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ABSTRACT

This study aimed to build binary methods to extract efficient information from structural
brain magnetic resonance (MR) images and functional brain activities. In the era of big
data, to collect and analyze all the brain images in hospitals all over the world is
technologically possible and might be achieved in the near future. Therefore, simple and
effective methods for machine learning algorithms to extract sufficient information from
various brain MR images to build classification or regression models based on numerous

brain images are critical.

In this study, we used binary methods to extract information from three different types of
brain MR images. First, we implemented local binary patterns (LBP) to describe
anatomical brain morphology and used those patterns to train support vector machine
models to classify the attention deficit-hyperactivity disorder (ADHD) subjects from
normal ones. As a result, the best accuracy we achieved was 0.6995. Second, different
from the traditional methods, which all brain images should be normalized to a standard
template to be compared in same atlas coordinates, the LBP was used to extract
information from unnormalized brain anatomical images and diffusion tensor imaging.
We then constructed age estimation models by that extracted information to show the
discriminative power of this approach. The best test result mean absolute error of that
model equals 5.62 years. Third, following the same line of thought, a binary mapping
method was designed and introduced to detect schizophrenia and ADHD patients using
resting-state functional MRI data. Compared with traditional cross-correlation

network analysis, proposed models exhibits better performance in detecting
\'%



schizophrenia and ADHD. Based on our results, the best test accuracy of discriminating
schizophrenia from normal subjects was 0.78. The best test accuracy or classifying

ADHD from control subjects was 0.628.

Results showed those simple binary methods are useful for extract information from
structural and functional brain MR images. Those methods are good candidates to be used

in large-scale brain science or medicine related researches.

Key words: MRI, functional MRI, machine learning, big data, local binary pattern, brain
age estimation, pattern recognition, attention deficit hyperactivity disorder, ADHD,

schizophrenia
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Chapter 1

Introduction

"Simple models and a lot of data trump more elaborate models based on less data."”

- Peter Norvig,

The unreasonable effectiveness of data [2].

1.1 Background

To reveal how the brain works is long to be a great unsolved challenge. The last three



decades have seen growing importance placed on research in neuroscience [3]. Mental
disorders are the most important topics in those researches because they are becoming
the major threats to our health, and could be the keys to uncover brain functions.
Nevertheless, the human brain built by more than 100 billion neurons might be the most
complex organ in our body. It is hard to use the change of specific brain region to
explain the brain developments or detect many mental disorders. Combining the
information from all brain regions might provide another insight to identify the brain
maturation, aging, or disorders. In this study, we tried to extract information from brain
magnetic resonance (MR) images and construct useful classification and regression

models by structural or functional information from all brain regions.

1.1.1 Brain MR Images

Magnetic resonance imaging (MRI) is a medical imaging technique used to
noninvasively investigate the anatomy or function of the human brains and bodies. With
strong magnetic fields and radio waves, MRI scanners can build the anatomical details
of the body. Because of the ability of noninvasive imaging and producing high
resolution results, MRI is widely used in hospitals for medical diagnosis. Besides, MRI
can also be used to explore the brain blood oxygen level dependent (BOLD) signal.
Therefore, one can investigate brain functional activity using a series of MRI images,
which is known as functional MRI (fMRI). FMRI is very helpful in research

organizations for analyzing the human brain functions.

In recent decades, brain MR imaging has become an important tool in neurology and



clinical neuroscience [4, 5]. There are approximately 25,000 MR scanners in use
worldwide'. Based on data from the Organization for Economic Co-operation and
Development (OECD), as shown in Figure 1-1, either the number of MR scanners
installed or the number of MR scans performed increased rapidly in past two decades.
Meanwhile, the MRI technologies are getting faster, better SNR, and higher resolution
every day [4]. Soon the cheaper, speedier, and more detailed brain images full of

important neurological information would be popular and convenient to get.

100
1

80

MRI scans per 1,000 population
40 60
1

=]
o T T T T
1995 2000 2005 2010
Year
Uusa ————- Canada
Belgium France
————— Luxemburg - Australia
Denmark

Figure 1-1 Growth patterns in the use of MRI in selected OECD countries.

A reprint of the Figure 2 of [6].

! http://www.magnetic-resonance.org/MagRes%20Chapters/21_02.htm



There are three main types of brain MR images to provide very different information of
the brain, that is, the structural brain images, the diffusion tensor imaging (DTI), and

functional MRI.

Structural MRI

Structural MRI, especially the T1-weighted images (T1WI), provides the details of
brain structural information, including the shape, size, and the integrity of gray and
white matter. In many brain morphometric studies, the volume, shape, or thickness of
gray matter structure have been measured to provide indications of diseases or mental

disorders [7].

Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging (DTI) is the MRI technique that measures the restricted
diffusion of water molecules in tissue and offers directional information of neural tracts
in the brain [8]. DTI can provide various information of brain microstructure and has
proven its value in both brain research as well as clinical applications [9, 10]. With
yielding more information rather than structural brain MR images, DTI is also an

important type of brain MR images in clinical used.



Resting-State Functional MRI (rs-fMRI)

In recent years, the resting-state functional magnetic resonance imaging (rs-fMRI) has
become a novel technique for studying the mental illness [11-13]. Different from the
traditional task-based or stimulus-based functional MRI, rs-fMRI investigates
spontaneous synchronous activations between brain regions occurring in the
resting-state. Inferred on the basis of blood-oxygen-level dependence (BOLD) response
time-series data, the neural activity revealed by rs-fMRI can be easily obtained from
normal subjects or patients [13]. A number of studies have proven the resting-state
functional connectivity can detect the differences between patients and controls in
various neurological and psychiatric disorders [12, 14, 15]. Promised results have been
obtained for various neurological disorders, such as Alzheimer's disease [16-18], and

multiple sclerosis [19, 20].

1.1.2 Data Driven Method and Machine Learning Methods

Traditionally, there are two approaches to learn useful information from data [21]. One
is the traditional statistical methods which assume that the data are generated by a given
model and be validated by goodness-of-fit tests and residual examination. The other is
data-driven approaches, which use the algorithmic models to learn rules from data and
be validated by cross-validation and predictive accuracy. For analyzing simple
mechanisms, the first approach is good and intuitive, such as the commonly used linear
regression or logistic regression. However, while facing complex mechanisms, it is

always hard to find a proper model to describe the data. Second approach is more useful

5



in this situation. Therefore, we used second approach in this research to learn
classification or regression models by algorithms from the complex brain MR images,

which is called “machine learning* approach in computer science area [22] .

We have seen mounting evidence of the usefulness of mining information from vast
data, including detecting influenza epidemics using search engine query data [23],
translating language using billions of web pages [22], finding human faces in images
[24], recognizing of vehicle license plates in video sequence [25], and so on [22, 26].
Based on the view point of machine learning, the brain MR images stored in the
hospital's data centers are treasure-trove providing information to reveal the mystery of

brain mechanism, maturation, aging, and mental disorders.

1.1.3 Brain MR Images and Machine Learning Methods

For years, the brain MR images have been applied to patients with psychiatric or
neurological disorders to find possible biomarkers for diagnosis. Using traditional
statistical methods, those researches has revealed structural and functional alterations in
several disorders, for example, major depression [27], anxiety disorder [28],
Alzheimer’s disease [29], and schizophrenia [30]. Although those findings might
contribute to the understanding of disorders, they have had minimal clinical impact.

Neurologists and psychiatrists still relied on traditional diagnostic and prognostic tools.

The neuroimaging studies used traditional statistical methods could show the
differences between patients and controls at group level. In contrast, doctors should

make clinical decisions about individuals in clinical. In clinical circumstances, knowing
6



the group differences does not provide too much useful information.

As we mentioned in 1.1.1, the machine learning approaches are good for mining useful
information from complex brain MR images data and make inference at the level of the
individual. Over the past few years, there has been growing interest within the
neuroimaging community in the use of supervised machine learning [31]. However,
most of these studies used complex analysis and tested in small datasets, which cannot
provide strong and robust inference. In this study, we tried to use simple information
extraction method, the LBP-TOP texture analysis and use big database to train strong

and robust classification or regression models.

1.1.4 Neuroimaging Data-sharing Initiative

In neuroscience community, there has been an increase in sharing of neuroimaging data
in recent years [32]. Many scientific fields have shown the benefits of sharing data. For
example, the astronomyz, natural history [33], and the most famous, the GenBank and
Hapmap in genetics have led to many scientific discoveries [34]. Neuroimaging
research is very costly and time-consuming. To share the imaging data and enable to
reuse them can reduce the cost of research, provide more reproducible. Moreover, just

like the UCI machine learning repository’ in computer science area, publicly available

2 http://www.sdss.org/

3 http://archive.ics.uci.edu/ml/



databases can also be used as the standard test sets for comparing different algorithms or

analysis methods.

Hence, more and more neuroimaging data is publicly available nowadays, including
Alzheimer’s Disease Neuroimaging Initiative (ADNI*), the NIH MRI Study of Normal
Brain Developments, the National Database for Autism Research (NDAR®), the Open
Access Series of Imaging Studies (OASIS’), the International Neuroimaging
Data-sharing Initiative (INDI®), and increasing research centers trying to make their data

public [32].

Now there are roughly thousands of brain MR images with normal or abnormal subjects
publicly available on the network. To analyze those huge neuroimaging data, and might
be much larger in near future, simple and effective methods to extract smaller but

discriminative information are critical.

* http://www.adni-info.org/

> https://nihpd.crbs.ucsd.edu/nihpd/info/data_access.html

S http:/ndar.nih.gov/

7 http://www.oasis-brains.org/

¥ http://fcon_1000.projects.nitrc.org/



1.2  Motivation and Purpose

This study aimed to build simple binary methods to extract efficient information from
structural brain MR images and rs-fMRI. And then we evaluated that information by

constructing discriminated classification and regression models.

Brain MR image is high-dimension data showing the complex brain structure. While the
MR machine producing more images of higher resolution, more information about the
brain structure would be provided. Theoretically, it could be more easily for
neurologists to find out the abnormal area. Unfortunately, the time of each neurologist is
limited. Within the limited time, it is harder to check every detail structure within
images with higher resolution and more slices [35]. Therefore, it is very helpful if an
algorithm can automatically analyze, classify, or highlight the abnormal brain images.
The algorithm could screen the image data and classify mental disorder from normal
subjects based on the brain images stored in the hospital’s data center or images
publicly available in the Internet. Thus, the algorithm cannot only help neurologist to

make better diagnosis but also can be used as a discovery science tool [36].

To investigate brain functions or disorders from vast of brain MR images, machine
learning algorithms should effectively recognize and use the information embedded in
those images. The way how to convert the original digital images to informations

known by algorithms is one of the most critical steps in machine learning process.

Following the experience of Google's artificial-intelligence guru, Peter Norvig, who



wrote, “Simple models and a lot of data trump more elaborate models based on less
data.”’[2], we used simple texture analysis, the local binary patterns (LBP), to datafy the
structural brain MR images, such as the TIWI and DTI. Moreover, after extending the
idea of structural binary patterns, we also try to design and implement the functional

binary patterns to extract information from rs-fMRI data.

The purpose of this study is to construct simple and effective methods to extract
information from structural or functional brain MR images using binary patterns and

build discriminative models by machine learning algorithms.

Three main different types of brain MR images are used to verify the approaches. For
structural images, brain TIWI and DTI images would be used. For functional brain

images, the rs-fMRI data would be used.

To test the performance of introduced information extraction methods, we used several
brain MR image databases. Two types of images were tested. One is those brain images
with obvious visible structural changes. Many studies have shown cerebral changes
during brain maturation and aging [37-44]. Therefore, we use the binary patterns to
estimate age based on brain MR images in this type. Another type is those brain images
without obvious structural difference, such as many mental disorders. In this type,

Attention-Deficit/Hyperactivity Disorder (ADHD) and schizophrenia are used to test

our approaches.
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1.3 Voxel Based Morphology (VBM)

Many researchers have attempted to reveal imaging biomarkers embedded in brain MR
images to facilitate clinical diagnosis or enhance neurological research [31, 45-49]. One
of the major goals of these efforts is to build useful classification or regression models
using machine learning approaches to classify or evaluate various neurological diseases
[31]. As the old computer saying, "garbage in, garbage out", before structuring a good
model, we should first extract effective features from MR brain images. Therefore, an
automatic, robust and efficient method for extracting useful information from brain

morphology is very important.

Most of the existing studies used voxel based morphology (VBM) approaches [50] to
analyze the different brain structure. VBM, usually based on high-resolution TIWI, is
the comparison of local gray matter concentration at every voxel between groups. To
conduct VBM, one should segment the brain TIWI into tissue classes, spatially
normalized, smoothed, and analyzed the resulted data voxel-by-voxel in general linear
or nonparametric models (Figure 1-2). This technique started in the mid 1990's [51] and
became a widely applied method in computational neurosciences[52, 53], including:
Schizophrenia [51], dementia [54], aging [41], cocaine abuse [55], Parkinson's disease

[56], and many other studies (check [53] for more related studies).

However, it is currently recommended that VBM can only be used to compare data
collected at a single MRI scanner [57]. Therefore, it is not a good method to be used in

big data researches. Moreover, there are several unsolved problems using this approach.
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Figure 1-2 Flow diagram of the preprocessing steps in standard (left) and optimized (right)
VBM.

GM = gray matter images; WM = white matter images. This is a reprint of the Fig. 2.4 of [50]

First, all the subject brain images need to be registered to some standard brain template.
Imperfect registration might modify fine structural details of the brain and introduce
unexpected bias [58, 59]. Consequently, the results of the analysis could depend on the
different registration methods used [49, 58, 60]. Second, there is no standard way to

perform registration. Due to the complexity of brain structure, linear affine
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transformation is not sufficient for many approaches. Therefore, more than a dozen
non-linear registration methods have been introduced [60]. These methods introduced
distinct parameters and made it more difficult to repeat and compare between studies.
Third, the non-linear registration method is usually the most inefficient step in studies.
Fourth and even more troubling, Uylings et al. have shown that the huge individual
variability that exists in brain structure makes it nearly impossible to register distinct

brains to a standard template using only morphological information [61].

Therefore, if we can extract morphological information from unnormalized source brain
images, we cannot only avoid the risk of crashes of several preprocessing steps, but we
can also access features without unexpected modification. In Chapter 4, we use a simple
texture based feature extraction method based on local binary pattern on three
orthogonal planes (LBP-TOP) to extract effective features from unnormalized source

brain volumes.

Second, traditional VBM only considered the gray matter (GM) segmentation (or
known as GM concentration) as the information source. The process of segmenting
brain images to GM, white matter (WM), and cerebrospinal fluid (CSF) could be
another step might fail or introduce noise to the image data. In Chapter 4, we also tested
both the unmodified whole-brain images and the GM segments as the information

source in this work.
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1.4  Texture Analysis

Texture-based analysis has recently proven to have an excellent power of discrimination
and simple implementation in many applications in the computer vision domain [62].
Moreover, in the domain of MR medical images, this method has shown its potential in
extracting discriminative information about brain tumors [63, 64], epilepsy [65],
Alzheimer's disease [66], and multiple sclerosis [67, 68]. In addition, texture analysis
can also provide effective features for tissue characterization and dynamic
contrast-enhanced MRI [69-71]. However, most texture analyses of MR images focus
on a specific region of 2D brain images. Few studies have used these methods as a

discovery science tool to extract useful information from whole-brain data.

1.5 The structure of the dissertation

The background of our study was illustrated in this chapter. Chapter 2 will introduce the
local binary patterns (LBP) method and the framework of analysis in this study.
Moreover, the basic properties of LBP would be tested in Chapter 3. In Chapter 4 and
Chapter 5, we used local binary patterns (LBP) to extract useful information form MR
brain morphology. First, we found the LBP is robust to brain registration method and
can be performed well with the unnormalized brain images. Therefore, we used LBP to
extract structural information from unnormalized TI1-weighted brain images and
diffusion tensor imaging (DTI) and constructed age estimation models based on brain

TIWI and DTI images in Chapter 4. Then we use registered brain images as the
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information source to build ADHD classification models in Chapter 5. Finally, the
advantages, limitations and future works of those approaches are discussed in Chapter 6.
In 6.2, we extended the idea of binary pattern distribution from structural MRI to
resting-state functional MRI. Functional connectivity binary patterns based on ICA

results are introduced and used to build classifications of ADHD and Schizophrenia.
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Chapter 2

Local Binary Patterns (LBP)

2.1  The Development and History of the LBP

The local binary pattern (LBP) is a simple yet very efficient texture operator. LBP
encodes the pixels of an image by thresholding the neighborhood of each pixel and
considers the result as a binary number. Figure 2-1 shows the relationships of LBP and

many well-known texture analysis operators.
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Figure 2-1 LBP in the field of texture analysis operators.

A reprint of the Fig. 2. of [72].

The basic LBP was developed by David Harwood in 1992 [73]. The basic idea is that
two-dimensional textures can be simply described by pattern and contrast. LBP can
separate the pattern information unaffected by monotonic gray scale form contrast. At
that time, using feature distributions to classify texture was not very popular ( Using the
statistical approach to classify images was later introduced around 2009 [74] ). LBP was
first published in 1994 [75] and an extended version with it in 1996 [76]. Then LBP
were later used for unsupervised texture segmentation [77]. The results showed better
performance than the state-of-the-art approaches and revealed the potential of LBP.

After that, the rotation-invariant LBP was introduced in the late 1990s [78].

Around 2000, the theoretical basis of LBP and advanced version of rotation-invariant

multiscale LBP operator was published[79, 80], which also introduced the idea of
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“uniform patterns” to reduce the feature size of the LBP. The most important property of
the LBP operator in 2D computer vision applications is its invariance against monotonic
gray level changes. In addition, its discriminative power and computational simplicity
let the LBP texture operator has become a very popular approach in this domain and be

used in many applications.

In 2004, the LBP features were used as a novel facial representation for face recognition
[81]. The LBP features were extracted from different regions of human faces to build as
an enhanced feature vector to be used as a face descriptor. This approach was another
excellent success of the LBP and has been adopted and further developed by many
research groups and companies. This approach has been used to perform face detection,

face recognition, gender classification and age estimation based on 2D face images.

The LBP was also used in the motion analysis. It began with the development of a
texture based method for modeling the background and detecting moving objects [82].
Then in 2007, the spatiotemporal LBP approaches were proposed [83]. Those
approaches soon began the basis for motion and activity analysis and has been used for
recognizing facial expression [83], face and gender recognition form videos [84], and
human activity recognition [85-87]. Recently, the LBP was used in other applications
outside the computer vision domain; we will discuss the applications in medical images

in2.2.2.
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2.2 LBPof 2D Brain MR Images

2.2.1 Local Binary Patterns (LBP)

Texture analysis based on local binary patterns (LBP) has recently been shown to
have excellent discriminative power for many applications in the domain of computer
vision [73, 80]. LBP was originally designed to extract features from various textured
images, such as organic fibers, wood, and fabric [76]. After decades of development, it
was also found to be useful for extracting the features from other types of images, such as
face description [88], image segmentation, and other applications [73]. Furthermore, it
can be used as a spatiotemporal descriptor for motion and activity analysis [83]. In the
domain of computer vision, LBP is an efficient and robust method for extracting

information from morphology [73].

LBP is a simple and efficient image texture operator introduced by Ojala et al. [76, 80].
Figure 2-2 shows the three steps for computing LBP on 2D images. The LBPpp

operator can be defined as

LBPpy = Zg;(l) sign(v, — v,)2P (2-1)

. 1, x=0
gt ={y (2o
where v, and v, are the values of the center pixel and neighborhood pixels with

radius R, respectively, P is the total number of neighborhood pixels, and R is the
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radius in pixel. After the LBP codes for all voxels in an image are computed, the
histogram of the codes computed over specific regions or over the whole image can be
used as a texture descriptor. Therefore, each bin of the histogram can be regarded as a
"micro-texton" encoded by LBP [89]. Figure 2-3 demonstrates patterns encoded by
these histogram bins. Any morphological changes would modify the distribution of the
codes, resulting in alterations to the histogram. Therefore, the histogram of the

computed LBP codes is a good descriptor for comparing changes between images.
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Figure 2-2 Computation of local binary pattern (LBP) from a 2D image.

LBP define a mapping of all pixels from the grayscale pattern space [A] to the binary pattern
space [B] by three simple steps. Step (l): Define a small window by a radius R and number of
neighborhood pixels P. Step (lI-1): Threshold the neighborhood of each pixel by the value of the
center pixel and consider the result as a binary number. Step (lI-2, 1I-3): The code of the center
pixel is given as a weighted sum of its thresholded neighboring pixels. Step (lll): After the LBP
of an image was computed, the combined histogram [C] over regions is used as the texture
feature.
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Figure 2-3 Examples of some texture patterns encoded by LBP histogram.

2.2.2  Applications in Medical Images and Brain MR Images

As we have shown in 2.1, after 2000, the LBP became a popular method in computer
vision domain and be used in many applications. Some medical applications also use
LBP to classify different medical images. Rosdi et al. used LBP to perform the finger
vein recognition [90]. Unay et al. and Tommasi et al. used LBP to construct the medical

image search and retrieval system [91, 92].

As for the brain MR images, the important property of the LBP’s invariance against
monotonic gray level changes makes it’s a good candidate for comparing MR images
collected from different research sites. Unay et al. have shown the robustness of LBP to
the intensity inhomogeneity of 2D brain MR images. They also show the texture-based
method is better than intensity-based method for image search and retrieval [92-94].
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Therefore, we use LBP-TOP to extract useful information from TIWI (Chapter 4 and
Chapter 5) and diffusion tensor imaging (DTI, Chapter 4) to build classification and

regression models for patients and normal subjects.

2.3 Uniform Patterns

Ojala et al. also provided a simple method to map the histogram bins of LBP to a
smaller "uniform patterns" space [80]. They found that non-uniform patterns rarely exist
in many image classification applications. Considering the LBP as circular, U is the
number of bitwise transitions from 0 to 1 or vice versa. A LBP pattern is called uniform
if its U is at most 2 (Figure 2-4, Figure 2-5). While mapping to uniform patterns, a
separate output label is assigned to each uniform pattern, and all non-uniform patterns
are assigned to a single label (usually the code 0, as the smallest LBP code). In the case
of LBP with eight neighbors, the length of the histogram bins of one image is reduced
from 255 to 59 after mapping to uniform patterns (all of these 59 uniform patterns can
be found in [73]). Therefore, the histogram bins of one region of LBP-TOP can be

reduced from 765 to 177.
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Figure 2-4 Uniform Patterns.

While considering the LBP as circular, U is the number of bitwise transitions from 0 to 1 or vice
versa. A LBP pattern is called uniform if its U is at most 2.
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2.4 LBP of 3D Brain MR VVolumes

2.4.1 Spatiotemporal LBP - LBP on Three Orthogonal Planes

(LBP-TOP)

For 3D data, Zhao et al. have proposed simplifying spatiotemporal descriptors by
concatenating LBP on three orthogonal planes (LBP-TOP), i.e., the xy, xt and yt planes
[83]. Here, we used LBP-TOP to describe brain volume data. Therefore, we replaced the
t dimension with the z dimension. We propose using the same radius for x, y, and z for
LBP-TOP. Figure 2-6 illustrates the specific steps for computing LBP-TOP on

3D-volume data.
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Figure 2-6 Computation of LBP on three orthogonal planes (LBP-TOP) from a 3D volume.

Step (I): Define a small window by a radius R and number of neighborhood voxels P. Step (ll):
LBP codes are computed on three orthogonal directions (x, y, and z). Each voxel is encoded
based on those three orthogonal planes (xy, yz, and xz). After the LBP of each direction was
computed, the histogram over a specific volume (whole brain volume in this example) is the
texture feature of that direction. Step (lll): Combine the histograms of those three directions to
build the result histogram as the LBP-TOP feature of the volume.
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2.4.2 Applications in Medical Images and Brain MR Images

Few medical image applications used LBP-TOP. Gao X. and his coworkers build a brain
image retrieval system using LBP-TOP [95, 96]. They study several 3D image retrieval
methods and find LBP-TOP is the fastest and most accuracy one. Those studies manifest

the power of LBP-TOP to extract information from brain MR images.

2.5 Support Vector Machine (SVM)

To evaluate the discrimination power of each approach, an efficient and widely used
classifier, the support vector machine (SVM), was used [97]. SVM maps training data
into high-dimensional feature spaces to adequately separate the hyperplane with a
maximal margin [98, 99]. We used linear SVM to evaluate each method used in this
work. The widely used LIBLINEAR program was used to implement SVM because of

its optimization of linear SVM [100].

Linear SVM is an adequate feature ranking method and has demonstrated as an efficient
and useful tool for gene selection, document classification, and many other applications

[101-103]. For any test subject X , the decision function of linear SVM is

P(X) =sgn(W'X+b) (2:2)

where X is the feature vector, b is a constant, and W is the weight vector. Each
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value of W denotes the weight of each feature. The larger the absolute value of W, 3
the more important the jth feature is when deciding the result. To obtain knowledge
from the trained linear SVM models, we can use W in the resulting models as a
relative importance index to determine which features are more useful to discriminate

the diseased from the control subjects.

2.6  Framework of Analysis Using LBP and SVM

2.6.1 Build Classification Models Using SVM and LBP-TOP

The flow diagram in Figure 2-7 shows the steps of process of the building and evaluation

of classification using SVM and LBP.
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Figure 2-7 the flow diagram of the building and evaluation of a classification using SVM and
LBP.
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k-fold cross-validation (S1)

All tests in this study were evaluated by k-fold cross-validation (S1 in Figure 2-7). We
randomly partitioned all subjects ((a) in Figure 2-7) into k subgroups. For each step of
cross-validation, one subgroup was used as a test data set ((c) in Figure 2-7), and the
remaining (k-1) subgroups were pooled as a training data set ((b) in Figure 2-7). Then the
training data set was used to train a SVM mode ((M2) in Figure 2-7). We applied the
model on test data set to predict the labels or values of each subject in test data set and got
the test results of each fold. After k-fold cross-validations, the test results of all k

subgroups were combined to build the accuracy of the estimation of each tested model.

Feature extraction using LBP-TOP (S2)

For each subject in training data set or test data set, we applied same feature extraction
method to extract LBP-TOP histograms from subjects. First, the brain volumes (T1WI or
parameters of DTI) were converted to LBP-TOP maps. Second, after introducing some
atlas information, the LBP-TOP histograms of specific brain regions can be extracted.
Third, for removing the redudent patterns, the resulting histograms were be converted to

uniform patterns. The uniform patterns were the input of machine learning process.

Machine learning and grid-search(S3, S4)

While using SVM, there are two main parameters should be decided (C and y in RBF
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kernel). For linear SVM, only C should be decided. In order to automatically find the best
parameters using in machine learning process and avoid the overfitting, another m-fold
cross-validation were constructed (A Practical Guide to Support Vector Classification).
As recommend in [104], we used grid-search method to automatically check the proper
parameters. As showing in (S4 in Figure 2-7), different SVM parameter sets was tested
and evaluated using the m-fold cross-validation. After finding the best parameters, the
original training data set (h and d in Figure 2-7) were used to train the resulting

classification models using the best parameter set.

Most studies in this paper used 10-fold cross-validation (k=10) to evaluate each
approaches and 5-fold cross-validation (m=5) to automatically find the best parameters.
The parameter sets using in all case are C equals 0.5, 1, 2, 4, 8, 16, 32, 64, 128, or 256

while constructing linear SVM models.

2.6.2  Feature Selection and Building Regression Models Using SVR and

LBP

The flow diagram in Figure 2-8 shows the steps of feature selection in
classification or regression models. While building classification models, we
directly used the linear SVM implemented by LibLinear. As for constructing
regression models, we used linear SVR as the feature selection tool. After

selecting the top N features, SVR with RBF kernel was constructed using the same
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process described in 2.6.1. In Figure 2-8, the k-fold cross-validation (S2), feature
extraction (S2), and machine learning (S3), and grid-search (S4) are the same with

Figure 2-7. Only the inserted feature selection steps are different.
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Figure 2-8 the flow diagram of feature selection in classification or regression models.
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Feature selection (FS)

LBP-TOP histograms are usually an over-complete dataset. For selecting the most
important features to build simpler and more robust models, we use linear-SVM
(or linear SVR) as our feature selection tool. Therefore, we should train linear
SVM models using training data (d in Figure 2-8) to get the weights of each
feature. Another n-fold cross-validation would be built to find the best parameters
for the linear SVM model of the training data (R_FS in in Figure 2-8). Then we
used those parameters to train other linear-SVM models using the training data (p
in Figure 2-8). The ranked features in the resulting linear-SVM models could be a

good reference for the most important features.

Based on the ranks of features, the most N important features would be extracted
from both the training data and test data. As showing in Figure 2-8, Only those N
features would be the input of the machine learning process (S3 and S4 in Figure

2-8).
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Chapter 3

Properties of LBP-TOP

In this chapter, we use the framework describing in 2.6 and basic sex classification to
analyze the basic properties of LBP-TOP. There are two parts in this chapter. In first
part, we analyze the algorithms and parameters of LBP-TOP. The basic parameters of
LBP were tested in 3.2. Then the efficiency of uniform patterns was tested in 3.3. The
alternative LBP coding methods were tested in 3.4. In second part, the properties of
input brain MR images were tested. We analyzed the effects of signal-to-noise ratio
(SNR) of brain MR images in 3.5. How the image resolution affects the performance of
LBP-TOP was tested in 3.6. All test models were learned by linear SVM and evaluated

by same 10-fold cross-validation.
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3.1 Materials and Methods

3.1.1 Participants

The test datasets were downloaded from a public access online database, the 1000
Functional Connectomes Project from https://www.nitrc.org/projects/fcon_1000. The
1000 Functional Connectomes Project is an unrestricted public functional MRI datasets
independently collected and pooled from 33 sites. For quick tests and controlling the
quality of the each dataset, only the datasets from site Cambridge Buckner , contributed
by Dr. Randy L. Buckner, Harvard University, were used. The anatomical scans,
detailed phenotypic information, and imaging parameters are all available on the
website. In this test, we only wused the anatomical scans acquired by
magnetization-prepared rapid gradient echo (MPRAGE) sequence with voxel size =
1.0x1.0x1.0 mm. All of the available subjects were included in this study. A total 198
subjects were included, consisting of 123 females and 75 males ranging in age from

18-30years old (mean 21.03 +2.31).

3.1.2 Parcellations

To obtain various scales and regions of parcellation information, three different
probability atlases included with FSL (http://www.tmrib.ox.ac.uk/fsl/) were used in this
study. These atlases include the MNI structural atlas and the Harvard-Oxford Cortical
and Subcortical Atlas. The details of these atlases can be assessed on the FSL website

(http:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). The original regions in these atlases were
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separated into left and right brain regions and filtered through fifty percent probability
to build overlapped masks. Large regions of the Harvard-Oxford Subcortical Atlas were
extracted. The left and right Cerebral White Matter and Cerebral Cortex were extracted
as the white matter (WM) and gray matter (GM) regions, respectively, in this study. The
lateral ventricle and brainstem regions were excluded. As a result, 2 regions in WM, 2
regions in GM, 18 regions in the MNI structural atlas (MNI), 96 regions in
Harvard-Oxford Cortical Atlas (CORT), and 14 regions in Harvard-Oxford Subcortical

Atlas (SUB-CORT) were used in this work.

Two sets of parcellation data were tested in this work. First, we tested the performance
of using each atlas (MNI, CORT, and SUB-CORT) in the separated parcellation sets.
Then, we combined MNI, CORT, SUB-CORT, GM and WM atlases to construct

overlapping merged parcellation sets with different scales.

3.1.3 Evaluation

All tests in this chapter were evaluated by 10-fold cross-validation (as showing in
Figure 2-7). We randomly partitioned the 198 subjects into 10 subgroups. For each step
of cross-validation, one subgroup was used as a test data set, and the remaining nine
subgroups were pooled as a training data set. After 10 cross-validations, the test results
of all 10 subgroups were combined to build the accuracy of the estimation of each
model. To facilitate comparison of the results, the same 10-fold cross-validation set was

used in all evaluations.
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3.2 Parameters of LBP

Table 3-1 shows the 10-fold cross-validation results for different radii (I mm, 2 mm,
and 3 mm) for the LBP-TOP, various parcellations, linear registrations, and non-linear
registrations, respectively. Comparing the results of different radii used in LBP-TOP, we
can find in the case of sex classifications, all three tested radii can provide good results.
As expected, brain data with non-linear registration methods showed the highest
accuracy in all cases. Particularly, using linearly registered brain data only slightly
reduce accuracy. As for linear registration methods, using higher degree of freedom can

provide better results.

Based on the results in Table 3-1, each specific parcellation can provide information to
discriminate sex, especially the brain cortical regions (CORT). However, combining
information from all brain regions usually improved the resulting performance ([a], [b],
and [c]). The [c] in Table 3-1 showed combing different scales of parcellations can

provide stable performance across different settings.
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Table 3-1 the sex classification accuracy of models based on uniform LBP-TOP features with
different registration methods, parcellation, and radius of LBP-TOP, using linear-SVM
classifiers.

R1 R2 R3
parcellation | DOF9 DOF12| ART | DOF9 DOF12| ART | DOF9 DOF12| ART
GM | 085 083 | 091 [ 085 08 | 089 | 081 081 | 087
wM | 082 079 | 080 | 0.80 079 | 083 | 082 078 | 081
CORT | 092 090 | 093 [ 091 091 | 092 | 090 091 | 094
SUB CORT | 084 084 | 086 | 084 08 | 08 | 0.83 084 | 086
CERE | 085 087 | 089 | 088 088 | 091 | 087 087 | 092
MNL | 090 089 | 096 | 091 089 | 095 | 091 090 | 093
[a]| CORT+SUB_CORT+CERE | 090 092 | 093 | 092 093 | 093 [ 091 092 | 094
[b] [a]+GM+WM | 090 091 [ 093 | 091 093 | 093 | 091 092 | 094
(] bj+MNI | 093 091 | 093 | 092 092 | 093 | 091 092 | 094

0.80

Abbreviations are as follows: R1, R2, and R3, LBP-TOP radius in mm; DOF9, and DOF12, linear
registration with 9, and 12 degree of freedom, respectively; ART, non-linear registration
performed by Automated Registration Tool; GM, left and right gray matter regions; WM, left
and right white matter regions; CORT, the Harvard-Oxford cortical atlas; SUB_CORT, the
Harvard-Oxford subcortical atlas; CERE, the probabilistic cerebellar atlas; MNI, the MNI
structural atlas. All atlases were provided by FSLView version 3.0[105]. The sensitivity,
specificity, and areas under the ROC curve (AUC) of this table can be found in Table 3-2.
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Table 3-2 Sensitivity, specificity, and areas under the ROC curve (AUC) of Table 3-1 the sex
classification accuracy of models based on uniform LBP-TOP features with different
registration methods, parcellation, and radius of LBP-TOP, using linear-SVM classifiers.

Sensitivity R1 R2 R3
parcellation | DOF9 DOF12| ART | DOF9 DOF12| ART | DOF9 DOF12 | ART I
GM | 081 080 | 091 | 083 084 | 083 | 077 079 | 083
WM | 075 075 | 072 | 073 069 | 077 | 077 068 | 0.73
CORT | 087 085 | 083 | 085 085 | 087 | 0.84 084 | 089
SUBCORT | 075 072 | 079 | 075 076 | 081 | 071 077 | 0.77
CERE | 076 0.80 | 083 | 079 085 | 087 | 077 081 | 087
MNI | 087 084 | 093 | 087 089 | 092 | 088 089 | 092
[a]| CORT+SUB_CORT+CERE | 087 088 | 088 | 089 089 | 089 | 0.8 087 | 091

[b] [a] + GM + WM 0.87 0.88 0.89 0.88 0.89 0.89 0.85 0.87 091
[c] [b] + MNI 0.89 0.87 089 | 089 088 | 089 0.87 0.87 091
Specificity R1 R2 R3

parcellation | DOF9 DOF12| ART | DOF9 DOF12| ART | DOF9 DOF12 | ART I
GM | 08 085 | 092 | 08 087 | 093 | 084 082 | 089
WM | 087 082 | 085 | 084 085 | 087 | 085 084 | 085
CORT | 095 093 | 09 | 094 054 | 096 | 094 095 | 097
SUB_CORT | 0.8 051 | 091 | 089 092 | 092 | 050 089 | 092
CERE 091 091 | 093 | 094 090 [ 094 | 093 091 | 095
MNI 093 093 | 098 | 094 089 | 098 | 093 091 | 094
[a]| CORT +SUB_CORT + CERE 0.93 0.94 0.97 0.94 0.96 0.95 0.94 0.96 097

[b] [a]+GM+WM | 093 093 | 096 | 093 095 | 095 | 094 096 | 097
] b]+MNI | 095 094 | 096 | 093 094 | 096 | 094 095 | 096
AUC R1 R2 R3

parcellation | DOF9 DOF12| ART | DoFo DoF12| ARt | pors Dor12| ArT |
GM | 085 082 | 091 [ 084 085 | 088 | 081 080 | 086
wMm [ 081 o078 | 078 | 079 077 | 082 | 081 076 | 079
CORT | 091 089 | 092 | 090 o090 | 091 | 089 090 | 093
SUB_CORT | 082 o082 | 085 | 082 084 | 087 | 080 083 | 085
ceRe | 084 086 | 088 | 086 088 | 090 | 085 086 [ 091
M [ 090 088 | 095 | 090 089 | 095 [ 0950 090 | 093
[a]| CORT+SUB_CORT+CERE | 050 091 | 092 | 092 093 | 092 | 090 091 | 094
b] a]+GM+wM | 090 090 | 093 | 001 092 | 092 | 090 091 | 094
[c] bl+MN | 092 090 | 093 | 091 o091 | 093 | 090 091 | 093

Abbreviations are as follows: R1, R2, and R3, LBP-TOP radius in mm; DOF9, and DOF12, linear
registration with 9, and 12 degree of freedom, respectively; ART, non-linear registration
performed by Automated Registration Tool; GM, left and right gray matter regions; WM, left
and right white matter regions; CORT, the Harvard-Oxford cortical atlas; SUB_CORT, the
Harvard-Oxford subcortical atlas; CERE, the probabilistic cerebellar atlas; MNI, the MNI
structural atlas. All atlases were provided by FSLView version 3.0[105]. The AUC was calculated
using [106] and the positive subject is male subjects.
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Another finding is the robustness of the registration methods when using LBP-TOP
features to classify sex. Although the models based on the non-linear registration
method are most accurate in each cases, the models based on linear registrations (DOF9
and DOF12) also performed well (Table 3-1). This finding shows the stability of the
LBP-TOP to registration methods. Therefore, we also test the non-normalized brain MR

images approaches in Chapter 4.

3.3  The Efficiency of Uniform Patterns

Table 3-3 shows the effect of LBP-TOP features with and without converting to uniform
patterns. In each case of different radii, registration methods, and parcellations, there are
performance difference between approaches using uniform patterns or not. However, the
resulting feature size of using non-uniform patterns is more than four times bigger than
introducing uniform patterns. The bigger feature size something hurts the resulting
accuracy in some complex machine learning approaches. Moreover, much more features
can limit the size of training subjects in same computational resources and then take
much time to learn models from same subject size. This test results show the efficiency

of using uniform patterns. Therefore, we always used uniform patterns in this study.
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Table 3-3 the sex classification accuracy of models based on LBP-TOP features with and

without converting to uniform patterns.
0.95

R1 R2 R3
parcellation uniform | features | DOF9  DOF12 ART DOF9  DOF12 | ART DOF9  DOF12 ART |
CORT non-uniform | 73728 0.90 0.86 0.94 0.89 0.89 0.93 0.90 0.90 0.4
uniform 16992 0.92 0.90 0.93 0.91 0.91 0.92 0.90 0.91 0.94
ol non-uniform | 13824 0.90 0.91 0.94 0.93 0.91 0.95 092 0.92 0.95

uniform 3186 0.90 0.89 0.96 0.91 0.89 0.95 0.91 0.90 0.93
non-uniform | 122880 091 0.90 0.93 093 0.93 0.94 092 0.92 0.94
uniform 28320 093 091 093 092 0.92 0.93 091 0.92 0.94

[c]

o 030

Abbreviations are as follows: R1, R2, and R3, LBP-TOP radius in mm; DOF9, and DOF12, linear
registration with 9, and 12 degree of freedom, respectively; ART, non-linear registration
performed by Automated Registration Tool; CORT, the Harvard-Oxford cortical atlas; MNI, the
MNI structural atlas; [c], the same parcellations used in Table 3-1 [c]. All atlases were provided
by FSLView version 3.0[105].

3.4  The Order of LBP Coding

In this section, we showed the order of LBP coding is arbitrary and do not affect the
results of SVM models. We modified the coding series of LBP (weights in the step II-2
in Figure 2-2) histogram. As showing in Figure 3-1, the resulting LBP maps of different
coding orders are very different. However, the linear SVM would always build same
classification model using same features with same ranks. Therefore, as the results in

Table 3-4, the resulting accuracies of every orders are the same.
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Local binary pattern encoded

Figure 3-1 LBP map using different coding series.

Table 3-4 the sex classification accuracy of models based on LBP-TOP features with different
encode methods, 1mm resolution, 2mm radius, non-linear registration, and uniform
patterns.

parcellation |encode method| ART ' e

normal order 0.92
reverse order 0.92
CORT random order 1|  0.92
random order 2| 0.92

random order 3| 0.92
normal order
reverse order

MNI random order 1
random order 2
random order 3|

normal order

reverse order 0.93
[c] random order 1| 0.93
random order 2| 0.93
random order 3| 0.93

0.80

Abbreviations are as follows: ART, non-linear registration performed by Automated
Registration Tool; CORT, the Harvard-Oxford cortical atlas; MNI, the MNI structural atlas; [c],
the same parcellations used in Table 3-1 [c]. All atlases were provided by FSLView version
3.0[105].
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3.5 The Effects of Brain MR Image SNR

To simply test the effects of image SNR to the performance of LBP-TOP approaches,
we add Gaussian noise to the original brain MR images. The signals of the images were
estimated by the average of 80% white matter region based on the probabilistic atlas
provided by FSLView version 3.0 [105]. In each level of SNR, we add Gaussian noise
with zero mean and the standard deviation based on the signal and SNR (SNR = signal/
standard deviation). Figure 3-2 shows the examples of the brain MR images and

corresponding LBP maps in every tested SNR levels.
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MR images

LBP Map

Figure 3-2 brain MR images and the corresponding LBP map in different SNR levels.

Table 3-5 the sex classification accuracy of models based on LBP-TOP features with different
SNR level, 1mm resolution, 2mm radius, non-linear registration, and uniform patterns.

SNR M 09
parcellation 64 32 16 8 4 2 1
GM 0.87 0.85 0.82 0.7 0.70 0.67
WM 063  0.65

CORT ( ( 089 081 074
SUB_CORT | 088 08 08 077 074 071 = 057
CERE | | 0.80 0.76
MNI 084 081
[a]| CORT +SUB_CORT + CERE 088 08 072
(b] [a] + GM + WM 089 082 072 N
[c] [b] + MNI 089 08 073 60

Abbreviations are as follows: GM, left and right gray matter regions; WM, left and right white
matter regions; CORT, the Harvard-Oxford cortical atlas; SUB_CORT, the Harvard-Oxford
subcortical atlas; CERE, the probabilistic cerebellar atlas; MNI, the MNI structural atlas. All
atlases were provided by FSLView version 3.0[105]. The sensitivity, specificity, and areas under
the ROC curve (AUC) of this table can be found in Table 3-6.
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Table 3-6 Sensitivity, specificity, and areas under the ROC curve (AUC) of Table 3-5 the sex
classification accuracy of models based on LBP-TOP features with different SNR level, 1Imm
resolution, 2mm radius, non-linear registration, and uniform patterns.

] Sensitivity SNR

parcellation 64 32 16 8 4 2 1
GM | 08 080 075 072 057 053 043
WM | 071 063 065 044 049 040 032
CORT | 089 089 058 088 079 061 035
SUB_CORT | 081 081 075 061 052 043 019
CERE 0.85 0.77 0.76 0.71 0.67 0.52 0.11
MNI | 089 091 081 08 073 064 047
[a] CORT+SUB_CORT+CERE | 091 091 092 087 077 060 027

[b] [aJ+GM+WM | 08 091 091 087 079 059 028
[c] [b] + MNI 091 091 091 091 08 063 031
Specificity SNR
parcellation 64 32 16 8 4 2 1

GM | 08 08 08 082 077 075 067

WM | 08 080 076 074 075 067 067

CORT | 0% 094 05 095 095 093 098

SUB CORT | 082 093 091 087 088 088 080
CERE 095 08 0.8 089 08 081 089

MNI 09% 09 054 09 091 091 087

[a] CORT + SUB_CORT + CERE 0% 098 057 097 08 0% 099

[b] [a]+GM+WM | 095 09 097 09 095 09 099
[c] [b]+MNI | 096 096 09 097 085 085 098
AUC SNR
parcellation 64 32 16 8 4 2 1

GM | 087 08 08 077 067 064 055

WM [ 078 072 071 059 062 053 049

CORT | 093 092 091 092 08 077 066
SUB_CORT | 0.87 087 083 074 070 065 049
CERE | 090 083 08 080 078 072 050

MNI | 093 093 092 090 082 078 067

[a] CORT+SUB_CORT+CERE | 093 094 094 092 08 078 063
[b] [a]+GM+WM | 092 093 094 091 087 077 064
[c] b]+MNI | 093 093 093 094 088 079 065

Abbreviations are as follows: GM, left and right gray matter regions; WM, left and right white
matter regions; CORT, the Harvard-Oxford cortical atlas; SUB_CORT, the Harvard-Oxford
subcortical atlas; CERE, the probabilistic cerebellar atlas; MNI, the MNI structural atlas. All
atlases were provided by FSLView version 3.0[105]. The AUC was calculated using [106] and the
positive subject is male subjects.
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Results in Table 3-5 demonstrate the robustness of LBP-TOP approaches to different
SNR levels. While using images with higher SNR (8 to 64), the resulting accuracies are
the same based on informations from every brain regions. In the cases of SNR equals 4,
although we can find the edges and structures of LBP maps have been destroyed in
Figure 3-2, the LBP-TOP approaches perform well. The LBP histograms in different
brain regions still show sufficient information to machine learning algorithms to classify
sex. In the cases of SNR equals to 2, there are no edges or structures can be found in
LBP maps (Figure 3-2). However, the LBP histograms can provide some useful
information to classify the sex. Only while the SNR equals to 1, the machine learning

algorithms learned almost nothing form the LBP histograms.

3.6  The Effects of Brain MR Image Resolution

Table 3-7 shows the accuracy of models based on various brain image resolutions.
Although the resolution does not affect the results too much, data with higher resolution
generally provide more information for the discrimination of subject sex. In our
experience, the effects of resolution are case by case. Higher-resolution images are
usually better than low ones. However, there is no robust rule for sufficient resolution

for every approach.
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Table 3-7 the sex classification accuracy of models based on LBP-TOP features with different
resolution, radius, registration method, uniform patterns, and combined all brain regions.

registration radius  1mm  2mm  3mm 4mm  6mm
R1 091 092 09 08 084

DOF12 R2 092 093 092 092 092
R3 092 094 092 092 0.92

R1 093 09 093 090 088

ART R2 093 093 092 091 093

R3 094 093 094 094 093

Abbreviations are as follows: R1, R2, and R3, LBP-TOP radius in mm; DOF12, linear registration
with 12 degree of freedom, respectively; ART, non-linear registration performed by Automated
Registration Tool.
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Chapter 4

Age Estimation Using Unnormalized MR Brain Images

4.1 Introduction

Aging-related brain morphological change is an important issue in neuroscience. Many
studies have shown cerebral changes during brain maturation and aging [37-44]. To
illustrate cognitive development and decline, or to explore aging-related mental
disorders based on changes in brain morphology, an age biomarker defining the normal

patterns of structural brain changes over the lifespan is critical.
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Recently, a variety of methods were proposed to estimate age using structural MR brain
images [107-112]. However, most of these studies only considered the period of brain
maturation or aging. Moreover, the studies all used acquired brain images that were
transformed to a standard template and compared voxel-by-voxel, such as the
voxel-based morphometry (VBM) analysis [50, 52]. However, several unsolved

problems exist in this approach (see 0 for more details).

In this study, to avoid all the mentioned risks, we used a simple feature extraction
method based on local binary patterns on three orthogonal planes (LBP-TOP) to extract
effective information from MR brain images without registration [73, 80, 83]. In the
first part of this chapter, we used LBP-TOP to extract brain morphological change
information from unnormalized brain images, which provide pure and unmodified raw
information. Furthermore, most studies only use gray matter (GM) segmentation as
source data. The process of segmenting brain images into GM, white matter (WM), and
cerebrospinal fluid (CSF) could be another step that restricts the analysis pipeline and
introduces noise to the image data [113-115]. In addition to using GM segmentations,

we also used whole-brain images as an information source.

Diffusion tensor imaging (DTI) is an MRI technique that measures the restricted
diffusion of water molecules in tissue and offers directional information of neural tracts
in the brain [8]. DTI has proven its value in WM mapping and anatomical connectivity
in brain research as well as clinical applications [9, 10]. Moreover, many studies show
that DTI can reveal microstructural changes in brain tissue during brain maturation and
aging [116, 117]. Recently, Benson Mwangi et al. have revealed the possibility of
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predicting age wusing DTI measurements [111]. However, considering the
multi-dimensional nature of the data and the tensor orientations, DTI registration is
much more challenging compared to using scalar images [118-120]. Therefore, when
analyzing DTI data, most studies considered only an eigenvalue-derived DTI
measurement, such as fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), and so on. Few of these studies used the information in fiber spatial
orientation (eigenvectors) [117]. Inspired by the recent research of Wedeen et al., which
showed that the cerebral fiber pathways form a regular grid based on the three principal
axes of development [121], we used the orientation of fiber to estimate age in this study.
The capability of LBP-TOP to extract information from unnormalized brain images
makes it an excellent candidate for analyzing unnormalized DTI data. In the second part
of this chapter, we tried to use the information derived from DTI eigenvalues (FA, MD,

or AD) as well as the direction of the eigenvectors to predict brain age.

In previous chapter, we used LBP-TOP to compute features from registered brain
T1-weighted images (T1WI) to sort ADHD patients from normal subjects [122]. In this
chapter, the method was used to estimate age with unnormalized brain TIWI or DTI
measurements. To evaluate the performance of LBP-TOP in brain age estimation, we
use linear support vector regression (linear SVR) as a simple feature selection method to
find the most useful features for predicting brain age. Then, we used those features to
train a non-linear SVR with a radial basis function (RBF) kernel for more accurate age

estimation.

This study provides three contributions. First, we enable unnormalized MR brain image
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analysis by introducing LBP-TOP to extract morphological information directly from
acquired images. Second, we built age estimation models from whole-brain TIWI or
GM segments using LBP-TOP. Third, we demonstrate a simple way to extract
discriminative information from eigenvalues, or even the direction of eigenvectors, from
DTI data. To the best of our knowledge, no previous study has used unnormalized MR
brain images to predict brain age. More importantly, this may be the first report that the

information encoded in fiber orientation could be used to estimate the brain age.

4.2 Materials and Methods

4.2.1 Subjects and Data Acquisition

The employed datasets were downloaded from a public access online database, the
Nathan Kline Institute (NKI) / Rockland Sample from the International Neuroimaging
Data-sharing Initiative (INDI). The NKI/Rockland Sample is a phenotypically rich
neuroimaging sample for discovery science. The anatomical scans, DTI scans, detailed
phenotypic information, and imaging parameters are all available on the website
(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). In this study, we used the
anatomical scans and 64-direction DTI scans from the database. Both scans were
acquired using a 3T Siemens Trio scanner. The anatomical scans were acquired by

magnetization-prepared rapid gradient echo (MPRAGE) sequence with TR/TE =
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2500/3.5 ms and voxel size = 1.0x1.0x1.0 mm. The 64-direction DTI scans were
acquired by EPI sequence with TR/TE = 10000/91 ms, voxel size = 2.0%2.0%2.0 mm,
and b-value = 1000 s/mm2. All of the available subjects were included in this study,
with the exception of three subjects without MPRAGE scans (subject id: 1933343,
2136756, and 2479362). Therefore, a total 204 subjects were included, consisting of 84
females and 120 males ranging in age from 4-85 years old (mean 35.22 + 25.07). Figure

4-1 shows the age distribution of the subjects.
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Figure 4-1 Age distribution of the 204 subjects that participated in the study.

The age of each subject can be found on the NKI/Rockland Sample website
(http://fcon 1000.projects.nitrc.org/indi/pro/nki.html).
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42.2 Data preprocessing

All of the images were preprocessed using FSL version 4.1.7 [123]. For T1WI, brain
segmentation was performed by FSL's automated segmentation toolbox (FAST). The
skull-stripped brain images were segmented into gray matter (GM), white matter (WM)
and CSF [123, 124] probability maps. A 0.25 threshold was applied on the GM segment
results to remove noise. Only the source T1WI head images and GM segment data were

used in this work.

The DTI images were preprocessed through the following pipeline: (1) eddy current
correction with FSL eddy correct, (2) skull removal and brain extraction using FSL
BET [125], (3) diffusion tensor model fitting of each voxel using FSL dtifit. Next, the
raw output T2 signal images (S0) were used as the reference for atlas registration. The
fractional anisotropy images (FA), mean diffusivity images (MD), first eigenvalue
images (L1, known as axial diffusivity, AD), or first eigenvector data (V1) were used

for age estimation.

4.2.3 Extracting the LBP-TOP Histogram

All of the acquired head images were first aligned to the same orientation by rigid
transformation. Then, we extracted the LBP-TOP histograms from those head images.
Figure 4-2 shows the basic steps of extracting the LBP-TOP features. The input features
of the SVR were the combined histograms from the brain regions. To estimate age using
TIWI, the MNI template provided in FSLView version 3.0 (file name:

MNI152 T1 Imm_brain.nii.gz) was used as the standard template. To predict age using
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the DTI data, the T2-weighted ICBM 2009c¢ nonlinear asymmetric template was used as
standard template [126, 127] for the SO images. Next, the transformed atlas information
was applied on all of the DTI measurement data. To address the first eigenvector data
(V1), we compute three LBP-TOP maps of three directions to extract the information

from the vector data (Figure 4-3 shows an example).
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Figure 4-2 Flow chart for extracting the LBP-TOP histogram from unnormalized MR brain
images.

(a) For better atlas registration results, we first performed skull-stripping to acquire the brain
image. (b) Then, using the linear or non-linear method, the transform function of atlas
registration was computed to register the standard brain template to each brain image. (c) The
transform function was used to transform the atlas to each subject’s head image. (d) The
LBP-TOP histogram of each brain region can be computed based on the atlas. (e) The combined
histogram from all of the brain regions was the input feature to SVR for age estimation.
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Figure 4-3 Example LBP-TOP maps of each tested MR brain image data in this study.

Only the LBP-TOP from the XY direction with a radius equal to two voxels is shown. The images
in row 1 are the example MR brain images without registration. The images in row 2 show the
XY direction LBP mapping of each image in row 1. Row 3 denotes the XY direction LBP
histograms of the 3D left occipital lobe region, one of the 18 MNI regions (shown in the row 2
images as a red region) of each image. L1 denotes the first eigenvalues of the DTI data. V1
denotes the first eigenvectors of the DTl data.

4.2.4 Atlas Registration

To introduce spatial information of the brain regions in this study, the following 3
probability atlases provided by FSLView version 3.0 were used: the MNI structural atlas
(MNI) [128], the Harvard-Oxford cortical atlas (CORT) and the Harvard-Oxford

subcortical atlas (SUB_CORT), and the probabilistic cerebellar atlas (CERE)[129]. The
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details of these atlases can be found on the FSL  website
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Regions in the atlases were separated into
left and right brain portions and filtered by zero percent probability to build overlapped
masks. Some of the large regions from the Harvard-Oxford subcortical atlas were
extracted. The left and right cerebral white matter and cerebral cortex were extracted as
the gray matter (GM) and white matter (WM) regions. The lateral ventricle and brain
stem regions were excluded. As a result, there were 2 regions in the WM, 2 regions in
the GM, 18 regions in the MNI structural atlas (MNI), 96 regions in the Harvard-Oxford
cortical atlas (CORT), 14 regions in the Harvard-Oxford subcortical atlas (SUB-CORT),

and 28 regions in the probabilistic cerebellar atlas (CERE).

Three sets of atlases were tested. First, the GM and WM were used to test the
information encoded in the whole-brain LBP-TOP distribution. Second, CORT,
SUB_CORT, and CERE were used to evaluate the age estimation performance of
different brain segments. Third, two atlases with different scale and details were used to
extract features from all of the brain regions. MNI provides large and rough spatial
information from the whole-brain. Lastly, we combined all of the above mentioned
atlases to build a mixed atlas with multiple scale regions. That is,

GM+WM+CORT+SUB_CORT+CERE+MNI.

Both linear and non-linear atlas registration methods were evaluated in this study.
Linear registrations were performed using the linear multimodality registration method
developed by FSL FLIRT [123, 130]. The brain template was first transformed to each
subject brain image by FLIRT with 6 degree of freedom (6-DOF, rigid-body
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transformation). The results were then linearly transformed by FLIRT with 9-DOF. Next,

the results were linearly transformed by FLIRT with 12-DOF to build the used atlas.

Non-linear atlas registration was performed using the automated registration tool (ART).
ART was developed by Ardekani et al. [131] and can be downloaded from
http://www.nitrc.org/projects/art/. Arno Klein et al. demonstrated that ART provides

better efficiency and consistency than other non-linear registration methods [60].

4.2.5 Support Vector Regression and Feature Ranking

Support vector regression (SVR) was used to build an age estimation model. The idea of
SVR is derived from support vector machine (SVM) [132, 133]. SVM maps training
data into high-dimensional feature space to find the separating hyperplane with the
maximal margin. The support vectors are the data points lying closest to the hyperplane.
For SVR, we need to find a function that fits as many data points as possible. Therefore,
the regression line is surrounded by a tube [99, 134]. The regression line best fits those
points in the tube, while points outside of the tube are the training errors. The SVR
support vectors are the data points lying closest to the edge of the tube. To determine the
width of the tube, we used v-SVR in this study. Namely, we specified an upper bound v
on the fraction of points lying outside of the tube and automatically adjusted the width
of the tube. In this study, we used LIBSVM to perform SVR with a linear kernel and a

radial basis function (RBF) kernel [135].
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The LBP-TOP histogram is an over-complete feature set with a huge number of features.
Therefore, the histogram is not suitable for training a RBF SVM. To build a more

efficient and robust regression model, a feature selection method is needed.

Feature ranking and selection based on a linear SVM has proven to be efficient and
useful for gene selection, document classification and many other applications [102, 136,
137]. In this study, we used the same idea to select the most important bins in the
LBP-TOP histogram. For any test subject, the estimated value based on the linear SVR

i

fx) =wlx+b (4-1)

where x is the feature vector, b is a constant, and w is the weight vector. Each value of
w denotes the weight of each feature to compute the estimated result. The larger the
absolute value of wj, the more important the jth feature is in deciding the resulting value.
After training a linear SVR model, the w in (3-1) can be used as a relative importance

index. Therefore, we can build a simpler model using the top N important features.

For each test in this study, in each fold of cross-validation, we first trained a linear SVR
model using the training subjects and then ranked the features. Next, we used the top N
features to train a non-linear SVR model with an RBF kernel (RBF SVR) using the
same training subjects. Then, we tested the RBF SVR model using the tested subjects to

evaluate the test performance. Figure 4-4 shows an example feature selection result.
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Figure 4-4 Example of feature selection using linear SVR with whole-brain or GM segment
data.

The figure shows the mean absolute error (MAE) from using RBF SVR to train the top N ranked
features selected by linear SVR. The selected LBP-TOP features are built by linear atlas
registration, with a voxel radius of one, and combined brain regions
(GM+WM+CORT+SUB_CORT+CERE+MNI in)

4.2.6 Evaluations

All of the tests in this study were evaluated by 10-fold cross-validation. The 204
subjects were randomly partitioned into 10 subgroups. For each step of cross-validation,
one subgroup was used as a test data set, and the remaining nine subgroups were pooled
as a training data set. After 10 cross-validations, the test results of all 10 subgroups were

combined to calculate the estimation error of each test. To facilitate a comparison of the
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results, the same 10-fold cross-validation set was used in all of the evaluations.

4.3 Results and Discussion

Figure 4-3 shows an example of LBP-TOP of the XY direction. Figure 4-4 shows an
example of feature selection by linear SVR. In most of the tests we attempted in this
study, we found that using the top 2048 ranked features usually provided the best age
estimation model. When using more than 2048 features, the performance did not
improve. Therefore, the results we show in this paper were mainly from using the top
2048 ranked features. Figure 4-4 also shows the different results from using the
whole-brain or GM segment data. Although they both end up with a similar mean
absolute error (MAE) after using more than 256 ranked features, the whole-brain data
provide better MAE while using fewer features. The test results from using 256 and

1024 features of each table can be found in the supplement.

4.3.1 Age estimation using T1WI

Table 4-1 and Table 4-2 show the age estimation results from using TIWI with different
brain regions. The LBP-TOP histograms from CORT provide the most information for
predicting age. This result might reflect the observation that gray matter density shows
large changes in some cortical regions across the human lifespan [44]. Regions in
SUB_CORT and CERE provide little information for age estimation. Interestingly,
considering only the GM and WM regions provides acceptable MAE. This result

demonstrates that the change in brain morphology across the lifespan is so large that it
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can affect the LBP-TOP distribution in the whole-brain region.

Table 4-1 Mean absolute error (MAE) of brain age estimation by LBP-TOP and RBF SVR using
T1WI data and 2048 features in various brain regions.

atlas mage data whole-head GM segment
registration |region\ radius (voxels) 1 2 3 1 2 3
GM (875|804 |89 | 701|678 |6.28
WM |[899 820 |877|701|711|6.95
Linear CORT 6.87 (6.85| 7.02 || 5.89 | 6.07 | 6.04
SUB_CORT 7.10| 7.18 | 6.74 (| 7.89 | 7.39 | 7.40
CERE 9.14 | 9.47 | 8.91 ||10.02| 10.05] 9.59
GM (870|799 894|677 |673|640
WM | 887|816 |882|( 733|723 |686
Non-linear CORT |6.83|6.63| 702 595|6.27]|6.18
SUB_CORT | 740721690 7.85|7.29]7.16
CERE [9.02 (8.74 | 878 9.34 | 8.86 | 8.45

The bold values denote the best MAE in the image data of the row. The italic values denote the
results using 354 features, which is the total number of features provided by the region. The
underlined value shows the best MAE in the table.

and Table 4-4 show the results of combining the features from all of the brain regions. The
best result from using the T1WI brain image is the G M segment data, where the MAE
equals 5.62 years with 1 voxel as the radius. The scatter plots of the true and estimated
age of each subject from this test are shown in Figure 4-5. As shown in Table 4-3, both
the rough MNI regions and the total combined regions can enhance the age-predictive
performance. MNI provided sufficiently good performance compared to using all of the
combined regions. However, combining all of the regions consistently improved the

results, especially while using the GM segment data. Despite the increased complexity
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of the large feature number in the combined data, this result could imply that while most
of the morphological changes across the lifespan are dependent, some in different brain
regions are independent. Therefore, the combined information provides only a slight

improvement to the overall performance.

65



"21qe)

3Y3 Ul IVIA 3599 3yl SMOYS an|eA paulldapun ay] ‘uoi8al ay3y Aq papinoid sainieay Jo Jaquinu [0} 3Y3 S| YdIYM ‘sainiedy
#G€ 8uisn s}nsaJ 3y} 210U3P SAN[BA Jlje} Y| ‘MOJ 3y} Jo eiep aSew! ayl ul YA 1S2q dY3} 910Udp SaNjeA pjog Ayl

Sv'8 198 P16 |988 €68 056 |ve6 96 TL0L8.8 088 668 |v.8 TIL8 968|206 L68 ve'0l| 3I4ID
9T'L TTL 8Y'8|6ZL (¥l E€1'8|S8L 88L 9¥'8[069 TL'9 969 |TTL TTL 6SL|OVL T¥L 98L| L¥OD 9NS
8L'9 ¥b'9 [LEL|LZ9 S59 LOL |S6'S [L09 ¥P9|Z0L €69 LT'L|E99 SS9 €60 (€89 [L89 90°L| 1lHOD Jeaul|-uoN
989 969 £CL 9L EE€L ECTL 288 SL'8 9r's I'8 £88 TL8| WM
o9 [v9 €9 LIS L9 ¥9'9 76’8 16’8 66£ 108 0/8 S¥'8| WO
656 L9'6 ST'OT|SO0T ¥Z'0T €9°0T (00T TTOT LB'OT| 168 L88 CL'6|Liv6 096 646 |Vl'6 P06 €56 | 3Id4ID
OvL TvL T8 |6EL BEL 6C8|68L 98L TEB| L9 959 TL9|8TL SOL 6CL|O0UL SL9 €L | LY40OD 9NS
¥0'9 SE'9 £S9|£09 2’9 869 |68S €09 859 [ 20L SOL €SL|S89 9L'9 COL|£89 169 62L| LHOD Jeaul
S6'9 0OT'L ITL 9T'L o 69 L8 SL'8 0Z'8 608 668 6.8 INA
829 [E9 89 869 02 €L9 968 106 '8 '8 S£'8 S9'8 | WO
8r0¢ t¢0T 9S¢ | 8P0C ©COT 95¢ |8v0C PCOT 9SC |[8v0Z +EOT 9S¢ |8POC wZOT 9S¢ | 8v0C #COT 9S¢ S /
S|aXON € S|AXOA Z |9XOA T S[OXOA € S|9XON 7 |axon T snipel
Juawigas N peay-ajoym elep agew

‘suoiS8ai uieiq snotieA uj ezep |MTL Suisn YAS 494 pue dO1-d91 Aq uonewnsa ase uleiq o (JVIA) 10143 3Injosqe ues\ - d|qeL



Table 4-3 Mean absolute error (MAE) of brain age estimation by LBP-TOP and RBF SVR using
T1WI data and 2048 features in combined brain regions.

atlas image data whole-head GMsegment
registration region \ radius (voxels) 1 2 3 1 2 3
Linear MNI 6.23 |1 595 | 6.42 || 5.68 | 5.88 | 5.89
i
GM+WM+CORT+SUB_CORT+CERE+MNI | 6.27 | 6.07 | 6.24 || 5.62 | 5.64 | 5.73
. MNI 6.34 | 6.15 | 6.37 || 5.74 | 6.14 | 5.77
Non-linear
GM+WM+CORT+SUB_CORT+CERE+MNI | 6.39 | 6.10 | 6.38 || 5.63 | 5.66 | 5.76

The bold values denote the best MAE in the image data of the row. The underlined value shows
the best MAE in the table.
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Figure 4-5 Scatter plots of age estimation of all 204 subjects using GM segments.

This figure shows the specific age estimation of each subject obtained from the best result in
Table 4-3. The estimation models were trained with 2048 features using GM segments, linear
atlas  registration, a radius of 1 voxel, and combined brain regions
(GM+WM+CORT+SUB_CORT+CERE+MNI in Table 4-3). The mean absolute error is 5.62 years as
shown in Table 4-3. The dashed green lines indicate the true age+10 years.
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For the GM, WM, and cortical regions, the GM segment data provide better MAE than
the whole-brain data. As mentioned before, Sowell et al. have shown significant
changes in the gray matter density of some cortical regions [44]. Therefore, using the
GM segment data can reflect this behavior more clearly and produce better age
estimation results. On the other hand, for the sub-cortical (SUB_CORT) and cerebellar
(CERE) regions, the whole-brain data provide better performance. The best known
aging-related change in those regions is an increase in CSF volume [44]. The GM
segment data filter out the CSF segment and provides less information in the estimation

of brain age.

The results in Table 4-1 and Table 4-3 show that LBP-TOP can extract discriminative
information from either unnormalized GM segment data or unmodified and
unnormalized whole-brain images to predict brain age. The GM segment data show
better brain age estimation results, but using whole-brain image data can also provide
good results. Brain segmentation is still a challenging task, and the usage is relatively
limited in clinical practice, especially when dealing with abnormal brains [138].
Therefore, the characteristics of LBP-TOP can extract effective features from
unmodified and unnormalized original whole-brain images, which could be very useful

in clinical applications.

4.3.2 Age estimation using DTI data

Table 4-5 and Table 4-6 show the results of DTI age estimation by combined brain

segments. The results with separate brain regions are shown in Table 4-7. Similar to the
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results of the TIWI approaches, the information from the cortical regions (CORT) also
shows the best estimation accuracy. Among the DTI measurements, the MD provides
the best performance. Being the major part of MD, the L1 data provided similar
performance compared to MD. Fig. 6 shows the scatter plot of age estimation using
those DTI measurements. FA, MD, and L1 show very similar age estimating patterns
compared to the results from T1WI. The important and interesting result is that we can
use the whole-brain DTI fiber direction (V1) to estimate brain age. Although V1 data
produce inferior results, the data still provide a good estimation when the age is less
than 60 years old. To the best of our knowledge, this could be the first report that subject
age affects the neural fiber direction in the brain. LBP-TOP could be very useful to use

the information embedded in DTI eigenvector direction.
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Table 4-5 Mean absolute error (MAE) of brain age estimation by LBP-TOP and RBF SVR using
DTI data and 2048 features in combined brain regions.

atlas radius (voxels) ) X 3
registration |DTI measurement
MD 7.35 | 6.44 | 6.53
i FA 7.20 | 7.37 | 6.95
linear
L1 7.43 | 6.70 | 6.28
Vi 9.72 | 8.47 | 7.99
MD 6.83 | 5.97 | 6.32
i FA 6.94 | 6.84 | 6.75
non-linear
L1 6.74 | 6.08 | 6.07
Vi 8.74 | 8.04 | 8.07

The bold values denote the best MAE in the image data of the row. The underlined value shows
the best MAE in the table.

Table 4-6 Mean absolute error (MAE) of brain age estimation by LBP-TOP and RBF SVR using
DTI data in combined brain regions.

radius 1 voxel 2 voxels 3 voxels
atlas registration used features
256 1024 2048 | 256 1024 2048 | 256 1024 2048
DTl measurement
MD 791 753 735|699 639 644|717 6.65 6.53
li FA 8.04 7.16 7.20|8.17 7.37 7.37|7.28 6.90 6.95
Inear
L1 7.69 737 743|692 668 670|649 6.19 6.28
V1 10.23 9.76 9.72 | 868 8.19 847 | 8.84 8.00 7.9
MD 7.10 6.86 683|642 595 597|673 6.21 6.32
. FA 730 6.87 694|703 682 684|669 648 6.75
non-linear
L1 745 6.82 674|644 6.06 6.08|6.21 592 6.07
V1 9.07 8.86 874|911 830 8.04|9.17 839 8.07

The bold values denote the best MAE in the image data of the row. The underlined value shows
the best MAE in the table.
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Table 4-7 Mean absolute error (MAE) of brain age estimation using by LBP-TOP and RBF SVR
DTI data in various brain regions.

radius 1 voxel 2 voxels 3 voxels
,1l,|n,, ,,3.:.':2‘,:{_m =m..:_;(.;\=::\.un-._‘;u.“..t. 256 1024 2048 | 256 1024 2048 | 256 1024 2048
GM | 856 7.41 7.64
wM | 827 7.47 7.57
s CORT | 7.38 7.25 7.35|7.13 6.63 659|682 640 6.52
SUB_CORT |9.15 844 855|810 7.83 800|832 758 7.75
CERE [11.86 11.19 11.15|11.29 10.65 10.78|10.33 10.31 10.29
MNI | 896 842 810|735 698 676|648 644 6.43
MD GM | 8.20 7.31 7.86
wm | 8.01 7.66 7.63
Hoesdives CORT |6.88 677 684|636 631 624|671 646 660
SUE_CORT 897 7.73 795|788 7.16 7.31(8.33 723 748
CERE |11.25 10.67 10.60|10.05 933 9.45[9.73 9.66 9.66
MNI 811 740 7.26|6.45 6.38 6.24| 6.87 6.25 6.28
GM | 7.92 7.70 8.32
WM | 8.64 8.36 828
, CORT | 828 7.51 7.59|9.04 811 7.95|821 802 7.79
Lineat SUB_CORT | 886 7.89 813|835 7.88 7.85|7.66 715 7.16
CERE |10.87 1031 10.21|10.43 9.66 9.85 [10.30 9.42 9.65
MNI | 7.13 7.08 7.03|7.44 7.00 7.02 | 651 637 650
H GM | 7.94 7.80 8.09
wm | 8.39 8.45 8.31
) CORT | 840 7.42 7.39 | 804 752 741|817 7.58 7.40
Normlrean SUB_CORT [830 804 816|726 7.05 7.25|7.54 6.8 7.14
CERE 10,52 10.02 10.04| 9.73 9.43 954|983 975 9.67
MNI | 7.85 6.80 693|728 6.84 683]667 631 634
GM | 8.05 7.62 7.82
wM | 838 8.05 8.22
, CORT | 825 7.94 7.78 | 7.95 7.37 7.32 | 695 6.76 6.93
Linear SUB_CORT |7.87 7.79 7.87|7.90 7.15 7.10|7.30 7.25 7.32
CERE [12.72 10.82 10.94|10.58 9.83 9,95 [10.32 9.76 9.91
MNI [ 806 7495 732]746 684 687701 650 669
Lt GM | 7.66 7.64 7.71
wMm | 850 8.14 7.87
] CORT |7.78 7.20 7.20|7.39 7.19 708|732 679 692
Non-linear SUB CORT |7.99 7.72 7.72|7.51 711 701|793 7.00 7.01
CERE 1116 9.85 10.13| 926 9.16 9.32 [10.10 9.28 9.32
MNI | 761 6.92 691]710 638 639]68 644 651
GM |11.34 11.63 9.64 10.09 895 B8.70
WM [11.32 11.40 10.26 10.21 891 867
Linear CORT |10.17 10.04 10.07| 956 9.22 9.08 | 864 829 822
SUB_CORT [11.32 10.17 10.20{10.35 9.58 9.47 | 897 8.82 899
CERE 12.09 12.28 12.14/10.52 10,96 11.07/11.85 10.96 10.96
MNI [10.03 9.52 951|902 847 837|865 805 7.76
vi GM |9.98 10.13 886 9.36 8.75 B8.38
wMm [11.28 11.62 10.42 1035 8.59 8.59
Norinear CORT | 875 837 824|916 811 794|910 815 7.89
SUB_CORT |[11.15 10.07 10.24{10.61 9.63 9.39 |10.05 9.14 9.31
CERE 12,72 12,16 11.66]11.30 10.87 11.12|11.50 10.68 10.57
MNI | 957 881 844|928 7.97 7.77| 865 7.70 7.55

The bold values denote the best MAE in the image data of the row. The underlined value shows
the best MAE in the table.
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Figure 4-6 Scatter plots of age estimation of all 204 subjects using DTI measurements, FA, MD,
L1(first eigenvalue), and V1(first eigenvector).

This figure shows the specific age estimation of each subject from the best result in Table 4-5.
The estimation models were trained with 2048 features using various DTl measurements,
non-linear atlas registration, a radius of three voxels(FA and L1) or two voxels (MD and V1), and
combined brain regions (GM+WM+CORT+SUB_CORT+CERE+MNI in Table 4-3). The dashed lines
indicate the true age+10 years.
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4.3.3 Atlas Registration

In the estimation of age using T1WI data, linear registration and non-linear registration
show the same performance. As shown in Table 4-1 and Table 4-3, using the linear or
non-linear method to register the atlas information to the brain images did not make a
big difference in the resulting MAE. The robustness of the atlas registration method
could be an important characteristic for using LBP-TOP in clinical applications. It is
easier to perform non-linear registration on healthy subjects, but abnormal brain
morphology might interfere with the registration algorithm. Using LBP-TOP can
produce sufficiently good results with linear atlas registration, extending its application

range to many abnormal brain images.

Although the difference is not big, using non-linear atlas registration provide better
performance for age estimation from the DTI data compared to the results using linear
atlas registration (in Table 4-5, the difference in the MAE is less than 0.5 years on
average). This could be because the lower resolution of the DTI data versus the TIWI
data leads to a slight registration bias, which might affect the distribution of the patterns.
Moreover, lower resolution introduces a larger partial volume effect when applying the
atlas registration results. Therefore, low resolution data could be more sensitive to

registration bias.
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43.4 Learned Model

Table 4-8 shows the proportion of features from the specific brain regions used in the
top 256 ranked features of the age estimation models. Most of the age-related changes
originate in GM. For the DTI measurements, changes in SUB_CORT, CERE, and MNI
played more important roles than in the GM segment data. In addition to morphological
changes in brain structure, DTI can reveal microstructural changes in brain tissue.
However, most age-related changes are also derived from the gray matter. The results of
Table 4-8 also imply that although the data represent different measurements of brain
tissue, they may be highly dependent. The changes in the DTI measurements might
reflect changes in gray matter morphology or vice versa. Therefore, combining these
data to build a mixed model does not greatly improve the total age estimation accuracy
(data not shown). In studies of brain age estimation during brain maturation, only the
information from the GM segment [107] provided similar accuracy compared to mixed

models using signal intensity and DTI information [139].

Table 4-8 The proportion of features from specific brain regions used in the top 256 features
of the age estimation models.

GM
region FA MD L1 V1

GM 0.00% 0.00% 0.39% 0.00% 0.00%
WM 0.00% 0.00% 0.00% 0.00% 0.78%
MNI 5.86% 17.58% 11.33% 12.11% 6.64%
CORT | 66.02% 31.25% 48.83% 41.80% 55.86%
SUB_CORT 12.89% 31.64% 20.70% 23.05% 17.19%
CERE | 15.23% 19.53% 18.75% 23.05% 19.53%
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4.3.5 Brain Maturation and Aging

Table 4-9 shows the published age estimation studies using MR brain images [107, 108,
111, 139, 140]. Our work is the only approach to extract information directly from
unnormalized images. As shown in Table 4-9, greater error always results from wider
age coverage. By providing the most extensive lifespan coverage, our methods produce
high accuracy in the prediction of brain age. To estimate age using DTI data, we used
the same database as the study by Mwangi et al. [111]. Without excluding any subjects
in the database, we provided less estimation error by using LBP-TOP approaches.
Moreover, because LBP-TOP extracted information from unmodified MR brain images,
we can directly use the information of fiber spatial orientation (eigenvectors, V1) to

predict brain age.

Table 4-9 Comparison of age estimation studies using MR brain images.

N agerange Aage Target Period MAE Data Type Method Publication
885 3~ 20 17 Maturation 1.03 mixed multiple modalities Brown et al. 2012 [76]
394 5~ 18 13 Maturation 1.10 TiWI PCA + RVR Franke et al. 2012 [17]
550 19~ 86 67 Aging 4.98 | GM segment PCA + RVR Franke et al. 2010 [18]
471 17~ 79 62 Aging *6.50 TiWI RVR Ashburner et al. 2007 [77]
204 4~ 85 81 Lifespan 5.62 T1WI LBP-TOP + SVR proposed
204 4~ 85 81 Lifespan 5.97 DTI (MD) LBP-TOP + SVR proposed

**188 4~ 85 81 Lifespan 6.88 DTI (RD) RVR Mwangi et al. 2013 [21]

Only studies in which the number of test subjects is greater than 100 are listed. MAE: mean
absolute error. * denotes the root-mean-squared error. ** denotes that the study used the
same database as the present work.
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Despite the differences in training subject number and various methods, predicting age
during the period of brain maturation (prior to 20 years of age) seems to be easier than
estimating across the entire lifespan (Table 4-10). This trend is also apparent in previous
studies [111, 139], where predicting the brain age of children is more accurate than that
of elders. During childhood and adolescence, there seems to exist a programmed
transformation of brain structure; therefore, we can easily trace the transformation either
through MR anatomical images or brain neural tract changes using DTI. Although there
are many reports of structural changes during brain aging [117, 141, 142], brain
structure can be affected by genetic, epigenetic, and various environmental factors
across the lifespan [143, 144]. Hence, predicting age throughout an aging period is more

difficult.

Table 4-10 Mean absolute error (MAE) of different age ranges of brain age estimation by
LBP-TOP and RBF SVR using GM and DTI data (the results of specific subject are plotted in
Figure 4-5 and Figure 4-6).

age range
<15 16430 3175 4660 >61

GM | 433 476 599 614 799

MD | 551 = 448 562 576 10.55

FA | 549 625 570 634 10.75

L1 | 548 493 615 552 978

Vi | 696 7.00 577 808 1501 N
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On the other hand, our age estimation approaches include a feature selection step. That is,
our models were built using the features that are most relevant to changes over the
lifespan. Therefore, if significantly different patterns exist between maturation and aging,
only the features that are most relevant to changes across all ages in the data were chosen
to build the fine RBF SVR models. The model might select too many features reflecting
maturation-related brain changes to finely estimate brain age in elders. For better
prediction, the use of different models to estimate maturation and aging should be

considered in the future.

Our results using the DTI data in Figure 4-6 show an interesting pattern. Age estimation
after 60 years old shows more error and is underestimated, especially in the models
using the first eigenvectors (V1). The results could imply that there is no significant
change in brain structure after the age of 60 in most of the participating subjects. The
research of Sowell et al. [44] found a significant age effect in the dorsal frontal and
parietal association cortices. Those effects consist of a dramatic decline in gray matter
density between the ages of 7 and 60 with little or no decline thereafter. Their research
could be evidence to confirm our estimated results. Our results imply that FA and MD
might still change after the age of 60, but the fiber direction remains almost the same

and provides no information for age estimation.

For better estimation accuracy, several aspects should be considered. First, as shown in
Table 4-1, Table 4-3, and Table 4-5, using a different radius in LBP-TOP affects the
result performance. There is no guideline for choosing the radius for specific resolution
and data types. One must test and find the best radius for each application. Second, the
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age of the training subjects should be balanced in each age range. As shown in Figure
4-1, the age distribution of the employed database is unbalanced, and more subjects
were aged between 15~25 years old. This could be the reason for the slight
over-estimation of age in children and under-estimation of age in elders. The study by
Mwangi et al. used the same database and reported a similar trend of age estimation (Fig.
1 in [111] ). Third, the training database should be large to properly train the estimation
model. Studies of age estimation using facial images usually use thousands of images to
train and build accurate models [145, 146]. While using more complex brain 3D volume

data, more training subjects are needed to provide better accuracy.

4.4  Conclusion

In this study, we built an age estimation model as an imaging biomarker using LBP-TOP,
a method that extracts information from unnormalized MR brain images, and support
vector regression with TIWI or DTI measurements. The best estimated MAE using
T1WI was 5.62 years was produced by LBP-TOP of the GM segment. We also showed
the usability of LBP-TOP to extract age-related information from unnormalized DTI

data. Among DTI measurements, MD provides the best MAE of 5.97 years.

This work shows that LBP-TOP can effectively extract discriminating information from
unnormalized MR scale images or DTI measurements. In addition to scalar images, we

also demonstrated that the information encoded in fiber orientation derived by DTI
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eigenvectors can estimate brain age. This reveals that LBP-TOP could be a technique

used for quantifying and comparing fiber information in the whole brain.
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Chapter 5

ADHD classification using Local Binary Patterns

5.1 Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is a multifactorial and clinically

heterogeneous disorder, which is highly prevalent in children worldwide. It is estimated

that 5-10% of school-age children and 4% of adults suffer from ADHD [147]. The

negative impact of ADHD on patients, their families ,and society make ADHD a major
public health problem [148]. However, an objective biological tool to diagnose ADHD

is still unavailable. Foreseeing the importance, the organizers of the ADHD-200 Global
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Competition have collected functional and anatomical ADHD MRI datasets of an
unprecedented  scale, which are accessible  via ~ the Internet
(http://fcon_1000.projects.nitrc.org/indi/adhd200/). This work provides an important
opportunity for researchers all over the world to study brain changes in ADHD subjects

based on numerous brain MRI images.

Using the ADHD-200 database, we found that the brain morphological changes
described by a 3D texture analysis can be used to distinguish children with ADHD from
typically developing children (TDC). These structural image-based models
demonstrated similar accuracy compared with our models based on rs-fMRI data. In the

present study, we describe and analyze the 3D texture analysis method.

It is not easy to construct a classification rule to distinguish ADHD from TDC subjects.
ADHD is a complex disorder with a composite etiology [149]. No simple existing
indicators can be used to diagnose ADHD at present. Currently, the Diagnostic and
Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR) is most
often used for diagnostic criteria for ADHD. Some ADHD criteria are based on
subjective descriptions by a child’s parents or teachers and not on objective analysis
tools. Recent research has demonstrated that using different versions of the DSM or
disparate sources of collateral information can significantly affect the calculated
prevalence of ADHD [147]. Moreover, both sex and age play important roles in the
development of ADHD. These factors also increase the complexity of building a
diagnostic tool [147]. All the aforementioned factors make it challenging to build an
efficient classification model for ADHD.
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Additionally, approaches based on rs-fMRI data suffer from unstable echo planar
imaging (EPI) and involve sophisticated data preprocessing steps. For these reasons,
building a classification model based on rs-fMRI data from multiple research sites

involves difficult manipulations of large data sets and is not efficient.

However, structural brain images are of high quality and are more stable with better
resolution compared with rs-fMRI data. We hypothesized that structural brain images
might contain more information from which to build a discriminative model. Although
ADHD is not believed to result from morphological changes in the brain, several studies
have shown that anatomical differences associated with ADHD can be found in MR
images [147]. Large changes in volume and structural differences in the cerebral cortex
have also been reported using MRI methodologies, such as anatomical MRI and
diffusion tensor imaging [147]. Hence, we set forth to develop an ADHD classification
method based on morphological changes. Notably, after using 3D texture descriptors to
extract features from brain anatomical data, we found that morphological changes

provided information that could discriminate ADHD from TDC subjects.

In this paper, to describe brain morphology, we introduce a feature extraction method
based on texture point of view using the isotropic local binary patterns on three
orthogonal planes (LBP-TOP). After extracting features using LBP-TOP, we trained a
support vector machines (SVM) model and built an ADHD classification model based

on the extracted features.

In the present study, we build an ADHD classification model using LBP-TOP features
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and SVM. Different registration methods, LBP-TOP settings, and source brain image
resolutions were utilized to test the properties of this method. A simple and efficient
feature selection method was introduced to create a more robust model. We built
classification models based on three basic brain tissues: gray matter (GM), white matter
(WM), and CSF. Our results demonstrate that it is possible to build an ADHD
classification model based on LBP-TOP features. We found that GM data provide the

most salient information for discriminating ADHD from TDC subjects.

5.2 Materials and Methods

5.2.1 Participants

To best demonstrate the discriminative power of LBP-TOP, only male subjects were
used to control for the known sex-based differences in ADHD subjects [147]. Male data
from the Kennedy Krieger Institute (KKI), the NeuroIMAGE sample (NeuroIMAGE),
the New York University Child Study Center (NYU), Oregon Health and Science
University (OHSU), Peking University (Peking 1, Peking 2, and Peking 3), and the
University of Pittsburgh (Pittsburgh) were selected for analysis in this study. We ruled
out using the dataset from Washington University because it was not in the test set of
the ADHD-200 global competition and no ADHD subject in it. Five subjects (0010016,

0010027, 0010055, 0010098, and 0010127) in the NYU dataset were excluded because
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no anatomical data existed for them. Subject 0010013 in the NYU dataset was also
excluded because some of the brain in the anatomical image was cropped during the
face removal process. ADHD hyperactive-type subjects were excluded due to the small

number of such subjects in the dataset.

Therefore, the ADHD subjects in this study were of both the ADHD combined type and
the ADHD inattentive type. A total of 436 male subjects (210 ADHD subjects and 226
TDC, mean age=12.12 + 2.95) were used in this study. The distributions of subjects by
age and by type of ADHD are shown in Table 5-2 and Table 5-3. A list of all subjects
can be found in Supp. Table 5-1. The detailed phenotype of each subject can be found
on the website for the ADHD-200 global competition

(http://fcon_1000.projects.nitrc.org/indi/adhd200/).

5.2.2 Diagnostics of ADHD

Table 5-1 shows a brief summary of the diagnosis criteria used by each site. The sites
used different ADHD criteria, intellectual evaluations, and sources of collateral

information.
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Table 5-1 A brief summary of the different diagnostic criteria used by each site.

Site ADHD criteria Intelligence evaluation Source of information
DICA-IV WISC-IV Parents
Kennedy Krieger Institute (KKI) DuPaul Subjects
CPRS-R
DSM-IV
NeurolMAGE sample (NeurolMAGE) KSADS-PL WASI Parents
CPRS-LV Subjects
New York University Child Study Center (NYU) KSADS-PL WASI Parents
CPRS-LV Subjects
KSADS-I WISC-IV Parents
Oregon Health & Science University (OHSU) CPTRS-III Teachers
Subjects
Peking University (Peking) C-DIS-IV WISCC-R Parents
KSADS-PL
University of Pittsburgh (Pittsburgh) N/A WASI N/A

Abbreviations are as follows: C-DIS-IV, Computerized Diagnostic Interview Schedule 1V; CPRS-LV,
Conners' Parent Rating Scale-Revised, Long version; CPRS-R, Conners' Parent Rating
Scale-Revised, Long Form; CPTRS-Ill, parent and teacher Connors' Rating Scale, Third Edition;
DuPaul, DuPaul ADHD Rating Scale IV; DSM-IV, Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition; KSADS-I, Kiddie Schedule for Affective Disorders and Schizophrenia;
KSADS-PL, Schedule of Affective Disorders and Schizophrenia for Children - Present and
Lifetime Version; WASI, Wechsler Abbreviated Scale of Intelligence; WISCC-R, Intelligence Scale
for Chinese Children-Revised; and WISC-IV, Wechsler Intelligence Scale for Children, Fourth
Edition. Details can be found on the ADHD-200 global competition website
(http://fcon _1000.projects.nitrc.org/indi/adhd200/).
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Table 5-2 Summary of the ADHD and TDC subjects used in this study.

TDC ADHD Combined ADHD Inattentive total

KKI 34 7 4 45
NeurolIMAGE 11 14 1 26
NYU 46 59 29 134

OHSU 18 19 6 43
Peking_1 17 7 10 34
Peking_2 31 15 20 66
Peking 3 23 7 12 42
Pittsburgh 46 0 0 46
total 226 128 82 436

Abbreviations are as follows: TDC, typically developing children; KKI, the Kennedy Krieger
Institute; NeurolMAGE, the NeuroIMAGE sample; NYU, the New York University Child Study
Center; OHSU, Oregon Health and Science University; Peking_1, Peking_2, and Peking_3,
Peking University; and Pittsburgh, the University of Pittsburgh.

Table 5-3 The age distribution of subjects used in this study.

TDC ADHD Combined ADHD Inattentive total
KKI 10.32 +1.37 9.9 £1.52 11.46 £1.19 10.36 1.4
NeurolMAGE 17.38 £2.27 17.04 £2.19 18.8 +0 17.25+2.16
NYU 12.21 +3.16 10.93 +2.58 12.48 £+2.78 11.71+2.89
OHSU 8.94 +1.43 8.76 £1.09 8.9+1.31 8.85+1.24
Peking_1 11.8 £1.32 10.7 £1.15 11.88 +2.82 11.6 +1.86
Peking_2 11.66 +1.81 12.08 £2.07 12.95 +1.44 12.15+1.83
Peking_3 13.21 +0.95 12.33 +1.06 13.84 £1.21 13.24+1.14
Pittsburgh 14.57 +2.87 N/A N/A 14.57 +2.87
total| 12.39+2.99 11.42 #3.05 12.49+2.5 12,12 #2.95

TDC, typically developing children.
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5.2.3 Data preprocessing

An overview of the data analysis procedure is shown in Figure 5-1. The details of each

step are described below.
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Figure 5-1 Overview of the data analysis procedure.

Preprocessing involves three steps. First, all raw data are transformed into a 1 mm isotropic
volume using the rigid body transformation as performed by FLIRT with 6 degrees of freedom
(6-DOF). Second, brain images are registered to standard MNI152 space by linear (FLIRT with
9-DOF and FLIRT with 12-DOF) and non-linear (ART) registration methods. To achieve better
registration results, the registration parameters were obtained by transforming the
skull-stripped brains to the standard MNI152 brain template. Third, we computed the LBP-TOP
histograms based on the registered images with various spatial context information (i.e., brain
mask, AAL, and CC200). Following these steps, classification models can be trained by directly
using the resulting histogram or by using a subset of data after applying the feature selection
algorithm. ( The major process flow is denoted by the thick line. The minor process flow is
denoted by the thin line. The square boxes are the major steps showing how to extract features
from raw data. The round boxes are the parameters or information needed for the process flow.
Texts in gray color indicate the methods or the subtypes the process step used. )
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Registration methods

Linear registrations with 9 degree of freedom (9-DOF) and 12-DOF were performed
using the linear multimodality registration method developed by Oxford FSL FLIRT
[123, 130]. All images were transformed to standard MNI152 space by FLIRT with
6-DOF (rigid-body transformation). The results of FLIRT with 6-DOF were then
linearly transformed by FLIRT with 9-DOF (rigid-body + independent scaling). The
results of FLIRT with 9-DOF were also linearly transformed by FLIRT with 12-DOF
(rigid-body + scales + skews). Non-linear normalization procedures were performed
using the automated registration tool (ART). ART was developed by Ardekani et al.
[147] and can be downloaded from http://www.nitrc.org/projects/art/. Klein and
colleagues demonstrated that ART provides better efficiency and consistency than other

non-linear registration methods [147].

3D skull striping

To obtain better registration results, skull stripping was performed prior to using the
registration algorithm, using the 3dSkullStrip algorithm [125] developed by AFNI [150].
3dSkullStrip has proven to be a relatively robust skull-stripping algorithm [147].
However, it is not a perfect tool. Incomplete skull stripping can result in a loss of
information from some brain regions. Hence, we applied the transformation parameters
for skull-stripped brains to the original whole-brain images to create the input for the

LBP-TOP algorithm.

91



Spatial context information and brain parcellations

To examine different spatial context information, we performed three separate

parcellations in this study.

First, a simple brain mask in MNI152 space, as provided by FSL, was used to compute
the total histogram of the whole-brain volume. Second, to introduce spatial context
based on brain anatomical information, the widely used automated anatomical labeling
(AAL) template with 116 regions was used [151]. Finally, we also used an atlas derived
from functionally parcellating the resting state data [152]. A 200 ROI version with 190
regions of spatially constrained parcellation (CC200) was used to introduce the spatial
context information based on rs-fMRI data. The CC200 functional parcellation template
made for the competition was kindly provided by Cameron Craddock. Details of the
construction of CC200 have been previously published [152] and can also be found on
the Athena preprocessing strategies page of the ADHD-200 preprocessed data website:

http://www.nitrc.org/plugins/mwiki/index.php/neurobureau: AthenaPipeline.

Computation of LBP-TOP

The LBP-TOP algorithm was implemented using Java to build the LBP-TOP map from
the structural image. All resulting LBP-TOP histograms were mapped for the detection
of uniform patterns. Preliminary testing (not shown) demonstrated that only the

LBP-TOP with eight neighbors provided sufficient information to classify ADHD
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within a reasonable processing time. Therefore, only tests with eight neighbors are

shown here.

Classifiers

A k nearest neighbor classifier (KNN, K=1) was used to show the baseline of the
discriminative power of LBP-TOP. Moreover, an efficient and widely used classifier,
SVM, was used in this work [97]. SVM maps training data into high-dimensional
feature space to find the separating hyperplane with the maximal margin. Due to the
large feature size of LBP-TOP results, we used linear SVM for greater efficiency.

LIBLINEAR [100] was chosen for use because of its optimization for linear SVM.

Feature selection

After introducing special context information, the LBP-TOP histogram bins become an
over-completed feature set. To build a more efficient and robust classification model, a
feature selection method is needed. Moreover, by only selecting the most important
features, we can combine features from various points of view. For example, we can

combine features from different LBP-TOP results based on dissimilar radii.

Feature selection based on the linear SVM has proven to be efficient and useful for gene

selection, document classification and many other applications [147].

For any test subject X, the decision function of linear SVM is
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P(x) = sign(wx + b) (5-%

where x is the feature vector, b is a constant, and w is the weight vector. Each value of
w denotes the weight of each feature. The larger the absolute value of wj, the more

important the jth feature is in deciding the result.

After training a linear SVM model, the w in (2-1) can be used as a relative importance

index. Therefore, we can build a simpler model using the top n important features.

For combining features from different point of views, we first trained a linear SVM
model using feature groups and ranked features by the absolute weights of the model.
Only half of the features remained. Then, we combine these features with the features
from a second feature group and trained another linear SVM model. Similarly, only half
of the features were chosen to be merged into the next feature group. Using this iterative
procedure, we combined various feature groups and found the most important features

among these feature groups. Algorithm 5-1 shows steps of this iteration. Given a set of

N subjects and K different feature groups, for each training dataset of our 10-fold
cross-validation, we use Algorithm 5-1 to select and combine the most important

features.
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Algorithm 5-1 The algorithm of feature selection.

Input : Training dataset D = {{xk‘"’yn}:’:.}: |
,X, is different feature set based on various settting

Output : Training dataset with selected features S ={s,,, }:l
Fork=1,...K

1. for each subject n, add all features of x, , to's,,.
2. use grid search with 10-fold cross-validation to find the best penalty parameter

of linear-SVM based on §.

3. train a linear-SVM model based on § using the best penalty parameter.
4. sort the features of' s, based on the absolute weights of the linear-SVM model.
*5. for each subject n, drop the last half features of's.

Loop

*Due to the small number of features revealed when analyzing the whole-brain region, we
simply combined all the features and do not drop the last half of them.

Brain segmentation

FSL's automated segmentation toolbox (FAST) was used to segment raw brain images
into gray matter (GM), white matter (WM) and CSF [123, 124]. Figure 5-2 shows an
example of a resulting probability map. The three tissue probability maps were analyzed

following the same procedure described in Figure 5-1.
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raw image

Figure 5-2 Examples of brain probability maps based on gray matter (GM), white matter
(WM), and CSF.

Reference models based on rs-fMRI features

To compare the results of discriminative models based on rs-fMRI data, we used a
simple and easily repeatable approach. Briefly, for the preprocessing of rs-fMRI data,
we used the extracted timecourses from the Athena preprocessed data, which can be
download from the ADHD-200 Preprocessed Data website. Details of the specific

preprocessing steps can be found on the website.

The timecourses of the AAL and CC200 parcellations used in LBP-TOP study were
chosen for comparison. The extracted timecourses files,
ADHD200_AAL TCs_filtfix.tar.,gz and ADHD200 CC200_TCs _filtfix.tar.gz, can be
found on the ADHD-200 Preprocessed Data website. The correlation coefficients

between each pair of regions were computed based on their extracted timecourses. For
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example, there are 116 regions in the AAL parcellation. Therefore, 6670 correlation
coefficients can be computed based on the 6670 ROI pairs. All the correlation
coefficients were used as features for the linear SVM ADHD classifier. The results of
each model were validated using the same cross-validation settings used in the
LBP-TOP studies. As described on the ADHD-200 Preprocessed Data website, the
nuisance variance for the extracted time series of each region was removed, with or
without use of a band-pass filter (0.009Hz ~ 0.08Hz), and blurred with a 6-mm FWHM
Gaussian filter. Both time series, with or without filtering by a band-pass filter, were

tested.

Evaluation

All tests in this study were evaluated by 10-fold cross-validation. We randomly
partitioned the 436 subjects into 10 subgroups. For each step of cross-validation, one
subgroup was used as a test data set, and the remaining nine subgroups were pooled as a
training data set. After 10 cross-validations, the test results of all 10 subgroups were
combined to build the accuracy of the estimation of each model. To facilitate
comparison of the results, the same 10-fold cross-validation set was used in all

evaluations.

We used grid searching to find the best penalty parameter C for linear SVM for each
training dataset. That is, another 10-fold cross-validation was applied to each training
dataset with several candidate values of C, and we chose the parameter C that led to the

highest accuracy.
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While performing feature selection, the assignment of optimal feature weights can be
achieved when the optimal value of C is chosen during each round of cross-validation.
After that, we evaluated the effect of feature number using each testing dataset. Then,
we combined the results of 10 test dataset to build the accuracy of different feature

numbers.

Statistical tests

To show the classifier has learned a structure in the data, we compute the p-value
against the null distribution using permutation tests [153, 154]. The null hypothesis of
permutation test is that the labels are independent of the features. Therefore, one can
learn almost same accuracy using random labeled data set. By randomly permuting the
labels of the data set, permutation tests can measure how likely the observed accuracy is

learned by chance. The permutation-based p-value is defined by

__|{p’eb:e(c,pn=e(c,D)}|+1

k+1 (5-2)

where D is the original labeled data, e(c,D) denotes the error of classifier ¢ learned
from D, and D is a set of k randomized versions D' of D [153]. In this work,
e(c,D) was estimated by same 10-fold cross-validation with other tests. One hundred

randomized sets of each test were used to estimate the p-values (k = 100).

To compare different approaches of this work, McNemar's tests were applied to

compute p-values between two approaches [155, 156]. While comparing two different
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approaches, confusion matrices of each approach were estimated by same 10-fold

cross-validations. Then we compute the p-values of McNemar's tests using R [157].

5.3 Results

53.1 LBP-TOP

Table 5-4 shows the 10-fold cross-validation results for different radii (I mm, 2 mm,
and 3 mm) for the LBP-TOP, various parcellations, linear registrations, and non-linear
registrations, respectively. Table 5-4 (a) shows the baseline accuracy which LBP-TOP
can provide with the simple 1NN classifier. Comparing the results of Table 5-4 (a) and
Table 5-4 (b), we can find the linear-SVM classifiers can provide better accuracy than
INN classifiers. Moreover, some of the properties changed while using different
classifiers. The LBP-TOP with a radius equal to 3 mm provided better accuracy than the
LBP-TOP for the other two radii in most cases while using linear-SVM classifiers. The
same properties cannot be found while using INN approaches. However, there are
nonsignificant between different radii in NcNemar’s test (Table 5-7). As expected, brain
data with ART non-linear registration showed the highest accuracy in almost all cases,
especially while using INN as classifiers. Notably, using linearly registered brain data did
not greatly reduce accuracy. After apply NcNemar’s test, there is no significant difference

between registration methods in any cases with linear-SVM classifiers. And only few
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cases show significant difference between registration methods while using 1NN

approaches (Table 5-8).

Although the resulting feature sizes varied widely (from 177 to 33630 features),
accuracy across disparate parcellations was not greatly affected. Models using a
histogram computed from the whole-brain region had higher accuracies than models
based on other parcellations. Only considering the results of the AAL and CC200
parcellations, the CC200 showed better results most often. This finding may be the
result of the greater number of utilized features or the greater number of homogeneous

areas in the CC200 parcellation.

The results of reference models based on rs-fMRI features are shown in Table 5-4.
These data indicate that simple approaches to analyzing rs-fMRI data do not
discriminate as well as models based on structural information. The McNemar’s test
between structural features and rs-fMRI features also show significant difference in
most cases (Table 3). Based on our experience in the ADHD-200 Global Competition,
different preprocessing settings can affect the resulting accuracy. Moreover, combining
the results of different rs-fMRI approaches can provide better discriminative power. The
results of these simple approaches can be viewed as the baseline of discriminative

power that rs-fMRI data can achieve.
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Table 5-4 (a, b) The ADHD-TDC classification accuracy of models based on LBP-TOP features
with different registration methods, parcellation, and radius of LBP-TOP, using 1NN and
linear-SVM classifiers alternatively.

(a) TNN models based on LBP-TOP features

parcellations radius features DOF9 DOF12 ART 07
brain mask R1 177 0.6009 0.6376 0.6009
R2 177 0.6261 0.6399 0.6537
R3 177 0.6239 0.6422 0.6353
AAL R1 20532 0.5986 0.6009 0.6422
R2 20532 0.5826 0.6032 0.6353
R3 20532 0.5894 0.5826 0.6376
CC200 R1 3 0.5826 0.6124 0.6491
R2 3630 0.5917 0.6055 0.6445
R3 3630 0.5940 0.5894 0.6124

(b) linear-SVM models based on LBP-TOP features

parcellations radius features DOF9 DOF12 ART
brain mask R1 177 0.6422 0.6376 0.6514
R2 177 0.6606 0.6468 0.6651
R3 177 0.6514 0.6399 0.6583
AAL R1 3 0.6239 0.6216 0.6537 06
R2 20532 0.5986 0.6261 0.6239
R3 532 0.6284 0.6399 0.6537
CC200 R1 0.6445 0.6491 0.6239
R2 0.6376 0.6491 0.6537
R3 0.6583 0.6560 0.6697

(c) TNN models based on simple rs-fMRI features

parcellations features non-BF BF
AAL 6697 0.5459 0.5688
CC200 17955 0.5550 0.5528

(d) linear-SVM models based on simple rs-fMRI features

parcellations | features non-BF BF
AAL 6697 0.5665 0.5734
CC200 17955 0.5803 0.5596

0.5

The highest accuracy for each parcellation is denoted by the bold number. Abbreviations are as
follows: R1, R2, and R3, LBP-TOP radius in mm; DOF9, and DOF12, linear registration with 9,
and 12 degree of freedom, respectively; ART, non-linear registration performed by Automated
Registration Tool; AAL, automated anatomical labeling template; and CC200, spatially
constrained parcellation based on rs-fMRI. (¢, d) The ADHD-TDC classification accuracy of
models based on simple rs-fMRI features, using 1NN and linear-SVM classifiers alternatively.
Abbreviations are as follows: BF, rs-fMRI data filtered by a bandpass filter (0.009Hz ~ 0.08Hz);
and non-BF, rs-fMRI data not filtered by a bandpass filter. The sensitivity, specificity, and areas
under the ROC curve (AUC) of this table can be found in Table 5-5 and Table 5-6.
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Table 5-5 Sensitivity, specificity, and areas under the ROC curve (AUC) of (a) in Table 5-4. The
ADHD-TDC classification accuracy of models based on LBP-TOP features with different
registration methods, parcellation, and radius of LBP-TOP, using 1NN.

|Sensiﬁvity
parcellations radius features DOF9 DOF12 ART
brain mask R1 177 0.6504 0.6681  0.6504
R2 177 0.6726  0.6770 0.6814
R3 177 0.6637 06681 06549
AAL R1 ) 06770 0.6991  0.6947
R2 0.6549 0.6903  0.6681
R3 A 0.6991 06726 06681
SCP200 R1 33630 0.6283 06681  0.6681
R2 33630 0.6504 0.6681 06637
R3 33630 0.6637 0.6504 06283
|Speciﬁcity
parcellations radius features DOF9 DOF12 ART
brain mask R1 177 0.5476  0.6048 05476
R2 177 0.5762  0.6000 06238
R3 177 05810 06143 06143
AAL R1 20532 05143 04952 05857
R2 20532 0.5048  0.5095  0.6000
R3 20532 04714 04857 06048
SCP200 R1 3363 0.5333 05524 06286
R2 33630 0.5286 05381 06238
R3 05190 05238 05952
AUC
parcellations radius features DOF9 DOF12 ART
brain mask R1 0.5990 0.6365  0.5990
R2 177 0.6244 06385 06526
R3 177 06223 06412 06346
AAL R1 20532 0.5956 05972  0.6402
R2 20532 0.5798 0.5999 06341
R3 0.5853 05791 06365
SCP200 R1 3363( 0.5808 0.6103  0.6484
R2 1363 0.5895 06031 06438
R3 0.5914 05871 0.6118

Abbreviations are as follows: R1, R2, and R3, LBP-TOP radius in mm; DOF9, and DOF12, linear
registration with 9, and 12 degree of freedom, respectively; ART, non-linear registration
performed by Automated Registration Tool; AAL, automated anatomical labeling template; and
CC200, spatially constrained parcellation based on rs-fMRI. The AUC was calculated using [106]
and the positive subject is the TDC subjects.
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Table 5-6 Sensitivity, specificity, and areas under the ROC curve (AUC) of (a) in Table 5-4. The
ADHD-TDC classification accuracy of models based on LBP-TOP features with different
registration methods, parcellation, and radius of LBP-TOP, using linear-SVM classifiers.

|Sen sitivity
parcellations radius features DOF9 DOF12 ART
brain mask R1 177 0.6637 0.6726  0.6681
R2 177 0.6903 0.6593  0.6947
R3 177 0.6770 06504  0.6770
AAL R1 20532 0.6637 0.6504  0.6593
R2 20532 0.6062  0.6593 0.6327
R3 20532 06637 0.6681 06637
SCP200 R1 33630 | 0.6637 06593  0.6062
R2 13630 | 0.6593  0.6637  0.6681
R3 33630 | 06504 06504  0.6814

|Speciﬁcit\|r

parcellations | radius | features DOF9 DOF12 ART
brain mask R1 0.6190 0.6000 0.6333
R2 177 06286 06333 06333
R3 177 0.6238 0.6286  0.6381
AAL R1 20531 0.5810 0.5905  0.6476
R2 20532 0.5905 05905 0.6143
R3 20532 0.5905 0.6095  0.6429
SCP200 R1 33630 0.6238  0.6381  0.6429
R2 ) 0.6143  0.6333 0.6381
R3 0.6667 0.6619  0.6571
AUC
parcellations radius features DOF9 DOF12 ART
brain mask R1 177 0.6414  0.6363  0.6507
R2 177 0.6594  0.6463  0.6640
R3 177 0.6504 06395 0.6575
AAL R1 20532 0.6223 06205 0.6535
R2 20532 0.5983  0.6249  0.6235
R3 32 06271 0.6388  0.6533
SCP200 R1 33630 0.6438  0.6487  0.6245
R2 33630 0.6368  0.6485  0.6531
R3 33630 0.6586  0.6562  0.6693

Abbreviations are as follows: R1, R2, and R3, LBP-TOP radius in mm; DOF9, and DOF12, linear
registration with 9, and 12 degree of freedom, respectively; ART, non-linear registration
performed by Automated Registration Tool; AAL, automated anatomical labeling template; and
CC200, spatially constrained parcellation based on rs-fMRI. The AUC was calculated using [106]
and the positive subject is the TDC subjects.
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Table 5-7 p-values of McNemar’s test of 1NN models and linear-SVM models based on
LBP-TOP features between different radii (R1, R2, R3).

(a) McNemar's test of INN models based on LBP-TOP features

parcellations radius DOF9 DOF12 ART

brainmask |RlandR3| 0.4403 09247 0.2699
R2and R3| 1.0000 1.0000 0.4606
Rl1andR2| 0.2891 1.0000 0.0602
AAL |RlandR3| 0.7664 0.4966 0.9331
R2andR3| 0.7794 0.2225 1.0000
Rl1andR2| 0.4941 1.0000 0.8557
CC200 [RlandR3| 0.6935 0.3583 0.1883
R2 and R3| 1.0000 0.3914 0.1359
R1andR2| 0.7373 0.8041 0.9247

(b) McNemar's test of linear-SVM models based on LBP-TOP features

parcellations radius DOF9 DOF12 ART

brainmask |RlandR3| 0.7237  1.0000  0.8423
R2andR3| 0.6511 0.7277  0.8150
RlandR2| 0.3816 0.7119  0.5940
AAL [RlandR3| 0.8897  0.3222 1.0000
R2andR3| 0.0425 0.3613  0.0485
RlandR2| 0.1531 0.8711 0.1366
CC200 |RlandR3| 0.4962 0.7874  0.0272
R2andR3| 0.1237 0.7194  0.2812
RlandR2| 0.7423 1.0000 0.1182

The p-values without under lines denote the accuracies of R3 are bigger than R2, the
accuracies of R3 are bigger than R1, and the accuracies of R2 are bigger than R2. The
underlined p-values show the inverse relationship. Bold p-values correspond to significant
results (p-value < 0.05). DOF9, and DOF12, linear registration with 9, and 12 degree of freedom,
respectively; ART, non-linear registration performed by Automated Registration Tool; AAL,
automated anatomical labeling template; and CC200, spatially constrained parcellation based
on rs-fMRI.
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Table 5-8 p-values of McNemar’s test of 1NN models and linear-SVM models based on
LBP-TOP features between different registrations.

(a) McNemar's test of 1NN models based on LBP-TOP features

parcellations radius DOF9 and ART | DOF12 and ART || DOF9 and DOF12
brain mask R1 1.0000 0.2415 0.1297
R2 0.3309 0.6508 0.6060
R3 0.7139 0.8533 0.4606
AAL R1 0.1268 0.1479 1.0000
R2 0.0564 0.2392 0.2976
R3 0.0760 0.0373 0.8097
CC200 R1 0.0245 0.2176 0.1715
R2 0.0437 0.1254 0.5186
R3 0.5329 0.3951 0.8918

(b) McNemar's test of linear-SVM models based on LBP-TOP features

parcellations radius DOF9 and ART | DOF12 and ART || DOF9 and DOF12
brain mask R1 0.7806 0.6272 0.9049
R2 0.9187 0.5006 0.4795
R3 0.8220 0.4220 0.5827
AAL R1 0.2460 0.1936 1.0000
R2 0.2891 1.0000 0.1198
R3 0.2837 0.5713 0.5108
CC200 R1 0.4068 0.2945 0.8828
R2 0.4825 0.9035 0.4414
R3 0.6301 0.5383 1.0000

The p-values without under lines denote the accuracies of ART are bigger than DOF9, the
accuracies of ART are bigger than DOF12, and the accuracies of DOF12 are bigger than DOF9.
The underlined p-values show the inverse relationship. Bold p-values correspond to significant
results (p-value < 0.05). DOF9, and DOF12, linear registration with 9, and 12 degree of freedom,
respectively; ART, non-linear registration performed by Automated Registration Tool; AAL,
automated anatomical labeling template; and CC200, spatially constrained parcellation based
on rs-fMRI.
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Table 5-9 p-values of McNemar’s test of linear-SVM models based on rs-fMRI data and
LBP-TOP features using non-linear registration.

parcellations | radius | non-BF and LBP-TOP | BF and LBP-TOP || BF and non-BF
R1 0.0056 0.0102
AAL R2 0.0633 0.1052 0.8467
R3 0.0043 0.0106
R1 0.1586 0.0454
CC200 R2 0.0093 0.0018 0.3619
R3 0.0013 0.0002

The p-values without under lines denote the accuracies of LBP-TOP features are bigger than
rs-fMRI data, and the accuracies of rs-fMRI data filtered by a bandpass filter are bigger than
rs-fMRI data not filtered. The underlined p-values show the inverse relationship. Bold p-values
correspond to significant results (p-value < 0.05). Abbreviations are as follows: AAL,
automated anatomical labeling template; CC200, spatially constrained parcellation based on
rs-fMRI; BF, rs-fMRI data filtered by a bandpass filter (0.009Hz ~ 0.08Hz); and non-BF, rs-fMRI
data not filtered by a bandpass filter.
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5.3.2 Permutation test of basic models

The results of permutation test in Table 5-10 shows each approach can learn the class
structure in the data. Classifiers based on LBP-TOP features show more significant than

approaches based on rs-fMRI data.

Table 5-10 Permutation test of some results in Table 5-4

(a, b) Permutation test of classifiers based on LBP-TOP features

classifier parcellations radius DOF9 DOF12 ART
R1 0.01 0.01 0.01

INN brain mask R2 0.01 0.01 0.01
R3 0.01 0.01 0.01

R1 0.01 0.01 0.01

linear-SVM | brain mask R2 0.01 0.01 0.01
R3 0.01 0.01 0.01

(¢, d) Permutation test of classifiers based on simple rs-fMRI features

classifier parcellations | non-BF BF
INN AAL 0.03 0.01
CC200 0.03 0.04
AAL 0.03 0.01
linea- SVM
' CC200 0.01 0.01

The p-values are calculated over 100 randomized sets of each test. The error of each set was
estimated by same 10-fold cross-validation of data. Bold p-values correspond to significant
results (p-value < 0.05).
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5.3.3 Feature selection

The feature selection results with the ART non-linear registration methods are shown in
Table 5-11. When introducing spatial context information (the AAL and CC200
parcellations), only a few features are needed to build a sufficiently accurate
classification model. In most cases, using the same number of features but combining
features from all the radii of LBP-TOP (R1+R2+R3) improves the accuracy of the
resulting model. After combining all features based on different parcellations and
various radii, we achieved a model with greater accuracy compared with the AAL or
CC200 parcellations alone. However, the accuracy of the combined model did not
surpass that of the model based on the histogram of the whole-brain region. Figure 5-3

shows the test results from using different feature groups based on AAL parcellation.
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Figure 5-3 Feature selection results of ADHD-TDC classification accuracy based on AAL
parcellation and the ART non-linear registration method.

R1, R2, and R3 denote the LBP-TOP radii in mm. R1+R2+R3 denotes the combination all
features from R1, R2, and R3. All combine refers to the combination of all features from
different parcellations (i.e., brain mask, AAL, and CC200) and various radii.

5.3.4 Resolutions of brain images

Table 5-12 shows the accuracy of models based on various brain image resolutions.
Models utilizing higher resolutions usually had better accuracy. However, models based
on the CC200 parcellation had greater accuracy when using 3x3x3 mm resolution.
Nevertheless, higher resolution data generally provided more information for the

discrimination of ADHD from TDC subjects.
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5.3.5 Tissue types

To determine the most discriminative tissue type within the brain, models based on GM,

WM, and CSF probability maps were tested. These results are shown in Table 5-13. In

most cases, the structural differences found in the GM data provided the highest

discriminative power for separating ADHD from TDC subjects. The McNemar’s test

between different tissue types do not show significant difference while using whole

brain and AAL parcellations, but show significant difference in some cases using

CC200 parcellations (Table 5-14).

Table 5-13 The ADHD-TDC classification accuracy of models based on the probability map of
different brain tissues using the ART non-linear registration method.

parcellations radius features CSF WM GM |[jwhole brain
brain mask R1 77 0.6583 0.6009 0.6330( 0.6514
R2 77 0.6399 0.6261 0.6330(f 0.6651
R3 177 0.6376 0.5986 0.5963| 0.6583
AAL R1 0532 | 0.6307 0.6147 0.6307|f 0.6537
:»X‘i R2 0532 | 0.6307 0.6353 0.6353| 0.6239
EL X R3 20532 0.6445 0.6284 0.6537|f 0.6537
CC200 R1 530 | 0.6239 0.6193 0.6560 | 0.6239
m R2 630 | 0.6353 0.6376 0.6720( 0.6537
g R3 01 0.6399 0.6330 0.6674 |l 0.6697

0.7

0.6

0.5

The highest accuracy obtained for each resolution is noted in bold. The highest accuracy for
each row is underlined. Abbreviations are as follows: R1, R2, and R3, the LBP-TOP radii in mm;
AAL, automated anatomical labeling template; and CC200, a spatially constrained parcellation
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based on rs-fMRI.

Table 5-14 p-values of McNemar’s test of results in Table 5-12
parcellations| radius GM-CSF GM-WM

Brain R1 0.329 0.136
R2 0.847 0.834
R3 0.127 1.000
AAL R1 1.000 0.464
R2 0.909 1.000
R3 0.740 0.248
CC200 R1 0.045 0.057
R2 0.065 0.059
R3 0.176 0.073

The p-values without under lines denote the accuracies of GM are bigger than CSF and the
accuracies of GM are bigger than WM. The underlined p-values show the inverse relationship.
Bold p-values correspond to significant results (p-value < 0.05). DOF9, and DOF12, linear
registration with 9, and 12 degree of freedom, respectively; ART, non-linear registration
performed by Automated Registration Tool; AAL, automated anatomical labeling template; and
CC200, spatially constrained parcellation based on rs-fMRI.

5.4 Discussion

The prevalence of ADHD around the world is highly heterogeneous. Polanczyk et al.
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[147] have shown that this variability may be explained primarily by the use of differing
ADHD diagnostic criteria and collateral sources of information. Additionally,
geographic location also plays a role in the variability of ADHD prevalence around the

world [147].

Based on the research of Polanczyk et al., estimations of ADHD prevalence rates using
the DSM-III-R or ICD-10 criteria are significantly lower than when using other criteria,
such as those of the DSM-IV. Additionally, the use of different collateral sources of
information, such as parents, teachers, subjects, the best-estimate procedure, the “and
rule (parent and teacher),” or the “or rule (parent or teacher),” can also significantly

affect the estimate of ADHD [147].

The ADHD-200 global competition dataset was pooled from research sites all over the
world. The organizers of the competition went to great lengths to maintain the
consistency of the dataset. Nevertheless, for various historical reasons, including the use
of different benchmarks at each site, it is difficult to use the same procedure to diagnose
ADHD around the world (Table 5-1). However, the worldwide diagnosis of ADHD
reflects an objective reality from which ADHD classification models can be built and

evaluated.

While constructing classification models based on machine learning approaches, the
inconsistency of diagnostic criteria may introduce so-called class label noise, which
may seriously diminish accuracy. Class label noise may be the most important

contributor to low accuracy in the ADHD-200 Global Competition.
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While constructing our ADHD diagnostic tool based on brain images, we found it
difficult to compare the rs-fMRI data from different research sites due to differences in
image resolution, slice thickness, time points utilized and image quality. Moreover, the
complex preprocessing steps of fMRI data analysis also introduce hardships that can
affect the results. Finding the optimal preprocessing strategy to provide the most useful
information for building a classifier is a time-consuming process. Therefore, we chose
anatomical data rather than rs-fMRI data to mine useful information from brain
morphological changes. The resulting classification model based on morphological
changes was found to be competitively accurate in discriminating ADHD from TDC
subjects. Our results demonstrate that using features based on LBP-TOP data to train the
linear SVM can result in greater discriminative power than using features based on
rs-fMRI data. The resulting accuracies based on LBP-TOP features are better than those

based on rs-fMRI data (Table 5-4).

5.4.1 Robust to registration method

The robustness of the registration methods when using LBP-TOP features with ADHD
data is notable. Although the model based on the ART non-linear registration method
proved to be the most accurate, the models based on linear registrations (FLIRT with
9-DOF and 12-DOF) also performed well in our tests (Table 5-4). This finding
demonstrates the stability of the LBP-TOP to registration methods. Due to the large
interindividual variability of the human brain, the registration step of MRI brain data
analysis is both critical and challenging [61]. Aside from the linear registration method,

more than a dozen non-linear registration methods have been developed in recent years,
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but a perfect registration method does not yet exist [147].

However, after performing a perfect registration, no structural differences should exist
between subjects. Therefore, a good index for morphological changes should not be
based on perfect non-linear registration methods. This property of LBP-TOP might
provide a simple and efficient way to compare brain morphology with linearly

registered brains.

5.4.2 Global effects of ADHD?

To introduce different spatial context information, we utilized several parcellation
strategies in this study. Unexpectedly, the models using only the distribution of
whole-brain features usually demonstrated the highest accuracy in our tests (Table 5-4,
Table 5-9, and Table 5-10). Adding parcellation information did not improve the

resulting models.

Our results imply that morphological changes in the ADHD brain may affect the
whole-brain texture distribution. Further research should be performed to confirm these
findings. Theoretically, introducing spatial context information can provide higher
accuracy if there are significant structural brain changes in several brain regions.
Published structural imaging studies, summarized in two meta-analyses [158, 159], have
failed to find robust brain changes between ADHD and control subjects. Meta-analyses
can help in identifying brain regions that may be the most abnormal in ADHD subjects.
However, it is difficult to build a robust discriminative model of ADHD based only on

such selected regions.
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5.4.3 Combining models using feature selection

Consider the results of INN and linear-SVM in Table 5-4. INN uses features as they
have same weights, whereas the linear-SVM assigns various weights to them. The
results might imply that, with linear registration, use all features with same weight
(INN) cannot provide good results. However, we can make some features more
important to make a better classifier (linear-SVM). Only few features might be needed

to build a sufficient good classifier in this problem.

To find the most important features and to improve the robustness and efficiency of our
model, we used linear-SVM to rank the overall extracted features, and we made an
effort to choose the most important features from which to build a better classification
model. Moreover, using the feature selection method, we combined models from
different point of view to construct a more general model. The results of our tests show
that it is useful to combine features to build better models (Table 5-11 and Table 5-12).
Moreover, we only need few features to build sufficient good classifiers (Table 5-11). To
build a simpler and more robust model, we combined different LBP-TOP features to
provide better accuracy. However, when dealing with too many features, the over-fitting
effect came into play due to the insufficient number of subjects in this study (436
subjects). In most cases, greater accuracy was not gained by combining more than 4096

features.

5.4.4 Most discriminative tissue

To determine the most useful brain tissue for discriminating ADHD from TDC subjects,
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models based on GM, WM, and CSF probability maps were tested. These results are
shown in Table 5-13. In most cases, GM-based structural difference provided the

greatest discriminative power.

LBP-TOP extracted morphological data based on the distribution of various curvatures,
edges, dots, corners, and the content size of the specific region (Figure 5-2). Most of this
information may come from the complex patterns of cortical folding, which essentially
dominates GM morphology. Therefore, we suggest that the primary morphological
information utilized by our model may come from gyrification patterns. Wolosin et al.
have previously shown different folding indices for ADHD compared with control

subjects [160].

5.5 Conclusion

In this study, we approached the ADHD classification problem by working to find a
simple method that could provide sufficient discriminative power. We determined that
information derived from texture analysis of brain morphology could be used to
distinguish ADHD from TDC subjects. An approach based on structural images is
simpler than one based on functional data, and the data are easier to obtain making such
an approach potentially more useful in the clinical environment. Our results
demonstrate that structural brain data may be another treasure-trove in the ADHD-200

global competition dataset.
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Although the accuracy of the models presented in this study are far from being useful
clinically, texture difference-based feature extraction may point the way toward a simple
and efficient method for determining morphological brain changes. We have
demonstrated that LBP-TOP is a good candidate to build a discriminative classification

model based on structural brain changes.

56  Supplements

Supp. Table 5-1 List of all subjects.

ies  dataset  subject age dx series dataset subject  age dx series  dataset  subject  age  dx series  dataset  subject  age  dx
1 KKI 1019436 12.98 110 NYU 10065 16.93 219 OHsSU 2232413 9.17 328 Peking_2 3856956 13.75
2 KKI 1043241 9.12 111 NYU 10070 10.52 220 OHSU 2288903 7.42 129  Peking_2 3910672 10.08
3 KKI 1535233 9.64 112 NYU 10071 14.09 221 OHSU 2292940 38 130 Peking_2 3993793 10.33
4 KKI 1577042 9.06 113 NYU 10072 7.25 222 OHSU 2409220 7.67 131 Peking_2 3994098 12.75

5 KKI 1594156 12.87
6 KKI 1686265 8.02
7 KKI 1779922 10.84
8 KKI 1842819 10.09
9 KKI 1988015 11.17
10 KKI 1996183 11.04
11 KKI 2014113 1035
12 KKI 2018106 11.66
13 KKI 2104012 9.62
14 KKI 2299519 11.89
15 KKI 2360428 8.56
16 KKI 2554127 9.02
17 KKI 2558999 8.87
18 KKI 2572285 8.33
19 KKI 2601925 9.58

114 NYU 10073 1446
115 NYU 10074 8.06
116 NYU 10075 11.09
NYU 10078 8.19
NYU 10079 15.27
NYU 10082 114
1200 NYU 10086 15.83
121 NYU 10087 17.61
NYU 10088 14.66
NYU 10090 16.32
NYU 10091 893
125 NYU 10092 173
1260 NYU 10095 14.39
127 NYU 10096 14.94
128 NYU 10100 16.88

132 Peking_2 4053388 11.08
133 Peking_2 4055710 13.33
134 Peking_2 4073815 9.83
135  Peking_2 4075719 13.08
Peking_2 4221029 9.67
Peking_2 4225073 10.33
Peking_2 4265087 10.08
Peking_2 5993008 12.25
Peking_2 6500128 11.33
Peking_2 7011503 13.33
Peking_2 7253183 13.17
Peking_2 7407032 13.42
Peking_2 7689953 135
Peking_2 8278680 13.25
Peking_2 9002207 11.17

223 OHSU 2415970 8.58
224 OHSU 2455205 7.5
225  OHSU 2535204 8.42
226 QHSU 2559559 7.92
227 OHSU 2561174 8.67
228  OHSU 2571197 7.67
229  OHSU 2620872 8.92
30 OHSU 2920716 7.5
231 OHSU 2947936 8.5
32 OHSU 3051944 11.75
233 OHSU 3052540 9.17
234 OHSU 3162671 8.5
235 OHSU 3244985 7.17
236 OHSU 3302025 9
237 OHSU 3466651 8.08

2( KKI 2618929 10.09 129 NYU 10101 142 238 OHSU 3470141 85 3 Peking_2 9578631 14.33
21 KKI 2640795 12.47 130 NYU 10102 16.55 239 OHSU 3652932 7.67 J48  Peking_2 9640133 13.75
22 KKI 2703289 111 131 NYU 10103 9.59 240 OHSU 3677724 8.75 149 Peking_3 1050345 12.67
23 KKI 2740232 11.09 32 NYU 10104 13.35 OHSU 3869075 8.67 350 Peking_3 1132854 13.92

24 KKI 2917777 12.66
5 KKI 2930625 9.97
2€ KKI 3103809 9.3
27 KKI 3119327 10.15
28 KKI 3154996 11.65
29 KKI 3160561 11.95
30 KKI 3611827 9.08
31 KKI 3699991 12.77

3 NYU 10106 11.82
134 NYU 10107 17.37
135 NYU 10111 7.74
NYU 10112 14.79
137 NYU 10114 16.73
138 NYU 10115 15.32
139 NYU 10116 16.77
140 NYU 10117 9.35

OHSU 4016887 9.08
OHSU 5302451 11.33
OHSU 6592761 7.58
OHSU 6953386 11.83
OHSU 7333005 9

OHSU 8218392 8.33
| OHSU 9499804 8.17
249 Peking_1 1056121 13.92

3 Peking_3 1356553 11.75
352 Peking_3 1399863 12.83
153 Peking_3 1404738 12.58
354 Peking_3 1411536 13.17
155  Peking_3 1662160 12.58
356 Peking_3 1771270 14.42
157 Peking_3 1794770 11.75
Peking_3 1843546 14.08

32 KKI 3884955 11.84 141 NYU 10118 13.33 250 Peking_1 1133221 12.33 Peking_3 2107404 13.08
33 KKI 3902469 10.64 14 NYU 10119 777 251 Peking_1 1186237 13.92 160 Peking_3 2208591 125
34 KKI 3917422 8.19 NYU 10122 16.28 252 Peking_1 1240299 9.5 361 Peking_3 2228148 13.75
35 KKI 3972956 10.12 NYU 10123 1613 253 Peking_1 1282248 10.58 162 Peking_3 2268253 14.83
36 KKI 4104523 1243 145 NYU 10125 7.9 254 Peking_1 1408093 11.92 363 Peking_3 2276801 13
37 KKI 5216908 10.82 196 NYU 10126 9.7 255 Peking_1 1879542 13.58 164 Peking_3 2493190 13.33
38 KKI 6346605 10.69 147 NYU 10128 9.53 256 Peking_1 1947991 9.42 365 Peking_3 2524687 14.33

39 KKI 7129258 9.73
4C KKI 7415617 10.9
41 KKI 8083695 8.62
42 KKI 8263351 8.34
43 KKI 8337695 8.8

KKI 8658218 9.75
45 KKI 9922944 10.3
46 NeurolMAGE 1125505 19.3
47 NeurolMAGE 1312097 15.41
43 NeurolMAGE 1585708 15.96
49 NeurolMAGE 2029723 16.5
0 NeurolMAGE 2352986 20.47
51 NeurolMAGE 2671604 17.46
»2 NeurolMAGE 2961243 16.51
53 NeurolMAGE 3007585 19.05
»4 NeurolMAGE 3048588 13.92

148 NYU 1000804 7.29
149 NYU 1023964 8.29
150 NYU 1057962 8.78
151 NYU 1187766 12.79
152 NYU 1283494 8.61
153 NYU 1320247 8.59
154 NYU 1359325 10.76
155 NYU 1435954 11.92
156 NYU 1471736 13.32
NYU 1497055 8.56
158 NYU 1511464 10.12
159 NYU 1517240 10.06
160 NYU 1737393 11.24
161 NYU 1780174 11.18
162 NYU 1884448 891
163 NYU 1918630 7.55

257 Peking_1 2174595 9.83
258 Peking_1 2196753 10.33
259 Peking_1 2266806 11.25
0 Peking_1 2367157 12.08
261 Peking_1 2535087 13.33
262 Peking_l1 2833684 10.42
263 Peking_1 2910270 13.83
264 Peking_1 3004580 14

265 Peking_1 3086074 115
266 Peking_1 3212536 12.17
267 Peking_1 3269608 12.08
268 Peking_1 3390312 1033
260 Peking_1 3593327 10

270 Peking_1 3707771 10.42
271 Peking_1 3889095 11.92
272 peking_1 3976121 11

Peking_3 2780647 13.58
Peking_3 2907951 16
Peking_3 2940712 13.08
169 Peking_3 2984158 14.17
370 Peking_3 3224401 12.92
371 Peking_3 3277313 1233
372 Peking_3 3291029 14.83

i Peking_3 3385520 13.5
374 Peking_3 3473830 12.67
175 Peking_3 3624598 14.58
376 Peking_3 3672300 14
377 Peking_3 3712305 11
178  Peking_3 3803759 13.17
379 Peking_3 3870624 11
Peking_3 3930512 1258
381 Peking_3 4006710 14
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55  NeurolMAGE 3082137 17.83
56 NeurolMAGE 3108222 13.33
57 NeurolMAGE 3304556 15.78
58  NeurolMAGE 3322144 17.5
58 NeurolMAGE 3449233 20.15
60 MNeurolMAGE 3515506 18.8
61 NeurolMAGE 3566449 17.78
62 NeurolMAGE 3808273 14.25
653 NeurolMAGE 3858891 18.32
64 MNeurolMAGE 3888614 16.8
65  MeurolMAGE 3941358 18.2
66 NeurolMAGE 3980079 19.15
67 MNeurolMAGE 4134561 15.55
68 MNeurolMAGE 4239636 20.54
69  MNeurolMAGE 4285031 12.84
70 NeurolMAGE 6115230 19.39
/1 MeurolMAGE 8409791 17.59

164 NYU 1992284 7.26
165 NYU 1985121 11.43
166 NYU 2030383 13.56
167  NYU 2054438 8.11
168 NYU 2107638 10.41
169 NYU 2136051 9.23
170 NYU 2230510 9.17
171 NYU 2260910 12.07
172 NYU 2297413 11.06
173 NYU 2306976 11.53
NYU 2497695 11.61
NYU 2570769 13.49
NYU 2682736 10.78
NYU 2735617 11.42
NYU 2741068 8.53
NYU 2821683 10.69
NYU 2950672 11.28

273 Peking_1 3983607 9.67
274 Peking_1 4028266 9.25
275 Peking_1 4095748 10.5
276 Peking_1 4334113 14.58
277 Peking_1 4921428 9.58
278 Peking_1 7093319 11.42
279 Peking_1 7390867 17.33
280 Peking_1 9210521 9.25
281 Peking_1 9221927 11.83
282 Peking_1 9887336 11.33
283 Peking_2 1050975 13.58
284 Peking_2 1068505 10.25
285 Peking_2 1093743 11.92
286 Peking_2 1094669 12.42
287 Peking_2 1117299 13.5
288 Peking_2 1159908 15.08
289  Peking_2 1341865 9.25

182 Peking_3 4048810 14.67
183 Peking_3 4136226 11.25
184 Peking_3 4241194 11.67
Peking_3 5575344 13.75
Peking_3 5669389 13.75
Peking_3 6383713 11.75
188 Peking_3 6477085 13
389 Peking_3 7994085 14.92
390 Peking_3 8191384 13.42
191 Pittsburgh 16001 10.11
192 Pittsburgh 16003 10.46
193 Pittsburgh 16004 10.49
194 Pittsburgh 16006 10.76
195 Pittsburgh 16008 11.03
Pittsburgh 16009 11.12
197 Pittsburgh 16010 11.24
198 Pittsburgh 16012 11.41

72 NYU 10009 121 NYU 2991307 83 290  Peking_2 1494102 10.33 Pittsburgh 16013 11.53
73 NYU 10010 1132 NYU 2996531 12.62 291 Peking_2 1562298 9.58 Pittsburgh 16014 11.69
74 NYU 10015 11.21 183 NYU 3163200 11.91 292 Peking_2 1628610 14.92 Pittsburgh 16015 11.7
75 NYU 10017 12.38 184 NYU 3174224 8.49 293 Peking_2 1643780 10 402 Pittsburgh 16016 11.71
7€ NYU 10018 11.54 185 NYU 3349423 12.59 294 Peking_2 1809715 13.5 Pittsburgh 16021 12.41
77 NYU 10019 14.81 186 NYU 3433846 10.36 295 Peking_2 1860323 8.75 Pittsburgh 16025 12.71
78 NYU 10022 12.12 187 NYU 3441455 9.26 296  Peking_2 1875013 9.83 Pittsburgh 16026 12.88
79 NYU 10023 13.42 188 NYU 3619797 7.49 2597  Peking_2 1916266 13.17 Pittsburgh 16027 12.91
20 NYU 10024 8.26 185 NYU 3653737 9.38 298  Peking_2 2031422 10.92 Pittsburgh 16028 13.03
81 NYU 10025 8.75 190 NYU 3679455 11.97 299 Peking_2 2033178 11.33 Pittsburgh 16029 13.11
82 NYU 10026 11.73 NYU 3845761 8.19 300 Peking_2 2140063 9.42 Pittsburgh 16030 13.44
83 NYU 10028 9.42 Pittsburgh 16031 13.53
84 NYU 10030 12.41 NYU 4079254 10.19 302 Peking_2 2207418 13.17 411 Pittsburgh 16033 13.68
85 NYU 10032 111 NYU 4095229 9.32 303 Peking_2 2296326 12.17 412 Pittsburgh 16035 13.94
B NYU 10033 10.97 NYU 4154672 9.23 304 Peking_2 2310449 10.33 113 Pittsburgh 16036 13.97
87 NYU 10035 8.95 NYU 4164316 10.69 305 Peking_2 2377207 13.83 Pittsburgh 16037 14.15
as NYU 10037 109 NYU 4187857 13.28 306 Peking_2 2498847 9.75 Pittsburgh 16038 14.24
89 NYU 10039 13.28 NYU 5971050 7.24 307 Peking_2 2529026 13.33 Pittsburgh 16039 14.57

a0 NYU 10040 9.94
91 NYU 10042 10.65
92 NYU 10045 1249
93 NYU 10046 9.75
94 NYU 10047 1272
95 NYU 10048 14.95
9¢ NYU 10045 735
97 NYU 10050 1743
a8 NYU 10051 154
99 NYU 10052 1631
100 NYU 10054 17.83
101 NYU 10056 1563
102 NYU 10057 17.7
103 NYU 10058 14.2
104 NYU 10060 8.75
105 NYU 10061 1141
106 NYU 10062 16.14
107 NYU 10064 159
108 NYU 10067 131
109 NYU 10068 133

NYU 8692452 12.25
NYU 8697774 9.92
NYU 8834383 838
NYU 8915162 10.7
NYU 9326555 10.92
NYU 9750701 10.74
NYU 9907452 9.98
OHSU 1084283 11
OHSU 1108916 85
OHSU 1206380 9.17
OHSU 1386056 8

210 OHsU 1411223 9.17
211 OHSU 1418396 8.67
212 OHsU 1421489 8.75
213 OHSU 1481430 11.92
214 OHSU 1548937 11.17
215 OHSU 1679142 10.33
216 OHSU 1743472 8.75
217 OHSU 2054310 8.42
218  OHsU 2071989 8.25

308 Peking_2 2559537 11.17
309 Peking_2 2601519 13.83

Pittsburgh 16044 14.85
Pittsburgh 16048 15.56
Pittsburgh 16050 15.78
Pittsburgh 16052 15.91
121 Pittsburgh 16053 15.92
422 Pittsburgh 16054 16.05
123 Pittsburgh 16055 16.16
Pittsburgh 16060 17.16
Pittsburgh 16061 17.23
Pittsburgh 16063 17.46
Pittsburgh 16064 17.49
Pittsburgh 16072 18.43
Pittsburgh 16073 18.48
130 Pittsburgh 16078 18.72
31 Pittsburgh 16079 18.74
132 Pittsburgh 16081 18.81
i Pittsburgh 16083 18.86
34 Pittsburgh 16084 189
35 Pittsburgh 16086 18.93
436 Pittsburgh 16087 18.96

10 Peking_2 2659769 14.25

11 Peking_2 2737106 14.17
12 Peking_2 2884672 12.83
13 Peking_2 2919220 13.58
1 Peking_2 2950754 13.33

3

3

3

3

3

315 Peking_2 3157406 14
316 Peking_2 3194757 12.92
317 Peking_2 3205761 14.58
3
3
3
3
3
3
3
3
3
3

18 Peking_2 3248920 12.17
19 Peking_2 3308331 9.08
20 Peking_2 3446674 14.58
21 Peking_2 3494778 9.17
22 Peking_2 3561920 13.75
23 Peking_2 3562883 11.25
24 Peking_2 3610134 10.83
25 Peking_2 3655623 13.83

26 Peking_2 3691107 9.67
27 Peking_2 3827352 15.83
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Abbreviations are as follows: dx, diagnosis; 0, typically developing children (TDC); 1, ADHD
combined-type; 3, ADHD inattentive-type; KKI, the Kennedy Krieger Institute; NeurolMAGE,
the NeuroIMAGE sample; NYU, the New York University Child Study Center; OHSU, Oregon
Health and Science University; Peking_1, Peking_2, and Peking_3, Peking University; and
Pittsburgh, the University of Pittsburgh.
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Chapter 6

Discussion, Conclusion, and Future Works

6.1 Discussion

6.1.1 Structural MRI

In this study, we used LBP-TOP as a tool to extract information from T1WI and DTI
(Chapter 4 and Chapter 5). Results showed LBP can perform on both types of brain MR
images and LBP histogram can be used to construct either classification (Chapter 5) or
regression models (Chapter 4). There are two important properties of LBP-TOP in

structural MRI applications.

First, simple and efficient, computing the LBP histograms of specific brain region is
very simple and efficient. The algorithm is nothing more than comparing the scale value

of each voxels and its neighbors. Simple and efficient is very important in big data
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approaches. We only considered hundreds of subjects in this study, but for real
applications, using thousands or even millions of subjects as training data could build
more accurate results. Therefore, with limited computational resource, a simple and
effective information extraction method is more useful than a complex one. Moreover,
as wrote by Google's artificial-intelligence guru, Peter Norvig, “Simple models and a lot
of data trump more elaborate models based on less data.” [2], we can expect the results

accuracy of LBP is better than other complex methods.

Second, robust to registration method, as we showed in 5.4.1 and Table 5-4, LBP-TOP
is robust to the registration method used for normalizing original brain MR images to
standard templates. Because LBP only considers the relative value of the eight
neighbors and central voxel, this pattern is naturally robust to slight changes of rotation
or scaling. More interesting, based on this property of LBP, we tried to apply LBP-TOP
on brain MR images without registration, that is, the unnormalized brain images.
Results in Chapter 4 show that LBP-TOP can effectively extract useful information
from unnormalized brain images and provide excellent performance (Table 4-9). This
property is very important for LBP in the brain MR image applications because the
steps of registration are still critical and almost impossible to verify [61] [147]. A
method without registration is more useful for comparing data across centers all over

the world.

6.1.2 Different from Traditional Approaches

Based on the proposed methods, binary pattern extract structural information from
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different brain area and then the machine learning algorism combine the information to
construct a discriminative model. The process is quite different from traditional
approaches, such as VBM. While performing VBM, we use the statistical analysis to
construct statistical inference based on normalized and smoothed gray matter
concentration extracted from brain images. The inference based on stochastic data
model shows which part of brain area is more "important" in mental disorders. Those
studies are good for find starting points of further research. It is hard to build

discriminative rules in clinical use based on the results of those studies.

The proposed methods used machine learning algorithms to combine related factors and
construct discriminative models to predict or estimate. There is no underlying data
model behind this approach. The inference is based on the information provided from
the training data, so called data driven approaches. Moreover, the results are ready to
use in clinical. Therefore, proposed methods are more useful to build automatic

computer-aided diagnosis tools in clinical environment.

Over the past decade, most researchers can only collect few subject data (dozens or
hundreds of subjects). Traditional approaches are suitable for few sample size. However,
the results from small subjects are usually hard to be constant across studies when apply
on multifactorial and heterogeneous disorders, such as schizophrenia [161, 162]. In big
data era, it is possible to get much more data than traditional approaches. Therefore, use
machine learning and simple information extraction methods to build ready to used
models is more reasonable and useful. Currently, it is technologically possible to pool
all digitalized brain MR data stored in hospitals all over the world. Actually, many
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institutions are trying hard to accomplish this dream in the future (see 1.1.3). Applying
machine learning approached on millions of brain MR images will become more and

more important in the future.

6.1.3 Advantages of Using Binary Patterns and Machine Learning

Approaches

Machine learning algorithms are designed for solve complex problems with multiple
contributing factors. Therefore, the introduced method in this study is best suit for
analyzing multifactorial and heterogeneous disorders, such as ADHD, schizophrenia,
autism, and so on. Moreover, it is also useful in analyzing the continuous process

combined with related effects, such as brain maturation and aging.

There are three advantages of using LBP-TOP to extract information from structural
brain MR images: First, because of the robustness of LBP-TOP to the registration
methods of images and only considering the relative value, LBP-TOP is good for
analyzing data pooled from various data centers. Second, as shown in previous chapters,
the rank of the features of learned models can be used to valuate further research
directions. Third, the proposed methods build a ready to used model as the training
result, which could be used as the screening step after each image acquisition in clinical

usage.

6.1.4 Knowledge Discovery

In all three tests of this study, we tried to identify the most important features in each
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learned model. Many top ranked brain areas based on the models can also be found in
the literature. However, if we only use one of those brain areas as the only one input
features, the learned results never provide good performance. It is an expected result,
because the target problems analyzed in this study are multifactorial brain disorders or

heterogeneous processing.

6.1.5 Limitations

Limitations of Binary Patterns Approaches

In this study, we used LBP for structural MRI and build several functional connectivity
binary patterns for rs-fMRI. Those methods convert the information embedded in the
original data to a simple pattern distribution. Although we have shown the usability of

this approach, there are several limitations.

First, the pattern distribution is good for machine learning methods to learn a
discriminated model but bad for human beings to understand the resulted models.
Therefore, we can only find the rank of the discriminated area in the brain based on the
learned models. It is hard to figure out why or how the model uses those patterns to

build a model.

Second, binary patterns are a simplified form of the information embedded in original
data. While building binary patterns, we dropped much information. We only considered

the interactions of pixels in three orthogonal planes while constructed the LBP-TOP.
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More complex forms might introduce more useful information to build better
discriminated models. However, more complex forms might also introduce more noise
and provide worse models. Following the words wrote by Google artificial-intelligence
guru Peter Norvig [2], binary pattern approaches could be better for big data

applications than statistical analysis in small groups.

Limitations of Big Data Approaches

One of the major shifts of mindset in big data era is to use almost all the data rather than
using a small number of sample size [22]. Though we used hundreds of subjects to build
the discriminated models in this study, it is far from the total number of human beings.
Moreover, as we showed in this study, age and sex affect the brain structure. Much more
data and more attributes of each subject can help the machine learning algorithms to
construct better models. In the current state, the number of the used subjects is the most
important limitation of big data approaches. Our studies here only showed the
possibility and usability of using binary patterns to build discriminated models. For real

clinical usage, much more data from different hospitals and research centers is needed.
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6.2 Future Works

6.2.1 Normal Ranges as Image Biomarkers of Brain Images

Besides using the binary patterns as the input features for machine learning methods, the
quantified and compared distances can be computed based on different histogram [163] .
We can use those distances to summarize the information to simpler medical indexes
based on brain structural MRI data. Moreover, we can build the “normal range” of
structural MRI based on that index. A simpler index can be better understood and used as
an image biomarker in clinical environment for quickly screening and be easily

combined with the information from other medical examination results.

However, based upon the results in Chapter 4, age does highly affect the brain structure.
The index can be more useful and reasonable in same-age groups. Therefore, the
Alzheimer's disease neuroimaging initiative (ADNI) database [164] could be a good
target to test this idea. We will try to design and evaluate simple medical index based on
distances of binary patterns approaches to evaluate Alzheimer's disease and test it using

ADNI database.

6.2.2 Combine Information for Multivariate Approaches

Although only using the brain MRI data can acquire good accuracy in several
applications. Brain MR image is a small part of patient information. While learning
classification models, the result accuracy would be better if we can combine almost all

available patient information, such as the demographic and genetic characteristics,
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physiological constants, and other medical examination results. On the other hand,
combining informations from different brain MR images, such as structural MR images,
DTI, and functional MRI, could also improve the performance of the resulting modles.
Moreover, hundreds of parents used in this study are not enough to build very strong
inferences. The result could be better while learning classification or regression modes

from millions of subjects.

6.2.3 Detect ADHD and Schizophrenia Using Functional Connectivity

Binary Patterns

In recent years, resting-state functional magnetic resonance imaging (rs-fMRI) has
become a novel technique for studying mental illnesses [12-15]. However, developing a
simple and effective method to extract information from rs-fMRI data remains critical.
For example, the examination of schizophrenia shows different patterns in the
resting-state functional connectivity between patients and healthy controls, but these
results were not constant across studies [161, 162]. In addition, researchers have
identified several abnormal rs-fMRI patterns in attention deficit-hyperactivity disorder
(ADHD) [165], but classifying ADHD using a large pooled rs-fMRI database still
requires improvement [36]. The complexity of resting-state functional connectivity
increases the difficulty of obtaining consistent results. Therefore, we proposed binary
pattern distribution as an approach to improve performance when discriminating

individuals with mental disorders from normal control subjects.

Currently, there are two general methods for studying the functional connectivity in
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rs-fMRI data, cross-correlation analysis (CCA) and independent component analysis
(ICA)[166]. CCA 1is the most popular method used to analyze rs-fMRI data. In
seed-based CCA (SCCA), the average time series in a previously defined seed region is
used as a reference. Subsequently, a whole-brain functional connectivity map based on
the seed is computed after considering the correlation between each voxel and the
reference time series. SCCA is simple method, but using few seeds likely shows only
small regions of the whole-brain functional connectivity. Thus, the graph analysis
framework [167], such as network CCA (NCCA), was introduced. In NCCA, the
whole-brain volume is separated into many regions and the average time-series of each
region is calculated. Subsequently, a network is used to describe whole-brain functional
connectivity after computing the correlations of each paired regions. Researchers have
used these connections as features to obtain classification models with machine learning
methods, for determining brain maturation [168], for the classification of autism [169],

and for the identification of dementia [170].

In contrast, ICA is a data driven, hypothesis-free method. ICA decomposes the rs-fMRI
data into a number of statistically significant spatially independent patterns [171-174].
Independent components (ICs) are considered as resting-state networks (RSNs), which
are consistent across health subjects [175]. More importantly, some major ICA patterns
are similar to the patterns of activation maps derived from a large database of
event-related fMRI studies [1]. Nevertheless, ICA does not offer any information about
the intrinsic order of the ICs. However, it might be difficult to determine why and which

IC should be chosen as the target of analysis [176, 177].
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Although CCA and ICA are different approaches, researchers have shown that the
results are similar, primarily generating overlapping patterns [166, 178-181], suggesting
that the same underlying connectivity structure exists in these analyses. Therefore, the
RSNs derived from ICA could be a good reference to analyze functional connectivity.
The basic assumption of our strategy is that most RSN patterns are similar across
subjects. Therefore, the time variation of each RSN could be a good reference to
analyze functional connectivity. Furthermore, the connectivity of each region could be
established through the correlations between average time course of region and RSN
time series, herein referred to as the resting-state networks referenced analysis

(RSNRA)(Figure 6-1).
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Figure 6-1 Simplify connectivity using resting-state networks referenced analysis (RSNRA).

(a) For network cross-correlation analysis with 96 brain regions to construct the connectivity
of region 1, all 96 correlations should be considered. (b) In RSNRA, only N correlations
between the region 1 and N reference resting-state networks (RSNs) should be considered
(in this case, N=10).
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(a) subject: 0040009 (avgCC = 0.3413)

Figure 6-2 The distribution information not included in the network cross-correlation
analysis.

This figure illustrates the functional connectivity maps of three subjects from the COBRE
database. The maps were built using left cingulate gyrus, posterior division (LCGp) as the seed.
The subjects have similar average Pearson's correlation coefficients (avgCC) between the
average time series of the left paracingulate gyrus (LPG) and average time series of LCGp.
Images al, bl, and c1 show functional connectivity maps of the whole brain that were
obtained by calculating the CC of the time series of each brain voxel and the average time
series of the seed. Images a2, b2, and c2 show the details of different distribution patterns
existing in LPG. These distinct distribution patterns were not considered in the network
cross-correlation analysis.
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Because of the simple implementation, studies usually use NCCA to extract information
from rs-fMRI data [168-170]. However, as shown in Figure 6-2, the NCCA is an

average approach without different distribution information.

The distribution information is generally used in the computer vision domain to
describe objects for determination and classification [62, 73], as we have shown in 2.1.
In LBP, the characteristics of each pixel are defined as the types of binary comparison
between each pixel and its neighbors [73]. For example, the spots, line ends, and
corners are represented as different types of patterns (Figure 6-3 (al)). Thus, the
distribution of these patterns could provide an excellent information source to describe
the objects in the images (Figure 6-3 (a3)). Based on this idea, we used RSNRA to
describe the connectivity of each brain voxel and extract discriminative information
from the distribution of different functional connectivity binary patterns (FCBP) in
different brain regions (Figure 6-3 (b1l) and (b3)). For this purpose, we introduced and
tested the threshold (TFCBP), ordered (OFCBP), and absolute ordered (ABS-OFCBP)
FCBP to construct an FCBP histogram of each brain region. The analysis shown in

Figure 6-3 compares the difference between LBP and proposed FCBP.
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Figure 6-3 The construction of local binary patterns (LBP) and functional connectivity binary
patterns (FCBP).

(a1) In LBP, the characters of each pixel are defined as the types of the binary comparison
between each pixel and its neighbors. If the value of the neighbor is larger than the central
pixel, the result would be one (filled circle); otherwise, the result is zero (empty circle).
Therefore, several types of pattern can be encoded into the binary pattern. (a2) All the possible
patterns could be used to describe the characters of specific image area. (a3) The LBP
histogram can then be used as the feature for image classification. (b1) In FCBP, the characters
of each voxel are defined as the cross correlation between the time series of the voxel and the
time courses of the referenced resting-state networks (CCrsn1~CCrsnio). (b2) Based on two
binarization strategies we introduced in this study, all possible FCBP could be used to describe
the characters of the specific brain region. (b3) Therefore, the FCBP histogram can be used as
the feature for brain classification.
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Two public-access rs-fMRI databases were used to assess this assumption: the
schizophrenia database contributed by The Center for Biomedical Research Excellence
(COBRE) and ADHD-200 Sample database obtained from eight independent imaging
sites. For each database, the linear support vector machine (SVM) was used to
determine the discriminative models for classifying patients and control subjects using
the extracted features based on different approaches. We examined and compared the
performance of the constructed models using the features extracted from rs-fMRI data

through NCCA, RSNRA, and FCBP.

Materials and Methods

The parcellations and evaluations methods are the same with 3.1.

Participants

Rs-fMRI data from two public-access databases in the International Neuroimaging
Data-sharing Initiative (INDI) were used to evaluate the methods proposed in this study
[182]. To rule out sexual differences, only male subjects were used. Subjects with
translation movements larger than 3 mm or rotations larger than 3 degrees were ruled
out. Because cerebellum RSN patterns are used in the study, cerebellum volumes less

than 65% in the registered brain data were removed.

The Schizophrenia database was obtained from The Center for Biomedical Research

Excellence (COBRE). COBRE includes 72 patients with schizophrenia and 74 healthy
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controls. Rs-fMRI images, anatomical MRI volumes, the detail phenotypic data, and
diagnostic information of each subject can be freely download from

http://fcon_1000.projects.nitrc.org/indi/retro/COBRE.html. A total 103  subjects,

including 52 patients and 51 controls were used.

The ADHD samples obtained from ADHD-200 Sample database, a rs-fMRI and
anatomical MRI database pooled from eight independent imaging sites [36]. The subject
data and phenotypic information can be downloaded from

http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html. The diagnosis criteria of

each site can be obtained from the ADHD-200 Sample website. ADHD
hyperactive-type subjects were excluded due to the small number of these subjects in
the database. Therefore, we only classified the control subjects from two ADHD
subtypes, the ADHD combined and ADHD inattentive types. The datasets from the
NeuroIMAGE sample were removed because they were collected using a 1.5T system.
The subjects from Washington University School of Medicine were also excluded
because this dataset contained no ADHD subjects. After ruling out unacceptable

subjects, a total 360 male subjects, including 189 patients and 171 controls, were used.

ICA maps

To show the generalization of the RSNs referenced approaches examined in this study,
we directly applied the ICA results from previous studies [1]. These results can be
downloaded from the FMRIB website

(http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/). The ICA results, with twenty
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components exhibiting the most correspondence between the connectivity information
of CCA and ICA [181] and a reasonable resulting feature size were used. Two strategies
were used to select the ICs in this study. In 20-RSNRA, all 20 ICs were used to describe
the connectivity. Moreover, Smith et al. showed that 10 RSNs from the 20 ICs are
well-matched to the fMRI activation networks [1]. The 10 RSNs might be the most
informative elements to discriminate the mental disorders. In 10-RSNRA, we employed

a simpler strategy, using only these 10 ICs.

Figure 6-4 shows the flow chart of all analyses used in this study, including NCCA,
RSNRA, and FCBP. The details of each step are described below. We performed NCCA
as the baseline for comparison with other methods. For training classifiers, the Pearson's
correlation coefficients (CCs) for every paired brain region were used as features in

NCCA.
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Figure 6-4 Flow chart of network cross-correlation analysis (NCCA), resting-state networks
referenced analysis (RSNRA), and functional connectivity binary patterns (FCBP).

After preprocessing of rs-fMRI data, (a) the NCCA were performed by introducing brain
parcellation information and computing the cross-correlation between each brain regions. (b)
The time variances of resting state networks (RSNs) can be computed by using the introduced
RSNs patterns. These time variances were used to perform the RSNRA of the brain regions or to
build a whole brain RSNRA map. (c) The RSNRA map can be used to extract different binary
patterns and build the FCBP histogram of brain regions, such as threshold (TFCBP), ordered
(OFCBP), and absolute ordered (ABS-OFCBP) FCBP. The performance of each approach was
evaluated through linear SVM and 10-fold cross-validation. The elements with bold font and
underlined text show the introduced information.
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Resting-state networks referenced analysis (RSNRA)

To describe the connectivity of each voxel, NCCA was employed using the time series
of all other voxels in the brain, resulting in a large number of correlations that were hard
to implement. Fortunately, ICA provided a widely accepted framework to describe
whole-brain connectivity using RSNs [1, 174]. Based on the assumption of ICA, all the
rs-fMRI signals might be combined through ICs with different weights. As a stable and
consistent subnetwork of whole-brain functional connectivity, RSNs from ICA might be
adequate candidates for the references to describe the connectivity of each voxel in the
brain [175]. Therefore, we used these RSNs as references and introduced the variations

of these RSN as simplified coordinates to describe the connectivity of each voxel.

Based on the ICA definition, for K independent components and ] voxels in the
data volume with U time points, the fMRI signal can be represented using the

space-time data matrix:

K
X, =D AS.+E;
= (6-1)

where the columns of A denote the ICs, the rows of S represent the time-variation

of each ICs, and E is the noise [171, 173, 176]. For the fMRI data of each subject,

It is known. Following our assumption, we consider the RSNs as the known prior,
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A . . . . .
and "% is also known. Therefore, we can use a simple linear regression to estimate the
different S« of each network, that is, the variations of each RSN of this subject. Thus,

the S could be used as a references to describe the connectivity of each brain region
(Figure 6-1 (b)). The method is referred to as the resting-state networks referenced
analysis (RSNRA). Moreover, Figure 6-5 shows an example of using the ten RSNs to

describe the connectivity of single voxel.
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To evaluate the performance of RSNRA, we used the correlations of the referenced
RSNs time course and the average time series of the brain regions as features to

determine classification models of ADHD and schizophrenia.

To combine the information in activation maps derived from BrainMap database, the
RSNs from Smith et al. were directly used as the prior RSNs patterns [1]. The ICA
results with twenty components were considered as the greatest correspondence
between the connectivity information of CCA and ICA [181]. Therefore, the ICA results
of twenty components would be used in this study. The ten RSNs in these twenty
components contain the most informative RSNs because they are well-matched with the
ICA results of 29,671-subject BrainMap activation database [1]. Both the RSNRA with
a total of twenty RSNs time series (20-RSNRA) and the ten the most informative RSNs
(10-RSNRA) were tested. To evaluate RSNRA, we compared the performance of

NCCA, 20-RSNRA, and 10-RSNRA.

Based on the RSNRA strategy, this idea can be extended to the connectivity of any
voxel of the brain (Figure 6-3 (b1) and Figure 6-5). Therefore, we changed our focus to
the distribution constructed using the functional connectivity patterns in a specific brain
region. In this section, we introduced two useful rules to transform the connectivity of
each voxel to simple functional connectivity binary patterns (FCBP). Then, we
established the distribution information defined by the statistics of the patterns (Figure

6-3 (b3)).
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Threshold functional connectivity binary patterns (TFCBP)

First, as shown in Figure 6-6, an intuitional threshold method was introduced. Although
the resulting feature size is large, the whole feature matrix is sparse. For example, when
using 0.3 as the threshold, it is almost impossible to determine any voxel with more than
three referenced CCs larger than 0.3. In this study, three possible threshold types were
tested. We generated the threshold using negative CC, positive CC, and the combined

histograms of negative CC and positive CC.
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Figure 6-6 lllustration of threshold functional connectivity binary patterns (TFCBP).

In TFCBP, a fixed threshold would be assigned to transform the Pearson's correlation
coefficients between the time series of the voxel and the variances of referenced resting state
networks (CCgsns) to binary values. Figure (a) shows an example of using threshold 0.3 to build
the binary pattern of specific voxel. In the right side of (a), the values larger than the threshold
are shown as filled circles; otherwise this information is denoted as empty circles. (b)
Considering all possible combinations, we will obtain 2% patterns of connectivity, where k is the
number of used RSNs (in this case, k=10). Pn shows the label of each distinct pattern. (c) The
behaviors of one brain region would be described using 2* features, which is defined according
to the histogram of these patterns.
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Ordered functional connectivity binary patterns (OFCBP)

Two problems existed in the direct threshold binary patterns. First, although the
resulting matrix is sparse, the raw feature size remained large. This size is difficult to
use in multi-modality approaches. Second, identifying a proper threshold is not
straightforward. Thus every possible threshold should be tested to obtain the best

performance threshold.

Consequently, we provided another strategy to extract more abstractive connectivity
information. We observed that the order of the correlations of RSNs might be the most
informative aspect of these approaches. That is, the RSN with the most important role
(with highest cross correlation) in the connectivity of a specific voxel could be most
informative. Moreover, the RSN with second most important role should also be
important. The order of the connectivity of each RSN of a specific voxel might provide
more information for classification. Therefore, a simple binarization rule might be
constructed based on this point of view. As shown in Figure 6-7, only the order of the

.. . 2 .
connectivity was considered. As a result, only N” features are considered.
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Figure 6-7 lllustration of ordered functional connectivity binary patterns (OFCBP).

In OFCBP, only the order of Pearson's correlation coefficients (CC) between the time series of
the voxel and the variances of reference resting state networks (CCgrsns) Was considered. The
RSN with largest CC (the Top1CC) is converted to the binary pattern p1-1 to p1-10. The RSN
with top two CC (the Top2CC) is encoded to p2-1 to p2-10, and so on. Figure (a) shows an
example of using OFCBP to build the binary patterns of specific voxel. In the right side of (a),
the topNCC is encoded as a filled circle; otherwise, empty circles are used. The number of
voxels indicates the top N RSN. Figure (b) shows part of all possible patterns. When using K
RSNs, K? features would be considered (in this case, k=10). PN-M shows the Mst RSN in top N
group. (c) The behaviors of one brain region would be described using K* features, which are

defined according to the histogram of the binary patterns.
146



Absolute ordered functional connectivity binary patterns (ABS-OFCBP)

To consider both the positive and negative CC in the connectivity, we also tested the

order of original CC value and the order of the absolute CC value in OFCBP.

Preprocessing of rs-fMRI data

The preprocessing of each rs-fMRI data was primarily based on the Athena pipeline of
the ADHD-200 preprocessed data website

(http://www.nitrc.org/plugins/mwiki/index.php/neurobureau: AthenaPipeline). The

preprocessing was performed using AFNI [150] and FSL [123]. After slice time and 3D
motion corrections, each rs-fMRI dataset was transformed into NIHPD Objective 1
atlases (4.5~18.5y) [126, 127] with a 4 mm isotropic resolution. Then, the extracted
WM and CSF time course and the motion time series were regressed out from the data.

Subsequently, the data were blurred using a 6-mm FWHM Gaussian filter.

Results

Network cross-correlation analysis (NCCA)

As shown in Table 6-1, using NCCA strategies, the best performance for classifying
schizophrenia is 0.76 (Table 6-1, (a)). However, the classifier acquired almost no

information from the ADHD database (Table 6-1, (b)). Comparisons between separated

147



parcellation sets using MNI and NCCA demonstrated the best performance in
schizophrenia classification (Table 6-1, (a)). CORT provided the best accuracy in

ADHD classification (Table 6-1, (b)).

148



Table 6-1 Cross-validation results of resting-state networks referenced analysis (RSNRA) and
network cross-correlation analysis (NCCA).

(a) schizophrenia classification

parcellation NCCA |10-RSNRA 20-RSNRA
MNI 0.76 0.72 0.72
CORT 0.68 0.69 0.68
SUB-CORT 0.54 0.63 0.67
[a] GM+WM 0.59 0.62 0.67
[b] [a]+MNI 0.74 0.65 0.75
[e] [b]+CORT| 0.72 0.69 0.72
[d] [c]+SUB-CORT| 0.73 0.73 0.71

(b) ADHD classification

parcellation NCCA |[10-RSNRA 20-RSNRA
MNI 0.506 0.536 0.503
CORT| 0.542 0.550 0.578
SUB-CORT| 0.508 0.519 0.539

[a] GM+WM | 0.528 0.544 0.536
[b] [a]+MNI| 0.519 0.556 0.508
[c] [b]+CORT| 0.550 0.531 0.561

[d] [c]+SUB-CORT| 0.544 0.547 0.556

The underlined results show the resulting accuracy is worse than the NCCA approaches using
the same parcellation. The performance comparison of those approaches using McNemar’s
test can be found in Table 6-2.
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Table 6-2 p-values of McNemar’s test of results in Table 6-1.
(a) schizophrenia classification

parcellation 10-RSNA vs NCCA  20-RSNRA vs NCCA
MNI 0.5023 0.5224
CORT 1.0000 1.0000
SUB-CORT 0.2432 0.0865
[a] GM+WM 0.7488 0.2913
[b] [a]+MNI 0.0809 1.0000
[c] [b]+CORT 0.5791 1.0000
[d] [c]+SUB-CORT 1.0000 0.7518

(b) ADHD classification
parcellation 10-RSNRA vs NCCA  20-RSNRA vs NCCA

MNI 0.3859 1.0000
CORT 0.8357 0.1770
SUB-CORT 0.8170 0.4188
[a] GM+WM 0.6790 0.8699
[b] [a]+MNI 0.2870 0.7925
[c] [b]+CORT 0.5200 0.7199
[d] [c]+SUB-CORT 1.0000 0.7373

No results with significant difference can be found while comparing the results of resting-state
networks referenced analysis (RSNRA) and network cross-correlation analysis (NCCA). The
underlined results show that the resulting accuracy is worse than the NCCA approaches using
same parcellation.
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Using merged parcellation sets, learning with fine regions slightly inhibited the
performance when discriminating schizophrenia (Table 6-1, (a)). Although the most
useful information for classifying ADHD might be obtained from the cross correlations
of cortical regions, adding information from other regions could slightly improve the

accuracy (Table 6-1, (b)).

Resting-state networks referenced analysis (RSNRA)

In general, separated or merged parcellation sets, using RSNRA, provided equal
performance with NCCA in our tests of both databases. Both 20-RSNRA and
10-RSNRA do not show significant differences with the NCCA results using
McNemar's test (Table 6-2). 10-RSNRA showed an adequate performance in almost all
cases. These results showed the ten most informative RSNs as candidates for describing
the connectivity of specific brain regions or voxels. Therefore, we used these ten RSNs

as reference RSN in the remaining tests.

Threshold functional connectivity binary patterns (TFCBP)

The results of TFCBP are shown in Table 6-3 and Table 6-4, and the results of
McNemar’s test are shown in Table 6-5. When classifying schizophrenia, the use of
either a positive or negative CC threshold did not produce better results than those
obtained using traditional NCCA approaches (Table 6-4). Combining the features of
these approaches could improve the accuracy of the resulting model, exhibiting a more

enhanced performance than NCCA. As shown in Table 6-3, the combined CC threshold
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of 0.2 or 0.3 could improve the classification of schizophrenia. Despite the MNI
parcellation, the performance of almost all parcellations with combined CC thresholds

of 0.2 and 0.3 was better than that of NCCA approaches.

Table 6-3 Cross-validation results of threshold functional connectivity binary patterns
(TFCBP).

(a) schizophrenia classification

Combined CC Threshold
0.1 0.2 0.3 0.4 0.5
MNI 0.69 0.66 0.65 *x 0.56 «0.60
CORT 0.71 0.73 0.72 0.70 0.72
SUB-CORT 0.69 0.69 =«0.70 0.64 0.62

[a] GM+WM| 068 070 070 063 0.70
[b] [a]+MNI| 068 071 0.67 * 0.60 0.64
[c] [b]+CORT| 071 074 075 0.69 0.75
[d] [c]+SUB-CORT| 0.71 0.75 078 0.69 0.66

(b) ADHD classification

Combined CC Threshold

0.1 0.2 0.3 0.4 0.5
MNI 0.567 * 0.600 = 0.586 0.531 0.514

CORT| #0.611 0.606 = 0.622 %0.622 0.569

SUB-CORT| 0.575 0.575 0.569 %0.608 0.572

[a] GM+WM 0.564 0.542 0.564 0.578 0.531
[b] [a]+MNI 0.578 = 0.592 0.581 0.539 0.511
[c] [b]J+CORT| 0.608 »+0.639 #x0.653 0.603 0.558
[d] [c]+SUB-CORT| =0.611 = 0.625 *x0.644 0.611 0.572

The underlined results show the resulting accuracy is worse than the network cross-correlation
analysis (NCCA) approaches using same parcellation in Table 6-1. The stars show that the
performance is significant different with NCCA approaches in McNemar’s test (*: p-value < 0.05.
**: p-value < 0.005). The details of each p-value in McNemar’s test can be found in Table 6-5.
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The results of discriminating ADHD are more interesting. As NCCA approaches
acquired almost nothing from the rs-fMRI data, all reasonable thresholds (0.1~0.3) in all
parcellation sets demonstrated better accuracy than NCCA (Table 6-4). Using a
combined CC threshold dramatically increased the performance to almost ten percent

better than NCCA approaches.

Ordered functional connectivity binary patterns (OFCBP)

As shown in Table 6-6 and Table 6-5, the classifications of both disorders provide better
performance than NCCA. However, these performances are slightly worse than the
performance using TFCBP. In the ADHD classification, the results of models using

MNI, [b], and [d] parcellations are significantly better than those in NCCA.

Nevertheless, the classification of schizophrenia showed a different pattern, as models
with MNI and [b] performed worse than those with NCCA, and only the model with

SUB-CORT was significantly better than those with NCCA.
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Table 6-6 Cross-validation results of ordered functional connectivity binary patterns (OFCBP
and absolute OFCBP, ABS-OFCBP) and network cross-correlation analysis (NCCA).

(a) schizophrenia classification

parcellation NCCA OFCBP ABS-OFCBP
MNI 0.76 0.71 0.77
CORT 0.68 0.73 0.76
SUB-CORT 0.54 * 0.71 *0.70
[a] GM+WM 0.59 0.69 0.65
[b] [a]+MNI| 0.74 0.67 0.75
[c] [b]+CORT 0.72 0.74 0.78
[d] [c]+SUB-CORT 0.73 0.74 0.78

(b) ADHD classification

parcellation NCCA OFCBP ABS-OFCBP

MNI| 0.506 |[**0.603 #*0.625
CORT| 0.542 0.578 0.578
SUB-CORT| 0.508 0.542 0.561

[a] GM+WM | 0.528 0.614 0.564
[b] [a]+MNI| 0.519 |[#x0.581 +#*0.628
[c] [b]+CORT| 0.550 0.608 0.589

[d] [c]+SUB-CORT| 0.544 | *0.625 0.592

The underlined results show that the resulting accuracy is worse than the NCCA approaches
using the same parcellation as in Table 6-1. The stars show that the performance is significantly
different from the NCCA approaches when assessed by McNemar’s test (*: p-value < 0.05. **:
p-value < 0.005). The details of each p-value in McNemar’s test can be found in Table 6-7.
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Table 6-7 p-values of McNemar’s test of results in Table 6-6.
(a) schizophrenia classification

parcellation OFCBP vs NCCA | ABS-OFCBP vs NCCA
MNI 0.3588 1.0000
CORT 0.4042 0.1530
SUB-CORT | * 0.0223 * 0.0375
[a] GM+WM 0.1649 0.4173
[b] [a]+MNI 0.1456 1.0000
[c] [b]+CORT 0.8137 0.1814
[d] [c]+SUB-CORT 1.0000 0.2278
(b) ADHD classification
parcellation OFCBP vs NCCA | ABS-OFCBP vs NCCA
MNI | #*0.0048 ** (0.0011
CORT 0.2370 0.2753
SUB-CORT 0.3010 0.1761
[a] GM+WM | 0.0906 0.3643
[b] [a]+MNI | #x 0.0050 *% 0.0017
[c] [b]+CORT | 0.3552 0.2274
[d] [c]+SUB-CORT| =0.0420 0.1254

The underlined results show that the resulting accuracy is worse than the network
cross-correlation analysis (NCCA) approaches using the same parcellation as in Table 6-1. The
stars show that the performance is significantly different from the NCCA approaches when
assessed by McNemar’s test (*: p-value < 0.05. **: p-value < 0.005).
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Absolute ordered binary pattern distribution (ABS-OFCBP)

Again, these two disorders showed different patterns in this test (Table 6-6 and Table
6-7). Using ABS-OFCBP increased the performance in almost all cases for the
classification of schizophrenia. However, the effects of sorting using absolute CC are
not consistence in ADHD cases. ABS-OFCBP improved the performance of the models
with MNI, SUB-CORT, and [b]. However, this process negatively affected the accuracy

of the original OFCBP approaches.

Discussion

Resting-state networks referenced analysis (RSNRA)

In this study, we showed that the RSNRA is a simpler alternative to NCCA for
classifying schizophrenia and ADHD. The most obvious advantage of using RSNRA is
the marked reduction of feature size when using many regions (Figure 6-1). Using
RSNRA instead of NCCA largely reduces the feature size of the resting-state brain
connectivity with the same performance (Table 6-1 and Table 6-2). As a simpler method
to explore complex whole-brain functional connectivity, RSNRA could be a good

candidate for use in multi-modality studies, combined with other approaches.

Moreover, RSNRA converts the complex whole-brain functional connectivity graph to a

simple matrix with MxN dimensions, in which M is the considered regions, and N is the
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selected RSNs. The characters of each region can be described using N intrinsic
reference networks. These results suggest that using the ten most informative RSNs is
sufficient to discriminate schizophrenia and ADHD (Table 6-1 and ~ Table 6-2).
Moreover, if we combine the RSNs used in a previous study [1], the ten most
informative RSNs can be associated with the knowledge in the large fMRI studies

database, BrainMap [183, 184], as demonstrated in Figure 6-8.

Binary pattern distribution

Three FCBP distributions have been tested in this study, TFCBP, OFCBP, and
ABS-OFCBP. Using distribution patterns to classify both disorders provides better
performance than traditional NCCA (Table 6-3 and Table 6-6). In simplified ordered
distribution patterns, ABS-OFCBP was best suited for schizophrenia, and OFCBP
exhibited better performance in classifying ADHD (Table 6-6). In TFCBP approaches,
the best threshold to use still needs to be identified, but several interesting results were

observed.

First, both positive and negative information is useful for classifying both disorders
(Table 6-3). Combining negative and positive features generated the best performance.
In most traditional rs-fMRI studies, only positive connectivity was considered. However,
the results of this study showed the importance of the information revealed by the

negative connectivity.
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Second, using linear SVM approaches, we can explore the features of this model. In
addition to being a good classifier, linear-SVM is also a good feature rank tool [101,

103]. Thus, the content of the resulting classification model should be reviewed.

Knowledge discovered in classification models

Figure 6-8 shows the top 100 features of the classification model of both disorders using
TFCBP, with a 0.3 threshold, combining both positive and negative features. Although
the use of these features alone cannot provide sufficient classifiers, an analysis of top N
features might reveal information concerning how the model was built and provide

insight for future studies. The two disorders show different patterns.
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Figure 6-8 Top 100 features in the classification models of schizophrenia and ADHD using
threshold functional connectivity binary patterns with 0.3 CC thresholds and combining
positive and negative features.

(a) and (b) show the accumulation number of each RSN in the top 100 features. (c) and (d)
show the details of top 100 features. Each raw in (c) and (d) shows the pattern presented by
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the feature. The column "Top" shows the rank of the feature. The columns "Part" and "Region"
show the brain region the pattern extracted from. The column "PN" shows the positive or the
negative threshold the feature used. Columns #0 to #9 show the binary patterns of the feature.
As shown in Figure 6-6, a value of 1 indicates the correlation coefficient value between the
voxel time series and the reference time series is larger/lower than the threshold, otherwise,
the value would be 0.

The results shown in Figure 6-8 (c) and Figure 6-8 (d) could be analogous to a
DNA-microarray analysis. Each cell denotes the binary connection activity of specific
RSN and brain region. Various features represent different combinations of the
activation patterns of those cells. Therefore, disparate mental disorders show distinct

patterns of features.

For both disorders, most of the top 20 features are defined according to the number of
voxels with "no link" patterns (no correlation with any RSNs) in several brain regions
(Figure 6-8 (c) and Figure 6-8 (d)), potentially suggesting no connectivity with any
RSNs; that is, no activity in the resting-state. Therefore, the proportion of no active
voxels might represent an over-all resting-state activity measurement in the
corresponding brain regions. The activity of these regions might be different between

patients and controls.

Intuitively, one could analyze the brain regions represented in the top 100 features.
More interestingly, using the approaches proposed in the present study, we could view
these data as highlighting the roles of RSNs in each disorder. Evaluating the number of

RSN in the top 100 features will reveal the importance of each RSN in classifying the
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disorder (Figure 6-8 (a) and Figure 6-8 (b)). Moreover, these results could be correlated

with the event-related fMRI results, as shown in a previous study [1].

For the schizophrenia model (Figure 6-8 (c)), many top regions are abnormal in
schizophrenia patients, as evidenced through anatomical or functional studies, such as
Inferior Temporal Gyrus (top 3) [185], Supplementary Motor Cortex (Juxtapositional
Lobule Cortex, top 4) [186, 187], Temporal Fusiform Cortex (top 5) [188], Superior
Frontal Gyrus (top 6) [189], and Insular Cortex (top 7) [190]. From the perspective of
RSN, as shown in Fig. 8(a), the distribution associated with many RSNs, such as the
auditory network, visual networks, and frontoparietal#1 network, could discriminate
schizophrenia. The importance of the auditory and visual networks might reflect major
symptoms of schizophrenia, such as delusions and auditory hallucinations [191]. To date,
most rs-fMRI studies on schizophrenia have focused on the default mode network
(DMN) [12]; however, the results obtained in the present study suggested that DMN
might not play an important role in classifying this disorder. Thus, studying other

networks might reveal more information.

For the ADHD model (Figure 6-8 (d)), several top regions, such as Temporal Occipital
Fusiform Cortex (top 2) [192], Temporal Fusiform Cortex (top 3) [193], Middle
Temporal Gyrus (top 5) [194], Parahippocampal Gyrus (top 6) [194], and Insular Cortex
(top 8) [195], have also shown differences between ADHD and controls. However, the
executive control and auditory networks are the most important networks for classifying
ADHD (Figure 6-8 (b)). Therefore, it is reasonable to conclude that executive control is
the most important network for classifying ADHD. Several well-known
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neuropsychological theories have suggested that the symptoms of ADHD result from a
primary deficit in executive functions [196]. Much evidence has shown that executive
functions play an important role in ADHD [197]. Smith et al. also showed that the
auditory network strongly corresponds to action—execution—speech, cognition—
language—speech, and perception—audition paradigms[1]. This importance might reflect

the non-stop talking symptoms of hyperactivity.

There are two contributions in this study. First, we used resting-state networks
referenced analysis (RSNRA) to convert the complex NCCA to a much simpler
representation using time series of RSNs as references and showed the equivalent
performance of these RSNs. Second, we proposed using TFCBP and OFCBP to view
the rs-fMRI data in order to analyze the distribution of connectivity. Our results showed
that the proposed method consistently improved the accuracy of classification for
schizophrenia and significantly enhanced the performance when discriminating ADHD
(Table 6-3 and Table 6-6). Moreover, the resulting model could provide information
about these disorders for future studies. This study introduced another perspective from

which to analyze the rs-fMRI data using the distribution of FCBP.
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6.3 Conclusion

In this work, we tried to apply simple binary patterns methods on both brain structural and
functional MRI data to extract useful information. Results showed those simple binary
methods are useful for extract information from structural and functional brain MR
images. Those methods are good candidates to be used in large-scale brain associated big

data researches.
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