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中文摘要 

在此研究中，我們試圖以渾沌(chaos)理論為基礎，Sampling entropy 為方法，

來分阿滋海默症 Alzheimer’s disease (AD)不同時期的腦波複雜度，以提供臨床新的

客觀工具，以利 AD 的診斷與預後評估。 

失智症是一認知功能逐漸惡化的疾病，且 AD 佔了其中最大部份，且隨著年

齡的增長，其發生的機率也大幅上升，因此，隨著台灣人口老人化的現象，AD 病

患也預期會增加。但是，AD 的臨床診斷，常因病情進展的緩慢，而延後了 2~3 年。

因此，找到客觀方便的方式，來達到及早診斷及早治療的目的，變的刻不容緩。 

目前，臨床上對於 AD 的診斷，是按照 DSM-IV（Diagnostic and Statistical 

Manual of Psychiatric Disorders 4
th

 ed）診斷標準診斷。雖有如此詳盡的評估，早期

AD 依舊不容易在早期進行客觀的評估。雖然，有些功能性腦部影像檢查，如

functional MRI, positron emission tomography (PET), and single photon emission 

computed tomography (SPECT)，可以提供部分的訊息，以作為臨床診斷的參考，

但是，限制於高單價，輻射暴露，及顯影劑注射引起的過敏反應，都使得這些檢

查並非極度方便。而腦波圖(Electroencephalography, EEG)為一價格低廉，非侵入性

的檢查方式，可以快速取得人類腦部活動的紀錄，且其臨床使用已超過五十年，

為一安全性極高的檢查。 

但由於過去，對於腦波圖的判讀，是需要倚靠有經驗的神經內科專科醫師，

且其對於失智症的評估，只能提供局部慢波的訊息，對於診斷及追蹤，實無多大

助益；但是，近年來，由於電腦的發達，及數位訊號處理的進步，數位腦波分析

（quantitative EEG）的概念，例如使用傅立葉轉換（Fourier analyses），開始被提

出並應用於臨床失智病人腦波的分析。但是，這些基於線性系統的數學模式分析

方式，卻只能提供病人與正常人之間的差異，並無法有效提供進一步的應用。而

基於非線性系統的近似熵（approximate entropy），可以分析訊號的複雜度，訊號越

複雜，其值越高。是在數學模式上比較符合人類生理訊號的非線性特徵，在過去

的研究中，也發現在 AD 的病人中，其雙側顳葉的近似熵會有下降的趨勢。但是，
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單純的近似熵卻會受到資料的長短，及其潛在的趨勢，而得不到一個穩定的結果，

而限制了其應用。在此方面，採樣熵（sampling entropy）則是避免了資料長短的

誤差，再藉由此研究中，利用經驗解構模式，來去除潛在的趨勢，使得所得結果

更能符合臨床資料，並有機會使腦波圖可以成為一客觀評估失智症的工具。 

另一個問題為臨床醫生依舊無法在治療個別病人時，事前預見其治療效果。

在這篇論文中，我們試圖用多尺度熵（multiscale entropy）來分析對於乙醯膽鹼酯

酶抑製劑治療有效及無效病患腦波圖的差異。以期在治療的初期即能為病患訂定

有效的治療方針。 

腦波圖，通過非線性數位訊號處理的幫助下，腦波圖的潛藏信息可以被提取

用於臨床評估，追蹤，甚至預測治療效果。 

關鍵字: 阿滋海默症, 採樣熵, 多尺度熵, 腦波圖, 經驗解構模式 
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Abstract 

In this dissertation, we will develop the computational tools, on the basis of 

sampling entropy, to evaluate different patterns of complexity activation of the 

electroencephalography (EEG) in longitudinal changes in the Alzheimer's disease (AD) 

after the acetylcholinesterase inhibitor (AChE inhibitor).  

Alzheimer’s disease is the most common form of dementia. The cause and 

progression of AD are not well understood. One hypothesis is that AD is caused by 

reduced synthesis of the neurotransmitter, acetylcholine (ACh). AChE inhibitors are 

proved as an effective therapy. The diagnosis and evaluation in the early stage dementia 

is challenging in clinical medicine. Quantitative electroencephalographs (qEEG) 

provide a potential method to objectively quantify the cortical activations in AD, but 

they are too insensitive to probe the alteration of EEG in the early AD. 

The approximate entropy, which is a non-linear statistic and is able to quantify the 

irregularity of a time series, was significant lower in the bilateral temporal region in AD 

patients, in whom the basic pathology is hippocampus atrophy. But there were some 

bias in approximate entropy, such as inconsistent results, and depending on the data 

length. Therefore, in order to evaluate different patterns of complexity activation of the 

EEG in longitudinal changes in AD after the acetyl cholinesterase inhibitor therapy, it is 

necessary to develop a better method with the sampling entropy. However, a technical 

issue which has been ignored by most researchers is that the signal should be stationary. 

In order to resolve the non-stationarity of SaEn in EEG to improve the sensitivity, an 

empirical mode decomposition (EMD) was applied for detrending in this dissertation. 

Twenty-seven AD patients (9M/18F; mean age 74.0±1.5 years) were included. 
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Their initial Minimal Mental Status Examination was 19.3±0.7. They received the first 

resting awake 30-mine EEG before the therapy. Five of them received a follow-up 

examination within 6 months after the therapy. The 30-s EEG data without artifacts 

were selected and analyzed with a new proposed method, “ EMD-based 

detrended-SaEn” to attenuate the influence of intrinsic non-stationarity. The correlation 

factors in 27 AD patients showed a moderate correlation (0.361-0.523, p < 0.05) 

between MMSE and EMD-based detrended SaEn in Fp1, Fp2, F4 and T3. There was a 

high correlation (Correlation coefficient = 0.975, p < 0.05) between the changes of 

MMSE and the changes of EMD-based detrended-SaEn in F7 in 5 follow-up patients. 

The dynamic complexity of EEG fluctuations is degraded by pathological degeneration, 

and EMD-based detrended SaEn provides an objective, non-invasive and non-expensive 

tool for evaluating and following AD patients. 

The other issue, for clinician, it is still not predictable effect in individual patient. 

In this dissertation, we tried to use multiscale entropy (MSE) in EEG to predict the 

efficacy of AChE inhibitor. Seventeen newly diagnosed AD patients (9M/8F; mean age 

74.6±7.4 years) were enrolled in this study, with an initial MMSE of 18.8±4.5. After 12 

months’ therapy of AChE inhibitor, 7 patients (3M/4F; mean age 76.1±7.9 years) were 

responsive (responder) and 10 patients (6M/4F; 73.5±7.3 years) were non-responsive 

(non-responder). The major difference between two groups is Slope2 (MSE6 to 20). The 

area under curve (ROC curve) of Slope2 is 0.871(95% CI = 0.69 - 1). The sensitivity is 

85.7% and the specificity is 60% while the cutoff value of Sloep2 is -0.024. MSE of 

EEG, especially Slope2, is able to be an objective tool to predict the efficacy of AChE 

inhibitor before the therapy. 

By the assistance of non-linear digital signal processing, the embedded information 
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of EEG in AD could be extracted for the clinical evaluation, following up and even 

prediction the therapeutic effect.  

Key Word: Alzheimer’s disease, Sample entropy, Multiscale Entropy, 

Electroencephalography, Empirical mode decomposition 
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CHAPTER 1 Introduction 

1.1 Background 

1.1.1 Alzheimer’s disease 

Alzheimer’s disease (AD) is characterized by a slowly progressing degenerative 

process of cognitive decline.
1, 2

 It was first described by German psychiatrist and 

neuropathologist Alois Alzheimer in 1906 and was named after him.
3
 Most often, AD is 

diagnosed in people over 65 years of age.
4
 In 2006, there were 26.6 million sufferers 

worldwide. Alzheimer's is predicted to affect 1 in 85 people globally by 2050.
5
 

Community studies in Taiwan,
6-8

 Beijing,
9
 Shanghai

10, 11
 and Kinmen

12
 have shown that 

AD is the leading cause of dementia among the ethnic Chinese, just as it is for 

whites.
13-19

 The average annual conversion rate from mild cognitive impairment to AD 

has been reported as 10% to 15%,
20

 but ranges from 4% to 41%. 
21-30

 The early 

diagnosis and treatment of AD would likely benefit from the proper identification of 

individuals at risk for developing AD. 

Dementia is generally associated with a poor prognosis. 
31-38

 The Shanghai study
32

 

found a 2-year mortality rate of 34.6% and a 5-year mortality rate of 62.2% among AD 

patients. In Taiwan, the mean survival time for AD patients was 4.48 years (SD = 0.1 

years) after the time of enrollment.
39

 

In the early stages, the most common symptom is difficulty in remembering recent 

events. As the disease advances, symptoms can include confusion, irritability and 

aggression, mood swings, trouble with language, and long-term memory loss. Gradually, 

bodily functions are lost, ultimately leading to death.
1, 2
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The cause for most AD is still essentially unknown, and several competing 

hypotheses exist trying to explain the cause of the disease, such as beta-amyloid (βA) 

deposition, 
40-42

 neurofibrillary tangle 
43-45

 and cholinergic deficit. 
46-48

 There is still no 

definite therapy to cure or stop this disorder. Current treatments only help with the 

symptoms of the disease and it is generally accepted that many of its symptoms are 

related to a cholinergic deficit in the cerebral cortex and other areas of the brain. 
46, 47, 49

 

Acetylcholinesterase inhibitors (AChE inhibitors) were proved as an effective therapy 

for AD. 
50-55

 Phamocoecnomic studies disclosed that therapies can postpone the 

progression of dementia to more severe stages and may offer economic benefit m 

patients' families, caregivers, and society. 
56-60

 However, clinicians often argue that 

AChE inhibitors have an effect in a subgroup of 25-50% of AD patients,
48, 61, 62

 who 

cannot be identified objectively, and the effect is time-consuming. 

1.1.2 Diagnosis of Alzheimer’s disease 

In clinical, the diagnosis of AD is dependent on DSM-IV criteria, as below. 
63

 

A. The development of multiple cognitive deficits manifested by both:  

1. Memory impairment (impaired ability to learn new information or to 

recall previously learned information).  

2. One (or more) of the following cognitive disturbances:  

a.  

b. Apraxia (impaired ability to carry out motor activities despite intact 

motor function.  
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c. Agnosia (failure to recognize or identify objects despite intact 

sensory function).  

d. Disturbance in executive functioning (i.e., planning, organizing, 

sequencing, abstracting).  

B. The cognitive deficits in Criteria A1 and A2 each cause significant 

impairment in social or occupational functioning and represent a significant decline 

from a previous level of functioning.  

C. The course is characterized by gradual onset and continuing cognitive decline.  

D. The cognitive deficits in Criteria A1 and A2 are not due to any of the 

following:  

1. Other central nervous systems, conditions that cause progressive deficits 

in memory and cognition (e.g., cerebrovascular disease, Parkinson’s disease, 

Huntington’s disease, subdural hematoma, normal-pressure hydrocephalus, brain 

tumor).  

2. Systemic conditions that are known to cause dementia (e.g., 

hypothyroidism, vitamin B12 or folic acid deficiency, neurosyphilis, HIV 

infection).  

3. Substance-induced conditions.  

E. The deficits do not occur exclusively during the course of a delirium. 

F. The disturbance is not better accounted for by another disorder (e.g., major 

depressive disorder, schizophrenia). 
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According to the criteria, AD is usually diagnosed clinically from the patient 

history. Neurological examination in early AD will usually provide normal results, 

except for obvious cognitive impairment, which may not differ from that resulting from 

other diseases processes, including other causes of dementia. Neurologists recorded 

medical and neurologic histories and performed neurologic examinations. Diabetes, 

hypertension, coronary artery disease, comorbid medical conditions, and drug histories 

were obtained from the subjects and their families. This information was confirmed by 

reviewing the medical charts if they were available. Either a neurologist or a 

neuropsychologist interviewed each subject and at least 1 caregiver (for those patients 

who suffered from dementia) on the subjects’ memory, orientation, judgment, 

problem-solving abilities, participation in family and community affairs, engagement in 

hobbies, and competence in personal care. 
64, 65

 Individual participants and their 

caregivers were interviewed by the same psychiatrist at each visit to identify possible 

psychiatric symptoms. Delusions, depression, hallucinations, and misidentification were 

chosen as core psychiatric symptoms for study analysis. Delusion was considered 

present if the patient had thoughts of systematic or nonsystematic persecution, theft, 

infidelity, jealousy, or other delusional situations. Depression was diagnosed based on 

the results of the structured interview schedule of the DSM-IV criteria.
63

 The degree of 

depression and the anxiety level were evaluated for all patients based on the Hamilton 

Depression Rating Scale (HDRS)
66

 and the Hamilton Anxiety Rating Scale (HARS).
67

 

Hallucination was positive if the patient had formed or non-formed visual, auditory, 

olfactory, or tactile hallucinations. Patients with misidentification believed that someone 

was in their house when nobody was there, that their house was not their own, that a 

person was an impostor, that someone else was in the mirror, or that characters on 

television were real. 
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Medical imaging with computed tomography (CT) or magnetic resonance imaging 

(MRI) and with single photon emission computed tomography (SPECT) or positron 

emission tomography (PET) can be used to help exclude other cerebral pathology or 

subtypes of dementia. In the early stage, brain CT cannot provide any information to 

different between normal elderly and AD. In the late stage of AD, brain CT only 

discloses the brain atrophy. Volumetric MRI can detect changes in the size of brain 

regions. Measuring those regions that atrophy during the progress of AD is showing 

promise as a diagnostic indicator.
68

 Functional imaging research , such as PET
69

 and 

SPECT
70

, suggests that AD typically have reduced brain cell activity in certain regions. 

For example, studies with fluorodeoxyglucose (FDG)-PET indicate that AD is often 

associated with reduced use of glucose in brain areas important in memory, learning and 

problem solving.
69

 However, as with the shrinkage detected by structural imaging, there 

is not yet enough information to translate these general patterns of reduced activity into 

diagnostic information about individuals. 

Neuropsychological screening tests can help in the diagnosis of AD. In the tests, 

people are instructed to copy drawings similar to the one shown in the picture, 

remember words, read, and subtract serial numbers. Neuropsychological tests such as 

the mini-mental state examination (MMSE) 
71

 are widely used to evaluate the cognitive 

impairments needed for diagnosis, which has a total score of 30. Clinical Dementia 

Rating (CDR) scales to rate the severity of the dementia was also evaluated after a 

neurologist conducted separate semi-structured interviews with the patient and a 

knowledgeable informant. The scores were as follows: 0 (normal), 0.5 (questionable), 1 

(mild), 2 (moderate), and 3 (severe).
72
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Blood tests, such as thyroid function tests, Vitamin B12, syphilis test, HIV 

examination, renal function, liver function, electrolyte levels, and hemoglobin, can 

identify other causes for dementia than AD.
73

  

1.1.3 Management of Alzheimer’s disease 

There is no cure for AD; available treatments offer only symptomatic benefit but 

remain palliative in nature. Reduction in the activity of the cholinergic neurons is a 

well-known feature of AD. 
46-48, 74

 AChE inhibitors were proved as an effective therapy 

for AD. 
50-55

 AChE inhibitors are employed to reduce the rate at which acetylcholine 

(ACh) is broken down, thereby increasing the concentration of ACh in the brain and 

combating the loss of ACh caused by the death of cholinergic neurons.
75, 76

 

Phamocoecnomic studies disclosed that therapies can postpone the progression of 

dementia to more severe stages and may offer economic benefit m patients' families, 

caregivers, and society. 
56-60

 The well-known AChE inhibitor is donepezil. 
50-55

 

Glutamate is a useful excitatory neurotransmitter of the nervous system, although 

excessive amounts in the brain can lead to cell death through a process called 

excitotoxicity which consists of the overstimulation of glutamate receptors. 
77

 

Memantine is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist first 

used as an anti-influenza agent. It acts on the glutamatergic system by blocking NMDA 

receptors and inhibiting their overstimulation by glutamate. 
77

 Memantine has been 

shown to be moderately efficacious in the treatment of moderate to severe AD.
78-81
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1.2 Motivation 

The early stages of AD are difficult to diagnose. A definitive diagnosis is usually 

made once cognitive impairment compromises daily living activities, although the 

person may still be living independently. The symptoms will progress from mild 

cognitive problems, such as memory loss through increasing stages of cognitive and 

non-cognitive disturbances, eliminating any possibility of independent living, especially 

in the late stages of the disease.
82-84

 

Besides that, in clinical practice, the evaluation of memory decline is highly 

dependent on numerous neuropsychiatric tests that rely on testers and patients. Age and 

education compromise these neuropsychiatric tests
85-93

 One of the major challenges is to 

identify the structural or functional changes of the brain. Some functional imaging 

techniques, such as functional MRI 
94-96

, PET
69

, or SPECT
70

, are useful in making 

objective evaluations of the severity of the dementia. The high cost, contrast-agent 

related allergies, and potential exposure to radionuclide irradiation limits clinical 

application. 

1.3 Electroencephalography 

Electroencephalography (EEG) is the recording of electrical activity along 

the scalp. EEG measures voltage fluctuations resulting from ionic current flows within 

the neurons of the brain.
97

 In clinical, EEG refers to the recording of the brain's 

spontaneous electrical activity over a short period of time, usually 20–40 minutes, as 

recorded from multiple electrodes placed on the scalp. Diagnostic applications generally 

focus on the spectral content of EEG, that is, the type of neural oscillations that can be 

observed in EEG signals. The surface EEG signals are gained from the numerous 
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cortical neurons activations. The summation of inhibitory and excitatory post-synaptic 

potentials, after passing through at least three layers of boundaries, cerebrospinal fluid 

(CSF), dura and skull, are recorded at the surface of the scalp.
97

 The action potential of 

the neuron cells is not through as the source of the surface EEG due to its short duration 

and the small amplitudes, compared with the post-synaptic potentials.
97

 Because of this 

character, the sole neuron activation was not easily backwardly evaluated.
98, 99

 It limited 

surface EEG spatial resolution, which is the major merit of the CT or MRI. But in the 

time resolution, surface EEG showed real time and high resolution, due to its high 

sampling rates, compared with the function MRI and PET or SPECT. In the other hand, 

surface EEG is a relative not expensive and a more portable tool in clinical. Overall, 

although the surface EEG could not provide the high spatial resolution, it could offer the 

real time and high time resolution signal for the evaluation of the neuron activations, 

which should be most important point in the function evaluation. 

The surface EEG has been prescribed in clinical for years. Traditional surface EEG 

was applied in the diagnosis and the location of seizure majorly. In the other 

neurological disorders, such as dementia, 
98, 100, 101

,sleep disorder, 
102

 metabolic 

encephalopathy, 
103

 infective encephalopathy, 
104-107

 traumatic brain injury, 
108

 and 

numerous psychiatric disorders, like schizophrenia, 
109

 depression, 
110

 attention-deficient 

hyperactivation disorder, 
111, 112

 it played as an assistant tool for evaluation of the 

cortical function. However, because of the complexity of EEG, except seizure disorders, 

it could not disclose much robust information for clinical diagnosis.  

In the surface EEG, the signals are composed of multiple oscillation components, 

whose mechanisms are still not clearly.
97

 But in the traditional paper EEG, four major 

components, delta (0.5~4 Hz), theta (4~8Hz), alpha (8~12 Hz), beta (12~25 Hz) rhythm, 
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were recognized since Berger.
113

 In clinical, to evaluate the locations, the amplitudes 

and the existence of their four components and to compare these findings with clinical 

diagnosis were performed for years with productive data. However, except in epilepsy, 

this information just provided as an assistant tools. 
98, 100, 108, 110, 113
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CHAPTER 2 The non-linearity in Electroencephalography 

for Alzheimer’ disease 

2.1 Introduction 

In recent years, by the assistance of digital EEG, much quantitative EEG methods 

were developed, including automatic detection and localization of epileptic discharges, 

topography displays and statistical analysis compared with the normative actives.
113

 By 

the development of these quantitative EEG, clinicians would like to re-evaluate the role 

of EEG in clinical. In these methods, spectral analysis, which could easily extract these 

four familiar components in the frequency spectral analysis of the short-term EEG 

signals, due to its simplicity and non-invasiveness, has become one of the most 

commonly used objective tools for characterizing alternation of EEG changing from one 

state to another and the abnormalities related to pathological degeneration of the brain. 

Numerous neurological and psychiatric disorders were evaluated by quantitative 

EEG, especially the alpha rhythm.
98, 100, 113

 Although in human, the mechanism of the 

alpha rhythm is still not clear, by the many animal models, the alpha rhythm should be 

related to the interaction of cortical neurons and the thalamus,
114

 and is though as the 

indication of consciousness level and cognitive function in surface EEG. Previous 

studies also confirmed that the powers of the alpha rhythms are associated with the 

aging and demented severity.
113

 However, in these studies, only very severe disorders 

could be distinguished from the normal people, 
98, 113

 but exhibited non-significant 

difference between mild disorders and normal peoples. Because the power spectrum 

density in defined frequency band related to specific rhythms, it is typically used to 
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determine the severity of neuron disease. Although amplitudes of EEG signals are 

related to the degree of pathologies or age-related degenerations, but this seems not very 

reliable. Amplitudes of EEG signals can be attenuated by boundaries, such as thickness 

of the dura matter, skull and scalp or the amount of cerebrospinal fluid.
97

 On the other 

hand, this Fourier transform based approach, however, assumed that signals are 

composed of superimposed sinusoidal oscillations of constant amplitude and period at a 

pre-determined frequency range. This assumption puts an unavoidable limitation on the 

reliability and application of the method, since EEG represents the output of the 

interactions between neural networks, it is not necessarily linear. Many deterministic 

chaos-based methods are applied to characterize the embedded intrinsic nonlinearity of 

EEG signals.
115, 116

 However, most of these methods need a critical condition that the 

time series should be stationary.
117

 Such constrain unfortunately becomes a major 

problem in the analysis of physiological signals since the nonstationarity (i.e. statistical 

properties such as mean and standard deviation vary with time) is an intrinsic feature of 

physiological data and persists even without external stimulation. The presence of 

nonstationarity makes conventional approaches not reliable. To resolve the difficulties 

related to nonlinear and nonstationary behavior, one of the innovative approaches 

applied to physiological studies is Hilbert Huang transform (HHT).
118

 The HHT is based 

on nonlinear theories and has been designed to extract dynamic information from 

nonstationary signals at different time scales. The advantages of the HHT over 

traditional Fourier-based methods have been appreciated in many studies of different 

physiological systems such as blood pressure hemodynamics, 
119

 cerebral autoregulation, 

120-125
 cardiac dynamics, 

126
 respiratory dynamics, 

127
 and EEG activities 

128
also 

included. 

In this study, we focus on the comprehensive investigation of one of the common 
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EEG rhythms, alpha waves, to show how HHT can profile the nonlinear and 

nonstationary characteristics of such principal EEG rhythm. We also compare the 

performances of HHT and conventional methods used to analyze EEG fluctuations and 

then provide the strategies to extract certain features from HHT spectrum, which may be a 

potential noninvasive tool for the diagnosis of neuron disorders. 

2.2 Material and Methods: Hilbert Huang Transform 

The HHT algorithm requires two steps in analyzing data. The first step is to 

pre-process the data by the empirical mode decomposition (EMD) algorithm. 
118

 The 

decomposition is based on the simple assumption that any data consists of a finite 

number of intrinsic modes of oscillations. The first mode is obtained by tracing the 

envelope of local maxima and local minima in the repeat interval signal. The first mode 

is then subtracted from the repeat interval signal to obtain a first residual signal. The 

second mode is obtained by tracing the envelope of the maxima and minima in the first 

residual signal. The subsequent mode of oscillation, termed intrinsic mode functions 

(IMFs), is decomposed from the original time series following same procedures. Each 

IMF represents a certain frequency-amplitude modulation at a specific time scale, and 

therefore it can be used to analyze temporal or phase associations with comparable 

IMFs from other signals. For signals with intermittent oscillations, one essential 

problem in the EMD is that an intrinsic mode could comprise of oscillations with very 

different wavelengths at different temporal locations (i.e., mode mixing). The problem 

can cause certain complications for our analysis, making the results less reliable. To 

overcome the mode mixing problem, a noise assisted EMD algorithm, namely the 

Ensemble Empirical Mode Decomposition (EEMD) has been proposed. 
122, 129

 The 

EEMD applies the EMD to obtain an ensemble of decompositions of data with added 
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white noise, and uses the resultant means of the corresponding intrinsic mode functions 

from different decompositions as the final result. The second step is to apply the Hilbert 

transform to the decomposed IMFs and construct the energy-frequency-time distribution, 

designated as the Hilbert Spectrum. The biological fluctuations are not stationary and 

are better characterized by analytical methods that can quantify the amplitude and 

phase/frequency from time to time. 
120, 125, 130

 Hilbert transform provides a more 

informative and accurate tool to examine the nonlinear relationship between 

nonstationary signals. 
126-128

 Unlike the Fourier transform, the Hilbert transform does 

not assume that signals are composed of superimposed sinusoidal oscillations of 

constant amplitude and frequency. It provides the instantaneous amplitude and phase of 

an oscillation, instead. Physically, the necessary for us to define a meaningful 

instantaneous frequency/phase are that the functions are symmetric with respect to the 

local zero mean and have the same numbers of zero crossings and extrema. The intrinsic 

mode function derived from Empirical Mode Decomposed method satisfies the above 

conditions, since it holds the properties that (1) the total numbers of extrema and zeroes 

crossings must either equal or differ at most by one and (2) at any point, the mean value 

of the envelop defined by the local maxima and it defined by the local minima is zero. 

Thus, we can explore the instantaneous frequency and energy, rather than the global 

frequency and energy defined by the Fourier spectral analysis. These properties of the 

HHT make it ideal for quantitative analysis of complex biomedical signals that defy 

comprehensive analysis based on conventional spectral frequencies. 

In this study, we attempt to specify whether the principal alpha waves will get 

altered under neuron disorder, in addition to the healthy control subject, we therefore 

included another two patients from the neurological outpatient department in National 

Yang Ming University Hospital, one is with mild AD (with MMSE of 26 score and 
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CDR of 1 score) and the other late stage of dementia at deep comatose state (with 

MMSE of 0 score and CDR of 5 score). 

2.3 Results 

2.3.1 Stationarity of temporal–spectral distribution 

As alpha rhythms are best seen in the occipital region of the brain, in this study, 

signals at an occipital electrode (i.e. O1) will be examined at first. Figure 1 gives the 

raw O1 EEG signals recorded from three different subjects, who are normal control, 

mildly demented, and severe demented in deep coma. The investigation of raw data 

shows several facts that are (i) the EEG signals of the normal and the mildly demented 

subjects oscillate more quickly than that of the one in deep coma. (ii) The EEG 

morphologies of the normal and the mildly demented subjects look similar, difficult to 

distinguish one from the other by visual inspection. (iii) Sinusoidal wavelets appear 

intermittently rather than consistently in the EEG signals of the normal and the mildly 

demented subjects. Some of the above observations may be quantified by the linear 

Fourier analysis; however, the characteristics in visual inspection including irregular 

morphologies and intermittent/nonstationary sinusoidal wavelets could not be 

understood well by the Fourier spectra. Therefore, we propose some novel methods 

based on HHT to quantify such nonlinear and nonstationary characteristics of EEG 

signals. 
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Figure 1 The comparison of EEG time domain signals recorded from three different 

subjects, who are (a) normal control, (b) mildly demented, and (c) severe demented in 

deep coma. We zoom in the time domain signals over 9.5-11.5 s for normal subject and 

over 10–12 s for mildly demented one and plot the details in (d) and (e). 
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In order to study the nonstationary characteristic of brain waves, time–frequency 

analyses are applied to the signals from different subjects, and we give the results of the 

normal control, the mild dementia, and the deep coma as shown in Fig. 2. Two 

conventional time frequency analyses including short-time Fourier transform (STFT) 

and continuous Morlet wavelet transform
130

 are adopted to compare with the novel 

HHT. Each analysis shows a significant power in the frequency range of 8–12Hz (i.e. 

the alpha rhythms) in the normal control, and the mild dementia, while significantly 

reduced in the subject in deep coma. This agrees with the discovered fact that the 

appearance of alpha rhythm is an indicator of awareness.
131

 The study of the temporal 

frequency that features from the results of STFT analysis shows concentrated energetic 

frequencies with no fluctuation over time in both normal control and the mildly 

demented subjects, which consequently leads to a misunderstanding that alpha rhythms 

in these two subjects are of consistent sinusoidal function. On the contrary, using the 

continuous Morlet-wavelet and the HHT, the frequency distributions fluctuate 

moderately with time in the normal control, and even more wildly in the mildly 

demented subject. In addition, the powers of alpha rhythm frequencies are not 

consistent over time. Obviously, many intermittent drops can be observed in both 

continuous Morlet-wavelet and Hilbert–Huang spectrums. Accordingly, the temporal 

frequency features from Morlet-wavelet and HHT analyses reveals that the “alpha 

rhythms” are not of pure sinusoidal functions, or rather, they are more similar to the 

combinations of many sinusoidal wavelets with varied amplitude and wavelength, 

which are stitched together one by one.  
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Figure 2 The comparison of the results between conventional time frequency analysis 

including short-time Fourier transform (STFT) and continuous Morlet wavelet 

transform, and the novel Hilbert-Huang transform from normal control (a-c), mildly 

demented subjects (d-f), and severe demented subject in deep coma (g-i). 
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We have demonstrated that the dominant  frequency distribution in Hilbert–

Huang spectrum varies with time, and in order to measure this inconsistency, two 

quantitative methods named “degree of stationarity”,
118

 developed by Huang et al ., and 

its extended method named “Shannon entropy of marginal spectrum” recently 

established by Tong et al .,
132

 are introduced in this study. Degree of stationarity (DS), 

conceptually indicating the average deviation of frequency response over time from the 

mean marginal spectrum is given as  
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where H (w, t ) is the Hilbert spectrum of IMFs from EEMD except unwanted trends 

and n (w ) is the mean marginal spectrum, defined as 
T

dttwH
T

0

),(
1

. Different from the 

classic definition of stationarity, which gives only the qualitative description for the 

stochastic process, DS provides a quantitative index of stationarity for specific spectral 

components. According to Eq. (1), when the energy of the frequency, wi is invariant 

with time, that is H (wi, t) ≈ n (wi), apparently, DS (wi) will be close to zero. On the 

contrary, the DS will become larger as the energy distribution of wi diverse over time. 

Shannon entropy of marginal spectrum (SE) is an entropy-based measurement, also 

powerful at the quantification of the stationarity for specific frequencies in Hilbert–

Huang spectrum like DS. Shannon entropy of marginal spectrum, which is ideally used 

to measure how uniform the distribution of the power for specific frequencies over time 

would be, is given as 
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According to Eq. (2), the SE will approach to its maximum value when the power 

for specific frequencies has a uniform distribution over time, and the SE for such 

frequencies will degrade substantially once these frequency components appear 

occasionally during recording, thus the larger SE indicates higher stationarity. The 

marginal spectrum, SE, and DS for three subjects are given in Fig. 3 from the top to the 

bottom panels. Note that the marginal spectrum is also used to indicate the constitutive 

frequency components of time series; nevertheless it is quite different from the Fourier 

spectrum. It can avoid including some broadened frequency components due to 

windowing effects.
133

 For instance, a time series with zero value for the whole time but 

one sinusoidal wavelet localized at the center of the time series has a very narrow 

frequency distribution in the marginal spectrum in comparison with Fourier spectrum. 

Accordingly, the marginal spectrum provides more precision in studying the frequency 

components for intrinsically nonstationary signals. According to the marginal spectrum 

for the normal control, the substantial intensity of spectrum can only be observed within 

a specific frequency range (7.5– 11.5Hz), while for the mildly demented patient, high 

intensities of spectrum are shown in several frequency ranges such as 1–3, 3–7, and 9–

19Hz. We compared the mean values of the DS and the SE in the frequency range of 

8.5–10.5Hz for the normal subject with that in the frequency range of 9.5–11.5Hz for 

the mildly demented subject, and found that the DS is smaller (Fig. 3(c)) and the SE is 

larger (Fig. 3(b)) in the normal control. This shows that although the alpha rhythm 

frequencies in both cases exhibit significant high energy in the marginal spectrum, the 

stationarities of the two datasets are different, as the alpha rhythms of the normal 

subject seem more stationary than that of the mildly demented patient. Different from 
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the other two cases, the marginal spectrum for the patient in deep coma shows no 

significant intensity in the frequency band related to alpha rhythms. In the case of 

mildly demented patient, besides the alpha rhythms, the oscillations with frequencies 

over 13Hz have rather high intensity in the marginal spectrum with large DS and small 

SE measurements. It shows that such oscillations are only intermittently, not 

consistently exhibited in the whole recording in spite of the substantial power in 

frequency response. As to the other prominent slow oscillations with frequencies of 3–7 

Hz, the corresponding intensity in the marginal spectrum is almost equal to that in high 

frequencies (13–19Hz), however, the slow oscillations are quite stationary since the 

values of the DS and the SE are at the same degree as the alpha rhythms. 
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Figure 3 From the top to the bottom panels, there are (a) the marginal spectrum, (b) 

frequency function of SE, and (c) frequency function of DS for the three subjects who 

are normal control (solid line), mildly demented (gray dotted line), and severe demented 

in deep coma (gray dashed line).  
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The conventional visual findings of EEGs in AD (AD) reveal the slowing of the 

dominant posterior rhythms as well as the reduction in the alpha activities.
98, 100

 In this 

study, the energetic frequencies of the mildly demented patient do not shift downwards 

compared with the normal subject, which might fail to express the slowing of EEG. 

However, recent clinical reports show that the slowing of the alpha rhythms are 

prominent in severe demented patients, but rarely seen in mild cases.
98, 113

 In other 

words, the mildly demented patients do not necessarily exhibit the slowing of EEG. As 

a consequence, it limits the application of spectral analysis of EEG in the diagnosis of 

early stage dementia. On the other hand, conventional clinical studies have also reported 

an increase of diffuse slow (delta and theta) activities in AD patients.
134-136

 According to 

the marginal spectrum in this study, the EEG signal recorded from the demented patient 

is not as monotonic as the normal subject; rather it consists of multiple frequency 

components, thus heightening the ratios of other waves to the alpha waves. The 

stationary tests give further evidence that the occurrence of slow oscillations (delta and 

theta waves) in demented patients are not intermittent, actually that are pretty consistent. 

According to some animal studies, a much wider dominant frequency range, theta 

rhythms (3–12Hz), generated from the hippocampus of lower mammals, are thought to 

be the equivalent of both alpha (8–12Hz) plus theta (4–8Hz) waves in human EEG.
137

 

Some hypothesis suggested that the development of the alpha rhythms results from the 

complex interactions between the cortical neurons in the highly developed cortex of the 

human brain; the sum of the synchronization of the postsynaptic potentials of these 

highly developed cortical neurons are the alpha waves.
113

 We suppose that as people 

become demented, the complicated interaction between cortical neurons become less 

synchronized, therefore the power of the alpha rhythms decreases and that of the theta 

rhythms increases as the inhibition from alpha to theta decreases. Our study may 
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provide an alternative way to evaluate the relationship between the alpha and the theta 

rhythms. Do the alpha and the theta rhythms come from different sources of the EEG, or 

do they come from the same origin but representing different degrees of the 

synchronization of the neurons? 

2.3.2 Brain topography 

To function normally, the brain requires good mechanisms for the integration of 

many brain regions into specialized network for each particular task. Such sophisticated 

mechanisms of the integration in the human brain may project into many dominant 

frequency bands, which represent the synchronization of particular groups of the brain 

waves. It is difficult to describe or examine those integrations only by the traditional 

line format displays of EEG. Therefore, people have been searching for new methods to 

probe both temporal and spatial presentation of the electrical activities of the brain.
138

 

The most important thing is to combine all the channels of the EEG into a topographical 

map, which may easily present the spatial distribution of the brain activities. Namely, 

the locations of changes in rhythms, amplitudes, or any derived qEEG parameters (e.g. 

absolute or relative power in given frequency bands 
138, 139

 could be shown in a 

topographical map. In this study, we provide two EEG topographies which are built 

based on parameters acquired from the HHT, they are the power of oscillations related 

to alpha rhythms (see upper panels in Fig. 4) and the correlation index (CI) between the 

channels (see lower panels in Fig. 4). Since the alpha waves represent the activities of 

the visual cortex in a state called relaxed awareness, they are posterior dominant in the 

normal subject as shown in Fig. 4(a), whereas the demented patients have lost this 

dominance (see Figs. 4(b) and 4(c)). We hypothesize that some mechanisms for the 

integration of different brain regions to perform certain functions such as wakefulness 
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or cognition are disrupted in the pathological brains. It is worthy of notice that a highly 

bilateral symmetry is displayed in the topography of the alpha rhythms in the normal 

brain (see Fig. 4(a)), whereas the symmetry is lost in both demented patients with 

different clinical severities. It is generally believed that the loss of symmetry in EEG is 

pathological.  

Nonstationarity leads the Fourier-based coherence to incorporate unwanted 

interferences, i.e. the discontinuity in amplitude or instantaneous frequency will induce 

the windowing effect in time domain, which broadens frequency components (i.e. the 

resulting frequency response turns out the true spectrum convolved with frequency 

response of time window). As a consequence, the spectral response of alpha rhythms 

would not be contributed solely from the waves oscillating within the frequencies of 8–

13Hz; the windowing effect makes them blurred by mixing other brain oscillations like 

theta (4–7.5Hz), or beta (14–26Hz) rhythms. According to the simulations in our 

previous research,
140

 EEMD, the HHT-based filter can attenuate nonstationary 

interferences substantially, and thus the cross correlation of extracted time domain EEG 

signals by means of EEMD is better to represent the relationship between two regions. 

Figure 4(b) demonstrates brain maps of the correlation coefficients between each 

channel and channel O1, which holds the maximum intensity of alpha rhythms in all the 

three subjects. Clearly, the correlation becomes weaker with the distance between the 

two channels, in addition, in the normal subject, the correlation between each channel in 

the right hemisphere and O1 is very similar to that acquired from channels in left 

hemisphere, thus the coherence (time domain correlation) shows a bilaterally 

symmetrical pattern. But this symmetry disappears in the brain maps of both demented 

patients. EEG coherence has been used as a measure for the synchronization of 
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electrical activities of the neurons.
141

 The connection between neurons could be shown 

by two kinds of coherences, intrahemispheric, and interhemispheric coherences. 
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Figure 4 EEG topographies of the power of oscillations related to alpha rhythm (IMF 

mode 4) are illustrated in upper panel for the subjects who are (a) normal control (b) 

mildly demented (c) severe demented in deep coma. The subplots in lower panel 

demonstrate the EEG topographies of the correlation index (CI) of oscillations related to 

alpha rhythm (IMF mode 4) between the O1 and the other channels for each subject. 
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Anatomically, the tracts for the intrahemispheric electrical conduction are the 

intrahemispheric cortical–cortical or cortical–subcortical fibers, while the corpus 

callosum is the tract for the communication between the two hemispheres. The loss of 

interhemispheric coherences in both demented patients may indicate a failure of the 

connectivity through the corpus callosum, while the decrease of intrahemispheric 

coherences is the result of cortical deafferentation from the subcortical structures such 

as thalamus, the pacemaker of the alpha rhythms. Our study shows that the coherences 

in the mildly demented patient are of greater values compared to the comatose one. This 

may suggest that the degree of the loss of brain connectivity could be graded and 

correlated with the severity of the disease. 

In some previous image studies of MRI,
142-147

 corpus callosum atrophy is observed 

in the AD patients and is also severity-related. Because we did not perform MRI to 

record the thickness of their corpus callous of these three subjects, whether the loss of 

intrahemispherical symmetry in our coherence maps resulting from “atrophy of the 

corpus callosum” needs further studies to clarify. 

2.4 Discussion and Remarks 

In this study, based on HHT, we propose a novel analysis for the alpha rhythms of 

EEG, which are of nonlinear and nonstationary physiological data. The alpha rhythms 

are one of the dominant frequency components of the electrical activities detected at the 

surface of the brain. The pacemaker neurons of the alpha rhythms are believed to be 

distributed throughout the thalamus, which synchronously oscillate in the frequency 

range of 7.5–12.5Hz. Physiologically it represents a state called relaxed awareness and 

is mostly seen at the surface of visual cortex. Decrease of the frequency, the amplitude, 
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bilateral symmetry, and the regularity of the alpha rhythms are expected in aging or 

pathological degenerations. There are some feedback loops in the brain to control this 

system; they are loops between brain stem (i.e. the reticular activating system), 

thalamus, and visual cortex. We suppose these loops modulate at least one of the 

frequency, the degree of synchronization, or the location of the alpha rhythms.  

In the present study, we use HHT analysis to define some features of the alpha 

rhythms as the followings: 

(i) The stationary analysis based on Hilbert–Huang spectrum identifies the 

consistent and monotonic alpha rhythms as the dominant oscillations of EEG signal 

while acquired from the eye-closed normal subject. 

(ii) The brain topography of the alpha rhythms for normal subject shows occipital 

predominant and bilateral symmetry, which are lost in both demented brain with a 

dose-response relationship. The topography of the coherences based on HHT seems to 

provide a more accurate and convenient way to compare the difference between 

different locations of the brain, which is important in the study of the mechanisms of 

those networks for different brain functions. 

Throughout the study, we have been trying to clarify the physiological meanings 

and behaviors of the alpha rhythms, yet with only three subjects, many questions has 

left for the future study. For instance, there is a clinical condition called alpha coma, 

which means the patient is in a comatose state while the EEG shows relatively 

monotonous and much diffuse topographically.
148

 This kind of alpha range rhythms is 

different from the normal in the unresponsiveness to any sensory input. Therefore, 

whether oscillations of similar frequency represent the same source is questionable. 
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This leads to our further plan to examine more waves on different frequency bands and 

in other physiological or pathological conditions. 

2.5 Conclusion 

In conclusion, we have established the differences of alpha rhythms in three 

different brains by several nonlinear quantitative methods. The EEG is a noninvasive 

and highly cost-effective clinical tool. Moreover, by using the HHT, the better 

understanding of the changes of frequencies, amplitudes, and phases is possible in both 

time and space domain. Finally, it might empower the studies in psychology, aging, or 

pathology of the brain. 
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CHAPTER 3 Empirical mode decomposition based 

detrended sample entropy in EEG for Alzheimer’s disease 

3.1 Introduction  

Dementia is the progressive decline in the cognitive function due to damage or 

disease in the brain beyond that which may be expected from normal aging, and AD is 

the most common form of dementia. 
1, 2

 According to the criteria of the Diagnostic and 

Statistical Manual of Psychiatric Disorders, 4th ed., 
63

 memory decline is the major 

feature. However, in clinical practice, the evaluation of memory decline is highly 

dependent on numerous neuropsychiatric tests, which mainly rely on the testers and 

patients. Age and education particularly compromise these neuropsychiatric tests, 
85, 

87-92, 149
 and although little is known of the actual cause of AD, it is generally accepted 

that many of its symptoms are related to a cholinergic deficit in the cerebral cortex and 

other areas of the brain.
46, 47, 49

 Therefore, one of the major challenges is to identify the 

structural or functional changes of the brain. Some functional imaging techniques, such 

as functional MRI 
94-96

, PET 
69

, or SPECT 
70

, are useful particularly in making an 

objective evaluation of the severity of the dementia. However, the high cost, contrast 

agent related allergies, and the potential exposure to radionuclide irradiation limits their 

clinical application. 

Conventional EEG may provide a non-invasive, simple and relatively low cost 

approach to characterizing the specific features of dementia, such as diffuse background 

slowing or an alpha wave anteriorization in the late stages of AD, but not in the early 

stages. 
150

 With the assistance of signal processing, numerous quantitative analyses have 
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analyzed the characteristics of EEG in order to improve its diagnostic power, and have 

been suggested to be an objective tool in evaluating AD. 
140, 150-157

 Fourier transform 

analysis is frequently utilized in these methods to identify the characteristics of 

frequency response in different frequency bands related to alpha, beta, theta and delta 

rhythms. 
151, 152, 158

 It can differentiate moderate to severe AD patients from normal 

subjects.
140

 However, these linear signal analyses are limited because of the 

innumerable cortical neuron activations constructing the surface EEG, which 

fundamentally decide the non-linear pattern in the surface EEG and are not properly 

analyzed by a Fourier-based spectral analysis. Accordingly, non-linear based methods 

are more appropriate to explore EEG activities. 
159

 Recently, non-linear based analyses, 

such as correlation dimension, 
160-162

 fractal dimension,
163

 synchronization likelihood,
164

 

and approximate entropy (ApEn)
165, 166

 have been developed to evaluate the non-linear 

characteristics of EEG in AD patients. Among these methods, ApEn has been 

introduced as a quantification of the regularity of non-linear data sequences, and its 

simple algorithm has attracted attention in the clinical application of evaluating EEG in 

AD patients. 
167, 168

 In previous studies, the irregularity of the EEG signals measured by 

ApEn for moderate and severe AD patients (MMSE = 12.6±5.9) were significantly 

lower in the bilateral parietal region compared with normal subjects, which could be 

compatible with hippocampus atrophy 
167, 168

. 

However, the complexity of the measurements from ApEn has not disclosed 

consistent results in a longitudinal follow-up and the correlations with the clinical 

symptoms, especially in early stage AD.
167, 168

 ApEn has been found to have two 

potential problems: (1) ApEn is data length dependent, which may result in inconsistent 

results in clinical applications; 
169

 (2) stationarity is the fundamental requirement for 

entropy based methods, 
170

 but non-stationarity may compromise the measurement of 
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intrinsic complexity. 
140, 171-173

 Sample entropy (SaEn), based on the same concept of 

ApEn, is made, independent of record length, to reduce these biases,
169

 and the 

non-stationarity issue is intuitively addressed by selecting a single short epoch with a 

stable background from the whole recordings by a visual examination of the researchers. 

167, 168, 172
 Nevertheless, sufficient data is another critical criterion for a nonlinear-based 

analysis to obtain reliable statistics. 
174

 Moreover, because of the presence of diurnal 

and circadian variations in EEG activations,
175

 it is difficult to convince clinicians that a 

very small amount of recorded data can reflect the complex cortical activations.  

Therefore, this study introduces a novel detrend method, empirical mode 

decomposition (EMD)
118

 to elicit the intrinsic complexity. It demonstrates that in 

addition to its superiority over the traditional linear quantitative method, the SaEn 

calculated from the detrended EEG signals provides more sensitive results in early stage 

AD patients and consistent results in longitudinal individual follow-ups. 

3.2 Materials and Methods 

3.2.1 Subjects 

All dementia patients were newly diagnosed and enrolled from the neurological 

clinic at National Yang Ming University Hospital. They were all screened for dementia 

and received further medical, neurological, neuropsychological, and psychiatric 

assessments as well as blood studies. The neurological assessments of all these patients 

included a CT to rule out intracranial pathology, such as brain tumors or stroke that may 

have contributed to cognitive decline. Trained research assistants administered the 

Chinese version of MMSE 
71

, which has a total score of 30. CDR scales to rate the 

severity of the dementia was also evaluated after a neurologist conducted separate 
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semi-structured interviews with the patient and a knowledgeable informant. The scores 

were as follows: 0 (normal), 0.5 (questionable), 1 (mild), 2 (moderate), and 3 (severe). 

72
 The diagnosis of AD was determined according to the diagnostic criteria of the 

Diagnostic and Statistical Manual of Psychiatric Disorders, 4th revised ed..
63

 EEG was 

not part of the routine workup. 

The inclusion criteria for participation in the EEG study meet both (1) a diagnosis 

of probable AD according to the DSM-IV criteria, 
21

 and (2) a rating of either 1 or 2 on 

the CDR scale. 
72

 The exclusion criterion included more than one possible cause of 

dementia existed as determined by history, neurological examination, imaging, and 

blood studies. The criteria for exclusion ensured that the changes of EEG were the 

results of AD in all participants. The research was approved by the institutional review 

board of National Yang Ming University Hospital, YiLan, Taiwan, a local community 

teaching hospital, and all patients provided written informed consent prior to the study. 

Twenty-seven newly diagnosed AD patients (9M/18F; mean age 74.0±1.5 years) 

were enrolled in this study, with an initial MMSE of 19.3±0.7. Only four of the patients 

were moderately demented (CDR=2) with the other twenty-three patients mild 

(CDR=1). Four patients suffered from behavioral and psychological symptoms of 

dementia (BPSD); two of them were mild (CDR=1, depression, treated by citalopram), 

and the others were moderate (CDR=2, one patient with visual hallucinations and the 

other one suffered from delusions, treated by risperidone). None of the patients received 

any antipsychotics before the first EEG examination. Eleven patients suffered from 

hypertension, 5 from diabetes, and 2 had a history of hyperlipidemia. However, none of 

them suffered from cerebral vascular events and their brain images did not disclose 

vascular lesions or sub-cortical atherosclerosis encephalopathy. One patient suffered 
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from a thyroid goiter and had received thyroidectomy at a young age with supplements 

of thyroxin with euthyroidism. Every participating patient received either acetyl 

cholinesterase inhibitor therapy, donepezil hydrochloride (Aricept® ) (24 mild AD 

patients), or N-methyl d-aspartate receptor antagonist, memantine (Witgen® ) (1 mild 

and 2 moderate AD patients). Five patients (3M/2F) (3 mild and 2 moderate AD) 

received follow-up EEG examinations 6 months after therapy.  

3.2.2 EEG Recordings 

EEGs were recorded in all subjects. According to the International Federation of 

Clinical Neurophysiology (IFCN) standards for the digital recording of clinical EEG,
176

 

the surface EEG signals were recorded by a digital EEG recorder (NicoletOne® ), from 

the 19 scalp loci of the international 10–20 system (channels Fp1, Fp2, F3, F4, C3, C4, 

P3, P4,O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz), with all electrodes referenced to 

the bilateral ear (A1, A2) for 30 minutes. Electrocardiograms (ECG) were recorded in a 

separate channel. The sample frequency was 256 Hz and the A/D digitalized resolution 

was 12 bits. All the patients remained awake with closed eyes and in a relaxed state to 

receive 30 minutes of eye-closed EEGs. The data was copied into a comma-separated 

values (CSV) file without any filtering. The EEG signals were analyzed by a 

self-designed program with MatLab 7.0© . 

3.2.3 Signal Processing: Sample Entropy  

The digitalized EEG signals, one artifact-free epoch of 30 seconds duration, were 

selected by an experienced neurologist. Sample entropy is a statistical result based on 

the information theory used to quantify the irregularity of a sequence of data. 
165, 166, 169

 

Briefly, it examines a time series for similar epochs of a pre-determined length (m) and, 
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then, calculates the negative natural logarithm of the conditional probability that epochs 

similar for m points that will remain similar when one more point (m+1) is added to the 

subseries (i.e., the phase space distances are below the tolerance of r). 
165, 166, 169

 The 

higher the SaEn, the more unpredictable the data sequence is. Complicated systems 

typically generate highly irregular output. 
177

 Therefore, SaEn provides a promising way 

to quantify irregularities for physiological output. The detail of SaEn is as below. 

{ } { , .. ... }i 1 2 i Nx x x x x represents a time series of data length N. The m-length vector 

extracted from time series }{ ix  was defined by },..{)( 11,  miiim xxxiu , where )(rnm

i  

represents the number of vectors, )( jum  that are close to the given vector, )(ium . To 

obtain )(rnm

i , we first defined the distance, d [ )(ium , )( jum ] between the given vector 

)(ium  and )( jum  as the maximum absolute difference between their corresponding 

scalar elements, i.e., d [ )(ium , )( jum ] = ][max
1,0

kjki
mk

xx 


 . Then, )(rnm

i  was defined 

by counting the number of )( jum  with d [ )(ium , )( jum ] |j=1, n-m+1 smaller than the 

threshold, r , a given prior. Note that here ij  ; i.e., self matches were not included to 

avoid the bias of ApEn. 
169

 The ratio of )(rnm

i  to total number of m-vectors extracted 

from the time series, were evaluated, and the result was denoted as )(iC m

r . The above 

steps were repeated to find )(iC m

r  from i=1 to i=N-m+1, then the natural logarithm of 

each )(iC m

r  was calculated and then averaged over i to obtain )(rm . Theoretically, 

sample entropy 
165, 166

 is defined as )()(),( 1 rrrmSaEn mm   . Note that the 

average of )(iC m

r  can be regarded as the probability that any two vectors extracted 

from time series }{ ix  are similar in some sense, therefore, )()( 1 rr mm  , 

conceptually represents the average of the natural logarithm of the conditional 
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probability that the sequences that are close to each other for m consecutive data points 

will still be close to each other when one more point is given. In this analysis, we set m 

= 2 and r = 0.15 of the standard deviation for the processed signal.  

3.2.4 Data Detrending Based on Empirical Mode Decomposition 

Numerous non-linear analyses were developed to precisely analyze the true 

physiological signals. However, the fundamental assumption of the non-linear analyses 

is that data needs to be stationary, which is not often applicable for true physiological 

signals. The evaluation of SaEn counts the number of epochs within similar phase space 

distances, determined by the tolerance r. Thus, SaEn will be underestimated due to the 

exaggerated standard deviation when a trend or unstable background exists in the signal. 

For example, for a given 1/f fractal noise, an additional linear trend decreases SaEn and 

the decrement is in proportion to the slope of the trend (Figure 5). In order to minimize 

the effects of the heterogeneous non-stationarity on SaEn, prior to calculation of SaEn, 

the signal is preprocessed to remove unwanted trends such as using linear high pass 

filter or subtracting nonlinear polynomial fitting trend. Although single linear trends are 

easily removed by utilizing a traditional polynomial fitting 
170

, in physiological signals, 

the heterogeneous non-stationarity is of different multiple local trends, i.e. it is difficult 

to filter those trends out using traditional methods. 
140, 153, 173

 Figure 6 gives an example 

that shows that the surrogate data is composed of a pure sinusoidal oscillation and a 

non-stationary trends that are constructed by cascading several linear functions with 

random slopes and using a high-pass filter or, even, a 6th order polynomial fitting that 

cannot completely remove these trends. 
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Figure 5 Upper panel is the demonstration of the original fractal noise (Black) and its 

combination with linear trends. Lower panel presents the sample entropy as the function 

of slope of linear trends. Greater slope, lower value of sampling entropy. It indicated 

that unsatisfied detrend procedure would under estimate the complexity of signals. 
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This study introduced the empirical mode decomposition (EMD) method 
118

 to 

detrend the signals. The EMD method is specifically developed to decompose the 

nonlinear, non-stationary signals into their intrinsic components. The decomposition is 

based on the simple assumption that any time series data )(ty is composed of a finite 

number of intrinsic modes of oscillations. (i.e. 





nk

k

nk rtcty
1

)()( ) Each mode of the 

oscillation )(tck , termed intrinsic mode functions (IMFs), is decomposed sequentially 

from the original time series by identifying the intrinsic undulations at different time 

scales and sifting them out. Typically, different IMFs capture the properties of the 

original signal at different time scales, and are contributed from different physiological 

mechanisms rhythmically operating over different time scales. 
125, 178-180

 Figure 6D 

illustrates that, EMD separates the sinusoidal oscillations and trends completely. 

However, such trends are not perfectly fitted by polynomial equations. Thus, the 

residual is apparent (Figure 6C) even after utilizing high order polynomials. Obviously, 

after polynomial detrending, the residual trend still complicates entropy estimation. In 

this study, we use EMD to remove the unwanted background 
173

 before calculation of 

SaEn of the EEG raw data, termed EMD-based detrended SaEn. The IMFs with 

frequency distributions below 1 Hz were removed from the signal to preserve most of 

the EEG information such as delta waves (~1.5-3.5Hz) and the SaEn of the detrended 

signal was then calculated. Other than EMD, we also calculated SaEn after detrending 

the signal with polynomial fitting (polynomial fitting detrended SaEn) and high-pass 

filter (Conventional SaEn) for comparison. 
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Figure 6 The example of detrend in a complicated signal. A and B disclose a pure 

sinusoidal oscillation with frequency of 0.2 Hz and the surrogate data, composition of a 

pure sinusoidal oscillation and a multiple-local trend, respectively. C shows three sets of 

detrended data (red and green) by the 1st and 6th polynomial fitting and high pass filter 

with cut frequency of 0.15 Hz (purple), which were different from the original signal 

(B). D shows the result of the surrogate data after signal processing with empirical 

mode decomposition, with three intrinsic mode functions (IMF); IMF 1 (blue) was 

compatible with the original signal. The summation of IMF 2 and 3 is the multiple-local 

trend.  
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3.2.5 Brain Topography 

New methods have been studied to probe both temporal and spatial presentations 

of electrical activities of the brain because it is difficult to describe or examine 

integrations from a visual inspection of the raw EEG signals. 
176

 The most important 

feature of these methods is to combine all EEG channels into a topographical map to 

present the spatial distribution of brain activities. The location of changes in rhythms, 

amplitudes, or any derived qEEG parameters (e.g. absolute or relative power in given 

frequency bands)
109

 
138

 is shown in a topographical map. The brain topography of 

EMD-based detrended-SaEn was constructed for this study. 

3.2.6 Statistical Analyses 

Descriptive statistics were presented as means ± standard deviation (SD). SPSS 

(ver16.0) for Windows (SPSS Inc., Chicago, IL, USA) was used for analysis. The 

correlation between age and MMSE was calculated using Pearson’s formula. Due to 

small sampling sizes, it is difficult to perform the multiple variants regressions, 

including MMSE and all electrodes directly. Factor analysis with a principal component 

analysis (PCA) was used to decide the number of major components because of the high 

correlation between the EEG leads. A multivariate backward stepwise regression was 

used to calculate the correlation factors between age, each lead EMD-based 

detrended-SaEn and MMSE. In the follow-up EEG study, the correlation between the 

changes of MMSE and the changes of the parameters in quantitative EEG (qEEG) for 

every lead were calculated using Spearman’s formula. All the statistical tests were 

two-tailed and significance levels were set at p-values of less than 0.05. 
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3.3 Results 

3.3.1 Initial EEG Findings 

The correlation factor between MMSE and age was -0.4 (p=0.029), which was 

compatible with previous studies.
91, 181

 In EMD-based detrended-SaEn, the factor 

analysis with PCA revealed high correlations between the leads, and the first component 

of PCA accounted for 82% variance. Therefore, in a multivariate backward stepwise 

regression, each lead needs to be calculated individually with age as a variant. The 

multivariate backward stepwise regression showed that the EMD-based detrended-SaEn 

was moderately correlated to the MMSE score in Fp1, Fp2, T3, and F4 leads 

(correlation factors = 0.361 ~ 0.523, p < 0.05), mild correlation to MMSE score in F7, 

F3, Fz, F8, and Cz (p = 0.053 ~ 0.082), which were not excluded from the backward 

stepwise regression. There were no correlations between the MMSE scores and 

EMD-based detrended-SaEn in C3, C4, T4, T5, P3, Pz, P4, T6, O1, and O2, which were 

excluded from the backward stepwise regression (Table 1).  

The same statistical analyses as above were applied in conventional SaEn. The first 

component of PCA accounted for 80%; moderate correlation to MMSE score in F8 (p = 

0.044), mild correlation to MMSE score in T5, and O1 (p = 0.053 & 0.088), which were 

not excluded from the backward stepwise regression and showed no significant 

correlations with MMSE for other leads (Table 1). 

The same statistical analyses as above were applied in polynomial fitting of degree 

3 based detrended SaEn (Polynomial fitting detrended SaEn). The first component of 

PCA accounted for 85.5%. The worst correlations between polynomial fitting detrended 

SaEn and MMSE were noted (with mild correlation in T3, p = 0.056) and were not 
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excluded from the backward stepwise regression and showed no significant correlations 

with MMSE for other leads (Table 1) 
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Table 1 
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3.3.2 Follow-up EEG Findings 

In the follow-up study, the correlation between the changes of the MMSE and the 

changes of EMD-based detrended-SaEn in each lead in 5 patients showed a high 

correlation coefficient, 0.975 (p = 0.005) in F7 lead, but not in the other leads. However, 

it was difficult to describe some information by statistical analyses. The brain 

topographies that were constructed by the values of ‘EMD-based detrended-SaEn’ in 19 

scalp leads were demonstrated using spatial interpolation. The results for two patients, 

who received donepezil therapy only, with regular follow-up intervals of 6 months, are 

shown in Figures 7 and 8. In Figure 7, the patient received donepezil and improved 

clinically (MMSE from 23 to 25 and then to 26). In Figures 7A to 7C, EMD-based 

detrended-SaEn revealed a generally consistent pattern and the EMD-based 

detrended-SaEn in the bilateral parietal and temporal leads, especially in the left side, 

increased as the MMSE improved. Figure 8 demonstrates the results for another patient 

who received the same therapy, but whose cognitive function did not improve (i.e., 

MMSE scores decreased from 25 to 23). Figures 8A and 4B show the decreased 

EMD-based detrended-SaEn as a clinical change in the bilateral temporal and parietal 

leads. There was no correlation between the changes of the MMSE and the change of 

conventional SaEn in all leads. 
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Figure 7 One set of topographies were constructed with the values in each lead with 

spatial interpolation. A-C were created with the exponential values of the EMD-based 

detrended SaEn. These figures disclosed a consistent pattern and changes associated 

with cognitive function improving in the left temporal region. The color map illustrates 

the relative powers from the lowest (blue) to the highest (red).  
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Figure 8 One set of topographies were constructed with the values in each lead with 

spatial interpolation. A and B were created with the exponential values of the EMD 

based detrended SaEn. These figures disclosed a consistent pattern and changes 

associated with cognitive function worsening in the left temporal region. The color map 

illustrates the relative powers from the lowest (blue) to the highest (red). 
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3.4 Discussion 

This study applied an algorithm, sample entropy, to evaluate the irregularity of the 

EEG signals of AD patients and demonstrated that the irregularity of EEG signals is 

reduced in demented patients and is consistent with the results proposed by other 

studies.
69, 167, 168, 182, 183

 However, most of the patients of those studies are limited to 

severe dementia and clinically acceptable performance for long-term follow-up of 

mildly demented patients remains controversial. This ambiguity can attribute to a 

technical issue for SaEn-the signals remaining stationary but not easily satisfied 

especially for biological signals .
175

 As the simulation shown, SaEn can be 

underestimated if the signals were superimposed with local or global trends. Therefore, 

SaEn may have insufficient sensitivity to evaluate mild cognition function loss. Our 

previous studies had suggested that properly removing the trends in biological signals 

improved the performance of nonlinear signal analysis and only specifically designed 

detrending procedures to adaptively attenuate all unwanted influences (such as extrinsic 

non-stationarity).
140, 184

 In this study, after the EEG signals were detrended by EMD, 

SaEn exhibited a moderate correlation (correlation factors = 0.361 ~ 0.523, p < 0.05) to 

the MMSE scores in the bilateral frontal, left temporal region, and mild correlation in 

bilateral frontal regions in the mild and moderate AD patients (Table 1) while 

conventional SaEn and polynomial fitting detrended SaEn failed to show any 

meaningful correlation. For the follow-up evaluation, the changes of MMSE scores 

were highly correlated with the changes of the EMD-based detrended SaEn in left 

frontal EEG signal. These results revealed that modified SaEn, detrended by EMD, is 

possibly regarded as a useful tool to evaluate demented patient objectivity. 

Although neuropsychiatric examinations, especially MMSE, are able to provide 



48 

 

objective and acceptable evaluations for the mental function of AD patients, the 

reliability of those examinations may be compromised by numerous factors, such as age, 

degree of education 
85-92, 174, 185

, and the proficiency of the research assistants.
186

 

Moreover, recent functional imaging studies, such as functional MRI and PET, have 

revealed that most of the major categories of MMSE, including simple calculations, 

working memory and orientation are located in the bilateral frontal and left temporal 

regions. 
187-190

 Rather than an evaluation of global cortical function, MMSE reflects the 

bilateral frontal and left temporal function. The MMSE scores only correlated with the 

EMD-based detrended SaEn of EEG signals in the bilateral frontal and left temporal 

regions compatible with the findings of those functional imaging studies. Therefore, a 

quantitative EEG may be a potential candidate for objectively evaluating the brain 

function globally 
140, 150, 152, 191

 in addition to the regional information assessed by 

MMSE.  

Treatment follow-up 

The preliminary follow-up findings only revealed a high correlation coefficient 

factor (0.975) between the changes of MMSE scores and changes of EMD-based 

detrended SaEn in left frontal region (F7 lead), but not in other regions. The reason is 

two-fold. First, there were only a limited number of AD patients who finished their 

follow-up. Second, certain drugs have strong effects on bioelectric activity of the brain 

192, 193
 including antipsychotics or antidepressants. A total of 3 of the 5 patients 

presented at least one BPSD before the follow-up EEG examination and received 

antipsychotics or antidepressants. Nevertheless, a consistent pattern was found in the 

brain tomography for patients who did not receive antipsychotics or antidepressants. 

This was constructed by EMD-based detrended SaEn (Figures 7 and 8) and the 
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quantitative analysis of surface EEG may provide a useful way to evaluate the response 

to treatment without administering any contrasting medium or invasive procedure, 

especially in patients with poor communication skills. 

The partial correlation analysis revealed that the EMD-based detrended SaEn 

positively correlated with the power of alpha waves and beta waves and negatively 

correlated with the power of theta and delta waves (Table2). This was compatible with 

the previous studies, severer dementia, slower EEG rhythms, and less complexity of 

EEG signals. It may indicate that the EMD-based detrended SaEn reflected the complex 

neuron interaction, and the Fourier analysis revealed the total summation of neuron 

activation. Therefore, a correlation was found between the non-linear EMD-based 

detrended SaEn and the linear Fourier analysis 
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Table 2 

EEG Frequency The absolute power (μV
2
) Correlation factors p Value 

Delta (1.5-3.5 Hz) 50.25±33.37 -0.396 0.093 

Theta (3.5-7.5 Hz) 19.57±9.63 -0.485 0.035 

Alpha (7.5-12.5 Hz) 21.04±6.19 -0.144 0.557 

Beta (12.5-25.0 Hz) 9.14±3.21 -0.044 0.858 

Alpha/Theta 2.63±1.04 0.295 0.220 

 

The correlation factors between MMSE and mean values of absolute power in 

EEG frequency analysis 
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We did not include healthy age-matched subjects for two reasons. First, most of the 

studies have suggested that using spectral analysis to quantify the background EEG 

slowing can be an important indicator of AD. Although the biological signals should be 

better qualified and quantified by nonlinear analysis, few studies were done in patients 

with early AD. Recent studies
183

 have showed SaEn can also be a fair tool to detect 

patients with mild AD, but none of them showed any correlation to the clinical relevant 

parameters which may due to the non-stationarity. Non-stationary properties of 

biological signals such as artifacts and trends can easily compromise the results of 

nonlinear analysis. The main purpose of this study, therefore, mainly focused on 

developing a novel method to overcome the undesired effects of unwanted artifacts and 

trends on SaEn and refine the algorithm especially to evaluate the subtle changes of 

EEG in patients with mild AD. Second, National Yang Ming University Hospital is a 

local community teaching hospital. It is relatively slow to recruit enough aged-matched 

healthy control subjects. In this pilot study, we followed up the patients with treatment 

instead to test if the proposed algorithm can be correlated to the improvement or 

deterioration of the disease after treatment. However, it should be cautious to extend our 

results to healthy control subjects and further study is warranted for investigating this 

issue. 

The major limitations of this study are the small number of patients and pathology, 

which was not available under the principle of doing no harm to patients. For the 

follow-up studies, it was not possible to identify whether or not there was any influence 

from BPSD. Due to a lack of other types of dementia in this study, the application of 

brain tomography constructed by EMD-based detrended-SaEn in the pattern 

reorganization to different types of dementia is also uncertain. 
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3.5 Conclusion 

This study showed that the improved quantitative EEG analysis by means of a 

combination of the EMD detrending procedure and sample entropy revealed that the 

changes in the complexity of EEG signals were correlated with the severity of the 

dementia. This could provide an alternative, non-invasive, low-cost, and objective tool 

in clinical evaluation and follow-up in dementia patients. 
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CHAPETR 4 Predict the efficacy of Acetylcholinesterase 

inhibitor in Alzheimer’s disease by multiscale entropy in 

EEG 

4.1 Introduction 

Alzheimer’s disease (AD) is the most common form of dementia 
1, 2

, with the 

dominant presentation of the progressive decline in cognitive function beyond what is 

expected from normal aging. Although little is known of the actual cause of AD, it is 

generally accepted that many of its symptoms are related to a cholinergic deficit in the 

cerebral cortex and other areas of the brain.
46, 47, 49

 AChE inhibitors were proved as an 

effective therapy for AD.
50-55

 Phamocoecnomic studies disclosed that therapies can 

postpone the progression of dementia to more severe stages and may be of economic 

benefit to patients' families, caregivers, and society.
56-60

 However, clinicians often argue 

that AChE inhibitors have an effect in a subgroup of 25-50% of AD patients 
48, 61, 62

, 

who cannot be identified objectively, and the effect is time-consuming. 

Recently, numerous studies try to find some prognostic predictor of AD by 

artificial network 
194

, brain MRI 
61, 195

, single-photon emission computed tomography 

(SPECT) 
196

 and cognitive function tests.
197

 The technique dependence, high cost, 

contrast-agent related allergies, and potential exposure to radionuclide irradiation limits 

clinical application. On the other hand, numerous quantitative analyses, especially 

non-linear based method, have analyzed the characteristics of EEG to improve 

diagnostic power with the assistance of signal processing and suggest an objective tool 

in the evaluation of AD.
150-156, 160-163, 198, 199

 Most of the studies utilizing non-linear 
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methods revealed that loss of the complexity of EEG signals were correlated with the 

severity of the dementia. 
161-163, 198

 However, it is hard to tell which specific physiology 

mechanism to degrade the EEG complexity, and could not provide clinicians enough 

information about the possible responder to AChE inhibitor in AD patients. In advance, 

multiscale entropy (MSE) analysis, proposed by Costa et al. 
172, 200

, is a possible method 

to check the signal complexity from system level, by means of an entropy-based 

measurement at different scales. The biological signal represents the outcome of the 

nonlinear interactions between different processes at multiple temporal or spatial scales. 

Thus, multiple scale complexity is regarded as a marker of healthy dynamics, and 

decreased complexity of MSE analysis at certain scales could respond to pathological 

degeneration.
172, 200

 In addition to the MSE amplitude, other features of the MSE curve, 

such as the slope of the MSE, defined by sample entropy values between different 

time-scale factors, also has physiology meaning to assist with clinical classification.
201

  

The present study was a pilot test via MSE in EEG analysis, depending on the 

ability of MSE to demonstrate different mechanisms with multiple temporal or spatial 

scales, to determine whether the feature of MSE in EEG is associated with the therapy 

efficacy of AChE inhibitor in AD patients. 

4.2 Materials and Methods 

4.2.1 Patients 

All dementia patients were diagnosed and enrolled from the neurological clinic at 

National Yang Ming University Hospital. They were all screened for dementia and 

received further medical, neurological, neuropsychological, and psychiatric assessments 

as well as blood studies. The neurological assessments of all these patients included a 
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cerebral CT to rule out intracranial pathology, such as brain tumors or stroke that may 

have contributed to cognitive decline. Trained research assistants administered the 

Chinese version of Minimal Mental Status Examination (MMSE) 
71

, which has a total 

score of 30. CDR scale to rate the severity of the dementia was also evaluated after a 

neurologist conducted separate semi-structured interviews with the patient and a 

knowledgeable informant. The scores were as follows: 0 for normal, 0.5 for 

questionable, 1 for mild, 2 for moderate and 3 for severe.
72

 The diagnosis of AD was 

determined according to the diagnostic criteria of the Diagnostic and Statistical Manual 

of Psychiatric Disorders, 4th revised ed..
63

 EEG was not part of the routine workup. 

The inclusion criteria for participation in the EEG study meet both (1) a diagnosis 

of probable AD according to the DSM-IV criteria 
63

 and (2) a rating of either 1 or 2 on 

the CDR scale.
72

 The exclusion criterion included the existence of possible cause of 

dementia other than AD, determined by history, neurological examination, imaging and 

blood studies. The criteria for exclusion ensured that the alterations of EEG were the 

results of AD in all participants. The research was approved by the institutional review 

board of National Yang Ming University Hospital, YiLan, Taiwan, a local community 

teaching hospital, and written informed consent were given to all subjects prior to the 

study. 

Seventeen newly diagnosed AD patients (9 men and 8 women, mean age of 

74.6±7.4 years) were enrolled in this study, with an initial MMSE score of 18.8±4.5. 

Two of them were moderately demented (CDR=2), the others were mild (CDR=1). 

None of the patients received any antipsychotics before the first EEG examination. 

Every participating patient received AChE inhibitor therapy, donepezil hydrochloride 
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(Aricept® ), 5mg/day, for 12 months, and received follow-up MMSE 12 months after 

therapy.  

4.2.2 EEG Recordings 

EEGs were recorded in all subjects. According to the International Federation of 

Clinical Neurophysiology (IFCN) standards for the digital recording of clinical EEG 
176

, 

the surface EEG signals were recorded using a digital EEG recorder (NicoletOne® ) 

from the 19 scalp loci of the international 10–20 system (channels Fp1, Fp2, F3, F4, C3, 

C4, P3, P4,O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz and Pz), with all electrodes 

referenced to the bilateral ear (A1, A2) for 30 minutes. Electrocardiograms (ECG) were 

recorded in a separate channel. The sample frequency was 256 Hz and the A/D 

digitalized resolution was 12 bits. All the patients stayed awake in a relaxed state to 

have a 30-minute eyes-closed EEG test.  

4.2.3 Signal Processing and Analysis: Multiscale Entropy Analysis 

We adopt multiscale entropy (MSE) as a complexity measure to feature digitalized 

EEG signals. Before conducting the analysis, one artifact-free epoch of 30 seconds 

duration EEG signal were selected by an experienced neurologist. Further, empirical 

mode decomposition 
118

 was utilized to remove the trend from the signals. The MSE 

method comprises two steps: (i) coarse-graining the signals into different time scales; (ii) 

quantifying the degree of irregularity in each coarse-grained time series using sample 

entropy (SampEn) 
165, 166

. SampEn is a statistical measure based on the information 

theory used to quantify the irregularity of a sequence of data. 
165, 166, 169

 Briefly, it 

examines a time series for occurrences of similar epochs of a pre-assigned length, where 

similarity is determined as whether the distance between epochs is under a tolerance r or 
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not. In detail, it calculates the negative natural logarithm of the conditional probability, 

those epochs similar for m points that will remain so when one more point is added to 

the subseries. 
165, 166, 169

 The higher the SampEn, the more unpredictable the data 

sequence is. However, complicated systems typically generate not only highly irregular 

output 
177

 but also exhibit dynamically diverse tendency on various time scales such as 

the coexistence of slow and fast phenomena. It turns out that SampEn alone, though 

provides an adequate way to quantify irregularities for physiological output, and is not 

sufficient to cope with the content of complexity in physiological interest. By contrast, 

multiscale entropy analysis, based on evaluating at multiple time scales the sample 

entropy, has been proved useful to this end. To recast a signal in another scale, the 

original series were segregated into blocks, where each block contains n data points. 

The mean value over each block then forms the coarse-grained time series at scale n. It 

is clear enough that the time series at coarse-grained scale 1 is identical to the original 

signal. Equipped with multiple scales, MSE method is readily capable of disclosing 

temporal structure as well as scale-dependent characteristics of signals. 

 In this study, the MSE value of each lead is calculated individually, which means 

380 values for each patient. Slopes of the mean value of MSE, averaged out of all leads, 

over scales 1–5(Slope1) and 6-20(Slope2) were estimated using the least-squares 

method, i.e., one Slope1 and one Slope2 for each patient. Throughout the analysis, we 

set m = 2 and r = 0.15 times of the standard deviation of the processed signal. 

4.3 Statistical Analyses 

According to the difference between the follow-up and the initial MMSE scores, 

the patients were divided into two groups, one is responder and the other is 
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non-responder. The identification of responder is that whose follow-up MMSE score is 

greater than or equal to the initial, otherwise the non-responder. 

Descriptive statistics were presented as means ± standard deviation (SD). SPSS 

(ver16.0) for Windows (SPSS Inc., Chicago, IL, USA) was used for analysis. Baseline 

demographic characteristics including age, MMSE-CE, CDR, MSE of each lead, Slope1 

and Slope2 were coded as continuous variables. The other demographic characteristics, 

such as gender, were coded as dichotomous variables. All of these characteristics were 

treated as predicable variables for treatment response. Student’s t-test was used at first 

to determine which factors were significant. A forward logistic regression was used to 

calculate the odds ratio in variants. All the statistical tests were two-tailed and 

significance levels were set at p-values of less than 0.05. 

By the receiver operating characteristic (ROC) analysis and considering the 

optimal combination of sensitivity and specificity, we determined the best cut-off points. 

Likelihood ratios, positive and negative predictive values with 95% confidence intervals 

(CI) were assessed in each cut-off point levels. 

4.4 Result 

There are 7 patients (3M/4F, mean age of 76.1±7.9 years) in responder and 10 

patients (6M/4F, 73.5±7.3 years) in non-responder. There was no significant difference 

in age and gender. The initial MMSE score in responder is 15.6±5.1, and in 

non-responder is 20.9±2.8 (p=0.042). The following MMSE score in the responder is 

22.3±3.7, and in the non-responder is 16.8±6.3 (p=0.039). The MSE values in each lead 

showed significant higher in F4 MSE19, T3 MSE18, C3 MSE 19 and C3 MSE20 in 

responder, and significant higher in T4 MSE6, T4 MSE7, T4 MSE9 and Pz MSE8 in 
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non-responder (Table 3). The Slope1 in the responder is 0.063±0.038, and in the 

non-responder is 0.092±0.071 (p=0.333) (Table 3 and Figure 19). The Slope2 in the 

responder is -0.008±0.019, and in the non-responder is -0.03±0.009 (p=0.021) (Table 3 

and Figure 9). After applying the forward logistic regression, it shows only Slope2 is 

preserved with odd ratio of larger than 100. The other factors, including initial MMSE, 

were excluded. 

The area under the ROC curve of Slope2 (Figure 10) is 0.871(95% CI = 0.69 - 1). 

The sensitivity is 85.7% and the specificity is 60% while the cutoff value of Sloep2 is 

-0.024 (Figure 11).  
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Table 3 

 Responder Non-Responder p Value 

Age 76.1±7.9 73.5±7.3 0.669 

Sex 3M/4F 6M/4F 0.601 

MMSE 15.9±5.1 20.9±2.8 0.070 

CDR 0.8±0.6 1.2±0.6 0.230 

Slope1 0.063±0.038 0.092±0.071 0.475 

Slope2 -0.008±0.019 -0.03±0.009 0.010* 

F7 MSE7 1.85±0.15 1.98±0.10 0.043* 

Fz MSE6 1.84±0.26 2.04±0.06 0.025* 

Fz MSE7 1.87±0.23 2.04±0.08 0.043* 

Fz MSE8 1.84±0.21 2.01±0.09 0.033* 

C4 MSE5 1.84±0.25 2.05±0.10 0.043* 
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T4 MSE6 1.77±0.21 1.99±0.10 0.019* 

T4 MSE7 1.79±0.20 1.99±0.12 0.033* 

T4 MSE9 1.79±0.22 2.00±0.16 0.019* 

Pz MSE7 1.92±0.20 2.13±0.10 0.010* 

Pz MSE8 1.95±0.17 2.13±0.10 0.007* 

O1 MSE7 1.89±0.23 2.08±0.10 0.033* 

 

Demographic characteristics of two groups, including age, sex, MMSE, CDR, 

Slope 1, Slope 2, and MSE values of each lead with significant differences in 

Mann-Whitney U test. * Indicates that the correlation is significant at the 0.05 level 

(2-tailed).  
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Figure 9 The red dash line was mean value of MSE in each lead in responder and the 

black solid line was result in non-responder.  
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Figure 10 The ROC curve of Slope2, with the area under curve of 0.871(95% CI = 0.69 

- 1). The sensitivity is 85.7% and the specificity is 60% while the cutoff value of Sloep2 

is -0.024.  
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Figure 11 The figure discloses the distributions of Slope2 in responder and 

non-responder. The sensitivity is 85.7% and the specificity is 60% while the cutoff 

value of Sloep2 is -0.024. 
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4.5 Discussion 

This pilot study disclosed the potential of quantitative EEG, multiscale entropy, to 

predict the efficacy of AChE inhibitor in AD. When the Slope2 (MSE 6 to 20) is less 

than -0.024, the therapy efficacy is relative poor, with sensitivity of 85.7% and 

specificity of 60%. However, the efficacy of AChE inhibitor in AD was affected by so 

many factors, such as anti-psychiatric agents for behavior and psychiatric syndromes, 

other systemic disorder, hypertension, diabetic, etc. It is very difficult to predict the 

efficacy using single biomarker, such as multiscale entropy in this study. However, this 

study could provide another idea, weather the dose of AChE inhibitor is enough, or 

combined other mechanism therapy, such as NMDA receptor antagonist is better. 

The innumerable cortical neurons constructing surface EEG that fundamentally 

decide the complicate pattern, which indicating interactions between different 

mechanisms with multiple temporal or spatial scales, and is not able to explain the 

underlying neurophysiology mechanism easily. 
177, 202

 In other fields, some studies 

proposed the idea of carefully examining the change of non-linear indices with scales. 

The most well-known is crossover phenomenon of the fractal correlation exponents 

between short and long time scales in the detrended fluctuation analysis (DFA)
171

 of 

heart rate dynamics and the short-term exponent is appreciated to be mostly determined 

by the cardiorespiratory coupling. 
171, 203

 Recently, the studies of activity fluctuation 

with aging and in AD 
204, 205

 find fractal correlations at certain scales (i.e., 1.5~8h) 

declined with age and an age-independent AD effect further reduced the correlations at 

these scales leading to the greatest reduction of the correlations in very old people with 

late-stage AD—resembling closely the loss of correlations at long time scales in 

SCN-lesioned animals.
206

 In addition to DFA, multiscale entropy (MSE) is a possible 



66 

 

method to check the complexity at different temporal scales by means of an 

entropy-based algorithm. Our previous study, which proposed a detrending process 
184, 

198
to attenuate the spurious influence caused by nonstationarity in the real world, then 

revealed many features of the MSE curve, including the slope of the MSE, equivalent to 

the correlation between sample entropy values and different time-scale factors, could 

assist with clinical classification
201

. For instance, 1) sympathetic and parasympathetic 

activity are correlated with MSE in different scales of heart beat sequence (scales 3~5 

and 1~4 for sympathetic and parasympathetic activity, respectively);
184

  2) The 

patients without β-blocker therapy exhibits very negative slope of MSE1~5, indicating 

the lack of cardiorespiratory coupling.
203

 

Understanding the complexity at certain scales may correspond to the illness of 

specific physiology processes, MSE analysis of EEG signals is a possible way to profile 

the cholinergic effect in cortex. The figure 1 discloses the maximum value of MSE 

occurred at MSE6 (about 20msec in time scale) in non-responder and a nearly plateau 

from MES5 to MSE10 (about 20msec to 40msec in time scale) in responder, that time 

scales are compatible with the transfer time from the pre-synapse to post-synapse, 

where the membranes are separated by a synaptic cleft that averages 20 nm (0.02 µm) in 

width
207

, is about 15msec
208

 and the ACh molecules broken time from then binding 

receptor sites is about 20msec. 
208

  From the view of time scales, we could assume that 

the MSE of short time scales (1~5) is related to the process of  transfer time, and that 

of long time scales (6~20) is associated with the binding time of ACh molecules. 

Therefore, the value of MSE1 to MSE5 is responsive to the amount of ACh being 

released. In addition, the higher value in T4 MSE6, T4 MSE7, T4 MSE9 and Pz MSE8 

in non-responder could be considered as the compensative releasing of ACh and the 

higher MSE value in F4 MSE19, T3MSE18, C3 MSE19 and C3 MSE20 could be 
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considered as preserved the binding ability of ACh receptor. Hence, the non-responder 

has lower ACh molecular binding ability or binding count, and has poor effect for 

AChE inhibitor; they may need higher dose of AChE inhibitor or other mechanism 

therapy, such as NMDA receptor antagonist. 

The previous studies 
177, 202

 disclosed higher complexity in demented patients in 

long time scales, which challenge the above hypothesis, the long time scales are related 

to the ACh molecular binding ability or binding counts. However, there were some 

differences in method and study design, such as empirical mode decomposition as a 

preprocessing to detrend the signals, which would have better results in nonstationary 

physiology signals
198

, and the severity of demented patients in this study. Nevertheless, 

other neurophysiology mechanisms maybe exist to explain both conditions. 

The initial MMSE in the responder showed lower scales than the non-responder, 

and that condition may provide a potential better response rate to AChE inhibitor in 

responder. However, the usefulness of MMSE was excluded by following forward 

logistic regression. The previous study 
197

 showed no significant difference in 

pretreatment MMSE scores between responder and non-responder, which was similar to 

our study. The study 
197

 also showed better visual-spatial motor ability, clock drawing 

and tracking test in responder. Therefore, the lower MMSE score in responder in this 

study could not explain the difference between responder and non-responder.  

This study is limited by small sample size. Even though the sample size was small, 

the statistical power was still high enough to support our findings. It still requires more 

rigorous study to elucidate the physiological meaning of the values and slopes of MSE. 

Due to a lack of other types of medication in this study, the application of predicating 

the efficacy to different type’s AChE inhibitors or NMDA antagonist is also uncertain. 



68 

 

4.6 Conclusion 

Sampling entropy, especially the EMD-based sampling entropy, is introduced as a 

better method to evaluate the embedded information in EEG, and as an objective, 

non-invasive and non-expensive tool for evaluating and following AD patients. 
198

 

However, it still could not provide clinicians enough information about the possible 

responder to AChE inhibitor in AD. MSE analysis on EEG recording could reveal 

characteristics both at short and long time scales and provide another potential tool to 

predict the efficacy of AChE inhibitor in AD.  
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CHAPTER 5 Conclusion and Future work 

In this dissertation, we demonstrate the improvement of the sensitivity of EEG 

signals, by the non-linear detrending, EMD, under the fundamental condition, the EEG 

signal is non-linear. In clinical practice, the quantitative EEG, on the basis of sampling 

entropy and multiscale entropy, demonstrates the application of evaluation, following 

up, and prediction of therapeutic effect in AD patients. The improved quantitative EEG 

analysis by means of a combination of the EMD detrending procedure and sample 

entropy revealed that the changes in the complexity of EEG signals were correlated with 

the severity of the dementia. More, MSE analysis on EEG recording could reveal 

characteristics both at short and long time scales and provide another potential tool to 

predict the efficacy of AChE inhibitor in AD. 

However, the diagnosis of the AD in this dissertation depends on DSM-IV criteria, 

which has both sensitivity and specificity only 70 to 80%. Newer bio-marker, such as 

plasma amyloid, should be included to improve the diagnosis power. In the future, if we 

could collect the AD patients, been diagnosed by newer biomarker, the similar digital 

signal results, such as EEG, could be more consistent. 

We tried to connect the transport of neurotransmitter, Ach, to the results of MSE in 

EEG; however, there is no direct evidence. The pharmacodynamics study in health 

candidate with cholinergic effect and anticholinergic effect drugs should be performed 

to evaluate the effect in EEG signal changes. Moreover, the combination of 

pharmacodynamics study and animal mode to prove the connection is necessary. 

Moreover, the evaluation of drug effect in this study is 12 months later. In the 

future, immediate responsive after taking medication, and acute effect, hours or days, 
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should be carefully evaluated to find which time is the change occurs in signal 

processing. 

In other aspect, diurnal change of EEG was noted evaluated carefully in the 

dissertation. Especially, the EEG change during sleep may be another point for the 

degeneration disease. 

In order to evaluate continually the patient for long time, such as days or weeks, a 

portable EEG device with signal lead should be evaluated to determine which lead is 

most meaningful for the evaluation of EEG in dementia. In the method, to improve the 

speed of signal processing in MSE of EEG combined with EMD, is another critical 

point for clinical application. The combination of easy device and fast signal processing 

would translate the application to population, and to particle in clinical, not limited in 

study. 

Generally, there were still some limitations. First, the patient number is small, due 

to the limitation of National Yang Ming University Hospital, a local community 

teaching hospital. Second, the subtypes of dementia, such as fronto-temporal dementia, 

dementia with Lewy’s body or Parkinson’s disease with dementia, are not evaluated by 

the same method to prove that the method is able to be used un every kind of dementia. 

Beside of subtypes of dementia, patients, who suffering from delirium after anesthesia, 

are another possible candidate for this study. Third, the degree of education, which was 

not evaluated carefully in this dissertation, has huge effect in evaluation of the severity 

of dementia. Therefore, in the further work, more patient numbers, more subtype of 

dementia, should be included. The degree of education also should be evaluated 

carefully. 
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