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Abstract

My dissertation aims at understanding the high order systematic risks in the cross-
section of equity returns. It contains two chapters.

Chapter One extends Bollerslev, Tauchen, and Zhou (2009) to derive an market-
based equilibrium asset pricing model in which, along with market return volatility, the
volatility of market-return volatility (volatility-of-volatility) is a state variable and
important for pricing individual stocks. While investors are averse to high market
volatility, there is possibility that high market volatility could fluctuate even further,
which could drive investors to hedge the increasing uncertainty by buying defensive
stocks and dumping crash-prone stocks. To test the model, we use the high-frequency
S&P 500 index option data to estimate a time series of the variance of market variance.
Consistent with the model, we find that defensive stocks (i.e., returns co-move more
positively with volatility-of-volatility) have lower expected returns. A hedge portfolio
long in defensive stocks and short in crash-prone stocks yields a significant 10.5 percent
average annual return. Furthermore, the volatility-of-volatility risk largely subsumes the
valuation effect of volatility risk documented in previous studies. In sum, our model and
test results provide a unified framework to better understand the importance of volatility-
of-volatility risk in asset pricing.

Chapter Two studies the feature of nonlinear risk-return trade-off. If market returns
have high order risk premiums, expected stock returns should comprise compensation for

bearing the corresponding high order systematic risks. Allowing for non-normality in



market moments, this paper presents an approximate capital asset pricing model in which
high order risks are important for pricing individual stocks. Our results show that the
second-order risk is significantly and negatively priced and contributes to an inverse-U
shaped relation between cross-sectional expected returns and systematic risks. Stocks
with high exposure to the second-order risk are volatile and are capable of earning the
upside variance potential implied by the negative market variance risk premium. We
develop trading strategies to mimic the second-order risk premium and we show that the
resulting mimicking factor, on average, per year is —12.00% estimated from the first-order
co-moment risks, —15.60% from the second-order co-moment risks, and —16.08% from
the risk-neutral variance beta. Based on the mimicking factors, we find evidence
consistent with our model that the second-order risk premium (1) is related to market
variance risk premium, (2) accounts for the total volatility puzzle, the idiosyncratic
volatility puzzle, and the MAX puzzle, and (3) helps explain the betting-against-beta
premium. Our study provides a unified framework for better understanding of high order

risk-return tradeoff and sheds light on the role of the second-order risk premium.

Keywords: Volatility-of-volatility, Expected stock returns, Variance risk premium,

Model-free CAPM, Cumulants, High order risks, Nonlinear risk-return trade-off.
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Chapter 1
Volatility-of-Volatility Risk and

Asset Prices

1.1 Introduction

It is well established that volatility is time-varying and tends to be high during stock
market decline. The role of uncertainty during the recent financial crisis is also noted in
financial press. For example,

CRISES feed uncertainty. And uncertainty affects behaviour, which feeds the

crisis. ...all the indicators of uncertainty are at or near all-time highs. What is at work

is not only objective, but also subjective uncertainty (e.g. the unknown unknowns).

—Olivier Blanchard, The Economist, January 29, 2009.

The dual volatility concept has important implications for asset prices. Time-varying
volatility-of-volatility affects portfolio decisions by inducing changes in investment
opportunity set; it changes the expectation of future market returns and future market
volatility. If volatility-of-volatility is a state variable, the Intertemporal CAPM (ICAPM,;
Merton, 1973) posits that volatility-of-volatility should be a priced factor in the cross-
section of stocks. Intuitively, assets that co-vary positively with volatility-of-volatility are

attractive to investors since these assets provide hedge for volatility risk during the market
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downturns. Moreover, it has been well established that market volatility is a priced factor
(e.g. Coval and Shumway, 2001; Ang, Hodrick, Xing, and Zhang, 2006; and Adrian and
Rosenberg, 2008) and therefore an increase in volatility-of-volatility induces volatility
shock, leading to an increased required return and immediate stock price decline. Thus,
investors require a return premium for a security that is suffer when the market volatility
is high and when the whole market is uncertain about uncertainty.

This paper develops a market-based three-factor model that helps explain how asset
prices are affected by volatility risk and volatility-of-volatility risk. The model provides
a unified framework that can explain the empirical findings that aggregate volatility risk
is priced in cross-sectional stock returns (e.g. Ang, Hodrick, Xing, and Zhang, 2006), that
variance beta is priced in cross-sectional variance risk premiums (e.g. Carr and Wu, 2009),
and that individual variance risk premiums can predict the cross-sectional stock returns
(e.g. Bali and Hovakimian, 2009; Han and Zhou, 2011).

Our model begins with a macroeconomic model that incorporates the seminal long-
run risks (LRR) model of Bansal and Yaron (2004) and the variance-of-variance model
of Bollerslev, Tauchen, and Zhou (2009). We solve the macro-finance model explicitly
and derive the equilibrium aggregate prices. Then, we use the properties of the aggregate
asset prices to characterize the macroeconomic risks, transforming the underlying macro-
based model to a market-based model. The market-based model developed in this paper
has several advantages. First, financial data provide useful information because asset
prices tell us how market participants value risks. Moreover, financial data convey
information to public in a timely fashion. Hence, the empirical design of our model is
compatible with a large literature of multi-factor model explaining cross-sectional
monthly stock returns (see, for instance, Fama and French, 1993; Ang, Hodrick, Xing,

and Zhang, 2006; Maio and Santa-Clara, 2012; among others).
2



In our model, the expected stock return of a security i is determined by three sources
of risks. These risks are associated with: (i) the return sensitivity to market
return, Cov, [ri,tﬂ, rm,tﬂ] ; (i) the return sensitivity to market variance,
Cov, [ri,tﬂ, Vm,t+1] , where V,,; = Var, [rm,tﬂ] ; and, (ii1) the return sensitivity to
variance of market variance, Cov, [ri'tﬂ, Qm,tﬂ], where @, = Wart[Vm'Hl]. The first
term measures the market risk of classical capital asset pricing model (CAPM; Sharpe,
1964; Lintner, 1965). The second term corresponds to the aggregate volatility risk of Ang,
Hodrick, Xing, and Zhang (2006). The last term, which is the main focus of this paper,
measures the aggregate variance of variance risk. Hereafter the paper, we refer to the
variance of variance as the volatility-of-volatility.

The first goal of this paper is to investigate how market volatility-of-volatility risk
affects cross-sectional stock returns. We test the predictions of the model using NYSE,
AMEX, and NASDSQ listed stocks over the period 1996 to 2010. To implement our
model, we develop a measure of market volatility-of-volatility using high frequency S&P
500 index option data.! We convert the tick-by-tick option data to equally spaced five-
minute observations and then use the model-free methodology? to estimate the market
variance implied by index option prices for each five-minute interval. Thus, for each day,
we estimate the market volatility-of-volatility by calculating the realized bipower
variance from a series of five-minute model-free implied market variance within the day.

The bipower variation, introduced by Bardorff-Nielsen and Shephard (2004), delivers a

! We use the volatility index, VIX index, from the Chicago Board of Options Exchange (CBOE) as the
proxy for the aggregate volatility risk, which has been shown to be a significant priced factor in the cross-
sectional stock returns (e.g. Ang, Hodrick, Xing, and Zhang, 2006).

2 1t has been shown that the expectation of market variance can be inferred in a ‘model-free’ fashion from
a collection of option prices without the use of a specific pricing model (see, for example, Carr and Madan
1998; Britten-Jones and Neuberger 2000; Bakshi, Kapadia, and Madan, 2003; Jiang and Tian 2005). The
option implied information is forward-looking and the estimate can be obtained using daily or intraday
option data.

3



consistent estimator solely for the continuous component of the volatility-of-volatility
whereas the jump component is isolated.> In other words, our empirical results are robust
to the potential jump risk embedded in volatility (see, for example, Pan, 2002; Eraker,
2008; Drechsler and Yaron 2011; among others).

Consistent with the model, by sorting stocks into quintile portfolios based on return
sensitivities to market volatility-of-volatility, we find that stocks in the highest quintile
have lower stock returns than stocks in the lowest quintile by 0.88 percent per month.
Moreover, we also find evidence consistent with Ang, Hodrick, Xing, and Zhang (2006)’s
findings that there is a significant difference of -0.87 percent per month between the stock
returns with high volatility risk and the stocks with low volatility risk. Controlling for
volatility risk, we still find that the market volatility-of-volatility carries a statistically
significant return differentials of -0.97 percent per month. On the other hand, controlling
for market volatility-of-volatility risk, we find the return difference between high
volatility risk stocks and low volatility risk stocks is still large in magnitude, at -0.68
percent per month. Running the cross-sectional regressions, we find that market
volatility-of-volatility carry a statistically significant negative price of risk and largely
subsumes the valuation effect of volatility risk. Thus, our findings suggest that market
volatility-of-volatility is indeed an independently priced risk factor in the cross-sectional
stock returns.

To further explore the mechanism that volatility-of-volatility risk affects asset prices,
we investigate whether the volatility-of-volatility risk contributes to the asymmetric

correlations between returns and market volatility-of-volatility. We refer to the volatility-

3 Measures of realized jump based on the difference between realized variation and bipower variation have
been proposed by Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005), and Andersen,
Bollerslev, and Diebold (2007).



of-volatility feedback effect as the mechanism that if volatility-of-volatility is priced, an
anticipated increase in volatility-of-volatility raises the required rate of return, implying
an immediate stock price decline and higher future returns.* Consistent with the channel
of volatility-of-volatility feedback effect, we find that stocks that co-move more
negatively with market volatility-of-volatility have lower returns before the portfolio
formation and earn higher post-formation returns than stocks that co-move more
positively. More importantly, we find that the return differentials (e.g. the returns of
negative exposure stocks minus the returns of positive exposure stocks) before the
portfolio formation are negatively correlated with market volatility-of-volatility measured
at the portfolio formation date while the correlations between market volatility-of-
volatility and the post-formation return differentials are positive. Hence, market
volatility-of-volatility seems to be the state variable that drives the feedback effect,
supporting the time-varying risk premium hypothesis.

The second goal of this paper is to investigate how volatility-of-volatility risk affects
cross-sectional variance risk premiums. The variance risk premium is defined as the

difference between risk-neutral variance and realized variance. Define V;, as the
conditional variance of stock i at time ¢, V;, = Var, [ri,tﬂ]. In our model, the variance
risk premium of stock i, VRP;; = ]E(?[Vi,tﬂ] — Et[Vi,t+1]= is determined by two sources
of risks: (i) the variance sensitivity to market variance, Covt[Vi,Hl, Vm,t+1]; and, (i1) the
variance sensitivity to variance of market variance, Cov, [Vi’tﬂ, Qm,tﬂ]. The first term

corresponds to the variance beta of Carr and Wu (2009). The second term measures the

risk that individual stock volatility co-moves with the market volatility of volatility. As

4 Our definition of volatility-of-volatility feedback effect follows the definition of volatility feedback effect
in the literature (see, e.g. French, Schwert, and Stambaugh 1987; Campbell and Hentschel 1992; Bekaert
and Wu 2000; Wu 2001; Bollerslev, Sizova, and Tauchen, 2012; among others).
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shown by Carr and Wu (2009), variance risk premium corresponds to a trading strategy
that shorts a swap on the realized variance; in particular, ]E(t@[Vl-'Hl] is the price for the

contract and IEt[Vl-,Hl] is the expected payoff. Selling a volatility asset with high the
volatility sensitivity to market volatility-of-volatility requires high insurance payment
since the asset can hedge away the upward market volatility-of-volatility during the
market downturns.

Consistent with our model, by sorting stocks into quintile portfolios based on
variance sensitivities to market volatility-of-volatility, we find that stock with high
sensitivities have higher one-month variance risk premium than stocks with low
sensitivities by 67.7 (in percentages squared) per month. The magnitude of the cross-
sectional difference in variance risk premium is large compared to the market variance
risk premium, which is 17.3 (in percentages squared) per month during our sample period.
We study how volatility-of-volatility affects the variance risk premium by running the
cross-sectional regressions on the 25 testing portfolios formed on the variance
sensitivities to market volatility-of-volatility. We find that the risk price of variance beta
with respect to variance of market variance is significantly positive. These findings
suggest that market volatility-of-volatility is a priced factor in the cross-sectional variance
risk premium.

Our study could also be motivated by the recent finding in Bollerslev, Tauchen, and
Zhou (2009) that the variance risk premium of aggregate stock market returns has
outstanding predictive power for future aggregate stock market return. The underlying
mechanism in their work is that the state variable, the variance of economic variance,
which affects expected market returns and solely determines the variance risk premium,

delivers the predictability. Their work motivates several papers to focus on various



economic mechanisms behind the return predictability afforded by variance risk premium.
For example, Drechsler and Yaron (2011) show that jump shocks, in a more elaborate
LRR model, capture the size and predictive power of the variance premium. Moreover,
Drechsler (2013) show that model uncertainty has a large impact on variance risk
premium, helping explain its power to predict stock returns. Nevertheless, none of prior
studies provides evidence that volatility-of-volatility is a priced risk factor important for
cross-sectional asset pricing.

Our paper is related to the pricing model with higher moments of the market return
as risk factors studied by Chang, Christoffersen, and Jacobs (2013). They find that market
skewness is a priced risk factor in the cross section of stock returns. Both our paper and
their work extend the investigation of Ang, Hodrick, Xing, and Zhang (2006) and extract
implied moments from index option prices. However, our results are robust to the
inclusion of market skewness factor while the market skewness risk premium is much
weaker in our sample period when we control for our market volatility-of-volatility risk.

Our paper is also related to but different from Han and Zhou (2012). They examine
how firm-level variance risk premiums affect the stock returns in the cross-section, but
they do not develop any theory to explain the dependencies. In contrast, our study
investigates specifically the pricing of variance of market variance in the joint of cross-
sectional stock returns and variance risk premium.

Finally, independent to our study, Baltussen, Van Bekkum, and Van Der Grient (2013)
develop a measure of ambiguity, based on firm-level historical volatility of individual
option-implied volatility (vol-of-vol). They find that vol-of-vol affects expected stock
returns but their results cannot confirm that vol-of-vol is a priced risk factor. Our
investigation differs with theirs in two aspects. First, our measure is based on intraday

variation of market variance, resulting in a market volatility-of-volatility factor of daily
7



frequency, while their vol-of-vol is based on historical daily information of implied
volatility, resulting in a firm-level uncertainty measure of monthly frequency. Second, we
find evidence for the rational pricing of market volatility-of-volatility risk, which sharply
contrasts their ambiguity interpretation.

The remainder of the paper is organized as follows. The next section describes the
economic dynamics and develops our market-based three-factor model for the empirical
implementation. Section 3 constructs the measure of market volatility-of-volatility.
Section 4 describes the data and presents the summary statistics. In section 5, we show
empirical evidence on the pricing of variance of market variance risk in cross-sectional
stock returns. Section 6 provides evidence in cross-sectional variance risk premium. The
return predictability for the aggregate market portfolio is examined in section 7. Finally,

section 8 contains our concluding remarks.

1.2 A three-factor model

This section describes the economic model. Our model begins with a macroeconomic
model that incorporates the seminal long-run risks (LRR) model of Bansal and Yaron
(2004) and the variance-of-variance model of Bollerslev, Tauchen, and Zhou (2009). We
solve the macro-finance model explicitly and derive the equilibrium aggregate asset
prices. Then, we use the properties of aggregate asset prices to characterize the
macroeconomic risks and develop a market-based three-factor model for the cross-

sectional asset prices.

1.2.1 Economic dynamics and equilibrium aggregate asset prices

The underlying economy is a discrete time endowment economy. The dynamics of



consumption growth rate, g;,,, and dividend growth rate, g,.4+1, are governed by the

following process:

gt+1 = Ug T Xt + 01Zg 141
Xt41 = PxXt T QxOtZy 41
2 _ 2
Ot41 = Ho T Po0t + qtZgt41
, , (1.1)
Gi+1 = Uq t Pt + PqZgt+1
Jai+1 = Ba + Dxe + ©a0:24 144

iid
Zg,t+1' Zx,t+1' Z(T,t+1) Zq,t+1J Zd,t+1 ~ N(O,l)

where x,,.; represents the long-run consumption growth, ¢Z; is the time-varying
economic uncertainty, and gZ,,is the economic volatility-of-volatility, which is the
conditional variance of the economic uncertainty. The features of the long-run risk and
the time-varying economic uncertainty is proposed by Bansal and Yaron (2004), while
the additional feature of economic volatility-of-volatility is introduced by Bollerslev,
Tauchen, and Zhou (2009). The representative agent is equipped with recursive
preferences of Epstein and Zin (1989). Thus, the logarithm of the Intertemporal Marginal

Rate of Substitution (IMRS), m;, 4, is

0
meq = 0 log(s) — Egt+1 + (0 — g1 (1.2)

where 7,,,1 is the return on consumption claim, and 6 = (1 —y)(1 — 1/y)~1. We
assume that y > 1,and ¢ > 1, and therefore 8 < 0. Based on Campbell and Shiller
(1988) approximation, 7g¢1q = Ko + K1Zp4q — Z¢ + get1, Where z, is the logarithm of

price—consumption ratio, which in equilibrium is an affine function of the state



variables, z, = Ay + Axxy + Az0f + Agqf .
Substituting the equilibrium consumption return, 7, .41, into the IMRS, the

innovation in the pricing kernel m;,; is

Mepr — Ee[meq] = —Ag0:Zg 141
(1.3)
= AOtZyt41 — Aot Zot41 — Aq(pqzq,t+1
where 4; =y >0, 4, = (1 = 0)Ak10, >0, 4, = (1 —0)Ask; <0, 4, =(1 -
8)Agx;, < 0. The parameters determine the prices for short-run risk (4,), long-run risk
(Ax), volatility risk (44), and volatility of volatility risk (4,).
An analogous expression holds for the stock market return, 75,41 = Kom +
KimZmt+1 — Zmt + Gae+1 . Where z, . is the log price—dividend ratio, which in
equilibrium is an affine function of the state variables, zp, ;= A, + AyxmX: +

Agm0f + Agmqi.® Since we require that 8 < 0, we have Ay, >0, Ay, <0, and

Agm < 0. The innovation in market return can be express as

Tmit+1 — Et[rm,t+1] = Pa0tZg,t+1
(1.4)
+ .Bm,xatzx,t+1 + ,Bm,aqtza,t+1 + ﬁm,q ¢qzq,t+1'

where By = AxmKim®Px > 0, Pimo = AsmKim <0, IBm,q = AgmKim < 0.1t is

straightforward now to derive the equity premium on the market portfolio,

5 The equilibrium solutions for the coefficients are:

_ _ 24 42,22
A, = 1-1/¢ > 0,4, = 0((1-1/9)"+AxK19%)

0AZK?
g™l < 0
1-K1px 2(1-K1pg)

2(1-k1pq) ’

< 0,and Ay =

¢ The equilibrium solutions for the coefficients are:
-1 (1-6)Ag(1-K1p5)+0.5H (1-8)Aq(1~K1pq)+0.5Hm,
A, = $-1/y Ay = o(1=K1Pq ™0 and Ay = a(1=¥1Pq) =4 where H,,, =
! 1-K1,mPx ’ 1-K1,mPo ’ 1-K1,mPq ’

yz + (pczi + QDJ%(Ax - ﬁm,x)z and Hm,q = (Aa - .Bm,o)2~
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[Et[rm,t+1] —Tre t 0-5vart[rm,t+1] = Cov, [rm,t+1r _mt+1]
(1.5)
= Axﬂm,xatz + Aaﬁm,aqg + Aqﬁm,q(pg-

The expected market return consists of three terms. The first two terms are long-run risk
premium and volatility risk premium, which are the same as in Bansal and Yaron (2004),
while the last term represents the volatility-of-volatility risk premium, which corresponds

to the work of Bollerslev, Tauchen, and Zhou (2009).”
The conditional variance of market return is readily calculated as V. =

Var,[rmer1] = (03 + B2 )02 + BE.sq? + BZ,qP2, and the process for innovations in

market variance is

Vie+1r — Ee[Vines1] = BroQeZo s + Bv.q®PqZq,t+1, (1.6)
where By, = 3 + BE 5, Bvg = Bz - Thus, innovations in market variance are related
to both the economic volatility shock and the economic volatility-of-volatility shock. It
follows that the market volatility-of-volatility (e.g. the conditional variance of market
variance) is Q¢ = Var[Vipc41] = BE »a7 + BE 492, and the process for its innovations
1s

Qmit+1 — ]Et[Qm,t+1] = .BQ,q(quq,t+1' (1.7)
where Bgq = B7 - - Note that innovations in market volatility-of-volatility is solely
determined by economic variance of variance shock with a scaling factor, B 4. The
market volatility-of-volatility-of-volatility (e.g. the conditional variance of variance of
market variance), W, = Vart[Qm,tH] = ﬁé‘q <p§, is constant in our model.

Next, we consider the market variance risk premium, which is defined as the

7 Since we do not assume the square root process for the volatility-of-volatility as Bollerslev, Tauchen, and
Zhou (2009) do, the volatility risk in the resulting equity premium does not confound with the volatility-
of-volatility risk.

11



difference between the conditional variance under risk-neutral measure and the

conditional variance under physical measure. Under the risk-neutral measure, which is

dQ _ _exp(mey1)

characterized by the Radon-Nikodym derivative =
P E[exp(me4q)]

, the economy

dynamics preserve the same structure but with a shift the mean.® Therefore, our model

implies that both the conditional variance of market return and the conditional variance

of market variance are invariant under the risk neutral measure; that is, Vrgt =

War;@[rm,tﬂ] = Ve, and Qg't = Var;@[Vm,tH] = Qm;¢ - The market variance risk

premium can be expressed as

VRPm: = EZ[Vinrs1] = Ec[Vines1]

= BV,UQt(IE(tQ[ZU,t+1] - Et[zo,t+1])
(1.8)

+ Bvq®q (E?[zq,tﬂ] — Ee[2g,e41])
= —AsBy,0qF — AqBV,q(pé'
The negative volatility risk price (1,) and the negative volatility-of-volatility risk price
(Aq) contributes to the positive market variance risk premium. Moreover, the model
predicts that the market variance risk premium is time-varying and is entirely driven by

the dynamics of the economic volatility-of-volatility (g#), which corresponds to the work

of Bollerslev, Tauchen, and Zhou (2009).

8 That is,
gei1 = (#g - Vatz) +x¢ + UtZ£t+1'
Xep1 = —Ax0f + puXe + <Px0r23t+1'
021 = (o = A6G2) + PoOF + QeZg 11,
Qi1 = (,“q - Aquc%) +pqaqf + <PqZ$t+1'
Jat+1 = Ha + Px¢ + <Pa0’rzgt+1,
where Z£t+1 =vyo; + Zg‘prl,z;?it+1 = A0 + zx_tJ,l,Z;Q“it+1 =,q; + ZJI_J,I,Z:%t+1 = Aq9Pq + Zg,t+1, and

Q _
Zae+1 = Zdt+1-

12



1.2.2 Leverage effects, feedback effects, and return predictability

The model endogenously generates an asymmetric return-volatility dependency. In
the literature, leverage effect (e.g. Black, 1976; Christie, 1982; among others) refers to
the negative contemporaneous return-volatility correlation, while the mechanism of
volatility feedback effect (see, e.g. Campbell and Hentschel 1992; Bekaert and Wu 2000;
Wu 2001; Bollerslev, Sizova, and Tauchen, 2012; among others) is often used to explain
the positive correlations between future returns and volatility. Our model is in line with
the leverage effect and the feedback effect; that is, a straightforward calculation shows

that
Covt[rm,t+1' Vm,t+1] = ﬁm,aﬂV,aCItz + Bm,qIBV,q(pé < 0'
Cov, [rm,t+1+j' Vm,t+1] = Cov, []Et+1 [ [Et+j [Tm,t+1+j]] ) Vm,t+1] (1.9)

= —Kg PoBmoBv.ocq? = KqPy BmaBrq®s > 0
where k5 = (1 — KkKympPg)/Kim and kg = (1 — Ky ;mPq)/K1,m. In the absence of the
time-varying economic volatility-of-volatility (e.g. when g7 is constant and <p§=0), the
second term of Cov, [rm,tﬂ, Vm,tﬂ] and the second term of Cov; [rm,t+1+ 1 Vm_tﬂ] are

reduced to zero, leading both of the two covariances to smaller values. Thus, the dynamics
of economic volatility-of-volatility amplifies the leverage effect and the volatility
feedback effect.

Moreover, our model implies the existence of leverage effect and feedback effect
related to market volatility-of-volatility. The contemporaneous and forward correlations

between market return and market volatility-of-volatility can be expressed as
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(Covt[rm,t+1' Qm,t+1] = Bm,qﬁQ,q(pg <0,
(1.10)

— J
C07-7t [rm,t+1+j' Qm,t+1] - _quq Bm,q.gQ,q(p(? > 0.

If volatility-of-volatility is priced, an anticipated increase in volatility-of-volatility raises
the required rate of return, implying an immediate stock price decline and higher future
returns. Thus, the above expressions provide important and directly testable implications
for the volatility-of-volatility risk premium.

It is instructive to consider the return predictability afforded by the market variance
risk premium, which is the main proposition in the pioneer work of Bollerslev, Tauchen,
and Zhou (2009). In our model, the process for innovations in the market variance risk

premium is

VRPm,t+1 — E; [VRPm,t+1] = _AaﬁV,a(pqzq,t+1: (1.11)

which is entirely determined by economic volatility-of-volatility shock like the market
volatility-of-volatility is. Thus, similar to Bollerslev, Tauchen, and Zhou (2009), market

variance risk premium can predict the future market return as follows,

(Covt[rm,t+1+erRPm,t+1] = qucjl ﬁm,qlaﬁV,a(pc? > 0. (1.12)

In the presence of jumps, however, as indicated in Drechsler and Yaron (2011), the market
variance risk premium is affected by risk of jumps that is also likely to deliver the return
predictability. In which case, the market variance risk premium is no longer solely driven
by the economic volatility-of-volatility, lowering the testing power of Bollerslev, Tauchen,
and Zhou (2009) for the return predictability afforded by market variance risk premium
against an alternative source of risk. Nevertheless, the continuous component of the
market volatility-of-volatility is still corresponding to the economic volatility-of-volatility.

Thus, for the testing power consideration, the empirical strategy of our model focuses on

14



the identification of the continuous component of the market volatility-of-volatility.

1.2.3 A market-based three-factor model for individual stocks

We assume that the innovations in stock return i is

Tit+1 — ]Et[ri,t+1] = Bix0tZxt+1 T BioQtZoir1 T ﬂi,q‘Pqu,t+1- (1.13)
Given the expression for the pricing kernel in equation(1.3), the expected stock return can

be written as

]Et [ri't+1] - rf,t + O.SWart [T‘i,t+1]
(1.14)
= ﬂi,x’lxo_t2 + ﬂi,a/LTqLg + ﬂi,qlq(pé'

Thus, the expected stock return is determined by three sources of economic risks:
economic long-run risk (f3; ,), economic volatility risk (f; ), and economic volatility-of-
volatility risk (B; ).

We now use the properties of the aggregate asset prices to characterize the
macroeconomic risks. First of all, in equilibrium, the market volatility-of-volatility risk,
which is the return covariance with respect to variance of market variance, is solely

determined by the economic volatility-of-volatility risk (8; 5), 1..

Cov, [ri,t+1' Qm,t+1] = IBi,qﬁQ,q(pé- (1.15)
Furthermore, the return sensitivities with respect to market variance and with respect to
market return provide additional information for the economic volatility risk and the long-

run risk; that is,
Cov, [ri,t+1; Vm,t+1] = BioBv.oat + BigBv q9s, (1.16)

(COVt [ri,t+1r rm,t+1] = .Bi,xﬁm,xo-tz + ﬂi,aﬁm,aqtz + ﬁi,qﬁm,q(pg- (1-17)

Substituting out the economic risks in (1.14) with (1.15), (1.16) and (1.17) gives us
15



the market-based three-factor model:
E¢[riee1] = 15,0 + 0.5Var,[r;e14]
= AnCoVe[Ti g1, Tmesa| + A COVe[Ty i1, Vi ] (1.18)
+ AoCov; [ri,t+1r Qm,t+1]'

A Ay — A A, — A -1
where A =, Ay = G—mﬁm'a,AQ =4 vhra mﬁm’q. (1.19)
ﬁm,x )BV,O' 'BQ'Q

Thus, the expected stock return is now determined by three sources of risks related to
aggregate asset prices. The first term measures the market risk of classical capital asset
pricing model (CAPM; Sharpe, 1964; Lintner, 1965). The second term corresponds to the
aggregate volatility risk of Ang, Hodrick, Xing, and Zhang (2006). The last term, which
is the main focus of this paper, measures the aggregate volatility of volatility risk. The
resulting three risk prices in our market-based model, 4,,, Ay, and A, are related to the
three economic risk prices with a linear transformation.

The market-based model developed in this paper has several advantages. First,
financial data provide useful information because asset prices tell us how market
participants value risks. Moreover, financial data convey information to public in a timely
fashion. Hence, the empirical design of our model is compatible with a large literature of
multi-factor model explaining cross-sectional monthly stock returns (see, for instance,
Fama and French, 1993; Ang, Hodrick, Xing, and Zhang, 2006; Maio and Santa-Clara,
2012; among others).

It is constructive to establish the individual variance risk premiums under the
proposed model. The conditional variance of the time ¢ to t + 1 return of stock i (77 ¢41)

and the innovations in conditional variance i can be expressed as
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Vi,t = vart[ri,t+1] = ﬁlz‘xo-tz + BI%O'CIL? + Blz,q(pé
(1.20)
—BY v
Vieer — E¢ [Vi,t+1] = BioqtZot+1 + BiqPqZqt+1

where B}, = B7, and B}, = B7,. It follows that

VRP; = E[Viear] = Ee[Viera] = —2oBlo0% — AaBlq0s,  (1.2D)
which suggests that the individual variance risk premiums are determined by the
conditional variance’s betas with respect to the economic volatility risk (,Bl-"’ ») and with
respect to the economic volatility-of-volatility risk (ﬁX q)

To derive a market-based variance risk premium model, we consider the variance
sensitivities with respect to market variance and with respect to market volatility-of-

volatility, which in the equilibrium are given by

Cov, [Vi,t+1r Qm,t+1] = .Bi‘,/qﬂQ,qug' (1.22)

Cove|Virsr Vimesa] = BlsBysaf + ﬁi‘,/qﬁV,q(pc?' (1.23)

Similarly, substituting out the economic risks in (1.21) with (1.22) and (1.23) gives us

the market-based two-factor model for the individual variance risk premium:

VRP;; = _AKCOVt[VLtH’ Vm,t+1] - AECOVt[Vi,HL Qm,t+1]' (1.24)

v
where Ay = Ao and A}, = M.

By Box (1.25)

Therefore, the individual variance risk premium is now determined by two sources of
risks related to aggregate asset prices. The first term corresponds to the variance beta of
Carr and Wu (2009). The second term measures the risk that individual stock volatility
co-moves with the aggregate volatility of volatility. The resulting two risk prices

associated with the individual variance risk premium, A}, and AY, are also related to the
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corresponding economic risk prices, A, and A4, with a linear transformation.

Our model implies that the three aggregate asset prices are inter-dependent and so
are the market-based risks in the individual expected return and variance risk premium.
Moreover, the risk prices for the high moments are offset by the risk prices for the low
moments. While this property is interesting, it also complicates the task of distinguishing
the relative impacts from the underlying sources of risks. Nevertheless, our market-based

model can be alternatively implemented using orthogonalized aggregate asset prices as
risk factors. Define Qm_tﬂ = Qmit+1 » Vm,tﬂ =Vint+1 — IE[Vm_t+1|Qm_t+1] , and
Tot+1 = Tmt41 — IE[rm,t+1|Vm,t+1,Qm,t+1]. Thus, each of the market-based risks is
directly linked to the counterpart of the underlying economic risks. In which case, the
expected stock return is represented by 1,,Cov, [ri,t_,_l,fm’tﬂ] +
A, Cov, [ri’tﬂ, Vm’tﬂ] + ZQ Cov, [ri,tﬂ, Qm,tﬂ] and the individual variance risk
premium can also be expressed by ZVCOVt[Vi,t+1:I7m,t+1] +7{QCovt[Vi’t+1, Qm,tﬂ].
Thus, the resulting risk prices preserve the sign of the original economic risk prices; that

is, im = Ax/ﬁm,x JZV = Aa/ﬂv,a riQ = Aq/ﬁQ,q-

1.3 Estimation of variance of market variance

In previous section, we propose a market-based three-factor model, which requires
the information of market return, market variance, and variance of market variance. To
proxy for the first two factors, we use CRSP value-weighted market index and CBOE
VIX index, which have been widely used in the literature ( see, for example, Ang, Hodrick,
Xing, and Zhang, 2006; Chang, Christoffersen, and Jacobs, 2013; Bollerslev, Tauchen,
and Zhou, 2009; among others). In this study, we estimate the variance of market variance

by calculating the realized bipower variation from a series of five-minute model-free
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implied variances, using the high-frequency S&P 500 index option data. The details of
our empirical settings are described as follows.

First of all, we extract the model-free implied variance, using the spanning
methodology proposed by Carr and Madan (2001), Bakshi and Madan (2000), Bakshi,
Kapadia, and Madan (2003), and Jiang and Tian (2005). Bakshi, Kapadia, and Madan
(2003) show that the price of a t-maturity return variance contract, which is the
discounted conditional expectation of the square of market return under the risk-neutral
measure, can be spanned by a collection of out-of-money call options and out-of-money

put options,

i S 72
V(1) = [E(,E2 [e‘rﬁtLog[ ;H] l
t

C,(K;7) dK (1.26)

f‘” 2(1 - log[K/S:])
S K?

t

e P.(K;7) dK,

N jStZ(l + log[K /S.])
0
where C:(K;t) and P.(K;t) are the prices of European calls and puts at time t

written on the underlying stock with strike price K and expiration date at t + t. The

conditional variance of market return can be calculated by
V() = €7V, (0) — e (1), (1.27)
where u,(t) satisfies the risk-neutral valuation relationship, which is related to the first
four risk-neutral moments of market returns as described in equation (39) of Bakshi,
Kapadia, and Madan (2003).
Second, we use the model-free realized bipower variance, introduced by Bardorftf-
Nielsen and Shephard (2004), to estimate the variance of market variance. Define the

intraday stock return as 7yyq; = log[S;4j/m] — 108[Ses(j—1y/ml,j =1,..., M, where M
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is the sampling frequency per trading day. Bardorff-Nielsen and Shephard (2004) study
two measures of realized variations; the first one is the realized variation, RV;,;, and the

second one is the bipower variation, BV, q:

M
RViy= ) 1y, (128)
j=1
Ty M M
BVi1 =5 M1 , |rt+1,j||rt+1,j—1|' (1.29)
2 M 1 ]:2

Andersen, Bollerslev, and Diebold (2002) show that the realized variance converges to

the integrated variance plus the jump contributions, i.e.

M—-o0 t+1 2 Neyq 2
RV, =5 f o2(s) ds—l—z. S (1.30)
t J=

where N;,, is the number of return jumps within day #+1 and ]t2+1' j 1is the jump size.

Moreover, Bardorff-Nielsen and Shephard (2004) show that

Moo [EF
BV — a2(s) ds. (1.31)
t

In other words, bipower variation provides a consistent estimator of the integrated
variance solely for the diffusion part.

Our measure for variance of market variance is estimated from a series of five-
minute based model-free implied variances. The intraday model-free implied variances
are calculated using equation (1.27), which is denoted as Vi, j/y(7),j =1,...,M.
Since the process of market variance is a (semi-)martingale, we apply the bipower
variation formula on the changes in annualized model-free implied variances and obtain

a measure for variance of market variance:
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T/ M M
VoV =5 (57=7) D, _ 140 i@l 4vensn @] (132
]:

365

where Aviiq;(7) ET[IVH]-/M(T) —IVt+(j—1)/M(T)] . In this way, our empirical

results will not be affected by the volatility jumps (or the return jumps embedded in the

volatility).

1.4 Data and descriptive statistics

1.4.1 Data description

We use the tick-by-tick quoted data on S&P 500 index (SPX) options from CBOE’s
Market Data Report (MDR) tapes over the time period from January 1996 to December
2010. The underlying SPX prices are also provided in the tapes. We obtain daily data
from OptionMetrics for equity options and S&P 500 index options. We use the Zero Curve
file, which contains the current zero-coupon interest rate curve, and the Index Dividend
file, which contains the current dividend yield, from OptionMetrics to calculate the
implied volatility for each tick-by-tick data from CBOE’s MDR tapes. Daily and monthly
stock return data are from CRSP while intraday transactions data are from TAQ data sets.
Financial statement data are from COMPUSTAT. Fama and French (1993) factors and
their momentum UMD factor are obtained from the online data library of Ken French.’
VIX index is obtained from the website of CBOE.!® While we use the ‘new’ VLX index to
calculate the market variance risk premium as proposed by Bollerslev, Tauchen, and Zhou
(2009), we also use the ‘old’ VIX, which is based on the S&P 100 options and Black—

Scholes implied volatilities, as our volatility factor, following Ang, Hodrick, Xing, and

® http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
10 http://www.cboe.com/micro/vix/historical.aspx
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Zhang (2006). We use the index option prices from the Option Price file to replicate the
market skewness factor and the market kurtosis factor of Chang, Christoffersen, and
Jacobs (2013).

We follow the literature (see, for example, Jiang and Tian 2005; Chang,
Christoffersen, and Jacobs, 2013; among others) to filter out index option prices that
violate the arbitrage bounds.!! We also eliminate in-the-money options (e.g. put options
with K/S>1.03 and call options with K/S<1.03) because prior study suggests that they are
less liquid. We use the daily SPX low and high prices, downloaded from Yahoo Finance,'?
to filter out the MDR data that are outside the [low, high] interval.

For the computation of the market volatility-of-volatility, we first partition the tick-
by-tick S&P500 index options data into five-minute intervals. For each maturity within
each interval, we linearly interpolate implied volatilities for a fine grid of one thousand
moneyness levels (K/S) between 0.01% and 300%!® and use equations (1.26) and (1.27)
to estimate the model-free implied variance. We then use linearly interpolate maturities
to obtain the estimate at a fixed 30-day horizon. For each day, our measure for market
volatility-of-volatility (VoV) is calculated by using the bipower variation formula of
equation (1.32) with the 81 within-day five-minute annualized 30-day model-free
implied variance estimates covering the normal CBOE trading hours from 8:30 a.m. to
3:15 p.m. Central Time.

The market variance risk premium (VRP,, ), following Bollerslev, Tauchen, and

Zhou (2009), is defined as the difference between the ex-ante implied variance (IV;, ;)

' Moreover, we eliminate all observations for which the ask price is lower than the bid price, the bid price
is equal to zero, or the average of the bid and ask price is less than 3/8.

12 http://finance.yahoo.com/q/hp?s="GSPC+Historical+Prices

13 For moneyness levels below or above the available moneyness level in the market, we use the implied
volatility of the lowest or highest available strike price.
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and the ex-post realized variance (RV, ), i.e. VRP,, = IV, — RV, .. We focus on a
fixed maturity of 30 days. Market implied variance (IV,, ) is measured by the squared
‘new’ VIX index divided by 12. Summation of SPX five-minute squared logarithmic
returns are used to calculate the market realized variance (RV,.). With eighty five-
minute intervals per trading day and the overnight return, we construct the daily market
realized variance, using a rolling window of 22 trading days starting from the current day.

We construct the individual model-free implied variance (IV; ;) using equity options
data from the Volatility Surface file that provides Black-Scholes implied volatilities for
options with standard maturities and delta levels. The individual implied variance is
estimated by applying the same methodology that we use for the index options on the
equity options data with 30-day maturity.

To compute the individual realized variance (RV;.), we extract from TAQ database
the intraday transaction and quote data within the normal trading hours from 9:30 a.m. to
4:00 p.m. Eastern Time. We first adopt the step-by-step cleaning procedures proposed by
Bardorff-Nielsen, Hansen, Lunde, and Shephard (2009) to screen the TAQ high
frequency data,'* and then we follow Sadka (2006) to remove quotes in which the quoted
spread is more than 25% and remove trades in which the absolute value of one-tick return
is more than 25%. The resulting 78 five-minute trades and quotes per trading day in a
rolling window of 22 trading days are separately used to calculate the trade-based daily

individual realized variance (RViTt) and the quote-based daily individual realized variance

(RVl.?t). To avoid the effect from stale prices in trades or in quotes, we further require that

the both the number of five-minute trades and that of quotes in the 22-day rolling window

14 'We apply the rules of P1, P2, P3, Q1, Q2, T1, T2, and T3 as described in the section 3.1 of Bardorff-
Nielsen, Hansen, Lunde, and Shephard (2009) to carry out the cleaning procedures.
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should be more than 78x11=858. To conserve space, we will focus on the trade-based

realized variance, i.e. RV;; = RVl-Tt, while the results for the quote-based measure are
available upon request.

We estimate the monthly expected individual variance risk premium (EVRP;;)
through a forecast model. We adopt a linear forecast model, following Drechsler and
Yaron (2011) and Han and Zhou (2012), to estimate the expected realized variance (ERV; ;)
with the lagged realized variance and the lagged model-free implied variance measured
at the end of the month.!> Thus, the expected individual variance risk premium is defined
as EVRP;; = 1IV;; — ERV; .

To implement our empirical model, we construct innovations in market moments.
First, following Ang, Hodrick, Xing, and Zhang (2006), innovations in market volatility
(AVIX) is measured by its first order difference, i.e. AVIX;,; = VIX;,q — VIX,. Chang,
Christoffersen, and Jacobs (2013) indicate that taking the first difference is appropriate
for VIX, whereas an ARMA(1,1) model is need to remove the autocorrelation in the their
skewness and kurtosis factors. Following their approach, the innovations in market
volatility-of-volatility (AVoV) is computed as the ARMA(1,1) model residuals of the

market volatility-of-volatility.

1.4.2 Descriptive statistics

The daily measure of VoV is plotted in Figure 1. 1. There are clear spikes on the

graph—the Asian financial crisis in1997, the LTCM crisis in1998, Septemberl1, 2001,

!5 Specifically, for stock i, we run the regression: RV; 1 = a + BoIV; + B1RV;, and defined the fitted
value as ERV,,,i.e. ERV;; = RV; 11 = @ + BolV;, + PRV,
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the WorldCom and Enron bankruptcies in 2001 and 2002, subprime loan crisis in 2007,
the recent financial crisis in 2008, and the flash crash in 2010.

Table 1.1 reports descriptive statistics for the daily factors used in this paper. In our
sample, the mean of 30-day market variance risk premium (VRP) is 17.260 (in
percentages squared), which is slightly smaller than 18.3 in Bollerslev, Tauchen, and
Zhou’s (2010) sample. The mean of VoV is 0.054%, which is much smaller than its
standard deviation, 0.563%. The mean of SKEW is -1.663 and the mean of KURT is 9.313.
Thus, the risk-neutral distribution of the market return is asymmetric and has fat tails.

Panel B reports the Spearman correlations between factors, including the excess
market return (MKT), the Fama and French (1993) SMB and HML factors, the momentum
factor (UMD), the changes in VIX (AVIX;, Ang, Hodrick, Xing, and Zhang, 2006),
innovations in VoV (4VoV), and Chang, Christoffersen, and Jacobs (2013) innovations in
market skewness factor (ASKEW) and market kurtosis factor (AKURT). As expected,
MKT is negatively correlated with both AVIX (-0.779) and AVoV (-0.044), supporting the
leverage effect predicted by our model. Moreover, VRP is positively correlated with AVoV
(0.145), consistent with our theory that the variance risk premium and the market
volatility-of-volatility are both driven by the economic volatility-of-volatility. AKURT
and ASKEW are highly correlated with a correlation value of -0.863, which is comparable
to -0.83 reported by Chang, Christoffersen, and Jacobs (2013). AVoV shows little
correlation with AVIX (0.049), ASKEW (-0.017), and AKURT (-0.010), which suggests
that AVoV should be an independent state variable that cannot be explained by these

market moments studied in the literature.
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1.5 Pricing volatility-of-volatility risk in the cross-sectional

stock returns

This section examines how market volatility-of-volatility risk affects cross-sectional
average returns. Based on our market-based three-factor model with their empirical
proxies, at the end of each month, we estimate the regression for each stock i using daily

returns:

Tite1 — Vo1 = & + BimkrMKT 41 + BivixAVIX 44
(1.33)
+ BivovAVoV i1 + €41

We construct a set of testing assets that are sufficiently disperse in exposure to aggregate
volatility-of-volatility innovations by sorting firms on ;. loadings over the past
month using the regression (1.33) with daily data. Our empirical model is an extension
of Ang, Hodrick, Xing, and Zhang (2006). Following their work, we run the regression
for all common stocks on NYSE, AMEX, and NASDAQ with more than 17 daily
observations. After the portfolio formation, we calculate the value-weighted daily and
monthly stock returns for each portfolio. If market volatility-of-volatility is a priced risk

factor, we should expect to see a monotonic decreasing pattern in the portfolio returns.

1.5.1 Portfolios sorted on market volatility-of-volatility risk

Table 1.2 provides the performance of portfolios sorted on f; y,. Stocks are sorted
into quintile portfolios based on f;y,y, from the lowest (quintile 1) to the highest
(quintile 5). Consistent with the model, we find that stocks with positive return

sensitivities to market volatility-of-volatility (quintile 5) have lower stock returns than

stocks with negative return sensitivities (quintile 1) by 0.88 percent per month with t-
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statistic of -2.32. Controlling for Fama and French four factor model, the ‘5-1° long-short
portfolio still gives a significant alpha of -0.96 percent per month with a #-statistic of -
2.59.

To check whether our results are robust to firm characteristics, Table 1.3 shows
performance of portfolios sorted on f;y,y, controlling for market capitalization (Size),
book-to-market ratio (B/M), past 11-month returns (RET 2 12), past 1-month returns
(RET 1), and Amihud’s illiquidity (/LLIQ), respectively. We first sort stocks into five
quintiles based Size. Then, within each quintile, we sort stocks based on their f;y,y
loadings into five portfolios. All portfolios are rebalanced monthly and are value weighted.
The five portfolios sorted on ;. are then averaged over each of the five Size sorted
portfolios, resulting f; oy quintile portfolios controlling for Size. B/M, RET 2 12,
RET 1, and ILLIQ are analyzed with the same procedure as described above. The Fama
and French four factor alpha of the ‘5-1° long—short portfolio remains significant
controlling for these four variables, i.e. at -0.45 percent with a z-statistic of -2.14
controlling for Size, at -0.88 percent with a #-statistic of -3.15 controlling for B/M, at -
0.52 percent with a ¢-statistic of -2.12 controlling for RET 2 12, at -0.61 percent with a
t-statistic of -2.06 controlling for RET 1, and at -0.53 percent with a #-statistic of -2.30
controlling for JLLIQ. Hence, the low returns to high f; ., stocks are not completely

driven by the existing well-known firm characteristics.

1.5.2 Portfolios sorted on market volatility risk

Table 1.4 provides the performance of portfolios sorted on f;y;x, using the same
approach as on f;y,,. We find evidence consistent with Ang, Hodrick, Xing, and

Zhang’s (2006) findings that there is a significant difference of -0.87 percent per month
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with a z-statistic of -2.17 between the stock returns with high volatility risk and the stocks
with low volatility risk. Controlling for Fama and French four factor model, the ‘5-1°
long-short portfolio gives a significant alpha of -1.18 percent per month with a z-statistic
of -3.24.

Table 1.5 considers two-way sorted portfolios on f;y;x and ;.. We sort stocks
into quintile portfolios based on p;y;x, from the lowest (quintile 1) to the highest
(quintile 5), and independently sort stocks into quintile portfolios based on f;y,y. The
five portfolios sorted on f; ;% are then averaged over each of the five f;y,, portfolios,
resulting f; y;x quintile portfolios controlling for f;y,y. Similar approach gives fB; oy
quintile portfolios controlling for f;y;x. Controlling for volatility risk loadings (B; y;x),
we still find market volatility-of-volatility risk carries a statistically significant return
differential of -0.97 percent per month with a #-statistic of -2.84. On the other hand,
controlling for market volatility-of-volatility risk loadings (B; y,1), we find that the return
difference between stocks with high volatility risk and stocks with low volatility risk is
still large in magnitude, at -0.68 percent per month with #-value of -1.94. Thus, the
valuation effect of market volatility-of-volatility risk is not affected after controlling for
Bivix » suggesting that the market volatility-of-volatility risk is a pricing factor

independent with the aggregate volatility factor.

1.5.3 Portfolios sorted on market skewness risk

At the end of each month, we estimate the model of Chang, Christoffersen, and

Jacobs (2013) with ex ante higher moments of market returns for each stock i:
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Tite1 — Tre41 = @3 + BimgrMKT 41 + BivixAVIX ¢ 4q
(1.34)
+ BiskewASKEW ¢ 1 + Bi kurrAKURT 114 + & 41

We sort stocks into quintile portfolios based on f; kg, from the lowest (quintile 1) to
the highest (quintile 5), and we also independently sort stocks into quintile portfolios
based on f;yoy.

Panel A of Table 1.6 provides the performance of portfolios sorted on f; sxrw . We
find that there is a significant difference of -0.65 percent per month with a #-statistic of -
1.99 between the stock returns with high skewness risk and the stocks with low skewness
risk. Controlling for Fama and French four factor model, the ‘5-1° long-short portfolio
gives a significant alpha of -0.75 percent per month with a #-statistic of -2.28.

Panel B shows the results for the f; sxryy quintile portfolios controlling for f; v,y
quintile portfolios. Controlling for market volatility-of-volatility risk loadings (B; yov ),
we find the market skewness risk premium is much weaker, carrying a statistically
insignificant return differential of -0.33 percent per month with a #-statistic of -1.17. On
the other hand, as reported in Panel C, controlling for market skewness risk loadings
(Bivov), we find that the ‘5-1° long-short portfolio still gives a significant return
differential of -0.82 percent per month with a #-statistic of -2.38. In summary, the market
skewness risk is less likely to explain the market volatility-of-volatility risk, whereas part
of the skewness return differential can be explained by the market volatility-of-volatility

risk.

1.5.4 Market price of volatility-of-volatility risk

We apply the two-pass regressions of Fama-MacBeth (1973) to estimate the price of

market volatility-of-volatility risk. Our set of test assets are the 25 portfolios formed on
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intersection of f;y;x quintile portfolios and p;y,, quintile portfolios. For each
portfolio, we estimate the time-series regression of equation (1.33) using the post-
formation daily value-weighted portfolio returns to obtain the post-formation factor

loadings. We then conduct the cross-sectional regression:

IE:[7}9] — 17 = AuxrBpmrr + AvixPpyvix + AvovBpyov- (1.35)

The dependent variable is the monthly value-weighted portfolio return and the
independent variables are the post-ranking return betas estimated from equation (1.33)
using full-sample daily portfolio returns. Robust Newey and West (1987) ¢-statistics with
six lags that account for autocorrelations are used. The cross-sectional regression gives
the estimates of risk prices, i.e. Ayxr, Ayix, and Ay,p.

Panel A of Table 1.7 reports the estimate of risk prices from the 25 portfolios sorted
on Biyix and PBiyoy. In column [2], we find that Ay, is negative (-4.11) with a
significant #-statistic of -3.27. Controlling for the market volatility risk, as reported in
column [3], Ay,p is still significantly negative (-3.66) with a ¢-statistic of -2.35, which
accounts for -3.66x0.21= -0.77 percent per month of the °5-1’ return in Table 1.2.
Controlling for all of the other factors, as shown in column [6], Ay, remains
significantly negative (-3.62) with a ¢-statistic of -2.68, which accounts for -3.62x0.21= -
0.76 percent. In contrast, Ay;x is only significant in column [1], with z-value of -3.29.
Thus, our empirical findings suggest that market volatility-of-volatility indeed is an
independently priced risk factor relative to aggregate volatility factor.

In Panel B, we the estimate of risk prices from the 25 portfolios sorted on intersection
of B;skew quintile portfolios and f; .,y quintile portfolios. Consequently, the testing
assets are sufficiently disperse in the exposure to aggregate volatility-of-volatility as well

as in the exposure to aggregate skewness. In column [2], we find that A,,, is negative
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(-2.07) with a significant ¢-statistic of -1.77. As shown in column [6], Ay, 1S
significantly negative (-1.86) with a ¢-statistic of -1.75, whereas Aggpy, is positive (2.76)
with insignificant z-statistic of 1.36. Therefore, relative to the market skewness factor, the

variance of market variance remains a priced risk factor.

1.5.5 Leverage effect, feedback effect and volatility-of-volatility risk

premium

To further explore the mechanism that volatility-of-volatility risk affects asset prices,
we investigate whether the volatility-of-volatility risk contributes to the feedback effect.
To identify the timely volatility-of-volatility shocks, at the end of each day, we estimate
the regression of equation (1.33) using daily stock returns over the past 22 days. We then
sort stocks into quintile portfolios on the estimated f;y,, for each day and calculate the
event-time daily value-weighted portfolio returns ranging from -11 to 11 in days.

If market volatility-of-volatility is priced, an anticipated increase in market
volatility-of-volatility raises the required rate of return, implying an immediate stock
price decline and higher future returns. As shown in Figure 1. 2, consistent with the
channel of feedback effect, stocks with negative return sensitivities to market volatility-
of-volatility have lower returns before the portfolio formation and earn higher post-
formation returns than stocks with positive return sensitivities.

We construct a portfolio that is long the lowest quintile and short the highest quintile
and we denote the portfolio as low-minus-high. The low-minus-high portfolio has, by
construction, large negative exposure to innovations in market volatility-of-volatility. The

theory of the leverage effect and the feedback effect predict an asymmetric cross-
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correlation between the aggregate volatility and the pre-formation and the post-formation
low-minus-high returns.

As can be seen in the top panel of Figure 1. 3, the pre-formation low-minus-high
returns are negatively correlated with VX measured at the portfolio formation date while
the correlations between VIX and the post-formation low-minus-high returns are positive,
supporting the leverage effect and the feedback effect associated with the aggregate
volatility.

Moreover, our theory for the leverage effect and the feedback effect similarly
predicts an asymmetric cross-correlation between market volatility-of-volatility and the
pre-formation and the post-formation low-minus-high returns. As can be seen in the
bottom panel of Figure 1. 3, the low-minus-high return is negatively correlated with VoV’
at the portfolio formation date while the correlation between Vol and one-day post-
formation low-minus-high return is positive. The market volatility-of-volatility carries a
negative contemporaneous correlation of -0.232, which is much larger in magnitude than
-0.057 for the contemporaneous leverage effect associated with market volatility. The
correlation between one-day post-formation low-minus-high return and market volatility-
of-volatility is 0.100, which is larger than 0.060 for the correlation between the return and
the market volatility. The stronger asymmetric cross-correlation, despite less persistent,
supports the leverage effect and the feedback effect associated with market volatility-of-
volatility. Therefore, market volatility-of-volatility seems to be the state variable that

determines the time-varying risk premium.

1.5.6 Robustness to volatility spreads

In this section, we check whether our results are robust to existing well-known

volatility spreads that affect cross-sectional stock returns. We construct the implied-
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realized volatility spread (/VOL-TVOL), which is, as described in Bali and Hovakimian
(2009), defined as the average of implied volatilities by at-the-money call and put minus
the total volatility calculated using daily returns in the previous month; the call-put
implied volatility spread (CIVOL-PIVOL), which is, as described in Bali and Hovakimian
(2009) and Yan (2011), defined as the at-the-money call implied volatility minus the at-
the-money put implied volatility; the expected individual variance risk premium (EVRP),
which is, as described in the data section and in Han and Zhou (2012), defined as the
difference between the model-free implied variance and the five-minute realized variance.
Since we extract the volatility data from OptionMetrics Volatility Surface file as Yan
(2011) do, we choose the 30-day maturity put and call options with deltas equal to -0.5
and 0.5, respectively.

Panel A of Table 1.8 shows the performance of portfolios sorted on each of the
volatility spreads as well as on f5; o using stocks with available equity options. The
Fama and French four factor alpha of the ‘5-1’ long—short portfolio is 0.63 percent with
a t-statistic of 1.76 for IVOL-TVOL quintile portfolios, 1.66 percent with a ¢-statistic of
6.70 for CIVOL-PIVOL quintile portfolios, 0.96 percent with a z-statistic of -2.21 for
EVRP quintile portfolios, and -0.85 percent with a #-statistic of -2.38 for f; 4, quintile
portfolios. Hence, our results for market volatility-of-volatility risk remain significant in
the options market and consistent with the literature, all of the three volatility variables
carry significant premium in the cross-section.

We construct two-way sorted portfolios formed on intersection of each of the
volatility spread quintile portfolios and f;y,y quintile portfolios. Panel B shows the
results for the f;y,y quintile portfolios controlling for volatility spread quintile

portfolios. The Fama and French four factor alpha of the °5-1 long—short portfolio
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remains significant controlling for these three variables, i.e. at -0.76 percent with a ¢-
statistic of -2.38 controlling for /VOL-TVOL, at -0.74 percent with a z-statistic of -2.29
controlling for CIVOL-PIVOL, and at -0.66 percent with a z-statistic of -2.20 controlling
for EVRP. Hence, the low returns to high f; ., stocks are not driven by the existing
well-known volatility spreads.

As shown by Yan (2011), CIVOL-PIVOL is proxy for a disaster type jump risk that
affects the cross-sectional stock returns. Our empirical finding that the pricing of B; v,y
is robust to CIVOL-PIVOL provides indirect evidence that the market volatility-of-

volatility risk cannot be completely explained by a peso-problem like jump risk.

1.5.7 Robustness to firm-level Fama-MacBeth regressions

In this section, we examine whether the pricing of market volatility-of-volatility risk
is robust to the firm-level analysis. We employ individual stocks as the set of test assets
to avoid potentially spurious results that could arise when the test portfolios are
constructed toward a specific model (Lewellen, Nagel, and Shanken, 2010). Furthermore,
a stock-level analysis could increase the power of the test by controlling for several
individual characteristics at the same time.

We test our market-based three factor model at firm-level with the following cross-

sectional regression:

Tits1 — Tre41 = Co + AmxrBimrre + AvixBivixe + AvovBivov,t
(1.36)
+ cpipy FirmCharac; ¢ + ¢y, VolatilityCharac; ; + & t41,

where the dependent variable is the monthly individual stock returns; B; ykre, Bivix.t
and f;yoy . are post-ranking betas estimated from the same 25 portfolios in section 5.4

formed on intersection of pB;y;x quintile portfolios and f;y,y quintile portfolios;
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FirmCharac;, consists of Size, B/M, RET 2 12, RET I, and ILLIQ; and
VolatilityCharac;, includes IVOL-TVOL, CIVOL-PIVOL, and EVRP. Robust Newey
and West (1987) r-statistics with six lags that account for autocorrelations are used.
Following the methodology of Fama and French (1992), we assign each of the 25
portfolio-level post-ranking beta estimates to the individual stocks within the portfolio at
that time. Thus, individual stock betas vary over time because the portfolio compositions
change each month.

Table 1.9 reports the results from the firm-level Fama-MacBeth regressions. In
column [2], we find that Ay,,, is negative (-3.07) with a significant #-statistic of -4.07.
Controlling for the market volatility risk, as reported in column [3], Ay,, is still
significantly negative (-3.07) with a #-statistic of -4.17, which accounts for -3.07x0.21= -
0.65 percent per month of the ‘5-1’ return in Table 1.2. Controlling for all of the other
variables, as shown in column [6], Ay, remains significantly negative (-3.12) with a ¢-
statistic of -2.57, which accounts for -3.62x0.21= -0.66 percent. Thus, the firm-level
evidence confirms our results that the market volatility-of-volatility is a priced risk factor

in the cross-sectional stock returns.

1.6 Pricing market volatility-of-volatility in the cross-sectional

variance risk premium

The second test in this paper is to examine whether market volatility-of-volatility is
priced in the cross-sectional variance risk premium. For each stock with available equity
options in each day, we calculate the 30-day model-free implied variance (IV; ¢11). Then,
at the end of each month, we estimate the variance beta with respect to market volatility-

of-volatility (,BL-',/ vov) for each stock by regressing the stock’s IV; .4, on VoV,,; overthe
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past month. We use ﬁi‘f vov to construct a set of test portfolios. Our theory suggests that

the cross-sectional expected variance risk premium is determined by:
EVRE, =1V, — ERV, = _AKIX/‘?;]J/,VIX - Agovﬁgyov- (1.37)
We estimate ﬁg‘ vix and ,6'},’, vov DY the following time-series regression:
W1 = ay + ByyixAVIXZ 1 + By yovAVOViyq + &) i1, (1.38)

where [V, 4, is the post-formation portfolio implied variance; AVIXZ,, as the
innovations in market variance, which is measured as the ARMA(1,1) model residuals of
squared VIX divided by 12, orthogonalized by AVoV;,,. While we define AVIX;,, =
ViX:.1 — VIX; for the stock return beta as in Ang, Hodrick, Xing, and Zhang (2006) for
the compatibility, our variance beta is estimated by AVIX?., for the model consistency.

Table 1.10 provides the performance of portfolios sorted on Bi‘f vov- Stocks are sorted
into quintile portfolios based on BlV vov, from the lowest (quintile 1) to the highest
(quintile 5). After the portfolio formation, we calculate monthly value-weighted expected
variance risk premium and daily value-weighted model-free implied variance for each
portfolio. Consistent with the model, we find that stocks with high variance sensitivities
to market volatility-of-volatility (quintile 5) have higher expected variance risk premium
than stocks with low variance sensitivities (quintile 1) by 67.7 (in percentages squared)
per month with t- statistic of -5.15. The magnitude of the cross-sectional difference in
variance risk premium is large compared to the market variance risk premium, which is
17.3 (in percentages squared) per month during our sample period. Panel B reports the

performance of portfolios sorted on Bl}_/ vix- The results are very similar to the portfolios

sorted on BXVOV. In fact, we find that the cross-sectional Spearman correlation between
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,Bl-‘f voy and ﬂi‘_/ vix 18 0.99, which is also part of the reason why we use the orthogonalized
innovations in market variance as risk factor for individual variance.

We estimate the price of risks in cross-sectional EVRP using the 25 portfolios sorted
on ,BXVOV. We apply the two-pass regressions of Fama-MacBeth (1973) to estimate the
price of market volatility-of-volatility risk in EVRP. After the portfolio formation, we
calculate monthly value-weighted expected variance risk premium, daily value-weighted
model-free implied variance, and daily value-weighted stock returns for each portfolio.
In the first stage, for each portfolio, we estimate the post-ranking variance betas by
equation (1.38) using daily portfolio implied variance. For the second stage, we regress
the cross-sectional monthly portfolio EVRP on variance betas obtained from the first stage,
using Fama—MacBeth (1973) cross-sectional regression by equation (1.37).

Table 1.11 reports the estimate of risk prices in EVRP from the 25 portfolios sorted
on ﬁXVOV. In column [2], we find that —A},, is positive (5.99) with a significant ¢-

statistic of 5.32. Controlling for the market volatility risk (ﬂg, vix), as reported in column

[3], —AV,y is still significantly positive (5.20) with a -statistic of 4.04, which accounts
for 5.20%8.32=43.3 (in percentages squared) per month of the ‘5-1" EVRP in Table 1.10.
Controlling for all of the other factors, as shown in column [6], —A},, remains
significantly positive (1.53) with a ¢-statistic of 2.27, which accounts for 1.53x8.32=12.7
(in percentages squared). Thus, our empirical findings suggest that market volatility-of-

volatility is priced risk factor in the cross-sectional variance risk premium.

1.7 Return predictability

In this section, we check the return predictability afforded by market volatility-of-

volatility. The theoretical model suggests that market volatility-of-volatility is positively
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related to economic volatility-of-volatility. Hence, we should expect that our Vol measure
can predict future stock returns as market variance risk premium does.

Panel A of Table 1.12 reports the estimates of the one-period return predictability
regression using daily S&P 500 logarithmic returns multiplied by 22 on the lagged
variance risk premium (VRP), market volatility-of-volatility (Vo}), and innovations in
market skewness (ASKEW). Robust Newey and West (1987) t-statistics with sixteen lags
that account for autocorrelations are used. Consistent with the theory, we find that Vol
positively predicts one-period ahead market return in all of the specifications. In panel B,
we use the monthly S&P 500 logarithmic returns as the dependent variable, and the
independent variables are sampled at the end of the previous month. Robust Newey and
West (1987) t-statistics with six lags are used. The predictability afforded by VoV remains
significant.

Overall, the return predictability supports the volatility-of-volatility feedback effect
implied by our model. The evidence for the predictability afforded by the market
volatility-of-volatility suggests that economic volatility-of-volatility is an important state

variable that affects the aggregate asset prices.

1.8 Conclusions

Market volatility-of-volatility appears to be a state variable that is important for asset
pricing. We develop a market-based three-factor model, in which market risk, market
volatility risk, and market volatility-of-volatility risk determine the cross-sectional asset
prices. We find that market volatility-of-volatility risk is priced in the cross-sectional
stock returns. Stocks with negative larger return exposure to market volatility-of-volatility

have substantially higher future stock returns, even after we account for exposures to the
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Fama and French four factors, market skewness factor, firm characteristics and volatility
characteristics. We also find that market volatility-of-volatility risk is priced in the cross-
sectional variance risk premium.

Our measure of market volatility-of-volatility generates leverage effect and feedback
effect. Stocks with negative larger return exposure to market volatility-of-volatility have
substantially lower contemporaneous stock returns, which suggests that market volatility-
of-volatility is priced such that an anticipated increase in market volatility-of-volatility
risk raises the required rate of return, leading to an immediate stock price decline and
higher future returns. Our evidence on return predictability for the aggregate market
portfolio supports feedback effect implied by our model. The predictability evidence
afforded by the market volatility-of-volatility also suggests that economic volatility-of-
volatility is an important state variable.

Our study shows that market volatility-of-volatility risk affects the cross-sectional
expected variance risk premium. One direction for future research is to explore whether
market volatility-of-volatility risk plays a role in tradable volatility-related assets such as
equity option returns or index option returns. Future research could also investigate

whether our measure of market volatility-of-volatility affects the VIX option returns.
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Table 1. 1: Properties of the daily factors

We report summary statistics and Spearman correlations for the daily factors, including Fama and French
(1993) four factors (MKT, SMB, HML, and UMD), the market variance risk premium (VRP), the VIX
index, our measure of variance of market variance (Vo¥), and Chang, Christoffersen, and Jacobs (2013)
market skewness factor (SKEW) and market kurtosis factor (KURT). AVIX is the first difference of VIX.
AVoV, ASKEW, and AKURT are the residuals from fitting an ARMA(1,1) regression using VoV, SKEW, and
KURT, respectively. The sample period is from January 1996 to December 2010.

Panel A: Summary statistics
MKT(%) SMB(%) HML(%) UMD(%) VRP(%) VIX(%) VoV(%)  SKEW KURT
Mean 0.023 0.010 0.016 0.024 17.260 23.098 0.054 -1.663 9.313
Median 0.070 0.030 0.020 0.070 15.082 22.150 0.003 -1.637 8.672
Std.Dev. 1.300 0.629 0.682 1.035 21.182 9.509 0.563 0.485 3.466

Panel B: Spearman correlation

MKT SMB HML UMD VRP AVIX AVoV ASKEW  AKURT
MKT 1.000
SMB 0.038 1.000
HML -0.279 -0.082 1.000
UMD -0.047 0.053 -0.078 1.000
VRP -0.222 -0.050 0.006 0.062 1.000
AVIX -0.779 0.031 0.210 0.020 0.180 1.000
AVoV -0.044 -0.003 -0.038 0.036 0.145 0.049 1.000
ASKEW -0.237 -0.022 0.026 0.034 0.076 0.248 -0.017 1.000

AKURT 0.311 0.014 -0.057 -0.017 -0.106 -0.307 -0.010 -0.863 1.000
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Table 1. 2:  Portfolios sorted on f; .y

At the end of each month, we run the following regression for each stock using daily returns:
Titer — Trear = Qi + BimxrMKT 01 + BivixAVIX o1 + BivovAVoV ipq + € 14q-

We sort stocks into quintile portfolios based on f; o, from the lowest (quintile 1) to the highest (quintile
5). After the portfolio formation, we calculate the value-weighted daily and monthly stock returns for each
portfolio. The column “5-1” refers to the hedge portfolio that longs portfolio 5 and shorts portfolio 1. For
each portfolio, we estimate the same time-series regression as above using the post-formation daily
portfolio returns to obtain the post-formation factor loadings. We compute the risk-adjusted return of each
portfolio with respect to Fama-French four factors (MKT, SMB, HML, and UMD) from the intercept
estimate of a time-series regression of the monthly portfolio returns on the four factors. Numbers in
parentheses are #-statistics. Size reports the average market capitalization (in billion) for firms within the
portfolio; B/M reports the average book-to-market ratios; RET 2 12 reports the average of past 11-month
returns prior to last month; /LLIQ reports the average of Amihud’s (2002) illiquidity measure. The sample
period is from January 1996 to December 2010.

Portfolios ranking
1 2 3 4 5 5-1
Risk-adjusted performance of B;yoy sorted portfolios (monthly return)
Excess return 0.90 0.64 0.40 0.34 0.02 -0.88
(L.61) (1.70) (1.20) (0.92) (0.04) (-2.32)
a-CAPM 0.34 0.23 0.03 -0.07 -0.54 -0.89
(1.21) (2.01) (0.33) (-0.57) (-2.54) (-2.32)
o-FF3 0.28 0.21 0.02 -0.07 -0.54 -0.82
(1.13) (1.89) (0.25) (-0.67) (-2.59) (-2.18)
a-FF4 0.44 0.22 0.01 -0.08 -0.53 -0.96
(1.88) (1.99) (0.05) (-0.74) (-2.50) (-2.59)
Post-formation factor loadings (daily return)
Bpmxr 1.35 1.00 0.90 0.96 1.32 -0.02
(78.37) (125.34) (145.90) (127.57) (79.40) (-0.91)
Bovix 0.06 -0.01 -0.02 -0.01 0.06 -0.01
(5.34) (-1.42) (-4.70) (-2.48) (4.806) (-0.41)
Bpyov -0.04 -0.03 0.01 0.02 0.16 0.21
(-1.93) (-3.00) (1.47) (2.27) (7.35) (5.95)
Pre-formation characteristics
Size(8b) 1.03 2.87 3.49 3.24 1.33 0.30
B/M 1.19 0.88 0.84 0.83 1.10 -0.09
RET 2 12 12.31 14.96 15.11 14.37 11.76 -0.56
ILLIQO(10%) 9.04 3.06 247 3.05 8.87 -0.17
Pre-formation factor loadings
BimkT 1.23 0.97 0.91 0.99 1.28 0.05
Bivix 0.06 0.00 -0.01 -0.01 0.01 -0.05
Bivor(10%) -6.23 -2.18 -0.15 1.86 5.69 11.92
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Table 1. 3:  Portfolios sorted on f;y,y, controlling for Size, B/M,

momentum, reversal, and illiquidity

This table shows performance of portfolios sorted on f;y,y, controlling for market capitalization (Size),
book-to-market ratio (B/M), past 11-month returns (RET 2 12), past 1-month return (RET 1), and
Amihud’s illiquidity (ILLIQ), respectively. We first sort stocks into five quintiles based on their market
capitalization (Size). Then, within each quintile, we sort stocks based on their f;y,y loadings into five
portfolios. All portfolios are rebalanced monthly and are value weighted. The five portfolios sorted on
Bivoy are then averaged over each of the five Size portfolios, resulting p;y,, quintile portfolios
controlling for Size. We compute the risk-adjusted return of each portfolio with respect to Fama-French
four factors (MKT, SMB, HML, and UMD). B/M, RET 2 12, RET 1, and ILLIQ are analyzed with the same

procedure as described above. Numbers in parentheses are #-statistics.

Portfolios ranking on i yoy a-FF4

1 2 3 4 5 5-1 5-1

Controlling for Size 0.81 0.94 0.76 0.75 0.39 -0.42 -0.45
(1.30) (212) (200) (1.80) (0.70) (-1.93) (-2.14)

Controlling for B/M 1.10 0.71 0.49 0.47 0.29 -0.81 -0.88
(2.19) (195 (148 (131) (0.59) (-2.81) (-3.15)

Controlling for RET 2 12 0.53 0.52 0.41 0.29 0.04 -0.49 -0.52
(105 (121) (099 (0.69) (0.07) (-2.01) (-2.12)

Controlling for RET 1 0.69 0.64 0.46 0.43 0.11 -0.59 -0.61
(129 (1.54) (1.20) (108  (0.20) (-1.95) (-2.06)

Controlling for ILLIQ 0.79 0.81 0.75 0.67 0.28 -0.51 -0.53
(1.38) (209 (224) (1.84) (0.56) (-2.18) (-2.30)
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Table 1. 4:  Portfolios sorted on f;yx

At the end of each month, we run the following regression for each stock using daily returns:
Titer — Trear = Qi + BimxrMKT 01 + BivixAVIX o1 + BivovAVoV ipq + € 14q-

We sort stocks into quintile portfolios based on f; y;x, from the lowest (quintile 1) to the highest (quintile
5). After the portfolio formation, we calculate the value-weighted daily and monthly stock returns for each
portfolio. The column “5-1” refers to the hedge portfolio that longs portfolio 5 and shorts portfolio 1. For
each portfolio, we estimate the same time-series regression as above using the post-formation daily
portfolio returns to obtain the post-formation factor loadings. We compute the risk-adjusted return of each
portfolio with respect to Fama-French four factors (MKT, SMB, HML, and UMD) from the intercept
estimate of a time-series regression of the monthly portfolio returns on the four factors. Numbers in
parentheses are #-statistics. Size reports the average market capitalization (in billion) for firms within the
portfolio; B/M reports the average book-to-market ratios; RET 2 12 reports the average of past 11 month
returns prior to last month; /LLIQ reports the average of Amihud’s (2002) illiquidity measure. The sample
period is from January 1996 to December 2010.

Portfolios ranking

1 2 3 4 5 5-1
Risk-adjusted performance of B;yix sorted portfolios (monthly return)
Excess return 0.76 0.58 0.37 0.38 -0.11 -0.87
(1.55) (1.69) (1.12) (0.95) (-0.18) (-2.17)
a-CAPM 0.25 0.20 0.00 -0.07 -0.72 -0.96
(1.17) (1.99) (0.01) (-0.70) (-2.49) (-2.46)
a-FF3 0.30 0.23 -0.03 -0.11 -0.79 -1.09
(1.41) (2.52) (-0.40) (-1.20) (-3.41) (-2.99)
o-FF4 0.41 0.25 -0.05 -0.14 -0.77 -1.18
(2.06) (2.77) (-0.60) (-1.52) (-3.27) (-3.24)
Post-formation factor loadings (daily return)
By mkr 1.20 0.91 0.89 1.05 1.47 0.27
(82.06) (132.82) (145.66) (141.97) (79.37) (11.04)
Bpvix 0.02 -0.03 -0.03 0.01 0.12 0.10
(1.62) (-7.08) (-7.37) (1.44) (9.25) (6.00)
Bpyov 0.08 0.00 -0.03 -0.02 0.07 -0.02
(4.28) (0.29) (-4.19) (-2.35) (2.73) (-0.48)
Pre-formation characteristics
Size($b) 1.28 3.39 3.63 2.67 0.99 -0.29
B/M 1.13 0.88 0.82 0.83 1.19 0.07
RET 2 12 10.88 14.82 15.39 15.02 12.33 1.46
ILLIQ(10% 9.42 2.76 2.28 2.72 9.31 -0.12
Pre-formation factor loadings
Bimxr -0.08 0.53 0.95 1.52 2.75 2.83
Bivix -1.23 -0.40 0.03 0.48 1.40 2.63
Bivor(10%) -0.32 -0.17 0.00 0.18 -0.10 0.22
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Table 1. 5: Two-way sorted portfolios on f;;x and B;y,y

At the end of each month, we run the following regression for each stock using daily returns:

Titer — Trear = Qi + BimxrMKT 01 + BivixAVIX o1 + BivovAVoV ipq + € 14q-

We sort stocks into quintile portfolios based on f; y;x, from the lowest (quintile 1) to the highest (quintile
5), and independently sort stocks into quintile portfolios based on f;y,y. All portfolios are rebalanced
monthly and are value weighted. The five portfolios sorted on f;y,x are then averaged over each of the
five B;yoy portfolios, resulting f; y;x quintile portfolios controlling for f;y,y. Similar approach gives
Bivoy quintile portfolios controlling for f;y;x. The column “5-1” refers to the hedge portfolio that longs
portfolio 5 and shorts portfolio 1. For each portfolio, we estimate the same time-series regression as above
using the post-formation daily portfolio returns to obtain the post-formation factor loadings. We compute
the risk-adjusted return of each portfolio with respect to Fama-French four factors (MKT, SMB, HML, and
UMD). Numbers in parentheses are ¢-statistics. Panel A and Panel B present the results for f;y;x quintile

portfolios and f; ., quintile portfolios, respectively. The sample period is from January 1996 to

December 2010.
Portfolios ranking
1 2 3 4 5 5-1
Panel A: Ranking on f; yrx. controlling for B;yoy
Excess return 0.66 0.58 0.48 0.40 -0.02 -0.68
(1.34) (1.50) (1.30) (0.90) (-0.03) (-1.94)
a-FF4 0.25 0.20 0.03 -0.17 -0.70 -0.95
(1.38) (2.14) (0.38) (-1.49) (-3.37) (-2.97)
Panel B: Ranking on B; yoy. controlling for B yrx
Excess return 0.90 0.65 0.35 0.28 -0.08 -0.97
(1.57) (1.56) (0.94) (0.70) (-0.14) (-2.84)
o-FF4 0.39 0.18 -0.09 -0.20 -0.66 -1.05
(1.82) (1.50) (-0.91) (-1.83) (-3.43) (-3.16)
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Table 1. 6: Two-way sorted portfolios on f;skryw and B;yoy

At the end of each month, we separately run the following regressions for each stock using daily returns:
Titer — Treer = Qi + Bimxr MKT 11 + BiyixAVIX 41 + By skpw ASKEW 144
+ BikurrAKURT (11 + €041
Titsr — Tresr = A + BimxrMKT g + BivixAVIX i1 + BiyvovAVoV i + €ipiq-

We sort stocks into quintile portfolios based on f5; sxgw, from the lowest (quintile 1) to the highest (quintile
5), and independently sort stocks into quintile portfolios based on f;y,,. All portfolios are rebalanced
monthly and are value weighted. The five portfolios sorted on f5; sxzy, are then averaged over each of the
five B;yop portfolios, resulting B; sxgw quintile portfolios controlling for B; yoy. Similar approach gives
Bivoy quintile portfolios controlling for f; sxgw . The column “5-1” refers to the hedge portfolio that longs
portfolio 5 and shorts portfolio 1. For each portfolio, we estimate the same time-series regression as above
using the post-formation daily portfolio returns to obtain the post-formation factor loadings. We compute
the risk-adjusted return of each portfolio with respect to Fama-French four factors (MKT, SMB, HML, and
UMD). Numbers in parentheses are f-statistics. Panel A presents the results for the f5; sxry quintile
portfolios. Panel B shows the results for the B;¢xry quintile portfolios controlling for f; ., quintile
portfolios while Panel C shows the results for the f;y,, quintile portfolios controlling for B;sxrw

quintile portfolios. The sample period is from January 1996 to December 2010.

Portfolios ranking

1 2 3 4 5 5-1
Panel A: Ranking on B sxpw
Excess return 0.88 0.43 0.40 0.37 0.23 -0.65
(1.67) (1.14) (121) (1.00) (0.43) (-1.99)
o-FF4 0.41 0.04 0.02 -0.08 -0.34 -0.75
(1.98) (0.35) (0.23) (-0.77) (-1.70) (-2.28)
Panel B: Ranking on P; sxpw. controlling for B; yoy
Excess return 0.66 0.52 0.35 0.55 0.33 -0.33
(1.23) (1.22) (0.94) (1.32) (0.62) (-1.17)
o-FF4 0.18 0.05 -0.11 0.08 -0.27 -0.45
(0.93) (0.50) (-1.30) (0.74) (-1.51) (-1.59)
Panel C: Ranking on B;yoy. controlling for B; skgw
Excess return 0.88 0.67 0.38 0.43 0.05 -0.82
(1.51) (1.63) (1.03) (1.08) (0.09) (-2.38)
o-FF4 0.31 0.23 -0.06 -0.05 -0.51 -0.82
(1.46) (2.12) (-0.58) (-0.47) (-2.48) (:2.44)
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Table 1. 7: The price of volatility-of-volatility risk

Panel A reports the Fama—MacBeth (1973) factor premiums on 25 portfolios sorted on intersection of f; yx
quintile portfolios and ;. quintile portfolios, using our market-based three factors (MKT, AVIX, and
AVoV), Chang, Christoffersen, and Jacobs (2013) market skewness factor (4SKEW), and Fama-French four
factors (MKT, SMB, HML, and UMD). We estimate the first stage return betas using the daily full-sample
post-formation value-weighted returns. Then, we regress the cross-sectional monthly portfolio returns on
daily return betas from the first stage, using Fama—MacBeth (1973) cross-sectional regression. Panel B
reports the Fama—MacBeth (1973) factor premiums on 25 portfolios sorted on intersection of f; sxepw
quintile portfolios and ;. quintile portfolios. Robust Newey and West (1987) #-statistics with six lags
that account for autocorrelations are reported in parentheses. The sample period is from January 1996 to

December 2010.

Fama-MacBeth cross-sectional regressions
[1] (2] (3] [4] [3] (6]
Panel A: 25 portfolios sorted on B yix *Bivoy (5%5)

MKT 0.54 0.53 0.57 0.55 0.55 0.55
(1.34) (1.28) (1.41) (137) (1.36) (1.36)

AVIX -5.31 -3.14 -3.87 -3.97 -5.00
(-3.29) (-1.61) (-0.94) (-0.95) (-1.14)

AVoV 4.11 -3.66 3.84 -3.88 3.62
(-3.25) (-2.35) (-2.68) (-2.66) (-2.68)

SMB -0.93 -0.94 -0.94
(-1.25) (-1.29) (-1.28)

HML 0.27 -0.17 -0.45
(-0.40) (-0.27) (-0.66)

UMD -1.73 -1.65 -1.02
(-1.58) (-1.47) (-0.96)

ASKEW 0.52 0.49
(0.50) (0.48)
AKURT -15.54
(-1.13)

Adj. R? 0.13 0.10 0.18 0.24 0.24 0.25
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Table 1.7 (continued.)

Fama-MacBeth cross-sectional regressions

(1] (2] (3] [4] [5] [6]
Panel B: 25 portfolios sorted on B sgpw *Bivoy (5%5)

MKT 0.48 0.45 0.61 0.43 0.64 0.64
(1.16) (1.12) (1.57) (1.06) (1.64) (1.63)

AVIX -0.31 4.51 -0.79 8.47 8.46
(-0.17) (127) (-0.45) (1.73) (1.62)

AVoV -2.00 -2.07 -1.76 -1.87 -1.86
(-1.84) (-1.77) (-1.77) (-1.86) (-1.75)

SMB -0.31 -0.51 -0.50
(-0.37) (-0.60) (-0.58)

HML -1.40 -0.87 -0.87
(-2.30) (-1.32) (-1.24)

UMD 1.70 233 2.33
(1.09) (1.44) (1.43)

ASKEW 2.73 2.77 2.76
(2.53) (1.45) (1.36)

AKURT 5.69 0.58
(0.59) (0.05)

Adj. R? 0.10 0.15 0.26 0.13 0.26 0.26
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Table 1. 8: Two-way portfolios sorted on volatility spreads and f;y,y

This table shows performance of portfolios sorted on implied-realized volatility spread (/VOL-TVOL), the
call-put implied volatility spread (CIVOL-PIVOL), the expected individual variance risk premium (EVRP),
and f; .y using stocks with available equity options. We independently sort stocks into quintile portfolios
based on each of the four variables, from the lowest (quintile 1) to the highest (quintile 5). All portfolios
are rebalanced monthly and are value weighted. We compute the risk-adjusted return of each portfolio with
respect to Fama-French four factors (MKT, SMB, HML, and UMD). Panel A reports the results for the one-
way sorted portfolios. We construct two-way sorted portfolios formed on intersection of each of the
volatility spread quintile portfolios and f; v,y quintile portfolios. Panel B shows the results for the B; o1
quintile portfolios controlling for volatility spread quintile portfolios. Numbers in parentheses are ¢-

statistics. The sample period is from January 1996 to December 2010.

Portfolios ranking o-FF4

1 2 3 4 5 5-1 5-1

Panel A: One-way sorted portfolios

Ranking on B yoy 0.88 0.64 0.45 0.24 0.15 -0.73 -0.85
(1.68) (1.80) (1.31) (0.63) (0.28) (-2.02) (-2.38)

Ranking on IVOL-TVOL -0.04 0.45 0.51 0.89 0.73 0.77 0.63
(-0.08) (1.17) (149 (238 (147 (2.10) (1.76)

Ranking on CIVOL-PIVOL -0.24 0.17 0.44 0.69 1.15 1.39 1.66
(-0.51) (047) (1.20) (1.83) (233) (5.21) (6.70)

Ranking on EVRP -0.24 0.29 0.55 0.73 0.93 1.16 0.96
(-0.39) (0.76) (1.50) (1.65) (1.41) (2.50) (2.21)

Panel B: Two-way sorted portfolios, ranking on [ yoy

Controlling for IVOL-TVOL 0.97 0.77 0.45 0.32 0.28 -0.69 -0.76
(L.74)  (2.000 (1.21) (0.82) (0.53) (-2.11) (-2.38)

Controlling for CIVOL-PIVOL  0.82 0.60 0.50 0.31 0.16 -0.66 -0.74
(1.54) (1.54) (1.40) (0.78) (0.29) (-2.03) (-2.29)

Controlling for EVRP 0.72 0.66 0.55 0.38 0.13 -0.59 -0.66
(1.33) (1.52) (1.33) (0.87) (0.25) (-1.96) (-2.20)
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Table 1. 9: Firm-level Fama-MacBeth regressions
This table reports the results for the firm-level Fama-MacBeth regressions. We run the following cross-
sectional regression:
Tits1 — Tree1 = Co + AmgrBimkre + vixBivixe T AvovBivovit
+ cpiry FirmCharac; . + ¢y, VolatilityCharac; ¢ + € ¢41,
where the dependent variable is the monthly individual stock returns; fS; yxr.e» Bivixe and B;yoy e are
post-ranking betas estimated from the 25 portfolios formed on intersection of f;y;x quintile portfolios and
Bivoy quintile portfolios; FirmCharac;, consists of Size, B/M, RET 2 12, RET I, and ILLIQ;
VolatilityCharac;, includes IVOL-TVOL, CIVOL-PIVOL, and EVRP. Following the methodology of
Fama and French (1992), we assign each of the 25 portfolio-level post-ranking beta estimates to the
individual stocks within the portfolio at that time. Robust Newey and West (1987) z-statistics with six lags

that account for autocorrelations are reported in parentheses. The sample period is from January 1996 to

December 2010.

Fama-MacBeth regressions: individual stocks

[1] (2] (3] (4] [3] (6]

Intercept -1.831 2.715 2283 1.447 1.487 1.394
(-1.34) (-3.57) (-1.74) (L.11) (1.12) (0.99)

Log(Size($b)) -0.003 -0.002 -0.005 -0.031 -0.033 -0.085
(-0.05) (-0.03) (-0.08) (-0.40) (-0.43) (-0.97)

Log(B/M) 0.302 0.304 0.300 0.164 0.156 0.066
(1.96) (1.97) (1.96) (1.10) (1.05) (0.43)

RET 2 12 0.157 0.166 0.162 0.269 0.267 0.208
(0.40) (0.42) (0.42) (0.60) (0.59) (0.43)

RET I -3.822 -3.785 -3.790 -1.881 -1.656 -1.496
(-5.64) (-5.62) (-5.61) (-2.39) (-2.13) (-1.81)

ILLIQ(105) 0.018 0.018 0.018 -0.031 -0.022 2315
(3.78) (3.79) (3.79) (-0.23) (-0.16) (0.24)

By mxcr 2.231 3.141 2.707 -0.765 0.773 -0.708
(1.57) (3.89) (1.94) (-0.55) (-0.55) (-0.49)

Bivix 1.836 1.774 8.175 8.252 5.812
(0.46) (0.47) (1.88) (1.88) (1.24)

Bivov -3.065 -3.059 2914 -2.853 -3.003
(-4.09) (-4.12) (-2.61) (-2.55) (-2.46)

IVOL-TVOL 0.543 0.579 0.729
(1.96) (2.08) (2.52)

CIVOL-PIVOL 5.083 6.188
(8.22) (6.54)

EVRP 0.080
(2.03)

Adj. R? 0.05 0.05 0.05 0.08 0.08 0.10
No. obs. 824,426 824,426 824,426 310,221 310,221 241,096
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Table 1. 10: Portfolios sorted on ﬂ}fyoy

We sort stocks into quintile portfolios based on ,81-‘,/ vov» from the lowest (quintile 1) to the highest (quintile
5). After the portfolio formation, we calculate the value-weighted daily 30-day model-free implied variance
and monthly 30-day variance risk premium for each portfolio. The column “5-1” refers to the hedge
portfolio that longs portfolio 5 and shorts portfolio 1. For each portfolio, we estimate the post-ranking
variance betas by running the following regression using daily portfolio implied variance:

AV i1 = ay + Bryix AVIXEy + By yoyAVOVesy + &) i

Numbers in parentheses are ¢-statistics. The sample period is from January 1996 to December 2010.

Portfolios ranking

1 2 3 4 5 5-1
Panel A: Ranking on BYyoy

EVRP(%) 6.6 23.6 36.5 46.3 74.2 67.7
(4.24) (9.62) (9.83) (7.29) (5.35) (5.15)

Post-formation daily variance beta

Bz‘;/,VIX 0.48 0.75 1.12 1.47 2.45 1.97
(94.24) (73.65) (62.04) (39.01) (43.77) (35.80)

ﬁz];/_yoy 2.73 4.12 3.35 5.71 11.06 8.32
(21.96) (16.52) (7.62) (6.18) (8.09) (6.19)

Volatility characteristics

v 65.0 115.6 180.5 284.0 534.4 469.4

ERV 58.4 92.0 143.9 2377 460.1 401.7

Panel B: Ranking on Blyx

EVRP(%?) 6.6 235 36.9 47.4 75.5 68.9
(4.23) (9.66) (9.76) (7.42) (5.37) (5.19)

Post-formation daily variance beta

Bhvix 0.49 0.78 1.09 1.56 2.39 1.90
(97.63) (82.77) (61.10) (39.04) (45.45) (36.95)

BZ‘,/,V(,V 2.86 3.79 4.17 5.00 10.44 7.58
(23.53) (16.406) (9.60) (5.13) (8.13) (6.02)

Volatility characteristics

w 64.9 115.8 180.9 284.8 542.6 477.6

ERV 58.3 92.2 144.0 237.4 467.0 1.7
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Table 1. 11: The price of volatility-of-volatility risk in cross-sectional
EVRP

This table reports the Fama—MacBeth (1973) factor premiums on 25 portfolios sorted on ,BL-‘,’ Vvov, Using our
market-based three factors (MKT, AVIX, and AVoV), Chang, Christoffersen, and Jacobs (2013) market
skewness factor (4SKEW), and Fama-French four factors (MKT, SMB, HML, and UMD). For each portfolio,
we estimate the post-ranking variance betas by running the following regression using daily portfolio
implied variance:

AlVy g = ay + ﬁ;‘;,VIXAVWt2+1 + ﬁz‘;,VoVAVOVt+1 + Ez]J/,t+1'
Then, we regress the cross-sectional monthly portfolio expected variance risk premium on the post-ranking
variance betas using Fama—MacBeth (1973) cross-sectional regression:

EVRP, = _Aglxﬁg,wx - /'l%vﬁ,‘f,vw-
In column from 4 to 6, we include the post-ranking return betas obtained from running regression using
daily portfolio returns on the risk factors:
EVRE, = _AKIXﬁI‘)/,VIX - /Wwﬁ;‘,’,vw + AukrBpmxr + AsmeBp.sms + AumrBpums + AumpBpump

+ Askew Bp,skew + Akurr Py xurT-

Robust Newey and West (1987) t-statistics with six lags that account for autocorrelations are reported in

parentheses. The sample period is from January 1996 to December 2010.

Fama-MacBeth cross-sectional regressions
(1] (2] (3] (4] [3] [6]

25 portfolios sorted on ﬁXVoV

Byvix 34.28 5.29 -34.11 2122 -20.66
(5.55) (1.27) (-5.43) (-3.77) (-3.67)

Bpvov 5.99 5.20 2.74 1.62 1.53
(5.32) (4.04) (4.54) (2.36) (227)

Bp.mkr 31.20
(4.58)

Bp,sus 9.51 80.73 71.21
(0.72) (4.53) (4.29)

BpmL 45.15 82.22 63.51
(2.03) (3.46) (3.16)

Bp,ump -140.27 -47.56 -64.82
(-6.34) (-1.86) (-2.27)
Bp,skew -100.91 -151.05
(-6.76) (-7.23)
Bpxurr -528.89 211.78
(-3.19) (-1.06)

Adj. R? 0.34 0.39 0.55 0.73 0.77 1.1
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Table 1. 12: Return predictability regressions

Panel A reports the estimates of the one-period return predictability regression using daily market return on
the lagged variance risk premium (VRP), variance of market variance (VoV), market skewness (SKEW), and
market kurtosis (KURT). In panel B, we use the monthly market return as the dependent variable, and the
independent variables are sampled at the end of the previous month. We multiply Daily market return in
Panel A is multiplied by 22. Robust Newey and West (1987) ¢-statistics with sixteen lags in Panel A and
with six lags in Panel B that account for autocorrelations are reported in parentheses. The sample period is

from January 1996 to December 2010.

Dependent variable= MKT (t)
(1] (2] [3] (4] [3] [6]

Panel A: Daily return regressions

Intercept -2.214 -0.970 0.123 -2.302 0.577 0.674

(-2.82) (-1.50) (0.26) (-2.36) (0.30) (0.35)

VRP (t-1) 0.153 0.140 0.142 0.128

(3.81) (3.86) (3.89) (3.45)

VIX (t-1) 0.027 0.000 -0.001 -0.003

(1.95) (0.00) (-0.06) (-0.15)

VoV (t-1) 5.406 4.939 4.980 5.054

(2.47) (2.12) (2.16) (2.19)

SKEW (t-1) 2.378 2.304

(1.50) ( 1.46)

KURT(t-1) 0.121 0.136

(0.53) (0.60)

MKT (t-1) -0.041

(-2.23)

Adj. R? 0.012 0.002 0.011 0.021 0.021 0.023
Panel B: Monthly return regressions

Intercept -0.369 0.604 0.280 -0.183 0.796 0.630

(-1.11) (1.13) (0.68) (-0.41) (0.59) (0.49)

VRP (t-1) 0.045 0.041 0.041 0.039

(5.47) (4.68) (4.24) (3.82)

VIX (t-1) -0.004 -0.004 -0.004 0.001

(-0.34) (-0.59) (-0.62) (0.18)

VoV (t-1) 1.682 1.246 1.352 1.460

(3.00) (2.44) (2.61) (2.53)

SKEW (t-1) 0.008 0.004

(0.52) (0.28)

KURT(t-1) 0.000 0.000

(0.21) (-0.23)

MKT (t-1) 0.124

(1.52)

Adj. R® 0.047 -0.004 0.009 0.044 0.036 0.041
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Figure 1. 1: Daily market volatility-of-volatility (VoV)

We plot daily market volatility-of-volatility over the time period January 1996 through December 2010.
We partition the tick-by-tick S&P500 index options data into five-minute intervals, and then we estimate
the model-free implied variance for each interval. For each day, we use the bipower variation formula on
the five-minute based annualized 30-day model-free implied variance estimates within the day, resulting in

our daily measure of market volatility-of-volatility (Vo).
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[Si VoV sorted portfolio returns in event time
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Figure 1. 2: Performance of portfolios sorted on f;y,, in event time

At the end of each day, we estimate the regression of equation (1.33) using daily stock returns over the
past 22 days. We then sort stocks into quintile portfolios on the estimated f5;y,, for each day and calculate

the event-time daily value-weighted portfolio returns ranging from -11 to 11 in days.
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Cross-correlation between VIX and pre- and post-formation
VoV sorted portfolio return differentials (low-minus-high)
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Figure 1. 3: Cross-correlations
The plots are based on the pre-formation and post-formation of quintile portfolio return differentials (low-
minus-high; long the lowest quintile and short the highest quintile) formed on f; ;.. The top panel shows
the sample cross-correlation between the VZX and portfolio formation time leads and lags of the low-minus-

high ranging from -11 to 11 days. The bottom panel shows the sample cross-autocorrelations between the

market volatility-of-volatility (VoV) and the returns.
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Chapter 2
A Model-Free CAPM with High

Order Risks

2.1 Introduction

The concept of linear risk-return trade-off has been the keystone in finance theory. For
example, in addition to the market risk of the classical capital asset-pricing model (e.g.
Sharpe (1964) and Lintner (1965)), prior literature has illustrated the important role of the
stock return exposures to multiple factors (e.g. Fama and French (1992; 1993; 1995; 1996)
and Carhart (1997)) and to the high order of market moments (see, for example, Kraus
and Litzenberger (1976), Sears and Wei (1985), Harvey and Siddique (2000), Dittmar
(2002), Chung, Johnson, and Schill (2006), and Chang, Christoffersen, and Jacobs (2013),
among others) for pricing individual stocks. However, recent studies show that the
traditional linear risk-return trade-off has difficulty in explaining the pricing effect
embedded in higher orders of asset returns. Examples include the (idiosyncratic) volatility
puzzle documented by Ang, Hodrick, Xing, and Zhang (2006; 2009) and the MAX puzzle
presented by Bali, Cakici, and Whitelaw (2011) in which stocks with high volatilities
have been documented to earn low future abnormal returns. In other words, existing
literature restricts the investigation of systematic risk to the first-order risk, ignoring the

62



potentially important role of the systematic components in high orders of asset returns.

Moreover, there is conflicting evidence against the linear risk-return trade-off in
which stocks with high beta have been documented to earn low future returns (e.g. Baker,
Bradley, and Wurgler (2011)). A recent paper by Frazzini and Pedersen (2014) further
shows that a betting against beta (BAB) factor, which is long leveraged low-beta assets
and short high-beta assets, produces significant positive risk-adjusted returns. Hence, to
resurrect the risk-return trade-off relationship, prior literature calls for better
understanding of systematic risks. One possible solution is an asset pricing model that
incorporates the nonlinear pricing of the systematic risk.

This paper presents an approximate capital asset pricing model in which higher-order
risks and high-order risk premiums are important for pricing individual stocks. We
characterize the dynamic of market return through the cumulant generating function,'®
which provides analytical solution for our model allowing for high moments in market
returns.!” We only assume that individual stock returns in logarithm follow a simple
linear model with the market returns and the linear structure is preserved in the risk-
neutral measure. Then, we develop an approximate identity that provides decomposition
of total risk premium for the cross-sectional stock returns, linking the market risk
premium of each moment to the risk price for the systematic risk in the corresponding

order of stock returns.

16 The cumulant generating function of a random variable is defined as the logarithm of the moment
generating function. The j-th cumulant, which is defined as the j-th derivative of the cumulant generating
function evaluated at zero, is related to the j-th moment.

17" Since the pioneer work of Jarrow and Rudd (1982) on approximation method for option valuation, a
growing literature shows that the cumulant generating function can be used to quantify the impact of higher
moments on the pricing structure of implied volatility (see, for example, Backus, Foresi, Li, and Wu (1997)
and Bakshi, Kapadia, and Madan (2003), among others), identify the risk-neutral measure for
heteroskedasticity volatility models (see, for example, Christoffersen, Elkamhi, Feunou, and Jacobs (2010)
and Corsi, Fusari, and La Vecchia (2013), among others), and study equity premium in representative agent
models with non-normal distribution (see, for example, Backus, Chernov, and Martin (2011), Martin (2012),
Duan and Zhang (2013), and Backus, Chernov, and Zin (2014), among others). Our paper is complementary
to this strand of literature by studying individual stock returns.
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The intuition for the feature of nonlinear risk-return trade-oft in our model is simple.
If market returns have high order risk premiums, expected stock returns should comprise
compensation for bearing the corresponding high order systematic risks. In our model,
the expected stock return of a security i is determined by the market risk premium in each

moment times the corresponding order of systematic risk:

E¢[Rirs1] — Ry

1 1
~ (Kl,t - K;Qit)ﬁm + > (Ko — th)ﬁiz,l + 3 (K3,t - th)ﬁi?,’l

1
+ 24 (K4,t - K;Qit)ﬁﬁ

~ A eBin + /12,t.8i2,1 + A3,tﬁi3,1 + /14,tﬁ31

2.1)

where f;; is the systematic risk from the simple linear market model, and «;, and K](%

are the j-th cumulant of the market return in the physical measure and in the risk-neutral
measure, respectively. The first term, A;.f; ;, measures the first-order risk premium of
the classical CAPM, whereas the remaining terms capture the pricing effect for market
high moment risk premiums. In particular, the market variance risk premium (k,, — K;Qit)
determines the risk price (4, ) for the second-order systematic risk ([31-2,1).18

While our model is an approximate identity for any linear market model under
arbitrary economic preference, we give three specific examples to illustrate how the high-
order risks are related to high-order co-moment risks. One particular example of interest
is the pricing kernel with stochastic volatility that not only generates negative skewness
and excess kurtosis to meet the empirical irregularity but also implies the negative market

variance risk premium. In which case, the conventional covariance risk premium, the

'8 Similarly, the scaled market skewness risk premium (43 ) and the scaled market kurtosis risk premium
(A4¢) are relevant for the third-order systematic risk ([)’5’1) and the fourth-order systematic risk ([)’{fl),
respectively.
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coskewness premium, and the cokurtosis risk premium, are nested in the first-order risk
premium ( A;.f;1) . More importantly, the second-order risk premium ( Az‘tﬁiz,l )
compensates for the second-order coskewness risk and the second-order cokurtosis risk;
the third-order risk premium (/13'tﬁi3,’1) corresponds to the third-order cokurtosis risk.'
Thus, these high order co-moments, which are new to literature, are important sources of
priced risks.

The first goal of this paper is to examine the market pricing of high order risks. We
perform cross-sectional regressions using portfolio returns and we find evidence that the
second-order risk is significantly and negatively priced, consistent with the well-
documented evidence for the negative market variance risk premium (see, for example,
Carr and Wu (2009), Bollerslev, Tauchen, and Zhou (2009), and Bollerslev, Marrone, Xu,
and Zhou (2013), among others).?® Thus, stocks with high exposure to the second-order
risk are volatile and are capable of earning the upside variance potential implied by the
negative market variance risk premium. Moreover, while the first-order risk is
significantly and positively priced, and the third-order risk price and the fourth-order risk
price are insignificant. Therefore, the first two order risk prices imply that the cross-
sectional relation between expected return and market beta is inverse-U shaped.

The second goal of this paper is to examine the economic value of the second-order
risk premium. Our model implies that the second-order risk premium corresponds to the

curvature of the security market line which is the second derivative with respect to the

19 ~ _ 5 . N 2 N =3
That s,  AyeBin = A1, COV[Fi phr, Frneaa] + A12,eCOVE[Fyrrs Tt ]| + iz, COV[Fy pin, ],

lz,tﬁizg = /121,t(covt[7~'i?t+1'7~'m,t+1] + Azz,tcovt[ﬁiﬂ:fr%,tﬂ]'and /13,tﬂi?1 = /131,t(covt[?i?t+1'fm,t+1]'
where 711 = Tip41 — IEt[ri,t+1] and T p41 = T — Et[rm,t+1]-

20 While Driessen, Maenhout, and Vilkov (2009) suggest that individual options covered by S&P 100 do
not embed a negative variance risk premium, Han and Zhou (2011) find that, with realized variance
measured from high frequency stock prices, individual variance risk premium is significantly negative in
their larger sample of equity options covered by OptionMetrics. Bali and Hovakimian (2009) and Han and
Zhou (2011) also show that individual variance risk premiums can predict the cross-sectional stock returns.
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first-order risk. For each the first-order co-moment sorted portfolios, we construct a
curvature portfolio (CURI) by the sum of the twice difference for these portfolios.”! We
find that the average annual return on the curvature portfolio is significantly negative at
—12.00% for the market beta sorted portfolios, at —11.76% for the first-order coskewness
sorted portfolios, and at —11.52% for the first-order cokurtosis sorted portfolios.

The second-order risk premium can also be tested directly through the second-order
risks. For each the second-order co-moment sorted portfolios, we construct another
curvature portfolio (CUR?2) that longs the top portfolio and shorts the bottom portfolio.
We find that the average annual performance of this curvature portfolio is significantly
negative at —15.24% for the second-order coskewness-sorted portfolios, and at —12.72%
for the second-order cokurtosis sorted portfolios. Moreover, to identify the second-order
risk in a model-free fashion, we follow the seminal work of Bakshi, Kapadia, and Madan
(2003) to estimate the model-free implied variance using individual options and index
options.”?> We estimate the risk-neutral variance beta through the linear market model
relation between the individual variance and the market variance and we find that the
average annual return on the curvature portfolio (CUR2rw) is significantly negative, at —
16.08% for the risk-neutral variance beta sorted portfolios.

The third goal of this paper is to investigate whether the second-order risk premium
helps explain cross-sectional stock returns. We construct mimicking factors for the
second-order risk premiums using the curvature portfolios and we investigate whether the

mimicking factors account for the anomalies documented in the literature that are

2l That is, for N risk-sorted portfolios, the curvature portfolio would be g=3 Azrp, where Ar, =1, — 1,4
and A%*r, = Ar, — Ar,_,. For example, for the 25 risk-sorted portfolios, the curvature portfolio would be
the long-short portfolio between the nearby difference in the top two portfolios and the nearby difference
in the bottom two portfolios, i.e., (25-24)—(2—1).

22 1t has been shown that the risk-neutral moments can be inferred in a ‘model-free’ fashion from a
collection of option prices without use of a specific pricing model (see, for example, Carr and Madan 1998;
Britten-Jones and Neuberger 2000; Bakshi, Kapadia, and Madan, 2003; Jiang and Tian 2005).
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essentially exposed to the second-order systematic risk. We show that our mimicking
factors accounts for the total volatility puzzle and the idiosyncratic volatility puzzle
documented by Ang, Hodrick, Xing, and Zhang (2006), as well as the MAX puzzle
presented by Bali, Cakici, and Whitelaw (2011). Specifically, we find that these volatility
measures are closely related to the second-order systematic risks and the abnormal returns
associated with these variables become insignificant once we control for the mimicking
curvature factors.

Moreover, we find evidence that our mimicking factors help explain the betting-
against-beta (BAB) premium of Frazzini and Pedersen (2014). While the BAB factor is
by construction isolated from the first-order risk, our model suggests that the betting-
against-beta strategy is exposed to high-order systematic risks. Thus, the second-order
risk premium provides an alternative explanation for the betting-against-beta premium.
On the other hand, since their model implies that the second-order risk price is zero, their
model cannot explain the negative second-order risk premium as we find empirically.

Our paper is closely related to, but different from, Hong and Sraer (2012), in which
they demonstrate that the disagreement about the market return leads to speculative
overpricing for high beta stocks. Their model implies that the shape of the security market
line is kinked and the slope of that decreases with the macro-disagreement. Our model,
in contrast, suggests that the curvature of the security market line is determined by the
market variance risk premium (e.g., the second-order risk price). More importantly, we
find evidence that the market variance premium explains our curvature factors better than
the macro-disagreement does. Thus, the second-order risk premium in our paper cannot
be fully explained by their disagreement driven overpricing mechanism.

Our paper is complementary to Conrad, Dittmar, and Ghysels (2013), in which they

focus on relative pricing of idiosyncratic risk-neutral moments and the first-order risk-
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neutral co-moments. In contrast, our study shed light on the importance of the second-
order co-moments and the risk-neutral variance beta. Furthermore, we find evidence that
our mimicking factors are priced in the firm-level cross-sectional regression and the
results are robust to the inclusion of individual risk-neutral moments.

The remainder of the paper is organized as follows. The next section presents our
approximate capital asset pricing model. Section 3 discusses the empirical implications
of our model. Section 4 describes the data and presents the estimation of co-moment risks.
In section 5, we show empirical evidence on the high order risk premiums in cross-
sectional stock returns. Section 6 focuses on the construction and verification of the
mimicking curvature factors. In section 7, we test the performance of the mimicking
curvature factors in explaining the cross-sectional stock returns. Finally, section 8

contains our concluding remarks.

2.2 The Model

2.2.1 The market premium and the cumulant-generating function

We derive asset prices based on the pricing kernel, M;, ;. Denoted any asset return

St+1+D¢

5 ], where S; (St4+1) is the stock price at time ¢ (#+1) and D;yq 1s
t

as rq41 = log [

dividend paid between ¢ and #+1. Then the standard asset pricing suggests that

E¢[Meyq explre]l =1, (2.2)
where E; is the expectation operator at time ¢. Exploiting the pricing condition for the
risk-free return 75 ., it follows that expected value of the pricing kernel is a discount factor
with the risk-free rate, i.e. E.[M;.4] = exp[— rf,t]. The risk-neutral measure @, which

is equivalent to the physical measure P, is defined by the Radon-Nikodym derivative,
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aQ _ My

. The standard asset pricing condition implies that
AP E¢[Miyq]

E¢[M;yq exp[1re44]]
E¢[Mgy4]

E?[exp[ Tesrll = = exp[ T'f,t]- (2:3)

Thus, the expected value of any gross return in the risk-neutral measure is the gross risk-

free return.

The physical dynamics of the market return, 7,,, .1 = log [%], where W is the
t

value of the market portfolio, is defined by its cumulant generating function, (e.g., the

logarithmic ~ value of the moment generating function), Cum,,.[0] =

log []Et[exp[e Tm,t+1]]]- The power-series expansion yields

[ee] en
Cum,, (6] = Z Knt ot (2.4)

n=1
where K, is the n-th derivative of Cum,, [0] at 6 =0, corresponding to n-th
moment of 7, ,.4,. In particular, k;.is the mean (Et[rm,tﬂ]), K¢ 1s the variance
(Vart[rm,tﬂ]), k3. 1s the unstandardized skewness, and k,, is the unstandardized

excess kurtosis.”® The risk-neutral dynamics of 7y,,,, is similarly defined by its

Q

ne corresponds to n-

. . on
cumulant generating function, (Cumgl,t 0] = Yy KS ¢ 7> Where k

th risk-neutral moment of 7, 4.

We define the market premium as exret,, = log [E; [W; 1
t

]] — 77 The risk-

neutral pricing equation (2.3) implies that (Cumgl,t[l] = 77 . Thus, the market premium

can be conveniently expressed in terms of the cumulant generating functions:

23 : — . [#3 — T [#4 2 > —
Thatis, K3, = ]Et[rm,t+1]a and Ky, = Et[rm,t+1] — 3K3;, where Tippp1 = Tipeer — ]Et[rm,t+1]'
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exrety, = Cumy, [1] — Cumg,t[l]

1 1
~ (rey — K(St) t3 (12 = th) s (13 = th)

1
+ 24 (K4,t - K%t)

~ A+ Ape Az + Ay

2.5)

The result implies that the market premium, in general, comprises all of the risk premiums
stemmed from the differences between the physical moments and the risk-neutral
moments. Therefore, the market premium can be approximately decomposed into the
market mean risk premium (4, ;), the market variance risk premium (4, ), the market

skewness risk premium (43 ;), and the market kurtosis risk premium (44).

2.2.2 An approximate capital asset pricing model

Sit+1+Die+1

S ], we assume that
it

For individual asset return 7; .44 = log [

Tie+1 = Bio + Bit Tmes1 + Eirrrs (2.6)
where €;+,1 1s the idiosyncratic component, which is independent of the market return,
€it+1 L Tmes1 - It follows that the cumulant generating function of 7.y, 1is
Cum;¢[0] = 0B o + Cumyy [0B;1] + Cumy[€; 11, 0], where Cumg[e;ry1,0] is the
cumulant generating function of €;,.,. We further assume that the idiosyncratic
component is independent of the pricing kernel, €;,47; L M.y; and the linear market
model structure is preserved in the risk-neutral measure. Thus, the risk-neutral dynamics
of 7,41 1s represented by

Cum%[@] = 0B + (Cumgl‘t[eﬁm] + (Cumt[el-,tﬂ, 6].

Now, we are ready to calculate the expected excess stock return, exret;, =
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log[E; [S”“;%]] — 17 = Cum; [1] — Cumgt[l]. It follows that

exret;, = Cum,, , [ﬂm] - (Cumgl’t[/ji'l]. (2.7)

The power-series expansion yields the following proposition for exret; ..

Proposition 1. (Nonlinear beta representation)

1 1
exret;, = (K1,t - K;Q%t)ﬁm + > (Kz.t - th)ﬁiz,l + 3 (K3,t - th)ﬁfl

1
o7 (reae — 1) B

~ AtBix + AZ,t.Biz,l + AS,tBEl + A4,tﬁfl'

The result implies the feature of nonlinear risk-return tradeoff. The first term,

(2.8)

A1¢Pi1, measures the first-order risk premium of the classical CAPM, whereas the
remaining terms capture the pricing effect for the market high moment risk premiums. In
particular, the market variance risk premium (k, ; — th) determines the risk price (4, ;)
for the second-order systematic risk (ﬁfl). Similarly, the scaled market skewness risk
premium (43,) and the scaled market kurtosis risk premium (4,,) are relevant for the
third-order systematic risk (,81-3,1) and the fourth-order systematic risk (,8{%1), respectively.

It is worth noting that our model does not rely on specific assumptions on the
economic preference. Instead, our model is an approximate identity for any linear market
model under arbitrary identification of the economic preference. In the following
subsection, we examine some well-known economic preferences studied in prior

literature as examples to illustrate the role of high order systematic risks.

2.2.3 Examples: the role of high order co-moment risks

The power utility preference with non-normal market returns

We assume that the market return is distributed with high moments, Cum,,.[0] =
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62 63 6* - . 7
Ok, + S Kot Kae o Ka An explicit example is the skew normal distribution,

SKN (U, 02, 8,,), which is a normal-like distribution but with higher order (excess)
moments, where u,, is the mean parameter, ¢ is the variance parameter, and &, is
the shape parameter.?*

The pricing kernel for the power utility preference is exponentially linear in the

market return, M, = exp[—y rm’tﬂ], with the relative risk aversion y. The pricing

kernel implies that (Cumgl‘t[e] = Cumy, [0 — y] — Cumyy, ([—Y]. It is straightforward

to show that the premium for the stock 7 is
exret;y = Cump o[Bi1] — Cummn,[Bi1 — v] — Cumyn [-7]

2 3 2
Y Y 1 Y
R\ VKot — 5K+ —Kar | Bin + 5| Vi3 — 5 Kar .3i2,1
2 6 2 2 (2.9)

1
3
+ 5 (VK4,t).3i,1
~ 2 3
~ AeBia + A2eBi1 + A3 B
Moreover, the risk premium of each order is related to the same order of co-moment risks,

1.e.,

MeBin = M1t Cove[Fipis, Fonera] + Aa2,eCOV[Ti 41, T 1]
+ A13:Cov |7 73
13, t[ Lt+1 mrt+1]' (2.10)
2 _ P2 Py g1n T,
AoeBi = AZLt(Covt[ri,Hl.Tm,t+1] + Azz,tcovt[ri,t+1'rr%l,t+1]’

3 _ ~3 ~
As,tﬁm = A31,:Cov; [ri,t+1' rm,t+1]'

where 7 41 =141 — ]Et[rl-,tﬂ] and T4 = Teer — ]Et[rm,tﬂ]. The results imply

24 See, for example, Harvey, Liechty, Liechty, and Miiller (2010) for the discussion on the skew normal
distribution. The corresponding cumulant generating function is expressed by
2

0
Cuy, [8] = log[20(86,0,)) + Ot + — 01

V2 62 2 0% (V2(4 - m)
=~ 0 (H,m + ﬁ&nam) + > (O'T%L — ;672,10'51) + ? (T (ST?}LO'%)
0% (8(m — 3)
ﬁ(—ﬂ'z 6&0’%)
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that the first-order risk premium (A, ¢f; ;) consists of the conventional first-order co-
moment risk premiums, including the covariance risk premium, the coskewness risk
premium, and the cokurtosis risk premium, More importantly, the second-order risk
premium  ( Az,tﬁfl ) compensates for the second-order coskewness risk
(Cov, [f‘ftﬂ, fm_tﬂ]) and the second-order cokurtosis risk (Cov, [fftﬂ, f',%l,tﬂ]); the third-
order risk premium ( /13_t,8l-3’1 ) corresponds to the third-order cokurtosis risk
(Cov, [f‘ftﬂ, Fm_tﬂ]). Thus, these high order co-moments, which are new to literature, are

important sources of priced risks.

The quadratic utility preference with normal market returns
We examine the quadratic pricing kernel, M;,; = exp[—ylrm,tﬂ -7 r,fl’tﬂ], in

the spirit of Harvey and Siddique (2000). We assume that the market return is normally
o 2 . 6% , 62
distributed, 7y, 141~N(lm, 05) , 1e., Cumy, (0] = Ouy, + ~ Om = OKy e + S Kot -

Define Cum;.[6,,0;] as the joint cumulant generating function of 7,,, 4, and r,fl_tﬂ,

which yields that

Cum,; . [61,0;] = log[E[exp[017m 41 + gzrrgl,t+1]]]

2.11
2k1 (01 + O3k, ) + 02Ky, (2.11)

2 - 462K2,t

1
- _Elog[l - 292’(2”:] +

The risk-neutral dynamics implied by the quadratic pricing kernel is Cumg,t 6] =
Cum,; [0, —y1, —¥2] — Cum; ¢ [—y1, —V2]. Thus, it is straightforward to show that the

premium for the stock 7 is®®

% The premium can be computed through exreti_t=(Cum]‘t[ﬁi‘l,o]—(Cum,yt[ﬁiyl,—yl, —y2]+

Cum, [=v1, =72l
73



2

2
ViKor + 2V2Kq Kot 1 Vz(Kz,t)
)51’,1 + | ————| B}

exret;, = — :
vt < 1+ yyK,, 1+ 2y,K5, i

_ 2
= MtBix + A2eBi1s (2.12)
— . . N 2
MeBigx = A11,:Covy, [ri,t+1' rm,t+1] + A12,:Cov, [Ti,t+1:7”m,t+1]
2 _ 22 a2
Az eBi1 = A22,:Covy [Ti,t+1; Tm,t+1]-

The result suggests that, along with the covariance risk and the coskewness risk
considered in Harvey and Siddique (2000), the second-order cokurtosis risk
(Cov; [?ftﬂ, f,fl_tﬂ]) 1s an important source of risk under the specification of the quadratic

pricing kernel.

The pricing kernel with stochastic volatility

It has been well documented that the volatility of market return is stochastic. We
examine the pricing kernel with stochastic volatility, M;,; = exp[—ym Tmt+1 —
Ym O'TZMH], in the spirit of Ang, Hodrick, Xing, and Zhang (2006). We assume that the
market return follows a normal distribution 7y, 141105 r41~N(tm + POF c41, Opt41)
conditionally while the market volatility itself, for simplicity, follows a normal
distribution 02 ;,,~N(G4,q%) , where p <0 captures the negative correlation
between market return and market volatility (e.g., the leverage effect), G2 is the long-
term volatility, and g7, is the volatility of market volatility. Define Cum;([6,,,6,] as

the joint cumulant generating function of 7, ;41 and o 41, which yields that

Cu'm'],t [Hm' HU] = log[]E[exp[emrm,t+1 + evo—rel,t+1]]]
92
= Om(K1e + 0ppqh) + Tm (Kot + 6,0%) (2.13)

62 o2 ., 62
+ ?mkg't + ﬁku + 0,5, + 717%271

where Ky, = Uy + PO, Ky = G2 + g2 0%, K3 = 3qmp, and k. = 3q3,. The risk-
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neutral distribution of 73, ., implied by the pricing kernel with stochastic volatility 1s

Cumgl,t [Gm] = (Cum],t [Gm' —Vm» _yv] - Cumm,v,t [_Vm' _Vv]-

Thus, it is straightforward to show that the premium for the stock i is*°

2 3
Ym Vi Ym | 2Y1V,
exret;, = (mGz,t - <7m — %) K3+ (?m + 3 v) K4,t> Bis

1 vi 2y 1 2.14)
+ > <VmK3,t — <7m - %) K4,t> ﬁi2,1 + 5 (ymK4,t)Bi3,1

= A,tBiq + Az,tﬁi2,1 + /13,t:8i3,1'

The result implies the pricing of the first three order co-moment risks since the market

premium comprises the market mean risk premium (A;.), the market variance risk
premium (4, ), and the market skewness risk premium (A3 ;). The relevant co-moment
risks here are the same with those from the power utility preference with non-normal
market returns in section 2.3.1.

It is instructive to examine the return-volatility beta of Ang, Hodrick, Xing, and

. 2
Zhang (2006), which is defined as f3;,, = Covelrics1Omen] Bi 1p- Recollecting the first-

Vare[ o5 r44]

order risk premium with respect to f;,, yields that:
Alﬁi,l = Almﬁi,l + /1117:81',17
V3
m
= Bia {mGz,t + <7 + 2)’va> Qrzn} (2.15)

3y2
+ Bi,v {<_ Tm + yv) qrzn}

More importantly, in this economy, the second-order risk price (4, ,) and the third-order

risk price (43 ¢) are closely related to the risk price of the return-volatility beta (44,), i.e.,

% The premium can be computed through exret;, =(Cum,yt[ﬁl-yl,o]—(Cum],t[[)’ill,—ym, —yv]+
(Cum],t [_ym' _yv]-
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(2.16)

Y
Agy = (—),1 .
MUN3yR 421

Hence, the significant negative evidence for the risk price of volatility risk in Ang,

Hodrick, Xing, and Zhang (2006) is indicative of the second-order risk premium.?’

2.2.4 A calibration: the risk premium implied by SPX and SPX index
options

To gauge the impact of the high order risk prices, we estimate the market risk
premium in each moment implied by SPX and SPX index options, following the model-
free methodology proposed by the seminal work of Bakshi, Kapadia, and Madan (2003).
Using the index option prices from the Option Price file, we follow the procedure of
Chang, Christoffersen, and Jacobs (2013) to estimate the 30-day risk-neutral market
moments for each day during the period from 1996 to 2012. We then average daily
estimates from index option prices to obtain the full sample risk-neutral market moments.
The physical market moments are computed using the full sample logarithmic monthly
SPX returns.

Table 2. 1 presents the estimates of physical market moments, risk-neutral market
moments, and their differences. The estimation result shows a positive market mean risk

premium (k; — K;Q =0.359%) and a positive market skewness risk premium (x3 — K:;Q =

0.049%), while the market variance risk premium (k, — K;Q =—0.260%) and the market

kurtosis risk premium (x4 — K? =—0.021%) are negative.

27 In the special case of y,,, = 0, the second-order risk price is identical to the volatility risk price, i.e.,
Ape = Ay = yvqrzrr
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We use the estimates of market moments to generate random samples and then
perform the kernel smoothing density to estimate the physical density and the risk-neutral
density. We estimate the pricing kernel by the ratio of the risk-neutral density to the
physical density. As can be seen in the Panel A of Figure 2. 1, the risk-neutral density of
the market return (5=1) is more volatile, more negatively skewed, and more fat-tailed
than the physical density.

Furthermore, we find that, as shown in Panel B of Figure 2. 1, the implied pricing
kernel for the market return (f=1) is U-shaped, consistent with the recent findings in the
literature.?® In particular, Christoffersen, Heston, and Jacobs (2013) show that their
variance dependent pricing kernel which implies the quadratic preference of the market
return can generate a U-shaped pattern. Thus, among the three pricing kernels of our
examples, the quadratic preference and the stochastic volatility preference are more likely
to reconcile the shape of the implied pricing kernel.

To investigate how the systematic risks interacting with the pricing kernel affects the
expected stock returns, we generate random samples for individual stocks based on 7; =
Pio + Pi1Tm, Where f;; ranges from one to four and B;, is restricted by the risk-
neutral pricing relationship (e.g. E®exp[r;]] = exp[rs]).%

In Panel A of Figure 2. 1, as f5;; increases, both the physical density and the risk-
neutral density become more dispersed. Moreover, as can be seen in Panel B of Figure 2.
1, the pricing kernel puts more weight on the positive region as f;; increases. In other

words, high beta assets have volatile future payoffs and therefore are capable of earning

the upside variance premium provided by the increasing region of the pricing kernel.

28 See, for example, Bakshi, Madan, and Panayotov (2010), Christoffersen, Heston, and Jacobs (2013),
Chabi-Yo, Garcia, and Renault (2008), Brown and Jackwerth (2012), and Bates (2008), among others.
29 We do not consider the idiosyncratic randomness here since it does not affect the expected returns in
our model.
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Hence, high beta assets are more likely to have high prices and low expected returns,
supporting the recent work of Bakshi, Madan, and Panayotov (2010) on the property of
contingent claims on the upside.

We calibrate our approximate capital asset pricing model with the risk prices implied
by SPX and SPX index options and plot the cross-sectional expected stock returns in
Panel A of Figure 2. 2. As can be seen in the graph, the security market line is inverse U-
shaped, suggesting that the first two risk prices are economically important.

The effect of the interaction between the market variance risk premium and the
market beta can be confirmed in Panel B of Figure 2. 2. The figure suggests that the
security market line is positive sloping in the absence of the market variance risk premium
whereas the negative market variance risk premium would lead to a concave security
market line. Thus, the link between the market variance premium and the curvature of the

security market line is a unique feature of our model.

2.3 Empirical implications of the second order risk

In this section, we consider a simplified model, in which the first two order

systematic risks are priced:

]Et[Ri,t+1] - Rf,t = Al,tﬂi,l + /12,t,8i2,1! (2.17)
where f;1 > 0,4;, > 0,and 4,, < 0. We then discuss the empirical implications of the

second-order risk from this simplified model.

2.3.1 The shape of the security market line

First of all, the slope of the security market line is
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O(E¢[Ri¢+1] — Rrr)

Bi1 = A1e + 225:Bi1- (2.18)
. 9 i _
Thus, there exists f.,, = % such that (Et[Régl] ) >0 when B;4 <p.; and
Tert i1

0(E¢[Rit+1]-Rpr)
Bia

< 0 when B;; = f. ;. The result implies that the expected excess stock

return in the cross section is first increasing with f5;; and then turns decreasing with

P; 1. Furthermore, the curvature of the security market line is

0%(E¢[Rit+1] — Rrr)
GJeEN

= Ay (2.19)

Thus, the curvature of the security market line corresponds to the second-order risk price
(A2¢ < 0), implying that the security market line is inverse U-shaped. The following

corollary summarized our results.

Corollary 1. (Market variance risk premium and security market line)

When the market variance risk premium is negative (e.g., 4, < 0), the slope of the
security market line is decreasing in f; ;. Furthermore, the security market line is inverse
U-shaped and the curvature of the security market line is related to the market variance

risk premium.

2.3.2 The cross-sectional volatility-return relationship

We now illustrate how the second-order risk price affects the cross-sectional

volatility-return relation. First, define aft as the stock return variance

ofy = Var[ri ] = BLVar e ] + Var e e (2.20)

_ p2 2 2
= ﬁi,1‘7m,t + 0i ¢t
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2 2
Oit—Tiet

1/2
In our case, f;; >0 and f;; = (T) . Thus, the first derivative of cross-

m,t

sectional stock return with respect to o7, is

O(Ee[Riera] = Rre) Az N Aip
do? T g2 1/2" (2.21)
%t ome 2 (O-rzn,t(o-i?t - O-i?e,t))
. 23 (0} 3(E¢[Rit+1]-R
Thus, there exists 02, = Z2£™ +1 such that (] s I8 5 0 when ot < 02

2
4/12,1',' 60'”

0(E¢|R; -R
o 2EelRicel-rre)
aoi’t

< 0 when oft > o¢7,. The result yields the following corollary.

Corollary 2. (The second-order risk price and cross-sectional volatility-return relation)

The expected excess stock return in the cross section is first increasing with % and then
turns decreasing with aft. In particular, 4,, contributes to the negative cross-sectional

volatility-return relation.

We now show that the second-order risk price in our model can help explain the
cross-sectional return differentials with respect to idiosyncratic volatility documented in
Ang, Hodrick, Xing, and Zhang (2006). Define the idiosyncratic volatility as the residual

variance of the stock return adjusted for the first-order risk premium,
IVOL;; = Var[E¢[Rie41] — Rre — AueBa] = By Var[2Ag,]- (2.22)

IVOL;,
Var[A, ]

1/4
In our case, f;; >0 and f;, =< ) . Thus, the first derivative of cross-

sectional stock return with respect to IVOL;, is
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O(Ec[Rits1] — Rrvr)

JIVOL,,
(2.23)
_ Aot 4 At
Cawvor?var(a, 1?4 vor*vara, |
it Var[2y,] VOL;,*Var|Az]
4 a . —
Thus, there exists IVOL,, E)ll'tva—i[)lz't] such that (BelRita]=Ry.c) >0 when
' 1645 dIVOL;,

d 0(E¢[Ris1]-Rpt)

IVOL;, < IVOL,, an Sror

< 0 when IVOL;; = IVOL, ;. The result yields

the following corollary.

Corollary 3. (The second-order risk price and idiosyncratic volatility)

The expected excess stock return in the cross section is first increasing with IVOL;, and
then turns decreasing with IVOL; .. In particular, A,, contributes to the negative cross-

sectional idiosyncratic volatility-return relation.

2.3.3 The betting-against-beta premium

Recently, Frazzini and Pedersen (2014) suggest that because constrained investors
bid up high-beta assets, high-beta assets are associated with low alphas. They show that
a betting-against-beta (BAB) factor, which is long leveraged low-beta assets and short
high-beta assets, produces significant positive risk-adjusted returns. Our model, in
contrast, suggests that the betting-against-beta strategy is exposed to high order

systematic risks. To illustrate our claim, define the return on the BAB strategy as

E¢[Rpt41] — Tre IE':t[RH.t+1] —Trt

2.24
B Bu ' 224

]Et[RBAB,t+1] =

where B, < By, Rp¢+1 is the return for the low beta asset, and Ry 41is the return for

the high beta asset. In our model, it follows directly that
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E _ AeBLt AP AeBu + AoBh
t[RBAB,t‘I-l] - ﬁL - BH (2 25)

= —(.BH - ﬁL)/lz,t-

Thus, our model implies that the second-order risk price contributes to the premium of

the BAB strategy. The result yields the following corollary.

Corollary 4. (The second-order risk price and the betting-against-beta premium)

The BAB factor is negatively related to 4, ;.

2.4 Data and summary statistics

2.4.1 Data

The sample comprises all NYSE/AMEX/NASDAQ ordinary common stocks over
the period from January 1963 to December 2012. Daily and monthly stock return data
(with share code =10 and 11) are from CRSP. Stocks with share prices less than $1 at the
end of the previous month are excluded. Financial statement data are from COMPUSTAT.
Fama and French (1993) factors, their momentum UMD factor, and their Size-B/M
portfolios are obtained from the online data library of Ken French.*® We obtain daily data
from OptionMetrics for equity options and S&P 500 index options over the period from
January 1996 to December 2012.

Expected market variance risk premium (ERV—IV) is obtained from Hao Zhou’s
personal website.’! The risk-neutral expectation of variance (IV) is measured as the end-
of-month VIX-squared de-annualized (VIX?/12), whereas the realized variance (RV) is

the sum of squared 5-minute log returns of the S&P 500 index over the month. As

30 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
31 https://sites.google.com/site/haozhouspersonalhomepage/
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described in Drechsler and Yaron (2011) and Zhou (2012), the expected realized variance
(ERV) is a statistical forecast of realized variance with one lag of implied variance and
one lag of realized variance. Thus, the expected market variance risk premium is defined
as EVRP= ERV -IV.

Data on government bond yields, corporate bond yields, and the TED spread are
from the FRED database of the Federal Reserve Bank of St. Louis. Following the
literature (see, for example, Petkova and Zhang (2005) and Petkova (2006), among the
others), we construct a set of variables for macro-economy. Specifically, we use the CRSP
value-weighted portfolio to measure the dividend yield (D/V) by the sum of dividends
over the last 12 months, divided by the level of the index. The term spread (TERM) is
measured by the difference between the yields of a 10-year and a 1-year government bond.
The default spread (DEF) is computed by the difference between the yields of a long-
term corporate Baa bond and a long-term government bond.

We use stock analyst forecasts of the long-term growth rate (L7G) for the earnings-
per share obtained from the unadjusted I/B/E/S summary database. Following Yu (2011)
and Hong and Sraer (2012), the standard deviation of the forecast for LTG is used to proxy
for the firm-level disagreement. The aggregate disagreement (DIS) is measured by the

cross-sectional value-weighted average of the individual stock disagreements.

2.4.2 Estimation of co-moment risks

For each month we estimate co-moment risks using the daily stock returns over the
past month. Following Ang, Hodrick, Xing, and Zhang (2006), only stocks with more
than 17 daily observations are included. First of all, the historical CAPM beta (31’,11) is

estimated by the following linear regression:
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Ritv1— Rets1 = + Bi1iMKTyq + €1p 41 (2.26)

Define R;;y; as the residual stock return i, i.e., Rjty1 = Rit41 — Rppp1 —

(@+ B 11MKT,,,) and define R, .., as the demeaned market return, i.e., Ry p4q =
MKT;,q — E[MKT;;1]. Then the first-order coskewness (ﬁi_lz) and the first-order
cokurtosis (ﬁi,lS) are computed respectively by
Bir2 = E[RRL1/EIRY] = (E[RRZ1/E[RA]Y/?)/SKEW
Bi1s = E[R;R3]/E[R] = (E[R;R3,]/E[R]?)/KURT

(2.27)

where SKEW ,,, = E[R3,]/E[R%]3/? and KURT,, = E[R%]/E[R2]?. Our approach is
similar to but different from that of Harvey and Siddique (2000).** In particular, our
estimation for these first-order systematic risks is performed separately. We estimate the
co-moments divided by market variance using the daily data from the regression whereas
the market skewness (SKEW,,,) and the market kurtosis (KURT,,) are computed using the
full sample monthly market returns. While preserving the cross-sectional ranks of the
security betas, this procedure ensures that the denominators estimated from the short

regression window would be well-behaved. The second-order coskewness (Iéi,21) and the

second-order cokurtosis (ﬁi,zz) are similarly estimated by

i1 = E[R?R,,1/E[R3] = |E[R?R,,]/E[RE]*/?|/ISKEW |,
Biz2 = E[R?RZ]1/E[R}Y] = |E[R?RZ]1/E[RA]?|/IKURT |,

(2.28)

where the absolute value is required in both estimates since the second-order systematic
risk should be nonnegative.

We apply the model-free approach of Bakshi, Kapadia, and Madan (2003) to

32 Harvey and Siddique (2000) construct a measure of coskewness, f;sxp =
E[R;R%]/(E[R?]/?E[RZ]).While the numerator of f8;1, and thatof B sxp in are the same, these two
co-moment risks are different in which the residual volatility of the stock return is used as the
denominator of their f5; sxp.
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estimate the 30-day risk-neutral moments for each day, following the procedure outlined

in Chang, Christoffersen, and Jacobs (2013).>* For each month we estimate the risk-
neutral variance beta (ﬁi,z‘ rn) With the daily estimates of risk-neutral individual variance
and risk-neutral market variance, exploiting the linear market model relation for the
second moment:

VAR gnt+1 = Qign2 T Birn2VARmeN 41 + EirN 10 (2.29)
where VAR; gy t+1 18 the risk-neutral variance of the stock i, VAR, gy ¢+1 15 the risk-

neutral variance of the market. The parameters are estimated through nonnegative least

squares method since both a; gy, and f; gy, should be nonnegative.

2.4.3 Summary statistics

Table 2.2 table reports summary statistics for variables used in this study. We first

compute in each month the cross-sectional statistics for each security and then report the
time-series average. The historical CAPM beta (31‘,11) ranges from —1.011 (at the 5%
percentile) to 2,829 (at 95" percentile); the first-order coskewness (Bi,12) ranges from
—3.971 to 4.280; the first-order kurtosis (,BA’l-,13) ranges from —0.613 to 0.641. The mean
values and the median values of these first-order co-moment risks tend to decrease as the
orders of the market returns increase. The second-order coskewness ([?LZI), ranging from
0.212 to 63.338, is more dispersed than the second-order kurtosis (,éi,zz) which ranges
from 0.226 to 18.820. The mean and the median value of ,éi,21 is larger than those of

,éi,zz‘ The risk-neutral variance beta (ﬁi_ rN.2)> estimated from stocks with available equity

33 Except for one thing. We use linearly interpolate implied volatilities since the cubic spline interpolation
requires more available observations across moneyness and sometime produces inconsistent negative
estimates for implied volatilities.
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options, ranges from 0.005 to 8.675, which is less dispersed than those of the second-
order co-moment risks estimated from the entire common stocks.

We also report the statistics for the average of daily estimates for risk-neutral variance
(VAR; gy), risk-neutral skewness (SKEW; py), and risk-neutral kurtosis (KURT; gy) as
well as statistics for firm characteristics, including the book-to-market ratio (B/M), market
capitalization (Size, in billion), the average of past 11-month returns prior to last month

(RET 2 12), and Amihud’s illiquidity measure (/LLIQ, in million).

2.5 Pricing high-order systematic risks

2.5.1 Cross-sectional regressions

We examine our approximate capital asset pricing model in the cross-section. In each
month, we sort stocks into 25 portfolios based on the historical CAPM beta (Bi,ll) and
compute the equal-weighted portfolio returns. To achieve higher testing power, we also
adopt the Fama-French 25 value-weighted portfolio returns formed on size and B/M. We
first estimate the following time-series regression for each portfolio on the Fama-French
(1993) and Carhart (1997) four factors:

Rpiv1— Rppe1 = ap + BpuxrMKTy 14
+ Bp,smpSMBii1 + Bpum HMLiyq + By ymp UMDy 4.

In the second stage, we use the Fama-MacBeth (1973) cross-sectional regression to

(2.30)

estimate the prices of high order risks while controlling for common factor loadings:

]E[Rp] — Ry = Amkr1Bpmir + AMKT,ZE;?,MKT + AMKT,3ES,MKT 2.31)

+ AMKTAB'I‘\L/IKT + ASMBﬁSMB + AHMLﬁSMB + AUMDﬁUMD'

where 2.7, Baykr, and Py yxr the orthogonalized high order market risks with

respect to their lower order risks. Robust Newey and West (1987) ¢-statistics with eight
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lags that account for autocorrelations are used.

Panel A of Table 2.3 reports the estimates for the risk prices of high order risks using
equal-weighted portfolio returns formed on the historical CAPM beta. As reported in
column [1], we find that Ay k7, is positive (0.711) with a significant #-statistic of 3.49.
Furthermore, as reported in column [2], Apgr, is negative (—2.372) with a significant ¢-
statistic of —5.69. In column [4], we find that A7 has a significant positive value of
1.567 (with a t-statistic of 5.40) and Ay k7, yields a significant negative value of —2.116
(with a ¢-statistic of —4.69) whereas Aygr3 and Apygr, are insignificant.

Panel B reports the estimates using Fama-French 25 value-weighted portfolio returns
formed on size and B/M. The result in Panel B is similar with that of Panel A. For
example, as reported in column [4], Aygr, is positive (0.925) with a significant ¢-
statistic of 4.87 and Aykr, 1s negative (—0.826) with a significant ¢-statistic of —2.18
whereas Aygr3 and Aygr, are insignificant.

In summary, we find supporting evidence for the pricing of the first two orders of
market risks. The first-order risk is significantly and positively priced while the second-
order risk is significantly and negatively priced. More importantly, our findings imply
that cross-sectional relation between expected return and market beta should be inverse-

U shaped, which constitutes the main idea of our empirical tests in the following sections.

2.5.2 Evidence on the second-order risk premium
Performance of portfolios formed based on the first-order systematic risk

We examine the performance of portfolios formed on the first-order co-moment risks,
including the market beta (ﬁi,ll)a the first-order coskewness (ﬁi,lz) and the first-order
cokurtosis (31‘,13)- In each month, stocks are sorted into 25 portfolios from the lowest (1)
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to the highest (25). After the portfolio formation, we calculate the equally-weighted
monthly stock returns for each portfolio. For each portfolio, we compute the risk-adjusted
return with respect to Fama-French (1993) and Carhart (1997) four factors (MKT, SMB,
HML, and UMD) from the intercept estimate of a time-series regression. Table 2.4
presents the results for Bi,ll , Bmz and B\l"lg in Panel A, Panel B, and Panel C,
respectively.

Consistent with an inverse-U shaped pattern implied by the model, as can be seen in
Table 2.4, all of the first-order co-moment risk sorted portfolios exhibit that stocks in the
bottom portfolio and in the top portfolio have lower stock returns than stocks in the middle
portfolios. To exploit the economic value of the inverse-U shaped pattern, we construct a
curvature portfolio (CURI) by the sum of the twice difference for the portfolios formed
on each of the first order co-moment risks. That is, for N risk-sorted portfolios, the
curvature portfolio would be Y.5_3 A*r,, where Ar, =1, —r,_; and A%r, = Ar, —
Ar,_1. Thus, for the 25 portfolios, CURI is the curvature portfolio that longs the
difference in the top portfolios (25-24) and shorts difference in the bottom portfolios (2-
1).

We find that CURI is significantly negative at —1.00% (with a z-statistic of —5.79)

for ﬁi,ll sorted portfolios, at —0.98% (with a #-statistic of —5.62) for [?i,12 sorted
portfolios, and at —0.96% (with a z-statistic of —6.18) for 5’1‘,13 sorted portfolios.
Controlling for the Fama-French (1993) and Carhart (1997) four factor model, CUR/ still
gives a significant alpha of —1.11% with a #-statistic of =7.15 for ,éi,ll sorted portfolios,
—1.01% with a ¢-statistic of —6.83 for [3’1-,12 sorted portfolios, and —1.03% with a ¢-
statistic of —7.78 for réi,13 sorted portfolios.

In summary, consistent with Corollary 1, we find an inverse-U shaped pattern for
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portfolios formed on the first-order risks. We also find the curvature portfolio based on
the trading strategy exploiting the inverse-U shaped pattern generates significant
abnormal returns where the the Fama-French (1993) and Carhart (1997) four factor model
cannot explain. Thus, the findings suggest that the second-order risk premium is

statistically and economically significant.

Performance of portfolios formed on the second-order co-moment risks

We examine the performance of portfolios formed on the second-order co-moment
risks, including the second-order coskewness (31’,21) and the second-order cokurtosis
(ﬁi,zz)- In each month, stocks are sorted into 25 portfolios from the lowest (1) to the
highest (25) and the portfolio returns are equal-weighted. Table 2.5 presents the results
for [?i,21 and ﬁi,zz in Panel A and Panel B, respectively.

Consistent with the negative risk prices for the second-order risk, as can be seen in
Table 2.4, portfolio returns exhibit decreasing pattern, albeit slightly increasing initially.
To exploit the economic value of the second-order risk premium, we construct another
curvature portfolio (CUR?2) that longs the top portfolio and shorts the bottom portfolio for
the portfolios formed on each of the second order co-moments risks.

We find that CUR? is significantly negative at —1.27% (with a #-statistic of —4.32)
for Bi,21 sorted portfolios, and at —1.06% (with a #-statistic of —3.05) for ﬁAiJZZ sorted
portfolios. Controlling for the Fama-French (1993) and Carhart (1997) four factor model,
CUR? still gives a significant alpha of —1.47% with a ¢-statistic of —8.37 for Bi,21 sorted
portfolios, and —1.37% with a #-statistic of —6.74 for Bi,zz sorted portfolios. In Panel C,
we find similar results for the 15 portfolios formed on the risk-neutral variance beta
(ﬁi,z, rn)- We find that the curvature portfolio (CUR2=15-1) is significantly negative at —
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1.34% with a #-statistic of —2.21 and has a significant alpha of —1.38% with a #-statistic
of —3.71 adjusted by the Fama-French (1993) and Carhart (1997) four factor model.

In summary, consistent with Corollary 1, we find negative relation between cross-
sectional stock returns and the second-order risks. We also find that the curvature
portfolios generate significant abnormal returns where the Fama-French (1993) and
Carhart (1997) four factor model cannot explain. Thus, the findings confirm that the

second-order risk premium is statistically and economically significant.

2.6 Mimicking curvature factors

2.6.1 Properties of the mimicking curvature factors

We construct three mimicking factors for the second-order risk premium using the
curvature portfolios studied in the previous section. We construct our first mimicking
factor, FCURI, based on the average of the three CUR/s formed based on ﬁi,lla ﬁi,lZa
and BLB, respectively. Similarly, we construct our second mimicking curvature factor,

FCUR?2, based on the average of the two CUR2s formed on Bi,21 and 31’,22: respectively.
Our third mimicking curvature factor, FCURZ2rn, is measured by the curvature portfolio
CUR2rn formed based on ﬁAi_z, RN-

Table 2.6 reports the performance of our mimicking curvature factors. In Panel B,
FCURI is significantly negative at —0.98% (#-statistic = —6.90) and FCUR? is also
significantly negative at —1.17% (¢-statistic = —3.66) during the sample period from
January 1963 to December 2012. Moreover, FCURI and FCUR?2 remain significantly
negative during the sub-sample period from January 1996 to December 2012. For each
curvature factor, we compute the risk-adjusted return with respect to Fama-French (1993)

and Carhart (1997) four factors (MKT, SMB, HML, and UMD). Our three mimicking
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curvature factors, FCURI, FCUR2, and FCUR2rn, have significantly negative abnormal
returns of —1.05% (with a ¢-statistic of = —6.90), —1.42% (with a ¢-statistic of —7.65), and
—1.38% (with a ¢-statistic of —3.71), respectively.

Panel C presents the Spearman correlations. Our curvature factors are related to each
other. For example, the correlation between FCURI and FCUR? is high at 0.686 and the
correlation between FCUR2 and FCUR2RN is also high at 0.625. The market factor (MKT)
has positive correlations of 0.152 with FCURI, 0.531 with FCUR2 and 0.575 with
FCUR2grn. Furthermore, the size factor (SMB) also shows positive correlations of 0.328
with FCURI, 0.595 with FCUR?2 and 0.440 with FCUR2N while the value factor (HML)
and the momentum factor (UMD) show smaller negative correlation with our mimicking
factors. More importantly, consistent with our model, we find that the expected market
variance risk premium (ERV—IV) yields positive correlations of 0.165 with FCURI, 0.317

with FCUR2 and 0.352 with FCUR2gw.

2.6.2 The market variance risk premium and the mimicking curvature

factors

To examine how our mimicking curvature factors are related to the macro-economy,
we regress these factors on a set of state variables. Following the literature, we use the
aggregate dividend yield (DIV), the default spread (DEF), the term spread (TERM), and
one-month Treasury bill yield (7B) as explanatory variables. Moreover, we include the
expected market variance risk premium (ERV—1V), aggregate disagreement (DIS), and the
TED spread (TED). Our model implies that the second-order risk price is related to the
market variance premium and therefore ERV—IV should explain our mimicking curvature

factors.
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Table 2.7 presents the results for the regressions of the mimicking factors. Consistent
with our model, as reported in column [1] of Panel A, we find that ERV—IV has an
impressive z-statistic of 2.19 in explaining the variation of FCURI whereas all of other
variables are insignificant. Controlling for DIS and TED, as reported in column [2] of
Panel A, ERV-IV remains significant with a ¢-statistic of 1.71. Moreover, as shown in
column [2] of Panel B and in column [2] of Panel C, ERV—IV has significant -statistics
of 2.47 and 2.69 in the regressions of FCUR2 and FCUR2rn, respectively.

Hong and Sraer (2012) demonstrate that the disagreement about the market return
leads to speculative overpricing for high beta stocks. Their model implies that the shape
of security market line is kinked and the slope of that decreases with the macro-
disagreement. Thus, their theory implies that the aggregate disagreement should explain
our mimicking factors. However, as can be seen in Table 2.7, the market variance
premium explain the curvature factors better than the macro-disagreement does. Thus, the
second-order risk premium in our paper cannot be fully explained by their disagreement-

driven overpricing mechanism.

2.6.3 A curvature factor model

We construct curvature factor model based on our mimicking tradable factors. The

expected excess return of asset i from the factor model is
E[R; — R¢] = BimxrEIMKT] + B; rcur E[FCUR], (2.32)

where E[MKT] is the expected return on the market portfolio, E[FCUR] is expected
return on the mimicking curvature factor, FCUR € {FCUR1, FCUR2,FCUR2yy} and

Pimxr and B; pcyr are the factor loadings from the time-series regression:
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Ritv1— Rers1 = @i + BimkrMKTe i1 + BipcurFCUR 4 4. (2.33)

Since our curvature factor is constructed to mimic the second-order risk premium,
i.e., E¢[FCUR;+1] < A, , our theory implies that the curvature factor loading is related
to the second-order risk, i.e., B; pcyr ﬁiz_l. Stocks with high curvature factor loadings,
by construction, are less risky because they are more sensitive to the market variance risk
premium, thereby providing hedging against market volatility risk.

We test our curvature factor model at the firm level using the cross-sectional

regression:

Rit+1 — Ret41 = Co + AukrBimkre + ArcurBircur,t
(2.34)
+ cprm FirmCharac; ¢ + € 41,

where the dependent variable is the monthly individual stock returns; B; ygr: and
Pircure are post-ranking betas estimated from the 25 portfolios formed on historical

CAPM beta (ﬁi,ll)- FirmCharac;, is a set of control variables, including book-to-
market ratio (B/M), market capitalization (Size), past 11-month return (RET 2 12),
dividend yield (YLD), and illiquidity (/LLIQ). Following the methodology of Fama and
French (1992), we assign each of the 25 portfolio-level post-ranking beta estimates to the
individual stocks within the portfolio at that time.

Table 2.8 reports the results for the firm-level Fama-MacBeth regressions. In Panel
A, we find that Ag;yr; 1s negative (—0.501) with a significant z-statistic of —3.30,
reported in column [2]. Moreover, in column [3], Apcyg2 1S also negative (—0.682) with
a significant ¢-statistic of —2.59. In Panel B, we test our model with control variables of
risk-neutral moments, including VARrnN, SKEWgn, and KURTry. We find similar results
in which Apcyri, Arcurz, and Apcyrzry have significant negative values of —1.108

(with a ¢-statistic of —2.77), —1.307 (with a z-statistic of —2.75), and —1.008 (with a ¢-
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statistic of —2.61), respectively.

In summary, we find significant evidence that mimicking curvature factors are priced
risk factors. That is, investor required lower expected returns for holding stocks with
greater exposure to the curvature factor because these assets are more sensitive to market
variance risk premium, thereby providing hedge for market volatility risk. In other words,

ignoring the curvature factor might omit an important source of priced risk.

2.7 Performance of the curvature factor model

2.7.1 The curvature factor model and cross-sectional volatility-return

relation

We examine whether our mimicking curvature factors help explain the well-known
(idiosyncratic) volatility puzzle of Ang, Hodrick, Xing, and Zhang (2006, 2009) and the
MAX puzzle of Bali, Cakici, and Whitelaw (2011). Following the literature, TVOL is
defined as the annualized past one month variance of daily stock returns; /VOL is defined
as the annualized residual variance of the daily stock regressed on the Fama and French
(1993) three factors over the past month; MAX is defined as the maximum daily stock
return over the past one month. In our model, Corollary 2 and Corollary 3 imply that the
second-order risk premium should help explain the cross-sectional return differentials
with respect to 7VOL and IVOL. If MAX, a volatility measure itself, is highly correlated
to these two volatility measures, the second-order risk premium should also explain the
pricing effect of MAX.

In Table 2.9, we report the Spearman correlations for second-order risks, and
volatilities which includes TVOL, IVOL, and MAX. The table shows that these volatility
measures are highly correlated each other with correlations ranging from 0.86 to 0.97.
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Moreover, we find that these volatility measures are highly correlated with the second-
order risks as well as the curvature factor loadings. Thus, results suggest that high
volatility stocks could have high exposure to market variance risk premium and therefore
have low expected returns.

Table 2.10 presents the performance of portfolios formed based on 7VOL, IVOL, and
MAX. Stocks are sorted into quintile portfolios, from the lowest (quintile 1) to the highest
(quintile 5), and the portfolio returns are value-weighted. For each portfolio, we compute
the risk-adjusted return with respect to our curvature factors as well as Fama-French
(1993) and Carhart (1997) four factors (MKT, SMB, HML, and UMD) from the intercept
estimate of a time-series regression. Controlling for Fama-French and Carhart four factor
model, we find evidence consistent with Ang, Hodrick, Xing, and Zhang’s (2006) that the
*5-1” portfolios for TVOL and IVOL have significantly negative alphas of —0.93% (with a
t-statistic of —4.72) and —0.96% (with a t-statistic of —5.46), respectively. Similarly, we
find that the ‘5-1° portfolio for MAX also has a significantly negative alphas of —0.60%
with a z-statistic of —3.63.

More importantly, after controlling for market factor and our mimicking curvature
factors, we find that none of the ‘5-1’ portfolios has significant abnormal returns. For
example, the ‘5-1’ portfolio for TVOL has insignificant alphas of —0.10% (with a ¢-statistic
of —0.45), —0.06% (with a t-statistic of —0.45), and 0.27% (with a f-statistic of 0.67)
controlling FCURI, FCUR2, and FCUR2rn, respectively. Furthermore, all of the ‘5-1°
portfolios have significant exposures to our mimicking curvature factors. For example,
the ‘5-1" portfolio for TVOL has significant exposures of 1.09 (with a ¢-statistic of 8.95),
0.77 (with a ¢-statistic of 22.02), and 0.92 (with a ¢-statistic of 11.84) to FCURI, FCUR?2,
and FCUR2gn, respectively.

In summary, consistent with our model, we find that these volatility measures are
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closely related to the second-order systematic risks and the abnormal returns associated
with these variables become insignificant once we control for the mimicking curvature
factors. Thus, it is the systematic second-order risk premium that accounts for these

volatility puzzles.

2.7.2 The curvature factor model and betting-against-beta premium

We examine whether our mimicking factors help explain the betting-against-beta
premium of Frazzini and Pedersen (2014). They show that a betting against beta (BAB)
factor, which is long leveraged low-beta assets and short high-beta assets, produces
significant positive risk-adjusted returns, supporting their theory of margin constraint.
Our model, in contrast, suggests that the betting-against-beta strategy is exposed to high
order systematic risks.

Table 2.11 presents the performance of portfolios formed on betting-against-beta
(BAB). At the beginning of each calendar month, stocks are ranked in ascending order on
the basis of .BAL',FZ at the end of the previous month, where ﬁAi,FZ is the beta of Frazzini
and Pedersen (2014). To construct the BAB factor, all stocks are assigned to one of two
portfolios: low beta and high beta. Stocks are weighted by the ranked betas (lower beta
security have larger weight in the low-beta portfolio and higher beta securities have larger
weights in the high-beta portfolio), and the portfolios are rebalanced every calendar
month. Both portfolios are rescaled to have a beta of one at portfolio formation. The
betting against beta factor (BAB) is a self-financing portfolio that is long the low-beta
portfolio and short the high-beta portfolio.

The BAB factor yields a significantly positive average excess return of 0.89% with

a t-statistic of 3.82. Controlling for Fama-French and Carhart four factor model, BAB still
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has a significant positive alpha of 0.58% with a #-statistic of 2.78. Thus, our results are
comparable with theirs. Controlling for the market factor and our mimicking curvature
factors, we find BAB still has a significant alphas of 0.71 (with a ¢-statistic of 2.77) using
FCURI, a significant alphas of 0.64 (with a t-statistic of 2.77) using FCUR2, and an
insignificant alphas of 0.11 (with a #-statistic of 0.23) using FCURZ2rn. Thus, despite the
successful performance of FCUR2rn, the market factor and our other mimicking
curvature factors are insufficient to fully explain the BAB factor.

We extend the analysis using a generalized five-factor model which augments our
curvature factors with Fama-French and Carhart four factors. Controlling for the five
factors, the BAB premium disappears in which the BAB factor has an insignificant alphas
of 0.29 (with a ¢-statistic of 1.30) using FCURI, an insignificant alphas of 0.20 (with a ¢-
statistic of 0.95) using FCUR?2, and an insignificant alphas of 0.17 (with a ¢-statistic of
0.40) using FCUR2gn. Thus, although Fama-French and Carhart four factors are similarly
insufficient to explain the BAB factor, the extended five-factor model does capture the
BAB premium, indicating the importance of the second-order risk premium.

In summary, we find that the second-order risk premium helps explain the BAB
premium. Thus, the second-order risk premium provides an alternative explanation for

the betting-against-beta premium other than the market friction in their paper.

2.7.3 Performance of portfolios formed on historical curvature factor
loadings
Table 2.12 presents the performance of portfolios formed on historical curvature

factor loadings (Srcuri> Prcurz,> and Brcurzry)- In each month, we estimate our

curvature factor model using the daily stock returns over the past one month. Brcyris
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Brcuras and Brcurory are the historical curvature factor loadings of FCURI, FCUR2,
and FCUR2rn, respectively. In each month, stocks are sorted into 25 portfolios from the
lowest (1) to the highest (25) and the portfolio returns are equal-weighted.

The results indicate that the portfolios formed on the historical curvature factor
loadings have significant risk premiums that the current Fama-French and Carhart four
factor model cannot explain. Specifically, controlling for the four factor model, the
abnormal returns are —1.47 (with a z-statistic of —7.69) for the *25-1" portfolio formed on
Brcuris —1.43 (with a t-statistic of —=7.01) for the *25-1" portfolio formed on Brcygs, and
—1.12 (with a t-statistic of —2.61) for the *25-1" portfolio formed on Brcyrary- These
results support the validity of our mimicking curvature factors for the second-order risk

premium.

2.8 Conclusions

The negative market variance risk premium and the second-order risk appear to affect
cross-sectional asset pricing. This paper presents an approximate capital asset pricing
model, in which, along with the first-order co-moment risks in existing literature, higher
order co-moment risks and high order risk premiums are important for pricing individual
stocks. Stocks with high exposure to the second-order risk are more volatile and are
capable of earning the upside variance premium provided by the increasing region of the
pricing kernel implied by the negative market variance risk premium.

Our results show that the second-order risk is significantly and negatively priced and
contributes to an inverse-U shaped relation between cross-sectional expected returns and
systematic risks. We show that our mimicking curvature factors for the second-order risk

premium well explain several volatility-related puzzles as well as the BAB premium. Our
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study provides a unified framework for better understanding of the high order risk-return

tradeoff and sheds light on the role of the second-order risk premium.
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Table 2. 1: Market moments implied by SPX and SPX index options

This table presents the estimates of physical market moments, risk-neutral market moments, and their
differences. The physical market moments are computed using the full sample logarithmic monthly SPX
returns. The 30-day risk-neutral market moments are estimated by the model-free approach of Bakshi,
Kapadia, and Madan (2003) for each day following the procedure of Chang, Christoffersen, and Jacobs
(2013). We then average daily estimates from index option prices to obtain the full sample risk-neutral
market moments. The first four cumulants (K7, K2, K3, and K4) are reported. The sample period is from

1996 to 2012.

Cumulants
K1 (%) 12 (%) K3 (%) K4 (%)
Physical 0.398 0.218 -0.008 0.002
Risk-neutral 0.039 0.479 -0.057 0.023
Difference 0.359 -0.260 0.049 -0.021
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Table 2. 2: Summary statistics

This table reports the mean, standard deviation, and percentile (5% , 25", median, 75" , and 95%)
statistics for variables used in this study. We first compute in each month the cross-sectional statistics for
each security and then report the time-series average. Historical CAPM beta (Bi,ll) is calculated using
market model on the daily stock returns over the past month. We estimate Bi,12 =
(E[R;R2]/E[R2]3/%)/SKEW,, for the first order coskewness, f;13 = (E[R;R3]/E[R%]?)/KURT
for the first order kurtosis, f;,1 = |E[R?Rp]/E[RZ]3/%|/ISKEW ,,| for the second order coskewness,
and B2, = |E[R?R%]/E[R%]?|/|IKURT | for the second order cokurtosis. We estimate the co-moments
divided by market variance using the residual daily data whereas the market skewness (SKEW ,,,) and the
market kurtosis (KURT,,,) are computed using the full sample monthly market returns. We apply the model-
free approach of Bakshi, Kapadia, and Madan (2003) to estimate the 30-day risk-neutral moments for each
day, following the procedure outlined in Chang, Christoffersen, and Jacobs (2013). The average of daily
estimates for risk-neutral variance (VARgw), risk-neutral skewness (SKEWry), and risk-neutral kurtosis
(KURTry) are reported. The risk-neutral variance beta (.éi,Z,RN) is computed by the linear relation that
VAR; gy t+1 = Xign2 + Birn2VARm ey t+1 T Eirne+1 through nonnegative least square method, where
VAR; gy ¢+1 18 the risk-neutral variance of the stock i, and VAR, py¢+1 18 the risk-neutral variance of the
market. B/M is the book-to-market ratio; Size is market capitalization measured in billions of dollar;
RET 2 12 reports the average of past 11-month returns prior to last month; /LLIQ reports the average of
Amihud’s (2002) illiquidity measure. The sample period is from January 1963 to December 2012.

Descriptive statistics

Mean  Std.Dev. 5% 25% 50% 75% 95%  Num. Obs.

Bi,ll 0.751 1.271 -1.011 0.068 0.652 1.373 2.829 4,472
Bmz 0.128 2.802 -3.971 -1.057 0.110 1.344 4.280 4,472
ﬁi,13 0.006 0.426 -0.613 -0.178 0.002 0.186 0.641 4,472
31’,21 17.440  86.868 0.212 1.515 4.758 14.057 63.338 4,472
ﬁi,zz 5.303 17.169 0.226 0.849 2.098 5.139 18.820 4,472
Bi,RN,Z 2.310 4.266 0.005 0.187 0.983 2.837 8.675 883

VAR; gy 0.027 0.036 0.006 0.012 0.021 0.035 0.067 883

SKEW; gy -0.405 0.355 -0.983 -0.548 -0.354 -0.205 -0.003 883

KURT; gy 3.909 1.349 3.075 3.296 3.582 4.107 5.844 883

B/M 1.213 8.180 0.142 0.418 0.724 1.131 2.198 3,363
Size(3b) 1.154 5.686 0.008 0.034 0.120 0.483 4.343 4,505
Log(RET2 12) 0.039 0.410 -0.647 -0.177 0.054 0.267 0.671 4,082
ILLIQ(10°%) 4.597 19.745 0.009 0.080 0.465 2.499 20.928 4,047
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Table 2. 3: The pricing of high-order risks

This table reports the estimates for the risk prices of high order risks using portfolio returns. In Panel A, we
sort stocks into 25 portfolios based on the historical CAPM beta in each month and compute the equal-
weighted portfolio returns. In Panel B, we adopt the Fama-French 25 value-weighted portfolio returns
formed on size and B/M. We first estimate the following time-series regression for each portfolio on the
Fama-French (1993) and Carhart (1997) four factors:

Ry t+1 — Rptv1 = ap + BpmukrMKTi 1 + BpsupSMBiy1 + Bpumi HMLiyq + Bpymp UMDy 4.
In the second stage, we use the Fama-MacBeth (1973) cross-sectional regression to estimate the prices of

high order risks while controlling for common factor loadings:
]E[Rp] = Ry = AukrPpmxr + AMKT,ZE}%,MKT + AMKT,3ﬁ~p3,MKT
+ Aukr.aBuxr + AsupBsus + AumrBsus + AumpBumps
where Eg MKT> ES,MKT, and ﬁ{,‘,MKT the orthogonalized high order market risks with respect to their lower

order risks . Robust Newey and West (1987) #-statistics with eight lags that account for autocorrelations are

presented in parentheses. The sample period is from January 1963 to December 2012.

Cross-sectional regressions

Bsms Bumi Bump Buxr EI\Z/IKT EI\?ZKT EI??IKT Adj. R’
Panel A: 25 portfolios formed on CAPM beta

[1] -0.161 1.215 0.927 0.711 0.655
(-0.54) (4.18) (1.20) (3.49)

[2] -1.407 -0.888 -2.578 1.737 -2.372 0.842
(-4.60) (-2.73) (-3.32) (6.04) (-5.69)

[3] -1.373 -1.163 -2.388 1.781 -2.570 -0.698 0.840
(-4.50) (-2.68) (-3.10) (6.14) (-5.27) (-0.85)

[4] -1.245 -0.626 -2.418 1.567 -2.116 -0.260 -3.854 0.841

(-3.90) (-1.34) (-3.13) (5.40) (-4.69) (-0.32) (-1.53)
Panel B: 25 portfolios formed on Size-B/M

[] 0.237 0.459 3.953 0.940 0.712
(1.69) (315 (5.84)  (4.93)

[2] 0.215 0.442 2468 0926  -0.855 0.729
(155 (3.04)  (3.46) (489  (-2.39)

[3] 0.217 0.442 2496 0925  -0.844  -0.591 0.715
(157)  (3.03) (3.30) (487) (222) (-0.18)

[4] 0.220 0.441 2.564 0925  -0.826  -0.765  23.548  0.700

(1.60)  (3.03) (3.42) (487 (2.18) (-023)  (0.66)
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Table 2. 4: Performance of portfolios formed on the first order

systematic risk

This table presents the performance of portfolios formed on the first order co-moment risks (ﬁi,lla ﬁi_lz,
and ,BAi,13). In each month, stocks are sorted into 25 portfolios from the lowest (1) to the highest (25). After
the portfolio formation, we calculate the equal-weighted monthly stock returns for each portfolio. Bi,ll is
calculated using market model on the daily stock returns over the past month. Define R; as the residual
stock return and R,, as the demeaned market return. We compute that Bi,12 =
(E[R;R2]/E[R2]3/?)/SKEW,, and f;13 = (E[R;R3]/E[R%]?)/KURT,, , where SKEW,, =
E[R3,1/E[R%]?/? and KURT,, = E[R}]/E[R2]?> We estimate the co-moments divided by market
variance using the residual daily data whereas the market skewness (SKEW,,,) and the market kurtosis
(KURT,,) are computed using the full sample monthly market returns. Results for Bi_ll, ﬁAillz and Bi_13
are reported in Panel A, Panel B, and Panel C, respectively. Performance of the bottom portfolios (1 and
2), the middle portfolios (12 and 13), and the top portfolios (24 and 25) are reported. The column “CUR1”
refers to the curvature portfolio that longs the difference in the top portfolios (25-24) and shorts difference
in the bottom portfolios (2-1). For each portfolio, we compute the risk-adjusted return with respect to Fama-
French (1993) and Carhart (1997) four factors (MKT, SMB, HML, and UMD) from the intercept estimate
of a time-series regression. Robust Newey and West (1987) f-statistics with eight lags that account for

autocorrelations are presented in parentheses. The sample period is from January 1963 to December 2012.

Portfolio ranking CUR1
1 2 12 13 24 25 (25-24)-(2-1)

Panel A: Performance of the 25 portfolios formed on B4

Excess returns  0.23 0.72 0.79 0.79 0.48 -0.02 -1.00 (-5.79)
a-CAPM -0.25 0.29 0.32 0.31 -0.28 -0.84 -1.10  (-6.38)
a-FF3 -0.53 0.03 0.05 0.03 -0.41 -0.99 -1.14  (-7.12)
a-FFC4 -0.40 0.16 0.13 0.13 -0.19 -0.74 111 (-7.15)
Panel B: Performance of the 25 portfolios formed on B,

Excess returns  0.04 0.60 0.74 0.73 0.56 0.14 -0.98 (-5.62)
a-CAPM -0.60 -0.02 0.31 0.30 -0.04 -0.49 -1.02  (-6.01)
a-FF3 -0.88 -0.27 0.05 0.04 -0.25 -0.73 -1.08 (-7.14)
a-FFC4 -0.67 -0.08 0.14 0.10 -0.10 -0.52 -1.01 (-6.83)
Panel C: Performance of the 25 portfolios formed on B3

Excess returns  0.07 0.55 0.67 0.68 0.60 0.12 -0.96 (-6.18)
a-CAPM -0.56 -0.07 0.23 0.24 -0.01 -0.51 -0.99 (-6.53)
a-FF3 -0.85 -0.34 -0.01 0.01 -0.20 -0.76 -1.08 (-8.02)
a-FFC4 -0.66 -0.19 0.07 0.06 0.02 -0.54 -1.03  (-7.78)
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Table 2. 5: Performance of portfolios formed on the second order

systematic risk

This table presents the performance of portfolios formed on the second order co-moment risks ([)31-,21 and
Bi,zz)- In each month, stocks are sorted into 25 portfolios from the lowest (1) to the highest (25). After the
portfolio formation, we calculate the equal-weighted monthly stock returns for each portfolio. Define R;
as the residual stock return and R, as the demeaned market return. We compute that ﬁi_21 =
|E[R?R,,)/E[R2]3/?|/ISKEW | and pB;,, = |E[R?R%]/E[RZ])?|/|IKURT,,| , where SKEW,, =
E[R3,]1/E[R%]?/?> and KURT,, = E[R}]/E[R2]?> We estimate the co-moments divided by market
variance using the residual daily data whereas the market skewness (SKEW,,) and the market kurtosis
(KURT,,) are computed using the full sample monthly market returns. Results for Bi,21 and Bi,zz are
reported in Panel A and Panel B, respectively. Performance of the bottom portfolios (1 and 2), the middle
portfolios (12 and 13), and the top portfolios (24 and 25) are reported. The column “CUR2” refers to the
curvature portfolio that longs the portfolio 25 and shorts portfolio 1. Panel C presents the performance of
15 portfolios formed on the risk-neutral variance beta (ﬁi,RN.Z)a which is estimated by VAR; gy ¢r1 =
®irn2 + Birn2VARm pv e+1 t Eirne+1, Where VAR; gy 41 1s the risk-neutral variance of the stock i, and
VAR, gy t+1 1S the risk-neutral variance of the market. “CUR2rN” refers to the curvature portfolio that
longs the portfolio 15 and shorts portfolio 1. For each portfolio, we compute the risk-adjusted return with
respect to Fama-French (1993) and Carhart (1997) four factors (MKT, SMB, HML, and UMD) from the
intercept estimate of a time-series regression. Robust Newey and West (1987) t-statistics with eight lags
that account for autocorrelations are presented in parentheses. The sample period is from January 1963 to
December 2012. The sample period for the results in Panel C is from January 1996 to December 2012

whereas robust #-statistics with six lags are used.

Portfolio ranking CUR2
1 2 12 13 24 25 25-1

Panel A: Performance of the 25 portfolios formed on f,4

Excess returns 0.65 0.76 0.78 0.87 0.18 -0.62 -1.27  (4.32)
o-CAPM 0.32 0.37 0.26 0.34 -0.44 -1.25 -1.57  (-6.10)
o-FF3 0.10 0.14 0.02 0.11 -0.69 -1.53 -1.63  (-8.83)
o-FFC4 0.13 0.18 0.09 0.24 -0.46 -1.34 -147  (-8.37)
Panel B: Performance of the 25 portfolios formed on B,

Excess returns 0.48 0.70 0.86 0.93 0.09 -0.58 -1.06 (-3.05)
o-CAPM 0.26 0.37 0.33 0.39 -0.54 -1.22 -1.48  (-4.98)
o-FF3 0.05 0.13 0.09 0.14 -0.80 -1.54 -1.59  (-7.35)
o-FFC4 0.05 0.14 0.17 0.25 -0.59 -1.32 -1.37  (-6.74)
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Table 2.5 (continued.)

Portfolio ranking CUR2grN
1 2 7 8 14 15 15-1
Panel C: Performance of the 15 portfolios formed on [?RN,Z
Excess returns 0.69 0.70 0.78 0.82 0.15 -0.65 -1.34  (-2.21)
a-CAPM 0.16 0.19 0.27 0.29 -0.69 -1.59 -1.76  (-3.50)
o-FF3 0.03 0.09 0.20 0.20 -0.65 -1.59 -1.62  (-4.61)
a-FFC4 0.05 0.11 0.17 0.19 -0.48 -1.33 -1.38  (-3.71)
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Table 2. 6: Properties of the mimicking curvature factors.

The three mimicking curvature factors (FCURI, FCUR2, and FCUR2RN) are constructed as follows.
FCURI is constructed by the average of the three CURIs formed on ,éi,u , /)31-,12, and /?i,13, respectively.
FCUR?2 is computed by the average of the two CURZ2s formed on Bi_21 and Bi,zza respectively. FCUR2gy,
is measured by the curvature portfolio CUR2gy formed on Bi,Z,RN~ This table reports the performance of
the Fama-French (1993) and Carhart (1997) four factors in Panel A and the performance of our mimicking
curvature factors in Panel B. For each curvature factor, we compute the risk-adjusted return with respect to
Fama-French (1993) and Carhart (1997) four factors (MKT, SMB, HML, and UMD). ERV—IV is the
expected market variance risk premium; DIS is the aggregate disagreement. Panel C presents the Spearman
correlations. Robust Newey and West (1987) t-statistics with eight lags that account for autocorrelations
are presented in parentheses. The sample period is from January 1963 to December 2012. The sub-sample

period is from January 1996 to December 2012 whereas robust z-statistics with six lags are used.

MKT SMB HML UMD
Panel A: Performance of Fama-French and Carhart four factors

Mean (%)

1963/01-2012/12 0.47 (2.41) 0.25 (1.84) 0.40 (2.82) 0.70 (3.91)

1996/01-2012/12 0.47 (1.27) 025 (1.17) 0.28 (0.96) 0.43 (1.02)

FCURI FCUR2 FCUR2gy
Panel B: Performance of the mimicking curvature factors

Mean (%)

1963/01-2012/12 -0.98  (-6.90) -1.17  (-3.66)

1996/01-2012/12 -1.05  (-3.42) -1.33 (-1.91) -1.34  ([2.21)

Fama-French and Carhart four factors adjusted performance

o -1.05  (-9.60) -1.42  (-7.65) -1.38  (-3.71)

B-MKT 0.01  (0.45) 0.44 (8.88) 0.56 (5.34)

B-SMB 045 (5.59) 121 (9.44) 0.52 (4.84)

B-HML -0.01  (-0.13) -0.24  (-1.59) -0.73  (-4.46)

B-UMD -0.06  (-1.05) -0.21  (-2.23) -0.35  (-3.90)

Adj. R? 0.20 0.58 0.57

Spearman correlations

FCURI 1.000

FCUR2 0.686 1.000

FCUR2gx 0.390 0.625 1.000

MKT 0.152 0.531 0.575

SMB 0.328 0.595 0.440

HML -0.006 -0.182 -0.325

UMD -0.036 -0.093 -0.204

ERV-IV 0.165 0.317 0.352

DIS -0.034 -0.026 -0.002

111



Table 2. 7: Market variance risk premium and the mimicking

curvature factors

This table presents the regressions of the mimicking curvature factors on the macroeconomic state variables.

The dependent variables, FCURI, FCUR2, and FCURZ2gy, are used in Panel A, Panel B, and Panel C,

respectively. DIV is the aggregate dividend yield; DEF is the default spread, which is measured by the

difference between the yields of a long-term corporate Baa bond and a long-term Aaa bond; TERM is the

term spread, which is measured by the difference between the yields of a 10-year and a 1-year government

bond; 7B is one-month Treasury-bill yield; ERV—1V is the expected market variance risk premium; DIS is

the aggregate disagreement. Robust Newey and West (1987) t-statistics with six lags that account for

autocorrelations are presented in parentheses. The sample period is from January 1990 to December 2012.

Dependent variable = FCUR € { FCURI, FCUR2, FCUR2gy }

Constant DIV DEF  TERM TB  ERV-IV  DIS TED  Adj. R’

Panel A: Dependent variable = FCURI

[1] 0.034  -0.176  -0.169 0.225 -1.173 0.024 0.019
(0.03)  (-0.35) (-0.22) (0.92) (-0.56) (2.19)

[2] 1.606 -0.195 0.221 0.064  -1.567 0.021 -0.345  -0.756 0.017
(0.62) (-0.44) (032) (0.21) (-0.55) (@.71) (-0.54) (-1.07)

Panel B: Dependent variable = FCUR2

[1] -0.003  -1.734 2420 1.066 4.182 0.091 0.076
(-0.00) (-1.41)  (1.11) 2.12) (0.87) (3.02)

[2] 3942 -1.820 3.289 0.709 3.055 0.084 -0.863  -1.544 0.075
0.71)  (-1.73) (1.52) (1.22)  (0.47) 247) (-0.61) (-1.04)

Panel C: Dependent variable = FCUR2gy

[1] 1.784  -0.238 0.921 -0.282  -6.448 0.078 0.060
(0.50)  (-0.16) (0.35) (-0.30) (-0.94) (2.87)

[2] 10.650  -0.952 1.350 -0.562  -11.478  0.077  -1.720 0.681 0.062
(1.86)  (-0.69) (0.50) (-0.62) (-1.53) (2.69) (-1.67) (0.40)
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Table 2. 8: Market price of curvature factor loadings: firm-level

cross-sectional regressions

This table reports the results for the firm-level Fama-MacBeth regressions. We run the following cross-

sectional regression:

Rit11 — Rete1 = Co + AuxrBimrr,t + ArcurBircurt + Crirm FirmCharac;; + &;¢44,
where the dependent variable is the monthly individual stock returns; f;yxre and fB;rcyre are post-
ranking betas estimated from the 25 portfolios formed on historical CAPM beta (.éi,ll); FirmCharac;, is
a set of control variables. B/M is the book-to-market ratio; Size is market capitalization measured in billions
of dollar; RET 2 12 reports the average of past 11-month returns prior to last month; YLD is the dividend
yield measured by the sum of all dividends paid over the past 12 month; /LLIQ reports the average of
Amihud’s (2002) illiquidity measure. Risk-neutral moments, VARgy, SKEWgy, and KURTgy are included as
control variables in Panel B. Following the methodology of Fama and French (1992), we assign each of the
25 portfolio-level post-ranking beta estimates to the individual stocks within the portfolio at that time.
Robust Newey and West (1987) #-statistics with eight lags that account for autocorrelations are presented
in parentheses. The sample period is from January 1963 to December 2012. The sample period for the

results in Panel B is from January 1996 to December 2012 whereas robust ¢-statistics with six lags are used.

Fama-MacBeth regressions: individual stocks
Panel A: January 1963- December 2012

(1] (2] (3]

Constant 0.490  (2.07) 0.537  (2.41) 0.507  (2.30)
log(Size) ($b) -0.141  (-3.94) -0.145  (-4.04) 0.145  (-4.04)
log(B/M) 0224  (3.56) 0219  (3.65) 0.220  (3.65)
RET 2 12 0.876  (4.74) 0.865  (4.81) 0.866  (4.83)
log(1+YLD) 2,078 (-0.92) -1.958  (-0.97) -1.945  (-0.96)
ILLIQ 0.023  (1.05) 0.027  (1.28) 0.027  (1.25)
Bukr 1445  (2.24) 0.117  (0.64) 0.189  (1.01)
Bixr -1.627  (-2.30)

Brcura -0.501  (-3.30)

Brcurz -0.682  (-2.59)
Adj. R? 0.050 0.056 0.056

Nobs. 1,762,462 1,762,462 1,762,462
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Table 2.8 (continued.)

Fama-MacBeth regressions: individual stocks

Panel B: January 1996- December 2012

Constant
logSZ(8b)
logBM
RET 2 12
log(1+YLD)
ILLIQ

BMKT
BFCURl

BFCURZ
BFCURZRN

VARgy
SKEWrn
KURTrv
Adj. R’
Nobs.

0332 (0.53)
0.072  (-1.01)
0.112  (1.04)
0.627  (1.69)
3570 (-0.64)
0521  (0.33)
0551  (1.15)
-1.108  (-2.77)
19592 (-2.41)
0.470  (1.86)
0.051  (0.81)
0.090
161,815

0392  (0.61)
0.073  (-1.02)
0.111  (1.03)
0.634  (1.71)
3876 (-0.69)
0.534  (0.34)
0.544  (1.14)
-1.307  (-2.75)
-19.846  (-2.44)
0471  (1.85)
0052  (0.82)
0.089
161,815

0.142  (0.22)
0.067  (-0.93)
0.115  (1.06)
0.617 (1.67)
3706 (-0.66)
0.528  (0.34)
0722 (1.28)
-1.008  (-2.61)
-19.834  (-2.44)
0.456  (1.80)
0.050  (0.79)
0.090
161,815
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Table 2. 9: Correlations for second order risks and volatilities

This table reports the Spearman correlations for second order risks, and volatilities. In each month, we
estimate the time-series regression
Ritr1 — Rerer = @ + BiugrMKTeyq + BipcyrFCURL 44,

using the daily stock returns over the past one month. frcyri, Brcuris and Breygr: are the historical
curvature factor loadings of FCURI, FCUR2, and FCUR2gy, respectively. TVOL is the total volatility,
which is defined as the annualized standard deviation of daily stock returns over the past month; /VOL is
the idiosyncratic volatility, which is defined as the annualized residual variance of the daily stock regressed
on the Fama and French (1993) three factors over the past month. The sample period is from January 1963
to December 2012, except for correlations involving ﬁARNVZ and BFCURZRN, which are computed over the

sample period from January 1996 to December 2012.

Spearman correlations

TVOL 1VOL MAX Brcur Brcurz Brcurzarn
TVOL 1.000 0.970 0.890 0.561 0.574 0.561
1VOL 0.970 1.000 0.866 0.562 0.562 0.544
MAX 0.890 0.866 1.000 0.502 0.512 0.502
3121 0.519 0.393 0.462 0.243 0.255 0.230
3122 0.535 0.532 0.484 0.322 0.331 0.311
3123 0.532 0.530 0.480 0.316 0.324 0.303
321 0.752 0.759 0.702 0.443 0.449 0.434
322 0.909 0.911 0.813 0.530 0.543 0.521
B 0.260 0.206 0.213 0.123 0.146 0.158
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Table 2. 10: Curvature factor adjusted performance of portfolios

formed on volatilities

This table presents the performance of portfolios formed on volatilities (TVOL, IVOL, and MAX). In each
month, stocks are sorted into quintile portfolios from the lowest (1) to the highest (5). After the portfolio
formation, we calculate the value-weighted monthly stock returns for each portfolio. “5-1” refers to the
hedge portfolio that longs portfolio 5 and shorts portfolio 1. For each portfolio, we compute the risk-
adjusted return with respect to our curvature factors as well as Fama-French (1993) and Carhart (1997) four
factors (MKT, SMB, HML, and UMD) from the intercept estimate of a time-series regression. Robust Newey
and West (1987) #-statistics with eight lags that account for autocorrelations are presented in parentheses.
The sample period is from January 1963 to December 2012. The sample period for the results involving

FCUR2gy is from January 1996 to December 2012 whereas robust #-statistics with six lags are used.

Portfolio ranking
1 2 3 4 5 5-1

Panel A: Performance of portfolios formed on TVOL

Excess returns 0.49 0.53 0.59 0.43 -0.32 -0.80 (-2.33)
o-CAPM 0.15 0.08 0.02 -0.26 -1.09 -1.24 (-4.21)
o-FF3 0.08 0.03 0.00 -0.23 -1.10 -1.18 (-5.95)
o-FFC4 0.03 0.05 0.06 -0.14 -0.89 -0.93 (-4.72)
Panel B: Performance of portfolios formed on IVOL

Excess returns 0.48 0.53 0.60 0.33 -0.35 -0.82 (-2.68)
o-CAPM 0.10 0.04 0.01 -0.35 -1.08 -1.19 (-4.36)
o-FF3 0.06 0.01 0.00 -0.33 -1.17 -1.23 (-6.97)
o-FFC4 0.03 0.05 0.04 -0.21 -0.93 -0.96 (-5.46)
Panel C: Performance of portfolios formed on MAX

Excess returns 0.51 0.50 0.59 0.42 0.01 -0.49 (-1.76)
a-CAPM 0.16 0.05 0.05 -0.22 -0.68 -0.84 (-3.47)
o-FF3 0.08 0.02 0.04 -0.20 -0.68 -0.76 (-4.63)
o-FFC4 0.05 0.03 0.09 -0.13 -0.54 -0.60 (-3.63)
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Table 2.10 (continued.)

CAPM plus FCUR adjusted performance of 5-1
FCUR € { FCURI, FCUR2, FCUR2gy }

FCUR1 FCUR2 FCUR2rN
Panel D: CAPM plus FCUR adjusted performance of 5-1 formed on TVOL
a -0.10  (-0.45) -0.06  (-0.39) 027  (0.67)
p-MKT 0.80 (9.69) 034 (5.15) 0.58 (5.67)
p-FCUR 1.09  (8.95) 0.77 (22.02) 0.92 (11.84)
Adj. R’ 0.54 0.69 0.72
Panel E: CAPM plus FCUR adjusted performance of 5-1 formed on IVOL
a -0.06  (-0.26) 0.01  (0.04) 025 (0.61)
S-MKT 0.65 (8.27) 0.17 (3.02) 042 (3.75)
B-FCUR 1.09 (8.70) 0.78  (20.96) 0.86 (9.40)
Adj. R? 0.51 0.69 0.66
Panel F: CAPM plus FCUR adjusted performance of 5-1 formed on MAX
o 0.09 (0.46) 0.15 (1.11) 034 (1.04)
B-MKT 0.64 (9.41) 0.25 (4.67) 042 (442
p-FCUR 090 (6.93) 0.65 (18.22) 0.76  (9.25)
Adj. R? 0.50 0.66 0.61
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Table 2. 11: Curvature factor adjusted performance of portfolios

formed on betting-against-beta

This table presents the performance of portfolios formed on betting-against-beta (BAB). At the beginning
of each calendar month, stocks are ranked in ascending order on the basis of [?i‘ rz atthe end of the previous

month, where B}FZ is the beta of Frazzini and Pedersen (2014). To construct the BAB factor, all stocks are
assigned to one of two portfolios: low beta and high beta. Stocks are weighted by the ranked betas (lower
beta security have larger weight in the low-beta portfolio and higher beta securities have larger weights in
the high-beta portfolio), and the portfolios are rebalanced every calendar month. Both portfolios are
rescaled to have a beta of one at portfolio formation. The betting against beta factor (BAB) is a self-
financing portfolio that is long the low-beta portfolio and short the high-beta portfolio. For each portfolio,
we compute the risk-adjusted return with respect to our curvature factors as well as Fama-French (1993)
and Carhart (1997) four factors (MKT, SMB, HML, and UMD) from the intercept estimate of a time-series
regression. Robust Newey and West (1987) #-statistics with eight lags that account for autocorrelations are
presented in parentheses. The sample period is from January 1963 to December 2012. The sample period
for the results involving FCUR2gy is from January 1996 to December 2012 whereas robust #-statistics with

six lags are used.

Panel A: Performance of portfolios formed on betting-against-beta

Ret*-R; Ret"-R; (Ret“-Ry/Bt  (Ret-R)/B!" BAB
Excess returns 0.84 0.64 1.64 0.75 0.89 (3.82)
o-CAPM 0.51 -0.07 1.02 -0.04 1.06 (4.24)
o-FF3 0.24 -0.34 0.53 -0.28 0.81 (3.81)
o-FFC4 0.27 -0.09 0.57 -0.01 0.58 (2.78)

Panel B: FCUR adjusted performance of BAB
FCUR € { FCURI, FCUR2, FCUR2gy }

FCUR1 FCUR2 FCURZ2grN
CAPM plus FCUR adjusted
a 071  (2.77) 0.64 (2.73) 0.11  (0.23)
p-MKT -0.33  (-4.34) -0.15  (-2.28) -0.26  (-1.92)
p-FCUR -0.36  (-3.26) -0.29  (-5.68) -0.50 (-10.96)
Adj. R? 0.20 0.28 0.52
FFC4 plus FCUR adjusted
a 029  (1.30) 020  (0.95) 0.17  (0.40)
B-MKT -0.17  (-2.62) -0.05  (-0.82) -0.25  (-2.05)
p-SMB -0.06  (-0.81) 0.14  (1.50) -0.12  (-1.37)
p-HML 0.64 (5.96) 0.58 (6.24) 0.61 (3.75)
p-UMD 0.24  (3.50) 020 (3.35) 019 (2.67)
S-FCUR -0.28  (-3.67) -0.27  (-5.38) -0.29  (-4.006)
Adj. R 0.38 0.41 0.60
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Table 2. 12: Performance of portfolios formed on pre-ranking

curvature factor loadings

This table presents the performance of portfolios formed on historical curvature factor loadings (Brcyra.
Brcuras and Prcurzry)- In each month, we estimate the time-series regression,
Ritr1 — Rerer = @ + BiugrMKTeyq + BipcurFCURLy 4,

using the daily stock returns over the past one month. Brcyr1> Brcurzs and Brcyrarn are the historical
curvature factor loadings of FCURI, FCUR2, and FCUR2py, respectively. In each month, stocks are sorted
into 25 portfolios from the lowest (1) to the highest (25). After the portfolio formation, we calculate the
equally-weighted monthly stock returns for each portfolio. Performance of the bottom portfolios (1 and 2),
the middle portfolios (12 and 13), and the top portfolios (24 and 25) are reported. For each portfolio, we
compute the risk-adjusted return with respect to Fama-French (1993) and Carhart (1997) four factors (MK7,
SMB, HML, and UMD) from the intercept estimate of a time-series regression. Robust Newey and West
(1987) t-statistics that account for autocorrelations are reported in parentheses. The sample period, in Panel
A and Panel B, is from January 1963 to December 2012, where robust #-statistics with eight lags are used.
In Panel C, robust -statistics with six lags are used in the sample period from January 1996 to December
2012.

Portfolio ranking
1 2 12 13 24 25 25-1

Panel A: Performance of the 25 portfolios formed on Brcyr1

Excess returns  0.82 0.66 0.73 0.70 0.21 -0.53 -1.34 (-4.54)
a-CAPM 0.41 0.24 0.23 0.19 -0.44 -1.19 -1.60 (-5.89)
a-FF3 0.17 0.01 -0.02 -0.04 -0.71 -1.44 -1.61 (-7.91)
a-FFC4 0.28 0.07 0.07 0.10 -0.49 -1.19 -1.47 (-7.69)
Panel B: Performance of the 25 portfolios formed on Brcyr2

Excess returns  0.75 0.75 0.79 0.80 0.24 -0.57 -1.32 (-4.28)
a-CAPM 0.35 0.33 0.28 0.28 -0.43 -1.22 -1.57 (-5.56)
a-FF3 0.11 0.08 0.02 0.07 -0.66 -1.43 -1.54 (-6.98)
o-FFC4 0.19 0.16 0.13 0.19 -0.46 -1.24 -1.43 (-7.01)
Panel C: Performance of the 25 portfolios formed on Brycrzry

Excess returns ~ 0.76 0.80 0.71 0.75 0.31 -0.36 -1.12 (-1.64)
a-CAPM 0.37 0.40 0.23 0.24 -0.47 -1.17 -1.54 (-2.59)
a-FF3 0.13 0.18 0.03 0.04 -0.51 -1.18 -1.31 (-3.34)
a-FFC4 0.27 0.22 0.19 0.19 -0.20 -0.85 -1.12  (-2.61)
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Panel A: Real and risk-adjusted probability density functions
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Panel B: Implied pricing kernels
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Pane A: Security market line with respect to the market beta
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Panel B: Surface of expected returns on the market variance risk premium and the market beta
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