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針對大型異質現場可程式化邏輯閘陣列之巨集暨

解析擺置 

 

研究生：陳昱臻            指導教授：張耀文 博士 

 

國立臺灣大學電子工程學研究所 

摘要 

 

隨著現場可程式邏輯閘陣列的演進，其晶片大量採用複雜元件如隨

機存取記憶體以及數位訊號處理器以實現當代電路設計廣泛使用的矽

智產。而複雜元件電路往往伴隨著資料路徑。在過去，電路巨集與擺

置的問題雖然已被廣泛研究，資料路徑電路在電路巨集與擺置上的考

量卻大多被忽視。然而，未考慮資料路徑之巨集與擺置將破壞電路的

規律性，從而降低效能。除此之外，隨著電路設計複雜度的急遽上升，

可擴展性已成為主要考量。另外，多數巨集之演算法過度聚集元件，

也造成擺置上的困難並限制了擺置的最佳化。然而，學術界廣為使用

的標竿電路卻遠小於現實電路，不足以顯現出演算法之可擴展性。 

因此，在這篇論文中，我們針對上述問題提出了一個考慮密集資料
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路徑結構的巨集與擺置演算法。我們所提出的巨集演算法針對複雜元

件、資料路徑以及一般元件分別採用不同的巨集方法。我們的巨集方

法提供後續的擺置更大的彈性和潛力以得到更好的最佳化。此外，我

們提出 V 型架構來加強演算法的可擴展性。而我們所提出的擺置演算

法使用非線性最佳化的方式降低線長並針對密集資料路徑結構作處理

以獲得高品質的擺置。實驗結果顯示出，我們所提出的方法相較於先

前的研究，可以有效地得到非常好的電路擺置結果，並且可以在大型

異質標竿電路中得到驗證。 

關鍵詞：實體設計、資料路徑、電路巨集、電路擺置、異質電路 
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PACKING AND ANALYTICAL PLACEMENT FOR
LARGE-SCALE HETEROGENEOUS FPGAS

Student: Yu-Chen Chen Advisor: Dr. Yao-Wen Chang

Graduate Institute of Electronics Engineering
National Taiwan University

Abstract

As field programmable gate arrays (FPGAs) have evolved, heterogeneous

components such as random access memory blocks (RAMs) and digital signal pro-

cessing blocks (DSPs) are widely applied to effectively implement intellectual prop-

erty (IP) cores extensively used in modern circuits. The RAMs and DSPs are

often accompanied with datapath-intensive circuits. Although FPGA packing and

placement for general logic blocks have been studied extensively, not much work ad-

dresses the optimization of datapath. Packing and placement without considering

datapath could break the regularity and lead to significantly worse results. Besides,

scalability has become a first-order metric for modern FPGA design, mainly due

to the dramatically increasing design complexity. Most commonly used academic

benchmark suites, however, are relatively much smaller than the latest commercial

FPGA chips, which may not demonstrate scalability well. Furthermore, most of the

existing works on packing tend to be over-packed, which increases the difficulty for

placement and limits the placement optimization.
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Therefore, to solve the issues above, we propose efficient and effective pack-

ing and analytical placement algorithms in this thesis. Our packing algorithm is

composed of three stages to handle different structures of heterogeneous compo-

nents and datapath blocks. Our packing provides a more placement-friendly netlist

than VPR’s, which gives a great potential for placers to achieve significant qual-

ity improvement. A V-shaped framework is proposed to enhance the scalability

while considering more exact design constraints than existing works. Moreover, our

wirelength-driven analytical placement algorithm applies effective nonlinear opti-

mization techniques and utilizes the regularity of the datapaths to achieve scala-

bility and high quality. A complex-block-alignment function is proposed to better

handle the heterogeneity, and a multilevel framework is applied to further enhance

the scalability of our placement algorithm.

Experimental results show that our method is scalable while preserving high

quality. Our approach achieves a 199.80× speedup, compared to the VPR’s latest

packing flow (VPR 7.0), and a 3.07× speedup with 6% shorter wirelength, compared

to the VPR’s latest placement flow, based on a set of modern large-scale FPGA

benchmarks, Titan23 benchmark suites. The overall flow achieves a 18.30× speedup

with 50% shorter wirelength, compared to the VPR’s packing and placement flow.

Keywords: Physical Design, Datapath, Packing, Placement, Heterogeneous
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Chapter 1

Introduction

Field programmable gate arrays (FPGA) is a compelling proposition against ap-

plication specific integrated circuit (ASIC) in the market due to their dramati-

cally increasing logic density, short time-to-market, and flexibility. Being field pro-

grammable, FPGAs demand for very fast, scalable, yet high-quality place-and-route

tools to cope with the high complexity of modern large-scale design. Besides, modern

circuits extensively use intellectual property (IP) cores, which are accompanied with

datapath-intensive circuits. Most packing and placement works on FPGA, however,

do not address the optimization of datapath, which could break the regularity and

lead to significantly worse results. Therefore, in this thesis, we propose efficient and

effective packing and analytical placement algorithms for large-scale heterogeneous

FPGAs. In the following sections, we first give a brief introduction to FPGAs in

Section 1.1 and introduce datapath circuits in Section 1.2. Next, we describe FPGA

packing and placement problems in Section 1.3 and Section 1.4, respectively. Then,

a survey of related work is given in Section 1.5. After that, we explain our moti-

vation in Section 1.6 and summarize our contributions in Section 1.7. Finally, in

Section 1.8, we show the organization of the rest of this thesis.

1
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Figure 1.1: A sample of heterogeneous FPGAs.
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Figure 1.2: Basic components of FPGAs. (a) A typical BLE consists of a k-input
LUT, a FF, and a MUX. (b) A CLB contains several BLEs.

1.1 Introduction to FPGA

In this section, we first introduce the FPGA architecture in Section 1.1.1 and

show the FPGA design flow in Section 1.1.2.

1.1.1 FPGA Architecture

A typical heterogeneous FPGA, as illustrated in Figure 1.1, has five main

components: configurable logic blocks (CLBs), random access memory blocks (RAMs),

digital signal processing blocks (DSPs), programmable routing architecture, and in-

put/output (I/O) blocks. In a heterogeneous FPGA, a two-dimensional array of

CLBs, RAMs, and DSPs is surrounded by general routing resources bounded by

I/O blocks [1, 2]. A CLB usually contains several basic logic elements (BLEs). We

say that a CLB containing N BLEs has cluster size N. Moreover, a BLE is com-

posed of a simple combinational logic such as a lookup table (LUT) and a sequential
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Figure 1.3: A typical FPGA design flow.

logic like a flip-flop (FF). A K -input LUT can implement any function of K inputs.

Figures 1.2 (a) and (b) depict a BLE and a CLB, respectively.

1.1.2 FPGA Design Flow

A typical FPGA design flow consists of five main stages [23]: (1) logic syn-

thesis, (2) technology mapping, (3) placement, (4) routing, and (5) bitstream gener-

ation. Logic synthesis converts the high-level logic written in hardware description

language (HDL) into a gate-level circuit. After logic synthesis, circuit gates will

be grouped to best fit the FPGA logic resources such as CLBs through technology

mapping. Then, the physical locations of blocks in the technology-mapped netlist

will be determined in the placement stage, and connections between CLBs, RAMs,

DSPs, and I/O blocks will later be determined during the routing stage. Finally,
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Figure 1.4: An example of a datapath circuit.

bitstream generation generates a binary file which will decide all of the FPGA pro-

gramming points to configure the CLBs and interconnections. Figure 1.3 shows the

FPGA design flow.

1.2 Datapath Circuit in FPGA

In FPGA circuits, complex blocks (such as RAMs, DSPs, and arithmetic

logic blocks) are used to efficiently implement IP cores. These complex blocks tend

to have regular structures in their forward and backward stages. Figure 1.4 gives an

example of a datapath circuit in FPGA. The circuit contains four functional stages,

and each functional stage is composed of several logic blocks which are the same
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type. A functional stage usually has high-degree controlling nets that should be

aligned together to achieve better performance.

To achieve better packing and placement performance, datapath regularity is

widely considered to obtain more physically compact placement results and shorter

wirelength. Blocks in datapath circuits, however, are rarely packed together in

general packing algorithms because (1) they are often connected by high-degree

nets, and (2) they tend to have few interconnections with each other. This could

break the regularity and lead to significantly worse results. Therefore, for better

packing and placement results, it is of particular importance to spare no effort on

such datapath-intensive circuits. Earlier works such as Callahan et al. [10] proposed

a netlist extraction algorithm and a datapath placement algorithm. Ye et al. [52]

proposed a packing algorithm for datapath blocks. In this thesis, we propose the

first datapath extraction, packing, and placement algorithms to better exploit the

regularity of the datapaths in heterogeneous FPGA circuits.

1.3 FPGA Packing

Packing (also known as clustering) is a crucial step of the FPGA CAD flow.

Traditionally, packing falls between technology mapping and placement, but in mod-

ern flows, packing is tightly integrated with technology mapping or placement. After

technology mapping, gates in a netlist are mapped into LUTs and FFs. As shown

in Figure 1.5, grouping LUTs and FFs that connect to the same net into a coarse-

grained block could decrease the net degree. Moreover, a net with all its terminals in

the same coarse-grained block will not be considered in the placement stage, which

could reduce the problem size of placement, and further optimize metrics such as

area and routability. Furthermore, packing BLEs into CLBs needs to satisfy the con-

straints on the cluster size N, the maximum distinct inputs I, and/or the controlling
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Figure 1.5: An example of packing.

signals. The exact requirements are specified based on the given architecture.

The methodologies applied by numerous packing works can be classified into

four categories:

1. Seed-based approach: This approach is first proposed in VPack [6] and is

widely applied. The seed-based approach constructs one CLB at a time. A

BLE is first chosen from all the unpacked BLEs by an attraction function,

and set as the seed of a new cluster. Then, an unpacked BLE is selected

using a second attraction function, and packed with the seed. The second

step repeats until the cluster is full. If the cluster needs more distinct inputs

than the limit, a hill climbing technique is applied to seek BLEs that do not

increase the number of distinct inputs used by the cluster. Packing is done

by repeating the two steps above. Different objectives could be achieved by

applying different attraction functions on selecting a BLE. Example works of

this approach are as follows: VPack, T-VPack [38], RPack [9], iRAC [46],

LAP [22], T-RDPack [43], Yang et al. [51], and MO-Pack [44].

2. Depth optimal approach: This approach attempts to duplicate timing-

critical logics during packing, and merge blocks blocks on timing-critical paths
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into the same CLB. Although this approach obtains much shorter critical path

delay, the process of logic duplication often leads to large increases in area.

Besides, the timing estimation made during packing may not be accurate when

compared with the final placement result [36]. Representative works of this

approach are as follows: TLC [16], MLC [47], and RCP [17].

3. Partition-based approach: This approach applies k-way partitioning, and

then adjusts the clusters that violate CLB constraints because the constraints

cannot be formulated into the hypergraph for k-way hMetis [29]. Although

k-way partitioning produces a great initial packing, the mismatch after ad-

justment increases as the constraints become complex. Representative works

of this approach are Marrakchi et al. [39] and Feng [18].

4. Affinity-based approach: This approach is mainly applied in ASIC design

(such as first choice [28] in NTUplace3 [13] and best choice [5] in mPL6 [11]).

The affinity-based approach recursively merges two clusters that have the best

affinity and satisfy the CLB constraints. Packing is finished when the number

of the clusters meets the expectation or no cluster could be merged. An

example work of this approach is HD-Pack [12].

As mentioned in HD-Pack, affinity-based algorithms give a great net elimi-

nation which is better than seed-based algorithms, but fail to further pack when the

sizes of the most clusters are larger than half capacity. Therefore, in this thesis, we

develop our general CLB packing based on a hybrid algorithm that applies a best

choice algorithm with a capacity threshold to trigger a successive packing procedure.

As FPGAs have evolved, packing also needs to handle complex blocks. Fig-

ures 1.6 (a) – (d) illustrate a RAM block, a DSP block, an adder, and a shift register
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chain, respectively. The structures of complex blocks are different from that of gen-

eral CLBs. Ahmed et al. [3] proposed an effective memory packing configuration,

and AAPack [33] presented a complex block architecture description language for

its packing. To utilize complex blocks effectively, in this thesis, we present an iden-

tification packing algorithm for complex blocks.

1.4 FPGA Placement

Placement is one of the main stages that falls between technology mapping

and routing in the typical FPGA CAD flow. FPGA placement determines non-

overlapping positions for technology-mapped logic blocks in the netlist with opti-

mized cost metrics (such as the total wirelength or routability). Figure 1.7 shows

an example of FPGA placement. Every block is assigned to a unique position of

CLBs. The placement problem is computationally difficult. The wirelength min-

imization of the unit-size block placement with only two-pin nets is proved to be

NP-complete [19]. Therefore, placement is considered as one of the most critical

and time-consuming stages among the FPGA CAD flow.

Many works on FPGA placement are mainly based on the following three
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approaches:

1. Simulated annealing (SA) approach: This approach optimizes placement

by SA techniques. Given an initial solution, the SA approach obtains solutions

by iteratively perturbing the current solution to generate a new solution. The

new solution is kept if it is better than the current solution. Otherwise, an

acceptance probability function is applied to decide whether to keep the new

solution or not. The probability function helps to escape from local optimum

solutions. The state-of-the-art academic FPGA CAD tool VPR [7, 8, 34, 37]

adapted SA techniques to be its optimization engine. Besides the basic SA

techniques, VPR also improved aspects including: (1) incremental net bound-

ing box updating to improve the placement runtime, (2) better temperature

updating so that the annealing process takes longer time when perturbations

produces more improvements while saving time for perturbations with less im-

provements. The SA-based method has been dominating for decades because

it can achieve very high-quality placement results. Nevertheless, it tends to

have long runtime in large circuits.

2. Partitioning-based approach: The partitioning-based approach is pro-

posed to achieve better speedups than the SA approach. Example works of

this approach are FPR [4] and PPFF [35], and PPFF is the classic of this

approach. PPFF applies the famous multilevel partitioner hMetis which re-

cursively partitions the design and places it hierarchically. At each hierarchical

level, PPFF employs an alignment cost in the objective function for delay and

congestion minimization. Finally, PPFF applies a low-temperature SA flow,

which is basically the VPR SA flow with smaller initial starting temperature

than VPR. Although the partitioning-based approach achieves much better



12

speedup, it lacks global view when performing the partitioning and therefore

can easily fall into local optimum solutions. As a result, the partitioning-based

approach usually suffers from some quality loss.

3. Analytical-based approach: In recent years, the analytical-based approach,

as a rising star in FPGA placement, shows rather fast and comparable or even

higher solution quality compared to the SA approach. The analytical-based

approach applies smooth functions to approximate objective functions and

solves the problem by efficient numerical methods. Example works of this

approach are as follows: QPF [50], CAPRI [20], StarPlace [49], HeAP [21],

and Lin et al. [32].

QPF applied the quadratic wirelength model widely used in VLSI placement

[31, 45]. The quadratic wirelength model computes the wirelength of a net

as the summation of the squared Euclidean distance over every two fan-outs

of the net. By solving the quadratic programming problem with the total

quadratic wirelength over all nets, QPF finds the locations of CLBs. Finally,

a low-temperature SA flow is applied.

CAPRI is based on metric geometry and graph embedding. CAPRI con-

structs the metric space graph according to routing architecture and embeds

the netlist graph into this metric space graph with bipartite graph matching.

This bipartite graph matching minimizes the distortion between the placement

of the netlist graph and the metric space graph. Finally, CAPRI applied a

legalization and a low-temperature SA flow to refine its solution.

StarPlace proposed a star+ model. This star+ model is modified from the

famous star model [40] and is near-linear and continuously differentiable. The

traditional star model wirelength for each net is estimated by summing up the
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Euclidean distance between each block connected to the net and the center-of-

gravity of the net. Different from the star model, this star+ model adds square

root to the wirelength which is claimed to better approximate the real routed

wirelength. StarPlace basically minimizes the sum over all net wirelength

using the successive over-relaxation (SOR) optimization solver.

Lin et al. applied non-linear optimization using log-sum-exponential (LSE)

as the wirelength approximation function and bell-shaped overlap function

as density function. This work applied a multilevel framework to accelerate

the placement algorithm and enhances the scalability. A partitioning-based

look-ahead legalization is introduced to have a better forecast of the solution.

Finally, Lin et al. refined its solution by a window-based bipartite matching

and a low-temperature SA.

Along with the dramatically increasing gate count of modern FPGAs, devel-

oping and applying analytical placement tools which are both fast and high-quality

have become inevitable trends in FPGA design. Therefore, in this thesis, we develop

our placer based on the analytical approach.

Most existing works on FPGA placement focus on CLB placement. Neverthe-

less, with the advances in process technology, IP cores have become indispensable

components in modern FPGAs. As a result, in heterogeneous FPGA placement,

the legal positions of blocks are further constrained by the type of blocks. The

distribution of the configurable locations for these IP cores, however, is limited and

scattered on FPGAs. For example, as shown in Figure 1.1, RAMs could only be

placed in Column two, and DSPs could only be placed in Column six. Figure 1.8 il-

lustrates heterogeneous FPGA placement. Notice that analytical-based approaches

use continuous and differentiable objective functions, which are against the discrete
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Figure 1.8: Heterogeneous FPGA placement.

nature of FPGAs. The analytical FPGA placement problem has thus reshaped.

Moreover, the increasing design complexity has made the FPGA placement prob-

lem even more challenging. Therefore, in this thesis, we propose a guiding function

for analytical FPGA placement to cope with the mismatch between discrete and

continuous features.

1.5 Related Work

Among many works on FPGA placement, LLP [48], HeAP, and VPR 7.0 [41]

are the only three works, to the best of our knowledge, that considered heterogeneous

resources.

LLP obtained an initial solution by applying a quadratic method and elim-

inating the overlap between modules by local spreading. Then, LLP applied low-

temperature SA for each type of the modules separately to get the final placement

solution.

HeAP adapted an ASIC academic placer, simPL [30], to FPGA placement.
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HeAP used a bound2bound net model to form a quadratic formulation, and used

legalization to spread the modules. To handle the heterogeneity, HeAP legalized

(spread) each type of the modules separately.

VPR, as the state-of-the-art academic open-source FPGA CAD tool, sup-

ports both heterogeneous packing and placement. The packing algorithm of VPR 7.0

extended and improved AAPack and [27], which considered complex blocks (such as

RAMs and DSPs) and general logic blocks. VPR 7.0 applied SA-based techniques

for its placement as well.

The size of FPGA design and the volume of FPGA chips grow dramatically.

The sizes of academic benchmarks used in HeAP and LLP, however, are much

smaller than the sizes of the latest commercial FPGAs. The largest circuit in HeAP

and LLP fills only 3% of the latest commercial FPGAs. Therefore, these benchmarks

might not demonstrate the scalability well. Meanwhile, VPR, though runs on a set

of modern large-scale FPGA benchmarks, could consume significant runtime in the

packing stage and get limited wirelength minimization in the placement stage. The

runtime of packing even dominates the runtime of place-and-route. Furthermore, a

large set of works on packing, such as VPack, T-VPack, iRAC, and MO-Pack, though

targeted on different cost metrics, apply the same procedure as VPR’s, which are

likely to encounter the same scalability problems.

1.6 Motivation

Placement is a very critical stage in the FPGA CAD flow as it could consider-

ably affect subsequent routing results. Meanwhile, packing is a key step to provide

a placement-friendly netlist. In the following, we summarize some key issues of

current academic packers and analytical placers:
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• Modern FPGA design uses IP cores considerably. The IP cores are usually

accompanied with datapath circuits. Current academic placers, however, may

not handle datapath blocks very well because most of them did not distinguish

the datapath blocks from random blocks (blocks without regular structures).

Furthermore, placers may fail to extract the datapath blocks if packers break

the structure or the regularity of the datapath blocks. These placers may place

the datapath blocks irregularly and thus lead to inferior results. Therefore, we

need to identify regular structures in the packing stage and place the datapath

blocks regularly and compactly for better performance, shorter wirelength, etc.

• The ultimate objective of packing is to provide a placement-friendly netlist

while optimizing the certain cost metrics. Hence, reducing the complexity of

the given netlist (i.e., minimizing the number of blocks, nets, and pins) is

always a key objective. Seed-based packing is extensively applied by academic

packers, and meanwhile, seed-based packing is the basis of the VPR packer,
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the most widely used packer by academic researchers for FPGA placement.

The VPR packer, however, tends to be over-packed as they mentioned in their

own work [41]. Take Figure 1.9 as an example. In Figure 1.9 (a), eight blocks

are packed in the same CLB and connected with the other two blocks. During

placement, if the two connected blocks happened to move to the opposite

direction, the CLB gains two opposite forces. Moving the CLB close to either

connected block increases the wirelength of nets connected with another block.

If we split the CLB into two CLBs (i.e., packing the upper four blocks in a

CLB and the lower four blocks in another CLB) as shown in Figure 1.9 (b),

it would be much easier for placers to determine the block positions with less

wirelength.

• There are three constraints in packing: (1) the cluster size N, (2) the maximum

distinct inputs I, and (3) the FF controlling signals. Most packing works have

considered the first two constraints. However, none of the packing works, to

the best of our knowledge, has addressed constraints on FF controlling signals.

This is against the reality of commercial FPGAs.

• Analytical-based methods use continuous and differentiable objective functions

to determine block positions. The configurable distribution of complex blocks,

however, is discrete and scattered. This difference may cause a significant

mismatch between the results obtained from the objective functions and the

final legalized results. Therefore, it is desirable to establish a function for

analytical placement to handle the discrete feature of heterogeneous FPGAs.

Consequently, to cope with these issues, we develop heterogeneous packing

and placement algorithms that can utilize the regular structures of datapth circuits

and the state-of-the-art techniques to achieve high quality and scalability.
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1.7 Our Contributions

In this thesis, we present efficient and effective packing and analytical place-

ment algorithms for large-scale heterogeneous FPGAs. Our main contributions are

summarized as follows:

• This is the first work, to the best of our knowledge, that introduces a datapath

extraction technique to handle the special features of heterogeneous FPGAs

in both packing and placement stages.

• We propose an efficient and effective packing algorithm for heterogeneous

FPGA design, which handle the different structures of blocks. The algorithm

consists of (1) identification packing, (2) datapath extraction and packing, and

(3) general logic packing with a V-shaped framework. Our packing provides

a more placement-friendly netlist than VPR’s, which gives great potential for

placers to achieve significant quality improvement. Experimental results show

that, compared to the state-of-the-art academic FPGA CAD tool VPR, our

algorithm leads to significant runtime speedups, while preserving good quality.

• This is the first work, to the best of our knowledge, that has addressed con-

straints on FF controlling signals. To cope with the constraints of the FF

controlling signals in commercial FPGAs and enhance the scalability, we pro-

pose a V-shaped framework. This framework is applicable to various cost

metrics in the seed-based and the affinity-based packing algorithms, and re-

duces the runtime of searching packing candidates by eliminating candidates

that violate the constraints.

• We propose a novel guiding function for analytical placement algorithms on

heterogeneous FPGAs to accurately model the discrete and scattered distribu-
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tion of complex blocks (such as RAMs and DSPs). Our analytical placement

algorithm consists of global placement and detailed placement. Four stages

in global placement are (1) multilevel mixed-size prototyping with complex-

block-alignment optimization which gives an approximate placement with the

optimized wirelength, (2) look-ahead legalization which provides a quick fore-

cast of the legalized results, (3) datapath placement which places the datapath

blocks regularly and compactly, and (4) general logic refinement which further

optimizes the total wirelength.

To show the scalability of our approach, the experiments were conducted

on a set of modern large-scale FPGA benchmarks, Titan23 benchmark suites [41].

The circuits of Titan23 are composed of LUTs, FFs, RAMs, DSPs, and macros of

arithmetic LUTs with carry chains. Experimental results show that our algorithms

are scalable on both packing and placement. Compared to VPR, our algorithms

can achieve a 199.80× speedup in the packing stage, and a 3.07× speedup with 6%

shorter HPWL in the placement stage. The proposed overall flow achieves 18.30 ×

speedup with 50% shorter HPWL compared to the VPR’s packing and placement

flow.

1.8 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 gives the pre-

liminaries. Chapter 3 presents our heterogeneous packing and analytical placement

algorithm. Chapter 4 shows the experimental results. Finally, Chapter 5 concludes

our work.



Chapter 2

Preliminaries

In this chapter, we first give our problem formulation of FPGA packing and place-

ment in Section 2.1. Then, since our placement algorithm is based on analytical

approaches, we will introduce the analytical placement framework in Section 2.2.

2.1 Problem Formulation

The FPGA packing problem is to cluster LUTs and FFs of a circuit into

groups to minimize the number of blocks, block interconnections, pins on the block

interconnections, and average inputs of the blocks such that the cluster size N, the

maximum distinct inputs I, and the limitations of FF controlling signals specified

in the given architecture are satisfied. The block interconnections are then regarded

as nets and the clustered groups are regarded as the CLBs, RAMs, and DSPs in the

following placement stage.

The heterogeneous FPGA placement problem can be formulated as a hyper-

graph H = (V,E) placement problem. The notation used in this problem is listed

as follows:

• V C , V R, and V M : a set of the CLBs, RAMs, and DSPs, respectively.

• V : a set of blocks. V is the union of the three disjoint sets V C , V R, and V M .

20
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• E: a set of nets. E ⊆ V × V .

• xi and yi: the center coordinate of block vi, where vi ∈ V .

• LC , LR, and LM : a set of the legal x coordinates of the CLBs, RAMs, and

DSPs in ascending order, respectively.

Given the sets of the legal x coordinates for each type of the blocks LC , LR,

and LM , we intend to determine the optimal positions (xi, yi) of each block vi such

that (1) the positions are legal (i.e., xi ∈ LC ⇐⇒ vi ∈ V C , xi ∈ LR ⇐⇒ vi ∈ V R,

and xi ∈ LM ⇐⇒ vi ∈ V M), and (2) there is no overlap among the blocks.

The heterogeneous FPGA placement problem is solved in two major stages: (1)

global placement with look-ahead legalization, and (2) detailed placement. Global

placement evenly distributes all the blocks and obtains the best position for each

block to minimize wirelength. Look-ahead legalization removes all the overlaps and

gives a non-overlapping forecast. Finally, detailed placement further refines the

solution. Figure 2.1 illustrates a typical analytical placement flow for FPGAs.

2.2 Analytical Placement

By dividing a placement region into a uniform non-overlapping bin grid, we

can formulate the global placement problem as a constrained minimization problem

as follows:

min W (x,y)
s.t. Db(x,y) ≤Mb, for each bin b,

(2.1)

where W (x,y) and Db(x,y) are the wirelength and density functions, respectively.

The density function is the total area of movable blocks in bin b, and Mb is the

maximum allowable area of the movable blocks in bin b. Thus, Mb = wbhb, where

wb and hb are the width and height of the bin, respectively. Notice that FPGA
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Figure 2.1: The FPGA placement flow.

placement does not have the same block density issue as that in ASIC placement

because every block is required to be placed on a unique position. During wirelength

minimization, movable blocks tend to concentrate at the center of the chip for smaller

wirelength. This may cause a large displacement of the blocks from their original

positions obtained by analytical optimization to the legal positions after legalization.

Therefore, the density function here acts as a spreading force to the blocks while

the blocks shrink to obtain smaller wirelength.

We can convert the above constrained minimization problem into an uncon-

strained optimization problem by introducing a penalty multiplier λ. As a result,

we solve a sequence of unconstrained nonlinear optimization problems of the form

min W (x,y) + λ
∑
b

max(Db(x,y)−Mb, 0)2 (2.2)

with increasing λ’s. This unconstrained problem, which is a nonlinear optimization
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problem, then can be solved by the conjugate gradient (CG) method. In a CG

solver, the solution of the current iteration is used as the initial solution for the next

iteration. This procedure repeats until the solution converges.

To apply the gradient search, the objective function must be smooth and

differentiable everywhere. Therefore, we need to find such wirelength and density

models to replace the above formulation. We introduce the differentiable wirelength

and density models in the following two subsections.

2.2.1 Wirelength Model

During placement, the wirelength W (x,y) is usually defined as the total

half-perimeter wirelength (HPWL). Because HPWL is not smooth and non-convex,

several works on smooth wirelength approximation functions have been proposed.

Both the log-sum-exp (LSE) wirelength model [42] and the weighted-average (WA)

wirelength model [25] are widely used in placement. Although LSE and WA give

good approximations to HPWL, HPWL estimation tends to be inaccurate in high-

degree nets. The number of high-degree nets in FPGA circuits, however, are usually

much more than that in ASIC circuits [14]. Therefore, we apply the weighted

stable LSE model proposed in [32] to further enhance the accuracy of the wirelength

approximation for FPGA placement. The weighted stable LSE model is defined as:

W (x,y) = γ
∑
e∈E

wf (e)(
Xmaxe

γ
+ ln

∑
vi∈e

exp(
xi −Xmaxe

γ
) +

ln
∑
vi∈e

exp(
Xmine − xi

γ
)− Xmine

γ
+

Ymaxe

γ
+ ln

∑
vi∈e

exp(
yi − Ymaxe

γ
) +

ln
∑
vi∈e

exp(
Ymine − yi

γ
)− Ymine

γ
), (2.3)
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where γ is a parameter to control the smoothness of the model, wf (e) stands for a

compensating factor for the high-degree nets, and Xmaxe , Xmine , Ymaxe , and Ymine are

constants that make sure the exponential terms will never overflow. For low-degree

nets, Equation (2.3) approaches the exact HPWL when γ is small.

2.2.2 Density Model

The potential function is expressed as:

Db(x,y) =
∑
v∈V

Px(b, v)Py(b, v), (2.4)

where Px(b, v) and Py(b, v) denote the overlaps between block v and bin b along the

x and y directions, respectively. Because the density function Db(x,y) is neither

smooth nor differentiable, we apply the bell-shaped overlap function px proposed

in [13] to replace the non-smooth function Px. The overlap function in the x direction

px(b, v) is defined as:

px(b, v) =


1− ad2x, 0 ≤ dx ≤ wv

2
+ wb

b(dx − wv

2
− 2wb)

2, wv

2
+ wb ≤ dx ≤ wv

2
+ 2wb

0, wv

2
+ 2wb ≤ dx,

(2.5)

where

a =
4

(wv + 2wb)(wv + 4wb)

b =
2

wb(wv + 4wb)
,

wb is the bin width, wv is the block width, and dx is the center-to-center distance of

the block v and the bin b in the x direction. The smoothed overlap function py(b, v)

in the y direction can be defined in a similar way. Figure 2.2 shows the original and

the smoothed overlap functions.
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Figure 2.2: An illustration of the bell-shaped function.

Therefore, we obtain a smoothed function D̂b to replace the non-smooth

function Db(x,y). D̂b is defined as follows:

D̂b(x,y) =
∑
v∈V

cvpx(b, v)py(b, v), (2.6)

where cv is a normalization factor that makes the total smoothed density of a block

equal its area.

Finally, to enhance the scalability of our FPGA placement algorithm, we

apply the V-cycle multilevel framework proposed in [32] in the global placement

stage.



Chapter 3

The Heterogeneous Packing and Placement

Algorithms

Packing and placement are two of the most crucial stages in the FPGA design

flow because packing can minimize the problem size of placement and preserve the

regularity of datapath circuits and placement considerably affects the subsequent

routing results. To achieve better placement quality in large-scale heterogeneous

FPGA design, we propose two algorithms for packing and analytical placement,

respectively. In this chapter, we first give an overview of our proposed algorithms

in 3.1. Then, we present our heterogeneous packing algorithm in 3.2. Finally, we

introduce our wirelength-driven analytical placement algorithm in 3.3.

3.1 Algorithm Overview

Figure 3.1 shows the overall flow of the proposed algorithms. Our algorithms

can be divided into heterogeneous packing and heterogeneous placement. Given

device architecture, a technology mapped netlist, and I/O positions, our heteroge-

neous packing algorithm packs blocks based on different block structures to provide

a placement-friendly netlist. In our heterogeneous packing algorithm, three stages

are proposed in response to handle the different structures of complex blocks, dat-

apath blocks, and general logic blocks. The three stages are listed as follows: (1)

identification packing for the complex blocks, (2) a datapath extraction and packing,

26
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Figure 3.1: The overall flow of the proposed algorithms.
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and (3) general logic packing under a V-shaped framework.

After heterogeneous packing, heterogeneous placement distributes the blocks

evenly and minimizes the total wirelength in global placement and refines the place-

ment solutions in detailed placement. To achieve scalability and high quality, our

analytical placement algorithm applies effective nonlinear optimization techniques

and utilizes the regularity of the datapaths to determine the block positions. There

are four stages in our global placement: (1) multilevel mixed-size prototyping with

complex-block-alignment optimization which gives an approximate placement with

the optimized wirelength, (2) look-ahead legalization which provides a quick forecast

of the legalized placement results, (3) datapath placement which fixes RAMs and

DSPs and then places the datapath blocks regularly and compactly, and (4) general

logic refinement which places the general logic blocks and optimizes the total wire-

length. Our detailed placement algorithm further refines the placement solutions

in both CLB and BLE levels to compensate the insufficient packing and placement

qualities.

3.2 Heterogeneous Packing

As mentioned in Chapter 1, the structures of complex blocks and datapath

blocks are different from general logic blocks and thus should be extracted and

packed separately. In our heterogeneous packing algorithm, identification packing

first picks out the complex blocks and packs them together. The datapath blocks

are then extracted from the forward and backward stages of the complex blocks.

Finally, the general logic blocks are packed to reduce the area and the problem size

of place-and-route.
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3.2.1 Identification Packing

To enhance the flexibility of mapping blocks on different resources or devices

of FPGAs, unencrypted IP cores are declared as several unit blocks in the netlist

generated from the technology mapping stage. For example, as shown in Figure 3.2,

a RAM block with depth 8K and width 5 could be instantiated on five M9Ks or

one M144K of the Altera Stratix IV family [1]. Therefore, we need to identify and

reconstruct the IP cores into complex blocks. The way to identify a RAM block is to

seek memory blocks with the same address bits and the same controlling signals. The

way to group multi-bit adders is to follow carry-in and carry-out signals. Similarly,

we can group shift registers by shift-in and shift-out signals. For RAM blocks, we

need to further determine their configurations (e.g., M9K or M144K). Basically, we

determine the configurations of the RAM blocks based on their area. In Figure 3.2,

the RAM block mapped into five M9Ks takes five unit areas while the RAM block

mapped into a M144K takes eight unit areas. Therefore, we map the RAM block

into five M9Ks. Nevertheless, the ratio of instantiated M9Ks and M144Ks should

also be taken into consideration. Figures 3.3 (a) and (b) show a comparison that if

all the RAM blocks in the circuits are instantiated into M9Ks, the placement region
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(a) (b)

Figure 3.3: Comparison of the placement results. (a) Placement with both M9K
and M144K blocks. (b) Placement with only M9K blocks.

increases due to the limited and scattered memory resources.

3.2.2 Datapath Extraction and Packing

To achieve physically compact placement results in FPGAs, we extract and

preserve the regularity of the datapaths during packing. We apply a regularity

extraction similar to that in [15]. Given an initial reference stage that contains

blocks of the same type, our regularity extraction algorithm sequentially groups

other blocks to grow functional stages of a datapath. Different from [15] which uses

blocks connected by high-degree nets as the initial reference stages, in this thesis,

we use the packed complex blocks in Section 3.2.1 as our initial reference stages.

To grow the functional stages, we perform forward and backward searches.

Figure 3.4 illustrates the flow of our datapath extraction algorithm. In each datapath

extraction, an initial reference stage is picked out and set as a reference stage.

Here we first define an attribute code for each net as a sequence of types of all

the blocks connected to the net, as shown in Figure 3.5. A more detailed and
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Figure 3.4: The flow of the proposed datapath extraction algorithm.
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longer attribute code represents a stricter regularity identification. The regularity

identification is to identify nets with the identical attribute code. For each block

in the reference stage, we generate the attribute codes for all its fan-in nets in the

beginning of the forward search. Then, we group blocks into the same functional

stage if the blocks drive nets with the identical attribute code. To relax the regularity

identification, we can also pick nets with partially matched attribute codes. Once a

new functional stage is identified, the functional stage is set to be the new reference

stage, and we continue the forward search until there is no more new functional stage.

The backward search performs the same operations (regularity identification and

grouping functional stages) on all the output nets of the reference stage. Figure 3.6

shows an example of identified functional stages in a datapath after a datapath

extraction and packing.

3.2.3 General Logic Packing

To reduce the problem size of the placement stage and provide a placement-

friendly netlist, our general logic packing algorithm minimizes the number of blocks,

block interconnections, pins on the block interconnections, and average inputs of

the blocks such that the cluster size N, the maximum distinct inputs I, and the

limitations of FF controlling signals specified in the given architecture are satisfied.

There are two major steps in our general logic packing algorithm: calculating

affinity and determining the packing order. We will detail them in the following.

3.2.3.1 Affinity Calculation

The affinity of two clusters, Si and Sj, is defined as follows:

A(Si, Sj) = |NSi
∩NSj

|+ T (NSi
∩NSj

), (3.1)
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where NSi
denotes the net set of the cluster Si and T (N) denotes the number of

two-pin nets in the given net set N . The first term is the common nets of Si and

Sj, and it also represents the amount of pin elimination. Meanwhile, the second

term gives the common two-pin nets of Si and Sj, and it also indicates the amount

of interconnection elimination after packing Si and Sj together. Every cluster Si

records the best affinity A(Si, Sj) (largest value) and the corresponding candidate

Sj where Sj is connected with Si and merging Si and Sj will not violate the packing

constraints. For example, a cluster S0 is connected with clusters S1, S2, and S3.

After calculating the affinities A(S0, S1) = 2, A(S0, S2) = 1, and A(S0, S3) = 4, S0

records its best affinity 4 and best candidate S3.

3.2.3.2 Packing Order

Because the affinity-based approach gives great pin and interconnection elim-

ination than the seed-based approach, we first apply best choice clustering for LUTs

and FFs. The best choice clustering, however, fails to further cluster when the sizes

of most clusters are larger than half capacity. Therefore, we present a hybrid al-

gorithm that applies best choice clustering with a capacity threshold to trigger a

successive packing procedure.

At the beginning of our general logic packing algorithm, the best affinity and

the best candidate of each cluster are calculated and recorded. The best choice clus-

tering algorithm chooses a cluster with the largest best affinity among all clusters,

and packs the cluster with its best candidate. Then, the best affinities and best

candidates of clusters connected to the packed cluster are updated. If the packed

cluster exceed the half cluster size, a successive packing procedure is triggered to

merge the packed cluster and its updated best candidate recursively until there is

no more candidate. Otherwise, the best choice clustering algorithm repeats to select
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Clrn a Clrn b Clrn c Clrn d

Clk 1 Clk 2 Clk 3 Clk 1 Clk 3 Clk 4

Clrn b Clrn d

Clk 2 Clk 4

…

… …

Classify blocks into groups based on their controlling signals 

Push unpacked blocks to upper level and try further packing

Figure 3.7: The flow of the proposed V-shaped framework.

a new cluster with the largest best affinity and then pack with its best candidate.

The general logic packing is done while no clusters can be further packed together.

3.2.4 V-Shaped Framework

The runtime of the affinity and legality calculation mentioned in 3.2.3.1 has

dominated the runtime of general logic packing. When considering miscellaneous

FF controlling signal constraints in each legality check, the runtime of the affinity

and legality calculation may significantly raise. Therefore, we propose a V-shaped

framework to reduce the solution space of the affinity calculation and speed up

the packing algorithm while considering the FF controlling signal constraints. This

framework is applicable to various cost metrics in the seed-based and the affinity-

based packing.

We describe the V-shaped framework in the following. First, sort the given

controlling signal constraints by their critical levels. Then, classify all general logic

blocks from the most critical constraint to the least critical constraint, level-by-level.
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We then perform the general logic packing mentioned in Section 3.2.3 to blocks in

the small groups in the bottom level. To apply this framework on the other seed-

based or the affinity-based packing, we simply use them to replace the general logic

packing. Blocks in a small group in the bottom level tend to be more related than

blocks in other groups because the blocks share the common controlling signals.

Those blocks which are not related or failed to be packed in the bottom level would

be push to the upper level, and thus to have a second chance to be packed. Figure 3.7

gives an example. Given controlling signal constraints that FFs within a CLB could

have (1) one distinct sload, (2) two distinct clrns, and (3) three distinct clks, all the

blocks are first separated into groups based on their sload signals. Next, blocks with

the same sload are divided into groups by their clrn signals, and then clk signals.

Blocks in the same group are packed into clusters, and clusters which are under the

cluster size N and the maximum input pins I would be pushed back to the upper

level to seek for further packing. Notice that only one sload is tolerated with a CLB.

As a result, there is no need to pack between groups in the top level.

3.3 Heterogeneous Analytical Placement

To cope with the increasing design complexity of heterogeneous FPGA cir-

cuits, we apply a heterogeneous analytical placement algorithm for better scalability.

Our heterogeneous analytical placement consists of two stages: global placement and

detailed placement. Our global placement algorithm exploits regularity of the data-

paths and effective nonlinear optimization techniques to obtain a physically compact

placement result in shorter runtime. Our global placement algorithm consists of four

stages: (1) multilevel mixed-size prototyping with complex-block-alignment opti-

mization which gives an approximate placement result with optimized wirelength,

(2) look-ahead legalization which provides a quick forecast of the legalized placement
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solutions, (3) datapath placement which fixes RAMs and DSPs and then places the

datapath blocks regularly and compactly, and (4) general logic refinement which

further optimizes the total wirelength. Our detailed placement algorithm refines

the placement solutions in both CLB and BLE levels to compensate the insufficient

packing and placement qualities.

3.3.1 Multilevel Mixed-Size Prototyping

At the beginning of our heterogeneous analytical placement algorithm, mul-

tilevel mixed-size prototyping efficiently gives an approximate placement result with

optimized wirelength by solving the nonlinear optimization problems. We apply the

multilevel analytical technique addressed in Section 2.2.

Because the legal locations of RAMs and DSPs are discrete and scattered on

FPGAs, there exists a gap between the continuous solution of analytical placement

and the legalized solution. As shown in Figure 3.8 (a), all blocks are evenly dis-

tributed while minimizing wirelength. In Figure 3.8 (b), the blocks are moved to the

closest legal positions. It is obvious that a significant mismatch is generated during

legalization. The objective to place the blocks in global placement is not accurate

enough. Therefore, we propose a complex-block-alignment function to guide RAMs

and DSPs in the multilevel mixed-size prototyping stage.

Our complex-block-alignment function G(x) is proposed to minimize the gap

between global placement and legalization. G(x) is defined as follows:

G(x) =
∑

vi∈V R

min
xj∈LR

|xi − xj|+
∑

vi∈V M

min
xj∈LM

|xi − xj|, (3.2)

where xi is the x coordinate of vi and xj is the x coordinate of the jth legal column

from the left boundary. The rest of the notation is predefined in Section 2.1. The

first summation is to sum up the cost of the RAMs vi in V R while the second
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I/O block DSP

CLB RAM

(a) (b)

Figure 3.8: The mismatch between global placement and legalization. (a) The result
of global placement. (b) The result after legalization.
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Cost of complex-block-alignment function

Smoothed cost

Figure 3.9: An illustration of our guiding function for DSPs.
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summation is for the DSPs. The min term of the absolute value, which is the cost

of a block, indicates the distance between a block vi and its closest legal column.

To minimize G(x) is to minimize the distance between the best positions and the

legal positions of the RAMs and DSPs. Figure 3.9 illustrates a curve of the cost

function for the DSPs. The red, straight line represents the cost for the DSPs. The

cost of a DSP block is minimized to 0 when the DSP block is placed on a legal

position. On the contrary, if the DSP block moves away from the legal position, the

cost increases. The cost decreases again when the DSP block approaches the next

legal position.

Therefore, our problem here can be formulated as a constrained optimization

problem as follows:

min W (x,y) + µG(x)
s.t. Db(x,y) ≤Mb, for each bin b,

(3.3)

where µ is the weight for the complex-block-alignment function. Notice that G(x) is

neither smooth nor differentiable, and thus the relaxation of Equation (3.3) cannot

be solved by the CG method. Therefore, we propose a smooth and differentiable

complex-block-alignment function Ĝ(x) based on the quadratic sigmoid function [26]

p(t) as follows:

p(t) =


1, 0.5 ≤ αt
1− 2(αt− 0.5)2, 0 ≤ αt ≤ 0.5
2(αt+ 0.5)2, −0.5 ≤ αt ≤ 0
0, αt ≤ −0.5,

(3.4)

where α is the parameter for controlling the smoothness. Compared with the bell-

shaped function, the sigmoid function gives a more accurate approximation to the

original alignment function. Besides, by adjusting the parameter α, the smoothness

can be easily controlled. In this thesis, α is set to 1.
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Ĝ(x) is then formulated as follows:

Ĝ(x) =
∑

vi∈V R

hj · p(
dj
hj
− 0.5) +

∑
vi∈V M

hj · p(
dj
hj
− 0.5), (3.5)

where
hj =

xj+1−xj

2
,

dj =

{
xi − xj, xi <

xj+1+xj

2

xj+1 − xi, xi ≥ xj+1+xj

2
,

(3.6)

xj and xj+1 are two successive elements in the ascending-ordered set L (L is either LR

or LM), and xj ≤ xi < xj+1 is satisfied. The boundary conditions for x0 and x|L|+1

are set as the left and the right boundaries of placement region, respectively. Ĝ(x) is

an approximation of G(x). The smoothed cost function is represented by the green

curve in Figure 3.9. Therefore, we can solve the Equation (3.3) with the smoothed

complex-block-alignment function by transforming it into an unconstrained problem

as follows:

min Ŵ (x,y) + µĜ(x) + λ
∑
b

max(D̂b(x,y)−Mb, 0)2. (3.7)

By solving the Equation (3.7), we can obtain a placement prototyping with

less block displacement between global placement and legalization.

3.3.2 Look-Ahead Legalization

Look-ahead legalization gives a quick forecast of legalized placement, which

could achieve more accurate wirelength estimation and speed up the convergence

with improved quality of placement solutions. In FPGA placement, blocks are

mapped onto a two-dimensional array of grids. The prefabricated location of com-

plex blocks such as RAMs and DSPs are distributed in a few columns or rows, and

two legal columns/rows may have a great distance. Blocks after global placement,

however, are not guaranteed to locate in such positions. This in turn may cause sig-

nificant displacement and generate large differences on wirelength estimation. Thus,
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we apply a fast legalization algorithm during each iteration in the finest level of the

global placement stage.

To quickly find suitable positions for RAMs and DSPs, we propose a two-

way relocation method for each dimension as our look-ahead legalization algorithm.

In column-based FPGAs, blocks are first gathered to the nearest legal column.

Next, we calculate the available capacity of each column. The available capacity

of a column is defined as the difference between the total area of blocks on the

column and the total area of the column. A negative available capacity of a column

means that there are too many blocks on the column. If there exists negative

available capacity, we then calculate the accumulation of the available capacity in

two directions from the left most column to the right most column and from the

right most to the left most. By doing so, we could know trends of loose regions.

Then, we push the blocks in the overcrowded column to the loose column. After

allocate all the complex blocks to each column, the x coordinate of the blocks is

determined. Then, we apply the two-way relocation method again to each column

and determine the y coordinate of the blocks.

We legalize the general logic blocks in FPGAs with a fast greedy method,

called Tetris [24]. This approach sorts the blocks according to their x coordinates

first, then legalizes each block at a time from left to right until all the blocks are

placed. For a given block, the legalization is performed by scanning through the

rows which are near the block and selecting the left-most vacant integer coordinates

in the rows. For these vacant integer coordinates, the block is then legalized to the

nearest integer coordinate from its original position. Alternatively, the general logic

blocks could be legalized from right to left, up to down or down to up for flexibility.
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3.3.3 Datapath Placement

Datapath placement is to place the datapath blocks regularly around complex

blocks. After mixed-size prototyping and look-ahead legalization, blocks are placed

at a legal position. The displacement during legalization, however, may destroy the

regularity of the datapath blocks, as shown in Figure 3.10(a). To alleviate this effect,

we place the datapath blocks stage-by-stage in the vertical direction and then bit-

by-bit in the horizontal direction. By aligning blocks in the same functional stage in

both the horizontal and vertical directions, we could further improve the wirelength

and routability. Figure 3.10(b) shows a placement result after datapath placement.

Besides, because blocks in some functional stages occupy only half of CLBs, we could

further merge these blocks and get a more compact result and shorter wirelength, as

shown in Figure 3.10(c). After all the positions of the complex blocks and datapath

blocks are determined, we fix them to guide the remaining general logic blocks in

the following stage.

3.3.4 General Logic Refinement

In the general logic refinement stage, all the complex blocks and datapath

blocks are already fixed. These fixed blocks could become a guideline for the remain-

ing movable general logic blocks to further improve placement solutions. Because

the positions of the complex blocks are already determined, the smoothed complex-

block-alignment function Ĝ(x) can be released from Equation (3.7). Therefore, the

problem can be now transformed to Equation (2.2), which can also be solved by a

CG solver. After solving this problem, we can refine the positions of the general

logic blocks.
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(a) (b)

(c)

Figure 3.10: An example of conducting a more regular and compact datapath place-
ment. (a) Placement without considering regularity. (b) Placement considering
regularity. (c) Placement considering regularity and further refinement.
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3.3.5 Detailed Placement

After global placement, detailed placement techniques are often used to

achieve better placement solutions. Cell swapping and cell matching [13] are two

of the most popular and effective detailed placement techniques. Both algorithms

first set a user-defined region as a window and relocate cells inside the window.

Cell matching models the cell relocation problem into a bipartite matching problem

while cell swapping uses a branch-and-bound method to determine cell locations.

We iteratively apply these two algorithms until the placement solutions can not be

further improved.

Besides, some unrelated BLEs are clustered together to minimize the number

of CLBs in the packing stage. This unrelated packing, on the contrary, may increase

wirelength. Thus, in addition to relocate the CLBs using the above two algorithms,

we also move BLEs between different CLBs in the detailed placement stage to make

up the inferior clustering during the packing stage.



Chapter 4

Experimental Results

To evaluate the scalability of the proposed algorithms, we conducted experiments on

the Titan23 benchmark suites. Table 4.1 shows the statistics of the benchmarks. We

implement our algorithms in C++ programming language, and all the experiments

were performed on a Linux workstation with Intel Xeon 2.93 GHz CPU and 48

GB memory. We compared the quality and runtime of our packing and placement

results with the latest version of the VPR packer and placer (VPR 7.0) [41]. VPR

is chosen because it has become a golden state-of-the-art benchmark for comparison

on FPGA packing and placement, and is the only existing work that has run on

modern large-scale circuits.

We chose to follow the architecture of the commercial device family, Altera’s

Stratix IV [1]. The device aspect ratio and average spacing between blocks was

determined according to the EP4SE820 device. Because the VPR packer performs

very poorly in the detailed architecture of Stratix IV, for fair comparisons, we use

a simplified architecture of Stratix IV to fit the VPR packer. All the placers were

executed on this simplified FPGA architecture and the same pre-specified locations

of input/output blocks. We set VPR to bounding box mode.

Table 4.2 lists the packing results and runtime of the VPR packer and our

packer. N/A states non-available. The normalized average does not take the non-

46
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available case into calculation. The proposed heterogeneous packing algorithm

achieves a 199.80× speedup on average compared to VPR’s. In the largest cir-

cuit of the benchmarks, the runtime of the VPR packer exceeded 48 hours while

our packing ran within two minutes. Besides, although VPR achieves high packing

density, packing density is not always directly proportional to the quality of pack-

ing [41]. In Table 4.3, we list the numbers of CLBs and the average input and output

pins of a CLB after packing. Notice that although our packer have more CLBs than

the VPR packer, our packer have much less average input and output pins. To see

the effectiveness of our packer, we use both packing results for the same placer,

NTUFPGA. Table 4.4 shows that our packer achieves 41% shorter wirelength, that

is, our packer provides much better initial netlist to placers. This again shows that

high packing density is not always directly proportional to the quality of packing.

The ratio of the placement runtime for both netlist is proportional to the ratio of

the total blocks.

We further examined the quality of our placer by using the same packing

netlist generated by VPR 7.0. Because the VPR router is not scalable enough,

routing failed on most of the large circuits in the benchmarks. Therefore, we report

the total HPWL after placement for both placers in stead of routed wirelength.

Table 4.5 shows that compared to the VPR placer, our placer achieves a 3.07×

speedup with 6% shorter wirelength. Finally, the total HPWL and runtime of

the overall flow (packing and placement) are listed in Table 4.6. The proposed

heterogeneous packing and placement algorithms achieve a 18.30× speedup with

50% shorter wirelength compared to the VPR’s packing and placement flow.

Figure 4.1, Figure 4.2, and Figure 4.3 show the results of the circuit mes noc

obtained after our global placement, legalization, and detailed placement. Figure 4.4

gives the placement result of the circuit mes noc obtained from VPR. The blue
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Table 4.3: Comparison of block number and average nets of a block after packing.

Circuits
VPR 7.0 Ours

# CLBs Average Nets/CLB # CLBs Average Nets/CLB
bitcoin miner N/A N/A 86758 24.29
sparcT1 chip2 32878 38.77 45370 12.89

LU230 15810 48.46 37057 23.12
mes noc 24167 39.48 26785 21.04

gsm switch 19482 25.88 35876 13.10
denoise 16060 54.55 22378 42.22

sparcT2 core 12954 53.93 18218 16.06
cholesky bdti 9202 34.54 17915 19.73

stap qrd 8562 32.23 15539 19.92
openCV 6587 51.72 15142 24.54

dart 6793 46.41 11482 18.34
bitonic mesh 6516 56.36 14688 27.57
segmentation 7974 56.23 10683 43.91
SLAM spheric 5868 55.52 8611 40.25

des90 3698 56.93 6533 35.20
cholesky mc 3894 33.73 6263 22.68
stereo vision 2840 41.43 5755 22.51
sparcT1 core 3714 45.86 7944 10.56

neuron 3072 34.01 7017 15.76
Average 0.59 2.10 1.00 1.00

N/A states that packing exceeded 48 hours run time.

Table 4.4: Comparison of packing quality using the same placer, NTUFPGA.
Packer VPR Packer Our Packer
Placer NTUFPGA

HPWL CPU HPWL CPU
Average 1.41 0.66 1.00 1.00

Table 4.5: Comparison of placement quality using the same packer, VPR 7.0.
Packer VPR 7.0
Placer VPR Placer Our Placer

HPWL CPU HPWL CPU
Average 1.06 3.07 1.00 1.00
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Table 4.6: Comparison of packing and placement results.

Circuit
VPR 7.0 Ours

HPWL runtime (sec) HPWL runtime (sec)
sparcT1 chip2 5730770 26525 5233292 5587

LU230 19018000 33064 10641276 1427
mes noc 4784260 25957 3797526 954

gsm switch 4386890 16322 4141500 1276
denoise 2324530 5345 2133100 520

sparcT2 core 2780370 7044 3493585 562
cholesky bdti 3989500 11246 2313692 444

stap qrd 2090230 5044 1845716 516
openCV 5198820 6959 1751970 244

dart 1747150 3899 1162140 187
bitonic mesh 4640700 7654 2860898 270
segmentation 1308880 2879 1124166 205
SLAM spheric 1736060 2372 1616844 183

des90 2350420 3503 1513372 115
cholesky mc 1167250 1703 887830 107
stereo vision 798480 1018 387684 58
sparcT1 core 635008 1310 728458 125

neuron 1359090 2776 476198 114
Average 1.50 18.30 1.00 1.00
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Figure 4.1: A result of our global placement.

blocks are CLBs and the pink blocks are RAMs and DSPs.
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Figure 4.2: A result of our legalization.

Figure 4.3: A result of our detailed placement.



54

Figure 4.4: A result of VPR placement.



Chapter 5

Conclusions and Future Work

This paper has presented efficient and effective packing and analytical placement

algorithms for large-scale heterogeneous FPGA design.

Our packing algorithm is composed of three stages to handle different struc-

tures of heterogeneous components and datapath blocks. Our packing provides a

more placement-friendly netlist than VPR’s, which gives a great potential for placers

to achieve significant quality improvement. A V-shaped framework is proposed to

enhance the scalability while considering more exact design constraints than exist-

ing works. Moreover, our wirelength-driven analytical placement algorithm applies

effective nonlinear optimization techniques and utilizes the regularity of the datap-

aths to achieve scalability and high quality. A complex-block-alignment function is

proposed to better handle the heterogeneity, and a multilevel framework is applied

to further enhance the scalability of our placement algorithm.

We compared our packer and placer with the state-of-the-art FPGA CAD

tool, VPR. The experiments were conducted on a set of modern large-scale FPGA

benchmarks, Titan23 benchmark suites. The experimental results have shown that

our approach achieves a 199.80× speedup, compared to the VPR’s latest packing

flow (VPR 7.0). Meanwhile, our placer achieves a 3.07× speedup with 6% shorter

wirelength, compared to the VPR’s latest placement flow. Furthermore, the overall
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flow (packing and placement) achieves a 18.30× speedup with 6% shorter wirelength,

compared to the VPR’s latest packing and placement flow.

There are three future research directions: the analytical FPGA placement

problem with segmented-length routing architecture, the analytical FPGA placement

problem considering timing delay, and FPGA routing. We detail the future research

directions below.

First of all, the pre-fabricated programmable routing architecture of modern

FPGAs is segmented and there are several types of length. Hence, the way to

predict routing and estimate routability in FPGA placement could be very different

from that in ASIC placement. Furthermore, the current wirelength model might

not be accurate enough for the routing estimation. As a result, how to utilize the

various routing resources effectively and combine the estimation with an analytical

placement framework have become a new challenge.

Secondly, in addition to wirelength and routability, timing is another critical

issue in FPGA placement. Timing has been well explored in ASIC placement.

The timing issue in FPGA design, however, still has lots more to work on because

multiple routing resources could lead to different delays, which makes timing harder

to predict.

Finally is the FPGA routing. Because the existing open-source FPGA router

demonstrated poor scalability when facing large-scale circuits, FPGA routing is also

a research direction on the scalability issue. Furthermore, understanding the FPGA

routing could also help to build a quick routing forecast during placement.
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