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中文摘要 

本論文主題在於了解高階系統性風險對於橫斷面資產定價的影響。

本論文包含兩篇文章。 

第一章探討股票市場波動性的波動性是否在資產定價上扮演重要

的狀態變數。投資者對於市場波動度具有風險趨避的行為。除此之外，

投資者也擔心市場波動度本身的波動度可能使得市場波動度變化地更

劇烈。本文發展一個以股票市場為基礎的三因子模型；其中，橫斷面股

票報酬率決定於市場風險、波動性風險、以及波動性的波動性風險。利

用高頻率的標準普爾 500 指數選擇權資料，本文估計出股票市場波動

性的波動性。實證結果支持理論，本文發現高波動性的波動性風險的公

司，將有 10.5％年股票報酬率風險溢酬。本文指出，股票市場波動性

的波動性是資產定價上是重要的風險因子。 

第二章探討研究非線性的風險報酬抵換理論。如果市場報酬中存在

高階風險溢酬，則高階風險溢酬則應該被定價於橫斷面的資產報酬補

償其承擔的高階系統性風險。考慮了市場報酬的非常態性，本文提出一

個無模型假設的資本資產定價模型，其模型中使用高階系統性風險來

定價橫斷面的資產報酬。研究結果指出，第二階系統性風險是顯著地並
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且負向地被定價；因此，結果隱含證券市場線為倒Ｕ曲線。有較高第二

階系統性風險的股票，將有較高的波動性與較高的機會獲取市場波動

性風險溢酬所隱含的上方波動性收益，因此將有較高的市場價格以及

較低的風險溢酬。本文建構交易策略於捕抓第二階風險溢酬，實證結果

指出於第一階系統性風險建構的投資組合估計出第二階風險溢酬為

−12.00%、於第二階系統性風險建構的投資組合估計出第二階風險溢酬

為−15.60%、以及於風險中立波動性敏感度建構的投資組合估計出第二

階風險溢酬為−16.08%。本文發現實證結果與模型一致，第二階風險溢

酬與市場波動性風險溢酬相關、第二階風險溢酬可以解釋橫斷面資產

波動性與報酬的難題、以及解釋反向操作系統性風險的難題。本文提供

對於高階系統性風險的認知，也說明了非線性的風險報酬抵換的重要

性。 
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Abstract 

My dissertation aims at understanding the high order systematic risks in the cross-

section of equity returns. It contains two chapters. 

Chapter One extends Bollerslev, Tauchen, and Zhou (2009) to derive an market-

based equilibrium asset pricing model in which, along with market return volatility, the 

volatility of market-return volatility (volatility-of-volatility) is a state variable and 

important for pricing individual stocks. While investors are averse to high market 

volatility, there is possibility that high market volatility could fluctuate even further, 

which could drive investors to hedge the increasing uncertainty by buying defensive 

stocks and dumping crash-prone stocks. To test the model, we use the high-frequency 

S&P 500 index option data to estimate a time series of the variance of market variance. 

Consistent with the model, we find that defensive stocks (i.e., returns co-move more 

positively with volatility-of-volatility) have lower expected returns. A hedge portfolio 

long in defensive stocks and short in crash-prone stocks yields a significant 10.5 percent 

average annual return. Furthermore, the volatility-of-volatility risk largely subsumes the 

valuation effect of volatility risk documented in previous studies. In sum, our model and 

test results provide a unified framework to better understand the importance of volatility-

of-volatility risk in asset pricing. 

Chapter Two studies the feature of nonlinear risk-return trade-off. If market returns 

have high order risk premiums, expected stock returns should comprise compensation for 

bearing the corresponding high order systematic risks. Allowing for non-normality in 
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market moments, this paper presents an approximate capital asset pricing model in which 

high order risks are important for pricing individual stocks. Our results show that the 

second-order risk is significantly and negatively priced and contributes to an inverse-U 

shaped relation between cross-sectional expected returns and systematic risks. Stocks 

with high exposure to the second-order risk are volatile and are capable of earning the 

upside variance potential implied by the negative market variance risk premium. We 

develop trading strategies to mimic the second-order risk premium and we show that the 

resulting mimicking factor, on average, per year is −12.00% estimated from the first-order 

co-moment risks, −15.60% from the second-order co-moment risks, and −16.08% from 

the risk-neutral variance beta. Based on the mimicking factors, we find evidence 

consistent with our model that the second-order risk premium (1) is related to market 

variance risk premium, (2) accounts for the total volatility puzzle, the idiosyncratic 

volatility puzzle, and the MAX puzzle, and (3) helps explain the betting-against-beta 

premium. Our study provides a unified framework for better understanding of high order 

risk-return tradeoff and sheds light on the role of the second-order risk premium.  

 

Keywords: Volatility-of-volatility, Expected stock returns, Variance risk premium, 

Model-free CAPM, Cumulants, High order risks, Nonlinear risk-return trade-off. 
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Chapter 1  

Volatility-of-Volatility Risk and 

Asset Prices 

1.1   Introduction 

It is well established that volatility is time-varying and tends to be high during stock 

market decline. The role of uncertainty during the recent financial crisis is also noted in 

financial press. For example,  

CRISES feed uncertainty. And uncertainty affects behaviour, which feeds the 

crisis. …all the indicators of uncertainty are at or near all-time highs. What is at work 

is not only objective, but also subjective uncertainty (e.g. the unknown unknowns).  

 —Olivier Blanchard, The Economist, January 29, 2009. 

The dual volatility concept has important implications for asset prices. Time-varying 

volatility-of-volatility affects portfolio decisions by inducing changes in investment 

opportunity set; it changes the expectation of future market returns and future market 

volatility. If volatility-of-volatility is a state variable, the Intertemporal CAPM (ICAPM; 

Merton, 1973) posits that volatility-of-volatility should be a priced factor in the cross-

section of stocks. Intuitively, assets that co-vary positively with volatility-of-volatility are 

attractive to investors since these assets provide hedge for volatility risk during the market 
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downturns. Moreover, it has been well established that market volatility is a priced factor 

(e.g. Coval and Shumway, 2001; Ang, Hodrick, Xing, and Zhang, 2006; and Adrian and 

Rosenberg, 2008) and therefore an increase in volatility-of-volatility induces volatility 

shock, leading to an increased required return and immediate stock price decline. Thus, 

investors require a return premium for a security that is suffer when the market volatility 

is high and when the whole market is uncertain about uncertainty.  

This paper develops a market-based three-factor model that helps explain how asset 

prices are affected by volatility risk and volatility-of-volatility risk. The model provides 

a unified framework that can explain the empirical findings that aggregate volatility risk 

is priced in cross-sectional stock returns (e.g. Ang, Hodrick, Xing, and Zhang, 2006), that 

variance beta is priced in cross-sectional variance risk premiums (e.g. Carr and Wu, 2009), 

and that individual variance risk premiums can predict the cross-sectional stock returns 

(e.g. Bali and Hovakimian, 2009; Han and Zhou, 2011).  

Our model begins with a macroeconomic model that incorporates the seminal long-

run risks (LRR) model of Bansal and Yaron (2004) and the variance-of-variance model 

of Bollerslev, Tauchen, and Zhou (2009). We solve the macro-finance model explicitly 

and derive the equilibrium aggregate prices. Then, we use the properties of the aggregate 

asset prices to characterize the macroeconomic risks, transforming the underlying macro-

based model to a market-based model. The market-based model developed in this paper 

has several advantages. First, financial data provide useful information because asset 

prices tell us how market participants value risks. Moreover, financial data convey 

information to public in a timely fashion. Hence, the empirical design of our model is 

compatible with a large literature of multi-factor model explaining cross-sectional 

monthly stock returns (see, for instance, Fama and French, 1993; Ang, Hodrick, Xing, 

and Zhang, 2006; Maio and Santa-Clara, 2012; among others).  
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In our model, the expected stock return of a security i is determined by three sources 

of risks. These risks are associated with: (i) the return sensitivity to market 

return, ԧov௧ൣݎ௜,௧ାଵ, ௠,௧ାଵ൧ݎ ; (ii) the return sensitivity to market variance, 

ԧov௧ൣݎ௜,௧ାଵ, ௠ܸ,௧ାଵ൧ , where ௠ܸ,௧ ൌ ॽar௧ൣݎ௠,௧ାଵ൧ ; and, (iii) the return sensitivity to 

variance of market variance, ԧov௧ൣݎ௜,௧ାଵ, ܳ௠,௧ାଵ൧, where ܳ௠,௧ ൌ ॽar௧ൣ ௠ܸ,௧ାଵ൧. The first 

term measures the market risk of classical capital asset pricing model (CAPM; Sharpe, 

1964; Lintner, 1965). The second term corresponds to the aggregate volatility risk of Ang, 

Hodrick, Xing, and Zhang (2006). The last term, which is the main focus of this paper, 

measures the aggregate variance of variance risk. Hereafter the paper, we refer to the 

variance of variance as the volatility-of-volatility.  

The first goal of this paper is to investigate how market volatility-of-volatility risk 

affects cross-sectional stock returns. We test the predictions of the model using NYSE, 

AMEX, and NASDSQ listed stocks over the period 1996 to 2010. To implement our 

model, we develop a measure of market volatility-of-volatility using high frequency S&P 

500 index option data.1 We convert the tick-by-tick option data to equally spaced five-

minute observations and then use the model-free methodology2 to estimate the market 

variance implied by index option prices for each five-minute interval. Thus, for each day, 

we estimate the market volatility-of-volatility by calculating the realized bipower 

variance from a series of five-minute model-free implied market variance within the day. 

The bipower variation, introduced by Bardorff-Nielsen and Shephard (2004), delivers a 

                                                       
1 We use the volatility index, VIX index, from the Chicago Board of Options Exchange (CBOE) as the 
proxy for the aggregate volatility risk, which has been shown to be a significant priced factor in the cross-
sectional stock returns (e.g. Ang, Hodrick, Xing, and Zhang, 2006). 
2 It has been shown that the expectation of market variance can be inferred in a ‘model-free’ fashion from 
a collection of option prices without the use of a specific pricing model (see, for example, Carr and Madan 
1998; Britten-Jones and Neuberger 2000; Bakshi, Kapadia, and Madan, 2003; Jiang and Tian 2005). The 
option implied information is forward-looking and the estimate can be obtained using daily or intraday 
option data. 
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consistent estimator solely for the continuous component of the volatility-of-volatility 

whereas the jump component is isolated.3 In other words, our empirical results are robust 

to the potential jump risk embedded in volatility (see, for example, Pan, 2002; Eraker, 

2008; Drechsler and Yaron 2011; among others). 

Consistent with the model, by sorting stocks into quintile portfolios based on return 

sensitivities to market volatility-of-volatility, we find that stocks in the highest quintile 

have lower stock returns than stocks in the lowest quintile by 0.88 percent per month. 

Moreover, we also find evidence consistent with Ang, Hodrick, Xing, and Zhang (2006)’s 

findings that there is a significant difference of -0.87 percent per month between the stock 

returns with high volatility risk and the stocks with low volatility risk. Controlling for 

volatility risk, we still find that the market volatility-of-volatility carries a statistically 

significant return differentials of -0.97 percent per month. On the other hand, controlling 

for market volatility-of-volatility risk, we find the return difference between high 

volatility risk stocks and low volatility risk stocks is still large in magnitude, at -0.68 

percent per month. Running the cross-sectional regressions, we find that market 

volatility-of-volatility carry a statistically significant negative price of risk and largely 

subsumes the valuation effect of volatility risk. Thus, our findings suggest that market 

volatility-of-volatility is indeed an independently priced risk factor in the cross-sectional 

stock returns.  

To further explore the mechanism that volatility-of-volatility risk affects asset prices, 

we investigate whether the volatility-of-volatility risk contributes to the asymmetric 

correlations between returns and market volatility-of-volatility. We refer to the volatility-

                                                       
3 Measures of realized jump based on the difference between realized variation and bipower variation have 
been proposed by Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005), and Andersen, 
Bollerslev, and Diebold (2007). 
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of-volatility feedback effect as the mechanism that if volatility-of-volatility is priced, an 

anticipated increase in volatility-of-volatility raises the required rate of return, implying 

an immediate stock price decline and higher future returns.4 Consistent with the channel 

of volatility-of-volatility feedback effect, we find that stocks that co-move more 

negatively with market volatility-of-volatility have lower returns before the portfolio 

formation and earn higher post-formation returns than stocks that co-move more 

positively. More importantly, we find that the return differentials (e.g. the returns of 

negative exposure stocks minus the returns of positive exposure stocks) before the 

portfolio formation are negatively correlated with market volatility-of-volatility measured 

at the portfolio formation date while the correlations between market volatility-of-

volatility and the post-formation return differentials are positive. Hence, market 

volatility-of-volatility seems to be the state variable that drives the feedback effect, 

supporting the time-varying risk premium hypothesis.  

The second goal of this paper is to investigate how volatility-of-volatility risk affects 

cross-sectional variance risk premiums. The variance risk premium is defined as the 

difference between risk-neutral variance and realized variance. Define ௜ܸ,௧  as the 

conditional variance of stock i at time t, ௜ܸ,௧ ൌ ॽar௧ൣݎ௜,௧ାଵ൧. In our model, the variance 

risk premium of stock i , ܸܴ ௜ܲ,௧ ≡ ॱ௧
ℚൣ ௜ܸ,௧ାଵ൧ െ ॱ௧ൣ ௜ܸ,௧ାଵ൧, is determined by two sources 

of risks: (i) the variance sensitivity to market variance, ԧov௧ൣ ௜ܸ,௧ାଵ, ௠ܸ,௧ାଵ൧; and, (ii) the 

variance sensitivity to variance of market variance, ԧov௧ൣ ௜ܸ,௧ାଵ, ܳ௠,௧ାଵ൧. The first term 

corresponds to the variance beta of Carr and Wu (2009). The second term measures the 

risk that individual stock volatility co-moves with the market volatility of volatility. As 

                                                       
4 Our definition of volatility-of-volatility feedback effect follows the definition of volatility feedback effect 
in the literature (see, e.g. French, Schwert, and Stambaugh 1987; Campbell and Hentschel 1992; Bekaert 
and Wu 2000; Wu 2001; Bollerslev, Sizova, and Tauchen, 2012; among others). 
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shown by Carr and Wu (2009), variance risk premium corresponds to a trading strategy 

that shorts a swap on the realized variance; in particular, ॱ௧
ℚൣ ௜ܸ,௧ାଵ൧ is the price for the 

contract and ॱ௧ൣ ௜ܸ,௧ାଵ൧ is the expected payoff. Selling a volatility asset with high the 

volatility sensitivity to market volatility-of-volatility requires high insurance payment 

since the asset can hedge away the upward market volatility-of-volatility during the 

market downturns.  

Consistent with our model, by sorting stocks into quintile portfolios based on 

variance sensitivities to market volatility-of-volatility, we find that stock with high 

sensitivities have higher one-month variance risk premium than stocks with low 

sensitivities by 67.7 (in percentages squared) per month. The magnitude of the cross-

sectional difference in variance risk premium is large compared to the market variance 

risk premium, which is 17.3 (in percentages squared) per month during our sample period. 

We study how volatility-of-volatility affects the variance risk premium by running the 

cross-sectional regressions on the 25 testing portfolios formed on the variance 

sensitivities to market volatility-of-volatility. We find that the risk price of variance beta 

with respect to variance of market variance is significantly positive. These findings 

suggest that market volatility-of-volatility is a priced factor in the cross-sectional variance 

risk premium. 

Our study could also be motivated by the recent finding in Bollerslev, Tauchen, and 

Zhou (2009) that the variance risk premium of aggregate stock market returns has 

outstanding predictive power for future aggregate stock market return. The underlying 

mechanism in their work is that the state variable, the variance of economic variance, 

which affects expected market returns and solely determines the variance risk premium, 

delivers the predictability. Their work motivates several papers to focus on various 
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economic mechanisms behind the return predictability afforded by variance risk premium. 

For example, Drechsler and Yaron (2011) show that jump shocks, in a more elaborate 

LRR model, capture the size and predictive power of the variance premium. Moreover, 

Drechsler (2013) show that model uncertainty has a large impact on variance risk 

premium, helping explain its power to predict stock returns. Nevertheless, none of prior 

studies provides evidence that volatility-of-volatility is a priced risk factor important for 

cross-sectional asset pricing.  

 Our paper is related to the pricing model with higher moments of the market return 

as risk factors studied by Chang, Christoffersen, and Jacobs (2013). They find that market 

skewness is a priced risk factor in the cross section of stock returns. Both our paper and 

their work extend the investigation of Ang, Hodrick, Xing, and Zhang (2006) and extract 

implied moments from index option prices. However, our results are robust to the 

inclusion of market skewness factor while the market skewness risk premium is much 

weaker in our sample period when we control for our market volatility-of-volatility risk.  

Our paper is also related to but different from Han and Zhou (2012). They examine 

how firm-level variance risk premiums affect the stock returns in the cross-section, but 

they do not develop any theory to explain the dependencies. In contrast, our study 

investigates specifically the pricing of variance of market variance in the joint of cross-

sectional stock returns and variance risk premium.  

 Finally, independent to our study, Baltussen, Van Bekkum, and Van Der Grient (2013) 

develop a measure of ambiguity, based on firm-level historical volatility of individual 

option-implied volatility (vol-of-vol). They find that vol-of-vol affects expected stock 

returns but their results cannot confirm that vol-of-vol is a priced risk factor. Our 

investigation differs with theirs in two aspects. First, our measure is based on intraday 

variation of market variance, resulting in a market volatility-of-volatility factor of daily 
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frequency, while their vol-of-vol is based on historical daily information of implied 

volatility, resulting in a firm-level uncertainty measure of monthly frequency. Second, we 

find evidence for the rational pricing of market volatility-of-volatility risk, which sharply 

contrasts their ambiguity interpretation.  

The remainder of the paper is organized as follows. The next section describes the 

economic dynamics and develops our market-based three-factor model for the empirical 

implementation. Section 3 constructs the measure of market volatility-of-volatility. 

Section 4 describes the data and presents the summary statistics. In section 5, we show 

empirical evidence on the pricing of variance of market variance risk in cross-sectional 

stock returns. Section 6 provides evidence in cross-sectional variance risk premium. The 

return predictability for the aggregate market portfolio is examined in section 7. Finally, 

section 8 contains our concluding remarks. 

 

1.2   A three-factor model 

This section describes the economic model. Our model begins with a macroeconomic 

model that incorporates the seminal long-run risks (LRR) model of Bansal and Yaron 

(2004) and the variance-of-variance model of Bollerslev, Tauchen, and Zhou (2009). We 

solve the macro-finance model explicitly and derive the equilibrium aggregate asset 

prices. Then, we use the properties of aggregate asset prices to characterize the 

macroeconomic risks and develop a market-based three-factor model for the cross-

sectional asset prices. 

 

1.2.1   Economic dynamics and equilibrium aggregate asset prices 

The underlying economy is a discrete time endowment economy. The dynamics of 
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consumption growth rate, ݃௧ାଵ, and dividend growth rate, ݃ௗ,௧ାଵ, are governed by the 

following process: 

 

݃௧ାଵ ൌ ௚ߤ ൅ ௧ݔ ൅ ௚,௧ାଵݖ௧ߪ

௧ାଵݔ ൌ ௧ݔ௫ߩ ൅ ߮௫ߪ௧ݖ௫,௧ାଵ	

௧ାଵߪ
ଶ ൌ ఙߤ ൅ ௧ଶߪఙߩ ൅  ఙ,௧ାଵݖ௧ݍ

௧ାଵݍ
ଶ ൌ ௤ߤ ൅ ௧ଶݍ௤ߩ ൅ ߮௤ݖ௤,௧ାଵ 

݃ௗ,௧ାଵ ൌ ௗߤ ൅ ௧ݔ߶ ൅ ߮ௗߪ௧ݖௗ,௧ାଵ 

,௚,௧ାଵݖ ,௫,௧ାଵݖ ,ఙ,௧ାଵݖ ,௤,௧ାଵݖ ~ௗ,௧ାଵݖ
୧୧ୢ
ܰሺ0,1ሻ 

(1.1)

where ݔ௧ାଵ  represents the long-run consumption growth, ߪ௧ାଵ
ଶ  is the time-varying 

economic uncertainty, and ݍ௧ାଵ
ଶ is the economic volatility-of-volatility, which is the 

conditional variance of the economic uncertainty. The features of the long-run risk and 

the time-varying economic uncertainty is proposed by Bansal and Yaron (2004), while 

the additional feature of economic volatility-of-volatility is introduced by Bollerslev, 

Tauchen, and Zhou (2009). The representative agent is equipped with recursive 

preferences of Epstein and Zin (1989). Thus, the logarithm of the Intertemporal Marginal 

Rate of Substitution (IMRS), ݉௧ାଵ, is  

 ݉௧ାଵ ൌ ߠ logሺߜሻ െ
ߠ
߰
݃௧ାଵ ൅ ሺߠ െ 1ሻݎ௔,௧ାଵ, (1.2)

where ݎ௔,௧ାଵ is the return on consumption claim, and ߠ ≡ ሺ1 െ ሻሺ1ߛ െ 1/߰ሻିଵ. We 

assume that ߛ ൐ 1, and	߰ ൐ 1, and therefore ߠ ൏ 0. Based on Campbell and Shiller 

(1988) approximation, ݎ௔,௧ାଵ ൎ ଴ߢ ൅ ௧ାଵݖଵߢ െ ௧ݖ ൅ ݃௧ାଵ, where ݖ௧ is the logarithm of 

price–consumption ratio, which in equilibrium is an affine function of the state 
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variables, ݖ௧ ൌ ଴ܣ ൅ ௧ݔ௫ܣ ൅ ௧ଶߪఙܣ ൅  ௧ଶ.5ݍ௤ܣ

 Substituting the equilibrium consumption return, ݎ௔,௧ାଵ, into the IMRS, the 

innovation in the pricing kernel ݉௧ାଵ is 

 
݉௧ାଵ െ ॱ௧ሾ݉௧ାଵሿ ൌ െߣ௚ߪ௧ݖ௚,௧ାଵ

െ ௫,௧ାଵݖ௧ߪ௫ߣ െ ఙ,௧ାଵݖ௧ݍఙߣ െ  ௤,௧ାଵݖ௤߮௤ߣ
(1.3)

where	ߣ௚ ൌ ߛ ൐ 0, ௫ߣ ൌ ሺ1 െ ଵ߮௫ߢ௫ܣሻߠ ൐ 0, ఙߣ ൌ ሺ1 െ ଵߢఙܣሻߠ ൏ 0, ௤ߣ ൌ ሺ1 െ

ଵߢ௤ܣሻߠ ൏ 0. The parameters determine the prices for short-run risk (ߣ௚), long-run risk 

  .(௤ߣ) and volatility of volatility risk ,(ఙߣ) volatility risk ,(௫ߣ)

An analogous expression holds for the stock market return, ݎ௠,௧ାଵ ൌ ଴,௠ߢ ൅

௠,௧ାଵݖଵ,௠ߢ െ ௠,௧ݖ ൅ ݃ௗ,௧ାଵ , where ݖ௠,௧  is the log price–dividend ratio, which in 

equilibrium is an affine function of the state variables, ݖ௠,௧ ൌ ଴,௠ܣ ൅ ௧ݔ௫,௠ܣ ൅

௧ଶߪఙ,௠ܣ ൅ ߠ ௧ଶ.6 Since we require thatݍ௤,௠ܣ ൏ 0, we have ܣ௫,௠ ൐ ఙ,௠ܣ ,0 ൏ 0, and 

௤,௠ܣ ൏ 0. The innovation in market return can be express as 

	

 

௠,௧ାଵݎ െ ॱ௧ൣݎ௠,௧ାଵ൧ ൌ ߮ௗߪ௧ݖௗ,௧ାଵ

൅ ௫,௧ାଵݖ௧ߪ௠,௫ߚ ൅ ఙ,௧ାଵݖ௧ݍ௠,ఙߚ ൅  ,௤,௧ାଵݖ௠,௤߮௤ߚ
(1.4)

where ߚ௠,௫ ൌ ଵ,௠߮௫ߢ௫,௠ܣ ൐ ௠,ఙߚ ,0 ൌ ଵ,௠ߢఙ,௠ܣ ൏ ௠,௤ߚ ,0 ൌ ଵ,௠ߢ௤,௠ܣ ൏ 0. It is 

straightforward now to derive the equity premium on the market portfolio,  

                                                       
5 The equilibrium solutions for the coefficients are:  

௫ܣ ൌ
ଵିଵ/ట

ଵି఑భఘೣ
൐ 0, ఙܣ ൌ

ఏሺሺଵିଵ/టሻమା஺ೣ
మ఑భ

మఝೣ
మሻ

ଶሺଵି఑భఘ഑ሻ
൏ 0, and	ܣ௤ ൌ

ఏ஺഑మ఑భ
మ

ଶሺଵି఑భఘ೜ሻ
൏ 0. 

6 The equilibrium solutions for the coefficients are:  

௫,௠ܣ ൌ
థିଵ/ట

ଵି఑భ,೘ఘೣ
ఙ,௠ܣ , ൌ

ሺଵିఏሻ஺഑ሺଵି఑భఘ഑ሻା଴.ହு೘,഑

ଵି఑భ,೘ఘ഑
, and ܣ௤,௠ ൌ

ሺଵିఏሻ஺೜൫ଵି఑భఘ೜൯ା଴.ହு೘,೜

ଵି఑భ,೘ఘ೜
, where ܪ௠,ఙ ൌ

ଶߛ ൅ ߮ௗ
ଶ ൅ ߮௫ଶ൫ߣ௫ െ ௠,௫൯ߚ

ଶ
 and ܪ௠,௤ ൌ ൫ߣఙ െ ௠,ఙ൯ߚ

ଶ
.  
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ॱ௧ൣݎ௠,௧ାଵ൧ െ ௙,௧ݎ ൅ 0.5ॽar௧ൣݎ௠,௧ାଵ൧ ൌ ԧov௧ൣݎ௠,௧ାଵ, െ݉௧ାଵ൧

ൌ ௧ଶߪ௠,௫ߚ௫ߣ ൅ ௧ଶݍ௠,ఙߚఙߣ ൅  .௠,௤߮௤ଶߚ௤ߣ
(1.5)

The expected market return consists of three terms. The first two terms are long-run risk 

premium and volatility risk premium, which are the same as in Bansal and Yaron (2004), 

while the last term represents the volatility-of-volatility risk premium, which corresponds 

to the work of Bollerslev, Tauchen, and Zhou (2009).7 

 The conditional variance of market return is readily calculated as ௠ܸ,௧ ≡

ॽar௧ൣݎ௠,௧ାଵ൧ ൌ ൫߮ௗ
ଶ ൅ ௠,௫ߚ

ଶ ൯ߪ௧ଶ ൅ ௠,ఙߚ
ଶ ௧ଶݍ ൅ ௠,௤ߚ

ଶ ߮௤ଶ, and the process for innovations in 

market variance is 

 ௠ܸ,௧ାଵ െ ॱ௧ൣ ௠ܸ,௧ାଵ൧ ൌ ఙ,௧ାଵݖ௧ݍ௏,ఙߚ ൅ ௤,௧ାଵ, (1.6)ݖ௏,௤߮௤ߚ

where ߚ௏,ఙ ൌ ߮ௗ
ଶ ൅ ௠,௫ߚ

ଶ ௏,௤ߚ , ൌ ௠,ఙߚ
ଶ . Thus, innovations in market variance are related 

to both the economic volatility shock and the economic volatility-of-volatility shock. It 

follows that the market volatility-of-volatility (e.g. the conditional variance of market 

variance) is ܳ௠,௧ ≡ ॽar௧ൣ ௠ܸ,௧ାଵ൧ ൌ ௏,ఙߚ
ଶ ௧ଶݍ ൅ ௏,௤ߚ

ଶ ߮௤ଶ, and the process for its innovations 

is 

 ܳ௠,௧ାଵ െ ॱ௧ൣܳ௠,௧ାଵ൧ ൌ ௤,௧ାଵ, (1.7)ݖொ,௤߮௤ߚ

where ߚொ,௤ ൌ ௏,ఙߚ
ଶ . Note that innovations in market volatility-of-volatility is solely 

determined by economic variance of variance shock with a scaling factor, ߚொ,௤ . The 

market volatility-of-volatility-of-volatility (e.g. the conditional variance of variance of 

market variance), ௠ܹ,௧ ≡ ॽar௧ൣܳ௠,௧ାଵ൧ ൌ ொ,௤ߚ
ଶ ߮௤ଶ, is constant in our model.  

 Next, we consider the market variance risk premium, which is defined as the 

                                                       
7 Since we do not assume the square root process for the volatility-of-volatility as Bollerslev, Tauchen, and 
Zhou (2009) do, the volatility risk in the resulting equity premium does not confound with the volatility-
of-volatility risk. 
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difference between the conditional variance under risk-neutral measure and the 

conditional variance under physical measure. Under the risk-neutral measure, which is 

characterized by the Radon-Nikodym derivative 
ୢℚ

ௗℙ
ൌ ୣ୶୮	ሺ௠೟శభሻ

ॱ೟ሾୣ୶୮	ሺ௠೟శభሻሿ
, the economy 

dynamics preserve the same structure but with a shift the mean.8 Therefore, our model 

implies that both the conditional variance of market return and the conditional variance 

of market variance are invariant under the risk neutral measure; that is, ௠ܸ,௧
ℚ ≡

ॽar௧
ℚൣݎ௠,௧ାଵ൧ ൌ ௠ܸ,௧ , and ܳ௠,௧

ℚ ≡ ॽar௧
ℚൣ ௠ܸ,௧ାଵ൧ ൌ ܳ௠,௧ . The market variance risk 

premium can be expressed as  

 

ܸܴ ௠ܲ,௧ ≡ ॱ௧
ℚൣ ௠ܸ,௧ାଵ൧ െ ॱ௧ൣ ௠ܸ,௧ାଵ൧

ൌ ௧൫ॱ௧ݍ௏,ఙߚ
ℚൣݖఙ,௧ାଵ൧ െ ॱ௧ൣݖఙ,௧ାଵ൧൯

൅ ௏,௤߮௤൫ॱ௧ߚ
ℚൣݖ௤,௧ାଵ൧ െ ॱ௧ൣݖ௤,௧ାଵ൧൯

ൌ െߣఙߚ௏,ఙݍ௧ଶ െ  .௏,௤߮௤ଶߚ௤ߣ

(1.8)

The negative volatility risk price (ߣఙ) and the negative volatility-of-volatility risk price 

 contributes to the positive market variance risk premium.  Moreover, the model (௤ߣ)

predicts that the market variance risk premium is time-varying and is entirely driven by 

the dynamics of the economic volatility-of-volatility (ݍ௧ଶ), which corresponds to the work 

of Bollerslev, Tauchen, and Zhou (2009). 

 

                                                       
8 That is,  

݃௧ାଵ ൌ ൫ߤ௚ െ ௧ଶ൯ߪߛ ൅ ௧ݔ ൅ ௚,௧ାଵݖ௧ߪ
ℚ ,	

௧ାଵݔ ൌ െߣ௫ߪ௧ଶ ൅ ௧ݔ௫ߩ ൅ ߮௫ߪ௧ݖ௫,௧ାଵ
ℚ ,	

௧ାଵଶߪ ൌ ሺߤఙ െ ௧ଶሻݍఙߣ ൅ ௧ଶߪఙߩ ൅ ఙ,௧ାଵݖ௧ݍ
ℚ ,	

௧ାଵଶݍ ൌ ൫ߤ௤ െ ௤߮௤ଶ൯ߣ ൅ ௧ଶݍ௤ߩ ൅ ߮௤ݖ௤,௧ାଵ
ℚ ,	

݃ௗ,௧ାଵ ൌ ௗߤ ൅ ௧ݔ߶ ൅ ߮ௗߪ௧ݖௗ,௧ାଵ
ℚ , 

where ݖ௚,௧ାଵ
ℚ ൌ ௧ߪߛ ൅ ,௚,௧ାଵݖ ௫,௧ାଵݖ

ℚ ൌ ௧ߪ௫ߣ ൅ ,௫,௧ାଵݖ ఙ,௧ାଵݖ
ℚ ൌ ௧ݍఙߣ ൅ ,ఙ,௧ାଵݖ ௤,௧ାଵݖ

ℚ ൌ ௤߮௤ߣ ൅  ௤,௧ାଵ, andݖ

ௗ,௧ାଵݖ	
ℚ ൌ  .ௗ,௧ାଵݖ
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1.2.2   Leverage effects, feedback effects, and return predictability  

The model endogenously generates an asymmetric return-volatility dependency. In 

the literature, leverage effect (e.g. Black, 1976; Christie, 1982; among others) refers to 

the negative contemporaneous return-volatility correlation, while the mechanism of 

volatility feedback effect (see, e.g. Campbell and Hentschel 1992; Bekaert and Wu 2000; 

Wu 2001; Bollerslev, Sizova, and Tauchen, 2012; among others) is often used to explain 

the positive correlations between future returns and volatility. Our model is in line with 

the leverage effect and the feedback effect; that is, a straightforward calculation shows 

that  

 

 

ԧov௧ൣݎ௠,௧ାଵ, ௠ܸ,௧ାଵ൧ ൌ ௧ଶݍ௏,ఙߚ௠,ఙߚ ൅ ௏,௤߮௤ଶߚ௠,௤ߚ ൏ 0, 

ԧݒ݋௧ൣݎ௠,௧ାଵା௝, ௠ܸ,௧ାଵ൧ ൌ ԧݒ݋௧ ቂॱ௧ାଵ ቂ…	ॱ௧ା௝ൣݎ௠,௧ାଵା௝൧ቃ , ௠ܸ,௧ାଵቃ 			

ൌ െߢఙ	ߩఙ
௝ߚ௠,ఙߚ௏,ఙݍ௧ଶ െ ௤ߩ௤ߢ

௝ ௏,௤߮௤ଶߚ௠,௤ߚ ൐ 0 

(1.9)

where ߢఙ ൌ ሺ1 െ ଵ,௠ߢ/ఙሻߩଵ,௠ߢ  and ߢ௤ ൌ ሺ1 െ ଵ,௠ߢ/௤ሻߩଵ,௠ߢ . In the absence of the 

time-varying economic volatility-of-volatility (e.g. when ݍ௧ଶ	is constant and ߮௤ଶ=0), the 

second term of ԧov௧ൣݎ௠,௧ାଵ, ௠ܸ,௧ାଵ൧ and the second term of ԧݒ݋௧ൣݎ௠,௧ାଵା௝, ௠ܸ,௧ାଵ൧ are 

reduced to zero, leading both of the two covariances to smaller values. Thus, the dynamics 

of economic volatility-of-volatility amplifies the leverage effect and the volatility 

feedback effect.  

Moreover, our model implies the existence of leverage effect and feedback effect 

related to market volatility-of-volatility. The contemporaneous and forward correlations 

between market return and market volatility-of-volatility can be expressed as  
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ԧov௧ൣݎ௠,௧ାଵ, ܳ௠,௧ାଵ൧ ൌ ொ,௤߮௤ଶߚ௠,௤ߚ ൏ 0, 

ԧݒ݋௧ൣݎ௠,௧ାଵା௝, ܳ௠,௧ାଵ൧ ൌ െߢ௤ߩ௤
௝ ொ,௤߮௤ଶߚ௠,௤ߚ ൐ 0. 

(1.10)

If volatility-of-volatility is priced, an anticipated increase in volatility-of-volatility raises 

the required rate of return, implying an immediate stock price decline and higher future 

returns. Thus, the above expressions provide important and directly testable implications 

for the volatility-of-volatility risk premium. 

 It is instructive to consider the return predictability afforded by the market variance 

risk premium, which is the main proposition in the pioneer work of Bollerslev, Tauchen, 

and Zhou (2009). In our model, the process for innovations in the market variance risk 

premium is  

 ܸܴ ௠ܲ,௧ାଵ െ ॱ௧ൣܸܴ ௠ܲ,௧ାଵ൧ ൌ െߣఙߚ௏,ఙ߮௤ݖ௤,௧ାଵ, (1.11)

which is entirely determined by economic volatility-of-volatility shock like the market 

volatility-of-volatility is. Thus, similar to Bollerslev, Tauchen, and Zhou (2009), market 

variance risk premium can predict the future market return as follows,  

 ԧݒ݋௧ൣݎ௠,௧ାଵା௝, ܸܴ ௠ܲ,௧ାଵ൧ ൌ ௤ߩ௤ߢ
௝ ௏,ఙ߮௤ଶߚఙߣ௠,௤ߚ ൐ 0. (1.12)

In the presence of jumps, however, as indicated in Drechsler and Yaron (2011), the market 

variance risk premium is affected by risk of jumps that is also likely to deliver the return 

predictability. In which case, the market variance risk premium is no longer solely driven 

by the economic volatility-of-volatility, lowering the testing power of Bollerslev, Tauchen, 

and Zhou (2009) for the return predictability afforded by market variance risk premium 

against an alternative source of risk. Nevertheless, the continuous component of the 

market volatility-of-volatility is still corresponding to the economic volatility-of-volatility. 

Thus, for the testing power consideration, the empirical strategy of our model focuses on 
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the identification of the continuous component of the market volatility-of-volatility. 

 

1.2.3   A market-based three-factor model for individual stocks 

We assume that the innovations in stock return i is 

௜,௧ାଵݎ  െ ॱ௧ൣݎ௜,௧ାଵ൧ ൌ ௫,௧ାଵݖ௧ߪ௜,௫ߚ ൅ ఙ,௧ାଵݖ௧ݍ௜,ఙߚ ൅ ௤,௧ାଵ. (1.13)ݖ௜,௤߮௤ߚ

Given the expression for the pricing kernel in equation(1.3), the expected stock return can 

be written as 

 
ॱ௧ൣݎ௜,௧ାଵ൧ െ ௙,௧ݎ ൅ 0.5ॽar௧ൣݎ௜,௧ାଵ൧

ൌ ௧ଶߪ௫ߣ௜,௫ߚ ൅ ௧ଶݍఙߣ௜,ఙߚ ൅  .௤߮௤ଶߣ௜,௤ߚ
(1.14)

Thus, the expected stock return is determined by three sources of economic risks: 

economic long-run risk (ߚ௜,௫), economic volatility risk (ߚ௜,ఙሻ, and economic volatility-of- 

volatility risk (ߚ௜,௤). 

 We now use the properties of the aggregate asset prices to characterize the 

macroeconomic risks. First of all, in equilibrium, the market volatility-of-volatility risk, 

which is the return covariance with respect to variance of market variance, is solely 

determined by the economic volatility-of-volatility risk (ߚ௜,௤), i.e. 

 ԧov௧ൣݎ௜,௧ାଵ, ܳ௠,௧ାଵ൧ ൌ ொ,௤߮௤ଶ. (1.15)ߚ௜,௤ߚ

Furthermore, the return sensitivities with respect to market variance and with respect to 

market return provide additional information for the economic volatility risk and the long-

run risk; that is,  

 ԧov௧ൣݎ௜,௧ାଵ, ௠ܸ,௧ାଵ൧ ൌ ௧ଶݍ௏,ఙߚ௜,ఙߚ ൅ ௏,௤߮௤ଶ, (1.16)ߚ௜,௤ߚ

 ԧov௧ൣݎ௜,௧ାଵ, ௠,௧ାଵ൧ݎ ൌ ௧ଶߪ௠,௫ߚ௜,௫ߚ ൅ ௧ଶݍ௠,ఙߚ௜,ఙߚ ൅ ௠,௤߮௤ଶ. (1.17)ߚ௜,௤ߚ

Substituting out the economic risks in (1.14) with (1.15), (1.16) and (1.17) gives us 
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the market-based three-factor model: 

 

ॱ௧ൣݎ௜,௧ାଵ൧ െ ௙,௧ݎ ൅ 0.5ॽar௧ൣݎ௜,௧ାଵ൧

ൌ ,௜,௧ାଵݎ௠ԧov௧ൣߣ ௠,௧ାଵ൧ݎ ൅ ,௜,௧ାଵݎ௏ԧov௧ൣߣ ௠ܸ,௧ାଵ൧

൅ ,௜,௧ାଵݎொԧov௧ൣߣ ܳ௠,௧ାଵ൧, 

(1.18)

where ߣ௠ ൌ
௫ߣ
௠,௫ߚ

, ௏ߣ ൌ
ఙߣ െ ௠,ఙߚ௠ߣ

௏,ఙߚ
, ொߣ ൌ

௤ߣ െ ௏,௤ߚ௏ߣ െ ௠,௤ߚ௠ߣ

ொ,௤ߚ
. (1.19)

Thus, the expected stock return is now determined by three sources of risks related to 

aggregate asset prices. The first term measures the market risk of classical capital asset 

pricing model (CAPM; Sharpe, 1964; Lintner, 1965). The second term corresponds to the 

aggregate volatility risk of Ang, Hodrick, Xing, and Zhang (2006). The last term, which 

is the main focus of this paper, measures the aggregate volatility of volatility risk. The 

resulting three risk prices in our market-based model, ߣ௠, ߣ௏, and ߣொ, are related to the 

three economic risk prices with a linear transformation. 

The market-based model developed in this paper has several advantages. First, 

financial data provide useful information because asset prices tell us how market 

participants value risks. Moreover, financial data convey information to public in a timely 

fashion. Hence, the empirical design of our model is compatible with a large literature of 

multi-factor model explaining cross-sectional monthly stock returns (see, for instance, 

Fama and French, 1993; Ang, Hodrick, Xing, and Zhang, 2006; Maio and Santa-Clara, 

2012; among others).  

It is constructive to establish the individual variance risk premiums under the 

proposed model. The conditional variance of the time ݐ to ݐ ൅ 1 return of stock i (ݎ௜,௧ାଵ) 

and the innovations in conditional variance i can be expressed as  
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௜ܸ,௧ ≡ ॽar௧ൣݎ௜,௧ାଵ൧ ൌ ௜,௫ߚ

ଶ ௧ଶߪ ൅ ௜,ఙߚ
ଶ ௧ଶݍ ൅ ௜,௤ߚ

ଶ ߮௤ଶ 

௜ܸ,௧ାଵ െ ॱ௧ൣ ௜ܸ,௧ାଵ൧ ൌ ௜,ఙߚ
௏ ఙ,௧ାଵݖ௧ݍ ൅ ௜,௤ߚ

௏ ߮௤ݖ௤,௧ାଵ 
(1.20)

where ߚ௜,ఙ
௏ ൌ ௜,௫ߚ

ଶ  and ߚ௜,௤
௏ ൌ ௜,ఙߚ

ଶ . It follows that  

 ܸܴ ௜ܲ,௧ ≡ ॱ௧
ℚൣ ௜ܸ,௧ାଵ൧ െ ॱ௧ൣ ௜ܸ,௧ାଵ൧ ൌ െߣఙߚ௜,ఙ

௏ ௧ଶݍ െ ௜,௤ߚ௤ߣ
௏ ߮௤ଶ, (1.21)

which suggests that the individual variance risk premiums are determined by the 

conditional variance’s betas with respect to the economic volatility risk (ߚ௜,ఙ
௏ ሻ and with 

respect to the economic volatility-of-volatility risk (ߚ௜,௤
௏ ).  

To derive a market-based variance risk premium model, we consider the variance 

sensitivities with respect to market variance and with respect to market volatility-of-

volatility, which in the equilibrium are given by 

 ԧov௧ൣ ௜ܸ,௧ାଵ, ܳ௠,௧ାଵ൧ ൌ ௜,௤ߚ
௏ ொ,௤߮௤ଶ, (1.22)ߚ

 ԧov௧ൣ ௜ܸ,௧ାଵ, ௠ܸ,௧ାଵ൧ ൌ ௜,ఙߚ
௏ ௧ଶݍ௏,ఙߚ ൅ ௜,௤ߚ

௏ ௏,௤߮௤ଶ. (1.23)ߚ

Similarly, substituting out the economic risks in (1.21) with (1.22) and (1.23) gives us 

the market-based two-factor model for the individual variance risk premium: 

 ܸܴ ௜ܲ,௧ ൌ െߣ௏
௏ԧov௧ൣ ௜ܸ,௧ାଵ, ௠ܸ,௧ାଵ൧ െ ொߣ

௏ԧov௧ൣ ௜ܸ,௧ାଵ, ܳ௠,௧ାଵ൧, (1.24)

where ߣ௏
௏ ൌ

ఙߣ
௏,ఙߚ

and	ߣொ
௏ ൌ

௤ߣ െ ௏ߣ
௏ߚ௏,௤

ொ,௤ߚ
. (1.25)

Therefore, the individual variance risk premium is now determined by two sources of 

risks related to aggregate asset prices. The first term corresponds to the variance beta of 

Carr and Wu (2009). The second term measures the risk that individual stock volatility 

co-moves with the aggregate volatility of volatility. The resulting two risk prices 

associated with the individual variance risk premium, ߣ௏
௏ and ߣொ

௏ , are also related to the 
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corresponding economic risk prices, ߣఙ and ߣ௤, with a linear transformation. 

 Our model implies that the three aggregate asset prices are inter-dependent and so 

are the market-based risks in the individual expected return and variance risk premium. 

Moreover, the risk prices for the high moments are offset by the risk prices for the low 

moments. While this property is interesting, it also complicates the task of distinguishing 

the relative impacts from the underlying sources of risks. Nevertheless, our market-based 

model can be alternatively implemented using orthogonalized aggregate asset prices as 

risk factors. Define ෨ܳ௠,௧ାଵ ൌ ܳ௠,௧ାଵ , ෨ܸ௠,௧ାଵ ൌ ௠ܸ,௧ାଵ െ ॱൣ ௠ܸ,௧ାଵ|ܳ௠,௧ାଵ൧ , and  

௠,௧ାଵݎ̃ ൌ ௠,௧ାଵݎ െ ॱൣݎ௠,௧ାଵ| ௠ܸ,௧ାଵ, ܳ௠,௧ାଵ൧ . Thus, each of the market-based risks is 

directly linked to the counterpart of the underlying economic risks. In which case, the 

expected stock return is represented by ߣ෨௠ԧov௧ൣݎ௜,௧ାଵ, ௠,௧ାଵ൧ݎ̃ ൅

,௜,௧ାଵݎ෨௏ԧov௧ൣߣ ෨ܸ௠,௧ାଵ൧ ൅ ,௜,௧ାଵݎ෨ொԧov௧ൣߣ ෨ܳ௠,௧ାଵ൧  and the individual variance risk 

premium can also be expressed by ߣ෨௏ԧov௧ൣ ௜ܸ,௧ାଵ, ෨ܸ௠,௧ାଵ൧ ൅ ෨ொԧov௧ൣߣ ௜ܸ,௧ାଵ, ෨ܳ௠,௧ାଵ൧ . 

Thus, the resulting risk prices preserve the sign of the original economic risk prices; that 

is, ߣ෨௠ ൌ ௫ߣ ⁄௠,௫ߚ , ෨௏ߣ ൌ ఙߣ ⁄௏,ఙߚ , ෨ொߣ ൌ ௤ߣ ⁄ொ,௤ߚ . 

 

1.3   Estimation of variance of market variance 

In previous section, we propose a market-based three-factor model, which requires 

the information of market return, market variance, and variance of market variance. To 

proxy for the first two factors, we use CRSP value-weighted market index and CBOE 

VIX index, which have been widely used in the literature ( see, for example, Ang, Hodrick, 

Xing, and Zhang, 2006; Chang, Christoffersen, and Jacobs, 2013; Bollerslev, Tauchen, 

and Zhou, 2009; among others). In this study, we estimate the variance of market variance 

by calculating the realized bipower variation from a series of five-minute model-free 
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implied variances, using the high-frequency S&P 500 index option data. The details of 

our empirical settings are described as follows. 

First of all, we extract the model-free implied variance, using the spanning 

methodology proposed by Carr and Madan (2001), Bakshi and Madan (2000), Bakshi, 

Kapadia, and Madan (2003), and Jiang and Tian (2005). Bakshi, Kapadia, and Madan 

(2003) show that the price of a ߬ -maturity return variance contract, which is the 

discounted conditional expectation of the square of market return under the risk-neutral 

measure, can be spanned by a collection of out-of-money call options and out-of-money 

put options,  

 

௧ܸ

_
ሺ߬ሻ ≡ ॱ௧

ℚ ቈeି௥೑,೟Log ൤
ܵ௧ାఛ
ܵ௧

൨
ଶ

቉

ൌ න
2ሺ1 െ logሾܭ ܵ௧⁄ ሿሻ

ଶܭ

ஶ

ௌ೟

;ܭ௧ሺܥ ߬ሻ ܭ݀

൅ න
2ሺ1 ൅ logሾܭ ܵ௧⁄ ሿሻ

ଶܭ

ௌ೟

଴
௧ܲሺܭ; ߬ሻ  ,ܭ݀

(1.26)

where ܥ௧ሺܭ; ߬ሻ  and ௧ܲሺܭ; ߬ሻ  are the prices of European calls and puts at time ݐ 

written on the underlying stock with strike price K and expiration date at ݐ ൅ τ. The 

conditional variance of market return can be calculated by 

௧ሺ߬ሻܸܫ  ൌ e௥೑,೟ ௧ܸ

_
ሺ߬ሻ െ ,௧ሺ߬ሻଶߤ  (1.27)

where ߤ௧ሺ߬ሻ satisfies the risk-neutral valuation relationship, which is related to the first 

four risk-neutral moments of market returns as described in equation (39) of Bakshi, 

Kapadia, and Madan (2003). 

 Second, we use the model-free realized bipower variance, introduced by Bardorff-

Nielsen and Shephard (2004), to estimate the variance of market variance. Define the 

intraday stock return as ݎ௧ାଵ,௝ ≡ logሾܵ௧ା௝ ெ⁄ ሿ െ logሾܵ௧ାሺ௝ିଵሻ ெ⁄ ሿ	, ݆ ൌ 1, . . . ,  where M ,ܯ
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is the sampling frequency per trading day. Bardorff-Nielsen and Shephard (2004) study 

two measures of realized variations; the first one is the realized variation, ܴ ௧ܸାଵ, and the 

second one is the bipower variation, ܤ ௧ܸାଵ: 

 ܴ ௧ܸାଵ ൌ෍ ௧ାଵ,௝ݎ
ଶ

ெ

௝ୀଵ
, (1.28)

 

 
ܤ ௧ܸାଵ ൌ

ߨ
2
൬

ܯ
ܯ െ 1

൰෍ หݎ௧ାଵ,௝หหݎ௧ାଵ,௝ିଵห
ெ

௝ୀଶ
. (1.29)

Andersen, Bollerslev, and Diebold (2002) show that the realized variance converges to 

the integrated variance plus the jump contributions, i.e.  

 ܴ ௧ܸାଵ
ெ→ஶ
ሱۛ ሮۛ න ሻݏଶሺߪ ݏ݀

௧ାଵ

௧
൅෍ ௧ାଵ,௝ܬ

ଶ
ே೟శభ

௝ୀଵ
, (1.30)

where ௧ܰାଵ is the number of return jumps within day t+1 and ܬ௧ାଵ,௝
ଶ  is the jump size. 

Moreover, Bardorff-Nielsen and Shephard (2004) show that  

ܤ  ௧ܸାଵ
ெ→ஶ
ሱۛ ሮۛ න ሻݏଶሺߪ ݏ݀

௧ାଵ

௧
. (1.31)

In other words, bipower variation provides a consistent estimator of the integrated 

variance solely for the diffusion part. 

 Our measure for variance of market variance is estimated from a series of five-

minute based model-free implied variances. The intraday model-free implied variances 

are calculated using equation (1.27), which is denoted as ܫ ௧ܸା௝ ெ⁄ ሺ߬ሻ, ݆ ൌ 1, . . . ,  .ܯ

Since the process of market variance is a (semi-)martingale, we apply the bipower 

variation formula on the changes in annualized model-free implied variances and obtain 

a measure for variance of market variance: 
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݋ܸ  ௧ܸାଵሺ߬ሻ ൌ
ߨ
2
൬

ܯ
ܯ െ 1

൰෍ หݒ߂௧ାଵ,௝ሺ߬ሻหหݒ߂௧ାଵ,௝ିଵሺ߬ሻห
ெ

௝ୀଶ
 (1.32)

where Δv௧ାଵ,௝ሺ߬ሻ ≡
ଷ଺ହ

ఛ
ܫൣ ௧ܸା௝ ெ⁄ ሺ߬ሻ െ ܫ ௧ܸାሺ௝ିଵሻ ெ⁄ ሺ߬ሻ൧	 . In this way, our empirical 

results will not be affected by the volatility jumps (or the return jumps embedded in the 

volatility). 

 

1.4   Data and descriptive statistics 

1.4.1   Data description 

We use the tick-by-tick quoted data on S&P 500 index (SPX) options from CBOE’s 

Market Data Report (MDR) tapes over the time period from January 1996 to December 

2010. The underlying SPX prices are also provided in the tapes. We obtain daily data 

from OptionMetrics for equity options and S&P 500 index options. We use the Zero Curve 

file, which contains the current zero-coupon interest rate curve, and the Index Dividend 

file, which contains the current dividend yield, from OptionMetrics to calculate the 

implied volatility for each tick-by-tick data from CBOE’s MDR tapes. Daily and monthly 

stock return data are from CRSP while intraday transactions data are from TAQ data sets. 

Financial statement data are from COMPUSTAT. Fama and French (1993) factors and 

their momentum UMD factor are obtained from the online data library of Ken French.9 

VIX index is obtained from the website of CBOE.10 While we use the ‘new’ VIX index to 

calculate the market variance risk premium as proposed by Bollerslev, Tauchen, and Zhou 

(2009), we also use the ‘old’ VIX, which is based on the S&P 100 options and Black–

Scholes implied volatilities, as our volatility factor, following Ang, Hodrick, Xing, and 

                                                       
9  http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 
10  http://www.cboe.com/micro/vix/historical.aspx 
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Zhang (2006). We use the index option prices from the Option Price file to replicate the 

market skewness factor and the market kurtosis factor of Chang, Christoffersen, and 

Jacobs (2013). 

We follow the literature (see, for example, Jiang and Tian 2005; Chang, 

Christoffersen, and Jacobs, 2013; among others) to filter out index option prices that 

violate the arbitrage bounds.11 We also eliminate in-the-money options (e.g. put options 

with K/S>1.03 and call options with K/S<1.03) because prior study suggests that they are 

less liquid. We use the daily SPX low and high prices, downloaded from Yahoo Finance,12 

to filter out the MDR data that are outside the [low, high] interval.  

For the computation of the market volatility-of-volatility, we first partition the tick-

by-tick S&P500 index options data into five-minute intervals. For each maturity within 

each interval, we linearly interpolate implied volatilities for a fine grid of one thousand 

moneyness levels (K/S) between 0.01% and 300%13 and use equations (1.26) and (1.27) 

to estimate the model-free implied variance. We then use linearly interpolate maturities 

to obtain the estimate at a fixed 30-day horizon. For each day, our measure for market 

volatility-of-volatility (VoV) is calculated by using the bipower variation formula of 

equation (1.32) with the 81 within-day five-minute annualized 30-day model-free 

implied variance estimates covering the normal CBOE trading hours from 8:30 a.m. to 

3:15 p.m. Central Time.  

The market variance risk premium (ܸܴ ௠ܲ,௧ ), following Bollerslev, Tauchen, and 

Zhou (2009), is defined as the difference between the ex-ante implied variance (ܫ ௠ܸ,௧) 

                                                       
11 Moreover, we eliminate all observations for which the ask price is lower than the bid price, the bid price 
is equal to zero, or the average of the bid and ask price is less than 3/8. 
12 http://finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices  
13 For moneyness levels below or above the available moneyness level in the market, we use the implied 
volatility of the lowest or highest available strike price. 
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and the ex-post realized variance (ܴܸ௠,௧), i.e. ܸܴ ௠ܲ,௧ ≡ ܫ ௠ܸ,௧ െ ܴ ௠ܸ,௧. We focus on a 

fixed maturity of 30 days. Market implied variance (ܫ ௠ܸ,௧) is measured by the squared 

‘new’ VIX index divided by 12. Summation of SPX five-minute squared logarithmic 

returns are used to calculate the market realized variance (ܴܸ௠,௧ ). With eighty five- 

minute intervals per trading day and the overnight return, we construct the daily market 

realized variance, using a rolling window of 22 trading days starting from the current day.  

We construct the individual model-free implied variance (ܫ ௜ܸ,௧) using equity options 

data from the Volatility Surface file that provides Black-Scholes implied volatilities for 

options with standard maturities and delta levels. The individual implied variance is 

estimated by applying the same methodology that we use for the index options on the 

equity options data with 30-day maturity.  

To compute the individual realized variance (ܴ ௜ܸ,௧), we extract from TAQ database 

the intraday transaction and quote data within the normal trading hours from 9:30 a.m. to 

4:00 p.m. Eastern Time. We first adopt the step-by-step cleaning procedures proposed by 

Bardorff-Nielsen, Hansen, Lunde, and Shephard (2009) to screen the TAQ high 

frequency data,14 and then we follow Sadka (2006) to remove quotes in which the quoted 

spread is more than 25% and remove trades in which the absolute value of one-tick return 

is more than 25%. The resulting 78 five-minute trades and quotes per trading day in a 

rolling window of 22 trading days are separately used to calculate the trade-based daily 

individual realized variance (ܴ ௜ܸ,௧
் ) and the quote-based daily individual realized variance 

(ܴ ௜ܸ,௧
ொ ). To avoid the effect from stale prices in trades or in quotes, we further require that 

the both the number of five-minute trades and that of quotes in the 22-day rolling window 

                                                       
14 We apply the rules of P1, P2, P3, Q1, Q2, T1, T2, and T3 as described in the section 3.1 of Bardorff-
Nielsen, Hansen, Lunde, and Shephard (2009) to carry out the cleaning procedures. 



24 
 

should be more than 78×11=858. To conserve space, we will focus on the trade-based 

realized variance, i.e. ܴ ௜ܸ,௧ ൌ ܴ ௜ܸ,௧
் , while the results for the quote-based measure are 

available upon request.  

We estimate the monthly expected individual variance risk premium (ܴܸܧ ௜ܲ,௧ ) 

through a forecast model. We adopt a linear forecast model, following Drechsler and 

Yaron (2011) and Han and Zhou (2012), to estimate the expected realized variance (ܴܧ ௜ܸ,௧) 

with the lagged realized variance and the lagged model-free implied variance measured 

at the end of the month.15 Thus, the expected individual variance risk premium is defined 

as ܴܸܧ ௜ܲ,௧ ൌ ܫ ௜ܸ,௧ െ ܴܧ ௜ܸ,௧. 

To implement our empirical model, we construct innovations in market moments. 

First, following Ang, Hodrick, Xing, and Zhang (2006), innovations in market volatility 

௧ାଵܺܫܸ߂ .ሻ is measured by its first order difference, i.eܺܫܸ߂) ൌ ௧ାଵܺܫܸ െ  ,௧. Changܺܫܸ

Christoffersen, and Jacobs (2013) indicate that taking the first difference is appropriate 

for VIX, whereas an ARMA(1,1) model is need to remove the autocorrelation in the their 

skewness and kurtosis factors. Following their approach, the innovations in market 

volatility-of-volatility (ܸ݋ܸ߂ሻ is computed as the ARMA(1,1) model residuals of the 

market volatility-of-volatility.  

 

1.4.2   Descriptive statistics 

The daily measure of VoV is plotted in Figure 1. 1. There are clear spikes on the 

graph—the Asian financial crisis in1997, the LTCM crisis in1998, September11, 2001, 

                                                       
15 Specifically, for stock i, we run the regression: ܴ ௜ܸ,௧ାଵ ൌ ߙ ൅ ܫ଴ߚ ௜ܸ,௧ ൅ ଵܴߚ ௜ܸ,௧ and defined the fitted 
value as ܴܧ ௜ܸ,௧, i.e. ܴܧ ௜ܸ,௧ ≡ ܴ෢ܸ௜,௧ାଵ ൌ ොߙ ൅ ܫመ଴ߚ ௜ܸ,௧ ൅ መଵܴߚ ௜ܸ,௧. 
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the WorldCom and Enron bankruptcies in 2001 and 2002, subprime loan crisis in 2007, 

the recent financial crisis in 2008, and the flash crash in 2010.   

Table 1.1 reports descriptive statistics for the daily factors used in this paper. In our 

sample, the mean of 30-day market variance risk premium (VRP) is 17.260 (in 

percentages squared), which is slightly smaller than 18.3 in Bollerslev, Tauchen, and 

Zhou’s (2010) sample. The mean of VoV is 0.054%, which is much smaller than its 

standard deviation, 0.563%. The mean of SKEW is -1.663 and the mean of KURT is 9.313. 

Thus, the risk-neutral distribution of the market return is asymmetric and has fat tails.  

Panel B reports the Spearman correlations between factors, including the excess 

market return (MKT), the Fama and French (1993) SMB and HML factors, the momentum 

factor (UMD), the changes in VIX (ΔVIX; Ang, Hodrick, Xing, and Zhang, 2006), 

innovations in VoV (ΔVoV), and Chang, Christoffersen, and Jacobs (2013) innovations in 

market skewness factor (ΔSKEW) and market kurtosis factor (ΔKURT). As expected, 

MKT is negatively correlated with both ΔVIX (-0.779) and ΔVoV (-0.044), supporting the 

leverage effect predicted by our model. Moreover, VRP is positively correlated with ΔVoV 

(0.145), consistent with our theory that the variance risk premium and the market 

volatility-of-volatility are both driven by the economic volatility-of-volatility. ΔKURT 

and ΔSKEW are highly correlated with a correlation value of -0.863, which is comparable 

to -0.83 reported by Chang, Christoffersen, and Jacobs (2013). ΔVoV shows little 

correlation with ΔVIX (0.049), ΔSKEW (-0.017), and ΔKURT (-0.010), which suggests 

that ΔVoV should be an independent state variable that cannot be explained by these 

market moments studied in the literature.  
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1.5   Pricing volatility-of-volatility risk in the cross-sectional 

stock returns 

This section examines how market volatility-of-volatility risk affects cross-sectional 

average returns. Based on our market-based three-factor model with their empirical 

proxies, at the end of each month, we estimate the regression for each stock i using daily 

returns:  

 
௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ௜ߙ ൅ ௧ାଵܶܭܯ௜,ெ௄்ߚ ൅ ௧ାଵܺܫܸ߂௜,௏ூ௑ߚ

൅ ௧ାଵܸ݋ܸ߂௜,௏௢௏ߚ ൅  .௜,௧ାଵߝ
(1.33)

We construct a set of testing assets that are sufficiently disperse in exposure to aggregate 

volatility-of-volatility innovations by sorting firms on ߚ௜,௏௢௏  loadings over the past 

month using the regression (1.33) with daily data. Our empirical model is an extension 

of Ang, Hodrick, Xing, and Zhang (2006). Following their work, we run the regression 

for all common stocks on NYSE, AMEX, and NASDAQ with more than 17 daily 

observations. After the portfolio formation, we calculate the value-weighted daily and 

monthly stock returns for each portfolio. If market volatility-of-volatility is a priced risk 

factor, we should expect to see a monotonic decreasing pattern in the portfolio returns. 

 

1.5.1   Portfolios sorted on market volatility-of-volatility risk 

Table 1.2 provides the performance of portfolios sorted on ߚ௜,௏௢௏. Stocks are sorted 

into quintile portfolios based on ߚ௜,௏௢௏ , from the lowest (quintile 1) to the highest 

(quintile 5). Consistent with the model, we find that stocks with positive return 

sensitivities to market volatility-of-volatility (quintile 5) have lower stock returns than 

stocks with negative return sensitivities (quintile 1) by 0.88 percent per month with t- 
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statistic of -2.32. Controlling for Fama and French four factor model, the ‘5-1’ long-short 

portfolio still gives a significant alpha of -0.96 percent per month with a t-statistic of -

2.59. 

To check whether our results are robust to firm characteristics, Table 1.3 shows 

performance of portfolios sorted on ߚ௜,௏௢௏, controlling for market capitalization (Size), 

book-to-market ratio (B/M), past 11-month returns (RET_2_12), past 1-month returns 

(RET_1), and Amihud’s illiquidity (ILLIQ), respectively. We first sort stocks into five 

quintiles based Size. Then, within each quintile, we sort stocks based on their ߚ௜,௏௢௏ 

loadings into five portfolios. All portfolios are rebalanced monthly and are value weighted. 

The five portfolios sorted on ߚ௜,௏௢௏ are then averaged over each of the five Size sorted 

portfolios, resulting ߚ௜,௏௢௏  quintile portfolios controlling for Size. B/M, RET_2_12, 

RET_1, and ILLIQ are analyzed with the same procedure as described above. The Fama 

and French four factor alpha of the ‘5-1’ long–short portfolio remains significant 

controlling for these four variables, i.e. at -0.45 percent with a t-statistic of -2.14 

controlling for Size, at -0.88 percent with a t-statistic of -3.15 controlling for B/M, at -

0.52 percent with a t-statistic of -2.12 controlling for RET_2_12, at -0.61 percent with a 

t-statistic of -2.06 controlling for RET_1, and at -0.53 percent with a t-statistic of -2.30 

controlling for ILLIQ. Hence, the low returns to high ߚ௜,௏௢௏ stocks are not completely 

driven by the existing well-known firm characteristics.  

 

1.5.2   Portfolios sorted on market volatility risk 

Table 1.4 provides the performance of portfolios sorted on ߚ௜,௏ூ௑, using the same 

approach as on ߚ௜,௏௢௏ . We find evidence consistent with Ang, Hodrick, Xing, and 

Zhang’s (2006) findings that there is a significant difference of -0.87 percent per month 
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with a t-statistic of -2.17 between the stock returns with high volatility risk and the stocks 

with low volatility risk. Controlling for Fama and French four factor model, the ‘5-1’ 

long-short portfolio gives a significant alpha of -1.18 percent per month with a t-statistic 

of -3.24. 

Table 1.5 considers two-way sorted portfolios on ߚ௜,௏ூ௑ and ߚ௜,௏௢௏. We sort stocks 

into quintile portfolios based on ߚ௜,௏ூ௑ , from the lowest (quintile 1) to the highest 

(quintile 5), and independently sort stocks into quintile portfolios based on ߚ௜,௏௢௏. The 

five portfolios sorted on ߚ௜,௏ூ௑ are then averaged over each of the five ߚ௜,௏௢௏ portfolios, 

resulting ߚ௜,௏ூ௑ quintile portfolios controlling for ߚ௜,௏௢௏. Similar approach gives ߚ௜,௏௢௏ 

quintile portfolios controlling for ߚ௜,௏ூ௑. Controlling for volatility risk loadings (ߚ௜,௏ூ௑), 

we still find market volatility-of-volatility risk carries a statistically significant return 

differential of -0.97 percent per month with a t-statistic of -2.84. On the other hand, 

controlling for market volatility-of-volatility risk loadings (ߚ௜,௏௢௏ሻ, we find that the return 

difference between stocks with high volatility risk and stocks with low volatility risk is 

still large in magnitude, at -0.68 percent per month with t-value of -1.94. Thus, the 

valuation effect of market volatility-of-volatility risk is not affected after controlling for 

௜,௏ூ௑ߚ , suggesting that the market volatility-of-volatility risk is a pricing factor 

independent with the aggregate volatility factor. 

 

1.5.3   Portfolios sorted on market skewness risk 

At the end of each month, we estimate the model of Chang, Christoffersen, and 

Jacobs (2013) with ex ante higher moments of market returns for each stock i:  
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௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ௜ߙ ൅ ௧ାଵܶܭܯ௜,ெ௄்ߚ ൅ ௧ାଵܺܫܸ߂௜,௏ூ௑ߚ

൅ ௧ାଵܹܧܭܵ߂௜,ௌ௄ாௐߚ ൅ ௧ାଵܴܷܶܭ߂௜,௄௎ோ்ߚ ൅  .௜,௧ାଵߝ
(1.34)

We sort stocks into quintile portfolios based on ߚ௜,ௌ௄ாௐ, from the lowest (quintile 1) to 

the highest (quintile 5), and we also independently sort stocks into quintile portfolios 

based on ߚ௜,௏௢௏.  

Panel A of Table 1.6 provides the performance of portfolios sorted on ߚ௜,ௌ௄ாௐ. We 

find that there is a significant difference of -0.65 percent per month with a t-statistic of -

1.99 between the stock returns with high skewness risk and the stocks with low skewness 

risk. Controlling for Fama and French four factor model, the ‘5-1’ long-short portfolio 

gives a significant alpha of -0.75 percent per month with a t-statistic of -2.28.  

Panel B shows the results for the ߚ௜,ௌ௄ாௐ quintile portfolios controlling for ߚ௜,௏௢௏ 

quintile portfolios. Controlling for market volatility-of-volatility risk loadings (ߚ௜,௏௢௏), 

we find the market skewness risk premium is much weaker, carrying a statistically 

insignificant return differential of -0.33 percent per month with a t-statistic of -1.17. On 

the other hand, as reported in Panel C, controlling for market skewness risk loadings 

௜,௏௢௏ሻߚ) , we find that the ‘5-1’ long-short portfolio still gives a significant return 

differential of -0.82 percent per month with a t-statistic of -2.38. In summary, the market 

skewness risk is less likely to explain the market volatility-of-volatility risk, whereas part 

of the skewness return differential can be explained by the market volatility-of-volatility 

risk. 

 

1.5.4   Market price of volatility-of-volatility risk  

We apply the two-pass regressions of Fama-MacBeth (1973) to estimate the price of 

market volatility-of-volatility risk. Our set of test assets are the 25 portfolios formed on 
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intersection of ߚ௜,௏ூ௑  quintile portfolios and ߚ௜,௏௢௏  quintile portfolios. For each 

portfolio, we estimate the time-series regression of equation (1.33) using the post-

formation daily value-weighted portfolio returns to obtain the post-formation factor 

loadings. We then conduct the cross-sectional regression: 

 	ॱൣݎ௣൧ െ ௙ݎ ൌ ௣,ெ௄்ߚெ௄்ߣ ൅ ௣,௏ூ௑ߚ௏ூ௑ߣ ൅ ௣,௏௢௏. (1.35)ߚ௏௢௏ߣ

The dependent variable is the monthly value-weighted portfolio return and the 

independent variables are the post-ranking return betas estimated from equation (1.33) 

using full-sample daily portfolio returns. Robust Newey and West (1987) t-statistics with 

six lags that account for autocorrelations are used. The cross-sectional regression gives 

the estimates of risk prices, i.e. ߣெ௄், ߣ௏ூ௑, and ߣ௏௢௏. 

Panel A of Table 1.7 reports the estimate of risk prices from the 25 portfolios sorted 

on ߚ௜,௏ூ௑  and ߚ௜,௏௢௏ . In column [2], we find that ߣ௏௢௏  is negative (-4.11) with a 

significant t-statistic of -3.27. Controlling for the market volatility risk, as reported in 

column [3], ߣ௏௢௏ is still significantly negative (-3.66) with a t-statistic of -2.35, which 

accounts for -3.66×0.21= -0.77 percent per month of the ‘5-1’ return in Table 1.2. 

Controlling for all of the other factors, as shown in column [6], ߣ௏௢௏  remains 

significantly negative (-3.62) with a t-statistic of -2.68, which accounts for -3.62×0.21= -

0.76 percent. In contrast, ߣ௏ூ௑ is only significant in column [1], with t-value of -3.29. 

Thus, our empirical findings suggest that market volatility-of-volatility indeed is an 

independently priced risk factor relative to aggregate volatility factor.  

 In Panel B, we the estimate of risk prices from the 25 portfolios sorted on intersection 

of ߚ௜,ௌ௄ாௐ quintile portfolios and ߚ௜,௏௢௏ quintile portfolios. Consequently, the testing 

assets are sufficiently disperse in the exposure to aggregate volatility-of-volatility as well 

as in the exposure to aggregate skewness. In column [2], we find that ߣ௏௢௏ is negative 
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(-2.07) with a significant t-statistic of -1.77. As shown in column [6], ߣ௏௢௏  is 

significantly negative (-1.86) with a t-statistic of -1.75, whereas ߣௌ௄ாௐ is positive (2.76) 

with insignificant t-statistic of 1.36. Therefore, relative to the market skewness factor, the 

variance of market variance remains a priced risk factor.  

 

1.5.5   Leverage effect, feedback effect and volatility-of-volatility risk 

premium  

To further explore the mechanism that volatility-of-volatility risk affects asset prices, 

we investigate whether the volatility-of-volatility risk contributes to the feedback effect. 

To identify the timely volatility-of-volatility shocks, at the end of each day, we estimate 

the regression of equation (1.33) using daily stock returns over the past 22 days. We then 

sort stocks into quintile portfolios on the estimated ߚ௜,௏௢௏ for each day and calculate the 

event-time daily value-weighted portfolio returns ranging from -11 to 11 in days.  

If market volatility-of-volatility is priced, an anticipated increase in market 

volatility-of-volatility raises the required rate of return, implying an immediate stock 

price decline and higher future returns. As shown in Figure 1. 2, consistent with the 

channel of feedback effect, stocks with negative return sensitivities to market volatility-

of-volatility have lower returns before the portfolio formation and earn higher post-

formation returns than stocks with positive return sensitivities. 

We construct a portfolio that is long the lowest quintile and short the highest quintile 

and we denote the portfolio as low-minus-high. The low-minus-high portfolio has, by 

construction, large negative exposure to innovations in market volatility-of-volatility. The 

theory of the leverage effect and the feedback effect predict an asymmetric cross-
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correlation between the aggregate volatility and the pre-formation and the post-formation 

low-minus-high returns.  

As can be seen in the top panel of Figure 1. 3, the pre-formation low-minus-high 

returns are negatively correlated with VIX measured at the portfolio formation date while 

the correlations between VIX and the post-formation low-minus-high returns are positive, 

supporting the leverage effect and the feedback effect associated with the aggregate 

volatility.  

Moreover, our theory for the leverage effect and the feedback effect similarly 

predicts an asymmetric cross-correlation between market volatility-of-volatility and the 

pre-formation and the post-formation low-minus-high returns. As can be seen in the 

bottom panel of Figure 1. 3, the low-minus-high return is negatively correlated with VoV 

at the portfolio formation date while the correlation between VoV and one-day post-

formation low-minus-high return is positive. The market volatility-of-volatility carries a 

negative contemporaneous correlation of -0.232, which is much larger in magnitude than 

-0.057 for the contemporaneous leverage effect associated with market volatility. The 

correlation between one-day post-formation low-minus-high return and market volatility-

of-volatility is 0.100, which is larger than 0.060 for the correlation between the return and 

the market volatility. The stronger asymmetric cross-correlation, despite less persistent, 

supports the leverage effect and the feedback effect associated with market volatility-of-

volatility. Therefore, market volatility-of-volatility seems to be the state variable that 

determines the time-varying risk premium.  

 

1.5.6   Robustness to volatility spreads 

In this section, we check whether our results are robust to existing well-known 

volatility spreads that affect cross-sectional stock returns. We construct the implied-
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realized volatility spread (IVOL-TVOL), which is, as described in Bali and Hovakimian 

(2009), defined as the average of implied volatilities by at-the-money call and put minus 

the total volatility calculated using daily returns in the previous month; the call-put 

implied volatility spread (CIVOL-PIVOL), which is, as described in Bali and Hovakimian 

(2009) and Yan (2011), defined as the at-the-money call implied volatility minus the at-

the-money put implied volatility; the expected individual variance risk premium (EVRP), 

which is, as described in the data section and in Han and Zhou (2012), defined as the 

difference between the model-free implied variance and the five-minute realized variance. 

Since we extract the volatility data from OptionMetrics Volatility Surface file as Yan 

(2011) do, we choose the 30-day maturity put and call options with deltas equal to -0.5 

and 0.5, respectively.  

Panel A of Table 1.8 shows the performance of portfolios sorted on each of the 

volatility spreads as well as on ߚ௜,௏௢௏ using stocks with available equity options. The 

Fama and French four factor alpha of the ‘5-1’ long–short portfolio is 0.63 percent with 

a t-statistic of 1.76 for IVOL-TVOL quintile portfolios, 1.66 percent with a t-statistic of 

6.70 for CIVOL-PIVOL quintile portfolios, 0.96 percent with a t-statistic of -2.21 for 

EVRP quintile portfolios, and -0.85 percent with a t-statistic of -2.38 for ߚ௜,௏௢௏ quintile 

portfolios. Hence, our results for market volatility-of-volatility risk remain significant in 

the options market and consistent with the literature, all of the three volatility variables 

carry significant premium in the cross-section.  

We construct two-way sorted portfolios formed on intersection of each of the 

volatility spread quintile portfolios and ߚ௜,௏௢௏  quintile portfolios. Panel B shows the 

results for the ߚ௜,௏௢௏  quintile portfolios controlling for volatility spread quintile 

portfolios. The Fama and French four factor alpha of the ‘5-1’ long–short portfolio 
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remains significant controlling for these three variables, i.e. at -0.76 percent with a t-

statistic of -2.38 controlling for IVOL-TVOL, at -0.74 percent with a t-statistic of -2.29 

controlling for CIVOL-PIVOL, and at -0.66 percent with a t-statistic of -2.20 controlling 

for EVRP. Hence, the low returns to high ߚ௜,௏௢௏ stocks are not driven by the existing 

well-known volatility spreads.  

 As shown by Yan (2011), CIVOL-PIVOL is proxy for a disaster type jump risk that 

affects the cross-sectional stock returns. Our empirical finding that the pricing of ߚ௜,௏௢௏ 

is robust to CIVOL-PIVOL provides indirect evidence that the market volatility-of-

volatility risk cannot be completely explained by a peso-problem like jump risk.  

 

1.5.7   Robustness to firm-level Fama-MacBeth regressions 

In this section, we examine whether the pricing of market volatility-of-volatility risk 

is robust to the firm-level analysis. We employ individual stocks as the set of test assets 

to avoid potentially spurious results that could arise when the test portfolios are 

constructed toward a specific model (Lewellen, Nagel, and Shanken, 2010). Furthermore, 

a stock-level analysis could increase the power of the test by controlling for several 

individual characteristics at the same time.  

We test our market-based three factor model at firm-level with the following cross-

sectional regression: 

 
௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ܿ଴ ൅ ௜,ெ௄்,௧ߚெ௄்ߣ ൅ ௜,௏ூ௑,௧ߚ௏ூ௑ߣ ൅ ௜,௏௢௏,௧ߚ௏௢௏ߣ

൅ ܿிூோெ	ܿܽݎ݄ܽܥ݉ݎ݅ܨ௜,௧ ൅ ܿ௏ை௅ ௜,௧ܿܽݎ݄ܽܥݕݐ݈݅݅ݐ݈ܽ݋ܸ ൅  ,௜,௧ାଵߝ
(1.36)

where the dependent variable is the monthly individual stock returns; ߚ௜,ெ௄்,௧, ߚ௜,௏ூ௑,௧, 

and ߚ௜,௏௢௏,௧ are post-ranking betas estimated from the same 25 portfolios in section 5.4 

formed on intersection of ߚ௜,௏ூ௑  quintile portfolios and ߚ௜,௏௢௏  quintile portfolios; 
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௜,௧ܿܽݎ݄ܽܥ݉ݎ݅ܨ  consists of Size, B/M, RET_2_12, RET_1, and ILLIQ; and 

 ௜,௧ includes IVOL-TVOL, CIVOL-PIVOL, and EVRP. Robust Neweyܿܽݎ݄ܽܥݕݐ݈݅݅ݐ݈ܽ݋ܸ

and West (1987) t-statistics with six lags that account for autocorrelations are used. 

Following the methodology of Fama and French (1992), we assign each of the 25 

portfolio-level post-ranking beta estimates to the individual stocks within the portfolio at 

that time. Thus, individual stock betas vary over time because the portfolio compositions 

change each month.  

Table 1.9 reports the results from the firm-level Fama-MacBeth regressions. In 

column [2], we find that ߣ௏௢௏ is negative (-3.07) with a significant t-statistic of -4.07. 

Controlling for the market volatility risk, as reported in column [3], ߣ௏௢௏  is still 

significantly negative (-3.07) with a t-statistic of -4.17, which accounts for -3.07×0.21= -

0.65 percent per month of the ‘5-1’ return in Table 1.2. Controlling for all of the other 

variables, as shown in column [6], ߣ௏௢௏ remains significantly negative (-3.12) with a t-

statistic of -2.57, which accounts for -3.62×0.21= -0.66 percent. Thus, the firm-level 

evidence confirms our results that the market volatility-of-volatility is a priced risk factor 

in the cross-sectional stock returns.   

 

1.6   Pricing market volatility-of-volatility in the cross-sectional 

variance risk premium 

The second test in this paper is to examine whether market volatility-of-volatility is 

priced in the cross-sectional variance risk premium. For each stock with available equity 

options in each day, we calculate the 30-day model-free implied variance (ܫ ௜ܸ,௧ାଵ). Then, 

at the end of each month, we estimate the variance beta with respect to market volatility-

of-volatility (ߚ௜,௏௢௏
௏ ) for each stock by regressing the stock’s ܫ ௜ܸ,௧ାଵ on ܸ݋ ௧ܸାଵ over the 
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past month. We use ߚ௜,௏௢௏
௏  to construct a set of test portfolios. Our theory suggests that 

the cross-sectional expected variance risk premium is determined by: 

ܴܸܧ  ௣ܲ ≡ ܫ ௣ܸ െ ܴܧ ௣ܸ ൌ െߣ௏ூ௑
௏ ௣,௏ூ௑ߚ

௏ െ ௏௢௏ߣ
௏ ௣,௏௢௏ߚ

௏ . (1.37)

We estimate ߚ௣,௏ூ௑
௏  and ߚ௣,௏௢௏

௏  by the following time-series regression: 

ܫ  ௣ܸ,௧ାଵ ൌ ௣௏ߙ ൅ ௣,௏ூ௑ߚ
௏ Δܸܫ෪ܺ ௧ାଵ

ଶ ൅ ௣,௏௢௏ߚ
௏ Δܸ݋ ௧ܸାଵ ൅ ௣,௧ାଵߝ

௏ , (1.38)

where ܫ ௣ܸ,௧ାଵ  is the post-formation portfolio implied variance; Δܸܫ෪ܺ ௧ାଵ
ଶ  as the 

innovations in market variance, which is measured as the ARMA(1,1) model residuals of 

squared VIX divided by 12, orthogonalized by ݋ܸ߂ ௧ܸାଵ. While we define ܺܫܸ߂௧ାଵ ൌ

௧ାଵܺܫܸ െ  ௧ for the stock return beta as in Ang, Hodrick, Xing, and Zhang (2006) forܺܫܸ

the compatibility, our variance beta is estimated by Δܸܫ෪ܺ ௧ାଵ
ଶ  for the model consistency. 

Table 1.10 provides the performance of portfolios sorted on ߚ௜,௏௢௏
௏ . Stocks are sorted 

into quintile portfolios based on ߚ௜,௏௢௏
௏ , from the lowest (quintile 1) to the highest 

(quintile 5). After the portfolio formation, we calculate monthly value-weighted expected 

variance risk premium and daily value-weighted model-free implied variance for each 

portfolio. Consistent with the model, we find that stocks with high variance sensitivities 

to market volatility-of-volatility (quintile 5) have higher expected variance risk premium 

than stocks with low variance sensitivities (quintile 1) by 67.7 (in percentages squared) 

per month with t- statistic of -5.15. The magnitude of the cross-sectional difference in 

variance risk premium is large compared to the market variance risk premium, which is 

17.3 (in percentages squared) per month during our sample period. Panel B reports the 

performance of portfolios sorted on ߚ௜,௏ூ௑
௏ . The results are very similar to the portfolios 

sorted on ߚ௜,௏௢௏
௏ . In fact, we find that the cross-sectional Spearman correlation between 
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௜,௏௢௏ߚ
௏  and ߚ௜,௏ூ௑

௏  is 0.99, which is also part of the reason why we use the orthogonalized 

innovations in market variance as risk factor for individual variance.  

We estimate the price of risks in cross-sectional EVRP using the 25 portfolios sorted 

on ߚ௜,௏௢௏
௏ . We apply the two-pass regressions of Fama-MacBeth (1973) to estimate the 

price of market volatility-of-volatility risk in EVRP. After the portfolio formation, we 

calculate monthly value-weighted expected variance risk premium, daily value-weighted 

model-free implied variance, and daily value-weighted stock returns for each portfolio. 

In the first stage, for each portfolio, we estimate the post-ranking variance betas by 

equation (1.38) using daily portfolio implied variance. For the second stage, we regress 

the cross-sectional monthly portfolio EVRP on variance betas obtained from the first stage, 

using Fama–MacBeth (1973) cross-sectional regression by equation (1.37).  

Table 1.11 reports the estimate of risk prices in EVRP from the 25 portfolios sorted 

on ߚ௜,௏௢௏
௏ . In column [2], we find that െߣ௏௢௏

௏  is positive (5.99) with a significant t-

statistic of 5.32. Controlling for the market volatility risk (ߚ௣,௏ூ௑
௏ ), as reported in column 

[3], െߣ௏௢௏
௏  is still significantly positive (5.20) with a t-statistic of 4.04, which accounts 

for 5.20×8.32= 43.3 (in percentages squared) per month of the ‘5-1’ EVRP in Table 1.10. 

Controlling for all of the other factors, as shown in column [6], െߣ௏௢௏
௏  remains 

significantly positive (1.53) with a t-statistic of 2.27, which accounts for 1.53×8.32= 12.7 

(in percentages squared). Thus, our empirical findings suggest that market volatility-of-

volatility is priced risk factor in the cross-sectional variance risk premium. 

 

1.7   Return predictability 

In this section, we check the return predictability afforded by market volatility-of-

volatility. The theoretical model suggests that market volatility-of-volatility is positively 



38 
 

related to economic volatility-of-volatility. Hence, we should expect that our VoV measure 

can predict future stock returns as market variance risk premium does.  

Panel A of Table 1.12 reports the estimates of the one-period return predictability 

regression using daily S&P 500 logarithmic returns multiplied by 22 on the lagged 

variance risk premium (VRP), market volatility-of-volatility (VoV), and innovations in 

market skewness (ΔSKEW). Robust Newey and West (1987) t-statistics with sixteen lags 

that account for autocorrelations are used. Consistent with the theory, we find that VoV 

positively predicts one-period ahead market return in all of the specifications. In panel B, 

we use the monthly S&P 500 logarithmic returns as the dependent variable, and the 

independent variables are sampled at the end of the previous month. Robust Newey and 

West (1987) t-statistics with six lags are used. The predictability afforded by VoV remains 

significant.  

Overall, the return predictability supports the volatility-of-volatility feedback effect 

implied by our model. The evidence for the predictability afforded by the market 

volatility-of-volatility suggests that economic volatility-of-volatility is an important state 

variable that affects the aggregate asset prices.  

 

1.8   Conclusions 

Market volatility-of-volatility appears to be a state variable that is important for asset 

pricing. We develop a market-based three-factor model, in which market risk, market 

volatility risk, and market volatility-of-volatility risk determine the cross-sectional asset 

prices. We find that market volatility-of-volatility risk is priced in the cross-sectional 

stock returns. Stocks with negative larger return exposure to market volatility-of-volatility 

have substantially higher future stock returns, even after we account for exposures to the 
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Fama and French four factors, market skewness factor, firm characteristics and volatility 

characteristics. We also find that market volatility-of-volatility risk is priced in the cross-

sectional variance risk premium. 

Our measure of market volatility-of-volatility generates leverage effect and feedback 

effect. Stocks with negative larger return exposure to market volatility-of-volatility have 

substantially lower contemporaneous stock returns, which suggests that market volatility-

of-volatility is priced such that an anticipated increase in market volatility-of-volatility 

risk raises the required rate of return, leading to an immediate stock price decline and 

higher future returns. Our evidence on return predictability for the aggregate market 

portfolio supports feedback effect implied by our model. The predictability evidence 

afforded by the market volatility-of-volatility also suggests that economic volatility-of-

volatility is an important state variable. 

Our study shows that market volatility-of-volatility risk affects the cross-sectional 

expected variance risk premium. One direction for future research is to explore whether 

market volatility-of-volatility risk plays a role in tradable volatility-related assets such as 

equity option returns or index option returns. Future research could also investigate 

whether our measure of market volatility-of-volatility affects the VIX option returns.
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Table 1. 1:  Properties of the daily factors 
We report summary statistics and Spearman correlations for the daily factors, including Fama and French 

(1993) four factors (MKT, SMB, HML, and UMD), the market variance risk premium (VRP),  the VIX 

index, our measure of variance of market variance (VoV), and Chang, Christoffersen, and Jacobs (2013) 

market skewness factor (SKEW) and market kurtosis factor (KURT). ΔVIX is the first difference of VIX. 

ΔVoV, ΔSKEW, and ΔKURT are the residuals from fitting an ARMA(1,1) regression using VoV, SKEW, and 

KURT, respectively. The sample period is from January 1996 to December 2010. 

 

 Panel A: Summary statistics 

 MKT(%) SMB(%) HML(%) UMD(%) VRP(%) VIX(%) VoV(%) SKEW KURT 

Mean 0.023  0.010  0.016 0.024 17.260 23.098 0.054 -1.663  9.313 

Median 0.070  0.030  0.020 0.070 15.082 22.150 0.003 -1.637  8.672 

Std.Dev. 1.300  0.629  0.682 1.035 21.182 9.509 0.563 0.485  3.466 

          

  Panel B: Spearman correlation 

  MKT SMB HML UMD VRP ΔVIX ΔVoV ΔSKEW ΔKURT

MKT 1.000          

SMB 0.038  1.000         

HML -0.279  -0.082  1.000       

UMD -0.047  0.053  -0.078 1.000      

VRP -0.222  -0.050  0.006 0.062 1.000     

ΔVIX -0.779  0.031  0.210 0.020 0.180 1.000    

ΔVoV -0.044  -0.003  -0.038 0.036 0.145 0.049 1.000   

ΔSKEW -0.237  -0.022  0.026 0.034 0.076 0.248 -0.017  1.000   

ΔKURT 0.311  0.014  -0.057 -0.017 -0.106 -0.307 -0.010  -0.863  1.000 
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Table 1. 2:  Portfolios sorted on ࢂ࢕ࢂ,࢏ࢼ 

At the end of each month, we run the following regression for each stock using daily returns: 

௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ௜ߙ ൅ ௧ାଵܶܭܯ௜,ெ௄்ߚ ൅ ௧ାଵܺܫܸ߂௜,௏ூ௑ߚ ൅ ௧ାଵܸ݋ܸ߂௜,௏௢௏ߚ ൅  .௜,௧ାଵߝ

We sort stocks into quintile portfolios based on ߚ௜,௏௢௏, from the lowest (quintile 1) to the highest (quintile 

5). After the portfolio formation, we calculate the value-weighted daily and monthly stock returns for each 

portfolio. The column “5-1” refers to the hedge portfolio that longs portfolio 5 and shorts portfolio 1. For 

each portfolio, we estimate the same time-series regression as above using the post-formation daily 

portfolio returns to obtain the post-formation factor loadings. We compute the risk-adjusted return of each 

portfolio with respect to Fama-French four factors (MKT, SMB, HML, and UMD) from the intercept 

estimate of a time-series regression of the monthly portfolio returns on the four factors. Numbers in 

parentheses are t-statistics. Size reports the average market capitalization (in billion) for firms within the 

portfolio; B/M reports the average book-to-market ratios; RET_2_12 reports the average of past 11-month 

returns prior to last month; ILLIQ reports the average of Amihud’s (2002) illiquidity measure. The sample 

period is from January 1996 to December 2010. 

 
 Portfolios ranking  

 1 2 3 4 5 5-1 

Risk-adjusted performance of ߚ௜,௏௢௏ sorted portfolios (monthly return)  

Excess return 0.90  0.64  0.40  0.34  0.02  -0.88  

 ( 1.61) ( 1.70) ( 1.20) ( 0.92) ( 0.04) (-2.32) 

α-CAPM 0.34  0.23  0.03  -0.07  -0.54  -0.89  

 ( 1.21) ( 2.01) ( 0.33) (-0.57) (-2.54) (-2.32) 

α-FF3 0.28  0.21  0.02  -0.07  -0.54  -0.82  

 ( 1.13) ( 1.89) ( 0.25) (-0.67) (-2.59) (-2.18) 

α-FF4 0.44  0.22  0.01  -0.08  -0.53  -0.96  

 ( 1.88) ( 1.99) ( 0.05) (-0.74) (-2.50) (-2.59) 

Post-formation factor loadings (daily return) 

  ௣,ெ௄்  1.35  1.00  0.90  0.96  1.32  -0.02ߚ

( 78.37) ( 125.34) ( 145.90) ( 127.57) ( 79.40) (-0.91) 

  ௣,௏ூ௑  0.06  -0.01  -0.02  -0.01  0.06  -0.01ߚ

( 5.34) (-1.42) (-4.70) (-2.48) ( 4.86) (-0.41) 

  ௣,௏௢௏  -0.04  -0.03  0.01  0.02  0.16  0.21ߚ

(-1.93) (-3.00) ( 1.47) ( 2.27) ( 7.35) ( 5.95) 

Pre-formation characteristics 

Size($b) 1.03  2.87  3.49  3.24  1.33  0.30  

B/M 1.19  0.88  0.84  0.83  1.10  -0.09  

RET_2_12 12.31  14.96  15.11  14.37  11.76  -0.56  

ILLIQ(106) 9.04  3.06  2.47  3.05  8.87  -0.17  

Pre-formation factor loadings 

 ௜,ெ௄்ߚ   1.23  0.97  0.91  0.99  1.28  0.05  

 ௜,௏ூ௑ߚ   0.06  0.00  -0.01  -0.01  0.01  -0.05  

  ௜,௏௢௏(102) -6.23  -2.18  -0.15  1.86  5.69  11.92ߚ
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Table 1. 3:  Portfolios sorted on ࢂ࢕ࢂ,࢏ࢼ, controlling for Size, B/M, 

momentum, reversal, and illiquidity 

This table shows performance of portfolios sorted on ߚ௜,௏௢௏, controlling for market capitalization (Size), 

book-to-market ratio (B/M), past 11-month returns (RET_2_12), past 1-month return (RET_1), and 

Amihud’s illiquidity (ILLIQ), respectively. We first sort stocks into five quintiles based on their market 

capitalization (Size). Then, within each quintile, we sort stocks based on their ߚ௜,௏௢௏ loadings into five 

portfolios. All portfolios are rebalanced monthly and are value weighted. The five portfolios sorted on 

௜,௏௢௏ߚ  are then averaged over each of the five Size portfolios, resulting ߚ௜,௏௢௏  quintile portfolios 

controlling for Size. We compute the risk-adjusted return of each portfolio with respect to Fama-French 

four factors (MKT, SMB, HML, and UMD). B/M, RET_2_12, RET_1, and ILLIQ are analyzed with the same 

procedure as described above. Numbers in parentheses are t-statistics. 

 
 Portfolios ranking on ߚ௜,௏௢௏  α-FF4 

 1 2 3 4 5 5-1 5-1 

Controlling for Size 0.81  0.94 0.76 0.75 0.39 -0.42  -0.45  

 ( 1.30) ( 2.12) ( 2.00) ( 1.80) ( 0.70) (-1.93) (-2.14) 

Controlling for B/M 1.10  0.71 0.49 0.47 0.29 -0.81  -0.88  

 ( 2.19) ( 1.95) ( 1.48) ( 1.31) ( 0.59) (-2.81) (-3.15) 

Controlling for RET_2_12 0.53  0.52 0.41 0.29 0.04 -0.49  -0.52  

 ( 1.05) ( 1.21) ( 0.99) ( 0.69) ( 0.07) (-2.01) (-2.12) 

Controlling for RET_1 0.69  0.64 0.46 0.43 0.11 -0.59  -0.61  

 ( 1.29) ( 1.54) ( 1.20) ( 1.08) ( 0.20) (-1.95) (-2.06) 

Controlling for ILLIQ 0.79  0.81 0.75 0.67 0.28 -0.51  -0.53  

 ( 1.38) ( 2.09) ( 2.24) ( 1.84) ( 0.56) (-2.18) (-2.30) 
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Table 1. 4:  Portfolios sorted on ࢄࡵࢂ,࢏ࢼ 

At the end of each month, we run the following regression for each stock using daily returns: 

௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ௜ߙ ൅ ௧ାଵܶܭܯ௜,ெ௄்ߚ ൅ ௧ାଵܺܫܸ߂௜,௏ூ௑ߚ ൅ ௧ାଵܸ݋ܸ߂௜,௏௢௏ߚ ൅  .௜,௧ାଵߝ

We sort stocks into quintile portfolios based on ߚ௜,௏ூ௑, from the lowest (quintile 1) to the highest (quintile 

5). After the portfolio formation, we calculate the value-weighted daily and monthly stock returns for each 

portfolio. The column “5-1” refers to the hedge portfolio that longs portfolio 5 and shorts portfolio 1. For 

each portfolio, we estimate the same time-series regression as above using the post-formation daily 

portfolio returns to obtain the post-formation factor loadings. We compute the risk-adjusted return of each 

portfolio with respect to Fama-French four factors (MKT, SMB, HML, and UMD) from the intercept 

estimate of a time-series regression of the monthly portfolio returns on the four factors. Numbers in 

parentheses are t-statistics. Size reports the average market capitalization (in billion) for firms within the 

portfolio; B/M reports the average book-to-market ratios; RET_2_12 reports the average of past 11 month 

returns prior to last month; ILLIQ reports the average of Amihud’s (2002) illiquidity measure. The sample 

period is from January 1996 to December 2010. 

 
 Portfolios ranking  

 1 2 3 4 5 5-1 

Risk-adjusted performance of ߚ௜,௏ூ௑ sorted portfolios (monthly return)  

Excess return 0.76  0.58  0.37  0.38  -0.11  -0.87  

 ( 1.55) ( 1.69) ( 1.12) ( 0.95) (-0.18) (-2.17) 

α-CAPM 0.25  0.20  0.00  -0.07  -0.72  -0.96  

 ( 1.17) ( 1.99) ( 0.01) (-0.70) (-2.49) (-2.46) 

α-FF3 0.30  0.23  -0.03  -0.11  -0.79  -1.09  

 ( 1.41) ( 2.52) (-0.40) (-1.20) (-3.41) (-2.99) 

α-FF4 0.41  0.25  -0.05  -0.14  -0.77  -1.18  

 ( 2.06) ( 2.77) (-0.60) (-1.52) (-3.27) (-3.24) 

Post-formation factor loadings (daily return) 

  ௣,ெ௄்  1.20  0.91  0.89  1.05  1.47  0.27ߚ

( 82.06) ( 132.82) ( 145.66) ( 141.97) ( 79.37) ( 11.04) 

  ௣,௏ூ௑  0.02  -0.03  -0.03  0.01  0.12  0.10ߚ

( 1.62) (-7.08) (-7.37) ( 1.44) ( 9.25) ( 6.00) 

  ௣,௏௢௏  0.08  0.00  -0.03  -0.02  0.07  -0.02ߚ

( 4.28) ( 0.29) (-4.19) (-2.35) ( 2.73) (-0.48) 

Pre-formation characteristics 

Size($b) 1.28  3.39  3.63  2.67  0.99  -0.29  

B/M 1.13  0.88  0.82  0.83  1.19  0.07  

RET_2_12 10.88  14.82  15.39  15.02  12.33  1.46  

ILLIQ(106) 9.42  2.76  2.28  2.72  9.31  -0.12  

Pre-formation factor loadings 

 ௜,ெ௄்ߚ   -0.08  0.53  0.95  1.52  2.75  2.83  

 ௜,௏ூ௑ߚ   -1.23  -0.40  0.03  0.48  1.40  2.63  

  ௜,௏௢௏(102) -0.32  -0.17  0.00  0.18  -0.10  0.22ߚ
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Table 1. 5:  Two-way sorted portfolios on ࢄࡵࢂ,࢏ࢼ and ࢂ࢕ࢂ,࢏ࢼ 

At the end of each month, we run the following regression for each stock using daily returns: 

௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ௜ߙ ൅ ௧ାଵܶܭܯ௜,ெ௄்ߚ ൅ ௧ାଵܺܫܸ߂௜,௏ூ௑ߚ ൅ ௧ାଵܸ݋ܸ߂௜,௏௢௏ߚ ൅  .௜,௧ାଵߝ

We sort stocks into quintile portfolios based on ߚ௜,௏ூ௑, from the lowest (quintile 1) to the highest (quintile 

5), and independently sort stocks into quintile portfolios based on ߚ௜,௏௢௏. All portfolios are rebalanced 

monthly and are value weighted. The five portfolios sorted on ߚ௜,௏ூ௑ are then averaged over each of the 

five ߚ௜,௏௢௏ portfolios, resulting ߚ௜,௏ூ௑ quintile portfolios controlling for ߚ௜,௏௢௏. Similar approach gives 

 ௜,௏ூ௑. The column “5-1” refers to the hedge portfolio that longsߚ ௜,௏௢௏ quintile portfolios controlling forߚ

portfolio 5 and shorts portfolio 1. For each portfolio, we estimate the same time-series regression as above 

using the post-formation daily portfolio returns to obtain the post-formation factor loadings. We compute 

the risk-adjusted return of each portfolio with respect to Fama-French four factors (MKT, SMB, HML, and 

UMD). Numbers in parentheses are t-statistics. Panel A and Panel B present the results for ߚ௜,௏ூ௑ quintile 

portfolios and ߚ௜,௏௢௏  quintile portfolios, respectively. The sample period is from January 1996 to 

December 2010. 

 
 Portfolios ranking  

 1 2 3 4 5 5-1 

Panel A: Ranking on ߚ௜,௏ூ௑, controlling for ߚ௜,௏௢௏ 

Excess return 0.66  0.58  0.48  0.40  -0.02  -0.68  

 ( 1.34) ( 1.50) ( 1.30) ( 0.90) (-0.03) (-1.94) 

α-FF4 0.25  0.20  0.03  -0.17  -0.70  -0.95  

 ( 1.38) ( 2.14) ( 0.38) (-1.49) (-3.37) (-2.97) 

Panel B: Ranking on ߚ௜,௏௢௏, controlling for ߚ௜,௏ூ௑ 

Excess return 0.90  0.65  0.35  0.28  -0.08  -0.97  

 ( 1.57) ( 1.56) ( 0.94) ( 0.70) (-0.14) (-2.84) 

α-FF4 0.39  0.18  -0.09  -0.20  -0.66  -1.05  

 ( 1.82) ( 1.50) (-0.91) (-1.83) (-3.43) (-3.16) 
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Table 1. 6:  Two-way sorted portfolios on ࢃࡱࡷࡿ,࢏ࢼ and ࢂ࢕ࢂ,࢏ࢼ 

At the end of each month, we separately run the following regressions for each stock using daily returns: 

௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ௜ߙ ൅ ௧ାଵܶܭܯ௜,ெ௄்ߚ ൅ ௧ାଵܺܫܸ߂௜,௏ூ௑ߚ ൅ ௧ାଵܹܧܭܵ߂௜,ௌ௄ாௐߚ

൅ ௧ାଵܴܷܶܭ߂௜,௄௎ோ்ߚ ൅  ௜,௧ାଵߝ

௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ௜ߙ ൅ ௧ାଵܶܭܯ௜,ெ௄்ߚ ൅ ௧ାଵܺܫܸ߂௜,௏ூ௑ߚ ൅ ௧ାଵܸ݋ܸ߂௜,௏௢௏ߚ ൅  .௜,௧ାଵߝ

We sort stocks into quintile portfolios based on ߚ௜,ௌ௄ாௐ, from the lowest (quintile 1) to the highest (quintile 

5), and independently sort stocks into quintile portfolios based on ߚ௜,௏௢௏. All portfolios are rebalanced 

monthly and are value weighted. The five portfolios sorted on ߚ௜,ௌ௄ாௐ are then averaged over each of the 

five ߚ௜,௏௢௏ portfolios, resulting ߚ௜,ௌ௄ாௐ quintile portfolios controlling for ߚ௜,௏௢௏. Similar approach gives 

 ௜,ௌ௄ாௐ. The column “5-1” refers to the hedge portfolio that longsߚ ௜,௏௢௏ quintile portfolios controlling forߚ

portfolio 5 and shorts portfolio 1. For each portfolio, we estimate the same time-series regression as above 

using the post-formation daily portfolio returns to obtain the post-formation factor loadings. We compute 

the risk-adjusted return of each portfolio with respect to Fama-French four factors (MKT, SMB, HML, and 

UMD). Numbers in parentheses are t-statistics. Panel A presents the results for the ߚ௜,ௌ௄ாௐ  quintile 

portfolios. Panel B shows the results for the ߚ௜,ௌ௄ாௐ quintile portfolios controlling for ߚ௜,௏௢௏ quintile 

portfolios while Panel C shows the results for the ߚ௜,௏௢௏  quintile portfolios controlling for ߚ௜,ௌ௄ாௐ 

quintile portfolios. The sample period is from January 1996 to December 2010. 

 
 Portfolios ranking  

 1 2 3 4 5 5-1 

Panel A: Ranking on ߚ௜,ௌ௄ாௐ 

Excess return 0.88  0.43  0.40  0.37  0.23  -0.65  

 ( 1.67) ( 1.14) ( 1.21) ( 1.00) ( 0.43)  (-1.99) 

α-FF4 0.41  0.04  0.02  -0.08  -0.34  -0.75  

 ( 1.98) ( 0.35) ( 0.23)  (-0.77)  (-1.70)  (-2.28) 

Panel B: Ranking on ߚ௜,ௌ௄ாௐ, controlling for ߚ௜,௏௢௏ 

Excess return 0.66  0.52  0.35  0.55  0.33  -0.33  

 ( 1.23) ( 1.22) ( 0.94) ( 1.32) ( 0.62)  (-1.17) 

α-FF4 0.18  0.05  -0.11  0.08  -0.27  -0.45  

 ( 0.93) ( 0.50)  (-1.30) ( 0.74)  (-1.51)  (-1.59) 

Panel C: Ranking on ߚ௜,௏௢௏, controlling for ߚ௜,ௌ௄ாௐ 

Excess return 0.88  0.67  0.38  0.43  0.05  -0.82  

 ( 1.51) ( 1.63) ( 1.03) ( 1.08) ( 0.09)  (-2.38) 

α-FF4 0.31  0.23  -0.06  -0.05  -0.51  -0.82  

 ( 1.46) ( 2.12)  (-0.58)  (-0.47)  (-2.48)  (-2.44) 
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Table 1. 7:  The price of volatility-of-volatility risk 

Panel A reports the Fama–MacBeth (1973) factor premiums on 25 portfolios sorted on intersection of ߚ௜,௏ூ௑ 

quintile portfolios and ߚ௜,௏௢௏ quintile portfolios, using our market-based three factors (MKT, ΔVIX, and 

ΔVoV), Chang, Christoffersen, and Jacobs (2013) market skewness factor (ΔSKEW), and Fama-French four 

factors (MKT, SMB, HML, and UMD). We estimate the first stage return betas using the daily full-sample 

post-formation value-weighted returns. Then, we regress the cross-sectional monthly portfolio returns on 

daily return betas from the first stage, using Fama–MacBeth (1973) cross-sectional regression. Panel B 

reports the Fama–MacBeth (1973) factor premiums on 25 portfolios sorted on intersection of ߚ௜,ௌ௄ாௐ 

quintile portfolios and ߚ௜,௏௢௏ quintile portfolios. Robust Newey and West (1987) t-statistics with six lags 

that account for autocorrelations are reported in parentheses. The sample period is from January 1996 to 

December 2010. 

 
 Fama-MacBeth cross-sectional regressions 

 [1] [2] [3] [4] [5] [6] 

Panel A: 25 portfolios sorted on ߚ௜,௏ூ௑×ߚ௜,௏௢௏ (5×5) 

MKT 0.54 0.53 0.57 0.55 0.55 0.55 

 ( 1.34) ( 1.28) ( 1.41) ( 1.37) ( 1.36) ( 1.36) 

ΔVIX -5.31  -3.14 -3.87 -3.97 -5.00 

 (-3.29)  (-1.61) (-0.94) (-0.95) (-1.14) 

ΔVoV  -4.11 -3.66 -3.84 -3.88 -3.62 

  (-3.25) (-2.35) (-2.68) (-2.66) (-2.68) 

SMB    -0.93 -0.94 -0.94 

    (-1.25) (-1.29) (-1.28) 

HML    -0.27 -0.17 -0.45 

    (-0.40) (-0.27) (-0.66) 

UMD    -1.73 -1.65 -1.02 

    (-1.58) (-1.47) (-0.96) 

ΔSKEW     0.52 0.49 

     ( 0.50) ( 0.48) 

ΔKURT      -15.54 

      (-1.13) 

Adj. R2 0.13 0.10 0.18 0.24 0.24 0.25 
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Table 1.7 (continued.) 
 
 Fama-MacBeth cross-sectional regressions 

 [1] [2] [3] [4] [5] [6] 

Panel B: 25 portfolios sorted on ߚ௜,ௌ௄ாௐ×ߚ௜,௏௢௏ (5×5) 

MKT 0.48  0.45  0.61  0.43  0.64  0.64  

 ( 1.16) ( 1.12) ( 1.57) ( 1.06) ( 1.64) ( 1.63) 

ΔVIX  -0.31  4.51  -0.79  8.47  8.46  

  (-0.17) ( 1.27) (-0.45) ( 1.73) ( 1.62) 

ΔVoV -2.00  -2.07  -1.76   -1.87  -1.86  

 (-1.84) (-1.77) (-1.77)  (-1.86) (-1.75) 

SMB   -0.31   -0.51  -0.50  

   (-0.37)  (-0.60) (-0.58) 

HML   -1.40   -0.87  -0.87  

   (-2.30)  (-1.32) (-1.24) 

UMD   1.70   2.33  2.33  

   ( 1.09)  ( 1.44) ( 1.43) 

ΔSKEW    2.73  2.77  2.76  

    ( 2.53) ( 1.45) ( 1.36) 

ΔKURT    5.69   0.58  

    ( 0.59)  ( 0.05) 

Adj. R2 0.10  0.15  0.26  0.13  0.26  0.26  
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Table 1. 8:    Two-way portfolios sorted on volatility spreads and ࢂ࢕ࢂ,࢏ࢼ 

This table shows performance of portfolios sorted on implied-realized volatility spread (IVOL-TVOL), the 

call-put implied volatility spread (CIVOL-PIVOL), the expected individual variance risk premium (EVRP), 

and ߚ௜,௏௢௏ using stocks with available equity options. We independently sort stocks into quintile portfolios 

based on each of the four variables, from the lowest (quintile 1) to the highest (quintile 5). All portfolios 

are rebalanced monthly and are value weighted. We compute the risk-adjusted return of each portfolio with 

respect to Fama-French four factors (MKT, SMB, HML, and UMD). Panel A reports the results for the one-

way sorted portfolios. We construct two-way sorted portfolios formed on intersection of each of the 

volatility spread quintile portfolios and ߚ௜,௏௢௏ quintile portfolios. Panel B shows the results for the ߚ௜,௏௢௏ 

quintile portfolios controlling for volatility spread quintile portfolios. Numbers in parentheses are t-

statistics. The sample period is from January 1996 to December 2010. 

 
 Portfolios ranking   α-FF4 

 1 2 3 4 5 5-1 5-1 

Panel A: One-way sorted portfolios 

Ranking on ߚ௜,௏௢௏ 0.88  0.64 0.45 0.24 0.15 -0.73  -0.85  

( 1.68) ( 1.80) ( 1.31) ( 0.63) ( 0.28)  (-2.02)  (-2.38) 

Ranking on IVOL-TVOL -0.04  0.45 0.51 0.89 0.73 0.77  0.63  

  (-0.08) ( 1.17) ( 1.49) ( 2.38) ( 1.47) ( 2.10) ( 1.76) 

Ranking on CIVOL-PIVOL -0.24  0.17 0.44 0.69 1.15 1.39  1.66  

  (-0.51) ( 0.47) ( 1.20) ( 1.83) ( 2.33) ( 5.21) ( 6.70) 

Ranking on EVRP -0.24  0.29 0.55 0.73 0.93 1.16  0.96  

  (-0.39) ( 0.76) ( 1.50) ( 1.65) ( 1.41) ( 2.50) ( 2.21) 

Panel B: Two-way sorted portfolios, ranking on ߚ௜,௏௢௏ 

Controlling for IVOL-TVOL 0.97  0.77 0.45 0.32 0.28 -0.69  -0.76  

 ( 1.74) ( 2.00) ( 1.21) ( 0.82) ( 0.53)  (-2.11)  (-2.38) 

Controlling for CIVOL-PIVOL 0.82  0.60 0.50 0.31 0.16 -0.66  -0.74  

 ( 1.54) ( 1.54) ( 1.40) ( 0.78) ( 0.29)  (-2.03)  (-2.29) 

Controlling for EVRP 0.72  0.66 0.55 0.38 0.13 -0.59  -0.66  

 ( 1.33) ( 1.52) ( 1.33) ( 0.87) ( 0.25)  (-1.96)  (-2.20) 
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Table 1. 9:  Firm-level Fama-MacBeth regressions 

This table reports the results for the firm-level Fama-MacBeth regressions. We run the following cross-

sectional regression: 

௜,௧ାଵݎ െ ௙,௧ାଵݎ ൌ ܿ଴ ൅ ௜,ெ௄்,௧ߚெ௄்ߣ ൅ ௜,௏ூ௑,௧ߚ௏ூ௑ߣ ൅ ௜,௏௢௏,௧ߚ௏௢௏ߣ

൅ ܿிூோெ	ܿܽݎ݄ܽܥ݉ݎ݅ܨ௜,௧ ൅ ܿ௏ை௅	ܸܿܽݎ݄ܽܥݕݐ݈݅݅ݐ݈ܽ݋௜,௧ ൅  ,௜,௧ାଵߝ

where the dependent variable is the monthly individual stock returns; ߚ௜,ெ௄்,௧, ߚ௜,௏ூ௑,௧, and ߚ௜,௏௢௏,௧ are 

post-ranking betas estimated from the 25 portfolios formed on intersection of ߚ௜,௏ூ௑ quintile portfolios and 

௜,௏௢௏ߚ  quintile portfolios; ܿܽݎ݄ܽܥ݉ݎ݅ܨ௜,௧  consists of Size, B/M, RET_2_12, RET_1, and ILLIQ; 

௜,௧ܿܽݎ݄ܽܥݕݐ݈݅݅ݐ݈ܽ݋ܸ  includes IVOL-TVOL, CIVOL-PIVOL, and EVRP. Following the methodology of 

Fama and French (1992), we assign each of the 25 portfolio-level post-ranking beta estimates to the 

individual stocks within the portfolio at that time. Robust Newey and West (1987) t-statistics with six lags 

that account for autocorrelations are reported in parentheses. The sample period is from January 1996 to 

December 2010. 

 
 Fama-MacBeth regressions: individual stocks 

 [1] [2] [3] [4] [5] [6] 

Intercept -1.831  -2.715  -2.283  1.447  1.487  1.394  

 (-1.34) (-3.57) (-1.74) ( 1.11) ( 1.12) ( 0.99) 

Log(Size($b)) -0.003  -0.002  -0.005  -0.031  -0.033  -0.085  

 (-0.05) (-0.03) (-0.08) (-0.40) (-0.43) (-0.97) 

Log(B/M) 0.302  0.304  0.300  0.164  0.156  0.066  

 ( 1.96) ( 1.97) ( 1.96) ( 1.10) ( 1.05) ( 0.43) 

RET_2_12 0.157  0.166  0.162  0.269  0.267  0.208  

 ( 0.40) ( 0.42) ( 0.42) ( 0.60) ( 0.59) ( 0.43) 

RET_1 -3.822  -3.785  -3.790  -1.881  -1.656  -1.496  

 (-5.64) (-5.62) (-5.61) (-2.39) (-2.13) (-1.81) 

ILLIQ(106) 0.018  0.018  0.018  -0.031  -0.022  2.315  

 ( 3.78) ( 3.79) ( 3.79) (-0.23) (-0.16) ( 0.24) 

  ௜,ெ௄்  2.231  3.141  2.707  -0.765  -0.773  -0.708ߚ

 ( 1.57) ( 3.89) ( 1.94) (-0.55) (-0.55) (-0.49) 

  ௜,௏ூ௑  1.836   1.774  8.175  8.252  5.812ߚ

 ( 0.46)  ( 0.47) ( 1.88) ( 1.88) ( 1.24) 

  ௜,௏௢௏   -3.065  -3.059  -2.914  -2.853  -3.003ߚ

  (-4.09) (-4.12) (-2.61) (-2.55) (-2.46) 

IVOL-TVOL    0.543  0.579  0.729  

    ( 1.96) ( 2.08) ( 2.52) 

CIVOL-PIVOL     5.083  6.188  

     ( 8.22) ( 6.54) 

EVRP      0.080  

      ( 2.03) 

Adj. R2 0.05  0.05  0.05  0.08  0.08  0.10  

No. obs. 824,426  824,426  824,426  310,221  310,221  241,096  
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Table 1. 10:  Portfolios sorted on	ࢂ࢕ࢂ,࢏ࢼ
ࢂ  

We sort stocks into quintile portfolios based on ߚ௜,௏௢௏
௏ , from the lowest (quintile 1) to the highest (quintile 

5). After the portfolio formation, we calculate the value-weighted daily 30-day model-free implied variance 

and monthly 30-day variance risk premium for each portfolio. The column “5-1” refers to the hedge 

portfolio that longs portfolio 5 and shorts portfolio 1. For each portfolio, we estimate the post-ranking 

variance betas by running the following regression using daily portfolio implied variance: 

ܫ߂ ௣ܸ,௧ାଵ ൌ ௣௏ߙ ൅ ௣,௏ூ௑ߚ
௏ ෪ܺܫܸ߂ ௧ାଵ

ଶ ൅ ௣,௏௢௏ߚ
௏ ݋ܸ߂ ௧ܸାଵ ൅ ௣,௧ାଵߝ

௏ . 

Numbers in parentheses are t-statistics. The sample period is from January 1996 to December 2010. 

 
 Portfolios ranking  

 1 2 3 4 5 5-1 

Panel A: Ranking on ߚ௜,௏௢௏
௏  

EVRP(%2) 6.6 23.6 36.5 46.3 74.2 67.7 

 ( 4.24) ( 9.62) ( 9.83) ( 7.29) ( 5.35) ( 5.15) 

Post-formation daily variance beta 

௣,௏ூ௑ߚ
௏   0.48  0.75  1.12  1.47  2.45  1.97  

( 94.24) ( 73.65) ( 62.04) ( 39.01) ( 43.77) ( 35.80) 

௣,௏௢௏ߚ
௏   2.73  4.12  3.35  5.71  11.06  8.32  

( 21.96) ( 16.52) ( 7.62) ( 6.18) ( 8.09) ( 6.19) 

Volatility characteristics 

IV 65.0  115.6  180.5  284.0  534.4  469.4  

ERV 58.4  92.0  143.9  237.7  460.1  401.7  

Panel B: Ranking on ߚ௜,௏ூ௑
௏  

EVRP(%2) 6.6 23.5 36.9 47.4 75.5 68.9 

 ( 4.23) ( 9.66) ( 9.76) ( 7.42) ( 5.37) ( 5.19) 

Post-formation daily variance beta 

௣,௏ூ௑ߚ
௏   0.49  0.78  1.09  1.56  2.39  1.90  

( 97.63) ( 82.77) ( 61.10) ( 39.04) ( 45.45) ( 36.95) 

௣,௏௢௏ߚ
௏   2.86  3.79  4.17  5.00  10.44  7.58  

( 23.53) ( 16.46) ( 9.60) ( 5.13) ( 8.13) ( 6.02) 

Volatility characteristics 

IV 64.9  115.8  180.9  284.8  542.6  477.6  

ERV 58.3  92.2  144.0  237.4  467.0  1.7  
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Table 1. 11:  The price of volatility-of-volatility risk in cross-sectional 

EVRP 

This table reports the Fama–MacBeth (1973) factor premiums on 25 portfolios sorted on ߚ௜,௏௢௏
௏ , using our 

market-based three factors (MKT, ΔVIX, and ΔVoV), Chang, Christoffersen, and Jacobs (2013) market 

skewness factor (ΔSKEW), and Fama-French four factors (MKT, SMB, HML, and UMD). For each portfolio, 

we estimate the post-ranking variance betas by running the following regression using daily portfolio 

implied variance: 

ܫ߂ ௣ܸ,௧ାଵ ൌ ௣௏ߙ ൅ ௣,௏ூ௑ߚ
௏ ෪ܺܫܸ߂ ௧ାଵ

ଶ ൅ ௣,௏௢௏ߚ
௏ ݋ܸ߂ ௧ܸାଵ ൅ ௣,௧ାଵߝ

௏ . 

Then, we regress the cross-sectional monthly portfolio expected variance risk premium on the post-ranking 

variance betas using Fama–MacBeth (1973) cross-sectional regression: 

ܴܸܧ ௣ܲ ൌ െߣ௏ூ௑
௏ ௣,௏ூ௑ߚ

௏ െ ௏௢௏ߣ
௏ ௣,௏௢௏ߚ

௏ . 

In column from 4 to 6, we include the post-ranking return betas obtained from running regression using 

daily portfolio returns on the risk factors: 

ܴܸܧ ௣ܲ ൌ െߣ௏ூ௑
௏ ௣,௏ூ௑ߚ

௏ െ ௏௢௏ߣ
௏ ௣,௏௢௏ߚ

௏ ൅ ௣,ெ௄்ߚெ௄்ߣ ൅ ௣,ௌெ஻ߚௌெ஻ߣ ൅ ௣,ுெ௅ߚுெ௅ߣ ൅ ௣,௎ெ஽ߚ௎ெ஽ߣ

൅ ௣,ௌ௄ாௐߚௌ௄ாௐߣ ൅  .௣,௄௎ோ்ߚ௄௎ோ்ߣ

Robust Newey and West (1987) t-statistics with six lags that account for autocorrelations are reported in 

parentheses. The sample period is from January 1996 to December 2010. 

 
 Fama-MacBeth cross-sectional regressions 

 [1] [2] [3] [4] [5] [6] 

25 portfolios sorted on ߚ௜,௏௢௏
௏  

௣,௏ூ௑ߚ
௏   34.28   5.29  -34.11  -21.22  -20.66  

( 5.55)  ( 1.27) (-5.43) (-3.77) (-3.67) 

௣,௏௢௏ߚ
௏    5.99  5.20  2.74  1.62  1.53  

 ( 5.32) ( 4.04) ( 4.54) ( 2.36) ( 2.27) 

  ௣,ெ௄்       31.20ߚ

     ( 4.58) 

  ௣,ௌெ஻     9.51  80.73  71.21ߚ

   ( 0.72) ( 4.53) ( 4.29) 

  ௣,ுெ௅     45.15  82.22  63.51ߚ

   ( 2.03) ( 3.46) ( 3.16) 

  ௣,௎ெ஽     -140.27  -47.56  -64.82ߚ

   (-6.34) (-1.86) (-2.27) 

  ௣,ௌ௄ாௐ      -100.91  -151.05ߚ

    (-6.76) (-7.23) 

  ௣,௄௎ோ்      -528.89  -211.78ߚ

    (-3.19) (-1.06) 

Adj. R2 0.34  0.39  0.55  0.73  0.77  1.1
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Table 1. 12:  Return predictability regressions 

Panel A reports the estimates of the one-period return predictability regression using daily market return on 

the lagged variance risk premium (VRP), variance of market variance (VoV), market skewness (SKEW), and 

market kurtosis (KURT). In panel B, we use the monthly market return as the dependent variable, and the 

independent variables are sampled at the end of the previous month. We multiply Daily market return in 

Panel A is multiplied by 22. Robust Newey and West (1987) t-statistics with sixteen lags in Panel A and 

with six lags in Panel B that account for autocorrelations are reported in parentheses. The sample period is 

from January 1996 to December 2010. 

 
 Dependent variable= MKT (t) 

 [1] [2] [3] [4] [5] [6] 

Panel A: Daily return regressions 

Intercept -2.214  -0.970  0.123  -2.302  0.577  0.674  

 (-2.82) (-1.50) ( 0.26) (-2.36) ( 0.30) ( 0.35) 

VRP (t-1) 0.153    0.140  0.142  0.128  

 ( 3.81)   ( 3.86) ( 3.89) ( 3.45) 

VIX (t-1)  0.027   0.000  -0.001  -0.003  

  ( 1.95)  ( 0.00) (-0.06) (-0.15) 

VoV (t-1)   5.406  4.939  4.980  5.054  

   ( 2.47) ( 2.12) ( 2.16) ( 2.19) 

SKEW (t-1)     2.378  2.304  

     ( 1.50) ( 1.46) 

KURT(t-1)     0.121  0.136  

     ( 0.53) ( 0.60) 

MKT (t-1)      -0.041  

      (-2.23) 

Adj. R2 0.012  0.002  0.011  0.021  0.021  0.023  

Panel B: Monthly return regressions 

Intercept -0.369  0.604  0.280  -0.183  0.796  0.630  

 (-1.11) ( 1.13) ( 0.68) (-0.41) ( 0.59) ( 0.49) 

VRP (t-1) 0.045    0.041  0.041  0.039  

 ( 5.47)   ( 4.68) ( 4.24) ( 3.82) 

VIX (t-1)  -0.004   -0.004  -0.004  0.001  

  (-0.34)  (-0.59) (-0.62) ( 0.18) 

VoV (t-1)   1.682  1.246  1.352  1.460  

   ( 3.06) ( 2.44) ( 2.61) ( 2.53) 

SKEW (t-1)     0.008  0.004  

     ( 0.52) ( 0.28) 

KURT(t-1)     0.000  0.000  

     ( 0.21) (-0.23) 

MKT (t-1)      0.124  

      ( 1.52) 

Adj. R2 0.047  -0.004  0.009  0.044  0.036  0.041  
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Figure 1. 1:  Daily market volatility-of-volatility (VoV) 

We plot daily market volatility-of-volatility over the time period January 1996 through December 2010. 

We partition the tick-by-tick S&P500 index options data into five-minute intervals, and then we estimate 

the model-free implied variance for each interval. For each day, we use the bipower variation formula on 

the five-minute based annualized 30-day model-free implied variance estimates within the day, resulting in 

our daily measure of market volatility-of-volatility (VoV). 
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Figure 1. 2:  Performance of portfolios sorted on ࢂ࢕ࢂ,࢏ࢼ in event time 

At the end of each day, we estimate the regression of equation (1.33) using daily stock returns over the 

past 22 days. We then sort stocks into quintile portfolios on the estimated ߚ௜,௏௢௏ for each day and calculate 

the event-time daily value-weighted portfolio returns ranging from -11 to 11 in days. 
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Figure 1. 3:  Cross-correlations 

The plots are based on the pre-formation and post-formation of quintile portfolio return differentials (low-

minus-high; long the lowest quintile and short the highest quintile) formed on ߚ௜,௏௢௏. The top panel shows 

the sample cross-correlation between the VIX and portfolio formation time leads and lags of the low-minus-

high ranging from -11 to 11 days. The bottom panel shows the sample cross-autocorrelations between the 

market volatility-of-volatility (VoV) and the returns. 
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Chapter 2  

A Model-Free CAPM with High 

Order Risks 

2.1   Introduction 

The concept of linear risk-return trade-off has been the keystone in finance theory. For 

example, in addition to the market risk of the classical capital asset-pricing model (e.g. 

Sharpe (1964) and Lintner (1965)), prior literature has illustrated the important role of the 

stock return exposures to multiple factors (e.g. Fama and French (1992; 1993; 1995; 1996) 

and Carhart (1997)) and to the high order of market moments (see, for example, Kraus 

and Litzenberger (1976), Sears and Wei (1985), Harvey and Siddique (2000), Dittmar 

(2002), Chung, Johnson, and Schill (2006), and Chang, Christoffersen, and Jacobs (2013), 

among others) for pricing individual stocks. However, recent studies show that the 

traditional linear risk-return trade-off has difficulty in explaining the pricing effect 

embedded in higher orders of asset returns. Examples include the (idiosyncratic) volatility 

puzzle documented by Ang, Hodrick, Xing, and Zhang (2006; 2009) and the MAX puzzle 

presented by Bali, Cakici, and Whitelaw (2011) in which stocks with high volatilities 

have been documented to earn low future abnormal returns. In other words, existing 

literature restricts the investigation of systematic risk to the first-order risk, ignoring the 
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potentially important role of the systematic components in high orders of asset returns. 

Moreover, there is conflicting evidence against the linear risk-return trade-off in 

which stocks with high beta have been documented to earn low future returns (e.g. Baker, 

Bradley, and Wurgler (2011)). A recent paper by Frazzini and Pedersen (2014) further 

shows that a betting against beta (BAB) factor, which is long leveraged low-beta assets 

and short high-beta assets, produces significant positive risk-adjusted returns. Hence, to 

resurrect the risk-return trade-off relationship, prior literature calls for better 

understanding of systematic risks. One possible solution is an asset pricing model that 

incorporates the nonlinear pricing of the systematic risk. 

This paper presents an approximate capital asset pricing model in which higher-order 

risks and high-order risk premiums are important for pricing individual stocks. We 

characterize the dynamic of market return through the cumulant generating function,16 

which provides analytical solution for our model allowing for high moments in market 

returns.17 We only assume that individual stock returns in logarithm follow a simple 

linear model with the market returns and the linear structure is preserved in the risk-

neutral measure. Then, we develop an approximate identity that provides decomposition 

of total risk premium for the cross-sectional stock returns, linking the market risk 

premium of each moment to the risk price for the systematic risk in the corresponding 

order of stock returns.  

                                                       
16 The cumulant generating function of a random variable is defined as the logarithm of the moment 
generating function. The j-th cumulant, which is defined as the j-th derivative of the cumulant generating 
function evaluated at zero, is related to the j-th moment. 
17  Since the pioneer work of Jarrow and Rudd (1982) on approximation method for option valuation, a 
growing literature shows that the cumulant generating function can be used to quantify the impact of higher 
moments on the pricing structure of implied volatility (see, for example, Backus, Foresi, Li, and Wu (1997) 
and Bakshi, Kapadia, and Madan (2003), among others), identify the risk-neutral measure for 
heteroskedasticity volatility models (see, for example, Christoffersen, Elkamhi, Feunou, and Jacobs (2010) 
and Corsi, Fusari, and La Vecchia (2013), among others), and study equity premium in representative agent 
models with non-normal distribution (see, for example, Backus, Chernov, and Martin (2011), Martin (2012), 
Duan and Zhang (2013), and Backus, Chernov, and Zin (2014), among others). Our paper is complementary 
to this strand of literature by studying individual stock returns. 
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 The intuition for the feature of nonlinear risk-return trade-off in our model is simple. 

If market returns have high order risk premiums, expected stock returns should comprise 

compensation for bearing the corresponding high order systematic risks. In our model, 

the expected stock return of a security i is determined by the market risk premium in each 

moment times the corresponding order of systematic risk: 

  

ॱ௧ൣܴ௜,௧ାଵ൧ െ ܴ௙,௧

ൎ ൫ߢଵ,௧ െ ଵ,௧ߢ
ℚ ൯ߚ௜,ଵ ൅

1
2
൫ߢଶ,௧ െ ଶ,௧ߢ

ℚ ൯ߚ௜,ଵ
ଶ ൅

1
6
൫ߢଷ,௧ െ ଷ,௧ߢ

ℚ ൯ߚ௜,ଵ
ଷ

൅
1
24

൫ߢସ,௧ െ ସ,௧ߢ
ℚ ൯ߚ௜,ଵ

ସ

ൎ ௜,ଵߚଵ,௧ߣ ൅ ௜,ଵߚଶ,௧ߣ
ଶ ൅ ௜,ଵߚଷ,௧ߣ

ଷ ൅ ௜,ଵߚସ,௧ߣ
ସ  

 

(2.1)

where ߚ௜,ଵ is the systematic risk from the simple linear market model, and ߢ௝,௧ and ߢ௝,௧
ℚ  

are the j-th cumulant of the market return in the physical measure and in the risk-neutral 

measure, respectively. The first term, ߣଵ,௧ߚ௜,ଵ, measures the first-order risk premium of 

the classical CAPM, whereas the remaining terms capture the pricing effect for market 

high moment risk premiums. In particular, the market variance risk premium (ߢଶ,௧ െ ଶ,௧ߢ
ℚ ) 

determines the risk price (ߣଶ,௧ሻ for the second-order systematic risk (ߚ௜,ଵ
ଶ ).18 

 While our model is an approximate identity for any linear market model under 

arbitrary economic preference, we give three specific examples to illustrate how the high-

order risks are related to high-order co-moment risks. One particular example of interest 

is the pricing kernel with stochastic volatility that not only generates negative skewness 

and excess kurtosis to meet the empirical irregularity but also implies the negative market 

variance risk premium. In which case, the conventional covariance risk premium, the 

                                                       
18 Similarly, the scaled market skewness risk premium (ߣଷ,௧) and the scaled market kurtosis risk premium 
௜,ଵߚ) are relevant for the third-order systematic risk (ସ,௧ߣ)

ଷ ) and the fourth-order systematic risk (ߚ௜,ଵ
ସ ), 

respectively. 



65 
 

coskewness premium, and the cokurtosis risk premium, are nested in the first-order risk 

premium ( ௜,ଵሻߚଵ,௧ߣ . More importantly, the second-order risk premium ( ௜,ଵߚଶ,௧ߣ
ଶ ) 

compensates for the second-order coskewness risk and the second-order cokurtosis risk; 

the third-order risk premium (ߣଷ,௧ߚ௜,ଵ
ଷ ) corresponds to the third-order cokurtosis risk.19 

Thus, these high order co-moments, which are new to literature, are important sources of 

priced risks. 

The first goal of this paper is to examine the market pricing of high order risks. We 

perform cross-sectional regressions using portfolio returns and we find evidence that the 

second-order risk is significantly and negatively priced, consistent with the well-

documented evidence for the negative market variance risk premium (see, for example, 

Carr and Wu (2009), Bollerslev, Tauchen, and Zhou (2009), and Bollerslev, Marrone, Xu, 

and Zhou (2013), among others).20 Thus, stocks with high exposure to the second-order 

risk are volatile and are capable of earning the upside variance potential implied by the 

negative market variance risk premium. Moreover, while the first-order risk is 

significantly and positively priced, and the third-order risk price and the fourth-order risk 

price are insignificant. Therefore, the first two order risk prices imply that the cross-

sectional relation between expected return and market beta is inverse-U shaped.  

The second goal of this paper is to examine the economic value of the second-order 

risk premium. Our model implies that the second-order risk premium corresponds to the 

curvature of the security market line which is the second derivative with respect to the 

                                                       
19   That is, ߣଵ,௧ߚ௜,ଵ ൌ ,௜,௧ାଵݎ௧ൣ̃ݒ݋ଵଵ,௧ԧߣ ௠,௧ାଵ൧ݎ̃ ൅ ,௜,௧ାଵݎ௧ൣ̃ݒ݋ଵଶ,௧ԧߣ ௠,௧ାଵݎ̃

ଶ ൧ ൅ ,௜,௧ାଵݎ௧ൣ̃ݒ݋ଵଷ,௧ԧߣ ௠,௧ାଵݎ̃
ଷ ൧,

௜,ଵߚଶ,௧ߣ
ଶ ൌ ௜,௧ାଵݎ௧ൣ̃ݒ݋ଶଵ,௧ԧߣ

ଶ , ௠,௧ାଵ൧ݎ̃ ൅ ௜,௧ାଵݎ௧ൣ̃ݒ݋ଶଶ,௧ԧߣ
ଶ , ௠,௧ାଵݎ̃

ଶ ൧, and	ߣଷ,௧ߚ௜,ଵ
ଷ ൌ ௜,௧ାଵݎ௧ൣ̃ݒ݋ଷଵ,௧ԧߣ

ଷ ,  ,௠,௧ାଵ൧ݎ̃
where ̃ݎ௜,௧ାଵ ൌ ௜,௧ାଵݎ െ ॱ௧ൣݎ௜,௧ାଵ൧ and ̃ݎ௠,௧ାଵ ൌ ௠,௧ାଵݎ െ ॱ௧ൣݎ௠,௧ାଵ൧. 
20 While Driessen, Maenhout, and Vilkov (2009) suggest that individual options covered by S&P 100 do 
not embed a negative variance risk premium, Han and Zhou (2011) find that, with realized variance 
measured from high frequency stock prices, individual variance risk premium is significantly negative in 
their larger sample of equity options covered by OptionMetrics. Bali and Hovakimian (2009) and Han and 
Zhou (2011) also show that individual variance risk premiums can predict the cross-sectional stock returns. 
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first-order risk. For each the first-order co-moment sorted portfolios, we construct a 

curvature portfolio (CUR1) by the sum of the twice difference for these portfolios.21 We 

find that the average annual return on the curvature portfolio is significantly negative at 

−12.00% for the market beta sorted portfolios, at −11.76% for the first-order coskewness 

sorted portfolios, and at −11.52% for the first-order cokurtosis sorted portfolios.  

The second-order risk premium can also be tested directly through the second-order 

risks. For each the second-order co-moment sorted portfolios, we construct another 

curvature portfolio (CUR2) that longs the top portfolio and shorts the bottom portfolio. 

We find that the average annual performance of this curvature portfolio is significantly 

negative at −15.24% for the second-order coskewness-sorted portfolios, and at –12.72% 

for the second-order cokurtosis sorted portfolios. Moreover, to identify the second-order 

risk in a model-free fashion, we follow the seminal work of Bakshi, Kapadia, and Madan 

(2003) to estimate the model-free implied variance using individual options and index 

options.22 We estimate the risk-neutral variance beta through the linear market model 

relation between the individual variance and the market variance and we find that the 

average annual return on the curvature portfolio (CUR2RN) is significantly negative, at –

16.08% for the risk-neutral variance beta sorted portfolios. 

The third goal of this paper is to investigate whether the second-order risk premium 

helps explain cross-sectional stock returns. We construct mimicking factors for the 

second-order risk premiums using the curvature portfolios and we investigate whether the 

mimicking factors account for the anomalies documented in the literature that are 

                                                       
21 That is, for N risk-sorted portfolios, the curvature portfolio would be ∑ Δଶݎ௣ே

௣ୀଷ , where Δݎ௣ ൌ ௣ݎ െ  ௣ିଵݎ
and Δଶݎ௣ ൌ 	Δݎ௣ െ Δݎ௣ିଵ. For example, for the 25 risk-sorted portfolios, the curvature portfolio would be 
the long-short portfolio between the nearby difference in the top two portfolios and the nearby difference 
in the bottom two portfolios, i.e., (25−24)−(2−1). 
22 It has been shown that the risk-neutral moments can be inferred in a ‘model-free’ fashion from a 
collection of option prices without use of a specific pricing model (see, for example, Carr and Madan 1998; 
Britten-Jones and Neuberger 2000; Bakshi, Kapadia, and Madan, 2003; Jiang and Tian 2005).  
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essentially exposed to the second-order systematic risk. We show that our mimicking 

factors accounts for the total volatility puzzle and the idiosyncratic volatility puzzle 

documented by Ang, Hodrick, Xing, and Zhang (2006), as well as the MAX puzzle 

presented by Bali, Cakici, and Whitelaw (2011). Specifically, we find that these volatility 

measures are closely related to the second-order systematic risks and the abnormal returns 

associated with these variables become insignificant once we control for the mimicking 

curvature factors.  

Moreover, we find evidence that our mimicking factors help explain the betting-

against-beta (BAB) premium of Frazzini and Pedersen (2014). While the BAB factor is 

by construction isolated from the first-order risk, our model suggests that the betting-

against-beta strategy is exposed to high-order systematic risks. Thus, the second-order 

risk premium provides an alternative explanation for the betting-against-beta premium. 

On the other hand, since their model implies that the second-order risk price is zero, their 

model cannot explain the negative second-order risk premium as we find empirically. 

Our paper is closely related to, but different from, Hong and Sraer (2012), in which 

they demonstrate that the disagreement about the market return leads to speculative 

overpricing for high beta stocks. Their model implies that the shape of the security market 

line is kinked and the slope of that decreases with the macro-disagreement. Our model, 

in contrast, suggests that the curvature of the security market line is determined by the 

market variance risk premium (e.g., the second-order risk price). More importantly, we 

find evidence that the market variance premium explains our curvature factors better than 

the macro-disagreement does. Thus, the second-order risk premium in our paper cannot 

be fully explained by their disagreement driven overpricing mechanism.  

 Our paper is complementary to Conrad, Dittmar, and Ghysels (2013), in which they 

focus on relative pricing of idiosyncratic risk-neutral moments and the first-order risk-
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neutral co-moments. In contrast, our study shed light on the importance of the second-

order co-moments and the risk-neutral variance beta. Furthermore, we find evidence that 

our mimicking factors are priced in the firm-level cross-sectional regression and the 

results are robust to the inclusion of individual risk-neutral moments. 

The remainder of the paper is organized as follows. The next section presents our 

approximate capital asset pricing model. Section 3 discusses the empirical implications 

of our model. Section 4 describes the data and presents the estimation of co-moment risks. 

In section 5, we show empirical evidence on the high order risk premiums in cross-

sectional stock returns. Section 6 focuses on the construction and verification of the 

mimicking curvature factors. In section 7, we test the performance of the mimicking 

curvature factors in explaining the cross-sectional stock returns. Finally, section 8 

contains our concluding remarks. 

 

2.2   The Model 

2.2.1   The market premium and the cumulant-generating function 

We derive asset prices based on the pricing kernel, ܯ௧ାଵ. Denoted any asset return 

as ݎ	௧ାଵ ൌ ݃݋݈ ቂௌ೟శభା஽೟
ௌ೟

ቃ, where ܵ௧ (ܵ௧ାଵ) is the stock price at time t (t+1) and ܦ௧ାଵ is 

dividend paid between t and t+1. Then the standard asset pricing suggests that  

 ॱ௧ሾܯ௧ାଵ ௧ାଵሿሿݎሾ݌ݔ݁ ൌ 1, (2.2)

where ॱ௧ is the expectation operator at time t. Exploiting the pricing condition for the 

risk-free return ݎ௙,௧, it follows that expected value of the pricing kernel is a discount factor 

with the risk-free rate, i.e. ॱ௧ሾܯ௧ାଵሿ ൌ  ௙,௧൧. The risk-neutral measure ℚ, whichݎ	െൣ݌ݔ݁

is equivalent to the physical measure ℙ, is defined by the Radon-Nikodym derivative, 
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ௗℚ

ௗℙ
ൌ ெ೟శభ

ॱ೟ሾெ೟శభሿ
. The standard asset pricing condition implies that 

 ॱ௧
ℚሾ݁݌ݔሾ	ݎ	௧ାଵሿሿ ൌ

ॱ௧ሾܯ௧ାଵ ሾ݌ݔ݁ ௧ାଵሿሿݎ

ॱ௧ሾܯ௧ାଵሿ
ൌ ൣ݌ݔ݁ ௙,௧൧. (2.3)ݎ

Thus, the expected value of any gross return in the risk-neutral measure is the gross risk-

free return. 

The physical dynamics of the market return, ݎ௠,௧ାଵ ൌ ݃݋݈ ቂௐ೟శభ

ௐ೟
ቃ, where W is the 

value of the market portfolio, is defined by its cumulant generating function, (e.g., the 

logarithmic value of the moment generating function), ԧ݉ݑ௠,௧ሾߠሿ ≡

log ቂॱ௧ൣ݁ߠൣ݌ݔ	ݎ௠,௧ାଵ൧൧ቃ. The power-series expansion yields 

 ԧ݉ݑ௠,௧ሾߠሿ ൌ ෍ߢ௡,௧
௡ߠ

݊!

ஶ

௡ୀଵ

, (2.4)

where ߢ௡,௧  is the n-th derivative of ԧ݉ݑ௠,௧ሾߠሿ  at ߠ ൌ 0 , corresponding to n-th 

moment of ݎ௠,௧ାଵ . In particular, ߢଵ,௧	is the mean (ॱ௧ൣݎ௠,௧ାଵ൧), ߢଶ,௧  is the variance 

(ॽܽݎ௧ൣݎ௠,௧ାଵ൧), ߢଷ,௧  is the unstandardized skewness, and ߢସ,௧  is the unstandardized 

excess kurtosis. 23  The risk-neutral dynamics of ݎ௠,௧ାଵ  is similarly defined by its 

cumulant generating function, ԧ݉ݑ௠,௧
ℚ ሾߠሿ ൌ ∑ ௡,௧ߢ

ℚ ఏ೙

௡!
ஶ
௡ୀଵ , where ߢ௡,௧

ℚ  corresponds to n-

th risk-neutral moment of ݎ௠,௧ାଵ.  

We define the market premium as ݁ݐ݁ݎݔ௠,௧ ≡ ሾॱ௧݃݋݈ ቂ
ௐ೟శభ

ௐ೟
ቃሿ െ ௙,௧ݎ . The risk-

neutral pricing equation (2.3) implies that ԧ݉ݑ௠,௧
ℚ ሾ1ሿ ൌ  ௙,௧. Thus, the market premiumݎ

can be conveniently expressed in terms of the cumulant generating functions:  

                                                       
23 That is, ߢଷ,௧ ൌ ॱ௧ൣ̃ݎ௠,௧ାଵ

ଷ ൧, and	ߢସ,௧ ൌ ॱ௧ൣ̃ݎ௠,௧ାଵ
ସ ൧ െ ଶ,௧ߢ3

ଶ , where ̃ݎ௠,௧ାଵ ൌ ௠,௧ାଵݎ െ ॱ௧ൣݎ௠,௧ାଵ൧. 
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௠,௧ݐ݁ݎݔ݁ ൌ ԧ݉ݑ௠,௧ሾ1ሿ െ ԧ݉ݑ௠,௧
ℚ ሾ1ሿ

ൎ ൫ߢଵ,௧ െ ଵ,௧ߢ
ℚ ൯ ൅

1
2
൫ߢଶ,௧ െ ଶ,௧ߢ

ℚ ൯ ൅
1
6
൫ߢଷ,௧ െ ଷ,௧ߢ

ℚ ൯

൅
1
24

൫ߢସ,௧ െ ସ,௧ߢ
ℚ ൯

ൎ ଵ,௧ߣ ൅ ଶ,௧ߣ ൅ ଷ,௧ߣ ൅  ସ,௧ߣ

(2.5)

The result implies that the market premium, in general, comprises all of the risk premiums 

stemmed from the differences between the physical moments and the risk-neutral 

moments. Therefore, the market premium can be approximately decomposed into the 

market mean risk premium (ߣଵ,௧), the market variance risk premium (ߣଶ,௧), the market 

skewness risk premium (ߣଷ,௧), and the market kurtosis risk premium (ߣସ,௧). 

 

2.2.2   An approximate capital asset pricing model 

For individual asset return ݎ௜,௧ାଵ ≡ ݃݋݈ ൤
ௌ೔,೟శభା஽೔,೟శభ

ௌ೔,೟
൨, we assume that 

௜,௧ାଵݎ  ൌ ௜,଴ߚ ൅ ௜,ଵߚ ௠,௧ାଵݎ ൅ ߳௜,௧ାଵ, (2.6)

where ߳௜,௧ାଵ is the idiosyncratic component, which is independent of the market return, 

߳௜,௧ାଵ ٣ ௠,௧ାଵݎ	 . It follows that the cumulant generating function of ݎ௜,௧ାଵ  is 

ԧ݉ݑ௜,௧ሾߠሿ ൌ ௜,଴ߚߠ ൅ ԧ݉ݑ௠,௧ൣߚߠ௜,ଵ൧ ൅ ԧ݉ݑ௧ൣ߳௜,௧ାଵ, ,൧ߠ  where ԧ݉ݑ௧ൣ߳௜,௧ାଵ, ൧ߠ  is the 

cumulant generating function of ߳௜,௧ାଵ . We further assume that the idiosyncratic 

component is independent of the pricing kernel, ߳௜,௧ାଵ ٣  ௧ାଵ and the linear marketܯ	

model structure is preserved in the risk-neutral measure. Thus, the risk-neutral dynamics 

of ݎ௜,௧ାଵ is represented by 

ԧ݉ݑ௜,௧
ℚ ሾߠሿ ൌ ௜,଴ߚߠ ൅ ԧ݉ݑ௠,௧

ℚ ௜,ଵ൧ߚߠൣ ൅ ԧ݉ݑ௧ൣ߳௜,௧ାଵ,  .൧ߠ

Now, we are ready to calculate the expected excess stock return, ݁ݐ݁ݎݔ௜,௧ ≡
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ሾॱ௧݃݋݈ ൤
ௌ೔,೟శభା஽೔,೟శభ

ௌ೔,೟
൨ሿ െ ௙,௧ݎ ൌ ԧ݉ݑ௜,௧ሾ1ሿ െ ԧ݉ݑ௜,௧

ℚ ሾ1ሿ. It follows that  

௜,௧ݐ݁ݎݔ݁  ൌ ԧ݉ݑ௠,௧ൣߚ௜,ଵ൧ െ ԧ݉ݑ௠,௧
ℚ ௜,ଵ൧. (2.7)ߚൣ

The power-series expansion yields the following proposition for ݁ݐ݁ݎݔ௜,௧. 

Proposition 1. (Nonlinear beta representation) 

 

௜,௧ݐ݁ݎݔ݁ ൎ ൫ߢଵ,௧ െ ଵ,௧ߢ
ℚ ൯ߚ௜,ଵ ൅

1
2
൫ߢଶ,௧ െ ଶ,௧ߢ

ℚ ൯ߚ௜,ଵ
ଶ ൅

1
6
൫ߢଷ,௧ െ ଷ,௧ߢ

ℚ ൯ߚ௜,ଵ
ଷ

൅
1
24

൫ߢସ,௧ െ ସ,௧ߢ
ℚ ൯ߚ௜,ଵ

ସ

ൎ ௜,ଵߚଵ,௧ߣ ൅ ௜,ଵߚଶ,௧ߣ
ଶ ൅ ௜,ଵߚଷ,௧ߣ

ଷ ൅ ௜,ଵߚସ,௧ߣ
ସ . 

(2.8)

The result implies the feature of nonlinear risk-return tradeoff. The first term, 

௜,ଵߚଵ,௧ߣ , measures the first-order risk premium of the classical CAPM, whereas the 

remaining terms capture the pricing effect for the market high moment risk premiums. In 

particular, the market variance risk premium (ߢଶ,௧ െ ଶ,௧ߢ
ℚ ) determines the risk price (ߣଶ,௧ሻ 

for the second-order systematic risk (ߚ௜,ଵ
ଶ ). Similarly, the scaled market skewness risk 

premium (ߣଷ,௧) and the scaled market kurtosis risk premium (ߣସ,௧) are relevant for the 

third-order systematic risk (ߚ௜,ଵ
ଷ ) and the fourth-order systematic risk (ߚ௜,ଵ

ସ ), respectively. 

It is worth noting that our model does not rely on specific assumptions on the 

economic preference. Instead, our model is an approximate identity for any linear market 

model under arbitrary identification of the economic preference. In the following 

subsection, we examine some well-known economic preferences studied in prior 

literature as examples to illustrate the role of high order systematic risks. 

 

2.2.3   Examples: the role of high order co-moment risks 

The power utility preference with non-normal market returns 

We assume that the market return is distributed with high moments, ԧ݉ݑ௠,௧ሾߠሿ ൎ
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ଵ,௧ߢߠ	 ൅
ఏమ

ଶ
ଶ,௧ߢ ൅

ఏయ

଺
ଷ,௧ߢ ൅

ఏర

ଶସ
 ,ସ,௧. An explicit example is the skew normal distributionߢ

,௠ߤሺܰܭܵ ௠ଶߪ ,  ௠ሻ, which is a normal-like distribution but with higher order (excess)ߜ

moments, where ߤ௠ is the mean parameter, ߪ௠ଶ  is the variance parameter, and ߜ௠ is 

the shape parameter.24  

The pricing kernel for the power utility preference is exponentially linear in the 

market return, ܯ௧ାଵ ൌ  The pricing .ߛ ௠,௧ାଵ൧, with the relative risk aversionݎ	ߛെൣ݌ݔ݁

kernel implies that ԧ݉ݑ௠,௧
ℚ ሾߠሿ ൌ ԧ݉ݑ௠,௧ሾߠ െ ሿߛ െ ԧ݉ݑ௠,௧ሾെߛሿ. It is straightforward 

to show that the premium for the stock i is 

 

௜,௧ݐ݁ݎݔ݁ ൌ ԧ݉ݑ௠,௧ൣߚ௜,ଵ൧ െ ԧ݉ݑ௠,௧ൣߚ௜,ଵ െ ൧ߛ െ ԧ݉ݑ௠,௧ሾെߛሿ

ൎ ቆߢߛଶ,௧ െ
ଶߛ

2
ଷ,௧ߢ ൅

ଷߛ

6
ସ,௧ቇߢ ௜,ଵߚ ൅

1
2
ቆߢߛଷ,௧ െ

ଶߛ

2
ସ,௧ቇߢ ௜,ଵߚ

ଶ

൅
1
6
൫ߢߛସ,௧൯ߚ௜,ଵ

ଷ

ൎ ௜,ଵߚଵ,௧ߣ ൅ ௜,ଵߚଶ,௧ߣ
ଶ ൅ ௜,ଵߚଷ,௧ߣ

ଷ . 

(2.9)

Moreover, the risk premium of each order is related to the same order of co-moment risks, 

i.e., 

 

௜,ଵߚଵ,௧ߣ ൌ ,௜,௧ାଵݎ௧ൣ̃ݒ݋ଵଵ,௧ԧߣ ௠,௧ାଵ൧ݎ̃ ൅ ,௜,௧ାଵݎ௧ൣ̃ݒ݋ଵଶ,௧ԧߣ ௠,௧ାଵݎ̃
ଶ ൧

൅ ,௜,௧ାଵݎ௧ൣ̃ݒ݋ଵଷ,௧ԧߣ ௠,௧ାଵݎ̃
ଷ ൧,

௜,ଵߚଶ,௧ߣ
ଶ ൌ ௜,௧ାଵݎ௧ൣ̃ݒ݋ଶଵ,௧ԧߣ

ଶ , ௠,௧ାଵ൧ݎ̃ ൅ ௜,௧ାଵݎ௧ൣ̃ݒ݋ଶଶ,௧ԧߣ
ଶ , ௠,௧ାଵݎ̃

ଶ ൧,	

௜,ଵߚଷ,௧ߣ
ଷ ൌ ௜,௧ାଵݎ௧ൣ̃ݒ݋ଷଵ,௧ԧߣ

ଷ ,  ,௠,௧ାଵ൧ݎ̃

(2.10)

where ̃ݎ௜,௧ାଵ ൌ ௜,௧ାଵݎ െ ॱ௧ൣݎ௜,௧ାଵ൧ and ̃ݎ௠,௧ାଵ ൌ ௠,௧ାଵݎ െ ॱ௧ൣݎ௠,௧ାଵ൧. The results imply 

                                                       
24 See, for example, Harvey, Liechty, Liechty, and Müller (2010) for the discussion on the skew normal 
distribution. The corresponding cumulant generating function is expressed by 

ԧ݉ݑ௠,௧ሾߠሿ ൌ ௠ሻሿߪ௠ߜߠሾ2Φሺ݃݋݈ ൅ ௠ߤߠ ൅
ଶߠ

2
௠ଶߪ

ൎ ߠ ቆߤ௠ ൅
√2

ߨ√
௠ቇߪ௠ߜ ൅

ଶߠ

2
൬ߪ௠ଶ െ

2
ߨ
௠ଶߜ ௠ଶߪ ൰ ൅

ଷߠ

6
ቆ
√2ሺ4 െ ሻߨ

ଷߨ ଶ⁄ ௠ଷߜ ௠ଷߪ ቇ

൅
ସߠ

24
ቆ
8ሺߨ െ 3ሻ

ଶߨ
௠ସߜ ௠ସߪ ቇ. 
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that the first-order risk premium (ߣଵ,௧ߚ௜,ଵሻ consists of the conventional first-order co-

moment risk premiums, including the covariance risk premium, the coskewness risk 

premium, and the cokurtosis risk premium, More importantly, the second-order risk 

premium ( ௜,ଵߚଶ,௧ߣ
ଶ ) compensates for the second-order coskewness risk 

(ԧݒ݋௧ൣ̃ݎ௜,௧ାଵ
ଶ , ௜,௧ାଵݎ௧ൣ̃ݒ݋௠,௧ାଵ൧) and the second-order cokurtosis risk (ԧݎ̃

ଶ , ௠,௧ାଵݎ̃
ଶ ൧); the third-

order risk premium ( ௜,ଵߚଷ,௧ߣ
ଷ ) corresponds to the third-order cokurtosis risk 

(ԧݒ݋௧ൣ̃ݎ௜,௧ାଵ
ଷ ,  ௠,௧ାଵ൧). Thus, these high order co-moments, which are new to literature, areݎ̃

important sources of priced risks. 

 

The quadratic utility preference with normal market returns 

We examine the quadratic pricing kernel, ܯ௧ାଵ ൌ ௠,௧ାଵݎଵߛെൣ݌ݔ݁ െ ௠,௧ାଵݎ	ଶߛ
ଶ ൧, in 

the spirit of Harvey and Siddique (2000). We assume that the market return is normally 

distributed, ݎ௠,௧ାଵ~ܰሺߤ௠, ௠ଶߪ ሻ , i.e., ԧ݉ݑ௠,௧ሾߠሿ ൌ ௠ߤߠ ൅ ఏమ

ଶ
௠ଶߪ ൌ ଵ,௧ߢߠ ൅

ఏమ

ଶ
ଶ,௧ߢ . 

Define ԧ݉ݑ௃,௧ሾߠଵ, ௠,௧ାଵݎ	 ௠,௧ାଵ andݎ ଶሿ as the joint cumulant generating function ofߠ
ଶ , 

which yields that 

 

ԧ݉ݑ௃,௧ሾߠଵ, ଶሿߠ ≡ ௠,௧ାଵݎଵߠሾ݌ݔሾॱሾ݁݃݋݈ ൅ ௠,௧ାଵݎଶߠ
ଶ ሿሿሿ 		

ൌ െ
1
2
1ൣ݃݋݈ െ ଶ,௧൧ߢଶߠ2 ൅

ଵߠଵ,௧൫ߢ2 ൅ ଵ,௧൯ߢଶߠ ൅ ଵߠ
ଶߢଶ,௧

2 െ ଶ,௧ߢଶߠ4
. 

(2.11)

The risk-neutral dynamics implied by the quadratic pricing kernel is ԧ݉ݑ௠,௧
ℚ ሾߠሿ ൌ

ԧ݉ݑ௃,௧ሾߠ, െߛଵ, െߛଶሿ െ ԧ݉ݑ௃,௧ሾെߛଵ, െߛଶሿ. Thus, it is straightforward to show that the 

premium for the stock i is25 

                                                       
25   The premium can be computed through ݁ݐ݁ݎݔ௜,௧ ൌ ԧ݉ݑ௃,௧ൣߚ௜,ଵ, 0൧ െ ԧ݉ݑ௃,௧ൣߚ௜,ଵ, െߛଵ, െߛଶ൧ ൅
ԧ݉ݑ௃,௧ሾെߛଵ,െߛଶሿ. 
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௜,௧ݐ݁ݎݔ݁ ൌ ቆ
ଶ,௧ߢଵߛ ൅ ଶ,௧ߢଵ,௧ߢଶߛ2

1 ൅ ଶ,௧ߢଶߛ
ቇ ௜,ଵߚ ൅

1
2
൭
ଶ,௧൯ߢଶ൫ߛ

ଶ

1 ൅ ଶ,௧ߢଶߛ2
൱ ௜,ଵߚ

ଶ

ൌ ௜,ଵߚଵ,௧ߣ ൅ ௜,ଵߚଶ,௧ߣ
ଶ , 

௜,ଵߚଵ,௧ߣ ൌ ,௜,௧ାଵݎ௧ൣ̃ݒ݋ଵଵ,௧ԧߣ ௠,௧ାଵ൧ݎ̃ ൅ ,௜,௧ାଵݎ௧ൣ̃ݒ݋ଵଶ,௧ԧߣ ௠,௧ାଵݎ
ଶ ൧	

௜,ଵߚଶ,௧ߣ
ଶ ൌ ௜,௧ାଵݎ௧ൣ̃ݒ݋ଶଶ,௧ԧߣ

ଶ , ௠,௧ାଵݎ̃
ଶ ൧. 

(2.12)

The result suggests that, along with the covariance risk and the coskewness risk 

considered in Harvey and Siddique (2000), the second-order cokurtosis risk 

(ԧݒ݋௧ൣ̃ݎ௜,௧ାଵ
ଶ , ௠,௧ାଵݎ̃

ଶ ൧) is an important source of risk under the specification of the quadratic 

pricing kernel.  

  

The pricing kernel with stochastic volatility 

It has been well documented that the volatility of market return is stochastic. We 

examine the pricing kernel with stochastic volatility, ܯ௧ାଵ ൌ ௠,௧ାଵݎ	௠ߛെൣ݌ݔ݁ െ

௠,௧ାଵߪ	௠ߛ
ଶ ൧, in the spirit of Ang, Hodrick, Xing, and Zhang (2006). We assume that the 

market return follows a normal distribution ݎ௠,௧ାଵ|ߪ௠,௧ାଵ
ଶ ~ܰሺߤ௠ ൅ ௠,௧ାଵߪߩ

ଶ , ௠,௧ାଵߪ
ଶ ሻ 

conditionally while the market volatility itself, for simplicity, follows a normal 

distribution ߪ௠,௧ାଵ
ଶ ~ܰሺߪത௠ଶ , ௠ଶݍ ሻ , where ߩ ൏ 0  captures the negative correlation 

between market return and market volatility (e.g., the leverage effect), ߪത௠ଶ  is the long-

term volatility, and ݍ௠ଶ  is the volatility of market volatility. Define ԧ݉ݑ௃,௧ሾߠ௠,  ௩ሿ asߠ

the joint cumulant generating function of ݎ௠,௧ାଵ and ߪ௠,௧ାଵ
ଶ , which yields that  

 

ԧ݉ݑ௃,௧ሾߠ௠, ௩ሿߠ ≡ ௠,௧ାଵݎ௠ߠሾ݌ݔሾॱሾ݁݃݋݈ ൅ ௠,௧ାଵߪ௩ߠ
ଶ ሿሿሿ

ൌ ଵ,௧ߢ௠൫ߠ ൅ ௠ଶݍߩ௩ߠ ൯ ൅
௠ଶߠ

2
൫ߢଶ,௧ ൅ ௠ଶݍ௩ߠ ൯

൅
௠ଷߠ

6
ଷ,௧ߢ ൅

௠ସߠ

24
ସ,௧ߢ ൅ ௠ߪ௩ߠ

ଶ ൅
௩ଶߠ

2
௠ଶݍ , 

(2.13)

where ߢଵ,௧ ൌ ௠ߤ ൅ ௠ߪߩ
ଶ ଶ,௧ߢ , ൌ ௠ߪ

ଶ ൅ ௠ଶݍ ଷ,௧ߢ ,ଶߩ ൌ ௠ଶݍ3 ସ,௧ߢ and ,ߩ ൌ ௠ଶݍ3 . The risk-
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neutral distribution of ݎ௠,௧ାଵ implied by the pricing kernel with stochastic volatility is 

ԧ݉ݑ௠,௧
ℚ ሾߠ௠ሿ ൌ ԧ݉ݑ௃,௧ሾߠ௠,െߛ௠,െߛ௩ሿ െ ԧ݉ݑ௠,௩,௧ሾെߛ௠,െߛ௩ሿ.  

Thus, it is straightforward to show that the premium for the stock i is26 

 

௜,௧ݐ݁ݎݔ݁ ൌ ቆߛ௠ߢଶ,௧ െ ቆ
௠ଶߛ

2
െ
௩ߛ
3
ቇ ଷ,௧ߢ ൅ ቆ

௠ଷߛ

6
൅
௩ߛଵߛ2
3

ቇ ସ,௧ቇߢ ௜,ଵߚ

൅
1
2
ቆߛ௠ߢଷ,௧ െ ቆ

௠ଶߛ

2
െ
௩ߛ2
3
ቇ ସ,௧ቇߢ ௜,ଵߚ

ଶ ൅
1
6
൫ߛ௠ߢସ,௧൯ߚ௜,ଵ

ଷ

ൌ ௜,ଵߚଵ,௧ߣ ൅ ௜,ଵߚଶ,௧ߣ
ଶ ൅ ௜,ଵߚଷ,௧ߣ

ଷ . 

(2.14)

The result implies the pricing of the first three order co-moment risks since the market 

premium comprises the market mean risk premium (ߣଵ,௧ ), the market variance risk 

premium (ߣଶ,௧ሻ, and the market skewness risk premium (ߣଷ,௧). The relevant co-moment 

risks here are the same with those from the power utility preference with non-normal 

market returns in section 2.3.1. 

It is instructive to examine the return-volatility beta of Ang, Hodrick, Xing, and 

Zhang (2006), which is defined as ߚ௜,௩ ൌ
ԧ௢௩೟ൣ௥೔,೟శభ,ఙ೘,೟శభ

మ ൧

ॽ௔௥೟ൣ	ఙ೘,೟శభ
మ ൧

ൌ -Recollecting the first .ߩ௜,ଵߚ

order risk premium with respect to ߚ௜,௩ yields that:  

 

௜,ଵߚଵߣ ൌ ௜,ଵߚଵ௠ߣ ൅ ௜,௩ߚଵ௩ߣ

ൌ ௜,ଵߚ ቊߛ௠ߢଶ,௧ ൅ ቆ
௠ଷߛ

2
൅ ௩ቇߛ௠ߛ2 ௠ଶݍ ቋ

൅ ௜,௩ߚ ቊቆെ
௠ଶߛ3

2
൅ ௩ቇߛ ௠ଶݍ ቋ. 

(2.15)

More importantly, in this economy, the second-order risk price (ߣଶ,௧ሻ and the third-order 

risk price (ߣଷ,௧) are closely related to the risk price of the return-volatility beta (ߣଵఔ), i.e., 

                                                       
26  The premium can be computed through ݁ݐ݁ݎݔ௜,௧ ൌ ԧ݉ݑ௃,௧ൣߚ௜,ଵ, 0൧ െ ԧ݉ݑ௃,௧ൣߚ௜,ଵ, െߛ௠,െߛ௩൧ ൅
ԧ݉ݑ௃,௧ሾെߛ௠,െߛ௩ሿ. 
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ଶ,௧ߣ ൌ ቆ

௠ߛߩ6 െ ௠ଶߛ3 ൅ ௩ߛ4
െ6ߛ௠ଶ ൅ ௩ߛ4

ቇ  ,ଵ௩ߣ

ଷ,௧ߣ ൌ ൬
௠ߛ

െ3ߛ௠ଶ ൅ ௩ߛ2
൰  .ଵ௩ߣ

(2.16)

Hence, the significant negative evidence for the risk price of volatility risk in Ang, 

Hodrick, Xing, and Zhang (2006) is indicative of the second-order risk premium.27 

 

2.2.4   A calibration: the risk premium implied by SPX and SPX index 

options 

To gauge the impact of the high order risk prices, we estimate the market risk 

premium in each moment implied by SPX and SPX index options, following the model-

free methodology proposed by the seminal work of Bakshi, Kapadia, and Madan (2003). 

Using the index option prices from the Option Price file, we follow the procedure of 

Chang, Christoffersen, and Jacobs (2013) to estimate the 30-day risk-neutral market 

moments for each day during the period from 1996 to 2012. We then average daily 

estimates from index option prices to obtain the full sample risk-neutral market moments. 

The physical market moments are computed using the full sample logarithmic monthly 

SPX returns.  

Table 2. 1 presents the estimates of physical market moments, risk-neutral market 

moments, and their differences. The estimation result shows a positive market mean risk 

premium (ߢଵ െ ଵߢ
ℚ = 0.359%) and a positive market skewness risk premium (ߢଷ െ ଷߢ

ℚ = 

0.049%), while the market variance risk premium (ߢଶ െ ଶߢ
ℚ = −0.260%) and the market 

kurtosis risk premium (ߢସ െ ସߢ
ℚ = −0.021%) are negative.  

                                                       
27 In the special case of ߛ௠ ൌ 0, the second-order risk price is identical to the volatility risk price, i.e., 
ଶ,௧ߣ ൌ ଵఔߣ ൌ ௠ଶݍ௩ߛ .  
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We use the estimates of market moments to generate random samples and then 

perform the kernel smoothing density to estimate the physical density and the risk-neutral 

density. We estimate the pricing kernel by the ratio of the risk-neutral density to the 

physical density. As can be seen in the Panel A of Figure 2. 1, the risk-neutral density of 

the market return (β=1) is more volatile, more negatively skewed, and more fat-tailed 

than the physical density.  

Furthermore, we find that, as shown in Panel B of Figure 2. 1, the implied pricing 

kernel for the market return (β=1) is U-shaped, consistent with the recent findings in the 

literature.28  In particular, Christoffersen, Heston, and Jacobs (2013) show that their 

variance dependent pricing kernel which implies the quadratic preference of the market 

return can generate a U-shaped pattern. Thus, among the three pricing kernels of our 

examples, the quadratic preference and the stochastic volatility preference are more likely 

to reconcile the shape of the implied pricing kernel.  

To investigate how the systematic risks interacting with the pricing kernel affects the 

expected stock returns, we generate random samples for individual stocks based on ݎ௜ ൌ

௜,଴ߚ ൅ ௠ݎ௜,ଵߚ , where ߚ௜,ଵ  ranges from one to four and ߚ௜,଴  is restricted by the risk-

neutral pricing relationship (e.g. ॱℚሾ݁݌ݔሾݎ௜ሿሿ ൌ   ௙൧ሻ.29ݎൣ݌ݔ݁

In Panel A of Figure 2. 1, as ߚ௜,ଵ increases, both the physical density and the risk-

neutral density become more dispersed. Moreover, as can be seen in Panel B of Figure 2. 

1, the pricing kernel puts more weight on the positive region as ߚ௜,ଵ increases. In other 

words, high beta assets have volatile future payoffs and therefore are capable of earning 

the upside variance premium provided by the increasing region of the pricing kernel. 

                                                       
28 See, for example, Bakshi, Madan, and Panayotov (2010), Christoffersen, Heston, and Jacobs (2013), 
Chabi-Yo, Garcia, and Renault (2008), Brown and Jackwerth (2012), and Bates (2008), among others. 
29  We do not consider the idiosyncratic randomness here since it does not affect the expected returns in 
our model. 
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Hence, high beta assets are more likely to have high prices and low expected returns, 

supporting the recent work of Bakshi, Madan, and Panayotov (2010) on the property of 

contingent claims on the upside.  

We calibrate our approximate capital asset pricing model with the risk prices implied 

by SPX and SPX index options and plot the cross-sectional expected stock returns in 

Panel A of Figure 2. 2. As can be seen in the graph, the security market line is inverse U-

shaped, suggesting that the first two risk prices are economically important.  

The effect of the interaction between the market variance risk premium and the 

market beta can be confirmed in Panel B of Figure 2. 2. The figure suggests that the 

security market line is positive sloping in the absence of the market variance risk premium 

whereas the negative market variance risk premium would lead to a concave security 

market line. Thus, the link between the market variance premium and the curvature of the 

security market line is a unique feature of our model.  

 

2.3   Empirical implications of the second order risk 

In this section, we consider a simplified model, in which the first two order 

systematic risks are priced: 

 ॱ௧ൣܴ௜,௧ାଵ൧ െ ௙ܴ,௧ ൌ ௜,ଵߚଵ,௧ߣ ൅ ௜,ଵߚଶ,௧ߣ
ଶ , (2.17)

where ߚ௜,ଵ ൐ 0, ଵ,௧ߣ ൐ 0, and ߣଶ,௧ ൏ 0. We then discuss the empirical implications of the 

second-order risk from this simplified model. 

 

2.3.1   The shape of the security market line 

First of all, the slope of the security market line is 
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߲൫ॱ௧ൣܴ௜,௧ାଵ൧ െ ௙ܴ,௧൯

௜,ଵߚ߲
ൌ ଵ,௧ߣ ൅ ௜,ଵ. (2.18)ߚଶ,௧ߣ2

Thus, there exists ߚ∗,ଵ ≡
ఒభ,೟

ିଶఒమ,೟
 such that 

డ൫ॱ೟ൣோ೔,೟శభ൧ିோ೑,೟൯

డఉ೔,భ
൐ 0  when ߚ௜,ଵ ൏ ଵ,∗ߚ  and 

డ൫ॱ೟ൣோ೔,೟శభ൧ିோ೑,೟൯

డఉ೔,భ
൑ 0 when ߚ௜,ଵ ൒  ଵ. The result implies that the expected excess stock,∗ߚ	

return in the cross section is first increasing with ߚ௜,ଵ and then turns decreasing with 

  ௜,ଵ. Furthermore, the curvature of the security market line isߚ

 
߲ଶ൫ॱ௧ൣܴ௜,௧ାଵ൧ െ ௙ܴ,௧൯

௜,ଵߚ߲
ଶ ൌ ଶ,௧. (2.19)ߣ

Thus, the curvature of the security market line corresponds to the second-order risk price 

ଶ,௧ߣ) ൏ 0), implying that the security market line is inverse U-shaped. The following 

corollary summarized our results. 

 

Corollary 1. (Market variance risk premium and security market line) 

When the market variance risk premium is negative (e.g., ߣଶ,௧ ൏ 0), the slope of the 

security market line is decreasing in ߚ௜,ଵ. Furthermore, the security market line is inverse 

U-shaped and the curvature of the security market line is related to the market variance 

risk premium. 

 

2.3.2   The cross-sectional volatility-return relationship 

We now illustrate how the second-order risk price affects the cross-sectional 

volatility-return relation. First, define ߪ௜,௧
ଶ  as the stock return variance 

 
௜,௧ߪ
ଶ ≡ ॽܽݎ௧ൣݎ௜,௧ାଵ൧ ൌ ௜,ଵߚ

ଶ ॽܽݎ௧ൣݎ௠,௧ାଵ൧ ൅ ॽܽݎ௧ൣ߳௜,௧ାଵ൧

ൌ ௜,ଵߚ
ଶ ௠,௧ߪ

ଶ ൅ ௜,ఢ,௧ߪ
ଶ . 

(2.20)
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In our case, ߚ௜,ଵ ൐ 0  and ߚ௜,ଵ ൌ ൬
ఙ೔,೟
మ ିఙ೔,ച,೟

మ

ఙ೘,೟
మ ൰

ଵ/ଶ

. Thus, the first derivative of cross-

sectional stock return with respect to ߪ௜,௧
ଶ  is 

 
߲൫ॱ௧ൣܴ௜,௧ାଵ൧ െ ௙ܴ,௧൯

௜,௧ߪ߲
ଶ ൌ

ଶ,௧ߣ
௠,௧ߪ
ଶ ൅

ଵ,௧ߣ

2 ቀߪ௠,௧
ଶ ൫ߪ௜,௧

ଶ െ ௜,ఢ,௧ߪ
ଶ ൯ቁ

ଵ ଶ⁄ . (2.21)

Thus, there exists ߪ∗,௧ଶ ≡
ఒభ,೟
మ ఙ೘,೟

మ

ସఒమ,೟
మ ൅ 1  such that 

డ൫ॱ೟ൣோ೔,೟శభ൧ିோ೑,೟൯

డఙ೔,೟
మ ൐ 0  when ߪ௜,௧

ଶ ൏ ௧ଶ,∗ߪ  

and 
డ൫ॱ೟ൣோ೔,೟శభ൧ିோ೑,೟൯

డఙ೔,೟
మ ൑ 0 when ߪ௜,௧

ଶ ൒ ௧ଶ,∗ߪ	 . The result yields the following corollary. 

 

Corollary 2. (The second-order risk price and cross-sectional volatility-return relation) 

The expected excess stock return in the cross section is first increasing with ߪ௜,௧
ଶ  and then 

turns decreasing with ߪ௜,௧
ଶ . In particular, ߣଶ,௧ contributes to the negative cross-sectional 

volatility-return relation. 

 

We now show that the second-order risk price in our model can help explain the 

cross-sectional return differentials with respect to idiosyncratic volatility documented in 

Ang, Hodrick, Xing, and Zhang (2006). Define the idiosyncratic volatility as the residual 

variance of the stock return adjusted for the first-order risk premium,  

௜,௧ܮܱܸܫ  ≡ ॽarൣॱ௧ൣܴ௜,௧ାଵ൧ െ ௙ܴ,௧ െ ଵ൧ߚଵ,௧ߣ ൌ ௜,ଵߚ
ସ ॽarൣߣଶ,௧൧. (2.22)

In our case, ߚ௜,ଵ ൐ 0  and ߚ௜,ଵ ൌ ൬
ூ௏ை௅೔,೟
ॽୟ୰ൣఒమ,೟൧

൰
ଵ/ସ

. Thus, the first derivative of cross-

sectional stock return with respect to ܮܱܸܫ௜,௧ is 
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߲൫ܧ௧ൣܴ௜,௧ାଵ൧ െ ௙ܴ,௧൯
௜,௧ܮܱܸܫ߲

ൌ
ଶ,௧ߣ

௜,௧ܮܱܸܫ2
ଵ ଶ⁄ ॽarൣߣଶ,௧൧

ଵ ଶ⁄ ൅
ଵ,௧ߣ

4 ௜,௧ܮܱܸܫ
ଷ ସ⁄ ॽarൣߣଶ,௧൧

ଵ ସ⁄ . 

(2.23)

Thus, there exists ܮܱܸܫ∗,௧ ≡
ఒభ,೟
ర ॽୟ୰ሾఒమ,೟ሿ

ଵ଺ఒమ,೟
ర  such that 

డ൫ா೟ൣோ೔,೟శభ൧ିோ೑,೟൯

డூ௏ை௅೔,೟
൐ 0  when 

௜,௧ܮܱܸܫ ൏  ௧ and,∗ܮܱܸܫ
డ൫ா೟ൣோ೔,೟శభ൧ିோ೑,೟൯

డூ௏ை௅೔,೟
൑ 0 when ܮܱܸܫ௜,௧ ൒  ௧. The result yields,∗ܮܱܸܫ

the following corollary. 

 

Corollary 3. (The second-order risk price and idiosyncratic volatility) 

The expected excess stock return in the cross section is first increasing with ܮܱܸܫ௜,௧ and 

then turns decreasing with ܮܱܸܫ௜,௧. In particular, ߣଶ,௧ contributes to the negative cross-

sectional idiosyncratic volatility-return relation. 

 

2.3.3   The betting-against-beta premium 

Recently, Frazzini and Pedersen (2014) suggest that because constrained investors 

bid up high-beta assets, high-beta assets are associated with low alphas. They show that 

a betting-against-beta (BAB) factor, which is long leveraged low-beta assets and short 

high-beta assets, produces significant positive risk-adjusted returns. Our model, in 

contrast, suggests that the betting-against-beta strategy is exposed to high order 

systematic risks. To illustrate our claim, define the return on the BAB strategy as  

 ॱ௧ൣܴ஻஺஻,௧ାଵ൧ ≡
ॱ௧ሾܴ௅,௧ାଵሿ െ ௙,௧ݎ

௅ߚ
െ
ॱ௧ൣܴு,௧ାଵ൧ െ ௙,௧ݎ

ுߚ
, (2.24)

where ߚ௅ ൏  ு, ܴ௅,௧ାଵ is the return for the low beta asset, and ܴு,௧ାଵis the return forߚ

the high beta asset. In our model, it follows directly that 
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ॱ௧ൣܴ஻஺஻,௧ାଵ൧ ൌ

௅ߚଵ,௧ߣ ൅ ௅ߚଶ,௧ߣ
ଶ

௅ߚ
െ
ுߚଵ,௧ߣ ൅ ுߚଶ,௧ߣ

ଶ

ுߚ

ൌ െሺߚு െ  .ଶ,௧ߣ௅ሻߚ

(2.25)

Thus, our model implies that the second-order risk price contributes to the premium of 

the BAB strategy. The result yields the following corollary. 

 

Corollary 4. (The second-order risk price and the betting-against-beta premium) 

The BAB factor is negatively related to ߣଶ,௧. 

 

2.4   Data and summary statistics 

2.4.1   Data  

The sample comprises all NYSE/AMEX/NASDAQ ordinary common stocks over 

the period from January 1963 to December 2012. Daily and monthly stock return data 

(with share code =10 and 11) are from CRSP. Stocks with share prices less than $1 at the 

end of the previous month are excluded. Financial statement data are from COMPUSTAT. 

Fama and French (1993) factors, their momentum UMD factor, and their Size-B/M 

portfolios are obtained from the online data library of Ken French.30 We obtain daily data 

from OptionMetrics for equity options and S&P 500 index options over the period from 

January 1996 to December 2012.  

Expected market variance risk premium (ERV−IV) is obtained from Hao Zhou’s 

personal website.31 The risk-neutral expectation of variance (IV) is measured as the end-

of-month VIX-squared de-annualized (VIX2/12), whereas the realized variance (RV) is 

the sum of squared 5-minute log returns of the S&P 500 index over the month. As 

                                                       
30 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 
31  https://sites.google.com/site/haozhouspersonalhomepage/ 
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described in Drechsler and Yaron (2011) and Zhou (2012), the expected realized variance 

(ERV) is a statistical forecast of realized variance with one lag of implied variance and 

one lag of realized variance. Thus, the expected market variance risk premium is defined 

as EVRP= ERV –IV. 

Data on government bond yields, corporate bond yields, and the TED spread are 

from the FRED database of the Federal Reserve Bank of St. Louis. Following the 

literature (see, for example, Petkova and Zhang (2005) and Petkova (2006), among the 

others), we construct a set of variables for macro-economy. Specifically, we use the CRSP 

value-weighted portfolio to measure the dividend yield (DIV) by the sum of dividends 

over the last 12 months, divided by the level of the index. The term spread (TERM) is 

measured by the difference between the yields of a 10-year and a 1-year government bond. 

The default spread (DEF) is computed by the difference between the yields of a long-

term corporate Baa bond and a long-term government bond.  

We use stock analyst forecasts of the long-term growth rate (LTG) for the earnings-

per share obtained from the unadjusted I/B/E/S summary database. Following Yu (2011) 

and Hong and Sraer (2012), the standard deviation of the forecast for LTG is used to proxy 

for the firm-level disagreement. The aggregate disagreement (DIS) is measured by the 

cross-sectional value-weighted average of the individual stock disagreements.  

 

2.4.2   Estimation of co-moment risks 

For each month we estimate co-moment risks using the daily stock returns over the 

past month. Following Ang, Hodrick, Xing, and Zhang (2006), only stocks with more 

than 17 daily observations are included. First of all, the historical CAPM beta (ߚመ௜,ଵଵ) is 

estimated by the following linear regression: 
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 ܴ௜,௧ାଵ െ ௙ܴ,௧ାଵ ൌ ௜ߙ ൅ ܭܯ௜,ଵଵߚ ௧ܶାଵ ൅ ௜,௧ାଵ. (2.26)ߝ

Define ෨ܴ௜,௧ାଵ  as the residual stock return i, i.e., ෨ܴ௜,௧ାଵ ൌ ܴ௜,௧ାଵ െ ௙ܴ,௧ାଵ െ

ሺߙො௜൅	ߚመ௜,ଵଵܭܯ ௧ܶାଵ) and define ෨ܴ௠,௧ାଵ as the demeaned market return, i.e., ෨ܴ௠,௧ାଵ ൌ

ܭܯ ௧ܶାଵ െ ॱሾܭܯ ௧ܶାଵሿ . Then the first-order coskewness (ߚመ௜,ଵଶ ) and the first-order 

cokurtosis (ߚመ௜,ଵଷ) are computed respectively by 

 
መ௜,ଵଶߚ ≡ ॱሾ ෨ܴ௜ ෨ܴ௠ଶ ሿ ॱሾ ෨ܴ௠ଷ ሿ⁄ ൌ ൫ॱሾ ෨ܴ௜ ෨ܴ௠ଶ ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄ ൯ ⁄௠ܹܧܭܵ , 

መ௜,ଵଷߚ ≡ ॱሾ ෨ܴ௜ ෨ܴ௠ଷ ሿ ॱሾ ෨ܴ௠ସ ሿ⁄ ൌ ൫ॱሾ ෨ܴ௜ ෨ܴ௠ଷ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ ൯ ⁄௠ܴܷܶܭ , 
(2.27)

where ܹܵܧܭ௠ ൌ ॱሾ ෨ܴ௠ଷ ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄  and ܴܷܶܭ௠ ൌ ॱሾ ෨ܴ௠ସ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ . Our approach is 

similar to but different from that of Harvey and Siddique (2000).32 In particular, our 

estimation for these first-order systematic risks is performed separately. We estimate the 

co-moments divided by market variance using the daily data from the regression whereas 

the market skewness (ܵܧܭ ௠ܹ) and the market kurtosis (ܴܷܭ ௠ܶ) are computed using the 

full sample monthly market returns. While preserving the cross-sectional ranks of the 

security betas, this procedure ensures that the denominators estimated from the short 

regression window would be well-behaved. The second-order coskewness (ߚመ௜,ଶଵ) and the 

second-order cokurtosis (ߚመ௜,ଶଶ) are similarly estimated by 

 
መ௜,ଶଵߚ ≡ ॱሾ ෨ܴ௜

ଶ ෨ܴ௠ሿ ॱሾ ෨ܴ௠ଷ ሿ⁄ ൌ หॱሾ ෨ܴ௜
ଶ ෨ܴ௠ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄ ห ⁄|௠ܹܧܭܵ| , 

መ௜,ଶଶߚ ≡ ॱሾ ෨ܴ௜
ଶ ෨ܴ௠ଶ ሿ ॱሾ ෨ܴ௠ସ ሿ⁄ ൌ หॱሾ ෨ܴ௜

ଶ ෨ܴ௠ଶ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ ห ⁄|௠ܴܷܶܭ| , 
(2.28)

where the absolute value is required in both estimates since the second-order systematic 

risk should be nonnegative.  

We apply the model-free approach of Bakshi, Kapadia, and Madan (2003) to 

                                                       
32 Harvey and Siddique (2000) construct a measure of coskewness, ߚመ௜,ௌ௄஽ ≡
ॱሾ ෨ܴ௜ ෨ܴ௠ଶ ሿ ൫ॱሾ ෨ܴ௜

ଶሿଵ/ଶॱሾ ෨ܴ௠ଶ ሿ൯ൗ .While the numerator of ߚ௜,ଵଶ and that of ߚ௜,ௌ௄஽ in are the same, these two 
co-moment risks are different in which the residual volatility of the stock return is used as the 
denominator of their ߚ௜,ௌ௄஽. 
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estimate the 30-day risk-neutral moments for each day, following the procedure outlined 

in Chang, Christoffersen, and Jacobs (2013).33 For each month we estimate the risk-

neutral variance beta (ߚመ௜,ଶ,ோே) with the daily estimates of risk-neutral individual variance 

and risk-neutral market variance, exploiting the linear market model relation for the 

second moment:  

௜,ோே,௧ାଵܴܣܸ  ൌ ௜,ோே,ଶߙ ൅ ௠,ோே,௧ାଵܴܣ௜,ோே,ଶܸߚ ൅ ௜,ோே,௧ାଵ, (2.29)ߝ

where ܸܴܣ௜,ோே,௧ାଵ is the risk-neutral variance of the stock i, ܸܴܣ௠,ோே,௧ାଵ is the risk-

neutral variance of the market. The parameters are estimated through nonnegative least 

squares method since both ߙ௜,ோே,ଶ and ߚ௜,ோே,ଶ should be nonnegative. 

 

2.4.3   Summary statistics 

Table 2.2 table reports summary statistics for variables used in this study. We first 

compute in each month the cross-sectional statistics for each security and then report the 

time-series average. The historical CAPM beta (ߚመ௜,ଵଵ) ranges from −1.011 (at the 5th 

percentile) to 2,829 (at 95th percentile); the first-order coskewness (ߚመ௜,ଵଶ) ranges from 

−3.971 to 4.280; the first-order kurtosis (ߚመ௜,ଵଷ) ranges from −0.613 to 0.641. The mean 

values and the median values of these first-order co-moment risks tend to decrease as the 

orders of the market returns increase. The second-order coskewness (ߚመ௜,ଶଵ), ranging from 

0.212 to 63.338, is more dispersed than the second-order kurtosis (ߚመ௜,ଶଶ) which ranges 

from 0.226 to 18.820. The mean and the median value of ߚመ௜,ଶଵ is larger than those of 

 estimated from stocks with available equity ,(መ௜,ோே,ଶߚ) መ௜,ଶଶ. The risk-neutral variance betaߚ

                                                       
33 Except for one thing. We use linearly interpolate implied volatilities since the cubic spline interpolation 
requires more available observations across moneyness and sometime produces inconsistent negative 
estimates for implied volatilities. 
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options, ranges from 0.005 to 8.675, which is less dispersed than those of the second-

order co-moment risks estimated from the entire common stocks.  

We also report the statistics for the average of daily estimates for risk-neutral variance 

ܧܭܵ) risk-neutral skewness ,(௜,ோேܴܣܸ) ௜ܹ,ோே), and risk-neutral kurtosis (ܴܷܭ ௜ܶ,ோே) as 

well as statistics for firm characteristics, including the book-to-market ratio (B/M), market 

capitalization (Size, in billion), the average of past 11-month returns prior to last month 

(RET_2_12), and Amihud’s illiquidity measure (ILLIQ, in million).  

 

2.5   Pricing high-order systematic risks  

2.5.1   Cross-sectional regressions  

We examine our approximate capital asset pricing model in the cross-section. In each 

month, we sort stocks into 25 portfolios based on the historical CAPM beta (ߚመ௜,ଵଵ) and 

compute the equal-weighted portfolio returns. To achieve higher testing power, we also 

adopt the Fama-French 25 value-weighted portfolio returns formed on size and B/M. We 

first estimate the following time-series regression for each portfolio on the Fama-French 

(1993) and Carhart (1997) four factors:  

 
ܴ௣,௧ାଵ െ ௙ܴ,௧ାଵ ൌ ௣ߙ ൅ ܭܯ௣,ெ௄்ߚ ௧ܶାଵ

൅ ௧ାଵܤܯ௣,ௌெ஻ܵߚ ൅ ௧ାଵܮܯܪ௣,ுெ௅ߚ ൅  .௧ାଵܦܯ௣,௎ெ஽ܷߚ
(2.30)

In the second stage, we use the Fama-MacBeth (1973) cross-sectional regression to 

estimate the prices of high order risks while controlling for common factor loadings:  

 
ॱൣܴ௣൧ െ ௙ܴ ൌ ௣,ெ௄்ߚெ௄்,ଵߣ ൅ ෨௣,ெ௄்ߚெ௄்,ଶߣ

ଶ ൅ ෨௣,ெ௄்ߚெ௄்,ଷߣ
ଷ

൅ ෨ெ௄்ߚெ௄்,ସߣ
ସ ൅ ௌெ஻ߚௌெ஻ߣ ൅ ௌெ஻ߚுெ௅ߣ ൅  .௎ெ஽ߚ௎ெ஽ߣ

(2.31)

where ߚ෨௣,ெ௄்
ଶ ෨௣,ெ௄்ߚ ,

ଷ , and ߚ෨௣,ெ௄்
ସ  the orthogonalized high order market risks with 

respect to their lower order risks. Robust Newey and West (1987) t-statistics with eight 
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lags that account for autocorrelations are used.  

 Panel A of Table 2.3 reports the estimates for the risk prices of high order risks using 

equal-weighted portfolio returns formed on the historical CAPM beta. As reported in 

column [1], we find that ߣெ௄்,ଵ is positive (0.711) with a significant t-statistic of 3.49. 

Furthermore, as reported in column [2], ߣெ௄்,ଶ is negative (−2.372) with a significant t-

statistic of −5.69. In column [4], we find that ߣெ௄்,ଵ has a significant positive value of 

1.567 (with a t-statistic of 5.40) and ߣெ௄்,ଶ yields a significant negative value of −2.116 

(with a t-statistic of −4.69) whereas ߣெ௄்,ଷ and ߣெ௄்,ସ are insignificant.  

Panel B reports the estimates using Fama-French 25 value-weighted portfolio returns 

formed on size and B/M. The result in Panel B is similar with that of Panel A.  For 

example, as reported in column [4],  ߣெ௄்,ଵ is positive (0.925) with a significant t-

statistic of 4.87 and ߣெ௄்,ଶ is negative (−0.826) with a significant t-statistic of −2.18 

whereas ߣெ௄்,ଷ and ߣெ௄்,ସ are insignificant. 

 In summary, we find supporting evidence for the pricing of the first two orders of 

market risks. The first-order risk is significantly and positively priced while the second-

order risk is significantly and negatively priced. More importantly, our findings imply 

that cross-sectional relation between expected return and market beta should be inverse-

U shaped, which constitutes the main idea of our empirical tests in the following sections.   

 

2.5.2   Evidence on the second-order risk premium 

Performance of portfolios formed based on the first-order systematic risk 

We examine the performance of portfolios formed on the first-order co-moment risks, 

including the market beta (ߚመ௜,ଵଵ), the first-order coskewness (ߚመ௜,ଵଶ) and the first-order 

cokurtosis (ߚመ௜,ଵଷ). In each month, stocks are sorted into 25 portfolios from the lowest (1) 



88 
 

to the highest (25). After the portfolio formation, we calculate the equally-weighted 

monthly stock returns for each portfolio. For each portfolio, we compute the risk-adjusted 

return with respect to Fama-French (1993) and Carhart (1997) four factors (MKT, SMB, 

HML, and UMD) from the intercept estimate of a time-series regression. Table 2.4 

presents the results for ߚመ௜,ଵଵ መ௜,ଵଶߚ ,  and ߚመ௜,ଵଷ  in Panel A, Panel B, and Panel C, 

respectively.  

Consistent with an inverse-U shaped pattern implied by the model, as can be seen in 

Table 2.4, all of the first-order co-moment risk sorted portfolios exhibit that stocks in the 

bottom portfolio and in the top portfolio have lower stock returns than stocks in the middle 

portfolios. To exploit the economic value of the inverse-U shaped pattern, we construct a 

curvature portfolio (CUR1) by the sum of the twice difference for the portfolios formed 

on each of the first order co-moment risks. That is, for N risk-sorted portfolios, the 

curvature portfolio would be ∑ Δଶݎ௣ே
௣ୀଷ , where Δݎ௣ ൌ ௣ݎ െ ௣ݎ௣ିଵ and Δଶݎ ൌ 	Δݎ௣ െ

Δݎ௣ିଵ . Thus, for the 25 portfolios, CUR1 is the curvature portfolio that longs the 

difference in the top portfolios (25-24) and shorts difference in the bottom portfolios (2-

1). 

We find that CUR1 is significantly negative at −1.00% (with a t-statistic of −5.79) 

for ߚመ௜,ଵଵ  sorted portfolios, at −0.98% (with a t-statistic of −5.62) for ߚመ௜,ଵଶ  sorted 

portfolios, and at −0.96% (with a t-statistic of −6.18) for ߚመ௜,ଵଷ  sorted portfolios. 

Controlling for the Fama-French (1993) and Carhart (1997) four factor model, CUR1 still 

gives a significant alpha of −1.11% with a t-statistic of −7.15 for ߚመ௜,ଵଵ sorted portfolios, 

−1.01% with a t-statistic of −6.83 for ߚመ௜,ଵଶ  sorted portfolios, and −1.03% with a t-

statistic of −7.78 for ߚመ௜,ଵଷ sorted portfolios. 

In summary, consistent with Corollary 1, we find an inverse-U shaped pattern for 
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portfolios formed on the first-order risks. We also find the curvature portfolio based on 

the trading strategy exploiting the inverse-U shaped pattern generates significant 

abnormal returns where the the Fama-French (1993) and Carhart (1997) four factor model 

cannot explain. Thus, the findings suggest that the second-order risk premium is 

statistically and economically significant.  

 

Performance of portfolios formed on the second-order co-moment risks 

We examine the performance of portfolios formed on the second-order co-moment 

risks, including the second-order coskewness (ߚመ௜,ଶଵ) and the second-order cokurtosis 

 In each month, stocks are sorted into 25 portfolios from the lowest (1) to the .(መ௜,ଶଶߚ)

highest (25) and the portfolio returns are equal-weighted. Table 2.5 presents the results 

for  ߚመ௜,ଶଵ and ߚመ௜,ଶଶ in Panel A and Panel B, respectively.  

Consistent with the negative risk prices for the second-order risk, as can be seen in 

Table 2.4, portfolio returns exhibit decreasing pattern, albeit slightly increasing initially. 

To exploit the economic value of the second-order risk premium, we construct another 

curvature portfolio (CUR2) that longs the top portfolio and shorts the bottom portfolio for 

the portfolios formed on each of the second order co-moments risks.  

We find that CUR2 is significantly negative at −1.27% (with a t-statistic of −4.32) 

for ߚመ௜,ଶଵ sorted portfolios, and at −1.06% (with a t-statistic of −3.05) for ߚመ௜,ଶଶ sorted 

portfolios. Controlling for the Fama-French (1993) and Carhart (1997) four factor model, 

CUR2 still gives a significant alpha of −1.47% with a t-statistic of −8.37 for ߚመ௜,ଶଵ sorted 

portfolios, and −1.37% with a t-statistic of −6.74 for ߚመ௜,ଶଶ sorted portfolios. In Panel C, 

we find similar results for the 15 portfolios formed on the risk-neutral variance beta 

– We find that the curvature portfolio (CUR2=15-1) is significantly negative at .(መ௜,ଶ,ோேߚ)
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1.34% with a t-statistic of −2.21 and has a significant alpha of −1.38% with a t-statistic 

of −3.71 adjusted by the Fama-French (1993) and Carhart (1997) four factor model. 

In summary, consistent with Corollary 1, we find negative relation between cross-

sectional stock returns and the second-order risks. We also find that the curvature 

portfolios generate significant abnormal returns where the Fama-French (1993) and 

Carhart (1997) four factor model cannot explain. Thus, the findings confirm that the 

second-order risk premium is statistically and economically significant.  

 

2.6   Mimicking curvature factors 

2.6.1   Properties of the mimicking curvature factors 

We construct three mimicking factors for the second-order risk premium using the 

curvature portfolios studied in the previous section. We construct our first mimicking 

factor, FCUR1, based on the average of the three CUR1s formed based on ߚመ௜,ଵଵ, ߚመ௜,ଵଶ, 

and ߚመ௜,ଵଷ, respectively. Similarly, we construct our second mimicking curvature factor, 

FCUR2, based on the average of the two CUR2s formed on ߚመ௜,ଶଵ and ߚመ௜,ଶଶ, respectively. 

Our third mimicking curvature factor, FCUR2RN, is measured by the curvature portfolio 

CUR2RN formed based on ߚመ௜,ଶ,ோே.  

Table 2.6 reports the performance of our mimicking curvature factors. In Panel B, 

FCUR1 is significantly negative at −0.98% (t-statistic = −6.90) and FCUR2 is also 

significantly negative at −1.17% (t-statistic = −3.66) during the sample period from 

January 1963 to December 2012. Moreover, FCUR1 and FCUR2 remain significantly 

negative during the sub-sample period from January 1996 to December 2012. For each 

curvature factor, we compute the risk-adjusted return with respect to Fama-French (1993) 

and Carhart (1997) four factors (MKT, SMB, HML, and UMD). Our three mimicking 
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curvature factors, FCUR1, FCUR2, and FCUR2RN, have significantly negative abnormal 

returns of −1.05% (with a t-statistic of = −6.90), −1.42% (with a t-statistic of −7.65), and 

−1.38% (with a t-statistic of −3.71), respectively.  

Panel C presents the Spearman correlations. Our curvature factors are related to each 

other. For example, the correlation between FCUR1 and FCUR2 is high at 0.686 and the 

correlation between FCUR2 and FCUR2RN is also high at 0.625. The market factor (MKT) 

has positive correlations of 0.152 with FCUR1, 0.531 with FCUR2 and 0.575 with 

FCUR2RN. Furthermore, the size factor (SMB) also shows positive correlations of 0.328 

with FCUR1, 0.595 with FCUR2 and 0.440 with FCUR2N while the value factor (HML) 

and the momentum factor (UMD) show smaller negative correlation with our mimicking 

factors. More importantly, consistent with our model, we find that the expected market 

variance risk premium (ERV−IV) yields positive correlations of 0.165 with FCUR1, 0.317 

with FCUR2 and 0.352 with FCUR2RN.  

 

2.6.2   The market variance risk premium and the mimicking curvature 

factors 

To examine how our mimicking curvature factors are related to the macro-economy, 

we regress these factors on a set of state variables. Following the literature, we use the 

aggregate dividend yield (DIV), the default spread (DEF), the term spread (TERM), and 

one-month Treasury bill yield (TB) as explanatory variables. Moreover, we include the 

expected market variance risk premium (ERV−IV), aggregate disagreement (DIS), and the 

TED spread (TED). Our model implies that the second-order risk price is related to the 

market variance premium and therefore ERV−IV should explain our mimicking curvature 

factors.  
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Table 2.7 presents the results for the regressions of the mimicking factors. Consistent 

with our model, as reported in column [1] of Panel A, we find that ERV−IV has an 

impressive t-statistic of 2.19 in explaining the variation of FCUR1 whereas all of other 

variables are insignificant. Controlling for DIS and TED, as reported in column [2] of 

Panel A, ERV−IV remains significant with a t-statistic of 1.71. Moreover, as shown in 

column [2] of Panel B and in column [2] of Panel C, ERV−IV has significant t-statistics 

of 2.47 and 2.69 in the regressions of FCUR2 and FCUR2RN, respectively.  

Hong and Sraer (2012) demonstrate that the disagreement about the market return 

leads to speculative overpricing for high beta stocks. Their model implies that the shape 

of security market line is kinked and the slope of that decreases with the macro-

disagreement. Thus, their theory implies that the aggregate disagreement should explain 

our mimicking factors. However, as can be seen in Table 2.7, the market variance 

premium explain the curvature factors better than the macro-disagreement does. Thus, the 

second-order risk premium in our paper cannot be fully explained by their disagreement-

driven overpricing mechanism.  

 

2.6.3   A curvature factor model 

We construct curvature factor model based on our mimicking tradable factors. The 

expected excess return of asset i from the factor model is 

 ॱൣܴ௜ െ ௙ܴ൧ ൌ ሿܶܭܯ௜,ெ௄்ॱሾߚ ൅ ሿ, (2.32)ܴܷܥܨ௜,ி஼௎ோॱሾߚ

where ॱሾܶܭܯሿ is the expected return on the market portfolio, ॱሾܴܷܥܨሿ is expected 

return on the mimicking curvature factor, ܴܷܥܨ ∈ ሼ1ܴܷܥܨ, ,2ܴܷܥܨ  2ோேሽ andܴܷܥܨ

 :௜,ி஼௎ோ are the factor loadings from the time-series regressionߚ ௜,ெ௄் andߚ
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 ܴ௜,௧ାଵ െ ௙ܴ,௧ାଵ ൌ ௜ߙ ൅ ܭܯ௜,ெ௄்ߚ ௧ܶାଵ ൅ ௧ାଵ. (2.33)ܴܷܥܨ௜,ி஼௎ோߚ

Since our curvature factor is constructed to mimic the second-order risk premium, 

i.e., ॱ௧ሾܴܷܥܨ௧ାଵሿ ∝  ଶ,௧, our theory implies that the curvature factor loading is relatedߣ

to the second-order risk, i.e., ߚ௜,ி஼௎ோ ∝ ௜,ଵߚ
ଶ . Stocks with high curvature factor loadings, 

by construction, are less risky because they are more sensitive to the market variance risk 

premium, thereby providing hedging against market volatility risk.  

We test our curvature factor model at the firm level using the cross-sectional 

regression: 

 
ܴ௜,௧ାଵ െ ௙ܴ,௧ାଵ ൌ ܿ଴ ൅ ௜,ெ௄்,௧ߚெ௄்ߣ ൅ ௜,ி஼௎ோ,௧ߚி஼௎ோߣ

൅ ܿிூோெ ௜,௧ܿܽݎ݄ܽܥ݉ݎ݅ܨ ൅  ,௜,௧ାଵߝ
(2.34)

where the dependent variable is the monthly individual stock returns; ߚ௜,ெ௄்,௧  and 

 ௜,ி஼௎ோ,௧ are post-ranking betas estimated from the 25 portfolios formed on historicalߚ

CAPM beta (ߚመ௜,ଵଵ). ܿܽݎ݄ܽܥ݉ݎ݅ܨ௜,௧  is a set of control variables, including book-to-

market ratio (B/M), market capitalization (Size), past 11-month return (RET_2_12), 

dividend yield (YLD), and illiquidity (ILLIQ). Following the methodology of Fama and 

French (1992), we assign each of the 25 portfolio-level post-ranking beta estimates to the 

individual stocks within the portfolio at that time. 

Table 2.8 reports the results for the firm-level Fama-MacBeth regressions. In Panel 

A, we find that ߣி஼௎ோଵ  is negative (−0.501) with a significant t-statistic of −3.30, 

reported in column [2]. Moreover, in column [3], ߣி஼௎ோଶ is also negative (−0.682) with 

a significant t-statistic of −2.59. In Panel B, we test our model with control variables of 

risk-neutral moments, including VARRN, SKEWRN, and KURTRN. We find similar results 

in which ߣி஼௎ோଵ ி஼௎ோଶߣ , , and ߣி஼௎ோଶோே  have significant negative values of −1.108 

(with a t-statistic of −2.77), −1.307 (with a t-statistic of −2.75), and −1.008 (with a t-
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statistic of −2.61), respectively.  

In summary, we find significant evidence that mimicking curvature factors are priced 

risk factors. That is, investor required lower expected returns for holding stocks with 

greater exposure to the curvature factor because these assets are more sensitive to market 

variance risk premium, thereby providing hedge for market volatility risk. In other words, 

ignoring the curvature factor might omit an important source of priced risk. 

 

2.7   Performance of the curvature factor model 

2.7.1   The curvature factor model and cross-sectional volatility-return 

relation 

We examine whether our mimicking curvature factors help explain the well-known 

(idiosyncratic) volatility puzzle of Ang, Hodrick, Xing, and Zhang (2006, 2009) and the 

MAX puzzle of Bali, Cakici, and Whitelaw (2011). Following the literature, TVOL is 

defined as the annualized past one month variance of daily stock returns; IVOL is defined 

as the annualized residual variance of the daily stock regressed on the Fama and French 

(1993) three factors over the past month; MAX is defined as the maximum daily stock 

return over the past one month. In our model, Corollary 2 and Corollary 3 imply that the 

second-order risk premium should help explain the cross-sectional return differentials 

with respect to TVOL and IVOL. If MAX, a volatility measure itself, is highly correlated 

to these two volatility measures, the second-order risk premium should also explain the 

pricing effect of MAX.  

In Table 2.9, we report the Spearman correlations for second-order risks, and 

volatilities which includes TVOL, IVOL, and MAX. The table shows that these volatility 

measures are highly correlated each other with correlations ranging from 0.86 to 0.97. 
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Moreover, we find that these volatility measures are highly correlated with the second-

order risks as well as the curvature factor loadings. Thus, results suggest that high 

volatility stocks could have high exposure to market variance risk premium and therefore 

have low expected returns. 

Table 2.10 presents the performance of portfolios formed based on TVOL, IVOL, and 

MAX. Stocks are sorted into quintile portfolios, from the lowest (quintile 1) to the highest 

(quintile 5), and the portfolio returns are value-weighted. For each portfolio, we compute 

the risk-adjusted return with respect to our curvature factors as well as Fama-French 

(1993) and Carhart (1997) four factors (MKT, SMB, HML, and UMD) from the intercept 

estimate of a time-series regression. Controlling for Fama-French and Carhart four factor 

model, we find evidence consistent with Ang, Hodrick, Xing, and Zhang’s (2006) that the 

‘5-1’ portfolios for TVOL and IVOL have significantly negative alphas of −0.93% (with a 

t-statistic of −4.72) and −0.96% (with a t-statistic of −5.46), respectively. Similarly, we 

find that the ‘5-1’ portfolio for MAX also has a significantly negative alphas of −0.60% 

with a t-statistic of −3.63. 

More importantly, after controlling for market factor and our mimicking curvature 

factors, we find that none of the ‘5-1’ portfolios has significant abnormal returns. For 

example, the ‘5-1’ portfolio for TVOL has insignificant alphas of −0.10% (with a t-statistic 

of –0.45), −0.06% (with a t-statistic of –0.45), and 0.27% (with a t-statistic of 0.67) 

controlling FCUR1, FCUR2, and FCUR2RN, respectively. Furthermore, all of the ‘5-1’ 

portfolios have significant exposures to our mimicking curvature factors. For example, 

the ‘5-1’ portfolio for TVOL has significant exposures of 1.09 (with a t-statistic of 8.95), 

0.77 (with a t-statistic of 22.02), and 0.92 (with a t-statistic of 11.84) to FCUR1, FCUR2, 

and FCUR2RN, respectively. 

In summary, consistent with our model, we find that these volatility measures are 
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closely related to the second-order systematic risks and the abnormal returns associated 

with these variables become insignificant once we control for the mimicking curvature 

factors. Thus, it is the systematic second-order risk premium that accounts for these 

volatility puzzles.  

 

2.7.2   The curvature factor model and betting-against-beta premium 

We examine whether our mimicking factors help explain the betting-against-beta 

premium of Frazzini and Pedersen (2014). They show that a betting against beta (BAB) 

factor, which is long leveraged low-beta assets and short high-beta assets, produces 

significant positive risk-adjusted returns, supporting their theory of margin constraint. 

Our model, in contrast, suggests that the betting-against-beta strategy is exposed to high 

order systematic risks.  

Table 2.11 presents the performance of portfolios formed on betting-against-beta 

(BAB). At the beginning of each calendar month, stocks are ranked in ascending order on 

the basis of ߚመ௜,ி௓ at the end of the previous month, where ߚመ௜,ி௓ is the beta of Frazzini 

and Pedersen (2014). To construct the BAB factor, all stocks are assigned to one of two 

portfolios: low beta and high beta. Stocks are weighted by the ranked betas (lower beta 

security have larger weight in the low-beta portfolio and higher beta securities have larger 

weights in the high-beta portfolio), and the portfolios are rebalanced every calendar 

month. Both portfolios are rescaled to have a beta of one at portfolio formation. The 

betting against beta factor (BAB) is a self-financing portfolio that is long the low-beta 

portfolio and short the high-beta portfolio. 

The BAB factor yields a significantly positive average excess return of 0.89% with 

a t-statistic of 3.82. Controlling for Fama-French and Carhart four factor model, BAB still 
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has a significant positive alpha of 0.58% with a t-statistic of 2.78. Thus, our results are 

comparable with theirs. Controlling for the market factor and our mimicking curvature 

factors, we find BAB still has a significant alphas of 0.71 (with a t-statistic of 2.77) using 

FCUR1, a significant alphas of 0.64 (with a t-statistic of 2.77) using FCUR2, and an 

insignificant alphas of 0.11 (with a t-statistic of 0.23) using FCUR2RN. Thus, despite the 

successful performance of FCUR2RN, the market factor and our other mimicking 

curvature factors are insufficient to fully explain the BAB factor. 

We extend the analysis using a generalized five-factor model which augments our 

curvature factors with Fama-French and Carhart four factors. Controlling for the five 

factors, the BAB premium disappears in which the BAB factor has an insignificant alphas 

of 0.29 (with a t-statistic of 1.30) using FCUR1, an insignificant alphas of 0.20 (with a t-

statistic of 0.95) using FCUR2, and an insignificant alphas of 0.17 (with a t-statistic of 

0.40) using FCUR2RN. Thus, although Fama-French and Carhart four factors are similarly 

insufficient to explain the BAB factor, the extended five-factor model does capture the 

BAB premium, indicating the importance of the second-order risk premium.  

In summary, we find that the second-order risk premium helps explain the BAB 

premium. Thus, the second-order risk premium provides an alternative explanation for 

the betting-against-beta premium other than the market friction in their paper. 

 

2.7.3   Performance of portfolios formed on historical curvature factor 

loadings 

Table 2.12 presents the performance of portfolios formed on historical curvature 

factor loadings (ߚመி஼௎ோଵ መி஼௎ோଶߚ , , and ߚመி஼௎ோଶோே ). In each month, we estimate our 

curvature factor model using the daily stock returns over the past one month. ߚመி஼௎ோଵ, 
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 ,መி஼௎ோଶோே are the historical curvature factor loadings of FCUR1, FCUR2ߚ መி஼௎ோଶ, andߚ

and FCUR2RN, respectively. In each month, stocks are sorted into 25 portfolios from the 

lowest (1) to the highest (25) and the portfolio returns are equal-weighted.  

The results indicate that the portfolios formed on the historical curvature factor 

loadings have significant risk premiums that the current Fama-French and Carhart four 

factor model cannot explain. Specifically, controlling for the four factor model, the 

abnormal returns are −1.47 (with a t-statistic of −7.69) for the ’25-1’ portfolio formed on 

 መி஼௎ோଶ, andߚ መி஼௎ோଵ, −1.43 (with a t-statistic of −7.01) for the ’25-1’ portfolio formed onߚ

−1.12 (with a t-statistic of −2.61) for the ’25-1’ portfolio formed on ߚመி஼௎ோଶோே. These 

results support the validity of our mimicking curvature factors for the second-order risk 

premium. 

 

2.8   Conclusions 

The negative market variance risk premium and the second-order risk appear to affect 

cross-sectional asset pricing. This paper presents an approximate capital asset pricing 

model, in which, along with the first-order co-moment risks in existing literature, higher 

order co-moment risks and high order risk premiums are important for pricing individual 

stocks. Stocks with high exposure to the second-order risk are more volatile and are 

capable of earning the upside variance premium provided by the increasing region of the 

pricing kernel implied by the negative market variance risk premium. 

Our results show that the second-order risk is significantly and negatively priced and 

contributes to an inverse-U shaped relation between cross-sectional expected returns and 

systematic risks. We show that our mimicking curvature factors for the second-order risk 

premium well explain several volatility-related puzzles as well as the BAB premium. Our 
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study provides a unified framework for better understanding of the high order risk-return 

tradeoff and sheds light on the role of the second-order risk premium.  
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Table 2. 1:  Market moments implied by SPX and SPX index options 

This table presents the estimates of physical market moments, risk-neutral market moments, and their 

differences. The physical market moments are computed using the full sample logarithmic monthly SPX 

returns. The 30-day risk-neutral market moments are estimated by the model-free approach of Bakshi, 

Kapadia, and Madan (2003) for each day following the procedure of Chang, Christoffersen, and Jacobs 

(2013). We then average daily estimates from index option prices to obtain the full sample risk-neutral 

market moments. The first four cumulants (K1, K2, K3, and K4) are reported. The sample period is from 

1996 to 2012. 

 
 Cumulants

  ସሺ%ሻߢ  ଷሺ%ሻߢ  ଶሺ%ሻߢ  ଵሺ%ሻߢ 

Physical 0.398 0.218 -0.008 0.002 

Risk-neutral 0.039  0.479 -0.057 0.023 

Difference 0.359 -0.260 0.049 -0.021 
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Table 2. 2:  Summary statistics 

This table reports the mean, standard deviation, and percentile (5th , 25th, median, 75th , and 95th) 

statistics for variables used in this study. We first compute in each month the cross-sectional statistics for 

each security and then report the time-series average. Historical CAPM beta (ߚመ௜,ଵଵ) is calculated using 

market model on the daily stock returns over the past month. We estimate ߚመ௜,ଵଶ ൌ

൫ॱሾ ෨ܴ௜ ෨ܴ௠ଶ ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄ ൯ ⁄	௠ܹܧܭܵ  for the first order coskewness, ߚመ௜,ଵଷ ൌ ൫ॱሾ ෨ܴ௜ ෨ܴ௠ଷ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ ൯ ⁄௠ܴܷܶܭ  

for the first order kurtosis, ߚመ௜,ଶଵ ൌ หॱሾ ෨ܴ௜
ଶ ෨ܴ௠ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄ ห ⁄|௠ܹܧܭܵ|  for the second order coskewness, 

and ߚመ௜,ଶଶ ൌ หॱሾ ෨ܴ௜
ଶ ෨ܴ௠ଶ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ ห ⁄|௠ܴܷܶܭ| 	 for the second order cokurtosis. We estimate the co-moments 

divided by market variance using the residual daily data whereas the market skewness (ܹܵܧܭ௠) and the 

market kurtosis (ܴܷܶܭ௠) are computed using the full sample monthly market returns. We apply the model-

free approach of Bakshi, Kapadia, and Madan (2003) to estimate the 30-day risk-neutral moments for each 

day, following the procedure outlined in Chang, Christoffersen, and Jacobs (2013). The average of daily 

estimates for risk-neutral variance (VARRN), risk-neutral skewness (SKEWRN), and risk-neutral kurtosis 

(KURTRN) are reported. The risk-neutral variance beta (ߚመ௜,ଶ,ோே) is computed by the linear relation that 

௜,ோே,௧ାଵܴܣܸ ൌ ௜,ோே,ଶߙ ൅ ௠,ோே,௧ାଵܴܣ௜,ோே,ଶܸߚ ൅  ௜,ோே,௧ାଵ through nonnegative least square method, whereߝ

 ௠,ோே,௧ାଵ is the risk-neutral variance of theܴܣܸ ௜,ோே,௧ାଵ is the risk-neutral variance of the stock i, andܴܣܸ

market. B/M is the book-to-market ratio; Size is market capitalization measured in billions of dollar; 

RET_2_12 reports the average of past 11-month returns prior to last month; ILLIQ reports the average of 

Amihud’s (2002) illiquidity measure. The sample period is from January 1963 to December 2012. 

 
 Descriptive statistics 

 Mean Std.Dev. 5% 25% 50% 75% 95% Num. Obs.

 መ௜,ଵଵ  0.751  1.271  -1.011 0.068 0.652 1.373 2.829  4,472ߚ

 መ௜,ଵଶ  0.128  2.802  -3.971 -1.057 0.110 1.344 4.280  4,472ߚ

 መ௜,ଵଷ  0.006  0.426  -0.613 -0.178 0.002 0.186 0.641  4,472ߚ

 መ௜,ଶଵ  17.440  86.868  0.212 1.515 4.758 14.057 63.338  4,472ߚ

 መ௜,ଶଶ  5.303  17.169  0.226 0.849 2.098 5.139 18.820  4,472ߚ

  መ௜,ோே,ଶ  2.310  4.266  0.005 0.187 0.983 2.837 8.675  883ߚ

  ௜,ோே  0.027  0.036  0.006 0.012 0.021 0.035 0.067  883ܴܣܸ

ܧܭܵ ௜ܹ,ோே  -0.405  0.355  -0.983 -0.548 -0.354 -0.205 -0.003  883  

ܴܷܭ ௜ܶ,ோே  3.909  1.349  3.075 3.296 3.582 4.107 5.844  883  

B/M 1.213  8.180  0.142 0.418 0.724 1.131 2.198  3,363 

Size($b) 1.154  5.686  0.008 0.034 0.120 0.483 4.343  4,505 

Log(RET2_12) 0.039  0.410  -0.647 -0.177 0.054 0.267 0.671  4,082 

ILLIQ(106) 4.597  19.745  0.009 0.080 0.465 2.499 20.928  4,047 
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Table 2. 3:  The pricing of high-order risks 

This table reports the estimates for the risk prices of high order risks using portfolio returns. In Panel A, we 

sort stocks into 25 portfolios based on the historical CAPM beta in each month and compute the equal-

weighted portfolio returns. In Panel B, we adopt the Fama-French 25 value-weighted portfolio returns 

formed on size and B/M. We first estimate the following time-series regression for each portfolio on the 

Fama-French (1993) and Carhart (1997) four factors:  

ܴ௣,௧ାଵ െ ௙ܴ,௧ାଵ ൌ ௣ߙ ൅ ܭܯ௣,ெ௄்ߚ ௧ܶାଵ ൅ ௧ାଵܤܯ௣,ௌெ஻ܵߚ ൅ ௧ାଵܮܯܪ௣,ுெ௅ߚ ൅   .௧ାଵܦܯ௣,௎ெ஽ܷߚ

In the second stage, we use the Fama-MacBeth (1973) cross-sectional regression to estimate the prices of 

high order risks while controlling for common factor loadings:  

ॱൣܴ௣൧ െ ௙ܴ ൌ ௣,ெ௄்ߚெ௄்ߣ ൅ ෨௣,ெ௄்ߚெ௄்,ଶߣ
ଶ ൅ ෨௣,ெ௄்ߚெ௄்,ଷߣ

ଷ

൅ ෨ெ௄்ߚெ௄்,ସߣ
ସ ൅ ௌெ஻ߚௌெ஻ߣ ൅ ௌெ஻ߚுெ௅ߣ ൅  	,௎ெ஽ߚ௎ெ஽ߣ

where ߚ෨௣,ெ௄்
ଶ ෨௣,ெ௄்ߚ ,

ଷ , and ߚ෨௣,ெ௄்
ସ  the orthogonalized high order market risks with respect to their lower 

order risks . Robust Newey and West (1987) t-statistics with eight lags that account for autocorrelations are 

presented in parentheses. The sample period is from January 1963 to December 2012. 

 
 Cross-sectional regressions  

෨ெ௄்ߚ ெ௄்ߚ ௎ெ஽ߚ  ுெ௅ߚ  ௌெ஻ߚ 
ଶ ෨ெ௄்ߚ 

ଷ ෨ெ௄்ߚ 
ସ   Adj. R2 

 Panel A: 25 portfolios formed on CAPM beta 

[1] -0.161  1.215  0.927 0.711    0.655 

 (-0.54) ( 4.18) ( 1.20) ( 3.49)     

[2] -1.407  -0.888  -2.578 1.737 -2.372   0.842 

 (-4.60) (-2.73) (-3.32) ( 6.04) (-5.69)    

[3] -1.373  -1.163  -2.388 1.781 -2.570 -0.698  0.840 

 (-4.50) (-2.68) (-3.10) ( 6.14) (-5.27) (-0.85)   

[4] -1.245  -0.626  -2.418 1.567 -2.116 -0.260 -3.854  0.841 

 (-3.90) (-1.34) (-3.13) ( 5.40) (-4.69) (-0.32) (-1.53)  

 Panel B: 25 portfolios formed on Size-B/M 

[1] 0.237  0.459  3.953 0.940    0.712 

 ( 1.69) ( 3.15) ( 5.84) ( 4.93)     

[2] 0.215  0.442  2.468 0.926 -0.855   0.729 

 ( 1.55) ( 3.04) ( 3.46) ( 4.89) (-2.39)    

[3] 0.217  0.442  2.496 0.925 -0.844 -0.591  0.715 

 ( 1.57) ( 3.03) ( 3.30) ( 4.87) (-2.22) (-0.18)   

[4] 0.220  0.441  2.564 0.925 -0.826 -0.765 23.548  0.700 

 ( 1.60) ( 3.03) ( 3.42) ( 4.87) (-2.18) (-0.23) ( 0.66)  

 
 
 
   



108 
 

Table 2. 4:  Performance of portfolios formed on the first order 

systematic risk 

This table presents the performance of portfolios formed on the first order co-moment risks (ߚመ௜,ଵଵ, ߚመ௜,ଵଶ, 

and ߚመ௜,ଵଷ). In each month, stocks are sorted into 25 portfolios from the lowest (1) to the highest (25). After 

the portfolio formation, we calculate the equal-weighted monthly stock returns for each portfolio. ߚመ௜,ଵଵ is 

calculated using market model on the daily stock returns over the past month. Define ෨ܴ௜ as the residual 

stock return and ෨ܴ௠  as the demeaned market return. We compute that ߚመ௜,ଵଶ ൌ

൫ॱሾ ෨ܴ௜ ෨ܴ௠ଶ ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄ ൯ ⁄	௠ܹܧܭܵ and ߚመ௜,ଵଷ ൌ ൫ॱሾ ෨ܴ௜ ෨ܴ௠ଷ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ ൯ ⁄௠ܴܷܶܭ , where ܹܵܧܭ௠ ൌ

ॱሾ ෨ܴ௠ଷ ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄  and ܴܷܶܭ௠ ൌ ॱሾ ෨ܴ௠ସ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ .We estimate the co-moments divided by market 

variance using the residual daily data whereas the market skewness (ܹܵܧܭ௠) and the market kurtosis 

 መ௜,ଵଷߚ መ௜,ଵଶ andߚ ,መ௜,ଵଵߚ are computed using the full sample monthly market returns. Results for (௠ܴܷܶܭ)

are reported in Panel A, Panel B, and Panel C, respectively. Performance of the bottom portfolios (1 and 

2), the middle portfolios (12 and 13), and the top portfolios (24 and 25) are reported. The column “CUR1” 

refers to the curvature portfolio that longs the difference in the top portfolios (25-24) and shorts difference 

in the bottom portfolios (2-1). For each portfolio, we compute the risk-adjusted return with respect to Fama-

French (1993) and Carhart (1997) four factors (MKT, SMB, HML, and UMD) from the intercept estimate 

of a time-series regression. Robust Newey and West (1987) t-statistics with eight lags that account for 

autocorrelations are presented in parentheses. The sample period is from January 1963 to December 2012. 

  
 Portfolio ranking CUR1 

 1 2 12 13 24 25 (25-24)-(2-1) 

Panel A: Performance of the 25 portfolios formed on ࢼ෡૚૚ 

Excess returns 0.23 0.72  0.79 0.79 0.48 -0.02 -1.00 (-5.79) 

α-CAPM -0.25  0.29  0.32 0.31 -0.28 -0.84 -1.10 (-6.38) 

α-FF3 -0.53  0.03  0.05 0.03 -0.41 -0.99 -1.14 (-7.12) 

α-FFC4 -0.40  0.16  0.13 0.13 -0.19 -0.74 -1.11 (-7.15) 

Panel B: Performance of the 25 portfolios formed on ࢼ෡૚૛ 

Excess returns 0.04 0.60  0.74 0.73 0.56 0.14 -0.98 (-5.62) 

α-CAPM -0.60  -0.02  0.31 0.30 -0.04 -0.49 -1.02 (-6.01) 

α-FF3 -0.88  -0.27  0.05 0.04 -0.25 -0.73 -1.08 (-7.14) 

α-FFC4 -0.67  -0.08  0.14 0.10 -0.10 -0.52 -1.01 (-6.83) 

Panel C: Performance of the 25 portfolios formed on ࢼ෡૚૜ 

Excess returns 0.07 0.55  0.67 0.68 0.60 0.12 -0.96 (-6.18) 

α-CAPM -0.56  -0.07  0.23 0.24 -0.01 -0.51 -0.99 (-6.53) 

α-FF3 -0.85  -0.34  -0.01 0.01 -0.20 -0.76 -1.08 (-8.02) 

α-FFC4 -0.66  -0.19  0.07 0.06 0.02 -0.54 -1.03 (-7.78) 
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Table 2. 5:  Performance of portfolios formed on the second order 

systematic risk 

This table presents the performance of portfolios formed on the second order co-moment risks (ߚመ௜,ଶଵ and 

 መ௜,ଶଶ). In each month, stocks are sorted into 25 portfolios from the lowest (1) to the highest (25). After theߚ

portfolio formation, we calculate the equal-weighted monthly stock returns for each portfolio. Define ෨ܴ௜ 

as the residual stock return and ෨ܴ௠  as the demeaned market return. We compute that ߚመ௜,ଶଵ ൌ

หॱሾ ෨ܴ௜
ଶ ෨ܴ௠ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄ ห ⁄|௠ܹܧܭܵ| and መ௜,ଶଶߚ	 ൌ หॱሾ ෨ܴ௜

ଶ ෨ܴ௠ଶ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ ห ⁄|௠ܴܷܶܭ| , where ܹܵܧܭ௠ ൌ

ॱሾ ෨ܴ௠ଷ ሿ ॱሾ ෨ܴ௠ଶ ሿଷ ଶ⁄⁄  and ܴܷܶܭ௠ ൌ ॱሾ ෨ܴ௠ସ ሿ ॱሾ ෨ܴ௠ଶ ሿଶ⁄ .We estimate the co-moments divided by market 

variance using the residual daily data whereas the market skewness (ܹܵܧܭ௠) and the market kurtosis 

  መ௜,ଶଶ areߚ መ௜,ଶଵ andߚ are computed using the full sample monthly market returns. Results for (௠ܴܷܶܭ)

reported in Panel A and Panel B, respectively. Performance of the bottom portfolios (1 and 2), the middle 

portfolios (12 and 13), and the top portfolios (24 and 25) are reported. The column “CUR2” refers to the 

curvature portfolio that longs the portfolio 25 and shorts portfolio 1. Panel C presents the performance of 

15 portfolios formed on the risk-neutral variance beta (ߚመ௜,ோே,ଶ), which is estimated by ܸܴܣ௜,ோே,௧ାଵ ൌ

௜,ோே,ଶߙ ൅ ௠,ோே,௧ାଵܴܣ௜,ோே,ଶܸߚ ൅  ௜,ோே,௧ାଵ is the risk-neutral variance of the stock i, andܴܣܸ ௜,ோே,௧ାଵ, whereߝ

 ௠,ோே,௧ାଵ is the risk-neutral variance of the market. “CUR2RN” refers to the curvature portfolio thatܴܣܸ

longs the portfolio 15 and shorts portfolio 1. For each portfolio, we compute the risk-adjusted return with 

respect to Fama-French (1993) and Carhart (1997) four factors (MKT, SMB, HML, and UMD) from the 

intercept estimate of a time-series regression. Robust Newey and West (1987) t-statistics with eight lags 

that account for autocorrelations are presented in parentheses. The sample period is from January 1963 to 

December 2012. The sample period for the results in Panel C is from January 1996 to December 2012 

whereas robust t-statistics with six lags are used. 

 

 Portfolio ranking CUR2 

 1 2 12 13 24 25 25-1 

Panel A: Performance of the 25 portfolios formed on ࢼ෡૛૚ 

Excess returns 0.65  0.76  0.78  0.87  0.18  -0.62 -1.27 (-4.32) 

α-CAPM 0.32  0.37  0.26  0.34  -0.44 -1.25 -1.57 (-6.10) 

α-FF3 0.10  0.14  0.02  0.11  -0.69 -1.53 -1.63 (-8.83) 

α-FFC4 0.13  0.18  0.09  0.24  -0.46 -1.34 -1.47 (-8.37) 

Panel B: Performance of the 25 portfolios formed on ࢼ෡૛૛ 

Excess returns 0.48  0.70  0.86  0.93  0.09  -0.58 -1.06 (-3.05) 

α-CAPM 0.26  0.37  0.33  0.39  -0.54 -1.22 -1.48 (-4.98) 

α-FF3 0.05  0.13  0.09  0.14  -0.80 -1.54 -1.59 (-7.35) 

α-FFC4 0.05  0.14  0.17  0.25  -0.59 -1.32 -1.37 (-6.74) 
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Table 2.5 (continued.) 

 
 Portfolio ranking CUR2RN 

 1 2 7 8 14 15 15-1 

Panel C: Performance of the 15 portfolios formed on ࢼ෡ࡺࡾ,૛ 

Excess returns 0.69  0.70  0.78  0.82  0.15  -0.65 -1.34 (-2.21) 

α-CAPM 0.16  0.19  0.27  0.29  -0.69 -1.59 -1.76 (-3.50) 

α-FF3 0.03  0.09  0.20  0.20  -0.65 -1.59 -1.62 (-4.61) 

α-FFC4 0.05  0.11  0.17  0.19  -0.48 -1.33 -1.38 (-3.71) 
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Table 2. 6:  Properties of the mimicking curvature factors. 

The three mimicking curvature factors (FCUR1, FCUR2, and FCUR2RN) are constructed as follows. 

FCUR1 is constructed by the average of the three CUR1s formed on ߚመ௜,ଵଵ	, ߚመ௜,ଵଶ, and ߚመ௜,ଵଷ, respectively. 

FCUR2 is computed by the average of the two CUR2s formed on ߚመ௜,ଶଵ and ߚመ௜,ଶଶ, respectively. FCUR2RN, 

is measured by the curvature portfolio CUR2RN formed on ߚመ௜,ଶ,ோே. This table reports the performance of 

the Fama-French (1993) and Carhart (1997) four factors in Panel A and the performance of our mimicking 

curvature factors in Panel B. For each curvature factor, we compute the risk-adjusted return with respect to 

Fama-French (1993) and Carhart (1997) four factors (MKT, SMB, HML, and UMD). ERV−IV is the 

expected market variance risk premium; DIS is the aggregate disagreement. Panel C presents the Spearman 

correlations. Robust Newey and West (1987) t-statistics with eight lags that account for autocorrelations 

are presented in parentheses. The sample period is from January 1963 to December 2012. The sub-sample 

period is from January 1996 to December 2012 whereas robust t-statistics with six lags are used. 

 
 MKT SMB HML UMD 

 Panel A: Performance of Fama-French and Carhart four factors 

Mean (%) 

1963/01-2012/12 0.47 ( 2.41) 0.25 ( 1.84) 0.40 ( 2.82) 0.70 ( 3.91)

1996/01-2012/12 0.47 ( 1.27) 0.25 ( 1.17) 0.28 ( 0.96) 0.43 ( 1.02)

 FCUR1 FCUR2 FCUR2RN 

 Panel B: Performance of the mimicking curvature factors 

Mean (%) 

1963/01-2012/12 -0.98 (-6.90) -1.17 (-3.66)   

1996/01-2012/12 -1.05 (-3.42) -1.33 (-1.91) -1.34 (-2.21) 

Fama-French and Carhart four factors adjusted performance 

α -1.05 (-9.60) -1.42 (-7.65) -1.38 (-3.71) 
β-MKT 0.01 ( 0.45) 0.44 ( 8.88) 0.56 ( 5.34) 
β-SMB 0.45 ( 5.59) 1.21 ( 9.44) 0.52 ( 4.84) 
β-HML -0.01 (-0.13) -0.24 (-1.59) -0.73 (-4.46) 
β-UMD -0.06 (-1.05) -0.21 (-2.23) -0.35 (-3.90) 
Adj. R2 0.20  0.58  0.57 

Spearman correlations 

FCUR1 1.000    

FCUR2 0.686  1.000   

FCUR2RN 0.390  0.625  1.000  

MKT 0.152  0.531  0.575  

SMB 0.328  0.595  0.440  

HML -0.006  -0.182  -0.325  

UMD -0.036  -0.093  -0.204  

ERV−IV 0.165 0.317 0.352 

DIS -0.034 -0.026 -0.002 
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Table 2. 7:  Market variance risk premium and the mimicking 

curvature factors 

This table presents the regressions of the mimicking curvature factors on the macroeconomic state variables. 

The dependent variables, FCUR1, FCUR2, and FCUR2RN, are used in Panel A, Panel B, and Panel C, 

respectively. DIV is the aggregate dividend yield; DEF is the default spread, which is measured by the 

difference between the yields of a long-term corporate Baa bond and a long-term Aaa bond; TERM is the 

term spread, which is measured by the difference between the yields of a 10-year and a 1-year government 

bond; TB is one-month Treasury-bill yield; ERV−IV is the expected market variance risk premium; DIS is 

the aggregate disagreement. Robust Newey and West (1987) t-statistics with six lags that account for 

autocorrelations are presented in parentheses. The sample period is from January 1990 to December 2012.  

 
 Dependent variable = FCUR ∈ { FCUR1, FCUR2, FCUR2RN } 

 Constant DIV DEF TERM TB ERV-IV DIS TED Adj. R2

Panel A: Dependent variable = FCUR1 

[1] 0.034 -0.176 -0.169 0.225 -1.173 0.024   0.019 

 (0.03) (-0.35) (-0.22) (0.92) (-0.56) (2.19)    

[2] 1.606 -0.195 0.221 0.064 -1.567 0.021 -0.345 -0.756 0.017 

 (0.62) (-0.44) (0.32) (0.21) (-0.55) (1.71) (-0.54) (-1.07)  

Panel B: Dependent variable = FCUR2 

[1] -0.003  -1.734  2.420 1.066 4.182 0.091   0.076 

 (-0.00) (-1.41) (1.11) (2.12) (0.87) (3.02)    

[2] 3.942  -1.820  3.289 0.709 3.055 0.084 -0.863  -1.544  0.075 

 (0.71) (-1.73) (1.52) (1.22) (0.47) (2.47) (-0.61) (-1.04)  

Panel C: Dependent variable = FCUR2RN 

[1] 1.784  -0.238  0.921 -0.282 -6.448 0.078   0.060 

 (0.50) (-0.16) (0.35) (-0.30) (-0.94) (2.87)    

[2] 10.650  -0.952  1.350 -0.562 -11.478 0.077 -1.720  0.681  0.062 

 (1.86) (-0.69) (0.50) (-0.62) (-1.53) (2.69) (-1.67) (0.40)  
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Table 2. 8:  Market price of curvature factor loadings: firm-level 

cross-sectional regressions 

This table reports the results for the firm-level Fama-MacBeth regressions. We run the following cross-

sectional regression: 

ܴ௜,௧ାଵ െ ௙ܴ,௧ାଵ ൌ ܿ଴ ൅ ௜,ெ௄்,௧ߚெ௄்ߣ ൅ ௜,ி஼௎ோ,௧ߚி஼௎ோߣ ൅ ܿிூோெ	ܿܽݎ݄ܽܥ݉ݎ݅ܨ௜,௧ ൅  ,௜,௧ାଵߝ

where the dependent variable is the monthly individual stock returns; ߚ௜,ெ௄்,௧  and ߚ௜,ி஼௎ோ,௧  are post-

ranking betas estimated from the 25 portfolios formed on historical CAPM beta (ߚመ௜,ଵଵ); ܿܽݎ݄ܽܥ݉ݎ݅ܨ௜,௧ is 

a set of control variables. B/M is the book-to-market ratio; Size is market capitalization measured in billions 

of dollar; RET_2_12 reports the average of past 11-month returns prior to last month; YLD is the dividend 

yield measured by the sum of all dividends paid over the past 12 month; ILLIQ reports the average of 

Amihud’s (2002) illiquidity measure. Risk-neutral moments, VARRN, SKEWRN, and KURTRN are included as 

control variables in Panel B. Following the methodology of Fama and French (1992), we assign each of the 

25 portfolio-level post-ranking beta estimates to the individual stocks within the portfolio at that time. 

Robust Newey and West (1987) t-statistics with eight lags that account for autocorrelations are presented 

in parentheses. The sample period is from January 1963 to December 2012. The sample period for the 

results in Panel B is from January 1996 to December 2012 whereas robust t-statistics with six lags are used. 

 

 Fama-MacBeth regressions: individual stocks 

 Panel A: January 1963- December 2012 

 [1] [2] [3] 

Constant 0.490 ( 2.07) 0.537 ( 2.41) 0.507 ( 2.30) 

log(Size) ($b) -0.141 (-3.94) -0.145 (-4.04) -0.145 (-4.04) 

log(B/M) 0.224 ( 3.56) 0.219 ( 3.65) 0.220 ( 3.65) 

RET_2_12 0.876 ( 4.74) 0.865 ( 4.81) 0.866 ( 4.83) 

log(1+YLD) -2.078 (-0.92) -1.958 (-0.97) -1.945 (-0.96) 

ILLIQ 0.023 ( 1.05) 0.027 ( 1.28) 0.027 ( 1.25) 

ெ௄்  1.445 ( 2.24) 0.117ߚ ( 0.64) 0.189 ( 1.01) 

ெ௄்ߚ
ଶ   -1.627 (-2.30)    

ி஼௎ோଵ    -0.501ߚ (-3.30)   

 ி஼௎ோଶ     -0.682 (-2.59)ߚ

Adj. R2 0.050  0.056  0.056  

Nobs. 1,762,462  1,762,462  1,762,462  
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Table 2.8 (continued.) 

 
 Fama-MacBeth regressions: individual stocks 

 Panel B: January 1996- December 2012 

 [1] [2] [3] 

Constant 0.332 ( 0.53) 0.392 ( 0.61) 0.142 ( 0.22) 

logSZ($b) -0.072 (-1.01) -0.073 (-1.02) -0.067 (-0.93) 

logBM 0.112 ( 1.04) 0.111 ( 1.03) 0.115 ( 1.06) 

RET_2_12 0.627 ( 1.69) 0.634 ( 1.71) 0.617 ( 1.67) 

log(1+YLD) -3.570 (-0.64) -3.876 (-0.69) -3.706 (-0.66) 

ILLIQ 0.521 ( 0.33) 0.534 ( 0.34) 0.528 ( 0.34) 

ெ௄்  0.551 ( 1.15) 0.544ߚ ( 1.14) 0.722 ( 1.28) 

    ி஼௎ோଵ  -1.108 (-2.77)ߚ

ி஼௎ோଶ    -1.307ߚ (-2.75)   
 ி஼௎ோଶோே     -1.008 (-2.61)ߚ

VARRN -19.592 (-2.41) -19.846 (-2.44) -19.834 (-2.44) 

SKEWRN 0.470 ( 1.86) 0.471 ( 1.85) 0.456 ( 1.80) 

KURTRN 0.051 ( 0.81) 0.052 ( 0.82) 0.050 ( 0.79) 

Adj. R2 0.090  0.089  0.090  

Nobs. 161,815  161,815  161,815  
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Table 2. 9:  Correlations for second order risks and volatilities 

This table reports the Spearman correlations for second order risks, and volatilities. In each month, we 

estimate the time-series regression 

ܴ௜,௧ାଵ െ ௙ܴ,௧ାଵ ൌ ௜ߙ ൅ ܭܯ௜,ெ௄்ߚ ௧ܶାଵ ൅ 	,௧ାଵܴܷܥܨ௜,ி஼௎ோߚ

using the daily stock returns over the past one month.  ߚመி஼௎ோଵ, ߚመி஼௎ோଵ, and ߚመி஼௎ோଵ are the historical 

curvature factor loadings of FCUR1, FCUR2, and FCUR2RN, respectively. TVOL is the total volatility, 

which is defined as the annualized standard deviation of daily stock returns over the past month; IVOL is 

the idiosyncratic volatility, which is defined as the annualized residual variance of the daily stock regressed 

on the Fama and French (1993) three factors over the past month. The sample period is from January 1963 

to December 2012, except for correlations involving ߚመோே,ଶ and ߚመி஼௎ோଶோே, which are computed over the 

sample period from January 1996 to December 2012. 

 

 Spearman correlations 

 TVOL IVOL MAX ߚመி஼௎ோଵ  ߚመி஼௎ோଶ  ߚመி஼௎ோଶோே 

TVOL 1.000 0.970 0.890 0.561 0.574 0.561 

IVOL 0.970 1.000 0.866 0.562 0.562 0.544 

MAX 0.890 0.866 1.000 0.502 0.512 0.502 

መଵଵଶߚ   0.519 0.393 0.462 0.243 0.255 0.230 

መଵଶߚ
ଶ   0.535 0.532 0.484 0.322 0.331 0.311 

መଵଷߚ
ଶ   0.532 0.530 0.480 0.316 0.324 0.303 

 መଶଵ  0.752 0.759 0.702 0.443 0.449 0.434ߚ

 መଶଶ  0.909 0.911 0.813 0.530 0.543 0.521ߚ

 መோே,ଶ  0.260 0.206 0.213 0.123 0.146 0.158ߚ
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Table 2. 10:  Curvature factor adjusted performance of portfolios 

formed on volatilities 

This table presents the performance of portfolios formed on volatilities (TVOL, IVOL, and MAX). In each 

month, stocks are sorted into quintile portfolios from the lowest (1) to the highest (5). After the portfolio 

formation, we calculate the value-weighted monthly stock returns for each portfolio. “5-1” refers to the 

hedge portfolio that longs portfolio 5 and shorts portfolio 1. For each portfolio, we compute the risk-

adjusted return with respect to our curvature factors as well as Fama-French (1993) and Carhart (1997) four 

factors (MKT, SMB, HML, and UMD) from the intercept estimate of a time-series regression. Robust Newey 

and West (1987) t-statistics with eight lags that account for autocorrelations are presented in parentheses. 

The sample period is from January 1963 to December 2012. The sample period for the results involving 

FCUR2RN is from January 1996 to December 2012 whereas robust t-statistics with six lags are used. 

 
 Portfolio ranking  

 1 2 3 4 5 5-1 

Panel A: Performance of portfolios formed on TVOL 

Excess returns 0.49  0.53  0.59  0.43  -0.32  -0.80 (-2.33)

α-CAPM 0.15  0.08  0.02  -0.26  -1.09  -1.24 (-4.21)

α-FF3 0.08  0.03  0.00  -0.23  -1.10  -1.18 (-5.95)

α-FFC4 0.03  0.05  0.06  -0.14  -0.89  -0.93 (-4.72)

Panel B: Performance of portfolios formed on IVOL 

Excess returns 0.48  0.53  0.60  0.33  -0.35  -0.82 (-2.68)

α-CAPM 0.10  0.04  0.01  -0.35  -1.08  -1.19 (-4.36)

α-FF3 0.06  0.01  0.00  -0.33  -1.17  -1.23 (-6.97)

α-FFC4 0.03  0.05  0.04  -0.21  -0.93  -0.96 (-5.46)

Panel C: Performance of portfolios formed on MAX 

Excess returns 0.51  0.50  0.59  0.42  0.01  -0.49 (-1.76)

α-CAPM 0.16  0.05  0.05  -0.22  -0.68  -0.84 (-3.47)

α-FF3 0.08  0.02  0.04  -0.20  -0.68  -0.76 (-4.63)

α-FFC4 0.05  0.03  0.09  -0.13  -0.54  -0.60 (-3.63)
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Table 2.10 (continued.) 

 
CAPM plus FCUR adjusted performance of 5-1 

FCUR ∈ { FCUR1, FCUR2, FCUR2RN } 

 FCUR1 FCUR2 FCUR2RN 

Panel D: CAPM plus FCUR adjusted performance of 5-1 formed on TVOL 

α -0.10 (-0.45) -0.06 ( -0.39) 0.27 ( 0.67) 

β-MKT 0.80 ( 9.69) 0.34 ( 5.15) 0.58 ( 5.67) 

β-FCUR 1.09 ( 8.95) 0.77 ( 22.02) 0.92 ( 11.84) 

Adj. R2 0.54 0.69 0.72 

Panel E: CAPM plus FCUR adjusted performance of 5-1 formed on IVOL 

α -0.06 (-0.26) 0.01 ( 0.04) 0.25 ( 0.61) 

β-MKT 0.65 ( 8.27) 0.17 ( 3.02) 0.42 ( 3.75) 

β-FCUR 1.09 ( 8.70) 0.78 ( 20.96) 0.86 ( 9.40) 

Adj. R2 0.51 0.69 0.66 

Panel F: CAPM plus FCUR adjusted performance of 5-1 formed on MAX 

α 0.09 ( 0.46) 0.15 ( 1.11) 0.34 ( 1.04) 

β-MKT 0.64 ( 9.41) 0.25 ( 4.67) 0.42 ( 4.42) 

β-FCUR 0.90 ( 6.93) 0.65 ( 18.22) 0.76 ( 9.25) 

Adj. R2 0.50 0.66 0.61 
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Table 2. 11:  Curvature factor adjusted performance of portfolios 

formed on betting-against-beta 

This table presents the performance of portfolios formed on betting-against-beta (BAB). At the beginning 

of each calendar month, stocks are ranked in ascending order on the basis of ߚመ௜,ி௓ at the end of the previous 

month, where ߚመ௜,ி௓ is the beta of Frazzini and Pedersen (2014). To construct the BAB factor, all stocks are 

assigned to one of two portfolios: low beta and high beta. Stocks are weighted by the ranked betas (lower 

beta security have larger weight in the low-beta portfolio and higher beta securities have larger weights in 

the high-beta portfolio), and the portfolios are rebalanced every calendar month. Both portfolios are 

rescaled to have a beta of one at portfolio formation. The betting against beta factor (BAB) is a self-

financing portfolio that is long the low-beta portfolio and short the high-beta portfolio. For each portfolio, 

we compute the risk-adjusted return with respect to our curvature factors as well as Fama-French (1993) 

and Carhart (1997) four factors (MKT, SMB, HML, and UMD) from the intercept estimate of a time-series 

regression. Robust Newey and West (1987) t-statistics with eight lags that account for autocorrelations are 

presented in parentheses. The sample period is from January 1963 to December 2012. The sample period 

for the results involving FCUR2RN is from January 1996 to December 2012 whereas robust t-statistics with 

six lags are used. 

 
Panel A: Performance of portfolios formed on betting-against-beta 

 RetL-Rf RetH-Rf (RetL-Rf)/βL (RetH-Rf)/βH BAB 

Excess returns 0.84  0.64  1.64  0.75  0.89 ( 3.82)

α-CAPM 0.51  -0.07  1.02  -0.04  1.06 ( 4.24)

α-FF3 0.24  -0.34  0.53  -0.28  0.81 ( 3.81)

α-FFC4 0.27  -0.09  0.57  -0.01  0.58 ( 2.78)

Panel B: FCUR adjusted performance of BAB 

FCUR ∈ { FCUR1, FCUR2, FCUR2RN } 

 FCUR1 FCUR2 FCUR2RN 

CAPM plus FCUR adjusted 

α 0.71 ( 2.77) 0.64 ( 2.73) 0.11 ( 0.23) 

β-MKT -0.33 (-4.34) -0.15 (-2.28) -0.26 (-1.92) 

β-FCUR -0.36 (-3.26) -0.29 (-5.68) -0.50 (-10.96) 

Adj. R2 0.20 0.28 0.52 

FFC4 plus FCUR adjusted 

α 0.29 ( 1.30) 0.20 ( 0.95) 0.17 ( 0.40) 

β-MKT -0.17 (-2.62) -0.05 (-0.82) -0.25 (-2.05) 

β-SMB -0.06 (-0.81) 0.14 ( 1.50) -0.12 (-1.37) 

β-HML 0.64 ( 5.96) 0.58 ( 6.24) 0.61 ( 3.75) 

β-UMD 0.24 ( 3.50) 0.20 ( 3.35) 0.19 ( 2.67) 

β-FCUR -0.28 (-3.67) -0.27 (-5.38) -0.29 (-4.06) 

Adj. R2 0.38 0.41 0.60 
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Table 2. 12:  Performance of portfolios formed on pre-ranking 

curvature factor loadings 

This table presents the performance of portfolios formed on historical curvature factor loadings (ߚመி஼௎ோଵ, 

 ,መி஼௎ோଶோே). In each month, we estimate the time-series regressionߚ መி஼௎ோଶ, andߚ

ܴ௜,௧ାଵ െ ௙ܴ,௧ାଵ ൌ ௜ߙ ൅ ܭܯ௜,ெ௄்ߚ ௧ܶାଵ ൅ 	,௧ାଵܴܷܥܨ௜,ி஼௎ோߚ

using the daily stock returns over the past one month.  ߚመி஼௎ோଵ, ߚመி஼௎ோଶ, and ߚመி஼௎ோଶோே are the historical 

curvature factor loadings of FCUR1, FCUR2, and FCUR2RN, respectively. In each month, stocks are sorted 

into 25 portfolios from the lowest (1) to the highest (25). After the portfolio formation, we calculate the 

equally-weighted monthly stock returns for each portfolio. Performance of the bottom portfolios (1 and 2), 

the middle portfolios (12 and 13), and the top portfolios (24 and 25) are reported. For each portfolio, we 

compute the risk-adjusted return with respect to Fama-French (1993) and Carhart (1997) four factors (MKT, 

SMB, HML, and UMD) from the intercept estimate of a time-series regression. Robust Newey and West 

(1987) t-statistics that account for autocorrelations are reported in parentheses. The sample period, in Panel 

A and Panel B, is from January 1963 to December 2012, where robust t-statistics with eight lags are used. 

In Panel C, robust t-statistics with six lags are used in the sample period from January 1996 to December 

2012. 

 
 Portfolio ranking   

 1 2 12 13 24 25 25-1 

Panel A: Performance of the 25 portfolios formed on ࢼ෡ࡾࢁ࡯ࡲ૚ 

Excess returns 0.82  0.66  0.73 0.70  0.21  -0.53 -1.34 (-4.54)

α-CAPM 0.41  0.24  0.23 0.19  -0.44 -1.19 -1.60 (-5.89)

α-FF3 0.17  0.01  -0.02 -0.04 -0.71 -1.44 -1.61 (-7.91)

α-FFC4 0.28  0.07  0.07 0.10  -0.49 -1.19 -1.47 (-7.69)

Panel B: Performance of the 25 portfolios formed on ࢼ෡ࡾࢁ࡯ࡲ૛ 

Excess returns 0.75  0.75  0.79 0.80  0.24  -0.57 -1.32 (-4.28)

α-CAPM 0.35  0.33  0.28 0.28  -0.43 -1.22 -1.57 (-5.56)

α-FF3 0.11  0.08  0.02 0.07  -0.66 -1.43 -1.54 (-6.98)

α-FFC4 0.19  0.16  0.13 0.19  -0.46 -1.24 -1.43 (-7.01)

Panel C: Performance of the 25 portfolios formed on ࢼ෡ࡾ࡯ࢁࡲ૛ࡺࡾ 

Excess returns 0.76  0.80  0.71 0.75  0.31  -0.36 -1.12 (-1.64)

α-CAPM 0.37  0.40  0.23 0.24  -0.47 -1.17 -1.54 (-2.59)

α-FF3 0.13  0.18  0.03 0.04  -0.51 -1.18 -1.31 (-3.34)

α-FFC4 0.27  0.22  0.19 0.19  -0.20 -0.85 -1.12 (-2.61)
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Panel A: Real and risk-adjusted probability density functions 

 
  



121 
 

Panel B: Implied pricing kernels 

 
 

Figure 2. 1:  Real, risk-adjusted distribution, and pricing kernel implied by SPX 
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Pane A: Security market line with respect to the market beta 

 
Panel B: Surface of expected returns on the market variance risk premium and the market beta 

 
 

Figure 2. 2:  Security market line implied by SPX 

 




