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Abstract

In this thesis, we are interested in zero-dimensional Gorenstein ideals of the
form ((«™,y"™) : F)) where F} is a homogeneous polynomial of degree k in K{z,y],
K an algebraically closed field. Firstly, we figure out the necessary and sufficient
condition for a homogenous polynomial to be in ((™,y") : Fy) where k& < n and
the coefficient of z*, denoted by ¢y, is nonzero. Next, we declare that in this case
((z™,y™) : Fy) can be generated by two elements. Then expand the result to ar-
bitrary ¢y and k. At last, we introduce some lemmas from the work of Genoway,
Ortiz-Albino, and Tavares [8] along with revised proofs and an example in 3 vari-

ables.
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80. Introduction

Gorenstein rings, named after D. Gorenstein, have been intensively studied be-
cause of its ubiquity and the various characterizations of rings belonging to it. It
is H. Bass [1, 1963] who developed the theory of Gorenstein rings including that
as rings of finite injective dimension as well as an historical outline of the subject.
There are two main aspects of viewing Gorenstein rings.

One is algebraic geometry approach. In algebraic geometry, the canonical bun-
dle, the highest exterior power of the cotangent bundle, is the most easily accessible
and important. If the variety is affine, then the sections of the canonical bundle
form a module over the coordinate ring of the variety called the canonical module.
Because it is the module of sections of a line bundle, it is locally free of rank 1. If
the variety has singularities, then there is still a canonical module, but it may not
be locally free. Local Gorenstein rings are those local rings for which the canonical
module is free [4, Chapter 21].

The other way is ring theory approach. In a Cohen-Macaulay ring, all ideals gen-
erated by sets of parameters have irredundant decompositions of the same length,
which leads to the notion of the type of a Cohen-Macaulay ring. We define Goren-
stein rings to be the rings of type equal to 1. It turns out that these are precisely
those rings which, when regarded as modules over themselves, have finite injective
dimension.

Now we follow the route introduced by Balcerzyk and Joézefiak [2, Chapter 1V].

Theorem. (1) Any two irredundant presentations of an m-primary ideal Q) in the
form of an intersection of irreducible ideals have the same length. This length is
called the type of the ideal Q, and is denoted r(Q).

(2) If (R, m) is a local Cohen-Macaulay ring of dimension d, and if Q,Q" are both
ideals generated by sets of parameters of R, then r(Q) = r(Q'). This number is
equal to

dim p/mExth (Rm, R).
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We call it the type r(R) of the ring R.

Theorem. The following properties are equivalent for a local ring (R,m):

(i) the ring R is Cohen-Macaulay and there exists a set of parameters of R generat-
ing an irreducible ideal, i.e. R is a Cohen-Macaulay ring of type 1,

(i) every set of parameters of the ring R generates an irreducible ideal.

A local ring is called a Gorenstein ring when it has the equivalent properties stated

above.

If R is a local Gorenstein ring and = € R is not a zero-divisor of R, then R/(x)

is also a Gorenstein ring.

A zero-dimensional local ring is Gorenstein if and only of the zero ideal is irre-

ducible.

Theorem. Let (R, m) be a local ring. The following properties are equivalent:

(1) the ring R is a zero-dimensional Gorentein ring,

(ii) the ring R is an injective R-module,

(iii) dimR = 0 and the mapping I — 0 : I between the ideals of R, sends finite
intersections of ideals to their sums (the converse is always true),

(iv) 0: (0: 1) =1 for any ideal I of R.

Corollary. Let R be a zero-dimensional Gorenstein ring and Q) an ideal of R. The
following properties are equivalent:

(i) Q is an irreducible ideal,

(i1) 0 : @ is a principal ideal,

(i) @ = 0: (x) for somex € R, x # 0,

(iv) 0: R~ R/Q, or equivalently Homg(R/Q, R) ~ R/Q.

Corollary. Let (R, m) be a local ring and Q an irreducible m-primary ideal. Denote
by P the family of all ideals of R which contain (). Then:

(i) the mapping I — Q : I sends finite intersections of ideals of P into their sums.

(i) Q@:(Q:1)=1 forany I € P,



(iii) and ideal I of P is irreducible of and only if [ = Q : (x) for some z € R.

Those ideals I in a Gorenstein ring R, for which the factor ring R/I is also
Gorenstein, are called Gorenstein ideals. In a ring R, we say an ideal [ is zero-
dimensional Gorenstein if R/I is zero-dimensional Gorenstein[3]. For more detail,

please refer to [2].

Let (R,m) be a Gorenstein ring and let x1,--- ,x4 be a maximal regular se-
quence of R contained in m. It can be proved that () is an irreducible m-primary
ideal precisely when there exists a positive integer s and an element x € R such that

Q= (z5,---,25) : (x) [2, Ex 4, p.146].

According to Eisenbud [4, Chapter 21], Macaulay’s method of inverse system is
principally of interest in constructing zero-dimensional Gorenstein rings. Here we
give the settings established by Eisenbud: Let S = k[xq,--- ,x,]. For each d > 0 let
Sy be the vector space of forms of degree d in the x;. Let T = k[z;',--- 27! C
K(S) = k(xy,--- ,x,) be the polynomial ring on the inverse of the z;.

We make T into an S-module as follows: Let L C K(S) be the vector space
generated by the monomials in the x; that are not in 7. Notice that L is an S-
submodule of K(S). We identify the S-module K(S)/L with T by means of the
maps T C K(S) — K(S)/L. More directly put: If m € S and n € T are monomials,

then m - n is the monomial mn € K (.S5) if this happens to lie in 7', and 0 otherwise.

Theorem. With notation as above, there is a one-to-one inclusion reversing cor-
respondence between finitely generated S-submodules M C T and ideals I C S such

that I C (x1,--- ,2,) and S/I is a local zero-dimensional ring, given by

M+ (0:5 M), the annihilator of M in S;

I— (0:7 1), thesubmodule of T annihilated by 1.

If M and I correspond then M ~ wg/, so the ideals I C (xy,---,x,) such that
S/I is a local zero-dimensional Gorenstein ring are precisely the ideals of the form

I =(0:5 f) for some nonzero element f € T. For further information, please see
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[4, Chapter 21].

Next, Chen [5] had introduced another form of the ideal I = (0 :g f) for the

convenience of computation as following:

Lemma.[5, Proposition 2.1] Let f € T be a homogeneous polynomial, we write
!
f=

S where f € S and all terms off do not have a common divisor.
Set | = max{l;}. Then
1<i<y

1'1:U2 ..-x,y

(0:5 f) = (2" agt oo ol ) s 2Ty a0 ).

Proof. (C) Suppose g € (0 :5 f), then we have g € S and

g.f:g ll 12 IVGL
Ty Tg Ly
xmll,mz M~
v, .
Ifm=-"1"2 -— is a term appears in g - f, then we have
xllxl2 oo
12 Y
mi1 .. m2 My
xr1 T X
e
L)Ly Ty
=37 suchthat m; >L=>m;—1;>1
mi1,.m2 My
xl ZEQ o ':L"Y 11 l I+my—11 l+mao—Is I+m;—1; I+m~—1
T [Ty T, =@ Ty T, z’ :

:L'lx2 ...:L"Y

Since (I—1;)+m; > 0for 1 < j <~vyand [+ (m;—1;) > [+1, we have m-zlal -2l €

l
v

[+1 I+1 1+1 I+1 .
(zi7) C (2 2y, ;T ). That is,
=l l=l2 I=ly I+1 _I+1 I+1
g Xy Ty Tty er(xl y Lo Ty, X )

(2) Suppose g € (2 a4, ab#1) o al el a7 ), then g € S and

-l 1—l2 -1, 7 _ [ l +1 1+1 +1
g-Ty Ty "I, Wf—gfx1x2~--x7€(x1 STy )

11 I g o4l I+1 I+1
= gfryry-x, = hary + hary” 4o+ by



for some hq, ho,- -+, hy € S. Therefore,

T T T
gfzhl‘l—l‘khg‘ﬁ—Fhw'%EL
x2. . '$fy xll‘3...x’y xl .“xfy_l

and we can conclude that g € (0:5 f). O

Eisenbud [4, Chapter 15] suggested a project concerning how many generators

S

%) : p), p is homogeneous, require. He particularly men-

does I = ((zf, - ,x
tioned trying the case r = 2 with more complicated p on the machine and next
try r = 3, various p. Generators of Gorenstein ideals in some cases where p is bino-
mial are computed in [5], [6], and [7]. In [7], I : p with p a trinomial of the form
aPy7t -y Tzt 2l (@Y — (Yt eyl 4 27 - 27t)) is also discussed. On the other
hand, Genoway, Ortiz-Albino, and Tavares [8, 2001] proposed a conjecture which
contends that for any polynomial p ¢ I, = (z° y®) in two variables, I : p has two
generators in a minimal generating set. Our main theory in this essay is to prove

this conjecture for any homogeneous p. As for r = 3, we give an example which

need more than 3 generators.

Main Theorem. Let F), = coz® +cia* Ly + cox® 2% +- - -+ 19" be a homogeneous

polynomial of degree k with coefficients in an algebraically closed field K of charac-

teristic 0, then I, = ((z",y") : Fi) can be generated by two elements.

In section 1, for the later proofs, we construct two matrices from the coefficients
of Fj and discuss some properties of these matrices. Subsequently, we consider F}
where £ < n and ¢y # 0 in section 2. In the beginning of section 2, we figure out the
necessary and sufficient condition for a homogenous polynomial to be in I,, ;. Next,
we declare that in this case I, can be generated by two elements. Then expand
the result to arbitrary c¢q and & in section 3. At last, in section 4, we introduce some

theorems from [8] along with revised proofs and an example in 3 variables.



81. Some Lemmas

In this thesis, we are interested in zero-dimensional Gorenstein ideals of the
form ((z™,y™) : F}) where F}, is a homogeneous polynomial of two variables with

coefficients in an algebraic closed field K of characteristic 0. Let

F, = coz® + 12ty + xR 4+ oy (1)

For the proof of our theorem, we define two matrices according to the coefficients of

F.:
(0 1 0 |
0 .0
Cr=| : .10 |,
0 0 0 1
| —C —Ck-1 '+ —C —Cpf
and ) )
Ch Chq 0 e e
0 ¢ Chq -0 -0 Oy 0
Dy, = cee n—k ,
L
0 - 0 ¢ -0 Cn]

where I; is the identity matrix of size [, we denote Dy ; as

dig  dig di 1
dyy  day da 1
Dy, =
dg—1g di—1g-1 -+ dr—11




Now we prove some formulae relating to matrices Cj and Dy,;.

Lemma 1. Let e; be the ith element of the standard basis of the column space K*.

For1 <i<k-—1, we have
(a) (Ci +c,C 1+ CQC]Z;:_Z + -+ oly)er = ey,

(b) (Ck’7 Ck—1," " 701)<Cli + ClClic_l + 02012_2 + -+ CzIk) = (07 Tt ,O,Ck, T 7Ci+1)'

Proof. (a) By induction on i. Assume that

(C,i_l + 0102_2 + CQC;_:)) + -+ cz»_lIk)ek = €L_it1-

Then
(C,; + ch,i_l + CQC}i_2 + -+ ciIk)ek.
= Ck(C;_l + 610;;—2 + -+ ci_l)ek + c;1.ey
= Cirep_it1 + ciep = €.

(b) By induction on i. Assume that

(Ck,Ck_l, e 701)(012_1 + 01012_2 + CQC]i_?) + -+ Ci—lIk) = (07 e 70’ Cly® 7Ci)-

Then

(Ck, Cle—1,""" ,Cl)(C}i -+ ch,i_l + 6202_2 + -+ C,'Ik)
= (emer1, ) (Crt+aCr?+ -+ i Ik)Cr + (e, 1, -+ e1)eily

= (07 T 707 Cly 7Ci)0k + (Cka Clg—1," " ,Cl)CiIk

= (—CiCk, —CiCh—1," " ,Ck — CiCh—i; Ch—1 — CiCl—i—1," " " ; Cit2 — CiC2, Cit1 — CiC1)
+(CiCh, CiCl—1, "+, CiCl—i, CiCh—i—1," " * ,CiC2, CiCq)
= (07 Tt 707 Cky Ck—1, """ 5, Cit2, C’H-l)'
([



Definition 2. Given a matriz A, the skew-transpose is the transpose of A about the

non-main diagonal. More precisely, if

a11 Q12 t a1n—1 Q1n
21 29 s a2 n—1 Q2n
A= ,
Am—11 Gm—12 " Gm—1n-1 OGm-1n
Am1 Am2 e Am,n—1 Amn
- - mXn
then the skew-transpose of A is
Qmn, Am—1,n e Q2n, A1n
Amn—-1 Gm—1n-1 " @2n-1 Al np—1
Ast —
Am2 Am—1,2 s 22 @12
Am1 Am—1,1 s Q21 a1
- - nxXm

Depending on the definition of Dj; and Lemma 1, we have

diaj = (07 o 707 Cy 7Cj)C£_kek_j+1
= (07 U 707 Cly® "t 7Ci)C£_k(C]'Z_1 + ClC}Z_Q cee 4 Cj—lIk)ek by (a)

= (Ck, Cl—1,""" ,cl)(C',i_l + -+ Ci_llk)CZ_k(Ci_l + -+ cj_lIk)ek by (b)

Thus di,j = dj,i and
Dy, ;—1 is the skew-transpose of Dy. (2)

In addition, rank Dy, ; = rankDy, ;.

Subsequently, we can derive the main relations between the d; ;s.



Lemma 3. Let ¢y = 1, then

ij = dig1j-1 + cjm1din — cidy 1,

dij = di—1j41 — ¢jdi—11 + cim1dy .

Proof.
i—1 j—1
_ i—1—1 n—k j—1—1
di»j - (Ck7 Ck—1," " 701) § aly k Cle €
=0 1=0
i1 j—2
_ i—1 n—k 2 : j—2-1
- (Ckvck'—lv"' 701) Cle Ok CCk €L
=0 1=0
1—1
E i—1—1 n—k
+(Ckvck—l)”' 701) Cle Ck (Cj_]_:[k) €
=0
l ji—2
_ i—1 n—k § : j—2-1
- (Ck7 Ck—1,""" 761) Clok Ck Cle €L
=0

i—1
+(Cry Ch—1, -+ ,C1) CzC;i_l_l> C';?_k(cj—ﬂk)ek

j—2
—(Chy Ch—1, "~ ,cl)(ciIk)C]?—k (Z 6102—2—z> -

dip1j-1+¢jo1diy — cidy 1.

The second equation is obtained from the first by setting ¢/ =i+ 1,5 = j — 1.

Now we prove a result which is essential to the proof of our Main Theorem.

Proposition 4. For1 <[ < LgJ — 1, we have rankDy ;1 > rankDy, ;.

Proof. Let
dig  dygr o dip din
dog  dag1 -+ dag  da
Dk,l - 3
dp-1p dg—1p-1 -+ dg—12 dgn

0



dy 41 diy dig—1 di 2 di
da 141 d, dag-1 da o dsy
D1 = ;
Ap—i—1041 dg—i—11 dp—i—1,-1 di—1—12 dy—1—1.1
and define
diy dij-1 di 2 di
, da, dag—1 da 2 ds
kl+1 =

Ai—1-11 dp—i—17-1 dp—1-12 dg—1-1,1

Let rankDy,; = r.

Suppose rank Dy, ;11 > rank Dy, is not true, we may assume rankDy, ;1 = r—1 and

rankDj ;,; =1 —1. In fact, if rankDy ;11 <7 — 2 then rankD; ;,, <r —2 and since

Dy, is obtained from Dy ., by adding the last row, so rankDy,; < rankDj ;,; +1 <

r — 1, a contradiction. Hence the first column of Dy ;1 is generated by the columns

!/
of Dj .y, say

di 141 By
doi+1 ) Bi1
= Mgt (5)
Ai—1-1,041 B
for some f;.
Let
dig  diga dy s
day  dog—y da
Dl =
di—vg di—1-1 di—11
| di dii dia |

be the submatrix of Dj; obtained by taking the first [ rows.

10
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rankD; <rankDj ;=7 —1since k —1—1>1for 1 <1< L%J -

To complete our proof, now we want to show that all rows of Dy, are linear
combinations of rows in D;, hence rankDy; = rankD; < r — 1 and it leads to a

contradiction.

Step 1. Consider the (I + 1)th row of Dy, make use of the fact that d; ; = d;;, we

get
(i1, digrg—1, - s dig10)
= (digs1, di—1g41, - s digs)
diy diin - dig
dl,2 dl—1,2 e dl,Q
dij—1 di—ig-1 - dig
L di diay e dig |
dy;  dig-a dig
doy  dojs da
= (B1,B2,-+, ) : : : by d;; = d;;
di—y; di—ig-1 - di—in
| diy dyger e diy |

= (617627'” 7/8l)Dl
which is a linear combination of rows in D;.

Step 2. By induction, we assume that for some ¢, [ +1<i <k —1[—1,

(di,l7 di,l—17 T 7di,1) - (717727 T 771)Dl' (6)

For some « := (y1,72,- -+ , M)
Now we consider the (i + 1)th-row of Dy ;. Note that we have

11



B
Bia
di,l+1 = (d’i,l7 di,l—17 T di,l)
| A
Bi
Bia
= (717727 T 771)Dl
| A
dy 141 dy 1
da 41 da i1
:(717727"'771) . =7
| i | | diig |

Next, apply Lemma 3,

(di+1,l7 di+1,l—17 e 7di+1,1)

4)
Z(di,z+17 di,h T >di,2) - di,l(Ch Cl—1," " >C1) + Ci(dl,h d1,z—1, c ,d1,1)
digp1 dig -0 dip dy 1
(6)(7) dojyr dog -+ dao day
- 7 . . ) —’Y . (Clacl—la"' )Cl)
| i dyg e di | | diy |

dy day—1 da dy g
(3) ds ds ;-1 ds 1 da
= ' + _ (01701—17"' >01)
i diyrg digrg—1 - digia ] i diy ]

12



C1 dl,l
Co d2,1

- (dyg dig—y,--- ,dl,l)) 7| (cr,¢-1, - ,¢1)
C dz,l

+ci(dig, dig—1, -+ ,dia)

5
(——)Vl(dm, dojg—1, -+ ,do1) +vo(dss,dsg—1, -+ ,ds1) + -+ y-1(dig, dig—a, -+ dia)
diy dig—1 -+ dig
doy  dygy -+ day
=+ 7l(ﬁl?ﬁ?7 Tt 76l)
di—yg di—ig-1 o di—ia
| diy digr e din |
(&1
C2
+(— | ¢i)(dyg,digor, -+ dyy)
&)
dyg dyg—q dy
l d d R
20 21 21
=B — O_me) + e+ nba e nm1 + b -
=1
| dig diy diy |
=(nh —ma — - —ma+ e, + b i—r b)) D
Thus the proof is complete. (

13



82. Cases with ¢y #0 and k£ <n

Now we begin to prove our Main Theorem. Let F' be an algebraic closed field of

characteristic 0. We assume that k£ < n and ¢y # 0, may assume ¢y = 1, and

F = 2" 4+ oty + e 2y 4+ 4yt € Kl y).

Denote I, = ((«™,y") : F}). Let

fn = aox™ + a1z My + agx™ Py’ 4 -+ any™ € Kz, y).
In this section, we intend to give a necessary and sufficient conditions on a; such

that f,, belongs to I, ;. Consider

fn s Fie = boz™ ™ 4 bya™F y - boa™ T2y by gy ™R (8)

Suppose m + k < n, that is, m < n — k, then f,, ¢ I, On the other hand, if

m > 2n —k—2 >0, then f,, € I,;. In this situation, for any terms b;z™ =iy’ in
(8), we have m + k — i > n or i > n, such that bz iy € (2", y"). Thus we may

assume

n—k<m<2n—Fk—2. (9)

Proposition 5. Suppose f,, = agx™ + a 2™ 1y + - + any™.

(a) Forn —k <m <n — 2, the necessary and sufficient condition for fn,, € I, i is

0
Qg
0
i—m—k+n
€ KerDy yptk—nt1 and a; = (0,---,0,1)C}
%)
Am+k—n
Am+k—n

14



form+k—n+1<i<m.

(b) Form >n —1,

Ap—n+1

fm € In,k = a; = (O, -0, 1)Cé—m—k+n

Am+k—n
form+k—n+1<i<n-—1.

Proof. Let

fo - Fr = (apz™ + arz™ Yy + - + apy™) (aF + 12ty + -+ )

— b0$m+k + blxm+k—1y 4 bem+k—2y2 R bm,+kym+k-

Observe that for 0 < i < m, we can express the coefficients b; in terms of a;, ¢;,

c;=0 forj>korj<l

b; = (Z cjal) + a; where . (10)

jHl=i a; =20 fori>morl<0

Fori>m+1,

ci =0 for j > k
b, = Z cja where ’ / . (11)
=i a; =0 forl >morl<0

We first prove (a).
Casel. k<m<n-—2.

For k < m < n — 2, we can rewrite the above relations (10) and (11) in the

matrix form

15



bo 1
bl C1 1
by c2 € 1 0
bg C3 Co C1
Qo
by, Ck  Cp_1 cy 1 aq
a2
b, Cr  Ch_1 cq 1 A
bm+1 Ck; C1
0
L bm-i-k i Ck, 1
Sincen —k<m<2n—k—2 and
fm . Fk — bm+k_n+1xn—lym+k—n+1 T bn_lxm-i-k—n—i-lyn—l mod (.an, yn)7
we have
fm € In,k = bm+k—n+1 = bm+k—n+2 = =0Up-1 = 0.
Step 1. Suppose byik—nt1 = bptk—ni2 = -+ = by, = 0, we may express

Am4-k—n+1, Am+k—n+2, " " *

, 4, in terms of ag, aq, - - -

16

, Qmak—n- Observe that

(12)



form+k—n+1<i<m,
(%)

bi:(()?"'vovck’vck—l)"'76171707”'70) a;

A
ik
= (Ckvck—lv'” 761)1) =0
a;
Qj—F;
= a; = _<Ck7ck—17 T 701)
@i—1
We can reformulate this as
Qi—k+1 0 1 T 0 Qj—f
0 0
= 1 0
0 0 0 1
| & | % —Ck-1 - —C —C | | GQGi-1 |
L 0 (13)
Qi—f
_ Ck . _ C]i—(m-i—k—n) 0
Qo
_a/i_l_
Am+k—n

form+k—-n+1<i<m, where a;_; =0 for i — 5 <0.

17



Step 2. bm—i—l = bm+2 == bn—l =0

T b1 0 -+ 0 ¢ 1 -+ C1 Qg
0
b2 0 ¢ - C2
= - - e Um—k+1
0
0
B N L bn—l i | Ck, Cn—m—1 1 L A,
We can rewrite the above matrices as:
T bm+1 Cx Cg—1 - C1 Am—Fk+1
0
b2 0 ¢ - &)
0
0
B N | bn—l i L Ck tee Cn—m—1 1 L Am |
- - 0
Cr Cg—1 - &1
0 Ck C2
n—k 0
= k by (13)
(¢
0
| Ck  Cpnom—1 |
Amt+k—n
Ck Cg—1 - C1 r 7]
(%)
0 Ck Co 0
_ n—k
- k
0 e Im+k—n+1
Am+k—n
B Ck o Cp—m—1 |

18




= Dk,m—l—k—n—i—l

where 1,4 x_n11 is the identity matrix of size m + k —n + 1. That is,

Keer,m-i—k—n—i—l .

Case 2. m <k —1.

Qo

Am+k—n

We have
bo 1
bl C1 1
bg Co C1 1 0
Qo
bg C3 Cy C1
431
a2
b Cm Cr—1 1 1
a’WL
b Cr  Ck—1 Ck—m
L bm—i—k i L 0 Ck
We also have
fm € In,k = bm+l<:—n+1 - bm+k—n+2 == bn—l = 0.

19
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Step 1. Suppose byik—ni1 = bmak—nio =+ =by, =0, then for m+k—n+1<

i < m, as in Case 1, we have

20

- . 0
Qj—f+1
_ C’L'—(m—i—k'—n) 0
- Yk
Qg
a;
Am+k—n
where a,_; =01if ¢ — j < 0.
Step 2. For m < k— ]-7 bm-l—l = bm—i—Z == bn—l =0
B 7 bm+1 Cm+1 Cm Cm—1 (&1 Qg
bm+2 Cm+2 Cm+1 Cm C2
0
bn—l | L Ck Cn—m—1 | Ay, |
. 0
Ck Ck—1 Cm+1 Cm C1
0 Cr  Ck—1 Cm+1 Co
0
Qo
0
0 Ck Cm+1 Cn—m—1 i
Gm
1 0
Ck Cg—1 1
0 ¢ Co
n—k 0
k
Qg
0
Ck Cn—m—1 i
Am+k—n




Cr Cp—1 - C1 - &
Qg

0 Ck Co 0
— n—k
— “ .. C’k

0 o Im+k—n+1
Am+k—n
| Ck, ot Cp—m—1 |
ap
- Dk,m—l—k—n—i—l
Am+k—n

We get the same equation as (14).

(b) m > n — 1. In this case, observe that for 0 <i<n—1<m,

c; =0 fory>korj<l1
b; = ( E cjal> + a; where ! )
JH=i a; =0 forl>morl<0

By the same argument given in Case 1, Step 1 of (a), we also get the relation (13)
for m+k—-—n+1<1i < n—1. Note that in this case ag,a1, -, Gmir_n and

Gy Qpa1, - Gy are free. O

In order to prove Proposition 7, we need a Proposition. Here we let R = K|z, y],
R=Ry&® Ry ® ---. For any homogeneous polynomial f, we write (Rf),, to be the
m-degree part of the R-submodule Rf.

Proposition 6.

(a) For each m > n —k + ng, there must exist a homogeneous polynomial f,, of

degree m belongs to I, .
(b) Suppose there is no f,_j of degree n — k in I, 1., then

(1) we can choose a polynomial G,—p € I, ., where k — ng < M < k-1, such that

the degree n — M 1is the least.
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(ii) There is Gp—n € I, where 1 < N < M <k —1, M + N =k such that G,,_y

18 mot a multiple of G, .

(ili) (RGh—prt)m N (RGy—N)m = {0} forn =N <m <2n—Fk—1.
Proof.

(a) Let fn, = apx™ + arz™ 'y + - + apmy™.

Case 1. n— k+ %] <m < n—2. In this case, from Proposition 5(a), we have

fm S [n,k =
0
Qo
. 0
€ KerDy, pik—nt1, and a; = (0,---,0,1)Cp ™"
ag
Am4k—n
Am+k—n

form+k—m+1<i<m.

Note that Dy ik—nt1 has m +k —n 4+ 1 columns and n — m — 1 rows. For

n—k:+L§j§m§n—2,sineem2n—k‘+%>n—E—1

2 Y

=22m>2n—-k—-2=m+k—n+1>n—m-—1,

therefore Dy y4k—n+1 has more columns than rows, the dimension of KerDy, 4 k—n+1

ag 0 ap

is greater than 1, we can find : £ * | such that : €

mik—n 0 Am+tk—n

KerDy ymik—nt1. That is, fr, € Iny exists forn —k+ [5] <m <n —2.

Case 2. m > n — 1. From proposition 5(b), f,—1 € I, exists.

(b)(i) By (a), for some M >k — |£], f,_ exists. Thus we can choose G,y such

that the degree n — M is the least.
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(ii) Let N =k — M.

Observe that rankDy ;N1 = rankDy prp1 = rankDy g1 =k — M — 1.
= dim(KerDyy-np1)=(k—N+1)—(k—M—-1)=M - N+ 2.
On the other hand,

(RGh—m)n-n = Z ka'y! Gy = dim(RGpp)n-n = M — N + 1,
i+j=M—N

that is, there exists an G,,_ which is not a multiple of G,,_,.
(iii) In fact, if we have proved that G,_p and G,_y are relatively prime, then
the least common multiple of G,,_y; and G,,_y is G, _ys - Gy which has degree

(n—M)+(n—N)=2n—k,so (RG,—py N RG,_N)m = 0 for m < 2n — k and the

result follows.
Claim: G,,_j; and G,,_y are relatively prime.

Suppose d(z,y) = ged(Gp_nr, Gn-n) # 1, where degd = s > 1. Let

Gn—N

_ In=M o od —
Gn—M-—s d In—N—s d

Note that ged(gn—pr—s, gn—n—s) = 1. Since K is algebraic closed, we may write

In—-M—-s = J19n—M—s—1

where degg; = 1.

Observe that
Gn—]\l
(251

- Fy = Az" + Ba"+ H ¢ (2", y")
where A, B, H € K[z,y] and H ¢ (2", y"). We have

Gn—M
a1

g1+ - Fp = glAz" + 1 By" + g1 H € (2™,y") = g1 H € (2", y").
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Next,

Gn—M

g1

Gn-N—s * “Fre = gn-m-s-1Gn-n - Fj
= gn-N-sAZ" + Gn-N—sBY" + go-n-sH € (2", y")
= gn-N-sH € (2", y").
Let g1 = ax+ By, (a, f) # (0,0). Assume « # 0 and consider g, _n_s = Qg1+ R.

Note that R # 0 since ged(gn—nr—s, gnn—s) = 1. Therefore

Gn-N-s = Qg1 +yy" "

with v # 0.
= gn-n—sH = QoH + vy NH € (2", y") = y" VN °H € (a",y").

Suppose xPy? appears in H, then we must have p < n —1, ¢ < n — 1 and

p+qg=n+N—1.

,.yyn—N—sH c (ZL.TI,’ yn) =

n—N-s+qg>n (15)

=q> N +s.
n—1

Since H = Zhw"‘l\]_l_lyl # 0, there exists j > N + s such that h; = 0 for

1=0
i< jand h; #0.
= H = ha"™N Ty 4 by 2N Ny

Consider

G H = (ax + By) (ha™ NI Lyd 4 by NI 2t Ny

— ah]xn"’_N_.]y] _|_ PN
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Note

j>N+s==n—-—N—-—j<n—s<n-—1

since s > 1. Thus we must have h; = 0, a contradiction. O

Proposition 7. Let n > k and F;, = 2% + ¢z Yy + ez 22 + -« + cpyF be a
homogeneous polynomial of degree k, then I, = ((x",y") : F}) can be generated
by two elements. In fact, if rankDy, = 0, then I,p = (Gp-g,y"). Otherwise,
Ly = (Guomr, Guem) where Gy_p and G,y are stated in Proposition 6.

Proof.

Case 1. rankD;; =0

By Proposition 5(a), there exists non-zero G,,—, € I, and the coefficient of xnk

in GG,,_; is nonzero.
Claim: I, = (Gpek, y™).

It is obvious that (G,—k,y") C I, 5. Now suppose f,, € I, where deg f,, = m.

Note that m > n — k, and
fm :Hyn+HGn_k+R

where
R:anm—iyi
i
withm—i<n—k—1,andi<n—1;r,=0form—i<0orz<O0.

Suppose R # 0, then there exists j such that r; = 0 for ¢ < j and r; # 0.

= R = rj$m—jyj + T]__ngm—j—lyj—i-l 4+ 4 ,r.n_ll.m—n—i-lyn—l c In,k

= R Fp=rjamthiyl + ... € (2, y").
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We have j <n—1landm—-j53<n—k—1,

=m+k—j7j<n-1

=T = 0,
contradicts to the assumption r; # 0. Hence R = 0, that is, f,,, € (Gp—k, y").

Case 2. rankD;; =1

By Proposition 6(b)(i) we can find Gy, Gy € In such that k—[£] < M <
k—1,n— M is the least, M + N = k and G,,_y is not a multiple of GG,,_5;. Note
that from Proposition 4, when rankD;; = 1, we have rankD;; = j — 1 or j for
2 < j < |%]. If rankDy; = j — 1, then there exists a polynomial f,_(sy1-j) of
degree n — (k+1—j) in I, by Proposition 5. On the other hand, if rankDy, ; = 7,
then such polynomial does not exist. In conclusion, rankDy, ; = j — 1 if and only if
Jn—(k+1-j) € Iny exists. By Proposition 6(b)(i), n — M is the smallest, we see that
rankDy; = [ for | < N and rankDy 1 = N. It is clear that (G-, Gnn) C Ly k.

Now suppose f,, € L.,

m—2_ 2

y+ax™ YT 4 amy™

m—1

fm = agx™ + a1z

We separate the verification for f,, € (G,_y, G, n) into four cases according to m.

(i) Forn—M <m <n—N—1,let (RGp_nr)n_nr+; be the (n — M +i)-degree part

of the R-submodule generated by G,,_»s in R, _p44, where R = K|z, y].

We claim rankDy; > N for N+1 < [ < M. For N 4+2 < |

IN

151, by
Proposition 4, rankDy; > rankDyyi3 = N. Also for ng +1 <1< M-1,
rankDy; = rankDy,_; > N since Dy, is the skew-transpose of Dy, by (2). At
last, rank Dy, 5y = rankDy y = N since Dy is the skew-transpose of Dy y by (2).

Therefore dim(KerDy yt144) < (N+14+4d)—N=1+ifor N+2< N+1+4+i< M.

Since Gp—p € Ing = (RGhop)n—m+i C (Ro—pyi N I g). Therefore by Proposi-

tion 5(a), dim(RGp—nr)n-nr+i < dim(Ry—pryi N Ing) = dim(KerDg yy144). On the
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other hand, dim(RG,—pr)n—m+i = 1+i > dim(KerDy n1144), thus dim(RG,,— pr44) =
dim(KerDyy14:) and fo-nrqi € (Grom) € foomti € Lng.
(i)n—N<m<n-—2

Qo

From Proposition 5(a), f, € Ik < : € KerDymik—nt1. For m =

Am+k—n
n — N, from Proposition 6(b)(ii), fm € Inx < fm € (Gn-ar, Gu—n). Now for n —

N+1 <m < n—2, consider Dy, 1 r—nt1. By assumption, we have rankDy, 4 k—nt1 =

rankDy 1 =n—m—1sincel <n-m—-1<N -1,
= dim(KerDg yitns1) =m+k—n+1—(n—m—1)=2m+k —2n+ 2.

From 6(b)(iii), (RGp-n1)m N (RGyp-N)m =0 for n — N < m < n — 2, therefore

dim(RGp—p)m + dim(RGp-N)m
= m—m—-—M)+1)+(m—(n—-N)+1)=2m—-2n+k+2
= dim(Keer,m—l—k—n-i-l)?
that i87 fm € In,k ~ fm € (Gn_]\,{, Gn—N)-

i) n—1<m<2n—k—2

Suppose
o m m—1 m—2_ 2 m
fm = aox™ + a1 2"y + asx™ YT 4 -+ an Y™
According to Proposition 5(b), ag,ai, -+ ,amik—n and a,,ani1,- - ,a, are free,
therefore

dm(R,NLyx)=14+(m+k—n)+(m—(n—1))=2m—2n+k+2.

In fact, from 6(b)(iii)

dim(RGp_p)m + dim(RGp-n)m = (m—(n—M)+1)+(m—(n—N)+1)
= 2m—-2n+k+2
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forn —1 < m < 2n — k — 2. Thus we have dim(R,,, N I, 1) = Aim(RGp—pr)m +
dim(RGp-N)m =2m —2n+k+2forn—1<m <2n—Fk—2, that is, f,, € [ <
fm € (Gn—]\h Gn—N)-

(iv) Form > 2n — k — 1.

Suppose

fm = apx™ + alxm_ly + agxm_2y2 + -t any™.

Note that f,, € I, for all f,, with degree greater than 2n — &k — 1. Therefore
dim(R,, NI,x) =m+1form>2n—k—1. Form=2n—k—1,

dim(RGn_M>2n_k_1 + dim(RGn_N)gn_k_l =2n—k= dim(RQR_k_l N ]n,k)-

However, since the degree of the least common multiple of G,,_j; and G, _y is

(n—M)+(n—N)=2n—k,

dim(RG,—par)m + dim(RG-N)m =2n—k+(m—2n—k—1))=m+1

for m > 2n — k. Thus

dim(Ry, N 1) = Aim(RG—pr)m + dim(RGp—n )m = m + 1,

that iS, fm € In,k = fm € (Gn—]\fa Gn—N)-

Hence we can conclude that I, ; = (Gp_nr, Go-n). O

Corollary 8. Let n > k and Fy, = cox® + ci2* Yy + cox® 292 + - + cuy® be a
homogeneous polynomial of degree k, where ¢ # 0, then L,r = ((a™,y") : Fx) can

be generated by two elements.

Proof. Consider this case by the symmetry of x and y. For

Fi(z,y) = cor® 4+ 12"y + a2 4+ -+ oyt
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with ¢ # 0, Fix(y,x) has nonzero leading coefficient. Hence by Proposition 7,
((y™, ") : Fr(y,z)) can be generated by two elements and ((z™,y") : Fi(z,y)) can

also be generated by two elements. L
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83. Cases with ¢cg =0 and k <n

Lemma 9. Suppose Fj, = 2% + ciab" 1y + - + o129yt 4+, then (2™ y?) :

ey Fy) = (a7, y"7) : Fy).

Proof. (D) If f € ((z"7,y"7) : F}), then [ - F, = Axz"7 + By™/ for some

polynomials A, B. We have

[y B = (fF) a7y

= (Az" + By" )2ty = Az"y’ + Baly" € (2", y").

(C)If f e ((xz"y") : 27y Fy), then f - Fraly) = Cax™ + Dy". Suppose

J-Fe=hi+hy+hs+-+MN

where h # h; for s # t. Then hya?y’ = Cyaz™ or hyaly’ = Dgy", thus hgy! = Csx™7
or hya'! = Dgy™7 and hy = Cla™7 or hy = D.y" 7. Thus we have [ - F}, =

h1+h2+"‘+h16($n_j,yn_j). O

Proposition 10. Let n > k and F}, = cox® + c1a* 'y + con® 2> + - + c1y* be a
homogeneous polynomial of degree k, where co = 0, then I, = ((x™,y") : Fy) can

be generated by two elements.

Proof. If co =cy =+ =c¢j_1 =0 and ¢x_j41 = Ch—iy2 = -+ - = ¢—1 = ¢ = 0, while

c; # 0 and ¢;—; # 0, where 7 4 j < k, then

L 4 i1 _—
Fy = c;a" Iyl o "Iy T gty

If2 > j, then

03 ( e k—2] k—2j—1 i—j, k—i—j
Fp =27y (c;a" ¥ + cja™ P Ty + - F iy )
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where ¢; # 0. From Proposition 7 and Lemma 9, ((z",y") : F}) can be generated

by two clements.

If i < 7, then
Fi, = 2y (c;ah =0yt 4 oyl T g R,

Let

o k—ieg i k—i—j—1, j—it1 k—2i
g=c;x" "Iy T f et Ty + ooyt

Note that ¢x_; # 0. Therefore by Lemma 9 and Corollary 8,
(" y") : F) = ((@",y") - a'y'g) = ("7, y" ") 1 g)

and it can be generated by two elements. [

Corollary 11. Let Fy, = cox® + cja*ty + cox®=2y2 + - - + cpy® where k > n.
(a) If k > 2n — 1, then ((z",y") : Fy) = (1).

(b) If n <k <2n—2, let

k—n+1, n—1

n—1, k—n—+1 n—2, k—n+2 4ty Y 7

Fi, = c—np12" "y + Chon2® Y

A

then ((x",y™) : Fy) = ((2",y™) : F}) and ((z",y") : Fy) can be generated by two
elements.
Proof.

(a) If & > 2n — 1, then every term xz'y’ appears in F}, must have i > n or j > n,

therefore 1 - Fy, € (2™, y").
(b) If n <k <2n-—2,

(i) Claim: ((z™,9y") : Fx) = ((2™,y") : Fi).

Since F), = (Fy — Fk) + Fk and Fy, — Fk € (2", y"),
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fe(@my"): Fr) & [ Fpe (@™ y"),
& [ [(Fe— B+ B € (2" 9",
S f(Fe—F)+f-Foe @y,
& fFe (@ y").

(ii)) We have

A

}&;::yk—n+1( 2n—k—2)

n—1 n—2 k—n+1
Chn+1T "~ + Ch—pt2T Y+ -+ Cp1 Y

By Proposition 7 and 10, the minimal generating set of ((z",y") : I},) has two gen-

erators.

From (i),(ii), we can conclude that ((z",y") : Fy) = ((™,y") : F}) and the min-

imal generating set of ((z™,y") : F}) has two generators. d
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84. Discussion

Let p(z1,---,x.) be a homogeneous polynomial in r variables, s > 1 be an

S
T

integer, and I; = (zf,--- ,22). In Genoway, Ortiz-Albino and Tavares’s paper [8],

they discussed some conditions under which the colon ideal I = (zf,--- ,2%) : p can
be generated by no more that r elements. They provide a partial characterization

of those polynomials p for which I requires more generators than the number of

variables r; this collection is called Cj, ). That is, to characterize

p € Cus = {pl(xf, -+ ,x;) :p requires more than r gencrators}.

Here we state the Theorems given in the paper and revise the original proofs.

Lemma. (8, Theorem 3] For any r and s, if p is a non-zero monomial and p ¢ 1.

Then p ¢ Crs)-

t1 _to

Proof. Let p = cal'as? -+ xlr where ¢ # 0 and p ¢ I;. Since p ¢ I, we have t; < s
for all i. We prove p ¢ C, ) by showing I, : p can be generated by r elements.

P ey — (STt 8l s—t
Claim: I :p = (2] ", x5 2, - as7).

ti-i-(s—ti) .
7

(D) We have 20 % - p = cal' -+ coalr e I, for 1 < i < r, that is, 27" €

I,:pforl1<i<r.
(C) Assume f € I, : pand f = hy + ho+ --- + hy where h, # hg for a # . Then

for 1 < a <, we must have

ho - cailal? - al € (xf) for some i.

= he-ai € (zf) for some i.

= he € (27%) for some i.

i

Thus we can conclude that I, : p = (257", 2572, .- 257t). d

T

33



If the homogeneous polynomial p(z1, ...,x;), j < r, does not involve all the vari-
ables, then the following Lemma provides an important tool to improve the efficiency

of computing quotient ideals.

Lemma. [8, Theorem 4] Let I, = (21, ,x}), p:=p(w1,- - ,x5) and (27, -+ ,25) :

P = (917'“ 7gk) Then Is p= (glv'" 7gk7x§+17"' 7'1"78")

Proof. Without loss of generality, we may assume p = p(z,--- ,2,_1) and prove
I ‘P = (917' o 7gk7$i)’
Suppose f € I, : p. We can rewrite f as a homogeneous polynomial in terms of

x, with coefficients in k[xq,- - ,2,_1], such as the following form:

f(xla"' 721;7") :ft(xlv"' 7$T—1)If~+"'+fs(w17'” 7xr—1)$i+"'+f0(:1’.17“' 7':U7'—1)-

Then
fop=(farr+- A+ fxi+- 4 fo) - p

= fil-p+- 4 fxlpt- o+ fopel

Note we have flxi -pely for0 <1<t Forl<s,

fiab -pely= fi-pe(xf, - a5 ))
ifl S (917"' 7gk)

= flxi € (917 e 7gk)

For [ > s, fix! € (z2). Hence f € (g1, , gr, T2).
On the other hand, g;-p € (z5,--- ,2_y) C (2f,--- ,xi_,,25) =, for 1 <i <k,

therefore g; € I, : p for 1 <1 < k. Besides, x° € I : p.

Thus (g17 e 7gk7'rf'> g IS 2 O

Proposition. [8, Theorem 5] Let t be the total degree of the homogeneous polynomial

p. Ift >r(s—1), then p ¢ Cpr..
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Proof. Case 1. t > r(s —1). We prove p € I which leads to I5 : p = (1).

Claim: p € I,.

If p ¢ I, then there exists some monomial m of p such that m = a*x3*> - al ¢

I,. Wemust havev; < s—1forl <i<randt= Zvi < r(s—1), a contradiction.
i=1
Case 2. t=r(s—1).

Observe that the only monomial of p which is not in I, is m = a(zy - - - z,.)¥ L. If

a =0, then p € I, and I, : p = (1). Suppose a # 0, then m ¢ I, while p —m € I.

Claim: I, : p= 1, :m.

frrelyaf-(p—m)+f-mel

S f-mel;
& felg:m.
: e (A S N
Finally, I, : p = I, : m = (3 R ) = (x1,---,x.). Hence
p & Cou- U

Next, we give an example in 3 variables in which the minimal generating set has

more than 3 elements.
Example. ((2%,42,2%) 0 +y+z2) € Co).

Proof. Let I = ((2%,9?%, 2%) : a+y+2) and assume { f1, f», f3} is a minimal generating
set of I. Firstly, we show that degf; # 1 for ¢ = 1,2,3. Assume there exists some

f =oax+ By + vz € I, then we have

(ax+ Py +y2)(x+y+2)
=ax® + ary + axz + Byx + By* + Byz + vz + vy + 22

=az? + (o + B)ay + (o +7)zz + By? + (B +7)yz + 722 € (2%, 9, 22)
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and this implies
a+pB=0
a+y=0 =>a=8=7v=0,
B+v=0
a contradiction. Hence we must have degf; > 2 for i = 1,2, 3.
Case 1. Assume degf; = 2, degfo,degfs > 3, then 22,92, 22 must be generated by

f1, therefore fi|z?, fily?, and fi|z%, a contradiction.

Case 2. Assume degf; = degf, = 2, and degf; > 3. Suppose

fi = a2’ + Biy* + 12® +my

fo = anx® + By + 722 + my

where m; and msy are composed of mixed monomials. Since z2, y? and 2z? must be

generated by f; and fo, we have

? =afi + B

Y2 =f1+ 0 fo

We may replace (fi, f2, f3) by (22,42, f3). However, it is impossible that z? could

be generated by (22, y?, f3).

Case 3. Suppose
fi=ad® + By’ + m2t +my

fo = x® + Bt + 722% + my
f3 = a32® + Bay® + 32% + m.

Since 22, 4%, 22 can be generated by fi, fo, f3, comparing the coefficients of 22, 2, 22

leads to the fact that (1,0,0), (0,1, 0) and (0,0, 1) can be generated by (a1, 51, 71), (@2, 52, 72),
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and (as, B3,73). Thus f1, fo, f3 can be reduced to

fi =2 +m)

fo= 9 +mj

fz =22+ mj.
Observe that z? must be generated by fi, thus f; = 2% Similarly, f, = y* and
f3 = 2% Thus we have I, : p = I,. However, since for S = K|x,vy, z|/I5, x,y, z are

nilpotent elements, so is p = x +y + z. Hence p is a nonzero divisor in S and Jg # 0

in S such that pg = 0 in S, that is, I : p # I», a contradiction. O
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