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中文摘要  

本研究的目的在於利用二維特徵法從大腦磁振造影影像中擷取資訊。在現今大數

據的時代裡，我們已經有足夠的技術和資源去收集分析世界上所有醫院及研究單

位裡的大腦影像；且在多方努力之下，在不久的將來或將成為事實。因此，迫切

需要簡單而有效的方法，可以從各種主要的大腦磁振造影影像中擷取資訊，應用

於機器學習的演算法上。 

本研究利用二維特徵法從三種重要的大腦磁振造影影像中擷取資訊。首先，我們

利用區域二維特徵描述大腦磁振造影解剖影像的形態，並將此特徵用來訓練支持

向量機模型，使之能夠利用大腦解剖影像分類注意力不足過動症與正常的孩童；

結果顯示，利用此法可以達到 0.6995 的正確率。再者，傳統上比較解剖影像的特

徵時，必須先將原始大腦影像轉換至標準化的大腦圖譜上，在相同的圖譜座標系

中方能進行比較；在此，區域二維特徵可以直接從未轉換的原始影像上擷取資訊，

避免掉一些不必要的轉換和可能引入的雜訊；我們將此法應用在大腦磁振造影解

剖影像及擴散磁振造影影像上，並藉此訓練可依大腦結構預測受測者年齡的支持

向量機模型；此模型平均絕對誤差最佳可至 5.62 歲。最後，我們試著把相同的概

念套用在功能性磁振造影上，利用自行設計的二維特徵法，藉以描述靜息狀態功

能性磁振造影所產生的資料，並據以從正常人中偵測注意力不足過動症與精神分

裂症之患者；依此法所學習的模型，其正確率較直接使用傳統分析方法為高，在

區分精神分裂症患者與正常控制組上可達 0.78，在區分注意力不足過動症患者與

正常控制組上可達 0.628。 

實驗結果顯示，無論是解剖影像、擴散磁振造影影像、或功能性磁振造影影像，

皆可使用二維特徵法擷取其中的資訊。由於其簡單且有效的特性，此法相當適合

用於未來大規模的大腦科學相關之實驗及研究。 
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ABSTRACT 

This study aimed to build binary methods to extract efficient information from structural 

brain magnetic resonance (MR) images and functional brain activities. In the era of big 

data, to collect and analyze all the brain images in hospitals all over the world is 

technologically possible and might be achieved in the near future. Therefore, simple and 

effective methods for machine learning algorithms to extract sufficient information from 

various brain MR images to build classification or regression models based on numerous 

brain images are critical. 

In this study, we used binary methods to extract information from three different types of 

brain MR images. First, we implemented local binary patterns (LBP) to describe 

anatomical brain morphology and used those patterns to train support vector machine 

models to classify the attention deficit-hyperactivity disorder (ADHD) subjects from 

normal ones. As a result, the best accuracy we achieved was 0.6995. Second, different 

from the traditional methods, which all brain images should be normalized to a standard 

template to be compared in same atlas coordinates, the LBP was used to extract 

information from unnormalized brain anatomical images and diffusion tensor imaging. 

We then constructed age estimation models by that extracted information to show the 

discriminative power of this approach. The best test result mean absolute error of that 

model equals 5.62 years. Third, following the same line of thought, a binary mapping 

method was designed and introduced to detect schizophrenia and ADHD patients using 

resting-state functional MRI data. Compared with traditional cross-correlation  

network analysis, proposed models exhibits better performance in detecting 
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schizophrenia and ADHD. Based on our results, the best test accuracy of discriminating 

schizophrenia from normal subjects was 0.78. The best test accuracy or classifying 

ADHD from control subjects was 0.628. 

Results showed those simple binary methods are useful for extract information from 

structural and functional brain MR images. Those methods are good candidates to be used 

in large-scale brain science or medicine related researches. 

Key words: MRI, functional MRI, machine learning, big data, local binary pattern, brain 

age estimation, pattern recognition, attention deficit hyperactivity disorder, ADHD, 

schizophrenia 
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Chapter 1  

 

Introduction 

 

 

 

"Simple models and a lot of data trump more elaborate models based on less data." 

- Peter Norvig,  

The unreasonable effectiveness of data [2]. 

1.1 Background 

To reveal how the brain works is long to be a great unsolved challenge. The last three 
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decades have seen growing importance placed on research in neuroscience [3]. Mental 

disorders are the most important topics in those researches because they are becoming 

the major threats to our health, and could be the keys to uncover brain functions. 

Nevertheless, the human brain built by more than 100 billion neurons might be the most 

complex organ in our body. It is hard to use the change of specific brain region to 

explain the brain developments or detect many mental disorders. Combining the 

information from all brain regions might provide another insight to identify the brain 

maturation, aging, or disorders. In this study, we tried to extract information from brain 

magnetic resonance (MR) images and construct useful classification and regression 

models by structural or functional information from all brain regions. 

1.1.1 Brain MR Images 

Magnetic resonance imaging (MRI) is a medical imaging technique used to 

noninvasively investigate the anatomy or function of the human brains and bodies. With 

strong magnetic fields and radio waves, MRI scanners can build the anatomical details 

of the body. Because of the ability of noninvasive imaging and producing high 

resolution results, MRI is widely used in hospitals for medical diagnosis. Besides, MRI 

can also be used to explore the brain blood oxygen level dependent (BOLD) signal. 

Therefore, one can investigate brain functional activity using a series of MRI images, 

which is known as functional MRI (fMRI). FMRI is very helpful in research 

organizations for analyzing the human brain functions. 

In recent decades, brain MR imaging has become an important tool in neurology and 
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clinical neuroscience [4, 5]. There are approximately 25,000 MR scanners in use 

worldwide1. Based on data from the Organization for Economic Co-operation and 

Development (OECD), as shown in Figure 1-1, either the number of MR scanners 

installed or the number of MR scans performed increased rapidly in past two decades. 

Meanwhile, the MRI technologies are getting faster, better SNR, and higher resolution 

every day [4]. Soon the cheaper, speedier, and more detailed brain images full of 

important neurological information would be popular and convenient to get. 

 

Figure 1‐1 Growth patterns in the use of MRI in selected OECD countries.   

A reprint of the Figure 2 of [6]. 

                                                 

1 http://www.magnetic-resonance.org/MagRes%20Chapters/21_02.htm 
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There are three main types of brain MR images to provide very different information of 

the brain, that is, the structural brain images, the diffusion tensor imaging (DTI), and 

functional MRI. 

Structural MRI 

Structural MRI, especially the T1-weighted images (T1WI), provides the details of 

brain structural information, including the shape, size, and the integrity of gray and 

white matter. In many brain morphometric studies, the volume, shape, or thickness of 

gray matter structure have been measured to provide indications of diseases or mental 

disorders [7]. 

Diffusion Tensor Imaging (DTI) 

Diffusion tensor imaging (DTI) is the MRI technique that measures the restricted 

diffusion of water molecules in tissue and offers directional information of neural tracts 

in the brain [8]. DTI can provide various information of brain microstructure and has 

proven its value in both brain research as well as clinical applications [9, 10]. With 

yielding more information rather than structural brain MR images, DTI is also an 

important type of brain MR images in clinical used. 
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Resting-State Functional MRI (rs-fMRI) 

In recent years, the resting-state functional magnetic resonance imaging (rs-fMRI) has 

become a novel technique for studying the mental illness [11-13]. Different from the 

traditional task-based or stimulus-based functional MRI, rs-fMRI investigates 

spontaneous synchronous activations between brain regions occurring in the 

resting-state. Inferred on the basis of blood-oxygen-level dependence (BOLD) response 

time-series data, the neural activity revealed by rs-fMRI can be easily obtained from 

normal subjects or patients [13]. A number of studies have proven the resting-state 

functional connectivity can detect the differences between patients and controls in 

various neurological and psychiatric disorders [12, 14, 15]. Promised results have been 

obtained for various neurological disorders, such as Alzheimer's disease [16-18], and 

multiple sclerosis [19, 20].  

1.1.2 Data Driven Method and Machine Learning Methods 

Traditionally, there are two approaches to learn useful information from data [21]. One 

is the traditional statistical methods which assume that the data are generated by a given 

model and be validated by goodness-of-fit tests and residual examination. The other is 

data-driven approaches, which use the algorithmic models to learn rules from data and 

be validated by cross-validation and predictive accuracy. For analyzing simple 

mechanisms, the first approach is good and intuitive, such as the commonly used linear 

regression or logistic regression. However, while facing complex mechanisms, it is 

always hard to find a proper model to describe the data. Second approach is more useful 
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in this situation. Therefore, we used second approach in this research to learn 

classification or regression models by algorithms from the complex brain MR images, 

which is called “machine learning“ approach in computer science area [22] . 

We have seen mounting evidence of the usefulness of mining information from vast 

data, including detecting influenza epidemics using search engine query data [23], 

translating language using billions of web pages [22], finding human faces in images 

[24], recognizing of vehicle license plates in video sequence [25], and so on [22, 26]. 

Based on the view point of machine learning, the brain MR images stored in the 

hospital's data centers are treasure-trove providing information to reveal the mystery of 

brain mechanism, maturation, aging, and mental disorders. 

1.1.3 Brain MR Images and Machine Learning Methods 

For years, the brain MR images have been applied to patients with psychiatric or 

neurological disorders to find possible biomarkers for diagnosis. Using traditional 

statistical methods, those researches has revealed structural and functional alterations in 

several disorders, for example, major depression [27], anxiety disorder [28], 

Alzheimer’s disease [29], and schizophrenia [30]. Although those findings might 

contribute to the understanding of disorders, they have had minimal clinical impact. 

Neurologists and psychiatrists still relied on traditional diagnostic and prognostic tools. 

The neuroimaging studies used traditional statistical methods could show the 

differences between patients and controls at group level. In contrast, doctors should 

make clinical decisions about individuals in clinical. In clinical circumstances, knowing 
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the group differences does not provide too much useful information. 

As we mentioned in 1.1.1, the machine learning approaches are good for mining useful 

information from complex brain MR images data and make inference at the level of the 

individual. Over the past few years, there has been growing interest within the 

neuroimaging community in the use of supervised machine learning [31]. However, 

most of these studies used complex analysis and tested in small datasets, which cannot 

provide strong and robust inference. In this study, we tried to use simple information 

extraction method, the LBP-TOP texture analysis and use big database to train strong 

and robust classification or regression models. 

1.1.4 Neuroimaging Data-sharing Initiative 

In neuroscience community, there has been an increase in sharing of neuroimaging data 

in recent years [32]. Many scientific fields have shown the benefits of sharing data. For 

example, the astronomy2, natural history [33], and the most famous, the GenBank and 

Hapmap in genetics have led to many scientific discoveries [34]. Neuroimaging 

research is very costly and time-consuming. To share the imaging data and enable to 

reuse them can reduce the cost of research, provide more reproducible. Moreover, just 

like the UCI machine learning repository3 in computer science area, publicly available 

                                                 

2 http://www.sdss.org/ 

3 http://archive.ics.uci.edu/ml/ 
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databases can also be used as the standard test sets for comparing different algorithms or 

analysis methods. 

Hence, more and more neuroimaging data is publicly available nowadays, including 

Alzheimer’s Disease Neuroimaging Initiative (ADNI4), the NIH MRI Study of Normal 

Brain Development5, the National Database for Autism Research  (NDAR6), the Open 

Access Series of Imaging Studies (OASIS 7 ), the International Neuroimaging 

Data-sharing Initiative (INDI8), and increasing research centers trying to make their data 

public [32]. 

Now there are roughly thousands of brain MR images with normal or abnormal subjects 

publicly available on the network. To analyze those huge neuroimaging data, and might 

be much larger in near future, simple and effective methods to extract smaller but 

discriminative information are critical. 

                                                 

4 http://www.adni-info.org/ 

5 https://nihpd.crbs.ucsd.edu/nihpd/info/data_access.html 

6 http://ndar.nih.gov/ 

7 http://www.oasis-brains.org/ 

8 http://fcon_1000.projects.nitrc.org/ 
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1.2 Motivation and Purpose 

This study aimed to build simple binary methods to extract efficient information from 

structural brain MR images and rs-fMRI. And then we evaluated that information by 

constructing discriminated classification and regression models. 

Brain MR image is high-dimension data showing the complex brain structure. While the 

MR machine producing more images of higher resolution, more information about the 

brain structure would be provided. Theoretically, it could be more easily for 

neurologists to find out the abnormal area. Unfortunately, the time of each neurologist is 

limited. Within the limited time, it is harder to check every detail structure within 

images with higher resolution and more slices [35]. Therefore, it is very helpful if an 

algorithm can automatically analyze, classify, or highlight the abnormal brain images. 

The algorithm could screen the image data and classify mental disorder from normal 

subjects based on the brain images stored in the hospital’s data center or images 

publicly available in the Internet. Thus, the algorithm cannot only help neurologist to 

make better diagnosis but also can be used as a discovery science tool [36]. 

To investigate brain functions or disorders from vast of brain MR images, machine 

learning algorithms should effectively recognize and use the information embedded in 

those images. The way how to convert the original digital images to informations 

known by algorithms is one of the most critical steps in machine learning process.  

Following the experience of Google's artificial-intelligence guru, Peter Norvig, who 



 

 10

wrote, “Simple models and a lot of data trump more elaborate models based on less 

data.”[2], we used simple texture analysis, the local binary patterns (LBP), to datafy the 

structural brain MR images, such as the T1WI and DTI. Moreover, after extending the 

idea of structural binary patterns, we also try to design and implement the functional 

binary patterns to extract information from rs-fMRI data. 

The purpose of this study is to construct simple and effective methods to extract 

information from structural or functional brain MR images using binary patterns and 

build discriminative models by machine learning algorithms.   

Three main different types of brain MR images are used to verify the approaches. For 

structural images, brain T1WI and DTI images would be used. For functional brain 

images, the rs-fMRI data would be used. 

To test the performance of introduced information extraction methods, we used several 

brain MR image databases. Two types of images were tested. One is those brain images 

with obvious visible structural changes. Many studies have shown cerebral changes 

during brain maturation and aging [37-44]. Therefore, we use the binary patterns to 

estimate age based on brain MR images in this type. Another type is those brain images 

without obvious structural difference, such as many mental disorders. In this type, 

AttentionDeficit/Hyperactivity Disorder (ADHD) and schizophrenia are used to test 

our approaches. 
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1.3 Voxel Based Morphology (VBM) 

Many researchers have attempted to reveal imaging biomarkers embedded in brain MR 

images to facilitate clinical diagnosis or enhance neurological research [31, 45-49]. One 

of the major goals of these efforts is to build useful classification or regression models 

using machine learning approaches to classify or evaluate various neurological diseases 

[31]. As the old computer saying, "garbage in, garbage out", before structuring a good 

model, we should first extract effective features from MR brain images. Therefore, an 

automatic, robust and efficient method for extracting useful information from brain 

morphology is very important. 

Most of the existing studies used voxel based morphology (VBM) approaches [50] to 

analyze the different brain structure. VBM, usually based on high-resolution T1WI, is 

the comparison of local gray matter concentration at every voxel between groups. To 

conduct VBM, one should segment the brain T1WI into tissue classes, spatially 

normalized, smoothed, and analyzed the resulted data voxel-by-voxel in general linear 

or nonparametric models (Figure 1-2). This technique started in the mid 1990's [51] and 

became a widely applied method in computational neurosciences[52, 53], including: 

Schizophrenia [51], dementia [54], aging [41], cocaine abuse [55], Parkinson's disease 

[56], and many other studies (check [53] for more related studies). 

However, it is currently recommended that VBM can only be used to compare data 

collected at a single MRI scanner [57]. Therefore, it is not a good method to be used in 

big data researches. Moreover, there are several unsolved problems using this approach. 
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Figure 1‐2 Flow diagram of  the preprocessing steps  in standard  (left) and optimized  (right) 
VBM.   

GM = gray matter images; WM = white matter images. This is a reprint of the Fig. 2.4 of [50] 

First, all the subject brain images need to be registered to some standard brain template. 

Imperfect registration might modify fine structural details of the brain and introduce 

unexpected bias [58, 59]. Consequently, the results of the analysis could depend on the 

different registration methods used [49, 58, 60]. Second, there is no standard way to 

perform registration. Due to the complexity of brain structure, linear affine 
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transformation is not sufficient for many approaches. Therefore, more than a dozen 

non-linear registration methods have been introduced [60]. These methods introduced 

distinct parameters and made it more difficult to repeat and compare between studies. 

Third, the non-linear registration method is usually the most inefficient step in studies. 

Fourth and even more troubling, Uylings et al. have shown that the huge individual 

variability that exists in brain structure makes it nearly impossible to register distinct 

brains to a standard template using only morphological information [61]. 

Therefore, if we can extract morphological information from unnormalized source brain 

images, we cannot only avoid the risk of crashes of several preprocessing steps, but we 

can also access features without unexpected modification. In Chapter 4, we use a simple 

texture based feature extraction method based on local binary pattern on three 

orthogonal planes (LBP-TOP) to extract effective features from unnormalized source 

brain volumes. 

Second, traditional VBM only considered the gray matter (GM) segmentation (or 

known as GM concentration) as the information source. The process of segmenting 

brain images to GM, white matter (WM), and cerebrospinal fluid (CSF) could be 

another step might fail or introduce noise to the image data. In Chapter 4, we also tested 

both the unmodified whole-brain images and the GM segments as the information 

source in this work. 
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1.4 Texture Analysis 

Texture-based analysis has recently proven to have an excellent power of discrimination 

and simple implementation in many applications in the computer vision domain [62]. 

Moreover, in the domain of MR medical images, this method has shown its potential in 

extracting discriminative information about brain tumors [63, 64], epilepsy [65], 

Alzheimer's disease [66], and multiple sclerosis [67, 68]. In addition, texture analysis 

can also provide effective features for tissue characterization and dynamic 

contrast-enhanced MRI [69-71]. However, most texture analyses of MR images focus 

on a specific region of 2D brain images. Few studies have used these methods as a 

discovery science tool to extract useful information from whole-brain data. 

1.5 The structure of the dissertation 

The background of our study was illustrated in this chapter. Chapter 2 will introduce the 

local binary patterns (LBP) method and the framework of analysis in this study. 

Moreover, the basic properties of LBP would be tested in Chapter 3. In Chapter 4 and 

Chapter 5, we used local binary patterns (LBP) to extract useful information form MR 

brain morphology. First, we found the LBP is robust to brain registration method and 

can be performed well with the unnormalized brain images. Therefore, we used LBP to 

extract structural information from unnormalized T1-weighted brain images and 

diffusion tensor imaging (DTI) and constructed age estimation models based on brain 

T1WI and DTI images in Chapter 4. Then we use registered brain images as the 



 

 15

information source to build ADHD classification models in Chapter 5. Finally, the 

advantages, limitations and future works of those approaches are discussed in Chapter 6. 

In 6.2, we extended the idea of binary pattern distribution from structural MRI to 

resting-state functional MRI. Functional connectivity binary patterns based on ICA 

results are introduced and used to build classifications of ADHD and Schizophrenia. 
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Chapter 2  

 

Local Binary Patterns (LBP) 

 

 

 

2.1 The Development and History of the LBP 

The local binary pattern (LBP) is a simple yet very efficient texture operator. LBP 

encodes the pixels of an image by thresholding the neighborhood of each pixel and 

considers the result as a binary number. Figure 2-1 shows the relationships of LBP and 

many well-known texture analysis operators.  
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Figure 2‐1 LBP in the field of texture analysis operators.   

A reprint of the Fig. 2. of [72]. 

The basic LBP was developed by David Harwood in 1992 [73]. The basic idea is that 

two-dimensional textures can be simply described by pattern and contrast. LBP can 

separate the pattern information unaffected by monotonic gray scale form contrast. At 

that time, using feature distributions to classify texture was not very popular ( Using the 

statistical approach to classify images was later introduced around 2009 [74] ). LBP was 

first published in 1994 [75] and an extended version with it in 1996 [76]. Then LBP 

were later used for unsupervised texture segmentation [77]. The results showed better 

performance than the state-of-the-art approaches and revealed the potential of LBP. 

After that, the rotation-invariant LBP was introduced in the late 1990s [78].  

Around 2000, the theoretical basis of LBP and advanced version of rotation-invariant 

multiscale LBP operator was published[79, 80], which also introduced the idea of 
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“uniform patterns” to reduce the feature size of the LBP. The most important property of 

the LBP operator in 2D computer vision applications is its invariance against monotonic 

gray level changes. In addition, its discriminative power and computational simplicity 

let the LBP texture operator has become a very popular approach in this domain and be 

used in many applications. 

In 2004, the LBP features were used as a novel facial representation for face recognition 

[81]. The LBP features were extracted from different regions of human faces to build as 

an enhanced feature vector to be used as a face descriptor. This approach was another 

excellent success of the LBP and has been adopted and further developed by many 

research groups and companies. This approach has been used to perform face detection, 

face recognition, gender classification and age estimation based on 2D face images. 

The LBP was also used in the motion analysis. It began with the development of a 

texture based method for modeling the background and detecting moving objects [82]. 

Then in 2007, the spatiotemporal LBP approaches were proposed [83]. Those 

approaches soon began the basis for motion and activity analysis and has been used for 

recognizing facial expression [83], face and gender recognition form videos [84], and 

human activity recognition [85-87]. Recently, the LBP was used in other applications 

outside the computer vision domain; we will discuss the applications in medical images 

in 2.2.2. 
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2.2 LBP of 2D Brain MR Images 

2.2.1 Local Binary Patterns (LBP) 

Texture analysis based on local binary patterns (LBP) has recently been shown to 

have excellent discriminative power for many applications in the domain of computer 

vision [73, 80]. LBP was originally designed to extract features from various textured 

images, such as organic fibers, wood, and fabric [76]. After decades of development, it 

was also found to be useful for extracting the features from other types of images, such as 

face description [88], image segmentation, and other applications [73]. Furthermore, it 

can be used as a spatiotemporal descriptor for motion and activity analysis [83]. In the 

domain of computer vision, LBP is an efficient and robust method for extracting 

information from morphology [73]. 

LBP is a simple and efficient image texture operator introduced by Ojala et al. [76, 80]. 

Figure 2-2 shows the three steps for computing LBP on 2D images. The ,  

operator can be defined as 

, ∑ 21
0                   (2‐1) 

sign x
1, x 0
0, x 0 

where  and  are the values of the center pixel and neighborhood pixels with 

radius 	 , respectively,	  is the total number of neighborhood pixels, and  is the 
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radius in pixel. After the LBP codes for all voxels in an image are computed, the 

histogram of the codes computed over specific regions or over the whole image can be 

used as a texture descriptor. Therefore, each bin of the histogram can be regarded as a 

"micro-texton" encoded by LBP [89]. Figure 2-3 demonstrates patterns encoded by 

these histogram bins. Any morphological changes would modify the distribution of the 

codes, resulting in alterations to the histogram. Therefore, the histogram of the 

computed LBP codes is a good descriptor for comparing changes between images. 
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Figure 2‐2 Computation of local binary pattern (LBP) from a 2D image.   

LBP define a mapping of all pixels  from the grayscale pattern space  [A] to  the binary pattern 
space [B] by three simple steps. Step (I): Define a small window by a radius R and number of 
neighborhood pixels P. Step (II‐1): Threshold the neighborhood of each pixel by the value of the 
center pixel and consider the result as a binary number. Step (II‐2, II‐3): The code of the center 
pixel is given as a weighted sum of its thresholded neighboring pixels. Step (III): After the LBP 
of an  image was computed,  the  combined histogram  [C] over  regions  is used as  the  texture 
feature. 
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Figure 2‐3 Examples of some texture patterns encoded by LBP histogram. 

 

 

2.2.2 Applications in Medical Images and Brain MR Images 

As we have shown in 2.1, after 2000, the LBP became a popular method in computer 

vision domain and be used in many applications. Some medical applications also use 

LBP to classify different medical images. Rosdi et al. used LBP to perform the finger 

vein recognition [90]. Unay et al. and Tommasi et al. used LBP to construct the medical 

image search and retrieval system [91, 92]. 

As for the brain MR images, the important property of the LBP’s invariance against 

monotonic gray level changes makes it’s a good candidate for comparing MR images 

collected from different research sites. Unay et al. have shown the robustness of LBP to 

the intensity inhomogeneity of 2D brain MR images. They also show the texture-based 

method is better than intensity-based method for image search and retrieval [92-94].  
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Therefore, we use LBP-TOP to extract useful information from T1WI (Chapter 4 and 

Chapter 5) and diffusion tensor imaging (DTI, Chapter 4) to build classification and 

regression models for patients and normal subjects. 

2.3 Uniform Patterns 

Ojala et al. also provided a simple method to map the histogram bins of LBP to a 

smaller "uniform patterns" space [80]. They found that non-uniform patterns rarely exist 

in many image classification applications. Considering the LBP as circular, U is the 

number of bitwise transitions from 0 to 1 or vice versa. A LBP pattern is called uniform 

if its U is at most 2 (Figure 2-4, Figure 2-5). While mapping to uniform patterns, a 

separate output label is assigned to each uniform pattern, and all non-uniform patterns 

are assigned to a single label (usually the code 0, as the smallest LBP code). In the case 

of LBP with eight neighbors, the length of the histogram bins of one image is reduced 

from 255 to 59 after mapping to uniform patterns (all of these 59 uniform patterns can 

be found in [73]). Therefore, the histogram bins of one region of LBP-TOP can be 

reduced from 765 to 177. 
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Figure 2‐4 Uniform Patterns.   

While considering the LBP as circular, U is the number of bitwise transitions from 0 to 1 or vice 
versa. A LBP pattern is called uniform if its U is at most 2. 
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Figure 2‐5 The 58 different uniform patterns of eight neighbors.   

A reprint of the Fig. 2.4 of [73]. 
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2.4 LBP of 3D Brain MR Volumes 

2.4.1 Spatiotemporal LBP - LBP on Three Orthogonal Planes 

(LBP-TOP) 

For 3D data, Zhao et al. have proposed simplifying spatiotemporal descriptors by 

concatenating LBP on three orthogonal planes (LBP-TOP), i.e., the xy, xt and yt planes 

[83]. Here, we used LBP-TOP to describe brain volume data. Therefore, we replaced the 

t dimension with the z dimension. We propose using the same radius for x, y, and z for 

LBP-TOP. Figure 2-6 illustrates the specific steps for computing LBP-TOP on 

3D-volume data. 
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Figure 2‐6 Computation of LBP on three orthogonal planes (LBP‐TOP) from a 3D volume.   

Step (I): Define a small window by a radius R and number of neighborhood voxels P. Step (II): 
LBP  codes are  computed on  three orthogonal directions  (x, y, and  z). Each  voxel  is encoded 
based on  those  three orthogonal planes  (xy, yz, and xz). After  the LBP of each direction was 
computed,  the histogram over a specific volume  (whole brain volume  in  this example)  is  the 
texture feature of that direction. Step (III): Combine the histograms of those three directions to 
build the result histogram as the LBP‐TOP feature of the volume. 
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2.4.2 Applications in Medical Images and Brain MR Images 

Few medical image applications used LBP-TOP. Gao X. and his coworkers build a brain 

image retrieval system using LBP-TOP [95, 96]. They study several 3D image retrieval 

methods and find LBP-TOP is the fastest and most accuracy one. Those studies manifest 

the power of LBP-TOP to extract information from brain MR images. 

2.5 Support Vector Machine (SVM) 

To evaluate the discrimination power of each approach, an efficient and widely used 

classifier, the support vector machine (SVM), was used [97]. SVM maps training data 

into high-dimensional feature spaces to adequately separate the hyperplane with a 

maximal margin [98, 99]. We used linear SVM to evaluate each method used in this 

work. The widely used LIBLINEAR program was used to implement SVM because of 

its optimization of linear SVM [100]. 

Linear SVM is an adequate feature ranking method and has demonstrated as an efficient 

and useful tool for gene selection, document classification, and many other applications 

[101-103]. For any test subject x , the decision function of linear SVM is 

( ) sgn( )TP x b w x                       (2‐2) 

where x  is the feature vector, b  is a constant, and w  is the weight vector. Each 
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value of w  denotes the weight of each feature. The larger the absolute value of jw
, 

the more important the jth feature is when deciding the result. To obtain knowledge 

from the trained linear SVM models, we can use w  in the resulting models as a 

relative importance index to determine which features are more useful to discriminate 

the diseased from the control subjects. 

 

2.6 Framework of Analysis Using LBP and SVM 

2.6.1 Build Classification Models Using SVM and LBP-TOP 

The flow diagram in Figure 2-7 shows the steps of process of the building and evaluation 

of classification using SVM and LBP. 
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Figure 2‐7 the flow diagram of the building and evaluation of a classification using SVM and 
LBP. 
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k-fold cross-validation (S1) 

All tests in this study were evaluated by k-fold cross-validation (S1 in Figure 2-7). We 

randomly partitioned all subjects ((a) in Figure 2-7) into k subgroups. For each step of 

cross-validation, one subgroup was used as a test data set ((c) in Figure 2-7), and the 

remaining (k-1) subgroups were pooled as a training data set ((b) in Figure 2-7). Then the 

training data set was used to train a SVM mode ((M2) in Figure 2-7). We applied the 

model on test data set to predict the labels or values of each subject in test data set and got 

the test results of each fold.  After k-fold cross-validations, the test results of all k 

subgroups were combined to build the accuracy of the estimation of each tested model. 

Feature extraction using LBP-TOP (S2) 

For each subject in training data set or test data set, we applied same feature extraction 

method to extract LBP-TOP histograms from subjects. First, the brain volumes (T1WI or 

parameters of DTI) were converted to LBP-TOP maps. Second, after introducing some 

atlas information, the LBP-TOP histograms of specific brain regions can be extracted. 

Third, for removing the redudent patterns, the resulting histograms were be converted to 

uniform patterns. The uniform patterns were the input of machine learning process. 

Machine learning and grid-search(S3, S4) 

While using SVM, there are two main parameters should be decided (C and γ in RBF 
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kernel). For linear SVM, only C should be decided. In order to automatically find the best 

parameters using in machine learning process and avoid the overfitting, another m-fold 

cross-validation were constructed (A Practical Guide to Support Vector Classification). 

As recommend in [104], we used grid-search method to automatically check the proper 

parameters. As showing in (S4 in Figure 2-7), different SVM parameter sets was tested 

and evaluated using the m-fold cross-validation. After finding the best parameters, the 

original training data set (h and d in Figure 2-7) were used to train the resulting 

classification models using the best parameter set. 

Most studies in this paper used 10-fold cross-validation (k=10) to evaluate each 

approaches and 5-fold cross-validation (m=5) to automatically find the best parameters. 

The parameter sets using in all case are C equals 0.5, 1, 2, 4, 8, 16, 32, 64, 128, or 256 

while constructing linear SVM models. 

 

2.6.2  Feature Selection and Building Regression Models Using SVR and 

LBP 

The flow diagram in Figure 2-8 shows the steps of feature selection in 

classification or regression models. While building classification models, we 

directly used the linear SVM implemented by LibLinear. As for constructing 

regression models, we used linear SVR as the feature selection tool. After 

selecting the top N features, SVR with RBF kernel was constructed using the same 
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process described in 2.6.1. In Figure 2-8, the k-fold cross-validation (S2), feature 

extraction (S2), and machine learning (S3), and grid-search (S4) are the same with 

Figure 2-7. Only the inserted feature selection steps are different. 
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Figure 2‐8 the flow diagram of feature selection in classification or regression models. 
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Feature selection (FS) 

LBP-TOP histograms are usually an over-complete dataset. For selecting the most 

important features to build simpler and more robust models, we use linear-SVM 

(or linear SVR) as our feature selection tool. Therefore, we should train linear 

SVM models using training data (d in Figure 2-8) to get the weights of each 

feature. Another n-fold cross-validation would be built to find the best parameters 

for the linear SVM model of the training data (R_FS in in Figure 2-8). Then we 

used those parameters to train other linear-SVM models using the training data (p 

in Figure 2-8). The ranked features in the resulting linear-SVM models could be a 

good reference for the most important features. 

Based on the ranks of features, the most N important features would be extracted 

from both the training data and test data. As showing in Figure 2-8, Only those N 

features would be the input of the machine learning process (S3 and S4 in Figure 

2-8). 
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Chapter 3  

 

Properties of LBP-TOP 

 

 

 

In this chapter, we use the framework describing in 2.6 and basic sex classification to 

analyze the basic properties of LBP-TOP. There are two parts in this chapter.  In first 

part, we analyze the algorithms and parameters of LBP-TOP. The basic parameters of 

LBP were tested in 3.2. Then the efficiency of uniform patterns was tested in 3.3. The 

alternative LBP coding methods were tested in 3.4. In second part, the properties of 

input brain MR images were tested. We analyzed the effects of signal-to-noise ratio 

(SNR) of brain MR images in 3.5. How the image resolution affects the performance of 

LBP-TOP was tested in 3.6. All test models were learned by linear SVM and evaluated 

by same 10-fold cross-validation. 
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3.1 Materials and Methods 

3.1.1 Participants 

The test datasets were downloaded from a public access online database, the 1000 

Functional Connectomes Project from https://www.nitrc.org/projects/fcon_1000. The 

1000 Functional Connectomes Project is an unrestricted public functional MRI datasets 

independently collected and pooled from 33 sites. For quick tests and controlling the 

quality of the each dataset, only the datasets from site Cambridge_Buckner , contributed 

by Dr. Randy L. Buckner, Harvard University, were used. The anatomical scans, 

detailed phenotypic information, and imaging parameters are all available on the 

website. In this test, we only used the anatomical scans acquired by 

magnetization-prepared rapid gradient echo (MPRAGE) sequence with voxel size = 

1.0×1.0×1.0 mm. All of the available subjects were included in this study. A total 198 

subjects were included, consisting of 123 females and 75 males ranging in age from 

18-30years old (mean 21.03 ± 2.31).  

3.1.2 Parcellations 

To obtain various scales and regions of parcellation information, three different 

probability atlases included with FSL (http://www.fmrib.ox.ac.uk/fsl/) were used in this 

study. These atlases include the MNI structural atlas and the Harvard-Oxford Cortical 

and Subcortical Atlas. The details of these atlases can be assessed on the FSL website 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). The original regions in these atlases were 
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separated into left and right brain regions and filtered through fifty percent probability 

to build overlapped masks. Large regions of the Harvard-Oxford Subcortical Atlas were 

extracted. The left and right Cerebral White Matter and Cerebral Cortex were extracted 

as the white matter (WM) and gray matter (GM) regions, respectively, in this study. The 

lateral ventricle and brainstem regions were excluded. As a result, 2 regions in WM, 2 

regions in GM, 18 regions in the MNI structural atlas (MNI), 96 regions in 

Harvard-Oxford Cortical Atlas (CORT), and 14 regions in Harvard-Oxford Subcortical 

Atlas (SUB-CORT) were used in this work. 

Two sets of parcellation data were tested in this work. First, we tested the performance 

of using each atlas (MNI, CORT, and SUB-CORT) in the separated parcellation sets. 

Then, we combined MNI, CORT, SUB-CORT, GM and WM atlases to construct 

overlapping merged parcellation sets with different scales. 

3.1.3 Evaluation 

All tests in this chapter were evaluated by 10-fold cross-validation (as showing in 

Figure 2-7). We randomly partitioned the 198 subjects into 10 subgroups. For each step 

of cross-validation, one subgroup was used as a test data set, and the remaining nine 

subgroups were pooled as a training data set. After 10 cross-validations, the test results 

of all 10 subgroups were combined to build the accuracy of the estimation of each 

model. To facilitate comparison of the results, the same 10-fold cross-validation set was 

used in all evaluations. 
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3.2 Parameters of LBP  

Table 3-1 shows the 10-fold cross-validation results for different radii (1 mm, 2 mm, 

and 3 mm) for the LBP-TOP, various parcellations, linear registrations, and non-linear 

registrations, respectively. Comparing the results of different radii used in LBP-TOP, we 

can find in the case of sex classifications, all three tested radii can provide good results. 

As expected, brain data with non-linear registration methods showed the highest 

accuracy in all cases. Particularly, using linearly registered brain data only slightly 

reduce accuracy. As for linear registration methods, using higher degree of freedom can 

provide better results. 

Based on the results in Table 3-1, each specific parcellation can provide information to 

discriminate sex, especially the brain cortical regions (CORT). However, combining 

information from all brain regions usually improved the resulting performance ([a], [b], 

and [c]). The [c] in Table 3-1 showed combing different scales of parcellations can 

provide stable performance across different settings. 
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Table 3‐1 the sex classification accuracy of models based on uniform LBP‐TOP features with 
different  registration  methods,  parcellation,  and  radius  of  LBP‐TOP,  using  linear‐SVM 
classifiers. 

 

Abbreviations are as follows: R1, R2, and R3, LBP‐TOP radius in mm; DOF9, and DOF12, linear 
registration  with  9,  and  12  degree  of  freedom,  respectively;  ART,  non‐linear  registration 
performed by Automated Registration Tool; GM,  left and  right gray matter  regions; WM,  left 
and  right  white  matter  regions;  CORT,  the  Harvard‐Oxford  cortical  atlas;  SUB_CORT,  the 
Harvard‐Oxford  subcortical  atlas;  CERE,  the  probabilistic  cerebellar  atlas;  MNI,  the  MNI 
structural  atlas.  All  atlases  were  provided  by  FSLView  version  3.0[105].  The  sensitivity, 
specificity, and areas under the ROC curve (AUC) of this table can be found in Table 3‐2. 
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Table 3‐2 Sensitivity, specificity, and areas under  the ROC curve  (AUC) of Table 3‐1  the sex 
classification  accuracy  of  models  based  on  uniform  LBP‐TOP  features  with  different 
registration methods, parcellation, and radius of LBP‐TOP, using linear‐SVM classifiers. 

 

 

Abbreviations are as follows: R1, R2, and R3, LBP‐TOP radius in mm; DOF9, and DOF12, linear 
registration  with  9,  and  12  degree  of  freedom,  respectively;  ART,  non‐linear  registration 
performed by Automated Registration Tool; GM,  left and  right gray matter  regions; WM,  left 
and  right  white  matter  regions;  CORT,  the  Harvard‐Oxford  cortical  atlas;  SUB_CORT,  the 
Harvard‐Oxford  subcortical  atlas;  CERE,  the  probabilistic  cerebellar  atlas;  MNI,  the  MNI 
structural atlas. All atlases were provided by FSLView version 3.0[105]. The AUC was calculated 
using [106] and the positive subject is male subjects. 
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Another finding is the robustness of the registration methods when using LBP-TOP 

features to classify sex. Although the models based on the non-linear registration 

method are most accurate in each cases, the models based on linear registrations (DOF9 

and DOF12) also performed well (Table 3-1). This finding shows the stability of the 

LBP-TOP to registration methods. Therefore, we also test the non-normalized brain MR 

images approaches in Chapter 4. 

 

 

3.3 The Efficiency of Uniform Patterns 

Table 3-3 shows the effect of LBP-TOP features with and without converting to uniform 

patterns. In each case of different radii, registration methods, and parcellations, there are 

performance difference between approaches using uniform patterns or not. However, the 

resulting feature size of using non-uniform patterns is more than four times bigger than 

introducing uniform patterns. The bigger feature size something hurts the resulting 

accuracy in some complex machine learning approaches. Moreover, much more features 

can limit the size of training subjects in same computational resources and then take 

much time to learn models from same subject size. This test results show the efficiency 

of using uniform patterns. Therefore, we always used uniform patterns in this study. 
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Table  3‐3  the  sex  classification  accuracy  of models  based  on  LBP‐TOP  features with  and 
without converting to uniform patterns. 

 

Abbreviations are as follows: R1, R2, and R3, LBP‐TOP radius in mm; DOF9, and DOF12, linear 
registration  with  9,  and  12  degree  of  freedom,  respectively;  ART,  non‐linear  registration 
performed by Automated Registration Tool; CORT, the Harvard‐Oxford cortical atlas; MNI, the 
MNI structural atlas; [c], the same parcellations used in Table 3‐1 [c]. All atlases were provided 
by FSLView version 3.0[105]. 

 

 

3.4 The Order of LBP Coding 

In this section, we showed the order of LBP coding is arbitrary and do not affect the 

results of SVM models. We modified the coding series of LBP (weights in the step II-2 

in Figure 2-2) histogram. As showing in Figure 3-1, the resulting LBP maps of different 

coding orders are very different. However, the linear SVM would always build same 

classification model using same features with same ranks. Therefore, as the results in 

Table 3-4, the resulting accuracies of every orders are the same. 
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Figure 3‐1 LBP map using different coding series.   

 

Table 3‐4 the sex classification accuracy of models based on LBP‐TOP features with different 
encode  methods,  1mm  resolution,  2mm  radius,  non‐linear  registration,  and  uniform 
patterns. 

 

Abbreviations  are  as  follows:  ART,  non‐linear  registration  performed  by  Automated 
Registration Tool; CORT,  the Harvard‐Oxford cortical atlas; MNI,  the MNI structural atlas;  [c], 
the  same  parcellations  used  in  Table  3‐1  [c].  All  atlases were  provided  by  FSLView  version 
3.0[105]. 
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3.5 The Effects of Brain MR Image SNR 

To simply test the effects of image SNR to the performance of LBP-TOP approaches, 

we add Gaussian noise to the original brain MR images. The signals of the images were 

estimated by the average of 80% white matter region based on the probabilistic atlas 

provided by FSLView version 3.0 [105]. In each level of SNR, we add Gaussian noise 

with zero mean and the standard deviation based on the signal and SNR (SNR = signal/ 

standard deviation). Figure 3-2 shows the examples of the brain MR images and 

corresponding LBP maps in every tested SNR levels.  
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Figure 3‐2 brain MR images and the corresponding LBP map in different SNR levels. 

Table 3‐5 the sex classification accuracy of models based on LBP‐TOP features with different 
SNR level, 1mm resolution, 2mm radius, non‐linear registration, and uniform patterns. 

 

Abbreviations are as follows: GM, left and right gray matter regions; WM, left and right white 
matter  regions;  CORT,  the  Harvard‐Oxford  cortical  atlas;  SUB_CORT,  the  Harvard‐Oxford 
subcortical  atlas;  CERE,  the  probabilistic  cerebellar  atlas; MNI,  the MNI  structural  atlas.  All 
atlases were provided by FSLView version 3.0[105]. The sensitivity, specificity, and areas under 
the ROC curve (AUC) of this table can be found in Table 3‐6. 
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Table 3‐6 Sensitivity, specificity, and areas under  the ROC curve  (AUC) of Table 3‐5  the sex 
classification accuracy of models based on LBP‐TOP features with different SNR  level, 1mm 
resolution, 2mm radius, non‐linear registration, and uniform patterns. 

   

Abbreviations are as follows: GM, left and right gray matter regions; WM, left and right white 
matter  regions;  CORT,  the  Harvard‐Oxford  cortical  atlas;  SUB_CORT,  the  Harvard‐Oxford 
subcortical  atlas;  CERE,  the  probabilistic  cerebellar  atlas; MNI,  the MNI  structural  atlas.  All 
atlases were provided by FSLView version 3.0[105]. The AUC was calculated using [106] and the 
positive subject is male subjects. 
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Results in Table 3-5 demonstrate the robustness of LBP-TOP approaches to different 

SNR levels. While using images with higher SNR (8 to 64), the resulting accuracies are 

the same based on informations from every brain regions. In the cases of SNR equals 4, 

although we can find the edges and structures of LBP maps have been destroyed in 

Figure 3-2, the LBP-TOP approaches perform well. The LBP histograms in different 

brain regions still show sufficient information to machine learning algorithms to classify 

sex. In the cases of SNR equals to 2, there are no edges or structures can be found in 

LBP maps (Figure 3-2). However, the LBP histograms can provide some useful 

information to classify the sex. Only while the SNR equals to 1, the machine learning 

algorithms learned almost nothing form the LBP histograms. 

 

3.6 The Effects of Brain MR Image Resolution 

Table  3‐7 shows the accuracy of models based on various brain image resolutions. 

Although the resolution does not affect the results too much, data with higher resolution 

generally provide more information for the discrimination of subject sex. In our 

experience, the effects of resolution are case by case. Higher-resolution images are 

usually better than low ones. However, there is no robust rule for sufficient resolution 

for every approach. 
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Table 3‐7 the sex classification accuracy of models based on LBP‐TOP features with different 
resolution, radius, registration method, uniform patterns, and combined all brain regions. 

 

Abbreviations are as follows: R1, R2, and R3, LBP‐TOP radius in mm; DOF12, linear registration 
with 12 degree of freedom, respectively; ART, non‐linear registration performed by Automated 
Registration Tool. 
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Chapter 4  

 

Age Estimation Using Unnormalized MR Brain Images 

 

 

 

4.1 Introduction 

Aging-related brain morphological change is an important issue in neuroscience. Many 

studies have shown cerebral changes during brain maturation and aging [37-44]. To 

illustrate cognitive development and decline, or to explore aging-related mental 

disorders based on changes in brain morphology, an age biomarker defining the normal 

patterns of structural brain changes over the lifespan is critical. 
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Recently, a variety of methods were proposed to estimate age using structural MR brain 

images [107-112]. However, most of these studies only considered the period of brain 

maturation or aging. Moreover, the studies all used acquired brain images that were 

transformed to a standard template and compared voxel-by-voxel, such as the 

voxel-based morphometry (VBM) analysis [50, 52]. However, several unsolved 

problems exist in this approach (see 0 for more details). 

In this study, to avoid all the mentioned risks, we used a simple feature extraction 

method based on local binary patterns on three orthogonal planes (LBP-TOP) to extract 

effective information from MR brain images without registration [73, 80, 83]. In the 

first part of this chapter, we used LBP-TOP to extract brain morphological change 

information from unnormalized brain images, which provide pure and unmodified raw 

information. Furthermore, most studies only use gray matter (GM) segmentation as 

source data. The process of segmenting brain images into GM, white matter (WM), and 

cerebrospinal fluid (CSF) could be another step that restricts the analysis pipeline and 

introduces noise to the image data [113-115]. In addition to using GM segmentations, 

we also used whole-brain images as an information source. 

Diffusion tensor imaging (DTI) is an MRI technique that measures the restricted 

diffusion of water molecules in tissue and offers directional information of neural tracts 

in the brain [8]. DTI has proven its value in WM mapping and anatomical connectivity 

in brain research as well as clinical applications [9, 10]. Moreover, many studies show 

that DTI can reveal microstructural changes in brain tissue during brain maturation and 

aging [116, 117]. Recently, Benson Mwangi et al. have revealed the possibility of 
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predicting age using DTI measurements [111]. However, considering the 

multi-dimensional nature of the data and the tensor orientations, DTI registration is 

much more challenging compared to using scalar images [118-120]. Therefore, when 

analyzing DTI data, most studies considered only an eigenvalue-derived DTI 

measurement, such as fractional anisotropy (FA), mean diffusivity (MD), axial 

diffusivity (AD), and so on. Few of these studies used the information in fiber spatial 

orientation (eigenvectors) [117]. Inspired by the recent research of Wedeen et al., which 

showed that the cerebral fiber pathways form a regular grid based on the three principal 

axes of development [121], we used the orientation of fiber to estimate age in this study. 

The capability of LBP-TOP to extract information from unnormalized brain images 

makes it an excellent candidate for analyzing unnormalized DTI data. In the second part 

of this chapter, we tried to use the information derived from DTI eigenvalues (FA, MD, 

or AD) as well as the direction of the eigenvectors to predict brain age. 

In previous chapter, we used LBP-TOP to compute features from registered brain 

T1-weighted images (T1WI) to sort ADHD patients from normal subjects [122]. In this 

chapter, the method was used to estimate age with unnormalized brain T1WI or DTI 

measurements. To evaluate the performance of LBP-TOP in brain age estimation, we 

use linear support vector regression (linear SVR) as a simple feature selection method to 

find the most useful features for predicting brain age. Then, we used those features to 

train a non-linear SVR with a radial basis function (RBF) kernel for more accurate age 

estimation. 

This study provides three contributions. First, we enable unnormalized MR brain image 
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analysis by introducing LBP-TOP to extract morphological information directly from 

acquired images. Second, we built age estimation models from whole-brain T1WI or 

GM segments using LBP-TOP. Third, we demonstrate a simple way to extract 

discriminative information from eigenvalues, or even the direction of eigenvectors, from 

DTI data. To the best of our knowledge, no previous study has used unnormalized MR 

brain images to predict brain age. More importantly, this may be the first report that the 

information encoded in fiber orientation could be used to estimate the brain age. 

 

4.2 Materials and Methods 

4.2.1 Subjects and Data Acquisition 

The employed datasets were downloaded from a public access online database, the 

Nathan Kline Institute (NKI) / Rockland Sample from the International Neuroimaging 

Data-sharing Initiative (INDI). The NKI/Rockland Sample is a phenotypically rich 

neuroimaging sample for discovery science. The anatomical scans, DTI scans, detailed 

phenotypic information, and imaging parameters are all available on the website 

(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). In this study, we used the 

anatomical scans and 64-direction DTI scans from the database. Both scans were 

acquired using a 3T Siemens Trio scanner. The anatomical scans were acquired by 

magnetization-prepared rapid gradient echo (MPRAGE) sequence with TR/TE = 
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2500/3.5 ms and voxel size = 1.0×1.0×1.0 mm. The 64-direction DTI scans were 

acquired by EPI sequence with TR/TE = 10000/91 ms, voxel size = 2.0×2.0×2.0 mm, 

and b-value = 1000 s/mm2. All of the available subjects were included in this study, 

with the exception of three subjects without MPRAGE scans (subject id: 1933343, 

2136756, and 2479362). Therefore, a total 204 subjects were included, consisting of 84 

females and 120 males ranging in age from 4-85 years old (mean 35.22 ± 25.07). Figure 

4-1 shows the age distribution of the subjects. 

 

 

Figure 4‐1 Age distribution of the 204 subjects that participated in the study. 

The  age  of  each  subject  can  be  found  on  the  NKI/Rockland  Sample  website 
(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). 
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4.2.2 Data preprocessing 

All of the images were preprocessed using FSL version 4.1.7 [123]. For T1WI, brain 

segmentation was performed by FSL's automated segmentation toolbox (FAST). The 

skull-stripped brain images were segmented into gray matter (GM), white matter (WM) 

and CSF [123, 124] probability maps. A 0.25 threshold was applied on the GM segment 

results to remove noise. Only the source T1WI head images and GM segment data were 

used in this work. 

The DTI images were preprocessed through the following pipeline: (1) eddy current 

correction with FSL eddy_correct, (2) skull removal and brain extraction using FSL 

BET [125], (3) diffusion tensor model fitting of each voxel using FSL dtifit. Next, the 

raw output T2 signal images (S0) were used as the reference for atlas registration. The 

fractional anisotropy images (FA), mean diffusivity images (MD), first eigenvalue 

images (L1, known as axial diffusivity, AD), or first eigenvector data (V1) were used 

for age estimation. 

4.2.3 Extracting the LBP-TOP Histogram 

All of the acquired head images were first aligned to the same orientation by rigid 

transformation. Then, we extracted the LBP-TOP histograms from those head images. 

Figure 4-2 shows the basic steps of extracting the LBP-TOP features. The input features 

of the SVR were the combined histograms from the brain regions. To estimate age using 

T1WI, the MNI template provided in FSLView version 3.0 (file name: 

MNI152_T1_1mm_brain.nii.gz) was used as the standard template. To predict age using 
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the DTI data, the T2-weighted ICBM 2009c nonlinear asymmetric template was used as 

standard template [126, 127] for the S0 images. Next, the transformed atlas information 

was applied on all of the DTI measurement data. To address the first eigenvector data 

(V1), we compute three LBP-TOP maps of three directions to extract the information 

from the vector data (Figure 4-3 shows an example). 

  



 

 57

 

Figure  4‐2  Flow  chart  for  extracting  the  LBP‐TOP  histogram  from  unnormalized MR  brain 
images. 

(a) For better atlas registration results, we first performed skull‐stripping to acquire the brain 
image.  (b)  Then,  using  the  linear  or  non‐linear  method,  the  transform  function  of  atlas 
registration was computed to register the standard brain template to each brain image. (c) The 
transform  function was  used  to  transform  the  atlas  to  each  subject’s  head  image.  (d)  The 
LBP‐TOP histogram of each brain region can be computed based on the atlas. (e) The combined 
histogram from all of the brain regions was the input feature to SVR for age estimation. 
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Figure 4‐3 Example LBP‐TOP maps of each tested MR brain image data in this study. 

Only the LBP‐TOP from the XY direction with a radius equal to two voxels is shown. The images 
in row 1 are the example MR brain images without registration. The images in row 2 show the 
XY  direction  LBP  mapping  of  each  image  in  row  1.  Row  3  denotes  the  XY  direction  LBP 
histograms of the 3D left occipital lobe region, one of the 18 MNI regions (shown in the row 2 
images as a  red  region) of each  image.  L1 denotes  the  first eigenvalues of  the DTI data. V1 
denotes the first eigenvectors of the DTI data. 

 

 

4.2.4 Atlas Registration 

To introduce spatial information of the brain regions in this study, the following 3 

probability atlases provided by FSLView version 3.0 were used: the MNI structural atlas 

(MNI) [128], the Harvard-Oxford cortical atlas (CORT) and the Harvard-Oxford 

subcortical atlas (SUB_CORT), and the probabilistic cerebellar atlas (CERE)[129]. The 
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details of these atlases can be found on the FSL website 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Regions in the atlases were separated into 

left and right brain portions and filtered by zero percent probability to build overlapped 

masks. Some of the large regions from the Harvard-Oxford subcortical atlas were 

extracted. The left and right cerebral white matter and cerebral cortex were extracted as 

the gray matter (GM) and white matter (WM) regions. The lateral ventricle and brain 

stem regions were excluded. As a result, there were 2 regions in the WM, 2 regions in 

the GM, 18 regions in the MNI structural atlas (MNI), 96 regions in the Harvard-Oxford 

cortical atlas (CORT), 14 regions in the Harvard-Oxford subcortical atlas (SUB-CORT), 

and 28 regions in the probabilistic cerebellar atlas (CERE). 

Three sets of atlases were tested. First, the GM and WM were used to test the 

information encoded in the whole-brain LBP-TOP distribution. Second, CORT, 

SUB_CORT, and CERE were used to evaluate the age estimation performance of 

different brain segments. Third, two atlases with different scale and details were used to 

extract features from all of the brain regions. MNI provides large and rough spatial 

information from the whole-brain. Lastly, we combined all of the above mentioned 

atlases to build a mixed atlas with multiple scale regions. That is, 

GM+WM+CORT+SUB_CORT+CERE+MNI. 

Both linear and non-linear atlas registration methods were evaluated in this study. 

Linear registrations were performed using the linear multimodality registration method 

developed by FSL FLIRT [123, 130]. The brain template was first transformed to each 

subject brain image by FLIRT with 6 degree of freedom (6-DOF, rigid-body 
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transformation). The results were then linearly transformed by FLIRT with 9-DOF. Next, 

the results were linearly transformed by FLIRT with 12-DOF to build the used atlas. 

Non-linear atlas registration was performed using the automated registration tool (ART). 

ART was developed by Ardekani et al. [131] and can be downloaded from 

http://www.nitrc.org/projects/art/. Arno Klein et al. demonstrated that ART provides 

better efficiency and consistency than other non-linear registration methods [60]. 

 

4.2.5 Support Vector Regression and Feature Ranking 

Support vector regression (SVR) was used to build an age estimation model. The idea of 

SVR is derived from support vector machine (SVM) [132, 133]. SVM maps training 

data into high-dimensional feature space to find the separating hyperplane with the 

maximal margin. The support vectors are the data points lying closest to the hyperplane. 

For SVR, we need to find a function that fits as many data points as possible. Therefore, 

the regression line is surrounded by a tube [99, 134]. The regression line best fits those 

points in the tube, while points outside of the tube are the training errors. The SVR 

support vectors are the data points lying closest to the edge of the tube. To determine the 

width of the tube, we used ν-SVR in this study. Namely, we specified an upper bound ν 

on the fraction of points lying outside of the tube and automatically adjusted the width 

of the tube. In this study, we used LIBSVM to perform SVR with a linear kernel and a 

radial basis function (RBF) kernel [135]. 
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The LBP-TOP histogram is an over-complete feature set with a huge number of features. 

Therefore, the histogram is not suitable for training a RBF SVM. To build a more 

efficient and robust regression model, a feature selection method is needed. 

Feature ranking and selection based on a linear SVM has proven to be efficient and 

useful for gene selection, document classification and many other applications [102, 136, 

137]. In this study, we used the same idea to select the most important bins in the 

LBP-TOP histogram. For any test subject, the estimated value based on the linear SVR 

is 

f x                         (4‐1) 

where x is the feature vector, b is a constant, and w is the weight vector. Each value of 

w denotes the weight of each feature to compute the estimated result. The larger the 

absolute value of wj, the more important the jth feature is in deciding the resulting value. 

After training a linear SVR model, the w in (3-1) can be used as a relative importance 

index. Therefore, we can build a simpler model using the top N important features. 

For each test in this study, in each fold of cross-validation, we first trained a linear SVR 

model using the training subjects and then ranked the features. Next, we used the top N 

features to train a non-linear SVR model with an RBF kernel (RBF SVR) using the 

same training subjects. Then, we tested the RBF SVR model using the tested subjects to 

evaluate the test performance. Figure 4-4 shows an example feature selection result. 



 

 62

 

 

Figure 4‐4 Example of  feature  selection using  linear SVR with whole‐brain or GM  segment 
data. 

The figure shows the mean absolute error (MAE) from using RBF SVR to train the top N ranked 
features  selected  by  linear  SVR.  The  selected  LBP‐TOP  features  are  built  by  linear  atlas 
registration,  with  a  voxel  radius  of  one,  and  combined  brain  regions 
(GM+WM+CORT+SUB_CORT+CERE+MNI in ) 

 

4.2.6 Evaluations 

All of the tests in this study were evaluated by 10-fold cross-validation. The 204 

subjects were randomly partitioned into 10 subgroups. For each step of cross-validation, 

one subgroup was used as a test data set, and the remaining nine subgroups were pooled 

as a training data set. After 10 cross-validations, the test results of all 10 subgroups were 

combined to calculate the estimation error of each test. To facilitate a comparison of the 
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results, the same 10-fold cross-validation set was used in all of the evaluations. 

4.3 Results and Discussion 

Figure 4-3 shows an example of LBP-TOP of the XY direction. Figure 4-4 shows an 

example of feature selection by linear SVR. In most of the tests we attempted in this 

study, we found that using the top 2048 ranked features usually provided the best age 

estimation model. When using more than 2048 features, the performance did not 

improve. Therefore, the results we show in this paper were mainly from using the top 

2048 ranked features. Figure 4-4 also shows the different results from using the 

whole-brain or GM segment data. Although they both end up with a similar mean 

absolute error (MAE) after using more than 256 ranked features, the whole-brain data 

provide better MAE while using fewer features. The test results from using 256 and 

1024 features of each table can be found in the supplement. 

4.3.1 Age estimation using T1WI 

Table 4-1 and Table 4-2 show the age estimation results from using T1WI with different 

brain regions. The LBP-TOP histograms from CORT provide the most information for 

predicting age. This result might reflect the observation that gray matter density shows 

large changes in some cortical regions across the human lifespan [44]. Regions in 

SUB_CORT and CERE provide little information for age estimation. Interestingly, 

considering only the GM and WM regions provides acceptable MAE. This result 

demonstrates that the change in brain morphology across the lifespan is so large that it 
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can affect the LBP-TOP distribution in the whole-brain region. 

 

Table 4‐1 Mean absolute error (MAE) of brain age estimation by LBP‐TOP and RBF SVR using 
T1WI data and 2048 features in various brain regions. 

 

 

The bold values denote the best MAE in the image data of the row. The italic values denote the 
results using 354 features, which  is the total number of features provided by the region. The 
underlined value shows the best MAE in the table. 

and Table 4-4 show the results of combining the features from all of the brain regions. The 

best result from using the T1WI brain image is the G M segment data, where the MAE 

equals 5.62 years with 1 voxel as the radius. The scatter plots of the true and estimated 

age of each subject from this test are shown in Figure 4-5. As shown in Table 4-3, both 

the rough MNI regions and the total combined regions can enhance the age-predictive 

performance. MNI provided sufficiently good performance compared to using all of the 

combined regions. However, combining all of the regions consistently improved the 

results, especially while using the GM segment data. Despite the increased complexity 
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of the large feature number in the combined data, this result could imply that while most 

of the morphological changes across the lifespan are dependent, some in different brain 

regions are independent. Therefore, the combined information provides only a slight 

improvement to the overall performance. 
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Table 4‐3 Mean absolute error (MAE) of brain age estimation by LBP‐TOP and RBF SVR using 
T1WI data and 2048 features in combined brain regions. 

 

The bold values denote the best MAE in the image data of the row. The underlined value shows 
the best MAE in the table. 
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Figure 4‐5 Scatter plots of age estimation of all 204 subjects using GM segments. 

This figure shows the specific age estimation of each subject obtained from the best result  in 
Table 4‐3. The estimation models were trained with 2048 features using GM segments,  linear 
atlas  registration,  a  radius  of  1  voxel,  and  combined  brain  regions 
(GM+WM+CORT+SUB_CORT+CERE+MNI in Table 4‐3). The mean absolute error is 5.62 years as 
shown in Table 4‐3. The dashed green lines indicate the true age±10 years. 
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For the GM, WM, and cortical regions, the GM segment data provide better MAE than 

the whole-brain data. As mentioned before, Sowell et al. have shown significant 

changes in the gray matter density of some cortical regions [44]. Therefore, using the 

GM segment data can reflect this behavior more clearly and produce better age 

estimation results. On the other hand, for the sub-cortical (SUB_CORT) and cerebellar 

(CERE) regions, the whole-brain data provide better performance. The best known 

aging-related change in those regions is an increase in CSF volume [44]. The GM 

segment data filter out the CSF segment and provides less information in the estimation 

of brain age. 

The results in Table 4-1 and Table 4-3 show that LBP-TOP can extract discriminative 

information from either unnormalized GM segment data or unmodified and 

unnormalized whole-brain images to predict brain age. The GM segment data show 

better brain age estimation results, but using whole-brain image data can also provide 

good results. Brain segmentation is still a challenging task, and the usage is relatively 

limited in clinical practice, especially when dealing with abnormal brains [138]. 

Therefore, the characteristics of LBP-TOP can extract effective features from 

unmodified and unnormalized original whole-brain images, which could be very useful 

in clinical applications. 

4.3.2 Age estimation using DTI data 

Table 4-5 and Table 4-6 show the results of DTI age estimation by combined brain 

segments. The results with separate brain regions are shown in Table 4-7. Similar to the 
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results of the T1WI approaches, the information from the cortical regions (CORT) also 

shows the best estimation accuracy. Among the DTI measurements, the MD provides 

the best performance. Being the major part of MD, the L1 data provided similar 

performance compared to MD. Fig. 6 shows the scatter plot of age estimation using 

those DTI measurements. FA, MD, and L1 show very similar age estimating patterns 

compared to the results from T1WI. The important and interesting result is that we can 

use the whole-brain DTI fiber direction (V1) to estimate brain age. Although V1 data 

produce inferior results, the data still provide a good estimation when the age is less 

than 60 years old. To the best of our knowledge, this could be the first report that subject 

age affects the neural fiber direction in the brain. LBP-TOP could be very useful to use 

the information embedded in DTI eigenvector direction. 
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Table 4‐5 Mean absolute error (MAE) of brain age estimation by LBP‐TOP and RBF SVR using 
DTI data and 2048 features in combined brain regions. 

 

The bold values denote the best MAE in the image data of the row. The underlined value shows 
the best MAE in the table. 

 

Table 4‐6 Mean absolute error (MAE) of brain age estimation by LBP‐TOP and RBF SVR using 
DTI data in combined brain regions. 

 

The bold values denote the best MAE in the image data of the row. The underlined value shows 
the best MAE in the table. 
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Table 4‐7 Mean absolute error (MAE) of brain age estimation using by LBP‐TOP and RBF SVR 
DTI data in various brain regions. 

 

The bold values denote the best MAE in the image data of the row. The underlined value shows 
the best MAE in the table. 
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Figure 4‐6 Scatter plots of age estimation of all 204 subjects using DTI measurements, FA, MD, 
L1(first eigenvalue), and V1(first eigenvector). 

This figure shows the specific age estimation of each subject from the best result in Table 4‐5. 
The  estimation models  were  trained  with  2048  features  using  various  DTI measurements, 
non‐linear atlas registration, a radius of three voxels(FA and L1) or two voxels (MD and V1), and 
combined brain regions (GM+WM+CORT+SUB_CORT+CERE+MNI in Table 4‐3). The dashed lines 
indicate the true age±10 years. 
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4.3.3 Atlas Registration 

In the estimation of age using T1WI data, linear registration and non-linear registration 

show the same performance. As shown in Table 4-1 and Table 4-3, using the linear or 

non-linear method to register the atlas information to the brain images did not make a 

big difference in the resulting MAE. The robustness of the atlas registration method 

could be an important characteristic for using LBP-TOP in clinical applications. It is 

easier to perform non-linear registration on healthy subjects, but abnormal brain 

morphology might interfere with the registration algorithm. Using LBP-TOP can 

produce sufficiently good results with linear atlas registration, extending its application 

range to many abnormal brain images. 

Although the difference is not big, using non-linear atlas registration provide better 

performance for age estimation from the DTI data compared to the results using linear 

atlas registration (in Table 4-5, the difference in the MAE is less than 0.5 years on 

average). This could be because the lower resolution of the DTI data versus the T1WI 

data leads to a slight registration bias, which might affect the distribution of the patterns. 

Moreover, lower resolution introduces a larger partial volume effect when applying the 

atlas registration results. Therefore, low resolution data could be more sensitive to 

registration bias. 

 



 

 76

4.3.4 Learned Model 

Table 4-8 shows the proportion of features from the specific brain regions used in the 

top 256 ranked features of the age estimation models. Most of the age-related changes 

originate in GM. For the DTI measurements, changes in SUB_CORT, CERE, and MNI 

played more important roles than in the GM segment data. In addition to morphological 

changes in brain structure, DTI can reveal microstructural changes in brain tissue. 

However, most age-related changes are also derived from the gray matter. The results of 

Table 4-8 also imply that although the data represent different measurements of brain 

tissue, they may be highly dependent. The changes in the DTI measurements might 

reflect changes in gray matter morphology or vice versa. Therefore, combining these 

data to build a mixed model does not greatly improve the total age estimation accuracy 

(data not shown). In studies of brain age estimation during brain maturation, only the 

information from the GM segment [107] provided similar accuracy compared to mixed 

models using signal intensity and DTI information [139]. 

 

Table 4‐8 The proportion of features from specific brain regions used in the top 256 features 
of the age estimation models. 
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4.3.5 Brain Maturation and Aging 

Table 4-9 shows the published age estimation studies using MR brain images [107, 108, 

111, 139, 140]. Our work is the only approach to extract information directly from 

unnormalized images. As shown in Table 4-9, greater error always results from wider 

age coverage. By providing the most extensive lifespan coverage, our methods produce 

high accuracy in the prediction of brain age. To estimate age using DTI data, we used 

the same database as the study by Mwangi et al. [111]. Without excluding any subjects 

in the database, we provided less estimation error by using LBP-TOP approaches. 

Moreover, because LBP-TOP extracted information from unmodified MR brain images, 

we can directly use the information of fiber spatial orientation (eigenvectors, V1) to 

predict brain age. 

 

Table 4‐9 Comparison of age estimation studies using MR brain images. 

 

Only studies  in which  the number of  test subjects  is greater  than 100 are  listed. MAE: mean 
absolute error. * denotes  the  root‐mean‐squared error. ** denotes  that  the  study used  the 
same database as the present work. 
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Despite the differences in training subject number and various methods, predicting age 

during the period of brain maturation (prior to 20 years of age) seems to be easier than 

estimating across the entire lifespan (Table 4-10). This trend is also apparent in previous 

studies [111, 139], where predicting the brain age of children is more accurate than that 

of elders. During childhood and adolescence, there seems to exist a programmed 

transformation of brain structure; therefore, we can easily trace the transformation either 

through MR anatomical images or brain neural tract changes using DTI. Although there 

are many reports of structural changes during brain aging [117, 141, 142], brain 

structure can be affected by genetic, epigenetic, and various environmental factors 

across the lifespan [143, 144]. Hence, predicting age throughout an aging period is more 

difficult. 

 

Table  4‐10 Mean  absolute  error  (MAE) of different  age  ranges of  brain  age  estimation by 
LBP‐TOP and RBF SVR using GM and DTI data  (the  results of specific subject are plotted  in 
Figure 4‐5 and Figure 4‐6). 
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On the other hand, our age estimation approaches include a feature selection step. That is, 

our models were built using the features that are most relevant to changes over the 

lifespan. Therefore, if significantly different patterns exist between maturation and aging, 

only the features that are most relevant to changes across all ages in the data were chosen 

to build the fine RBF SVR models. The model might select too many features reflecting 

maturation-related brain changes to finely estimate brain age in elders. For better 

prediction, the use of different models to estimate maturation and aging should be 

considered in the future. 

Our results using the DTI data in Figure 4-6 show an interesting pattern. Age estimation 

after 60 years old shows more error and is underestimated, especially in the models 

using the first eigenvectors (V1). The results could imply that there is no significant 

change in brain structure after the age of 60 in most of the participating subjects. The 

research of Sowell et al. [44] found a significant age effect in the dorsal frontal and 

parietal association cortices. Those effects consist of a dramatic decline in gray matter 

density between the ages of 7 and 60 with little or no decline thereafter. Their research 

could be evidence to confirm our estimated results. Our results imply that FA and MD 

might still change after the age of 60, but the fiber direction remains almost the same 

and provides no information for age estimation. 

For better estimation accuracy, several aspects should be considered. First, as shown in 

Table 4-1, Table 4-3, and Table 4-5, using a different radius in LBP-TOP affects the 

result performance. There is no guideline for choosing the radius for specific resolution 

and data types. One must test and find the best radius for each application. Second, the 
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age of the training subjects should be balanced in each age range. As shown in Figure 

4-1, the age distribution of the employed database is unbalanced, and more subjects 

were aged between 15~25 years old. This could be the reason for the slight 

over-estimation of age in children and under-estimation of age in elders. The study by 

Mwangi et al. used the same database and reported a similar trend of age estimation (Fig. 

1 in [111] ). Third, the training database should be large to properly train the estimation 

model. Studies of age estimation using facial images usually use thousands of images to 

train and build accurate models [145, 146]. While using more complex brain 3D volume 

data, more training subjects are needed to provide better accuracy. 

 

4.4 Conclusion 

In this study, we built an age estimation model as an imaging biomarker using LBP-TOP, 

a method that extracts information from unnormalized MR brain images, and support 

vector regression with T1WI or DTI measurements. The best estimated MAE using 

T1WI was 5.62 years was produced by LBP-TOP of the GM segment. We also showed 

the usability of LBP-TOP to extract age-related information from unnormalized DTI 

data. Among DTI measurements, MD provides the best MAE of 5.97 years. 

This work shows that LBP-TOP can effectively extract discriminating information from 

unnormalized MR scale images or DTI measurements. In addition to scalar images, we 

also demonstrated that the information encoded in fiber orientation derived by DTI 
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eigenvectors can estimate brain age. This reveals that LBP-TOP could be a technique 

used for quantifying and comparing fiber information in the whole brain. 
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Chapter 5  

 

 ADHD classification using Local Binary Patterns 

 

 

 

5.1 Introduction 

AttentionDeficit/Hyperactivity Disorder (ADHD) is a multifactorial and clinically 

heterogeneous disorder, which is highly prevalent in children worldwide. It is estimated 

that 510% of school-age children and 4% of adults suffer from ADHD [147]. The 

negative impact of ADHD on patients, their families ,and society make ADHD a major 

public health problem [148]. However, an objective biological tool to diagnose ADHD 

is still unavailable. Foreseeing the importance, the organizers of the ADHD-200 Global 
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Competition have collected functional and anatomical ADHD MRI datasets of an 

unprecedented scale, which are   accessible via the Internet 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/). This work provides an important 

opportunity for researchers all over the world to study brain changes in ADHD subjects 

based on numerous brain MRI images. 

Using the ADHD-200 database, we found that the brain morphological changes 

described by a 3D texture analysis can be used to distinguish children with ADHD from 

typically developing children (TDC). These structural image-based models 

demonstrated similar accuracy compared with our models based on rs-fMRI data. In the 

present study, we describe and analyze the 3D texture analysis method. 

It is not easy to construct a classification rule to distinguish ADHD from TDC subjects. 

ADHD is a complex disorder with a composite etiology [149]. No simple existing 

indicators can be used to diagnose ADHD at present. Currently, the Diagnostic and 

Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR) is most 

often used for diagnostic criteria for ADHD. Some ADHD criteria are based on 

subjective descriptions by a child’s parents or teachers and not on objective analysis 

tools. Recent research has demonstrated that using different versions of the DSM or 

disparate sources of collateral information can significantly affect the calculated 

prevalence of ADHD [147]. Moreover, both sex and age play important roles in the 

development of ADHD. These factors also increase the complexity of building a 

diagnostic tool [147]. All the aforementioned factors make it challenging to build an 

efficient classification model for ADHD. 
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Additionally, approaches based on rs-fMRI data suffer from unstable echo planar 

imaging (EPI) and involve sophisticated data preprocessing steps. For these reasons, 

building a classification model based on rs-fMRI data from multiple research sites 

involves difficult manipulations of large data sets and is not efficient. 

However, structural brain images are of high quality and are more stable with better 

resolution compared with rs-fMRI data. We hypothesized that structural brain images 

might contain more information from which to build a discriminative model. Although 

ADHD is not believed to result from morphological changes in the brain, several studies 

have shown that anatomical differences associated with ADHD can be found in MR 

images [147]. Large changes in volume and structural differences in the cerebral cortex 

have also been reported using MRI methodologies, such as anatomical MRI and 

diffusion tensor imaging [147]. Hence, we set forth to develop an ADHD classification 

method based on morphological changes. Notably, after using 3D texture descriptors to 

extract features from brain anatomical data, we found that morphological changes 

provided information that could discriminate ADHD from TDC subjects. 

In this paper, to describe brain morphology, we introduce a feature extraction method 

based on texture point of view using the isotropic local binary patterns on three 

orthogonal planes (LBP-TOP). After extracting features using LBP-TOP, we trained a 

support vector machines (SVM) model and built an ADHD classification model based 

on the extracted features. 

In the present study, we build an ADHD classification model using LBP-TOP features 
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and SVM. Different registration methods, LBP-TOP settings, and source brain image 

resolutions were utilized to test the properties of this method. A simple and efficient 

feature selection method was introduced to create a more robust model. We built 

classification models based on three basic brain tissues: gray matter (GM), white matter 

(WM), and CSF. Our results demonstrate that it is possible to build an ADHD 

classification model based on LBP-TOP features. We found that GM data provide the 

most salient information for discriminating ADHD from TDC subjects. 

 

5.2 Materials and Methods 

5.2.1 Participants 

To best demonstrate the discriminative power of LBP-TOP, only male subjects were 

used to control for the known sex-based differences in ADHD subjects [147]. Male data 

from the Kennedy Krieger Institute (KKI), the NeuroIMAGE sample (NeuroIMAGE), 

the New York University Child Study Center (NYU), Oregon Health and Science 

University (OHSU), Peking University (Peking_1, Peking_2, and Peking_3), and the 

University of Pittsburgh (Pittsburgh) were selected for analysis in this study. We ruled 

out using the dataset from Washington University because it was not in the test set of 

the ADHD-200 global competition and no ADHD subject in it. Five subjects (0010016, 

0010027, 0010055, 0010098, and 0010127) in the NYU dataset were excluded because 
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no anatomical data existed for them. Subject 0010013 in the NYU dataset was also 

excluded because some of the brain in the anatomical image was cropped during the 

face removal process. ADHD hyperactive-type subjects were excluded due to the small 

number of such subjects in the dataset. 

Therefore, the ADHD subjects in this study were of both the ADHD combined type and 

the ADHD inattentive type. A total of 436 male subjects (210 ADHD subjects and 226 

TDC, mean age=12.12 ± 2.95) were used in this study. The distributions of subjects by 

age and by type of ADHD are shown in Table 5-2 and Table 5-3. A list of all subjects 

can be found in Supp. Table 5-1. The detailed phenotype of each subject can be found 

on the website for the ADHD-200 global competition 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/). 

5.2.2 Diagnostics of ADHD 

Table 5-1 shows a brief summary of the diagnosis criteria used by each site. The sites 

used different ADHD criteria, intellectual evaluations, and sources of collateral 

information. 
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Table 5‐1 A brief summary of the different diagnostic criteria used by each site. 

 

Abbreviations are as follows: C‐DIS‐IV, Computerized Diagnostic Interview Schedule IV; CPRS‐LV, 
Conners'  Parent  Rating  Scale‐Revised,  Long  version;  CPRS‐R,  Conners'  Parent  Rating 
Scale‐Revised, Long Form; CPTRS‐III, parent and  teacher Connors' Rating Scale, Third Edition; 
DuPaul, DuPaul ADHD Rating  Scale  IV; DSM‐IV, Diagnostic  and  Statistical Manual of Mental 
Disorders, Fourth Edition; KSADS‐I, Kiddie Schedule for Affective Disorders and Schizophrenia; 
KSADS‐PL,  Schedule  of  Affective  Disorders  and  Schizophrenia  for  Children  ‐  Present  and 
Lifetime Version; WASI, Wechsler Abbreviated Scale of Intelligence; WISCC‐R, Intelligence Scale 
for  Chinese  Children‐Revised;  and WISC‐IV, Wechsler  Intelligence  Scale  for  Children,  Fourth 
Edition.  Details  can  be  found  on  the  ADHD‐200  global  competition  website 
(http://fcon_1000.projects.nitrc.org/indi/adhd200/). 
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Table 5‐2 Summary of the ADHD and TDC subjects used in this study. 

 

Abbreviations  are  as  follows:  TDC,  typically  developing  children;  KKI,  the  Kennedy  Krieger 
Institute; NeuroIMAGE,  the NeuroIMAGE  sample; NYU,  the New York University Child Study 
Center;  OHSU,  Oregon  Health  and  Science  University;  Peking_1,  Peking_2,  and  Peking_3, 
Peking University; and Pittsburgh, the University of Pittsburgh. 

 

Table 5‐3 The age distribution of subjects used in this study. 

 

TDC, typically developing children. 
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5.2.3 Data preprocessing 

An overview of the data analysis procedure is shown in Figure 5-1. The details of each 

step are described below. 
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Figure 5‐1 Overview of the data analysis procedure.   

Preprocessing  involves  three  steps. First, all  raw data are  transformed  into a 1 mm  isotropic 
volume using the rigid body transformation as performed by FLIRT with 6 degrees of freedom 
(6‐DOF). Second, brain  images are registered to standard MNI152 space by  linear  (FLIRT with 
9‐DOF and FLIRT with 12‐DOF) and non‐linear  (ART)  registration methods. To achieve better 
registration  results,  the  registration  parameters  were  obtained  by  transforming  the 
skull‐stripped brains to the standard MNI152 brain template. Third, we computed the LBP‐TOP 
histograms based on the registered images with various spatial context information (i.e., brain 
mask, AAL, and CC200). Following these steps, classification models can be trained by directly 
using the resulting histogram or by using a subset of data after applying the feature selection 
algorithm.  ( The major process  flow  is denoted by  the  thick  line. The minor process  flow  is 
denoted by the thin line. The square boxes are the major steps showing how to extract features 
from raw data. The round boxes are the parameters or information needed for the process flow. 
Texts in gray color indicate the methods or the subtypes the process step used. ) 
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Registration methods 

Linear registrations with 9 degree of freedom (9-DOF) and 12-DOF were performed 

using the linear multimodality registration method developed by Oxford FSL FLIRT 

[123, 130]. All images were transformed to standard MNI152 space by FLIRT with 

6-DOF (rigid-body transformation). The results of FLIRT with 6-DOF were then 

linearly transformed by FLIRT with 9-DOF (rigid-body + independent scaling). The 

results of FLIRT with 9-DOF were also linearly transformed by FLIRT with 12-DOF 

(rigid-body + scales + skews). Non-linear normalization procedures were performed 

using the automated registration tool (ART). ART was developed by Ardekani et al. 

[147] and can be downloaded from http://www.nitrc.org/projects/art/. Klein and 

colleagues demonstrated that ART provides better efficiency and consistency than other 

non-linear registration methods [147]. 

3D skull striping 

To obtain better registration results, skull stripping was performed prior to using the 

registration algorithm, using the 3dSkullStrip algorithm [125] developed by AFNI [150]. 

3dSkullStrip has proven to be a relatively robust skull-stripping algorithm [147]. 

However, it is not a perfect tool. Incomplete skull stripping can result in a loss of 

information from some brain regions. Hence, we applied the transformation parameters 

for skull-stripped brains to the original whole-brain images to create the input for the 

LBP-TOP algorithm. 
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Spatial context information and brain parcellations 

To examine different spatial context information, we performed three separate 

parcellations in this study. 

First, a simple brain mask in MNI152 space, as provided by FSL, was used to compute 

the total histogram of the whole-brain volume. Second, to introduce spatial context 

based on brain anatomical information, the widely used automated anatomical labeling 

(AAL) template with 116 regions was used [151]. Finally, we also used an atlas derived 

from functionally parcellating the resting state data [152]. A 200 ROI version with 190 

regions of spatially constrained parcellation (CC200) was used to introduce the spatial 

context information based on rs-fMRI data. The CC200 functional parcellation template 

made for the competition was kindly provided by Cameron Craddock. Details of the 

construction of CC200 have been previously published [152] and can also be found on 

the Athena preprocessing strategies page of the ADHD-200 preprocessed data website: 

http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline. 

Computation of LBP-TOP 

The LBP-TOP algorithm was implemented using Java to build the LBP-TOP map from 

the structural image. All resulting LBP-TOP histograms were mapped for the detection 

of uniform patterns. Preliminary testing (not shown) demonstrated that only the 

LBP-TOP with eight neighbors provided sufficient information to classify ADHD 
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within a reasonable processing time. Therefore, only tests with eight neighbors are 

shown here. 

Classifiers 

A k nearest neighbor classifier (KNN, K=1) was used to show the baseline of the 

discriminative power of LBP-TOP. Moreover, an efficient and widely used classifier, 

SVM, was used in this work [97]. SVM maps training data into high-dimensional 

feature space to find the separating hyperplane with the maximal margin. Due to the 

large feature size of LBP-TOP results, we used linear SVM for greater efficiency. 

LIBLINEAR [100] was chosen for use because of its optimization for linear SVM. 

Feature selection 

After introducing special context information, the LBP-TOP histogram bins become an 

over-completed feature set. To build a more efficient and robust classification model, a 

feature selection method is needed. Moreover, by only selecting the most important 

features, we can combine features from various points of view. For example, we can 

combine features from different LBP-TOP results based on dissimilar radii. 

Feature selection based on the linear SVM has proven to be efficient and useful for gene 

selection, document classification and many other applications [147]. 

For any test subject x , the decision function of linear SVM is 
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P x sign x b                       (5‐1) 

where x is the feature vector, b is a constant, and w is the weight vector. Each value of 

w denotes the weight of each feature. The larger the absolute value of wj, the more 

important the jth feature is in deciding the result.  

After training a linear SVM model, the w in (2-1) can be used as a relative importance 

index. Therefore, we can build a simpler model using the top n important features. 

For combining features from different point of views, we first trained a linear SVM 

model using feature groups and ranked features by the absolute weights of the model. 

Only half of the features remained. Then, we combine these features with the features 

from a second feature group and trained another linear SVM model. Similarly, only half 

of the features were chosen to be merged into the next feature group. Using this iterative 

procedure, we combined various feature groups and found the most important features 

among these feature groups. Algorithm 5-1 shows steps of this iteration. Given a set of 

N  subjects and K  different feature groups, for each training dataset of our 10-fold 

cross-validation, we use Algorithm 5-1 to select and combine the most important 

features. 
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Algorithm 5‐1 The algorithm of feature selection. 

 

*Due  to  the  small number of  features  revealed when  analyzing  the whole‐brain  region, we 
simply combined all the features and do not drop the last half of them. 

 

 

Brain segmentation 

FSL's automated segmentation toolbox (FAST) was used to segment raw brain images 

into gray matter (GM), white matter (WM) and CSF [123, 124]. Figure 5-2 shows an 

example of a resulting probability map. The three tissue probability maps were analyzed 

following the same procedure described in Figure 5-1. 



 

 96

 

Figure  5‐2  Examples  of  brain  probability maps  based  on  gray matter  (GM), white matter 
(WM), and CSF. 

 

 

Reference models based on rs-fMRI features 

To compare the results of discriminative models based on rs-fMRI data, we used a 

simple and easily repeatable approach. Briefly, for the preprocessing of rs-fMRI data, 

we used the extracted timecourses from the Athena preprocessed data, which can be 

download from the ADHD-200 Preprocessed Data website. Details of the specific 

preprocessing steps can be found on the website. 

The timecourses of the AAL and CC200 parcellations used in LBP-TOP study were 

chosen for comparison. The extracted timecourses files, 

ADHD200_AAL_TCs_filtfix.tar.gz and ADHD200_CC200_TCs_filtfix.tar.gz, can be 

found on the ADHD-200 Preprocessed Data website. The correlation coefficients 

between each pair of regions were computed based on their extracted timecourses. For 
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example, there are 116 regions in the AAL parcellation. Therefore, 6670 correlation 

coefficients can be computed based on the 6670 ROI pairs. All the correlation 

coefficients were used as features for the linear SVM ADHD classifier. The results of 

each model were validated using the same cross-validation settings used in the 

LBP-TOP studies. As described on the ADHD-200 Preprocessed Data website, the 

nuisance variance for the extracted time series of each region was removed, with or 

without use of a band-pass filter (0.009Hz ~ 0.08Hz), and blurred with a 6-mm FWHM 

Gaussian filter. Both time series, with or without filtering by a band-pass filter, were 

tested. 

Evaluation 

All tests in this study were evaluated by 10-fold cross-validation. We randomly 

partitioned the 436 subjects into 10 subgroups. For each step of cross-validation, one 

subgroup was used as a test data set, and the remaining nine subgroups were pooled as a 

training data set. After 10 cross-validations, the test results of all 10 subgroups were 

combined to build the accuracy of the estimation of each model. To facilitate 

comparison of the results, the same 10-fold cross-validation set was used in all 

evaluations. 

We used grid searching to find the best penalty parameter C for linear SVM for each 

training dataset. That is, another 10-fold cross-validation was applied to each training 

dataset with several candidate values of C, and we chose the parameter C that led to the 

highest accuracy. 



 

 98

While performing feature selection, the assignment of optimal feature weights can be 

achieved when the optimal value of C is chosen during each round of cross-validation. 

After that, we evaluated the effect of feature number using each testing dataset. Then, 

we combined the results of 10 test dataset to build the  accuracy of different feature 

numbers. 

Statistical tests 

To show the classifier has learned a structure in the data, we compute the p-value 

against the null distribution using permutation tests [153, 154]. The null hypothesis of 

permutation test is that the labels are independent of the features. Therefore, one can 

learn almost same accuracy using random labeled data set. By randomly permuting the 

labels of the data set, permutation tests can measure how likely the observed accuracy is 

learned by chance. The permutation-based p-value is defined by 

p
∈ : , ,

                       (5‐2) 

where  is the original labeled data, ,  denotes the error of classifier  learned 

from , and  is a set of  randomized versions  of  [153]. In this work, 

,  was estimated by same 10-fold cross-validation with other tests. One hundred 

randomized sets of each test were used to estimate the p-values (k = 100). 

To compare different approaches of this work, McNemar's tests were applied to 

compute p-values between two approaches [155, 156]. While comparing two different 
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approaches, confusion matrices of each approach were estimated by same 10-fold 

cross-validations. Then we compute the p-values of McNemar's tests using R [157]. 

 

5.3 Results 

5.3.1 LBP-TOP 

Table 5-4 shows the 10-fold cross-validation results for different radii (1 mm, 2 mm, 

and 3 mm) for the LBP-TOP, various parcellations, linear registrations, and non-linear 

registrations, respectively. Table 5-4 (a) shows the baseline accuracy which LBP-TOP 

can provide with the simple 1NN classifier. Comparing the results of Table 5-4 (a) and 

Table 5-4 (b), we can find the linear-SVM classifiers can provide better accuracy than 

1NN classifiers. Moreover, some of the properties changed while using different 

classifiers. The LBP-TOP with a radius equal to 3 mm provided better accuracy than the 

LBP-TOP for the other two radii in most cases while using linear-SVM classifiers. The 

same properties cannot be found while using 1NN approaches. However, there are 

nonsignificant between different radii in NcNemar’s test (Table 5-7). As expected, brain 

data with ART non-linear registration showed the highest accuracy in almost all cases, 

especially while using 1NN as classifiers. Notably, using linearly registered brain data did 

not greatly reduce accuracy. After apply NcNemar’s test, there is no significant difference 

between registration methods in any cases with linear-SVM classifiers. And only few 
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cases show significant difference between registration methods while using 1NN 

approaches (Table 5‐8).  

Although the resulting feature sizes varied widely (from 177 to 33630 features), 

accuracy across disparate parcellations was not greatly affected. Models using a 

histogram computed from the whole-brain region had higher accuracies than models 

based on other parcellations. Only considering the results of the AAL and CC200 

parcellations, the CC200 showed better results most often. This finding may be the 

result of the greater number of utilized features or the greater number of homogeneous 

areas in the CC200 parcellation. 

The results of reference models based on rs-fMRI features are shown in Table 5-4. 

These data indicate that simple approaches to analyzing rs-fMRI data do not 

discriminate as well as models based on structural information. The McNemar’s test 

between structural features and rs-fMRI features also show significant difference in 

most cases (Table 3). Based on our experience in the ADHD-200 Global Competition, 

different preprocessing settings can affect the resulting accuracy. Moreover, combining 

the results of different rs-fMRI approaches can provide better discriminative power. The 

results of these simple approaches can be viewed as the baseline of discriminative 

power that rs-fMRI data can achieve. 
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Table 5‐4 (a, b) The ADHD‐TDC classification accuracy of models based on LBP‐TOP features 
with  different  registration methods,  parcellation,  and  radius  of  LBP‐TOP,  using  1NN  and 
linear‐SVM classifiers alternatively. 

 

 

The highest accuracy for each parcellation is denoted by the bold number. Abbreviations are as 
follows: R1, R2, and R3, LBP‐TOP radius  in mm; DOF9, and DOF12,  linear registration with 9, 
and 12 degree of freedom, respectively; ART, non‐linear registration performed by Automated 
Registration  Tool;  AAL,  automated  anatomical  labeling  template;  and  CC200,  spatially 
constrained  parcellation  based  on  rs‐fMRI.  (c,  d)  The  ADHD‐TDC  classification  accuracy  of 
models based on simple rs‐fMRI features, using 1NN and linear‐SVM classifiers alternatively. 
Abbreviations are as follows: BF, rs‐fMRI data filtered by a bandpass filter (0.009Hz ~ 0.08Hz); 
and non‐BF, rs‐fMRI data not filtered by a bandpass filter. The sensitivity, specificity, and areas 
under the ROC curve (AUC) of this table can be found in Table 5‐5 and Table 5‐6. 
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Table 5‐5 Sensitivity, specificity, and areas under the ROC curve (AUC) of (a) in Table 5‐4. The 
ADHD‐TDC  classification  accuracy  of  models  based  on  LBP‐TOP  features  with  different 
registration methods, parcellation, and radius of LBP‐TOP, using 1NN. 

 

Abbreviations are as follows: R1, R2, and R3, LBP‐TOP radius in mm; DOF9, and DOF12, linear 
registration  with  9,  and  12  degree  of  freedom,  respectively;  ART,  non‐linear  registration 
performed by Automated Registration Tool; AAL, automated anatomical labeling template; and 
CC200, spatially constrained parcellation based on rs‐fMRI. The AUC was calculated using [106] 
and the positive subject is the TDC subjects. 
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Table 5‐6 Sensitivity, specificity, and areas under the ROC curve (AUC) of (a) in Table 5‐4. The 
ADHD‐TDC  classification  accuracy  of  models  based  on  LBP‐TOP  features  with  different 
registration methods, parcellation, and radius of LBP‐TOP, using linear‐SVM classifiers. 

 

Abbreviations are as follows: R1, R2, and R3, LBP‐TOP radius in mm; DOF9, and DOF12, linear 
registration  with  9,  and  12  degree  of  freedom,  respectively;  ART,  non‐linear  registration 
performed by Automated Registration Tool; AAL, automated anatomical labeling template; and 
CC200, spatially constrained parcellation based on rs‐fMRI. The AUC was calculated using [106] 
and the positive subject is the TDC subjects. 
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Table  5‐7  p‐values  of McNemar’s  test  of  1NN models  and  linear‐SVM models  based  on 
LBP‐TOP features between different radii (R1, R2, R3). 

 

 

The  p‐values  without  under  lines  denote  the  accuracies  of  R3  are  bigger  than  R2,  the 
accuracies  of  R3  are  bigger  than  R1,  and  the  accuracies  of  R2  are  bigger  than  R2.  The 
underlined  p‐values  show  the  inverse  relationship.  Bold  p‐values  correspond  to  significant 
results (p‐value < 0.05). DOF9, and DOF12, linear registration with 9, and 12 degree of freedom, 
respectively;  ART,  non‐linear  registration  performed  by  Automated  Registration  Tool;  AAL, 
automated anatomical  labeling template; and CC200, spatially constrained parcellation based 
on rs‐fMRI. 
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Table  5‐8  p‐values  of McNemar’s  test  of  1NN models  and  linear‐SVM models  based  on 
LBP‐TOP features between different registrations. 

 

The  p‐values without  under  lines  denote  the  accuracies  of  ART  are  bigger  than  DOF9,  the 
accuracies of ART are bigger than DOF12, and the accuracies of DOF12 are bigger than DOF9. 
The underlined p‐values show the inverse relationship. Bold p‐values correspond to significant 
results (p‐value < 0.05). DOF9, and DOF12, linear registration with 9, and 12 degree of freedom, 
respectively;  ART,  non‐linear  registration  performed  by  Automated  Registration  Tool;  AAL, 
automated anatomical  labeling template; and CC200, spatially constrained parcellation based 
on rs‐fMRI. 
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Table  5‐9  p‐values  of McNemar’s  test  of  linear‐SVM models  based  on  rs‐fMRI  data  and 
LBP‐TOP features using non‐linear registration. 

 

The p‐values without under  lines denote  the accuracies of LBP‐TOP  features are bigger  than 
rs‐fMRI data, and  the accuracies of  rs‐fMRI data  filtered by a bandpass  filter are bigger  than 
rs‐fMRI data not filtered. The underlined p‐values show the inverse relationship. Bold p‐values 
correspond  to  significant  results  (p‐value  <  0.05).  Abbreviations  are  as  follows:    AAL, 
automated  anatomical  labeling  template; CC200,  spatially  constrained parcellation based on 
rs‐fMRI; BF, rs‐fMRI data filtered by a bandpass filter (0.009Hz ~ 0.08Hz); and non‐BF, rs‐fMRI 
data not filtered by a bandpass filter. 
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5.3.2 Permutation test of basic models 

The results of permutation test in Table 5-10 shows each approach can learn the class 

structure in the data. Classifiers based on LBP-TOP features show more significant than 

approaches based on rs-fMRI data. 

 

Table 5‐10 Permutation test of some results in Table 5‐4 

 

The p‐values are calculated over 100 randomized sets of each test. The error of each set was 
estimated  by  same  10‐fold  cross‐validation  of  data.  Bold  p‐values  correspond  to  significant 
results (p‐value < 0.05). 
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5.3.3 Feature selection 

The feature selection results with the ART non-linear registration methods are shown in 

Table 5-11. When introducing spatial context information (the AAL and CC200 

parcellations), only a few features are needed to build a sufficiently accurate 

classification model. In most cases, using the same number of features but combining 

features from all the radii of LBP-TOP (R1+R2+R3) improves the accuracy of the 

resulting model. After combining all features based on different parcellations and 

various radii, we achieved a model with greater accuracy compared with the AAL or 

CC200 parcellations alone. However, the accuracy of the combined model did not 

surpass that of the model based on the histogram of the whole-brain region. Figure 5-3 

shows the test results from using different feature groups based on AAL parcellation. 
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Figure  5‐3  Feature  selection  results  of  ADHD‐TDC  classification  accuracy  based  on  AAL 
parcellation and the ART non‐linear registration method. 

R1,  R2,  and  R3  denote  the  LBP‐TOP  radii  in mm.  R1+R2+R3  denotes  the  combination  all 
features  from  R1,  R2,  and  R3.  All  combine  refers  to  the  combination  of  all  features  from 
different parcellations (i.e., brain mask, AAL, and CC200) and various radii. 

 

5.3.4 Resolutions of brain images 

Table 5-12 shows the accuracy of models based on various brain image resolutions. 

Models utilizing higher resolutions usually had better accuracy. However, models based 

on the CC200 parcellation had greater accuracy when using 3x3x3 mm resolution. 

Nevertheless, higher resolution data generally provided more information for the 

discrimination of ADHD from TDC subjects. 
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5.3.5 Tissue types 

To determine the most discriminative tissue type within the brain, models based on GM, 

WM, and CSF probability maps were tested. These results are shown in Table 5-13. In 

most cases, the structural differences found in the GM data provided the highest 

discriminative power for separating ADHD from TDC subjects. The McNemar’s test 

between different tissue types do not show significant difference while using whole 

brain and AAL parcellations, but show significant difference in some cases using 

CC200 parcellations (Table 5-14). 

 

 

Table 5‐13 The ADHD‐TDC classification accuracy of models based on the probability map of 
different brain tissues using the ART non‐linear registration method. 

 

The highest accuracy obtained  for each  resolution  is noted  in bold. The highest accuracy  for 
each row is underlined. Abbreviations are as follows: R1, R2, and R3, the LBP‐TOP radii in mm; 
AAL, automated anatomical  labeling template; and CC200, a spatially constrained parcellation 
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based on rs‐fMRI. 

Table 5‐14 p‐values of McNemar’s test of results in Table 5‐12 

 

The p‐values without under  lines denote  the accuracies of GM are bigger  than CSF and  the 
accuracies of GM are bigger than WM. The underlined p‐values show the inverse relationship. 
Bold  p‐values  correspond  to  significant  results  (p‐value  <  0.05).  DOF9,  and  DOF12,  linear 
registration  with  9,  and  12  degree  of  freedom,  respectively;  ART,  non‐linear  registration 
performed by Automated Registration Tool; AAL, automated anatomical labeling template; and 
CC200, spatially constrained parcellation based on rs‐fMRI. 

 

5.4 Discussion 

The prevalence of ADHD around the world is highly heterogeneous. Polanczyk et al. 
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[147] have shown that this variability may be explained primarily by the use of differing 

ADHD diagnostic criteria and collateral sources of information. Additionally, 

geographic location also plays a role in the variability of ADHD prevalence around the 

world [147]. 

Based on the research of Polanczyk et al., estimations of ADHD prevalence rates using 

the DSM-III-R or ICD-10 criteria are significantly lower than when using other criteria, 

such as those of the DSM-IV. Additionally, the use of different collateral sources of 

information, such as parents, teachers, subjects, the best-estimate procedure, the “and 

rule (parent and teacher),” or the “or rule (parent or teacher),” can also significantly 

affect the estimate of ADHD [147]. 

The ADHD-200 global competition dataset was pooled from research sites all over the 

world. The organizers of the competition went to great lengths to maintain the 

consistency of the dataset. Nevertheless, for various historical reasons, including the use 

of different benchmarks at each site, it is difficult to use the same procedure to diagnose 

ADHD around the world (Table 5-1). However, the worldwide diagnosis of ADHD 

reflects an objective reality from which ADHD classification models can be built and 

evaluated. 

While constructing classification models based on machine learning approaches, the 

inconsistency of diagnostic criteria may introduce so-called class label noise, which 

may seriously diminish accuracy. Class label noise may be the most important 

contributor to low accuracy in the ADHD-200 Global Competition. 
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While constructing our ADHD diagnostic tool based on brain images, we found it 

difficult to compare the rs-fMRI data from different research sites due to differences in 

image resolution, slice thickness, time points utilized and image quality. Moreover, the 

complex preprocessing steps of fMRI data analysis also introduce hardships that can 

affect the results. Finding the optimal preprocessing strategy to provide the most useful 

information for building a classifier is a time-consuming process. Therefore, we chose 

anatomical data rather than rs-fMRI data to mine useful information from brain 

morphological changes. The resulting classification model based on morphological 

changes was found to be competitively accurate in discriminating ADHD from TDC 

subjects. Our results demonstrate that using features based on LBP-TOP data to train the 

linear SVM can result in greater discriminative power than using features based on 

rs-fMRI data. The resulting accuracies based on LBP-TOP features are better than those 

based on rs-fMRI data (Table 5-4). 

5.4.1 Robust to registration method 

The robustness of the registration methods when using LBP-TOP features with ADHD 

data is notable. Although the model based on the ART non-linear registration method 

proved to be the most accurate, the models based on linear registrations (FLIRT with 

9-DOF and 12-DOF) also performed well in our tests (Table 5-4). This finding 

demonstrates the stability of the LBP-TOP to registration methods. Due to the large 

interindividual variability of the human brain, the registration step of MRI brain data 

analysis is both critical and challenging [61]. Aside from the linear registration method, 

more than a dozen non-linear registration methods have been developed in recent years, 
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but a perfect registration method does not yet exist [147]. 

However, after performing a perfect registration, no structural differences should exist 

between subjects. Therefore, a good index for morphological changes should not be 

based on perfect non-linear registration methods. This property of LBP-TOP might 

provide a simple and efficient way to compare brain morphology with linearly 

registered brains. 

5.4.2 Global effects of ADHD? 

To introduce different spatial context information, we utilized several parcellation 

strategies in this study. Unexpectedly, the models using only the distribution of 

whole-brain features usually demonstrated the highest accuracy in our tests (Table 5-4, 

Table 5-9, and Table 5-10). Adding parcellation information did not improve the 

resulting models. 

Our results imply that morphological changes in the ADHD brain may affect the 

whole-brain texture distribution. Further research should be performed to confirm these 

findings. Theoretically, introducing spatial context information can provide higher 

accuracy if there are significant structural brain changes in several brain regions. 

Published structural imaging studies, summarized in two meta-analyses [158, 159], have 

failed to find robust brain changes between ADHD and control subjects. Meta-analyses 

can help in identifying brain regions that may be the most abnormal in ADHD subjects. 

However, it is difficult to build a robust discriminative model of ADHD based only on 

such selected regions. 
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5.4.3 Combining models using feature selection 

Consider the results of 1NN and linear-SVM in Table 5-4. 1NN uses features as they 

have same weights, whereas the linear-SVM assigns various weights to them. The 

results might imply that, with linear registration, use all features with same weight 

(1NN) cannot provide good results. However, we can make some features more 

important to make a better classifier (linear-SVM). Only few features might be needed 

to build a sufficient good classifier in this problem. 

To find the most important features and to improve the robustness and efficiency of our 

model, we used linear-SVM to rank the overall extracted features, and we made an 

effort to choose the most important features from which to build a better classification 

model. Moreover, using the feature selection method, we combined models from 

different point of view to construct a more general model. The results of our tests show 

that it is useful to combine features to build better models (Table 5-11 and Table 5-12). 

Moreover, we only need few features to build sufficient good classifiers (Table 5-11). To 

build a simpler and more robust model, we combined different LBP-TOP features to 

provide better accuracy. However, when dealing with too many features, the over-fitting 

effect came into play due to the insufficient number of subjects in this study (436 

subjects). In most cases, greater accuracy was not gained by combining more than 4096 

features. 

5.4.4 Most discriminative tissue 

To determine the most useful brain tissue for discriminating ADHD from TDC subjects, 
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models based on GM, WM, and CSF probability maps were tested. These results are 

shown in Table 5-13. In most cases, GM-based structural difference provided the 

greatest discriminative power. 

LBP-TOP extracted morphological data based on the distribution of various curvatures, 

edges, dots, corners, and the content size of the specific region (Figure 5-2). Most of this 

information may come from the complex patterns of cortical folding, which essentially 

dominates GM morphology. Therefore, we suggest that the primary morphological 

information utilized by our model may come from gyrification patterns. Wolosin et al. 

have previously shown different folding indices for ADHD compared with control 

subjects [160]. 

 

5.5 Conclusion 

In this study, we approached the ADHD classification problem by working to find a 

simple method that could provide sufficient discriminative power. We determined that 

information derived from texture analysis of brain morphology could be used to 

distinguish ADHD from TDC subjects. An approach based on structural images is 

simpler than one based on functional data, and the data are easier to obtain making such 

an approach potentially more useful in the clinical environment. Our results 

demonstrate that structural brain data may be another treasure-trove in the ADHD-200 

global competition dataset. 
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Although the accuracy of the models presented in this study are far from being useful 

clinically, texture difference-based feature extraction may point the way toward a simple 

and efficient method for determining morphological brain changes. We have 

demonstrated that LBP-TOP is a good candidate to build a discriminative classification 

model based on structural brain changes. 

5.6 Supplements 

Supp. Table 5‐1 List of all subjects. 
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Abbreviations  are  as  follows:  dx,  diagnosis;  0,  typically  developing  children  (TDC);  1,  ADHD 
combined‐type;  3, ADHD  inattentive‐type;  KKI,  the  Kennedy  Krieger  Institute; NeuroIMAGE, 
the NeuroIMAGE  sample; NYU,  the New  York University  Child  Study  Center; OHSU, Oregon 
Health  and  Science  University;  Peking_1,  Peking_2,  and  Peking_3,  Peking  University;  and 
Pittsburgh, the University of Pittsburgh. 
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Chapter 6  

 

Discussion, Conclusion, and Future Works 

 

6.1 Discussion 

6.1.1 Structural MRI 

In this study, we used LBP-TOP as a tool to extract information from T1WI and DTI 

(Chapter 4 and Chapter 5). Results showed LBP can perform on both types of brain MR 

images and LBP histogram can be used to construct either classification (Chapter 5) or 

regression models (Chapter 4). There are two important properties of LBP-TOP in 

structural MRI applications. 

First, simple and efficient, computing the LBP histograms of specific brain region is 

very simple and efficient. The algorithm is nothing more than comparing the scale value 

of each voxels and its neighbors. Simple and efficient is very important in big data 
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approaches. We only considered hundreds of subjects in this study, but for real 

applications, using thousands or even millions of subjects as training data could build 

more accurate results. Therefore, with limited computational resource, a simple and 

effective information extraction method is more useful than a complex one. Moreover, 

as wrote by Google's artificial-intelligence guru, Peter Norvig, “Simple models and a lot 

of data trump more elaborate models based on less data.” [2], we can expect the results 

accuracy of LBP is better than other complex methods. 

Second, robust to registration method, as we showed in 5.4.1 and Table 5-4, LBP-TOP 

is robust to the registration method used for normalizing original brain MR images to 

standard templates. Because LBP only considers the relative value of the eight 

neighbors and central voxel, this pattern is naturally robust to slight changes of rotation 

or scaling. More interesting, based on this property of LBP, we tried to apply LBP-TOP 

on brain MR images without registration, that is, the unnormalized brain images. 

Results in Chapter 4 show that LBP-TOP can effectively extract useful information 

from unnormalized brain images and provide excellent performance (Table 4-9). This 

property is very important for LBP in the brain MR image applications because the 

steps of registration are still critical and almost impossible to verify [61] [147]. A 

method without registration is more useful for comparing data across centers all over 

the world. 

6.1.2 Different from Traditional Approaches 

Based on the proposed methods, binary pattern extract structural information from 
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different brain area and then the machine learning algorism combine the information to 

construct a discriminative model. The process is quite different from traditional 

approaches, such as VBM. While performing VBM, we use the statistical analysis to 

construct statistical inference based on normalized and smoothed gray matter 

concentration extracted from brain images. The inference based on stochastic data 

model shows which part of brain area is more "important" in mental disorders. Those 

studies are good for find starting points of further research. It is hard to build 

discriminative rules in clinical use based on the results of those studies.  

The proposed methods used machine learning algorithms to combine related factors and 

construct discriminative models to predict or estimate. There is no underlying data 

model behind this approach. The inference is based on the information provided from 

the training data, so called data driven approaches. Moreover, the results are ready to 

use in clinical. Therefore, proposed methods are more useful to build automatic 

computer-aided diagnosis tools in clinical environment. 

Over the past decade, most researchers can only collect few subject data (dozens or 

hundreds of subjects). Traditional approaches are suitable for few sample size. However, 

the results from small subjects are usually hard to be constant across studies when apply 

on multifactorial and heterogeneous disorders, such as schizophrenia [161, 162]. In big 

data era, it is possible to get much more data than traditional approaches. Therefore, use 

machine learning and simple information extraction methods to build ready to used 

models is more reasonable and useful. Currently, it is technologically possible to pool 

all digitalized brain MR data stored in hospitals all over the world. Actually, many 
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institutions are trying hard to accomplish this dream in the future (see 1.1.3). Applying 

machine learning approached on millions of brain MR images will become more and 

more important in the future.  

6.1.3 Advantages of Using Binary Patterns and Machine Learning 

Approaches 

Machine learning algorithms are designed for solve complex problems with multiple 

contributing factors. Therefore, the introduced method in this study is best suit for 

analyzing multifactorial and heterogeneous disorders, such as ADHD, schizophrenia, 

autism, and so on. Moreover, it is also useful in analyzing the continuous process 

combined with related effects, such as brain maturation and aging.  

There are three advantages of using LBP-TOP to extract information from structural 

brain MR images: First, because of the robustness of LBP-TOP to the registration 

methods of images and only considering the relative value, LBP-TOP is good for 

analyzing data pooled from various data centers. Second, as shown in previous chapters, 

the rank of the features of learned models can be used to valuate further research 

directions. Third, the proposed methods build a ready to used model as the training 

result, which could be used as the screening step after each image acquisition in clinical 

usage. 

6.1.4 Knowledge Discovery 

In all three tests of this study, we tried to identify the most important features in each 
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learned model. Many top ranked brain areas based on the models can also be found in 

the literature. However, if we only use one of those brain areas as the only one input 

features, the learned results never provide good performance. It is an expected result, 

because the target problems analyzed in this study are multifactorial brain disorders or 

heterogeneous processing. 

6.1.5 Limitations 

Limitations of Binary Patterns Approaches 

In this study, we used LBP for structural MRI and build several functional connectivity 

binary patterns for rs-fMRI. Those methods convert the information embedded in the 

original data to a simple pattern distribution. Although we have shown the usability of 

this approach, there are several limitations. 

First, the pattern distribution is good for machine learning methods to learn a 

discriminated model but bad for human beings to understand the resulted models. 

Therefore, we can only find the rank of the discriminated area in the brain based on the 

learned models. It is hard to figure out why or how the model uses those patterns to 

build a model.  

Second, binary patterns are a simplified form of the information embedded in original 

data. While building binary patterns, we dropped much information. We only considered 

the interactions of pixels in three orthogonal planes while constructed the LBP-TOP. 
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More complex forms might introduce more useful information to build better 

discriminated models. However, more complex forms might also introduce more noise 

and provide worse models. Following the words wrote by Google artificial-intelligence 

guru Peter Norvig [2], binary pattern approaches could be better for big data 

applications than statistical analysis in small groups. 

Limitations of Big Data Approaches 

One of the major shifts of mindset in big data era is to use almost all the data rather than 

using a small number of sample size [22]. Though we used hundreds of subjects to build 

the discriminated models in this study, it is far from the total number of human beings. 

Moreover, as we showed in this study, age and sex affect the brain structure. Much more 

data and more attributes of each subject can help the machine learning algorithms to 

construct better models. In the current state, the number of the used subjects is the most 

important limitation of big data approaches. Our studies here only showed the 

possibility and usability of using binary patterns to build discriminated models. For real 

clinical usage, much more data from different hospitals and research centers is needed.  
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6.2 Future Works 

6.2.1 Normal Ranges as Image Biomarkers of Brain Images 

Besides using the binary patterns as the input features for machine learning methods, the 

quantified and compared distances can be computed based on different histogram [163] . 

We can use those distances to summarize the information to simpler medical indexes 

based on brain structural MRI data. Moreover, we can build the “normal range” of 

structural MRI based on that index. A simpler index can be better understood and used as 

an image biomarker in clinical environment for quickly screening and be easily 

combined with the information from other medical examination results.  

However, based upon the results in Chapter 4, age does highly affect the brain structure. 

The index can be more useful and reasonable in same-age groups. Therefore, the 

Alzheimer's disease neuroimaging initiative (ADNI) database [164] could be a good 

target to test this idea. We will try to design and evaluate simple medical index based on 

distances of binary patterns approaches to evaluate Alzheimer's disease and test it using 

ADNI database. 

6.2.2 Combine Information for Multivariate Approaches 

Although only using the brain MRI data can acquire good accuracy in several 

applications. Brain MR image is a small part of patient information. While learning 

classification models, the result accuracy would be better if we can combine almost all 

available patient information, such as the demographic and genetic characteristics, 
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physiological constants, and other medical examination results. On the other hand, 

combining informations from different brain MR images, such as structural MR images, 

DTI, and functional MRI, could also improve the performance of the resulting modles. 

Moreover, hundreds of parents used in this study are not enough to build very strong 

inferences. The result could be better while learning classification or regression modes 

from millions of subjects. 

6.2.3 Detect ADHD and Schizophrenia Using Functional Connectivity 

Binary Patterns 

In recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has 

become a novel technique for studying mental illnesses [12-15]. However, developing a 

simple and effective method to extract information from rs-fMRI data remains critical. 

For example, the examination of schizophrenia shows different patterns in the 

resting-state functional connectivity between patients and healthy controls, but these 

results were not constant across studies [161, 162]. In addition, researchers have 

identified several abnormal rs-fMRI patterns in attention deficit-hyperactivity disorder 

(ADHD) [165], but classifying ADHD using a large pooled rs-fMRI database still 

requires improvement [36]. The complexity of resting-state functional connectivity 

increases the difficulty of obtaining consistent results. Therefore, we proposed binary 

pattern distribution as an approach to improve performance when discriminating 

individuals with mental disorders from normal control subjects. 

Currently, there are two general methods for studying the functional connectivity in 
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rs-fMRI data, cross-correlation analysis (CCA) and independent component analysis 

(ICA)[166]. CCA is the most popular method used to analyze rs-fMRI data. In 

seed-based CCA (SCCA), the average time series in a previously defined seed region is 

used as a reference. Subsequently, a whole-brain functional connectivity map based on 

the seed is computed after considering the correlation between each voxel and the 

reference time series. SCCA is simple method, but using few seeds likely shows only 

small regions of the whole-brain functional connectivity. Thus, the graph analysis 

framework [167], such as network CCA (NCCA), was introduced. In NCCA, the 

whole-brain volume is separated into many regions and the average time-series of each 

region is calculated. Subsequently, a network is used to describe whole-brain functional 

connectivity after computing the correlations of each paired regions. Researchers have 

used these connections as features to obtain classification models with machine learning 

methods, for determining brain maturation [168], for the classification of autism [169], 

and for the identification of dementia [170]. 

In contrast, ICA is a data driven, hypothesis-free method. ICA decomposes the rs-fMRI 

data into a number of statistically significant spatially independent patterns [171-174]. 

Independent components (ICs) are considered as resting-state networks (RSNs), which 

are consistent across health subjects [175]. More importantly, some major ICA patterns 

are similar to the patterns of activation maps derived from a large database of 

event-related fMRI studies [1]. Nevertheless, ICA does not offer any information about 

the intrinsic order of the ICs. However, it might be difficult to determine why and which 

IC should be chosen as the target of analysis [176, 177]. 
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Although CCA and ICA are different approaches, researchers have shown that the 

results are similar, primarily generating overlapping patterns [166, 178-181], suggesting 

that the same underlying connectivity structure exists in these analyses. Therefore, the 

RSNs derived from ICA could be a good reference to analyze functional connectivity. 

The basic assumption of our strategy is that most RSN patterns are similar across 

subjects. Therefore, the time variation of each RSN could be a good reference to 

analyze functional connectivity. Furthermore, the connectivity of each region could be 

established through the correlations between average time course of region and RSN 

time series, herein referred to as the resting-state networks referenced analysis 

(RSNRA)(Figure 6-1). 
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Figure 6‐1 Simplify connectivity using resting‐state networks referenced analysis (RSNRA). 

(a) For network cross‐correlation analysis with 96 brain regions to construct the connectivity 
of  region  1,  all  96  correlations  should  be  considered.  (b)  In RSNRA,  only N  correlations 
between the region 1 and N reference resting‐state networks (RSNs) should be considered 
(in this case, N=10). 
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Figure  6‐2  The  distribution  information  not  included  in  the  network  cross‐correlation 
analysis. 

This  figure  illustrates  the  functional  connectivity  maps  of  three  subjects  from  the  COBRE 
database. The maps were built using left cingulate gyrus, posterior division (LCGp) as the seed. 
The  subjects  have  similar  average  Pearson's  correlation  coefficients  (avgCC)  between  the 
average  time  series  of  the  left  paracingulate  gyrus  (LPG)  and  average  time  series  of  LCGp. 
Images  a1,  b1,  and  c1  show  functional  connectivity  maps  of  the  whole  brain  that  were 
obtained by  calculating  the CC of  the  time  series of  each brain  voxel  and  the  average  time 
series of  the  seed.  Images a2, b2, and  c2  show  the details of different distribution patterns 
existing  in  LPG.  These  distinct  distribution  patterns  were  not  considered  in  the  network 
cross‐correlation analysis. 
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Because of the simple implementation, studies usually use NCCA to extract information 

from rs-fMRI data [168-170]. However, as shown in Figure 6-2, the NCCA is an 

average approach without different distribution information. 

The distribution information is generally used in the computer vision domain to 

describe objects for determination and classification [62, 73], as we have shown in 2.1. 

In LBP, the characteristics of each pixel are defined as the types of binary comparison 

between each pixel and its neighbors [73]. For example, the spots, line ends, and 

corners are represented as different types of patterns (Figure 6-3 (a1)). Thus, the 

distribution of these patterns could provide an excellent information source to describe 

the objects in the images (Figure 6-3 (a3)). Based on this idea, we used RSNRA to 

describe the connectivity of each brain voxel and extract discriminative information 

from the distribution of different functional connectivity binary patterns (FCBP) in 

different brain regions (Figure 6-3 (b1) and (b3)). For this purpose, we introduced and 

tested the threshold (TFCBP), ordered (OFCBP), and absolute ordered (ABS-OFCBP) 

FCBP to construct an FCBP histogram of each brain region. The analysis shown in 

Figure 6-3 compares the difference between LBP and proposed FCBP. 
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Figure 6‐3 The construction of local binary patterns (LBP) and functional connectivity binary 
patterns (FCBP). 

(a1)  In  LBP,  the  characters of  each pixel  are defined  as  the  types of  the binary  comparison 
between each pixel and  its neighbors.  If  the value of  the neighbor  is  larger  than  the central 
pixel,  the  result  would  be  one  (filled  circle);  otherwise,  the  result  is  zero  (empty  circle). 
Therefore, several types of pattern can be encoded into the binary pattern. (a2) All the possible 
patterns  could  be  used  to  describe  the  characters  of  specific  image  area.  (a3)  The  LBP 
histogram can then be used as the feature for image classification. (b1) In FCBP, the characters 
of each voxel are defined as the cross correlation between the time series of the voxel and the 
time  courses  of  the  referenced  resting‐state  networks  (CCRSN1~CCRSN10).  (b2)  Based  on  two 
binarization strategies we introduced in this study, all possible FCBP could be used to describe 
the characters of the specific brain region. (b3) Therefore, the FCBP histogram can be used as 
the feature for brain classification. 
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Two public-access rs-fMRI databases were used to assess this assumption: the 

schizophrenia database contributed by The Center for Biomedical Research Excellence 

(COBRE) and ADHD-200 Sample database obtained from eight independent imaging 

sites. For each database, the linear support vector machine (SVM) was used to 

determine the discriminative models for classifying patients and control subjects using 

the extracted features based on different approaches. We examined and compared the 

performance of the constructed models using the features extracted from rs-fMRI data 

through NCCA, RSNRA, and FCBP. 

Materials and Methods 

The parcellations and evaluations methods are the same with 3.1. 

Participants 

Rs-fMRI data from two public-access databases in the International Neuroimaging 

Data-sharing Initiative (INDI) were used to evaluate the methods proposed in this study 

[182]. To rule out sexual differences, only male subjects were used. Subjects with 

translation movements larger than 3 mm or rotations larger than 3 degrees were ruled 

out. Because cerebellum RSN patterns are used in the study, cerebellum volumes less 

than 65% in the registered brain data were removed. 

The Schizophrenia database was obtained from The Center for Biomedical Research 

Excellence (COBRE). COBRE includes 72 patients with schizophrenia and 74 healthy 
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controls. Rs-fMRI images, anatomical MRI volumes, the detail phenotypic data, and 

diagnostic information of each subject can be freely download from 

http://fcon_1000.projects.nitrc.org/indi/retro/COBRE.html. A total 103 subjects, 

including 52 patients and 51 controls were used. 

The ADHD samples obtained from ADHD-200 Sample database, a rs-fMRI and 

anatomical MRI database pooled from eight independent imaging sites [36]. The subject 

data and phenotypic information can be downloaded from 

http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html. The diagnosis criteria of 

each site can be obtained from the ADHD-200 Sample website. ADHD 

hyperactive-type subjects were excluded due to the small number of these subjects in 

the database. Therefore, we only classified the control subjects from two ADHD 

subtypes, the ADHD combined and ADHD inattentive types. The datasets from the 

NeuroIMAGE sample were removed because they were collected using a 1.5T system. 

The subjects from Washington University School of Medicine were also excluded 

because this dataset contained no ADHD subjects. After ruling out unacceptable 

subjects, a total 360 male subjects, including 189 patients and 171 controls, were used. 

ICA maps 

To show the generalization of the RSNs referenced approaches examined in this study, 

we directly applied the ICA results from previous studies [1]. These results can be 

downloaded from the FMRIB website 

(http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/). The ICA results, with twenty 
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components exhibiting the most correspondence between the connectivity information 

of CCA and ICA [181] and a reasonable resulting feature size were used. Two strategies 

were used to select the ICs in this study. In 20-RSNRA, all 20 ICs were used to describe 

the connectivity. Moreover, Smith et al. showed that 10 RSNs from the 20 ICs are 

well-matched to the fMRI activation networks [1]. The 10 RSNs might be the most 

informative elements to discriminate the mental disorders. In 10-RSNRA, we employed 

a simpler strategy, using only these 10 ICs. 

Figure 6-4 shows the flow chart of all analyses used in this study, including NCCA, 

RSNRA, and FCBP. The details of each step are described below. We performed NCCA 

as the baseline for comparison with other methods. For training classifiers, the Pearson's 

correlation coefficients (CCs) for every paired brain region were used as features in 

NCCA. 
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Figure 6‐4  Flow  chart of network  cross‐correlation  analysis  (NCCA),  resting‐state networks 
referenced analysis (RSNRA), and functional connectivity binary patterns (FCBP). 

After  preprocessing  of  rs‐fMRI  data,  (a)  the  NCCA  were  performed  by  introducing  brain 
parcellation  information and computing the cross‐correlation between each brain regions. (b) 
The time variances of resting state networks (RSNs) can be computed by using the introduced 
RSNs patterns. These time variances were used to perform the RSNRA of the brain regions or to 
build a whole brain RSNRA map.  (c) The RSNRA map can be used  to extract different binary 
patterns and build  the  FCBP histogram of brain  regions,  such as  threshold  (TFCBP), ordered 
(OFCBP),  and  absolute  ordered  (ABS‐OFCBP)  FCBP.  The  performance  of  each  approach was 
evaluated  through  linear SVM and 10‐fold cross‐validation. The elements with bold  font and 
underlined text show the introduced information. 
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Resting-state networks referenced analysis (RSNRA) 

To describe the connectivity of each voxel, NCCA was employed using the time series 

of all other voxels in the brain, resulting in a large number of correlations that were hard 

to implement. Fortunately, ICA provided a widely accepted framework to describe 

whole-brain connectivity using RSNs [1, 174]. Based on the assumption of ICA, all the 

rs-fMRI signals might be combined through ICs with different weights. As a stable and 

consistent subnetwork of whole-brain functional connectivity, RSNs from ICA might be 

adequate candidates for the references to describe the connectivity of each voxel in the 

brain [175]. Therefore, we used these RSNs as references and introduced the variations 

of these RSNs as simplified coordinates to describe the connectivity of each voxel. 

Based on the ICA definition, for K  independent components and j  voxels in the 

data volume with t  time points, the fMRI signal can be represented using the 

space-time data matrix:  

 

1

K

jt jk kt jt
k

X A S E


 
                      (6‐1) 

where the columns of A  denote the ICs, the rows of S  represent the time-variation 

of each ICs, and E  is the noise [171, 173, 176]. For the fMRI data of each subject, 

jtX
 is known. Following our assumption, we consider the RSNs as the known prior, 
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and jkA
 is also known. Therefore, we can use a simple linear regression to estimate the 

different ktS  of each network, that is, the variations of each RSN of this subject. Thus, 

the ktS  could be used as a references to describe the connectivity of each brain region 

(Figure 6-1  (b)). The method is referred to as the resting-state networks referenced 

analysis (RSNRA). Moreover, Figure 6-5 shows an example of using the ten RSNs to 

describe the connectivity of single voxel. 
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To evaluate the performance of RSNRA, we used the correlations of the referenced 

RSNs time course and the average time series of the brain regions as features to 

determine classification models of ADHD and schizophrenia. 

To combine the information in activation maps derived from BrainMap database, the 

RSNs from Smith et al. were directly used as the prior RSNs patterns [1]. The ICA 

results with twenty components were considered as the greatest correspondence 

between the connectivity information of CCA and ICA [181]. Therefore, the ICA results 

of twenty components would be used in this study. The ten RSNs in these twenty 

components contain the most informative RSNs because they are well-matched with the 

ICA results of 29,671-subject BrainMap activation database [1]. Both the RSNRA with 

a total of twenty RSNs time series (20-RSNRA) and the ten the most informative RSNs 

(10-RSNRA) were tested. To evaluate RSNRA, we compared the performance of 

NCCA, 20-RSNRA, and 10-RSNRA. 

Based on the RSNRA strategy, this idea can be extended to the connectivity of any 

voxel of the brain (Figure 6-3 (b1) and Figure 6-5). Therefore, we changed our focus to 

the distribution constructed using the functional connectivity patterns in a specific brain 

region. In this section, we introduced two useful rules to transform the connectivity of 

each voxel to simple functional connectivity binary patterns (FCBP). Then, we 

established the distribution information defined by the statistics of the patterns (Figure 

6-3 (b3)). 
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Threshold functional connectivity binary patterns (TFCBP) 

First, as shown in Figure 6-6, an intuitional threshold method was introduced. Although 

the resulting feature size is large, the whole feature matrix is sparse. For example, when 

using 0.3 as the threshold, it is almost impossible to determine any voxel with more than 

three referenced CCs larger than 0.3. In this study, three possible threshold types were 

tested. We generated the threshold using negative CC, positive CC, and the combined 

histograms of negative CC and positive CC. 
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Figure 6‐6 Illustration of threshold functional connectivity binary patterns (TFCBP). 

In  TFCBP,  a  fixed  threshold  would  be  assigned  to  transform  the  Pearson's  correlation 
coefficients between the time series of the voxel and the variances of referenced resting state 
networks (CCRSNs) to binary values. Figure (a) shows an example of using threshold 0.3 to build 
the binary pattern of specific voxel. In the right side of (a), the values larger than the threshold 
are  shown  as  filled  circles;  otherwise  this  information  is  denoted  as  empty  circles.  (b) 
Considering all possible combinations, we will obtain 2k patterns of connectivity, where k is the 
number of used RSNs (in this case, k=10). Pn shows the  label of each distinct pattern. (c) The 
behaviors of one brain region would be described using 2k features, which is defined according 
to the histogram of these patterns. 
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Ordered functional connectivity binary patterns (OFCBP) 

Two problems existed in the direct threshold binary patterns. First, although the 

resulting matrix is sparse, the raw feature size remained large. This size is difficult to 

use in multi-modality approaches. Second, identifying a proper threshold is not 

straightforward. Thus every possible threshold should be tested to obtain the best 

performance threshold. 

Consequently, we provided another strategy to extract more abstractive connectivity 

information. We observed that the order of the correlations of RSNs might be the most 

informative aspect of these approaches. That is, the RSN with the most important role 

(with highest cross correlation) in the connectivity of a specific voxel could be most 

informative. Moreover, the RSN with second most important role should also be 

important. The order of the connectivity of each RSN of a specific voxel might provide 

more information for classification. Therefore, a simple binarization rule might be 

constructed based on this point of view. As shown in Figure 6-7, only the order of the 

connectivity was considered. As a result, only N2 features are considered. 
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Figure 6‐7 Illustration of ordered functional connectivity binary patterns (OFCBP). 

In OFCBP, only the order of Pearson's correlation coefficients (CC) between the time series of 
the voxel and  the variances of  reference  resting  state networks  (CCRSNs) was considered. The 
RSN with  largest CC  (the Top1CC)  is converted  to  the binary pattern p1‐1  to p1‐10. The RSN 
with  top  two CC  (the Top2CC)  is encoded  to p2‐1  to p2‐10, and  so on.  Figure  (a)  shows an 
example of using OFCBP to build the binary patterns of specific voxel.  In the right side of (a), 
the  topNCC  is  encoded  as  a  filled  circle; otherwise,  empty  circles  are used.  The  number of 
voxels  indicates  the  top N RSN. Figure  (b)  shows part of all possible patterns. When using K 
RSNs, K2 features would be considered (in this case, k=10). PN‐M shows the Mst RSN in top N 
group. (c) The behaviors of one brain region would be described using K2 features, which are 
defined according to the histogram of the binary patterns. 



 

 147

Absolute ordered functional connectivity binary patterns (ABS-OFCBP) 

To consider both the positive and negative CC in the connectivity, we also tested the 

order of original CC value and the order of the absolute CC value in OFCBP. 

Preprocessing of rs-fMRI data 

The preprocessing of each rs-fMRI data was primarily based on the Athena pipeline of 

the ADHD-200 preprocessed data website 

(http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline). The 

preprocessing was performed using AFNI [150] and FSL [123]. After slice time and 3D 

motion corrections, each rs-fMRI dataset was transformed into NIHPD Objective 1 

atlases (4.5~18.5y) [126, 127] with a 4 mm isotropic resolution. Then, the extracted 

WM and CSF time course and the motion time series were regressed out from the data. 

Subsequently, the data were blurred using a 6-mm FWHM Gaussian filter. 

Results 

Network cross-correlation analysis (NCCA) 

As shown in Table 6-1, using NCCA strategies, the best performance for classifying 

schizophrenia is 0.76 (Table 6-1, (a)). However, the classifier acquired almost no 

information from the ADHD database (Table 6-1, (b)). Comparisons between separated 
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parcellation sets using MNI and NCCA demonstrated the best performance in 

schizophrenia classification (Table 6-1, (a)). CORT provided the best accuracy in 

ADHD classification (Table 6-1, (b)). 
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Table 6‐1 Cross‐validation results of resting‐state networks referenced analysis (RSNRA) and 
network cross‐correlation analysis (NCCA). 

 

The underlined results show the resulting accuracy  is worse than the NCCA approaches using 
the  same  parcellation.  The  performance  comparison  of  those  approaches  using McNemar’s 
test can be found in Table 6‐2. 
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Table 6‐2 p‐values of McNemar’s test of results in Table 6‐1. 

 

No results with significant difference can be found while comparing the results of resting‐state 
networks  referenced  analysis  (RSNRA)  and  network  cross‐correlation  analysis  (NCCA).  The 
underlined results show that the resulting accuracy  is worse than the NCCA approaches using 
same parcellation. 
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Using merged parcellation sets, learning with fine regions slightly inhibited the 

performance when discriminating schizophrenia (Table 6-1, (a)). Although the most 

useful information for classifying ADHD might be obtained from the cross correlations 

of cortical regions, adding information from other regions could slightly improve the 

accuracy (Table 6-1, (b)). 

Resting-state networks referenced analysis (RSNRA) 

In general, separated or merged parcellation sets, using RSNRA, provided equal 

performance with NCCA in our tests of both databases. Both 20-RSNRA and 

10-RSNRA do not show significant differences with the NCCA results using 

McNemar's test (Table 6-2). 10-RSNRA showed an adequate performance in almost all 

cases. These results showed the ten most informative RSNs as candidates for describing 

the connectivity of specific brain regions or voxels. Therefore, we used these ten RSNs 

as reference RSNs in the remaining tests. 

Threshold functional connectivity binary patterns (TFCBP) 

The results of TFCBP are shown in Table 6-3 and Table 6-4, and the results of 

McNemar’s test are shown in Table 6-5. When classifying schizophrenia, the use of 

either a positive or negative CC threshold did not produce better results than those 

obtained using traditional NCCA approaches (Table 6-4). Combining the features of 

these approaches could improve the accuracy of the resulting model, exhibiting a more 

enhanced performance than NCCA. As shown in Table 6-3, the combined CC threshold 
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of 0.2 or 0.3 could improve the classification of schizophrenia. Despite the MNI 

parcellation, the performance of almost all parcellations with combined CC thresholds 

of 0.2 and 0.3 was better than that of NCCA approaches. 

 

Table  6‐3  Cross‐validation  results  of  threshold  functional  connectivity  binary  patterns 
(TFCBP). 

 

The underlined results show the resulting accuracy is worse than the network cross‐correlation 
analysis  (NCCA)  approaches  using  same  parcellation  in  Table  6‐1.  The  stars  show  that  the 
performance is significant different with NCCA approaches in McNemar’s test (*: p‐value < 0.05. 
**: p‐value < 0.005). The details of each p‐value in McNemar’s test can be found in Table 6‐5. 
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The results of discriminating ADHD are more interesting. As NCCA approaches 

acquired almost nothing from the rs-fMRI data, all reasonable thresholds (0.1~0.3) in all 

parcellation sets demonstrated better accuracy than NCCA (Table 6-4). Using a 

combined CC threshold dramatically increased the performance to almost ten percent 

better than NCCA approaches. 

Ordered functional connectivity binary patterns (OFCBP) 

As shown in Table 6-6 and Table 6-5, the classifications of both disorders provide better 

performance than NCCA. However, these performances are slightly worse than the 

performance using TFCBP. In the ADHD classification, the results of models using 

MNI, [b], and [d] parcellations are significantly better than those in NCCA. 

Nevertheless, the classification of schizophrenia showed a different pattern, as models 

with MNI and [b] performed worse than those with NCCA, and only the model with 

SUB-CORT was significantly better than those with NCCA. 
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Table 6‐6 Cross‐validation results of ordered functional connectivity binary patterns (OFCBP 
and absolute OFCBP, ABS‐OFCBP) and network cross‐correlation analysis (NCCA). 

 

The underlined  results  show  that  the  resulting accuracy  is worse  than  the NCCA approaches 
using the same parcellation as in Table 6‐1. The stars show that the performance is significantly 
different from the NCCA approaches when assessed by McNemar’s test (*: p‐value < 0.05. **: 
p‐value < 0.005). The details of each p‐value in McNemar’s test can be found in Table 6‐7. 
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Table 6‐7 p‐values of McNemar’s test of results in Table 6‐6. 

 

The  underlined  results  show  that  the  resulting  accuracy  is  worse  than  the  network 
cross‐correlation analysis (NCCA) approaches using the same parcellation as  in Table 6‐1. The 
stars  show  that  the  performance  is  significantly  different  from  the NCCA  approaches when 
assessed by McNemar’s test (*: p‐value < 0.05. **: p‐value < 0.005). 
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Absolute ordered binary pattern distribution (ABS-OFCBP) 

Again, these two disorders showed different patterns in this test (Table 6-6 and Table 

6-7). Using ABS-OFCBP increased the performance in almost all cases for the 

classification of schizophrenia. However, the effects of sorting using absolute CC are 

not consistence in ADHD cases. ABS-OFCBP improved the performance of the models 

with MNI, SUB-CORT, and [b]. However, this process negatively affected the accuracy 

of the original OFCBP approaches. 

Discussion 

Resting-state networks referenced analysis (RSNRA) 

In this study, we showed that the RSNRA is a simpler alternative to NCCA for 

classifying schizophrenia and ADHD. The most obvious advantage of using RSNRA is 

the marked reduction of feature size when using many regions (Figure 6-1). Using 

RSNRA instead of NCCA largely reduces the feature size of the resting-state brain 

connectivity with the same performance (Table 6-1 and Table 6-2). As a simpler method 

to explore complex whole-brain functional connectivity, RSNRA could be a good 

candidate for use in multi-modality studies, combined with other approaches. 

Moreover, RSNRA converts the complex whole-brain functional connectivity graph to a 

simple matrix with MxN dimensions, in which M is the considered regions, and N is the 
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selected RSNs. The characters of each region can be described using N intrinsic 

reference networks. These results suggest that using the ten most informative RSNs is 

sufficient to discriminate schizophrenia and ADHD (Table 6-1 and  Table 6-2). 

Moreover, if we combine the RSNs used in a previous study [1], the ten most 

informative RSNs can be associated with the knowledge in the large fMRI studies 

database, BrainMap [183, 184], as demonstrated in Figure 6-8. 

 

Binary pattern distribution 

Three FCBP distributions have been tested in this study, TFCBP, OFCBP, and 

ABS-OFCBP. Using distribution patterns to classify both disorders provides better 

performance than traditional NCCA (Table 6-3 and Table 6-6). In simplified ordered 

distribution patterns, ABS-OFCBP was best suited for schizophrenia, and OFCBP 

exhibited better performance in classifying ADHD (Table 6-6). In TFCBP approaches, 

the best threshold to use still needs to be identified, but several interesting results were 

observed. 

First, both positive and negative information is useful for classifying both disorders 

(Table 6-3). Combining negative and positive features generated the best performance. 

In most traditional rs-fMRI studies, only positive connectivity was considered. However, 

the results of this study showed the importance of the information revealed by the 

negative connectivity. 
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Second, using linear SVM approaches, we can explore the features of this model. In 

addition to being a good classifier, linear-SVM is also a good feature rank tool [101, 

103]. Thus, the content of the resulting classification model should be reviewed. 

Knowledge discovered in classification models 

Figure 6-8 shows the top 100 features of the classification model of both disorders using 

TFCBP, with a 0.3 threshold, combining both positive and negative features. Although 

the use of these features alone cannot provide sufficient classifiers, an analysis of top N 

features might reveal information concerning how the model was built and provide 

insight for future studies. The two disorders show different patterns. 
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Figure  6‐8  Top  100  features  in  the  classification models  of  schizophrenia  and ADHD using 
threshold  functional  connectivity  binary  patterns  with  0.3  CC  thresholds  and  combining 
positive and negative features. 

(a) and  (b)  show  the accumulation number of each RSN  in  the  top 100  features.  (c) and  (d) 
show the details of top 100 features. Each raw  in (c) and  (d) shows the pattern presented by 



 

 162

the feature. The column "Top" shows the rank of the feature. The columns "Part" and "Region" 
show the brain region the pattern extracted from. The column "PN" shows the positive or the 
negative threshold the feature used. Columns #0 to #9 show the binary patterns of the feature. 
As  shown  in  Figure 6‐6, a value of 1  indicates  the  correlation  coefficient value between  the 
voxel time series and the reference time series  is  larger/lower than the threshold, otherwise, 
the value would be 0. 

 

The results shown in Figure 6-8 (c) and Figure 6-8 (d) could be analogous to a 

DNA-microarray analysis. Each cell denotes the binary connection activity of specific 

RSN and brain region. Various features represent different combinations of the 

activation patterns of those cells. Therefore, disparate mental disorders show distinct 

patterns of features. 

For both disorders, most of the top 20 features are defined according to the number of 

voxels with "no link" patterns (no correlation with any RSNs) in several brain regions 

(Figure 6-8 (c) and Figure 6-8 (d)), potentially suggesting no connectivity with any 

RSNs; that is, no activity in the resting-state. Therefore, the proportion of no active 

voxels might represent an over-all resting-state activity measurement in the 

corresponding brain regions. The activity of these regions might be different between 

patients and controls. 

Intuitively, one could analyze the brain regions represented in the top 100 features. 

More interestingly, using the approaches proposed in the present study, we could view 

these data as highlighting the roles of RSNs in each disorder. Evaluating the number of 

RSNs in the top 100 features will reveal the importance of each RSN in classifying the 
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disorder (Figure 6-8 (a) and Figure 6-8 (b)). Moreover, these results could be correlated 

with the event-related fMRI results, as shown in a previous study [1]. 

For the schizophrenia model (Figure 6-8 (c)), many top regions are abnormal in 

schizophrenia patients, as evidenced through anatomical or functional studies, such as 

Inferior Temporal Gyrus (top 3) [185], Supplementary Motor Cortex (Juxtapositional 

Lobule Cortex, top 4) [186, 187], Temporal Fusiform Cortex (top 5) [188], Superior 

Frontal Gyrus (top 6) [189], and Insular Cortex (top 7) [190]. From the perspective of 

RSN, as shown in Fig. 8(a), the distribution associated with many RSNs, such as the 

auditory network, visual networks, and frontoparietal#1 network, could discriminate 

schizophrenia. The importance of the auditory and visual networks might reflect major 

symptoms of schizophrenia, such as delusions and auditory hallucinations [191]. To date, 

most rs-fMRI studies on schizophrenia have focused on the default mode network 

(DMN) [12]; however, the results obtained in the present study suggested that DMN 

might not play an important role in classifying this disorder. Thus, studying other 

networks might reveal more information. 

For the ADHD model (Figure 6-8 (d)), several top regions, such as Temporal Occipital 

Fusiform Cortex (top 2) [192], Temporal Fusiform Cortex (top 3) [193], Middle 

Temporal Gyrus (top 5) [194], Parahippocampal Gyrus (top 6) [194], and Insular Cortex 

(top 8) [195], have also shown differences between ADHD and controls. However, the 

executive control and auditory networks are the most important networks for classifying 

ADHD (Figure 6-8 (b)). Therefore, it is reasonable to conclude that executive control is 

the most important network for classifying ADHD. Several well-known 
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neuropsychological theories have suggested that the symptoms of ADHD result from a 

primary deficit in executive functions [196]. Much evidence has shown that executive 

functions play an important role in ADHD [197]. Smith et al. also showed that the 

auditory network strongly corresponds to action–execution–speech, cognition–

language–speech, and perception–audition paradigms[1]. This importance might reflect 

the non-stop talking symptoms of hyperactivity. 

There are two contributions in this study. First, we used resting-state networks 

referenced analysis (RSNRA) to convert the complex NCCA to a much simpler 

representation using time series of RSNs as references and showed the equivalent 

performance of these RSNs. Second, we proposed using TFCBP and OFCBP to view 

the rs-fMRI data in order to analyze the distribution of connectivity. Our results showed 

that the proposed method consistently improved the accuracy of classification for 

schizophrenia and significantly enhanced the performance when discriminating ADHD 

(Table 6-3 and Table 6-6). Moreover, the resulting model could provide information 

about these disorders for future studies. This study introduced another perspective from 

which to analyze the rs-fMRI data using the distribution of FCBP. 
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6.3 Conclusion 

In this work, we tried to apply simple binary patterns methods on both brain structural and 

functional MRI data to extract useful information. Results showed those simple binary 

methods are useful for extract information from structural and functional brain MR 

images. Those methods are good candidates to be used in large-scale brain associated big 

data researches. 
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