound B2, the regret takes a dramatic drop to

(N lnN) /δ,

which is independent of T . One may see our regret bound as having two “phase transitions”, one

minor and one major, at the two “critical points” B1 and B2.

One may wonder if this interesting shape of the regret bound is just an artificial result of the

particular algorithm we design. We show that it is not the case and it actually comes from the

nature of the problem. We do this by providing a regret lower bound which almost matches the

regret bound achieved by our algorithm. As a result, we know that unless one can query close

to half of the bits in the loss vectors, these queries do not help much as they can only reduce

the regret by a constant factor. Moreover, even when one can have the number of queries close

to B2, one can only reduce the regret by a factor of
√
N . On the other hand, according to our

algorithm, when the budget bound exceeds B2, the queries suddenly become extremely useful,

and the regret can be made extremely small which does not even depend on T .
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We consider our work as a preliminary step in the new direction of allowing queries in online

learning. There are many questions that remain to be answered, and next we list three of them.

First, recall that in our model, we allow an adversary to set each bit of a loss vector after receiving

the corresponding query made by the online algorithm. This somewhat limits the power of the

queries even though queries are allowed to be randomized. Still, we show that queries can be

very powerful when their number exceeds some threshold. We would like to understand if the

queries could become even more powerful when an adversary has to fix a loss vector before the

online algorithm makes any query on it. Next, our algorithm is based on the specific weighted

average algorithm and our regret analysis seems to rely crucially on some of its special properties.

We would like to understand if it is possible to modify any existing online algorithm, instead of

just the weighted average algorithm, to use queries to achieve a smaller regret. Finally, in our

query model, we allow the online algorithm to obtain the information of individual bits of a loss

vector, but this may not be realistic in some settings. In these settings, we would like to have

more appropriate queries models which capture the kind of information one can obtain from loss

vectors, and then to design algorithms which can utilize such queries to achieve small regrets.

5.1 Preliminaries

First, we introduce some notations which will be used in this paper. For a binary vector v, let

#1(v) denote the number of ones in v. For a set S , let |S| denote the number of elements in S.

Next, let us describe the original PEA problem. Suppose there is a set of N available actions

and there are a total of T rounds to play. In each round t ∈ [T ], an online algorithm ALG

chooses to play an action according to some distribution pt = (pt(1), · · · , pt(N)) over the N

actions, where pt(i) is the probability that ALG plays action i in round t. After that a loss vector

ft = (ft(1), · · · , ft(N)) ∈ [0, 1]N is revealed to ALG, where ft(i) is the loss of playing action i

in round t, and ALG suffers an expected loss
∑

i∈[N ] pt(i)ft(i). The expected loss of ALG in T

rounds of plays is

LT
ALG =

T∑
t=1

⎛
⎝∑

i∈[N ]

pt(i)ft(i)

⎞
⎠ ,

and we compare it with that of the best fixed action in hindsight, which is LT
min = mini∈[N ]

∑T
t=1 ft(i).

The goal of ALG is to minimize its regret, which is defined as

RT
ALG = LT

ALG − LT
min.
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For this problem, there are algorithms which achieve an optimal regret of O(
√
T lnN). Next,

we describe one of them, called the MULTIPLICATIVE WEIGHTS UPDATE algorithm, denoted

as ALG0, which will be used later to build our algorithm. In each round t, ALG0 maintains

a weight vector wt = (wt(1), · · · , wt(N)) (initially, w1 = 1N ) together with the distribution

pt = (pt(1), · · · , pt(N)) such that for each i ∈ [N ],

pt(i) =
wt(i)

Wt

, where Wt =
∑
j∈[N ]

wt(j), (5.1)

and performs the following two steps:

Step 1: ALG0 plays an action sampled according to the distribution pt = (pt(1), · · · , pt(N)).

Step 2: After receiving the loss vector ft, ALG0 updates its weights to according to the rule that

for each i ∈ [N ],

wt+1(i) = wt(i) · e−ηft(i), (5.2)

where the parameter η is the learning rate which one can choose.

Several ways are known for bounding the regret of this algorithm. However, for our result

to work, we will use the particular one given in the following lemma, which we will prove in

Section C.1. Note that it guarantees a regret of at most lnN
η

+Tη, which is 2
√
T lnN by choosing

η =
√

(lnN)/T .

Lemma 5.1. For any i1, i2, . . . , iT ∈ [N ], the regret of ALG0 is at most

lnN

η
+

T∑
t=1

⎛
⎝η

∑
i:ft(i) �=ft(it)

pt(i)

⎞
⎠ .

In this paper, we study a new setting that the online algorithm is allowed to query some

information about the loss vector before choosing its action to play in each round. More precisely,

in each round t, the algorithm is allowed to query B bits from the loss vector ft. Here, we assume

that each loss value ft(i) comes from a set of at most 2K values so that we can represent each

value by a K-bit string, with a smaller binary representation for a smaller loss value, and we

assume furthermore that any two distinct loss values differ by at least some amount δ. For the

clarity of our presentation, we assume here that δ (and thus K) is a constant. We also assume

that before it starts, the algorithm knows the numbers B, δ, and T .
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5.2 A Special Case

In this section, we provide a simple example showing that even with a one-bit query in each

round, it becomes possible to reduce the regret significantly. We use this simpler case to illustrate

the basic ideas, which will be extended for the more difficult general case in the next section. The

result of this section is the following.

Theorem 5.1. For the special case of the online learning problem with N actions such that loss

vectors are from {0, 1}N and the budget bound is B = 1 per round, there exists an algorithm

ALG1 which achieves a regret of at most N lnN .

Before proving the theorem, let us first see how some partial information about a loss vector

can be used to save some loss for the online algorithm. One example is that if we know ft(i) >

ft(j) in round t, then by moving some probability qi from playing action i to playing action j,

we can save the expected loss by the amount

(qift(i)− qift(j)) = qi (ft(i)− ft(j)) = qi (5.3)

since ft(i), ft(j) ∈ {0, 1}, which means that a larger qi gives a larger saving. This suggests that

we query the bit ft(i) when action i is the one that we initially plan to play with the highest

probability, hoping that from it we can move a large probability to some other action with a

smaller loss value. Using this idea, we will design the algorithm ALG1 and analyze its regret

next.

Proof. (of Theorem 5.1) The algorithm ALG1 is based on the weighted average algorithm ALG0

described in the previous section, but adds a query step and then modifies the distribution of

actions in each round. More precisely, in round t, ALG1 maintains a weight vector wt =

(wt(1), . . . , wt(N)) and the distribution pt = (pt(1), . . . , pt(N)) defined as in (5.1), but it re-

places Step 1 of ALG0 by the following:

Step 1.1. ALG1 queries the bit ft(it) of the loss vector, where it is the action such that pt(it) ≥
pt(j) for every j ∈ [N ].

Step 1.2. ALG1 derives the distribution p̂t from pt by moving its probabilities in the following

way:

• If ft(it) = 0, then ALG1 moves all the probabilities of other actions to action it, so that

p̂t(it) = 1 and p̂t(j) = 0 for any j �= it.

• If ft(it) = 1, then ALG1 moves the probability of action it to other actions evenly, so that

p̂t(it) = 0 and p̂t(j) = pt(j) + pt(it)/(N − 1) for any j �= it.
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Step 1.3. ALG1 plays an action sampled according to the distribution p̂t.

Next, we analyze the regret of ALG1. We do this by comparing it with that of ALG0, which

by Lemma 5.1 is at most

lnN

η
+

T∑
t=1

⎛
⎝η

∑
i:ft(i) �=ft(it)

pt(i)

⎞
⎠ .

According to (5.3), in each round t, by moving the probabilities around, the algorithm ALG1 can

reduce the loss of ALG0 by some amount st, such that when ft(it) = 0,

st =
∑

i:ft(i)�=ft(it)

pt(i) (ft(i)− ft(it)) =
∑

i:ft(i)�=ft(it)

pt(i),

and when ft(it) = 1,

st ≥
∑

i:ft(i)�=ft(it)

pt(it)

N
(ft(it)− ft(i)) ≥ 1

N

∑
i:ft(i)�=ft(it)

pt(i),

since pt(it) ≥ pt(i) for any i. As a result, the regret of ALG1 is at most

lnN

η
+

T∑
t=1

⎛
⎝η

∑
i:ft(i) �=ft(it)

pt(i)− st

⎞
⎠ ≤ lnN

η
+

(
η − 1

N

) T∑
t=1

∑
i:ft(i) �=ft(it)

pt(i) = N lnN,

by choosing η = 1/N . This proves Theorem 5.1.

5.3 The Main Result

In this section, we consider the general online learning problem described in Section 5.1. We

will generalize the algorithm ALG1 in the previous section to the general setting, and our main

result is the following theorem.

Theorem 5.2. Let D = max{0, NK/2 + 3K/2− 1−B}. Then for the general online learning

problem described in Section 5.1, there exists an online algorithm ALG2, which given a budget

of B queries per round achieves a regret

RT
ALG2

≤
{

(N lnN)/δ if D = 0,√
(8DT lnN)/(NK) if D > 0,

for a large enough T .
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Before proving the theorem, let us try to understand better the somewhat complicated-looking

regret bound, and in particular, to see how the regret is affected by the budget bound B. First,

observe that as B increases from zero, the quantity D decreases, and consequently the regret

RT
ALG2

decreases. This matches what one normally would expect. Next, let us take a closer look at

how RT
ALG2

decreases as B increases. Interestingly, the value of RT
ALG2

appears to go through two

“phase transitions”, one minor and one major, around B = NK/2 and B = NK/2+ 3K/2− 1,

in the following sense. When B ≤ (1−ε)NK/2 for any small positive constant ε, RT
ALG2

remains

at

O
(√

T lnN
)

which is within the same order as that of the no-query case (B = 0). When NK/2 ≤ B ≤
NK/2 + (1− ε)3K/2 for any small positive constant ε, RT

ALG2
takes a noticeable drop to

O
(√

(T lnN)/N
)
.

Finally, when B ≥ NK/2 + 3K/2− 1, RT
ALG2

takes a dramatic drop to

(N lnN)/δ,

which is very small and independent of T .

Next, we proceed to prove Theorem 5.2 by providing the algorithm ALG2 and then bounding

its regret in the following two subsections, respectively.

5.3.1 The Algorithm ALG2

The algorithm ALG2 is based on the algorithm ALG1 in the previous section (which in turn is

based on the weighted average algorithm ALG0), but it modifies Step 1.1 (for making queries)

and Step 1.2 (for deriving the distribution p̂t) in order to handle the more general case.

Consider any round t. Just as in ALG1, we would like to use queries to find out some rela-

tionships among the losses of actions so that we can move probabilities to actions with a smaller

loss. Now in the general case, which can have B > 1 and K > 1, we need to decide where

to spend the B bits of budget; if we spend them efficiently, we can find out more relationships.

We will call an action i heavier than an action j if pt(i) ≥ pt(j), and we call i lighter than j

otherwise. Let it denote the heaviest action, and our strategy is to use its loss value ft(it) as a

basis and to find out its relationship with ft(i) for as many action i’s as possible. Here, we look

first for a partial relationship such as ft(it) ≤ ft(i) instead of an exact one such as ft(it) = ft(i)

or ft(it) < ft(i), so that we can spend as few queries as possible and still know some way to
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move the probability. Following the idea in Section 5.2, we will query heavier actions before

lighter ones, hoping that larger probabilities can be moved among them. Formally, in each round

t, ALG2 replaces Step 1.1 of ALG1 by the following:

Step 1.1. Before the B-bit budget runs out, ALG2 queries the K bits of ft(it), where it is the

heaviest action, and then repeats the following if ft(it) /∈ {1K , 0K}:

(a) ALG2 finds the next heaviest action i.

(b) ALG2 queries those bits of ft(i) in those positions which have zeros in ft(it) if ft(it)

has fewer zeros than ones, and queries the other bits of ft(i) otherwise. (For example, if

ft(it) = 100, then ALG2 queries only the leftmost bit of ft(i).)

(c) If any of the queried bit in ft(i) differs from the corresponding bit in ft(it), ALG2 queries

all the remaining bits in ft(i).

Note that if ft(it) equals 1K or 0K , ALG2 will not make any further query on any other

action i because it knows already the relationship ft(i) ≤ ft(it) or ft(i) ≥ ft(it), respectively.

If in Step 1.1.(b) all the queried bits match the corresponding bits in ft(it), ALG2 knows the

relationship ft(i) ≤ ft(it) or ft(i) ≥ ft(it) when those bits are all zeros or all ones, respectively.

Otherwise (if there is a mismatch), then in Step 1.1.(c) ALG2 will query the remaining bits in

ft(i) to determine whether ft(i) < ft(it) or ft(i) > ft(it). From such information, ALG2 can

divide the N actions into six sets: I<, I≤, I=, I≥, I>, and I?, in the following way. If ALG2

knows ft(i) < ft(it) or ft(i) > ft(it), ALG2 puts action i in I< or I>, respectively. If ALG2 only

knows ft(i) ≤ ft(it) or ft(i) ≥ ft(it), ALG2 puts action i in I≤ or I≥, respectively. If ALG2 still

does not know any relationship between ft(i) and ft(it) after running out the budget, ALG2 puts

action i in I?. Finally, let I= = {it}.

With such information at hand, ALG2 will derive the new distribution p̂t from the distribution

pt by trying to move probabilities to actions with a smaller loss. We will say that the probabilities

of some set I of actions are moved to another set I ′ of actions evenly if p̂t(i) = 0 for i ∈ I and

p̂t(i) = pt(i) +
∑

j∈I pt(j)/|I ′| for i ∈ I ′. Formally, in each round t, ALG2 replaces Step 1.2 of

ALG1 by the following:

Step 1.2. ALG2 derives the distribution p̂t from pt by moving its probabilities in the following

way:

• If I< �= ∅, ALG2 moves all the probabilities from I= ∪ I≤ ∪ I> ∪ I≥ to some i0 ∈ I<.

• If I< = ∅ �= I≤, ALG2 moves all the probabilities from I= ∪ I> ∪ I≥ to I≤ evenly.

• If I< = ∅ = I≤, ALG2 moves all the probabilities from I> ∪ I≥ to I=.
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The other steps of the algorithm ALG1 are all inherited without change by the algorithm

ALG2, except that now ALG2 sets its learning rate as

η =

{
δ/N if D = 0,√

(NK lnN)/(2TD) if D > 0.
(5.4)

Next, we will show that the algorithm ALG2 indeed achieves the regret bound given in Theo-

rem 5.2.

5.3.2 Proof of Theorem 5.2

We follow the analysis in Section 5.2. For each round t, let st denote the amount of loss ALG2

saves from that of ALG0 by moving the probabilities around (and playing according to the distri-

bution p̂t instead of pt), and let

rt = η
∑

i:ft(i)�=ft(it)

pt(i)− st.

According to Lemma 5.1 and the discussion in Section 5.2, we can bound the regret of ALG2 as

RT
ALG2

≤ lnN

η
+

T∑
t=1

rt. (5.5)

Then we bound each rt by the following lemma.

Lemma 5.2. Let D = max{0, NK/2 + 3K/2 − 1 − B}, and suppose η ≤ δ/N . Then for any

t ∈ [T ],

rt ≤ 2D

NK
η.

We will prove the lemma in Subsection 5.3.3. Now let us apply it to the bound in (5.5) and

consider two cases, depending on the value of D. If D = 0, by choosing η = δ/N , we have

RT
ALG2

≤ lnN

η
=

N lnN

δ
.

If D > 0, by choosing η =
√

(NK lnN)/(2TD), which is at most δ/N for a large enough T ,

we have

RT
ALG2

≤ lnN

η
+

2DT

NK
η =

√
8DT lnN

NK
.

This completes the proof of Theorem 5.2.
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5.3.3 Proof of Lemma 5.2

Consider any t ∈ [T ], and let it be the heaviest action which ALG2 queires first in round t. Recall

that

rt = η
∑

i:ft(i)�=ft(it)

pt(i)− st,

where st is the saving of loss in round t by playing according to the probability distribution p̂t

instead of pt. Our goal is to show that

rt ≤ 2D

NK
η, (5.6)

where D = max{0, NK/2 + 3K/2 − 1 − B}. For this, we consider two cases, depending on

whether or not |I<| = 0.

First, let us consider the easier case that |I<| �= 0. In this case, the algorithm ALG2 moves the

probability pt(it) from the action it (and possibly also probabilities from other actions) to some

action i0 ∈ I< with ft(i0) < ft(it), which means that the saving of loss is

st ≥ pt(it)(ft(it)− ft(i0)).

Since it is the heaviest action, we have pt(it) ≥ 1/N , and since distinct loss values differ by at

least δ, we have ft(it)− ft(i0) ≥ δ. As a result, we have

rt = η
∑

i:ft(i) �=ft(it)

pt(i)− st ≤ η − δ/N ≤ 0,

by the assumption that η ≤ δ/N . Thus, the bound in (5.6) holds in this case.

Next, let us consider the more difficult case that |I<| = 0. We rely on the following claim

which we will prove in Subsection 5.3.4.

Claim 5.1. If |I<| = 0, then we have

rt ≤ η
∑
k∈I?

pt(k)− (δ − η)
∑
j∈I>

pt(j)

and |I?| − |I>| ≤ 2D/K.

Recall that ALG2 queries heavier actions before lighter ones, which implies that pt(k) ≤ pt(j)

for any k ∈ I? and j /∈ I?. Now let I?1 be the set of the |I>| heaviest actions in I?, and let I?2 be

the set of the remaining actions in I?, so that I?2 consists of the |I?2| ≤ 2D/K lightest actions

among all the N actions. Then we have

∑
k∈I?

pt(k) =
∑
k∈I?1

pt(k) +
∑
k∈I?2

pt(k) ≤
∑
j∈I>

pt(j) +
|I?2|
N

≤
∑
j∈I>

pt(j) +
2D

NK
,
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and substituting this into the bound in Claim 5.1, we obtain

rt ≤ η

(∑
j∈I>

pt(j) +
2D

NK

)
− (δ − η)

∑
j∈I>

pt(j)

≤ 2D

NK
η − (δ − 2η)

∑
j∈I>

pt(j)

≤ 2D

NK
η,

since δ ≥ 2η by the assumption that η ≤ δ/N . Thus, the bound in (5.6) also holds in the case

that |I<| = 0. This completes the proof of Lemma 5.2.

5.3.4 Proof of Claim 5.1

Assume |I<| = 0. Let us consider two cases according to the range of #1(ft(it)), as algorithm

ALG2 behaves differently in them.

Case 1: #1(ft(it)) ≤ K/2. In this case, ALG2 starts its queries on positions corresponding to

ones in ft(it), and after finishing all the queries, each action i �= it belongs to one of the three

sets: I≥, I>, or I?. Since ALG2 moves all the probabilities from I≥ ∪ I> to I= = {it}, it saves

the loss of ALG0 by

st =
∑

i∈I≥:ft(i)>ft(it)

pt(i) (ft(i)− ft(it)) +
∑
j∈I>

pt(j) (ft(j)− ft(it))

≥ δ
∑

i∈I≥:ft(i)>ft(it)

pt(i) + δ
∑
j∈I>

pt(j), (5.7)

since distinct loss values differ by at least δ. On the other hand,

η
∑

i:ft(i)�=ft(it)

pt(i) ≤ η
∑

i∈I≥:ft(i)>ft(it)

pt(i) + η
∑
j∈I>

pt(j) + η
∑
k∈I?

pt(k), (5.8)

and note that the first term in (5.8) is at most the first term in (5.7) since η ≤ δ. As a result,

rt = η
∑

i:ft(i)�=ft(it)

pt(i)− st

≤ η
∑
j∈I>

pt(j) + η
∑
k∈I?

pt(k)− δ
∑
j∈I>

pt(j)

= η
∑
k∈I?

pt(k)− (δ − η)
∑
j∈I>

pt(j).
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Next, let us bound |I?| − |I>|. We can assume that ALG2 does run out the budget in Step 1.1

because otherwise we have |I?| = 0 and hence

|I?| − |I>| ≤ 0 ≤ 2D

K
.

Assuming that no budget remains and since the number of queries ALG2 spends on the actions

in I=, I≥, I>, and I? are at most K, (K/2)|I≥|, K|I>|, and K − 1, respectively, we have

B ≤ K +
K

2
|I≥|+K|I>|+ (K − 1).

On the other hand, we know that

N = 1 + |I≥|+ |I>|+ |I?|,

and by combing these two bounds to remove |I≥|, we obtain

|I?| − |I>| ≤ 2

K

(
NK

2
+

3K

2
− 1− B

)
≤ 2D

K
.

Case 2: #1(ft(it)) > K/2. In this case, ALG2 starts its queries on positions corresponding to

zeros in ft(it), and after finishing all the queries, each action i �= it belongs to one of the three

sets: I≤, I>, or I?. Since ALG2 moves all the probabilities from I= ∪ I> to I≤ evenly, it saves

the loss of ALG0 by

st ≥
∑

i∈I≤:ft(i)<ft(it)

pt(it)

|I≤| (ft(it)− ft(i)) +
∑
j∈I>

∑
i∈I≤

pt(j)

|I≤| (ft(j)− ft(i))

≥ δ

N

∑
i∈I≤:ft(i)<ft(it)

pt(it) + δ
∑
j∈I>

pt(j). (5.9)

On the other hand,

η
∑

i:ft(i)�=ft(it)

pt(i) ≤ η
∑

i∈I≤:ft(i)<ft(it)

pt(i) + η
∑
j∈I>

pt(j) + η
∑
k∈I?

pt(k), (5.10)

and note that again the first term in (5.10) is at most the first term in (5.9) because η ≤ δ/N

and pt(i) ≤ pt(it) for any i. Therefore, by subtracting (5.9) from (5.10), we can obtain the same

bound for rt as in Case 1.

Furthermore, following a similar argument as in Case 1, one can show that

B ≤ K +
K

2
|I≤|+K|I>|+ (K − 1),
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and

N = 1 + |I≤|+ |I>|+ |I?|,
which together give

|I?| − |I>| ≤ 2D

K
.

5.4 Lower Bounds

In this section we provide a regret lower bound which almost matches the upper bound achieved

by our algorithm. The result of this section is the following, and for the simplicity of our presen-

tation, we assume here that K is even.

Theorem 5.3. For the general online learning problem, any algorithm has a regret of at least

• Ω(
√
T lnN), if B ≤ (1− ε)NK/2 for some constant ε ∈ (0, 1).

• Ω(
√

(T lnN)/N), if B ≤ NK/2− 1.

Here we do not attempt to prove a matching lower bound for the case which has an (N lnN)/δ

regret upper bound in Theorem 5.2, since we consider the bound to be extremely small as it can

be seen as a constant in terms of T .

The proof idea of of Theorem 5.3 basically follows that for the Ω(
√
T lnN) lower bound on

the original online learning problem (see e.g. [16]). A key tool used there is a lower bound on

the tail of the binomial distribution, while for our proof, we need the following bound for more

general distributions.

Lemma 5.3. Suppose μ, δ1, δ2, . . . , δn are constants in (0, 1), and X1, X2, . . . , Xn are indepen-

dent random variables such that Pr [Xi = μ− δi] = Pr [Xi = μ+ δi] = 1/2 for each i ∈ [n].

Let λ ≥ c/
√
n for a large enough constant c. Then we have

Pr

⎡
⎣∑
i∈[n]

Xi ≤ (1− λ)μn

⎤
⎦ ≥ e−O(λ2n).

We will prove the lemma in Subsection 5.4.1, and now let us proceed to prove Theorem 5.3.

Proof. (of Theorem 5.3)

Consider any algorithm ALG. We would like to show the existence of a sequence of T

loss vectors from which ALG suffers a large regret. We prove its existence by the probabilistic

method.

We will generate the T loss vectors in some probabilistic way. Let us see the the T loss

vectors as an N × T matrix, in which the entry on row i ∈ [N ] and column t ∈ [T ] is the
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loss value of action i in round t. Here we consider 2K possible loss values in the range from

0 to 1 − 2−K with the natural K-bit binary representation. We would like each entry to be

independently distributed and have the same expected loss μ, for some constant μ. This means

that the expected loss of ALG in each round is exactly μ, and the loss vectors are independent of

each other. Thus a Chernoff bound shows that

Pr
[
LT

ALG ≤ μT − c
√
T lnN

]
≤ (1/N)−Ω(1), (5.11)

for any constant c > 0. To make ALG spend as many queries as possible on an entry without

figuring out its relationship with μ, we choose μ to have the binary representation (01)K/2, which

has alternating zeros and ones.

Then in each round, we answer queries and sample entries in the following way. For each

query to some bit of an entry, we answer with the corresponding bit in μ. After answering all

the queries, some bits of the loss vector have now been fixed, and some remain free. For any

entry with two adjacent bits which have not been fixed (and the corresponding two bits in μ must

have different values), we make the entry uncertain for ALG as follows: set those two bits of

the entry to 00 or 10 with equal probability if they are 01 in μ and set them to 01 or 11 with

equal probability if they are 10 in μ. All the other bits are then fixed as those in μ. In this way,

each entry indeed has expected value μ and is independent from others (although some have a

fixed value μ), and we can see each uncertain entry as a random variable satisfying the condition

in Lemma 5.3. For the clarity of our presentation, we assume here that μ, each δi, and δ are

constants, but it is not hard to derive the dependence of them in our bounds. Next, we analyze

the regret by considering two cases depending on the range of B.

Case 1: B ≤ (1 − ε)NK/2 for some constant ε ∈ (0, 1). Since it takes at least K/2 queries

to an entry to avoid its uncertainty (otherwise, it must miss some adjacent bits), there must be at

least εN actions whose corresponding entries in the loss vector are left uncertain after running

out the budget in each round. Thus, the total number of uncertain entries in the matrix is at least

εNT , which implies the existence of a collection S of at least εN/2 actions (rows) each of which

has uncertain entries in εT/2 rounds (columns). This is because otherwise the total number of

uncertain entries in the matrix is less than (εN/2)T +N(εT/2) = εNT , a contradiction.

Now consider any action in S and the n = εT/2 rounds in which it has uncertain entries

(fixing any additional uncertain entries to μ). By applying Lemma 5.3 on those rounds, one can

show that the accumulated loss of that action in those rounds is at most (1−λ)μn with probability
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at least

e−O(λ2n) ≥ e− ln |S| = 1/|S|,

for some λ = Θ(
√

(ln |S|)/n), and when this happens, its total loss in T rounds is at most

(1 − λ)μn + μ(T − n) ≤ μT − Ω(
√
T lnN). Therefore, the probability that some action in S

has such a total loss is at least

1− (1− 1/|S|)|S| > 1/2.

Finally, by combing this and the bound in (5.11) with a small enough constant c, we can

conclude that RT
ALG ≥ Ω(

√
T lnN) − c

√
T lnN = Ω(

√
T lnN) with probability more than

1/2 − (1/N)−Ω(1) > 0. This implies the existence of a sequence of T loss vectors from which

the algorithm ALG suffers such a large regret.

Case 2: B ≤ NK/2 − 1. Following the same reasoning as in Case 1, one can show that

there must be at least one uncertain entry in each round (column) and thus the total number of

uncertain entries in the matrix is at least T . Next, we consider the following two subcases.

The first subcase is that some action has uncertain entries in n = (T lnN)/N rounds. In this

subcase, by applying Lemma 5.3 on those rounds, one can show that the accumulated loss of that

action in those n rounds is at most (1− λ)μn with probability at least

e−O(λ2n) ≥ Ω(1),

for some λ = Θ(
√
1/n), and when that happens, the total loss of that action is at most (1 −

λ)μn+ μ(T − n) = μT − Ω(
√
(T lnN)/N).

The second subcase is that there exists a collection S of at least N/(2 lnN) actions each

of which has uncertain entries in n = T/(2N) rounds. In this subcase, we can choose λ =

Θ(
√

(ln |S|)/n) and follow the argument in Case 1 to show that some action in S has a total loss

of at most (1− λ)μn+ μ(T − n) = μT − Ω(
√

(T lnN)/N) with probability more than 1/2.

We claim that one of the two subcases must happen because otherwise the total number of

uncertain entries in the matrix is less than (N/(2 lnN))((T lnN)/N) + N(T/(2N)) = T , a

contradiction. Therefore, together with (5.11), we know that there exists a sequence of loss

vectors such that RT
ALG ≥ Ω(

√
(T lnN)/N).
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5.4.1 Proof of Lemma 5.3

Let Y = (Y1, Y2, . . . , Yn) be a sequence of independent random variables with Pr [Yi = −1] =

Pr [Yi = 1] = 1/2 for each i ∈ [n], and it is known that for any α ∈ (0, 1),

Pr

⎡
⎣∑
i∈[n]

Yi ≤ −αn

⎤
⎦ ≥ 2−O(α2n), (5.12)

which can be shown using the Stirling formula. Note that each random variable Xi has the same

distribution as μ+ δiYi, and thus

Pr

⎡
⎣∑
i∈[n]

Xi ≤ (1− λ)μn

⎤
⎦ = Pr

⎡
⎣∑
i∈[n]

(μ+ δiYi) ≤ (1− λ)μn

⎤
⎦ = Pr

⎡
⎣∑

i∈[n]
δiYi ≤ −λμn

⎤
⎦ .

Let δ̄ =
∑

i∈[n] δi/n and let γ = λμ/δ̄ so that λμn = γδ̄n. Let A denote the event that

∑
i∈[n]

δiYi ≤ −γδ̄n,

and our goal now becomes to bound Pr [A]. For this, we consider another related event, denoted

as B, that ∑
i∈[n]

Yi ≤ −2γn,

and we know from (5.12) that Pr [B] ≥ 2−O(γ2n). Observe that in the simpler case when all the

δi’s are the same and thus equal to δ̄, event B implies event A so that we have Pr [A] ≥ Pr [B].

However, when these δi’s are different, event B does not necessarily imply event A, so Pr [A]

may not be as large as Pr [B] in general. Still, we will show that Pr [A] is in fact almost as large

as Pr [B]. One approach is to use the inequality that

Pr [A] ≥ Pr [A ∧ B] = Pr [B] · Pr [A | B] ,

and show that Pr [A | B] is large. However, it turns out to require some tedious calculation to

bound Pr [A | B], so we take a slightly different approach.

Let us decompose the event B into several disjoint events in the following way. For any

integer t ≤ n, let Bt be the event that exactly t of the n random variables Y1, Y2, . . . , Yn have the

value 1, or equivalently ∑
i∈[n]

Yi = 2t− n.
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Since 2t− n ≤ −2γn if and only if t ≤ (1/2− γ)n, we have

B =
∨

t≤(1/2−γ)n

Bt and Pr [B] =
∑

t≤(1/2−γ)n

Pr
[
Bt
]
.

Then we use the following bound:

Pr [A] ≥ Pr

⎡
⎣A ∧

⎛
⎝ ∨

t≤(1/2−γ)n

Bt

⎞
⎠
⎤
⎦ =

∑
t≤(1/2−γ)n

Pr
[
A | Bt

] · Pr [Bt
]
, (5.13)

so it suffices to show that each Pr [A | Bt] is large. Let us fix any integer t ≤ (1/2 − γ)n, and

we next show that Pr [A | Bt] ≥ 1/2 by proving that Pr [¬A | Bt] ≤ 1/2.

Observe that the distribution of Y = (Y1, Y2, . . . , Yn) conditioned on Bt is the same as that

of sampling uniformly from those strings in {−1, 1}n with exactly t number of 1 in them, and let

Zt = (Zt
1, Z

t
2, . . . , Z

t
n) denote such a conditional distribution. Then we have

Pr
[¬A | Bt

]
= Pr

⎡
⎣∑
i∈[n]

δiZ
t
i > −γδ̄n

⎤
⎦ , (5.14)

which we will bound using the second moment method. Note that all the random variables

Zt
1, Z

t
2, . . . , Z

t
n have the same distribution and thus the same expected value, which we denote

by β, and it is easy to show that β ≤ −2γ. Furthermore, any two of the random variables are

“negatively correlated” in the following sense.

Claim 5.2. For any distinct i, j ∈ [n], E
[
Zt

iZ
t
j

] ≤ E [Zt
i ] · E

[
Zt

j

]
.

We will prove the claim later. Now observe that the probability in (5.14) equals

Pr

⎡
⎣∑

i∈[n]
δi
(
Zt

i − β
)
> −γδ̄n− β

∑
i∈[n]

δi

⎤
⎦ ≤ Pr

⎡
⎣∑
i∈[n]

δi
(
Zt

i − β
)
> γδ̄n

⎤
⎦ ,

since −γδ̄n− β
∑

i∈[n] δi ≥ −γδ̄n+ 2γδ̄n = γδ̄n. Then the probability above is at most

Pr

⎡
⎣
⎛
⎝∑

i∈[n]
δi
(
Zt

i − β
)⎞⎠

2

>
(
γδ̄n

)2⎤⎦ ≤
E

[(∑
i∈[n] δi (Z

t
i − β)

)2
]

(
γδ̄n

)2
by Markov inequality, and the numerator above equals

∑
i,j∈[n]

δiδj E
[(
Zt

i − β
) (

Zt
j − β

)]
=

∑
i,j∈[n]

δiδj
(
E
[
Zt

iZ
t
j

]− β2
)
.
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Note that when i �= j, we have E
[
Zt

iZ
t
j

] − β2 ≤ 0 by Claim 5.2, and when i = j, we have

E
[
Zt

iZ
t
j

]− β2 ≤ E
[
Zt

iZ
t
j

]
= 1. Combining all these bounds together, we have

Pr
[¬A | Bt

] ≤
∑

i∈[n] δ
2
i

γ2δ̄2n2
≤
∑

i∈[n] δi
γ2δ̄2n2

=
1

γ2δ̄n
≤ 1

2
, (5.15)

since γ2δ̄n = λ2μ2n/δ̄ ≥ c2μ2/δ̄ ≥ 2, for a large enough constant c.

Finally, by substituting the bound of (5.15) into (5.13), we have

Pr [A] ≥
∑

t≤(1/2−γ)n

(
1− 1

2

)
· Pr [Bt

]
=

1

2
· Pr [B] ,

and then by applying (5.12) to bound Pr [B], we obtain

Pr [A] ≥ 2−O(γ2n) = 2−O(λ2n),

as γ = λμ/δ̄ = Θ(λ). Thus, to finish the proof of Lemma 5.3, it remains to prove Claim 5.2,

which we do next.

Proof. (of Claim 5.2) Fix any distinct i, j ∈ [n]. Note that we have

Pr
[
Zt

j = 1 | Zt
i = 1

]
=

t− 1

n− 1
≤ t

n
= Pr

[
Zt

j = 1
]
,

which implies that

E
[
Zt

j | Zt
i = 1

]
= 2Pr

[
Zt

j = 1 | Zt
i = 1

]− 1 ≤ 2Pr
[
Zt

j = 1
]− 1 = E

[
Zt

j

]
,

and we also have

Pr
[
Zt

j = −1 | Zt
i = −1

]
=

(n− t)− 1

n− 1
≤ n− t

n
= Pr

[
Zt

j = −1
]
,

which implies that

E
[
Zt

j | Zt
i = −1

]
= 1− 2Pr

[
Zt

j = −1 | Zt
i = −1

] ≥ 1− 2Pr
[
Zt

j = −1
]
= E

[
Zt

j

]
.

As a result, we have

E
[
Zt

iZ
t
j

]
= Pr

[
Zt

i = 1
] · E [Zt

j | Zt
i = 1

]− Pr
[
Zt

i = −1
] · E [Zt

j | Zt
i = −1

]
≤ Pr

[
Zt

i = 1
] · E [Zt

j

]− Pr
[
Zt

i = −1
] · E [Zt

j

]
= E

[
Zt

i

] · E [Zt
j

]
.
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Chapter 6

Pseudo-Reward for Linear Contextual
Bandits

In this chapter we study a variant of the multi-armed bandit (MAB) problem which is formulated

to model a class of realistic problems in which the player in the beginning of each round is

able to access information about the environment before taking an action. We will start with

an introduction in Section 6.1. In Section 6.2, we will review the LINUCB) algorithm [31]

which is closely related to our main algorithm. Finally in Section 6.3 we will introduce the main

algorithm, LINPRUCB, and analyze its regret.

6.1 Introduction

We study the contextual bandit problem [65], or known as the k-armed bandit problem with

context [11], in which a learner needs to interact iteratively with the external environment as

follows. During each iteration, the learner is asked to select an action from a set of candidate

actions, and in the bandit setting, only the reward for the selected action is revealed to the learner

as feedback. Different from the traditional bandit problem [51], the major distinction is that

in the contextual bandit problem, the learner can access additional information, called context,

about the environment before making selections. The context is used to encode the state of the

environment and helps the learner to make better selections.

For instance, consider an online advertising system operated by a contextual bandit algorithm.

For each user visit (iteration), the advertising algorithm (contextual bandit algorithm) is provided

with the known properties about the user (context), and an advertisement (action) from a pool

73



of relevant advertisements (set of candidate actions) is selected and displayed to that user. The

company’s income (reward) can be calculated based on whether the user clicked the selected

advertisement and the value of the advertisement itself.

From the previous example we know that the contextual bandit problem is more realistic than

the traditional bandit problems for many applications, such as advertising, recommendations,

and other Web application [53, 54, 61]. Therefore, the learner would like to have an algorithm

to maximize the cumulative reward. The performance of an algorithm is measured by its regret,

which is the difference between the cumulative reward of the best strategy in hindsight and that

of the algorithm. The goal of the algorithm is to minimize the regret, since smaller regret implies

larger cumulative reward.

Since only the reward of chosen action is revealed to the algorithm, the major challenge

in the contextual bandit problem is to strike a balance between exploitation and exploration.

This is because exploitation selects the seamlessly most rewarding actions without gathering

information on other uncertain and potentially more rewarding actions, while on the other hand,

exploration selects the more uncertain actions at the expense of lowering the short-term reward.

Many remarkable algorithms are based on finding clever ways to resolve this challenge.

6.1.1 Previous Works

GREEDY is the most naive algorithm that always exploits but can be viewed as a base for

other successful contextual bandit algorithms. Another group of algorithms use randomized

approaches to balance exploration and exploitation. The first one is ε-GREEDY [67] developed

from reinforcement learning that uses a tiny fraction, say ε, to explore an action uniformly at

random. The second one is THOMPSONSAMPLING [26]. Different from ε-GREEDY whose ex-

ploration is done randomly during action selection, THOMPSONSAMPLING embeds the intent of

exploration during the model updating stage.

Moreover, there are other sophisticated algorithms focus on more strategic ways of imple-

menting exploration in order to reach a better balance between exploration and exploitation. The

Upper Confidence Bound (UCB) studied in Auer [9] is arguably one of the most popular fam-

ilies of contextual bandit algorithms. As the rewards are generated by an unknown stochastic

process, UCB cleverly uses confidence intervals as uncertainty measurements to balance explo-

ration and exploitation. The uncertainty term represents the amount of information that has been

received for the candidate action and decreases as more information is gathered during the itera-

tions. UCB computes the estimated reward and the uncertainty term for each action, and uses the
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sum of these two values to guide the selection. The combination allows the algorithm to choose

either an action with high estimated reward (exploitation) or with high uncertainty (exploration).

Linear UCB (LINUCB) proposed in Chu et al. [31] is a member of UCB assuming the rewards

are generated by a linear model, and it takes the confidence interval of an estimated reward to

form the uncertainty term that is used during action selection. When the reward for the selected

action is revealed, LINUCB updates only the linear model associated with that action with the

new example.

6.1.2 Our Approach

Despite LINUCB’s success, two concerns remain unaddressed. First, LINUCB only uses the

received reward and the context to update the internal model associated with the selected action.

This makes LINUCB slow at gathering examples during the early iterations. Second, the selec-

tion time for LINUCB, which includes the calculation of the uncertainty term after a context is

given, can be long. The long selection time may not be acceptable for certain applications. For

instance, in online advertisement scenarios, a shorter selection time is highly preferred. In this

paper, we propose a novel algorithm, LINPRUCB, that improves LINUCB by addressing the

two concerns above.

Motivating by the better regret bound in the full information setting, we develop a new

scheme called pseudo-reward to make a guess at each unseen reward. Furthermore, we use a

forgetting mechanism to handle imprecise estimated rewards computed in the early iterations.

Combining the pseudo-rewards and the forgetting mechanism, we first introduce the main algo-

rithm, LINPRUCB, which is an extension of the LINUCB algorithm. Our new algorithm has

two advantages that can be used to resolve the previous two concerns. First, LINPRUCB is

able to update the linear models associated with all of the actions in each iteration and result in

faster reward-gathering in the earlier iterations as compared to LINUCB. Second, it computes

the uncertainty of each action which will be used in the exploration in the model updating stage,

allowing a flexibility of fast action selection. To our best knowledge, these interesting ideas

of guessing unseen rewards and moving exploration in action selection stage to exploration in

model stage has not been seriously studied before this work. We show that LINPRUCB achieves

a Õ(
√
dT ) 1 regret. Besides, LINPRUCB also shows competitive performance in real world data

[30].

1The notion Õ hides constants and logarithmic factor of the total time T , the number of actions K and a failure

rate δ.
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6.2 Preliminaries

We use boldface w to denote a column vector and Q to denote a matrix. Let [N ] denotes the

set {1, 2, · · · , N}. The contextual bandit problem can be modeled as follows. The problem

consists of T iterations of decision making. In each iteration t, a learning algorithm first observes

a context xt ∈ R
d from the environment, and has to select an action at from the action set

[K]. After choosing an action, the algorithm receives the corresponding reward rt,at ∈ R from

the environment. The algorithm will learn form this feedback information in order to make

better decisions in the future iterations. In this paper we assume the reward is generated by the

following linear model. That is, for each action a ∈ [K], there is an unknown vector ua ∈ R
d

with ‖ua‖2 = 1 such that for any context xt, the reward rt,a is a random variable with expectation

E[rt,a] = u�
a xt. For total T iterations, the performance of an algorithm is measured by the regret,

which is defined as

regret(T ) =
T∑
t=1

rt,a∗t −
T∑
t=1

rt,at ,

where a∗t = argmaxa∈[K] u
�
a xt is the action selected by the optimal strategy in hindsight.

6.2.1 The LINUCB Algorithm

The LINUCB [53] is one of the standard approaches to solve the contextual bandit problem.

The idea of LINUCB is to exploit according to the estimated reward and to explore according

to the uncertainty. To compute the estimated reward, the algorithm maintains wt,a as a current

estimation of ua. The estimation

wt,a = (λId +X�
t,aXt,a)

−1(X�
t,art,a) (6.1)

is computed by the ridge regression, where Xt,a is the matrix that contains all rows x�
τ,a satisfying

1 ≤ τ ≤ t and aτ = a, and rt,a is the vector that contains all the corresponding rτ,a as the

components. With wt,a in hand, the algorithm computes the estimated reward of the action a

with respect to the context xt by w�
t,axt. Next, LINUCB computes αct,a = α

√
xtA

−1
t,axt, where

At,a = (λId +X�
t,aXt,a) and α > 0. It can be shown that αct,a bounds the confidence interval of

w�
t,axt from above, thus can be used to measure the uncertainty. In iteration t, LINUCB selects

an action by the following rule

at = arg max
a∈[K]

(
w�

t,axt + αct,a
)
. (6.2)
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6.3 Linear Pseudo-Reward Upper Confidence Bound Algo-

rithm

In the bandit setting, the only feedback information is the reward of the chosen action, thus in

LINUCB only the weight vector wt,at of the selected action at is updated during the tth itera-

tion. On the other hand, from the analysis of the LINUCB algorithm, we notice that LINUCB

can achieve better regret if LINUCB is given the corresponding reward of each action. This

observation inspires us to think of ways to guess the unseen rewards, and use them to design a

new algorithm that has better performance. In this approach, we will face two major challenges.

The first one is how to estimate the unseen rewards. Further, when we collect more data as time

goes by, the estimated rewards in the early iterations may become irrelevant or even disturbing to

the learning process. Thus the second challenge is how do we handle the unwanted estimations.

In the following we will introduce two schemes to resolve the challenges and describe the main

algorithm.

6.3.1 The Pseudo-Reward Scheme

We denote our guess at the unseen reward rt,a by pt,a and call it the pseudo-reward. For any

action a and context xt, we defined the corresponding pseudo-reward as

pt,a = w�
t,axt + β

√
x�
t Q̂

−1
t,axt. (6.3)

The first term w�
t,axt is the estimated reward computed by wt,a, and the second one is an un-

certainty computed by a carefully designed matrix Q̂t,a which will be specified latter in (6.4)

and a parameter β > 0. Note that if one naively define the pseudo-reward as w�
t,axt, the model

wt,a is trained on its own output and has no improvement. In contrast, including the uncertainty

β
√

x�
t Q̂

−1
t,axt, our pseudo-reward pt,a enjoys the following properties. First, the uncertainty al-

lows us to trade variance due to few examples in LINUCB with bias which is caused by the

pseudo-reward in our algorithm. Second, including the uncertainty tilts the model towards the

unseen actions and hence guides future exploration better. Further, the uncertainty term in the

pseudo-reward provides flexibility to explore not only during action selection but also model

updating.

With pseudo-rewards in hand, we can use the matrix X̄t,a to collect those instances with no

feedback as its rows, assuming there are �t,a of them, and let pt,a be the column vector contain-

ing the corresponding pseudo-rewards as its entries. Recall that the matrix Xt,a contains those
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instances with feedback as its rows and the vector rt,a contains the corresponding rewards as its

entries. Thus, we can update the model by

wt+1,a = arg min
w∈Rd

(
λ‖w‖2 + ‖Xt,aw − rt,a‖2 + ‖X̄t,aw − pt,a‖2

)
.

6.3.2 Handling Biased Terms

Note that the pseudo-rewards remain in the regression model permanently, even though some

of them, especially the earlier ones, may be rather inaccurate. That is, the beginning pseudo-

rewards, which promote exploration, may become irrelevant or even misleading later on, so we

may not want them in later iterations to have the same effect as the more recent, and perhaps

more accurate, pseudo-rewards.

In order to make the pseudo-rewards working properly, we use a forgetting mechanism to

deal with the above situation. It puts emphases on more recent pseudo-rewards and their contexts

than older ones, by using a forgetting parameter η ∈ [0, 1] to control how fast it forgets previous

pseudo-rewards; the smaller the parameter η is, the faster it forgets. Let X̂t,a be the �t,a × d

matrix with its ith row being that of X̄t,a multiplied by the factor η
t,a−i; similarly, let p̂t,a be the

�t,a-dimensional vector with its ith entry being that of pt,a multiplied by η
t,a−i. Then our update

becomes

wt+1,a = arg min
w∈Rd

(
λ‖w‖2 + ‖Xt,aw − rt,a‖2 + ‖X̂t,aw − p̂t,a‖2

)
,

which has the solution

wt+1,a = Q̂−1
t,a

(
Xt,art,a + X̂t,ap̂t,a

)
, where Q̂t,a = λId +X�

t,aXt,a + X̂�
t,aX̂t,a. (6.4)

6.3.3 The LINPRUCB Algorithm

We can use the pseudo-rewards and the forgetting mechanism mentioned above to upgrade the

LINUCB to our main algorithm, the LINPRUCB algorithm. Similar to LINUCB, LINPRUCB

chooses an action in iteration t by

at = arg max
a∈[K]

(
w�

t,axt + αĉt,a
)
,

where ĉt,a =
√
(x�

t Q̂
−1
t,axt) and α > 0 is a paremeter. The major distinction is the loop in Step 7

that updates the weight wt+1,a for each action. For the selected action, its corresponding context

vector and actual reward is updated in Step 9 as LINUCB does. For actions whose rewards are
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Algorithm 5 Linear Pseudo-Reward Upper Confidence Bound (LINPRUCB)

1: inputs: α, β, η > 0
2: initialize: w1,a := 0d, Q̂−1

1,a := Id, X̂�X̂a := X�Xa := 0d×d, ẑa := za := 0d

3: for t = 1 to T do
4: observe xt

5: select at = argmaxa∈[K] w
�
t,axt + α

√
(x�

t Q̂
−1
t,axt)

6: receive reward rt,at
7: for a ∈ [K] do
8: if a = at then
9: X�Xa := X�Xa + xtx

�
t

za := za + xtrt,at
10: else
11: pt,a := w�

t,axt + β
√
(x�

t Q̂
−1
t,axt)

X̂�X̂a := ηX̂�X̂a + xtx
�
t

ẑa := ηẑa + xtpt,a
12: end if
13: Q̂t+1,a := Id +X�Xa + X̂�X̂a

14: wt+1,a := Q̂−1
t+1,a(za + ẑa)

15: end for
16: end for

unknown, LINUCB computes the pseudo-rewards of unseen rewards in Step 11, and then the

forgetting mechanism kicks in. Finally in Step 14 computes the new weight wt+1,a shown in

(6.4) for the next iteration.

It is ideal to provide a theoretical regret bound to justify the performance of our algorithm.

However, our LINPRUCB inherits a property of LINUCB that it is difficult to analyze due to the

dependency between the context vectors and rewards. Similar to LINUCB of Chu et al. [31] and

LINREL of Auer [9], in the next section, we are going to construct a variant of the LINPRUCB

algorithm, called SUPLINPRUCB, and analyze its regret as a remedy.

6.3.4 The SupLinPRUCB Algorithm

The SUPLINREL algorithm and the subroutine LINREL introduced by [9] provides a clever way

to handle the dependency issue. To analyze the regret of LINUCB, [31] follows the idea and the

analysis of [9] to construct the SUPLINUCB algorithm, the BASELINUCB subroutine, and the

analysis showing their SUPLINUCB algorithm achieves a Õ(
√
dT ) regret with high probability.

Therefore in this subsection, we also follow the similar idea of [9] to construct an algorithm

called SUPLINPRUCB and a subroutine called BASELINPRUCB.
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Algorithm 6 SUPLINPRUCB

1: initialize: S := lnT , Ψs
1 := ∅ for all s ∈ [S]

2: for t = 1 to T do
3: Observe xt.

4: s := 1 and Â1 := [K]
5: repeat
6: Use BASELINPRUCB with Ψs

t and xt to compute ucbs
t,a and widths

t,a for all a ∈ Âs.

7: if widths
t,a > 2−s for some a ∈ Âs then

8: Choose action at := a and update:

Ψs
t+1 := Ψs

t ∪ {t} and Ψs′
t+1 := Ψs′

t for all s′ �= s.

9: else if widths
t,a ≤ 1/

√
T for all a ∈ Âs then

10: Choose action at := argmaxa∈Âs
ucbs

t,a, and set Ψs
t+1 := Ψs

t for all s ∈ [S].
11: else
12: Update

Âs+1 :=
{
a ∈ Âs

∣∣∣ ucbs
t,a ≥ max

a′∈Âs

ucbs
t,a′ − 21−s

}
and s := s+ 1.

13: end if
14: until an action at is found.

15: end for

SUPLINPRUCB is designed to solve the dependent issue of context vectors and rewards,

thus it is almost identical to SUPLINREL in [9] and SUPLINUCB in [31]. On the other hand, the

BASELINPRUCB subroutine is different from LINREL in [9] and BASELINPRUCB in [31],

since BASELINPRUCB is modified from LINPRUCB and will be used to justify our idea of

pseudo reward. The performance of SUPLINPRUCB is shown in the following theorem.

Theorem 6.1. With probability 1 − δ, SUPLINPRUCB achieves a regret of Õ(
√
dKT ), where

Õ hides the polynomials of ρ = 3/
√
1− η and ν = ln(TK/δ).

To prove the theorem, we only need to follow the analysis of SUPLINREL in [9] and replace

several critical steps that are related to our BASELINPRUCB subroutine. Let us denote the set

of indices that do not belong to any Ψs
T+1 by Ψ0 which equals [T ] \⋃S

s=1 Ψ
s
T+1 and denote the

subset of Ψs
t that collects all τ such that aτ = a by Ψs

t,a (in other words, Ψs
t =

⋃K
a=1 Ψ

s
t,a). By

definition, the expected regret is
∑T

t=1(E[rt,a∗t ]− E[rt,at ]), which can be regrouped as

S∑
s=1

K∑
a=1

∑
t∈Ψs

T+1,a

(
E[rt,a∗t ]− E[rt,at ]

)
+
∑
t∈Ψ0

(
E[rt,a∗t ]− E[rt,at ]

)
. (6.5)

Note that the second term in (6.5) can be easily bounded by 2
√
T according to Step 9 of SU-

PLINPRUCB, and the the critical term in (6.5) is the first term which we bound as follows.
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Algorithm 7 BASELINPRUCB

1: inputs: Ψt = {σ1, ..., σ|Ψt||σ1 < ... < σ|Ψt|} ⊆ [t− 1], β, η, ν, ρ > 0

2: initialize w1,a := 0d, Q̂1,a := Id, X̂�X̂a := X�Xa := 0d×d, ẑa := za := 0d

3: observe context xt

4: for a ∈ [K] do
5: for τ = 1 to |Ψt| do
6: if aστ = a then
7: X�Xa := X�Xa + xστx

�
στ

8: za := za + xστ rστ ,a

9: else
10: pστ ,a := w�

τ,axστ + β
√
(x�

στ
Q̂−1

τ,axστ )

11: X̂�X̂a := ηX̂�X̂a + xστx
�
στ

12: ẑa := ηẑa + xστpστ ,a

13: end if
14: Q̂τ+1,a := (Id +X�Xa + X̂�X̂a)

15: wτ+1,a := Q̂−1
τ+1,a(za + ẑa)

16: end for
17: widtht,a := αĉt,a := (1 + ν + ρ)

√
x�
t Q̂

−1
|Ψt|+1,axt

18: r̂t,a := w�
|Ψt|+1,axt

19: ucbt,a := r̂t,a + αĉt,a
20: end for

In order to bound E[rt,a∗t ] − E[rt,at ], we need a lemma similar to the Lemma 15 in [9].

This can be achieved if we have the following two lemmas. Lemma 6.1 is the key difference

in the analysis, and it shows if the rewards indexed by the input set Ψt, which is computed

by SUPLINPRUCB, are independent, then w|Ψt|+1,a computed by BASELINPRUCB has small

deviation bound with high probability. In Lemma 6.2, we provides the independence Lemma 6.1

needs.

Lemma 6.1 (Similar to Lemma 9 in [9]). Let the set of time indices Ψt ⊆ [t − 1] be the input

of BASELINPRUCB. Assume for any fixed sequence of xτ , τ ∈ Ψt, the rewards rτ,aτ , are

independent random variables with means x�
τ uaτ . Then with probability 1 − δ/T , we have∣∣x�

t wt,a − x�
t ua

∣∣ ≤ (1+ν+ρ)ĉt,a for all a ∈ [K], where ν = O(ln(TK/δ)) and ρ = 3/
√
1− η .

Proof. For notational convenience, let us drop all the subscripts involving t and a. By definition,

∣∣x�w − x�θ
∣∣ =

∣∣∣x�Q̂−1(Xr+ X̂p̂)− x�Q̂−1(λId +X�X+ X̂�X̂)θ
∣∣∣

=
∣∣∣x�Q̂−1X(r−Xθ)− λx�Q̂−1θ + x�Q̂−1X̂(p̂− X̂θ)

∣∣∣
≤

∣∣∣x�Q̂−1X�(r−Xθ)
∣∣∣+ ∣∣∣λx�Q̂−1θ

∣∣∣+ ∣∣∣x�Q̂−1X̂�(p̂− X̂θ)
∣∣∣ . (6.6)

81



The first two terms in (6.6) together can be bounded by (1 + ν)ĉ with probability 1− δ/T using

arguments similar to those in Chu et al. [31]. The third term arises from our use of pseudo-

rewards, which is an additional cost we need to suffer but BASELINUCB does not, and this is

where our forgetting mechanism comes to help. By the Cauchy-Schwarz inequality, this term

is at most ‖x�Q̂−1X̂‖‖p̂ − X̂θ‖, where one can show that ‖x�Q̂−1X̂‖ ≤ ĉ using a similar

argument as in Chu et al. [31]. Since the ith entry of the vector p̂− X̂�θ by definition is at most

3η
−i, we have ‖p̂ − X̂�θ‖ ≤ 3
√∑

i≤
 η
2(
−i) ≤ 3/

√
1− η = ρ. By combining these bounds

together, we have the lemma.

Lemma 6.2 (Lemma 14 in [9]). For any s ∈ [S], t ∈ [T ], and for any fixed sequence of context

vectors xτ with τ ∈ Ψs
t , the rewards rτ,aτ , τ ∈ Ψs

t , are independent random variables with

E[rτ,aτ ] = u�
a xτ .

Proof. Suppose a time index t is added into a set Ψs
t for some s in Step 8 of SUPLINPRUCB.

When t is the first time index added into Ψs
t , the lemma clearly holds. On the other hand, for

Ψs
t �= ∅, when the event happens, it only depends on ucbs′

t,a and widths′
t,a for s′ < s, and on

widths
t,a. Note that ucbs′

t,a and widths′
t,a depend on the context vectors xj and rewards rj,aj for

j ∈ ⋃
s′<s Ψ

s′
t , and widths

t,a depends merely on context vectors xt and xj for j ∈ Ψs
t . This

implies rt,at is independent of rt′,at′ for all t′ ∈ Ψs
t and t′ < t, and thus implies the lemma.

Combining the bound shown in Lemma 6.1 with the action selection scheme in SUPLINPRUCB,

we can establish a lemma similar to Lemma 15 in [9], from which we have E[rt,a∗t ]− E[rt,at ] ≤
23−s for any t, s, and a ∈ Âs with high probability. This further implies the sum

∑
t∈Ψs

T+1,a
(E[rt,a∗t ]−

E[rt,at ]) in (6.5) is at most 23−s|Ψs
T+1,a|.

Next, we need the following lemma to further bound 23−s|Ψs
T+1,a|.

Lemma 6.3 (Similar to Lemma 16 in [9]). For any s ∈ [S],

23−s|Ψs
T+1,a| ≤ 5(1 + ν + ρ)

√
d|Ψs

T+1,a|.

Proof. Recall in Step 14 of BASELINPRUCB, Q̂t,a = Id + X�Xa + X̂�X̂a is a positive def-

inite matrix since X�Xa consists of xτx
�
τ with τ ∈ Ψs

t,a, and X̂�X̂a consists of xτx
�
τ with

τ ∈ Ψs
t \ Ψs

t,a. Further, Q̂t,a  Mt,a = Id +X�Xa implies Q̂−1
t,a � M−1

t,a , and thus x�Q̂−1
t,ax ≤

x�M−1
t,ax for all x ∈ R

d. Applying Lemma 3 in [31], we have
∑

t∈Ψs
T+1,a

√
x�
t M

−1
t,axt ≤
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5
√

d|Ψs
T+1,a| ln |Ψs

T+1,a| for any s and a. Hence, we have

∑
t∈Ψs

T+1,a

widths
t,a =

∑
t∈Ψs

T+1,a

(1 + ν + ρ)
√

x�
t Q̂

−1
t,axt

≤ (1 + ν + ρ)
∑

t∈Ψs
T+1,a

√
x�
t M

−1
t,axt

≤ 5(1 + ν + ρ)
√

d|Ψs
T+1,a| ln |Ψs

T+1,a|

On the other hand, by Steps 7 and 8 of SUPLINPRUCB,

∑
t∈Ψs

T+1,a

widths
t,a ≥ 2−s|Ψs

T+1,a|.

Putting the upper and lower bounds of
∑

t∈Ψs
T+1,a

widths
t,a together we have the lemma.

From the discussion above, we know that the expected regret of SUPLINPRUCB which is

represented by (6.5), can be bounded by c
∑S

s=1(ν + ρ)
√
d|Ψs

T+1,a|+ 2
√
T for some constant c.

Therefore, following the same steps in the proof of Theorem 6 in [9], we obtain Theorem 6.1.
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Appendix A

Deferred Proofs in Chapter 3

A.1 Proof of Lemma 3.1 in Section 3.4

The lemma follows immediately from the following known fact (see e.g. [14, 63]); we give the

proof for completeness.

Proposition A.1. Suppose R is strictly convex and differentiable, and y satisfies the condition

∇R(y) = ∇R(u)− �. Then

argmin
x∈X

(〈�, x〉+ BR(x, u)
)
= argmin

x∈X
BR(x, y).

Proof. Since R is strictly convex, the minimum on each side is achieved by a unique point.

Next, note that BR(x, y) = R(x)−R(y)− 〈∇R(y), x− y〉 = R(x)− 〈∇R(y), x〉+ c, where

c = −R(y) + 〈∇R(y), y〉 does not depend on the variable x. Thus, using the condition that

∇R(y) = ∇R(u)− �, we have

argmin
x∈X

BR(x, y) = argmin
x∈X

(R(x)− 〈∇R(u)− �, x〉)
= argmin

x∈X
(〈�, x〉+R(x)− 〈∇R(u), x〉) .

On the other hand, BR(x, u) = R(x) − R(u) − 〈∇R(u), x− u〉 = R(x) − 〈∇R(u), x〉 + c′,

where c′ = −R(u) + 〈∇R(u), u〉 does not depend on the variable x. Thus, we have

argmin
x∈X

(〈�, x〉+ BR(x, u)
)
= argmin

x∈X
(〈�, x〉+R(x)− 〈∇R(u), x〉) = argmin

x∈X
BR(x, y).
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A.2 Proof of Lemma 3.2 in Section 3.4

Let us write 〈�t, x̂t − π〉 = 〈�t, x̂t − xt+1〉+ 〈�t, xt+1 − π〉 which in turn equals

〈�t − �t−1, x̂t − xt+1〉+ 〈�t−1, x̂t − xt+1〉+ 〈�t, xt+1 − π〉 . (A.1)

To bound the second and third terms in (A.1), we rely on the following.

Proposition A.2. Suppose � ∈ R
n, v = argminx∈X

(〈�, x〉+ BR(x, u)
)
, and w ∈ X . Then

〈�, v − w〉 ≤ BR(w, u)− BR(w, v)− BR(v, u).

Proof. We need the following well-known fact; for a proof, see e.g. pages 139–140 of [17].

Fact A.1. Let X ⊆ R
n be a convex set and x = argminz∈X φ(z) for some continuous and

differentiable function φ : X → R. Then for any w ∈ X , 〈∇φ(x), w − x〉 ≥ 0.

Let φ be the function defined by φ(x) = 〈�, x〉 + BR(x, u). Since X is a convex set and v

is the minimizer of φ(x) over x ∈ X , it follows from Fact A.1 that 〈∇φ(v), w − v〉 ≥ 0. Since

∇φ(v) = � + ∇R(v) − ∇R(u), we have 〈�, v − w〉 ≤ 〈∇R(v)−∇R(u), w − v〉 . Then, by

the definition of Bregman divergence, we obtain

BR(w, u)− BR(w, v)− BR(v, u) = −〈∇R(u), w − v〉+ 〈∇R(v), w − v〉
= 〈∇R(v)−∇R(u), w − v〉 .

As a result, we have

〈�, v − w〉 ≤ 〈∇R(v)−∇R(u), w − v〉 = BR(w, u)− BR(w, v)− BR(v, u).

From Proposition B.2 and the definitions of x̂t and xt+1, we have

〈�t−1, x̂t − xt+1〉 ≤ BRt(xt+1, xt)− BRt(xt+1, x̂t)− BRt(x̂t, xt), and (A.2)

〈�t, xt+1 − π〉 ≤ BRt(π, xt)− BRt(π, xt+1)− BRt(xt+1, xt). (A.3)

Combining the bounds in (A.1), (A.2), (A.3) together, we have the lemma.
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A.3 Proof of Lemma 3.8 in Section 3.7

We need the following lemma from [46]:

Lemma A.1. Let ut ∈ R
N , for t ∈ [T ], be a sequence of vectors. Define Vt = I +

∑t
τ=1 uτu

�
τ .

Then,
T∑
t=1

u�
t V

−1
t ut ≤ N ln

(
1 +

T∑
t=1

‖ut‖22
)
.

To prove our Lemma 3.8, first note that for any t ∈ [T ],

Ht = I + βγ2I + β

t−1∑
τ=1

�τ�τ�  I + β

t∑
τ=1

�τ�τ�  I +
β

2

t∑
τ=1

(�τ�τ�+ �τ−1�τ−1�) ,

since γ2I  �t�t� and �0 is the the all-0 vector. Next, we claim that

�τ�τ�+ �τ−1�τ−1�  1

2
(�τ − �τ−1) (�τ − �τ−1)

� .

This is because by subtracting the right-hand side from the left-hand side, we have

1

2
�τ�τ�+

1

2
�τ�τ−1�+

1

2
�τ−1�τ�+

1

2
�τ−1�τ−1� =

1

2
(�τ + �τ−1) (�τ + �τ−1)

�  0.

Thus, with Kt = I+ β
4

∑t
τ=1 (�τ − �τ−1) (�τ − �τ−1)

�
, we have Ht  Kt and K−1

t  H−1
t . This

implies that

T∑
t=1

‖�t − �t−1‖2H−1
t

≤
T∑
t=1

‖�t − �t−1‖2K−1
t

=
4

β

T∑
t=1

∥∥∥∥∥
√

β

4
(�t − �t−1)

∥∥∥∥∥
2

K−1
t

,

which by Lemma A.1 is at most 4N
β
ln
(
1 + β

4

∑T
t=1 ‖�t − �t−1‖22

)
.
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Appendix B

Deferred Proofs in Chapter 4

B.1 Proof of Lemma 4.3 in Section 4.3

We remark that our proof is a simplification of the more general one given in [28] with Rt (x) =
1
2ηt

‖x‖22.

Let us rewrite 〈gt, x̂t − π〉 as 〈gt, x̂t − xt+1〉+ 〈gt, xt+1 − π〉 which equals

〈gt − ĝt−1, x̂t − xt+1〉+ 〈ĝt−1, x̂t − xt+1〉+ 〈gt, xt+1 − π〉 . (B.1)

The first term above is at most ‖gt − ĝt−1‖2 ‖x̂t − xt+1‖2, by the Cauchy-Schwarz inequality,

which is at most ηt ‖gt − ĝt−1‖22 = St by the next proposition.

Proposition B.1. ‖x̂t − xt+1‖2 ≤ ηt ‖gt − ĝt−1‖2 .

Proof. Let φ (w) = ‖w − (xt − ηtĝt−1)‖22 so that x̂t = argminw∈X φ (w). Then by the optimal-

ity criterion in convex optimization (see pages 139–140 of [17]), we have 〈∇φ (x̂t) , xt+1 − x̂t〉 ≥
0, with ∇φ (x̂t) = 2 (x̂t − (xt − ηtĝt−1)), which implies that

〈x̂t − (xt − ηtĝt−1) , xt+1 − x̂t〉 ≥ 0.

Similarly, by letting φ (w) = ‖w − (xt − ηtgt)‖22 so that xt+1 = argminw∈X φ (w), we have

〈xt+1 − (xt − ηtgt) , x̂t − xt+1〉 ≥ 0.

Adding these two inequalities together, we have

〈(x̂t − xt+1) + ηt (ĝt−1 − gt) , xt+1 − x̂t〉 ≥ 0,
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which implies that

〈x̂t − xt+1, x̂t − xt+1〉 ≤ 〈ηt (ĝt−1 − gt) , xt+1 − x̂t〉 ≤ ‖ηt (ĝt−1 − gt)‖2 ‖x̂t − xt+1‖2 ,
by the Cauchy-Schwarz inequality. As 〈x̂t − xt+1, x̂t − xt+1〉 = ‖x̂t − xt+1‖22, we can divide

both sides of the inequality above by ‖x̂t − xt+1‖2, and the proposition follows.

To bound the other two terms in (B.1), we need the following.

Proposition B.2. Suppose η > 0, g ∈ R
n, u ∈ X , and v = argminx∈X ‖x− (u− ηg)‖2. Then

for any w ∈ X ,

〈g, v − w〉 ≤ 1

2η

(‖w − u‖22 − ‖w − v‖22 − ‖v − u‖22
)
.

Proof. Let φ (x) = ‖x− (u− ηg)‖22 so that v = argminx∈X φ (x). Then from the optimality

criterion, 〈∇φ (v) , w − v〉 ≥ 0, with ∇φ (v) = 2 (v − (u− ηg)) = 2 ((v − u) + ηg), which

implies that 〈g, v − w〉 ≤ 1
η
〈v − u, w − v〉 . By a straightforward calculation, 〈v − u, w − v〉 =

1
2
(‖w − u‖22 − ‖w − v‖22 − ‖v − u‖22), and the proposition follows.

From Proposition B.2, we have

〈ĝt−1, x̂t − xt+1〉 ≤ 1

2ηt

(‖xt+1 − xt‖22 − ‖xt+1 − x̂t‖22 − ‖x̂t − xt‖22
)

and

〈gt, xt+1 − π〉 ≤ 1

2ηt

(‖π − xt‖22 − ‖π − xt+1‖22 − ‖xt+1 − xt‖22
)
.

Adding the two inequalities above, we get that 〈ĝt−1, x̂t − xt+1〉+ 〈gt, xt+1 − π〉 is at most

1

2ηt

(‖π − xt‖22 − ‖π − xt+1‖22
)− 1

2ηt

(‖xt+1 − x̂t‖22 + ‖x̂t − xt‖22
)
= At − Bt.

Combining this with 〈gt − ĝt−1, x̂t − xt+1〉 ≤ St derived before, we have the lemma.

B.2 Proof of Lemma 4.8 in Section 4.5

Recall that Bt =
1
2η
‖xt+1 − x̂t‖22 + 1

2η
‖x̂t − xt‖22, so

T∑
t=1

Bt =
1

2η
‖x̂1 − x1‖22 +

1

2η

T∑
t=2

(‖xt − x̂t−1‖22 + ‖x̂t − xt‖22
)
+

1

2η
‖xT+1 − x̂T‖22

≥ 1

2η

T∑
t=2

(‖xt − x̂t−1‖22 + ‖x̂t − xt‖22
)

≥ 1

4η

T∑
t=2

‖x̂t − x̂t−1‖22

by Proposition 4.1(b). Then the lemma follows as ‖x̂1 − x̂0‖22 ≤ R2 ≤ O(1).
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B.3 Proof of Lemma 4.10 in Section 4.6

The lemma follows immediately from the following two lemmas.

Lemma B.1.
∑T

t=1 (At − Ct) ≤
∑T

t=1 St +O(1).

Proof. Note that
∑T

t=1 At can be rearranged as

1

2η1
‖π − x1‖22 +

T∑
t=1

(
1

2ηt+1

− 1

2ηt

)
‖π − xt+1‖22 −

1

2ηT+1

‖π − xT+1‖22 . (B.2)

The first term above is at most
(
1 + H

2

)
R2 = O(1), and let us drop the last term. For the

second term, note that 1
ηt+1

− 1
ηt

= H
2γ

‖gt − ĝt−1‖22 ≤ H
2

since γ ≥ ‖gt − ĝt−1‖22, and moreover,
1
2
‖π − xt+1‖22 = 1

2
‖π − x̂t + x̂t − xt+1‖22 ≤ ‖π − x̂t‖22 + ‖x̂t − xt+1‖22 by Proposition 4.1(b).

Thus, with Ct =
H
2
‖π − x̂t‖22, we obtain

T∑
t=1

(At − Ct) ≤
T∑
t=1

H

2
‖x̂t − xt+1‖22 +O(1).

Since H
2

≤ 1
ηt

and ‖x̂t − xt+1‖22 ≤ η2t ‖ĝt−1 − gt‖22 by the update rule of x̂t and xt+1 and by

Proposition B.1, we have

T∑
t=1

(At − Ct) ≤
T∑
t=1

ηt ‖gt − ĝt−1‖22 +O(1) =
T∑
t=1

St +O(1),

which proves the lemma.

Lemma B.2.
∑T

t=1 St ≤ 2γ
H
ln
(
1 + H

2γ

∑T
t=1 ‖gt − ĝt−1‖22

)
.

Proof. Recall that St = ηt ‖gt − ĝt−1‖22 where ηt = 1
/(

1 + H
2
+ H

2γ

∑t−1
τ=1 ‖gτ − ĝτ−1‖22

)
. Let

V0 = 1 and Vt = 1+ H
2γ

∑t
τ=1 ‖gτ − ĝτ−1‖22 for t ≥ 1. Note that ηt ≤ 1

Vt
since γ ≥ ‖gt − ĝt−1‖22.

This implies that

St = ηt ‖gt − ĝt−1‖22 = ηt
2γ

H
(Vt − Vt−1) ≤ 2γ

H

(
1− Vt−1

Vt

)
≤ 2γ

H
ln

Vt

Vt−1

,

where the last inequality holds since for any two real numbers a > b > 0, 1 − b
a

≤ ln a
b
.

Therefore, by summing over t, we have

T∑
t=1

St =
T∑
t=1

ηt ‖gt − ĝt−1‖22 ≤
2γ

H

T∑
t=1

ln
Vt

Vt−1

=
2γ

H
ln

VT

V0

=
2γ

H
lnVT .
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B.4 Proof of Lemma 4.11 in Section 4.6

Recall that Bt =
1
2ηt

‖xt+1 − x̂t‖22 + 1
2ηt

‖x̂t − xt‖22, and note that ηt ≤ 1 for every t ∈ [t]. Thus,

if we let η = 1, then Bt ≥ 1
2η

‖xt+1 − x̂t‖22 + 1
2η

‖x̂t − xt‖22 for every t ∈ [T ], and the lemma

then follows from Lemma 4.8 (which works for any η > 0).
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Appendix C

Deferred Proofs in Chapter 5

C.1 Proof of Lemma 5.1 in Section 5.1

Recall the update rule from (5.2) that for any t ∈ [T ] and i ∈ [N ],

wt+1(i) = wt(i) · e−ηft(i),

and recall Wt =
∑

i∈[N ]wt(i). Following a standard analysis of the weighted average algorithm

(see e.g. [16, 21]), we have

ln
WT+1

W1

= ln

∑
i∈[N ] e

−η
∑

t∈[T ] ft(i)

N
≥ ln

e−ηLT
min

N
= −ηLT

min − lnN,

and moreover

ln
WT+1

W1

=
T∑
t=1

ln
Wt+1

Wt

=
T∑
t=1

ln
∑
i∈[N ]

wt(i) · e−ηft(i)

Wt

=
T∑
t=1

ln
∑
i∈[N ]

pt(i)e
−ηft(i).

Then to get the specific bound of the lemma, we rely on the following claim.

Claim C.1. Suppose η ∈ [0, 1/2], p(i), f(i) ∈ [0, 1] for any i ∈ [N ], and
∑

i∈[N ] p(i) = 1. Then

for any π ∈ [N ],

ln
∑
i∈[N ]

p(i)e−ηf(i) ≤ −η
∑
i∈[N ]

p(i)f(i) + η2
∑

i:f(i)�=f(π)

p(i).

We will prove the claim later. Now assuming it and by combining it with the bounds before,
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we have

−ηLT
min − lnN ≤ ln

WT+1

W1

≤
T∑
t=1

⎛
⎝−η

∑
i∈[N ]

pt(i)ft(i) + η2
∑

i:ft(i)�=ft(it)

pt(i)

⎞
⎠

= −ηLT
ALG0

+
T∑
t=1

⎛
⎝η2

∑
i:ft(i)�=ft(it)

pt(i)

⎞
⎠ ,

which implies that

LT
ALG0

− LT
min ≤ lnN

η
+

T∑
t=1

⎛
⎝η

∑
i:ft(i) �=ft(it)

pt(i)

⎞
⎠ .

Thus, to complete the proof of Lemma 5.1, it remains to prove Claim C.1, which we will do next.

Proof. Consider the function Φ on x = (x(1), . . . , x(N)) ∈ [0, 1]N defined by

Φ(x) = ln
∑
i∈[N ]

p(i)e−ηx(i).

Then our goal is to bound the value of Φ at the point u = (f(1), f(2), . . . , f(N)). Using Taylor’s

theorem, by expanding Φ at the point u′ = (f(π), f(π), . . . , f(π)), we have

Φ(u) = Φ(u′) +
∑
i∈[N ]

∂Φ(u′)
∂x(i)

(f(i)− f(π)) +
1

2

∑
i,j∈[N ]

∂Φ(v)

∂x(i)∂x(j)
(f(i)− f(π))(f(j)− f(π)),

(C.1)

for some v ∈ [0, 1]N . Since
∑

i∈[N ] p(i) = 1, the first term in (C.1) is

Φ(u′) = ln
∑
i∈[N ]

p(i)e−ηf(π) = −ηf(π).

It remains to bound the other two terms in (C.1).

Let h(x) =
∑

i∈[N ] p(i)e
−ηx(i) so that Φ(x) = lnh(x), and let gi(x) =

∂h(x)
∂x(i)

= −ηp(i)e−ηx(i),

for i ∈ [N ]. Then it is not hard to show that

∂Φ(x)

∂x(i)
=

gi(x)

h(x)
and

∂2Φ(x)

∂x(i)∂x(j)
=

⎧⎨
⎩

−ηgi(x)
h(x)

−
(

gi(x)
h(x)

)2

if i = j,

−gi(x)gj(x)

h2(x)
if i �= j.

Using this, the second term in (C.1) can be written as∑
i∈[N ]

gi(u
′)

h(u′)
(f(i)− f(π)) =

∑
i∈[N ]

(−ηp(i))(f(i)− f(π)) = ηf(π)− η
∑
i∈[N ]

p(i)f(i),
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while the third term in (C.1) can be written as

1

2

∑
i∈[N ]

(
−ηgi(v)

h(v)
−
(
gi(v)

h(v)

)2
)
(f(i)− f(π))2

−
∑

1≤i<j≤N

gi(v)gj(v)

h2(v)
(f(i)− f(π))(f(j)− f(π))

=
1

2

∑
i∈[N ]

(−ηgi(v)

h(v)

)
(f(i)− f(π))2 − 1

2

⎛
⎝∑

i∈[N ]

gi(v)

h(v)
(f(i)− f(π))

⎞
⎠

2

≤ 1

2

∑
i∈[N ]

(−ηgi(v)

h(v)

)
(f(i)− f(π))2

≤ η2
∑
i∈[N ]

p(i)(f(i)− f(π))2,

where the last line follows from the fact that with η ∈ [0, 1/2],

−ηgi(v)

h(v)
=

η2p(i)e−ηv(i)∑
i∈[N ] p(i)e

−ηv(i)
≤ η2p(i)e0

e−1/2
≤ 2η2p(i).

Finally, by combining all these bounds together, we have

Φ(u) = −ηf(π) + ηf(π)− η
∑
i∈[N ]

p(i)f(i) + η2
∑
i∈[N ]

p(i)(f(i)− f(π))2

≤ −η
∑
i∈[N ]

p(i)f(i) + η2
∑

i∈[N ]:f(i)�=f(π)

p(i),

by using the fact that (f(i)− f(π))2 ≤ 1 when f(i) �= f(π). This proves Claim C.1.
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