
國立臺灣大學電機資訊學院電信工程學研究所 

碩士論文 

Graduate Institute of Communication Engineering 

College of Electrical Engineering and Computer Science 

National Taiwan University 

Master Thesis 

使用 CVF與新創輪廓擷取演算法於自動心臟磁振影像左心室分割 

Automated Left Ventricle Segmentation in Cardiac Short-Axis MR Images Using 

Cost-Volume Filtering and Novel Myocardial Contour Processing Framework 

張安政 

An-Cheng Chang 

指導教授：鄭士康 博士 

Advisor: Shyh-Kang Jeng, Ph.D. 

中華民國 103年 10月 

October, 2014 



 i

ACKNOWLEDGEMENTS 

I feel tremendously lucky to be given complete freedom over my research. My thesis 

advisor and mentor, Dr Shyh-Kang Jeng, showed me his unwavering pursuit of both 

knowledge and wisdom. His student-first philosophy allows me to delve into things that 

I am passionate of. I could not have asked for a finer teacher than him.  

 I would like to express my gratitude to Dr Soo-Chang Pei, Dr Hsiao-Wen Chung, Dr 

Jian-Jiun Ding, and Dr Teng-Yi Huang for agreeing to serve on my oral committee and 

providing me with fruitful feedbacks. Their opinions on my research make this master's 

thesis more complete.  

 I want to thank my friends in the grad school and the lab. Charles is one of the most 

energetic person I have seen, and we have been through lots of challenging but rewarding 

activities thanks to him being my best partner and supporter. Hugo, Leon, and Danny—

together we went to the gym in the after-hours and in the early mornings, and instilled in 

each other the "work hard and play hard" mantra. Thanks Lammin and Pei for taking their 

time joining me at lunches and dinners, even though they were sometimes pretty much 

fully occupied trying to meet deadlines. I also want to thank the peers and seniors in the 

lab who had helpful discussions with me that would ultimately contribute to my 

successful thesis defense. And my gratitude to Dafei and Kenny, who helped me with 

publishing the paper.  

 Additional thanks go to the university faculties and staffs who dedicated themselves 

to make IAC Workshop happen. Really sad to hear that the Ministry of Education 

discontinued to fund this program, because as a participant, I had one of the best 

teamwork experiences, best English classes, and the best lunchboxes all wrapped into one. 

Thanks to our German study group members Tracy, Tim, and Alice, where we once 

learned to sing O Tannanbaum on Christmas Eve, and my German teachers Michael, 

Christian, and Chris. They made my life as a graduate student so much more enjoyable. I 

want to thank those who gave me strength, especially to Karen, who has been an unfailing 

source of support and inspiration for me during my most difficult times. I am thankful to 

everyone who has encouraged and believed in me. 

Last but not least, all of this would not be possible without the support of my family 

throughout the years. And this is dedicated to them.  

 



 ii 

摘要摘要摘要摘要  

 

 心血管疾病通常伴隨異常的心臟功能參數，舉凡過高或過低的左心室射出分

率（ejection fraction）、心輸出量（cardiac output）的不足等。這些心臟功能參數可

以從心臟磁振影像（CMR images）的掃描結果加以處理推估而得，其中重要環節

即為影像分割技術。過去的自動左心室影像分割演算法的效能通常受限於複雜的

心肌內壁結構，或者較為繁複的使用者操作。鑑此，本研究提出自動化的高精確度

心臟磁振影像左心室分割演算法。為了克服磁振造影失真現象與心肌內壁不規則

結構—如心肉柱及乳狀肌—所造成的影像分割難度，其結合了針對心臟磁振影像

調校的 cost-volume filtering 技術與新創的心肌輪廓擷取演算法以達到此目的。實

驗結果顯示切割精準度和可靠性皆優於先前方法，並因此減少校正所需時間，自動

導出的心臟功能參數與人工計算結果則呈高度相關性。各項數據顯示本研究所提

出的心臟磁振影像左心室分割演算法是現今效能最好的演算法之一。 
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ABSTRACT 

 

 Cardiovascular diseases are often associated with abnormal left ventricular (LV) 

cardiac parameters, such as deviation of ejection fraction (EF) and cardiac output. These 

information can be extracted from cardiac magnetic resonance (CMR) scans of the 

heart, which involves image segmentation in CMR images. Previous works on left 

ventricle segmentation in CMR images are often hindered by complex inner heart wall 

geometry or they require a more involved operator intervention. In this work, we employ 

novel cost-volume filtering (CVF) scheme combined with novel myocardial contour 

processing framework to overcome the segmentation difficulty resulted from MR 

imaging artifacts and inner heart wall irregularities (e.g., papillary muscle and trabeculae 

carneae). Result shows improved accuracy and robustness over previous works. In 

clinical aspects, quantitative analysis shows close agreement between manually and 

automatically determined cardiac functions with no systematic bias in EF estimation error.  
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Chapter 1 Introduction 

1.1 Motivation 

Cardiovascular disease (CVD), an umbrella term for a myriad of conditions affecting the 

heart and the blood vessels, is the top-occurring disease in many places in the world. In 

2008 alone, this deadly disease claimed an estimated 17.3 million lives, according to the 

World Health Organization, making it the single largest cause of death worldwide [1]. 

Aside from high mortality rate, the prevalence of CVD continuously imposes a heavy 

burden on the economy and public healthcare system of those affected countries. In fact, 

coronary heart disease, one common type of CVD, costs the United States as much as 

$108.9 billion each year [2]. Experts and specialists thus call for a constant effort to 

reduce mortality rate and the cost involved through proper prevention, identification, and 

monitoring following the diagnosis of the disease. While recent decades have seen a 

decrease of mortality rate of CVD in industrialized countries, its surge in the developing 

countries makes CVD remain the deadliest disease in the world [3]. 

Diagnosing subject’s cardiac health in the early stages is therefore a key step to 

facilitate further treatments and increase the chance of survival, which requires, among 

others, quantitative assessment of the cardiac health. These include measuring myocardial 

mass (MM), peak ejection rate (PER), peak filling rate (PFR), ejection fraction (EF), 

stroke volume (SV) and its associated cardiac output (Q). In particular, cardiovascular 

diseases are often related with deviation of cardiac output Q, derived from segmenting 

left ventricle (LV) in cardiac magnetic resonance (MR) images over a cardiac cycle.  

As the cardiac cine MR scan of one patient consists of a few dozen to several hundred 

individual images to work on, segmenting the ventricle by trained operator consumes a 

considerable amount of time and manpower. Another drawback of manual segmentation 
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is that it is prone to operator bias due to complex inner myocardial structures such as the 

papillary muscles and trabeculae carneae [4]. Therefore, automation of this task highly 

appeals to clinicians as it is able to eliminate such operator bias and expedite the 

evaluation process. At this moment, however, the popular commercial software MASS 

provides merely moderately usable segmentation results and the resulting cardiac 

parameters are less reliable [5], which would require more operator intervention to correct 

failed segmentations. Nevertheless, because of its popularity and ability of full integration 

into MRI scanning workflow, it has been compared against as a baseline algorithm by 

many previous works [4], [6].  

Segmenting the ventricles in cardiac magnetic resonance (CMR) images by 

automation is not trivial, even in noiseless cases. Challenges are: 1) substantial shape 

variation across slices and timeframes, 2) inter-subject variation resulted from different 

pathologies, and 3) various distortions of the MR image itself, such as partial volume 

effect, field inhomogeneity, and low contrast between myocardium and lungs. Moreover, 

many previous works did not achieve full automation; some require a training set prior to 

segmentation, others require a coarse contour as initialization. Despite ongoing research 

on the CMR image segmentation, it is still acknowledged as an open problem by a recent 

survey [7].  

 

1.2 Research Goal 

As there are many previous works on automation of left ventricle segmentation that still 

require some degree of human intervention before and during the segmentation process 

(such as constructing training sets and priors, which we will point out in Section 1.4), we 

therefore look to lessen the those restrictions and aiming for maximum automation. 



 3

Despite many previous methods attempting to ensure consistency across time frames and 

slices of the CMR 4D volume, there are however only a few, for example the work by 

Lee et al. and Jolly et al., that attempt to provide a robust solution with automation in 

mind. Therefore, this thesis dedicates the goal to automation and precision in segmenting 

left ventricle in cardiac cine MR images. The main objectives are: 

• Full automation: it requires no manual intervention before and during the 

segmentation process. 

• Precise segmentation: despite aiming for full automation, the segmentation 

precision is not to be sacrificed. More so, the result must be up to par with the 

state-of-the-art in order to have a meaningful impact in this field. 

• Eliminate operator bias: by providing robust, reliable segmentation algorithm 

for clinical use, intra- and inter-observer variability are resulted from hand-

drawing left ventricle myocardium contours can be eliminated 

• Estimate crucial cardiac parameters: these parameters are indispensable in 

assessing cardiac functions of the patient, including ejection fraction, peak 

ejection rate, etc. 

For the purpose of maximum automation, we have developed an image-driven 

approach. The operator is not required to construct any prior model or trace left ventricle 

contour in order to initialize the algorithm. We argue that a general prior model is 

insufficient to describe all possible cases which often leads to inaccurate segmentation, 

shows the literature survey. In fact, we believe minimal assumption is the key to the 

proposed method’s superiority and robustness against various pathologies. 
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1.3 Contribution 

We have employed novel cost initialization scheme for the cost-volume-filtering (CVF) 

based image segmentation. Together with novel myocardial contour processing 

framework, the proposed computational framework is able to overcome the segmentation 

difficulty caused by PMTC (papillary muscle and trabeculae carneae) tissues that prevent 

previous methods from achieving high segmentation accuracy.  

 

1.4 Literature Survey 

Segmentation of cardiac magnetic resonance (CMR) images has been an area of active 

research for the past two decades; it has accumulated a considerable amount of work so 

far. For starters, Petitjean et al. [7] compiled a comprehensive list of recent works up until 

2011, which is a good introduction for newcomers in this field. In this section, we limit 

our scope of the literature survey and focus on the segmentation of the left ventricle (LV) 

in short-axis view MR images. 

A class of approach using region- or edge-based methods often involves the use of 

binary thresholding, region growing, and edge-detection, and mathematical morphology 

[4], [8]–[14]. Lu et al. [11] identifies the LV cavity among candidates according to the 

roundness metric of each connected component. Then, for extracting the LV endocardium, 

Otsu’s optimal thresholding [15] and convex hull fitting are applied to the selected LV 

cavity. As for the epicardium, they use region growing and morphological operation 

refinements to segment the muscle wall. In the last stage of the algorithm, both contours 

are smoothed by taking higher frequency components out of each contour’s respective 

Fourier descriptor. The drawback is the algorithm failed in image slices with left 

ventricular outflow tract (LVOT); they later extended their work to address this issue [6]. 
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Huang et al. [10], [12] followed a similar processing flows as Lu’s, therefore suffered 

from similar failure in the presence of LVOT. However, their work differed in that 

gradient information is taken into consideration when delineating the endocardium. A 

performance improvement over Lu’s previous work was reported. Lee et al. [4] used a 

hybrid of region-growing and active contour driven by modified gradient field to extract 

endocardium and epicardium respectively, and the results show high correlation between 

manual and computed cardiac functions. 

Another class of approach can be listed under the category called deformable models, 

which involves the use of active shape and appearance model (ASM/AAM) and level set 

methods. In principle, a shape or a contour, which usually starts from an initial contour 

annotated by the operator, iteratively deforms, where it’s deformation is driven by both 

the external force (such as gradient or local intensity distribution) and internal force (such 

as smoothness constraint) [16]–[19]. These approaches have the additional flexibility to 

incorporate shape priors or motion models [20]–[23]. For instance, Lynch et al. [20] 

encoded the parametric volume-over-time model into the evolution of level set. It 

achieved only moderate results measured by correlation, possibly due to its emphasis on 

temporal constraint, thus overlooking the information from the images themselves. 

Schaerer et al. [22] also sought to incorporate motion model into the processing flow, but 

suffered from similar sub-par segmentation accuracy.  

Aside from the flexible deformable models paradigm, many other approaches are 

attempted as well. Jolly [24] proposed a minimal surface approach. Candidate contours 

are first computed from the average of a particular slice across all time frames registered 

to a particular phase. Those candidate contours are transformed back to respective time 

frames, and finally propagated to other slices. Minimal surface is computed using these 

back-transformed candidate contours as boundary constraints. It is fully automatic, offers 
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temporal and inter-slice consistency, but comes at the price of less segmentation accuracy. 

Lorenzo-Valdés et al. [25] used probabilistic atlas-based approach in which a probability 

prior for each tissue class (e.g., myocardium, LV cavity) is constructed by hand, which is 

very laborious—they reported to have manually segmented 14 healthy volunteers’ full 

MR 4D volume, which translates to segmenting hundreds of MR images. And given that 

they only train the model using healthy case, the reliability is overshadowed by 

unforeseen pathologies because the performance relies on the training set. On the other 

hand, training a wide set of models in an attempt for more accuracy seems to negate the 

benefit of automation in the first place. 

 

1.5 Thesis Outline 

Chapter I highlights the motivation and contribution of this study, as well as an overview 

of previous studies in CMR segmentation. In Chapter II, we briefly review the anatomy 

of the heart before guiding the reader through the cardiac MR images. In Chapter III, we 

introduce the proposed computational framework for segmenting the left ventricle in 

short-axis view cardiac cine MR images. Experimental results and as well as detailed 

discussions regarding the performance of proposed method are shown in Chapter IV. And 

finally, Chapter V marks the conclusion and future prospect of this work. 
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Chapter 2 Fundamentals 

In this chapter, we establish some background knowledge involved in the segmentation 

of CMR images from both medical and technical aspects. The material presented here is 

not intended to be comprehensive. Instead, it aims at providing individuals not familiar 

with working with medical images the prerequisite to understand the materials presented 

in the ensuing chapters. 

 

2.1 Cardiac Magnetic Resonance Imaging 

Cardiac magnetic resonance (CMR) imaging is a non-invasive imaging modality for 

visualizing the function and structure of the cardiovascular system. Its 3D capability and 

high spatial resolution has allowed itself to be established as a clinical practice for 

treatment of the cardiovascular disease. Unlike X-ray computed tomography (CT) using 

ionizing radiation which can damage the cells and cause cancer, magnetic resonance 

imaging poses no such risk to human body and is agreed by experts to be non-hazardous 

[26]. CMR imaging differs from typical MR in that CMR uses electrocardiogram (ECG) 

gating as means of synchronization over several cardiac cycles in order to obtain a better 

resolved image. Real-time CMR is possible, but at the expense of lower image quality. 

 

2.2 Ventricles in Cardiac MR Short-Axis View 

The standard procedure for volumetric measurements of the ventricles is to position the 

scanning plane so that the plane is perpendicular to the long-axis of the heart. The imaging 

plane moving along the long-axis begins from just below the atrium down to the bottom 

of the heart, scanning the whole ventricle in order to obtain its 3D volume data. The 2D 

image in this acquired stack of 3D volume data is called short-axis (SAX) view.  
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Fig. 2.1 The human heart1 and its structure2. 

 

Fig. 2.1 shows the human heart and its long-axis in dashed line. Cutting through 

Plane 2 reveals the lower two chambers of the heart: the left ventricle (LV) and the right 

ventricle (RV), shown on the right. The cone-shaped LV is joined by the crescent-shaped 

RV, with interventricular septum in-between. At the bottom of the ventricles is apex, while 

at the top of them is the base. Fig. 2.2 shows the MR image of finer structure of the 

ventricles, acquired in a postmortem examination from the still heart removed from 

human body. The advantage of SAX view is evident here: the LV exhibits a near circular 

or oval profile, making it easy to identify. On the inner side of the muscle, the 

endocardium, of the left ventricle are the papillary muscles and the irregular meaty ridges 

called trabeculae carneae. These finer structures pose a great challenge in accurate 

segmentation of the LV, especially when the image is degraded and distorted.  

                                                 

1 Image adapted from  

http://web.stanford.edu/group/ccm_echocardio/cgi-bin/mediawiki/index.php/Parasternal_short_axis_view  

2 Image adapted from [7] 
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Fig. 2.2 MR image in short-axis view showing finer structure of ventricles3. 

 

In fact, the actual CMR images acquired from live human body is not up to the same 

quality (See Fig. 2.3). It has lower signal-to-noise (SNR) ratio and various distortions. A 

common distortion in MR images is field inhomogeneity. MRI scanner assumes a 

homogeneous magnetic field within the scan range, therefore, an uneven (i.e., 

inhomogeneous) magnetic field results in intensity roll-offs in the acquired image. In this 

case, tissues of the same type may not exhibit the same intensity. This is problematic in 

general image segmentation tasks because a very basic and logical assumption is that the 

same tissue type should have similar intensity profile. Another major distortion is the 

partial volume effect. This happens when tissues to be scanned are finer than MRI 

scanner’s designed resolving power, and it is most prevalent near the boundary of tissues. 

In the case of CMR images, partial volume effect occurs near the papillary muscles and 

trabeculae inside the LV cavity. 

Fig. 2.4 shows an image stack covering the whole ventricle at a given time. This is 

the dataset the clinicians will work on to evaluate cardiac functions. As can be seen, the 

                                                 

3 Image courtesy of University of Minnesota.  

http://www.vhlab.umn.edu/atlas/cardiac-mri/short-axis-ventricle/index.shtml 
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LV in those slices vary widely in shape and size. There are a few notable challenges in 

apical (toward apex) and basal (toward base) slices. In the basal slices, the left ventricle 

does not form a full circumference and appears to merge into the right ventricle. This 

protruded area is in fact the left ventricular outflow tract (LVOT), which is connected to 

great arteries responsible for carrying the blood ejected from the left ventricle. The 

presence of LVOT in basal slices poses a challenge to existing automated segmentation 

algorithms; some did not even attempt to process these slices as a result of inherent 

limitation of their algorithm [10], [19], [25]. On the other hand, in the apical slices, the 

left ventricle appears to be fuzzy and very ill-defined. The challenge does not stop here: 

in-between the two extremes, the papillary muscle and trabeculae can occupy almost all 

of the LV cavity and obscure the real endocardium border. This is especially true in the 

case of hypertrophic cardiomyopathy in end-systolic phase, where the myocardium (heart 

muscle) and papillary muscle is abnormally thick, leaving very little volume inside the 

LV cavity. 

 

 

Fig. 2.3 CMR short-axis (SAX) view image  
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Fig. 2.4 CMR SAX images4 from the apex (top-left) to the base (bottom right). 

 

2.3 Assessing Left Ventricular Functions 

For quantitative assessment of the LV functions, LV endocardial (inner muscle wall) and 

epicardial (outer muscle wall) contours, either manually-drawn or computer-assisted, are 

instrumental. Here we introduce some basic parameters that can be derived from these 

two contours. 

 Left ventricular volume (LVV) is the blood volume the left ventricle contains. 

Integrating the voxels enclosed by endocardial contours across the 3D volume gives the 

LVV. There are two specific moments we are particularly interested in: the moment at 

maximum blood fill (end-diastole) and the moment at minimum blood fill (end-systole). 

At end-diastole, integrating the voxels enclosed by endocardial contours across the 3D 

volume gives end-diastolic volume (EDV). Similarly at end-systole we have the end-

systolic volume (ESV). 

 Stroke volume (SV) measures the blood volume the left ventricle pumps out with 

each contraction: 

                                                 

4 Image adapted from [7]. 
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ESVEDVSV −=  (2.1) 

Ejection fraction (EF) measures the proportion of the blood volume the left 

ventricle ejects into the circulatory system with each cardiac cycle. It is closely related to 

SV, defined as: 

%100×=
EDV

SV
EF . (2.2) 

Left ventricular ejection fraction (LVEF) between 55 up to 70 is considered within normal 

range in most cases, according to American Heart Association. Any deviation from this 

normal range may indicate cardiovascular disease [27]. In the case of congestive heart 

failure, the affected heart does not have the strength to pump blood as efficiently as a 

healthy heart should. Since less blood is ejected into the circulatory system, a lower than 

normal EF (under 40) may be observed; it is a strong evidence that the heart’s pumping 

function is impaired due to cardiomyopathy or other causes. A higher than normal EF 

(above 70) indicates the possibility of hypertrophic cardiomyopathy, in which the 

myocardium (heart muscle) is abnormally thick and may have problem to completely 

relax during the diastolic phase, causing smaller EDV and the entailing higher EF. 

 Left ventricular mass (LVM) is the total muscle mass of the LV. A universally 

agreed assumption is that interventricular septum (the tissue separating left ventricle and 

right ventricle) is included as a part of LVM, therefore LVM is calculated by 

05.1)( ×−= endoepi EDVEDVLVM . (2.3) 

Here, EDVepi and EDVendo denote the volume enclosed by epicardial contour and 

endocardial contour, respectively, at end-diastole. The difference of them yields the 

volume between the two contours, which is the volume of LV myocardium. LVM is then 
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calculated by multiplying LV myocardial volume with the density of myocardium 

(=1.05g/cm3). 

 Cardiac output (Q) measures the amount of oxygenated blood being circulated 

throughout the circulatory system. It is the product of stroke volume (L) and heart rate 

(beats per minute): 

HRSVQ ×=  (2.4) 

 These clinical parameters presented above allow clinicians to access patient’s 

cardiac function. In the next section, we introduce the algorithm that aims to substitute 

labor-intensive manual segmentation with automated algorithm that aims to aid the 

clinicians to expedite the evaluation process. 
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Chapter 3 Proposed Approach 

In this chapter, we present the main contribution of this study: the automated left ventricle 

segmentation. 

 

3.1 System Overview 

The block diagram of the system is illustrated in Fig. 3.1. The objective is to delineate the 

inner muscle wall of the left ventricle, yielding the endocardial contour. Inside the muscle 

wall of the LV is the LV cavity. The complete processing flow for delineating the contours 

will be described in detail, supported by illustrations and diagrams. It can be summarized 

as three major steps.  

First step is LV cavity localization. In this step, we determine the approximate 

position of the left ventricle. Once the approximate position is known, it then attempts to 

lock on the center of the left ventricle and creates a circular region of interest (ROI) of 

variable size, whose diameter depends on the detected left ventricle’s diameter. This 

allows isolating the LV from other unrelated tissues and organs, increasing robustness and 

segmentation accuracy.  

Next, two raw “candidate” endocardial contours are generated. One raw contour is 

generated based on novel region-based cost-volume filtering (CVF) technique. The other, 

edge-based Canny’s edge detector. These two candidate contours are found to 

complement one another very well, as both region-based and edge-based segmentation 

have their own strengths in different parts of the left ventricle. 

In the final step, two raw contours are combined in a way that the best sections of 
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each contour are preserved. The process is automatically determined by the algorithm. In 

our implementation, we formulate this as a least square fitting problem, with additional 

smoothness term and constraints, yielding the final endocardial contour. 

 

 

Fig. 3.1 System overview of proposed LV segmentation algorithm 
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3.2 Left Ventricle Localization 

The left ventricular (LV) cavity appears to be a bright circular object in CMR SAX images, 

whereas the LV myocardium appears darker. Two main stages are involved in locating 

the left ventricle: 1) The rough position of the LV cavity is determined, and then 2) the 

region of interest (ROI) is iteratively refined so that the ROI covers the LV, and isolates 

the LV cavity from all other nearby tissues and organs. 

 

3.2.1 Detection of left ventricular cavity  

First stage is rough estimation of LV’s position. We can assume that the LV cavity covers 

the center of CMR image, because the technician would typically operate the scanner 

such that the LV is at the center of the CMR images. This is true for almost every CMR 

image we have obtained. If this assumption is violated, our system is designed so that one 

click onto anywhere inside the LV cavity will suffice. The system will then iteratively 

refine the ROI covering the LV starting with the initial seed point. This limitation can be 

easily lifted by incorporating several existing methods [4], [8], [28] that approximates the 

position of LV in CMR images.  

 

3.2.2 Iterative ROI refinement  

The second stage is to iteratively refine the ROI until convergence (See Fig. 3.2 for the 

evolution of ROI). The steps are described as follows: 

1) Initialization: Initialize a small search window centered at the location determined 

in the first stage. In our implementation, we use a 31-by-31 circular shape, which 

is slightly larger than the size of the LV cavity in apical slices. 

2) Binary thresholding: Apply binary thresholding in order to identify the LV cavity 
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within the search window. See the binarized image in Fig. 3.2(b). The threshold 

is determined by Otsu’s method [15]. It searches for the optimum threshold in the 

histogram of the current search window that minimizes the variance within each 

class. Otsu’s method is designed for images with two distinct classes of signal 

intensity, which is ideal to LV cavity detection. For robustness, we accumulate the 

histogram over all past iterations. This is because the search window could jitter 

wildly and never converge when the optimum threshold varies a lot. Using 

histogram accumulation tones down the threshold variation range, and fixes the 

problem. 

3) Isolate the LV cavity: Preserve the connected components that overlap with the 

innermost 11-by-11 area. Discard all others. See Fig. 3.4(c). This helps eliminate 

the unrelated components in the search window. 

4) Compute the ROI: Compute the convex hull of the main connected component, 

yielding the ROI of current iteration. Calculate its centroid and its size. See Fig. 

3.4(e). The purpose is to wrap the papillary muscle and trabeculae (which exhibit 

darker intensity profile) in the main connected component so that its centroid is a 

meaningful representative of the LV center once convergence is reached.  

5) Check for convergence: If the centroid and the size of the convex hull calculated 

in Step 4 does not change, then the LV localization is complete. 

 

Fig. 3.2 Iteratively compute the ROI until convergence. 
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6) Next iteration: The search window for the next iteration is determined by applying 

morphological dilation on the convex hull using the structure element of size 17-

by-17. See Fig. 3.4(d). Proceed to Step 2 for the next iteration until convergence 

criterion is met. 

Additional care for the CMR image with left ventricular outflow tract (LVOT) present 

is needed. In these images, the connected component (presumably the LV cavity) would 

extend far beyond the LV region into the RV (See Fig. 3.3). We detect the presence of 

LVOT based the following two criteria. One is when the center of ROI strays too far away 

from the original starting position. The other is when the size of ROI exceeds that from 

last iteration. Though simple, these two criteria combined together can tell whether the 

ROI grows without signs of stopping. When LVOT detection are triggered, the ROI is 

reset to its original position and size and proceeds as usual, but with a more strict stopping 

criteria that halts the iteration prematurely; namely, it now restricts the movement of the 

ROI within an area of 5-by-5 and any sudden growth will halt the iteration, preventing it 

from reaching into the non-LV region. 

 

Fig. 3.3 Special attendance in LV localization when LVOT is present Left: Presence of 

LVOT. Middle: ROI grows out of range. Right: With appropriate stopping criteria. Red 

area: computed search window for next iteration 
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Note that the LV cavity detected at the end this stage, for example the one shown in 

Fig. 3.4(b), may be a good enough representation of the LV cavity. This is generally not 

true for all the variants of CMR images, and therefore we introduce a more sophisticated 

LV endocardium delineation scheme, described in the following section. 

 

3.3 Segmenting LV Blood Pool by Cost-Volume Filtering 

Once the region of interest (ROI) covering left ventricle is in place, we can now proceed 

to segmenting the LV blood pool.  

 

3.3.1 Cost-volume-filtering-based image segmentation 

Cost-volume filtering is a filter-based method for multi-labeling problems. It has been 

shown to be able to achieve computational complexity of O(N) time, which is a very 

efficient implementation [29]. In general multi-labeling problems, the cost of assigning 

each label l L∈  (e.g., foreground and background) at pixel position (i, j) is first 

initialized. This yields a 3D cost volume C(i, j, l). Then cross-bilateral filtering is applied 

 

Fig. 3.4 Automatic ROI computation: step-by-step breakdown.  
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to the 2D cost slice C(i, j, l) for each l L∈ . After all the cost slice is filtered, the least 

costly label is chosen for every pixel, and as a result the filtered cost volume is flattened 

into 2D CVF-refined label image. 

Cost-volume filtering scheme for label refinement is able to achieve spatially 

coherent5 results and the label change is aligned with the edges, which makes it ideal for 

LV cavity segmentation. It was originally used to refine the cost from stereo 

correspondence matching. Hosni et al. first suggested the use of cost-volume filtering in 

general multi-labeling problem by introducing different cost initialization schemes for 

each specific application, including the one for interactive image segmentation [29]. 

However, their cost initialization scheme requires that the operator identify the 

foreground and background object by free-form drawing, not by automation. Therefore, 

as will be covered soon, we have designed a completely new scheme for automatically 

initializing the cost volume. Also, it is specifically tailored to LV blood pool segmentation 

in order to address the segmentation difficulties caused by partial volume effect. 

                                                 

5 Spatial coherence here refers to connectedness; that labels come in compact, clustered groups. 

     

Fig. 3.5 Polar coordinates mapping. Left: CMR image. Right: After polar coordinate 

mapping centered at the centroid of LV cavity (marked in a cross) 
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3.3.2 Polar coordinates mapping  

The ROI determined in Section 3.2 is transformed from Cartesian coordinate into polar 

coordinates, which yields Ip(i, j). See Fig. 3.5. This is very much a standard procedure 

and has been used in several other works [4], [6], [12], [24], [30]. Since the left ventricular 

myocardial contour is roughly an oval shape in Cartesian coordinates, mapping it into 

polar coordinates will produce a flat or a slow-varying curve. This greatly simplify the 

processing flow and increase robustness because we already know the endocardial and 

epicardial contours will both be slow-varying curves. Therefore, we can incorporate this 

prior knowledge as a smoothness constraint in least square fitting of the final result, which 

is to be discussed in detail in Section 3.4.3.  

 

3.3.3 Cost-volume initialization.  

We propose a novel method for automatic cost initialization for CVF-based segmentation 

in CMR images. First, we calculate a binary image BI(i, j) of the polar image by applying 

Otsu’s method that clusters the pixels into two classes (darker myocardium and brighter 

LV cavity), where the threshold is calculated from the histogram of the last search window 

discussed in Section 3.2 (or see Fig. 3.2 for visual example). Only the connected 

component that overlaps with r=0 in the polar image ),( θrI p  is preserved because the 

LV blood pool must cover the centroid of the ROI. Computing the threshold based on the 

histogram of the last search window instead of a circular ROI is shown to be more robust, 

as it has one clear advantage: it keeps the unrelated tissues (such as liver, lungs, fats) from 

contributing to the histogram, or else these unrelated tissues could possibly break the 

assumption that there are only two distinct classes in the histogram. The bright pixels in 
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the binary image indicates LV cavity. 

 The binary image BI(i, j), along with the additional information such as the variance 

map ),( jiVM , are used to automatically initialize the cost volume. See Fig. 3.6 for the 

information involved in generating the cost volume. A variance map is very suitable for 

determining the local inhomogeneity, which we will describe its usefulness shortly. The 

variance map ),( jiVM  of the polar image ),( jiI p  is calculated by taking the 7-by-7 

window around the pixel at (i, j) and computing its variance by: 
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We want the cost volume to have certain desirable properties:  

1. If the pixel (i, j) in the polar image ),( jiI p  is locally homogeneous (i.e., how 

uniform the pixel values are), which implies the pixel belongs to either LV 

cavity or myocardium, then the pixel’s label should be harder to change.  

2. If the pixel (i, j) in the polar image ),( jiI p  is locally inhomogeneous (i.e., 

how scattered the pixel values are), which implies that the pixel is near the 

border of myocardium or near trabeculae, then the pixel’s label should be easier 

to change. 

Finally the “foreground slice” in the cost volume is generated using the formula 
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The c, α, β, and γ are tunable parameters: the parameter c is the constant and it can be set 

to zero. The parameter α is set as 1000 so that the locally inhomogeneous areas (i.e., the 

area which exhibits high variance) have more balanced cost between two extremes, 

making them subject to the cost of its vicinity. The parameters β and γ are the weightings 

for initializing the cost. We set them as 5.0==== BFBF γγββ  for the most cases. For 

CMR slices automatically detected as hypertrophic (LV cavity is smaller comparing to 

normal subjects) the constant c will be adjusted to −20 and the weighting 
Bβ  to 20 with 

the aim of lowering the cost weighting for the LV cavity.  

 

3.3.4 Cost-volume filtering 

Once the cost volume is constructed, the next step is to filter the cost volume. More 

precisely, every slice l of the cost volume C(i, j, l) is filtered by summing a space-variant 

weighted average of neighboring pixels. Now, given two independent indices i=(x, y) and 

j=(m, n): 

 

Fig. 3.6 Generating cost volume (a) Polar image of the ROI (b) After Otsu’s 

thresholding and primary connected component extraction, shown in red overlay (c) 

Variance map of the polar image (d) Generated cost slice for the ‘foreground’ label. 
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 After filtering the cost volume for 100 iterations, we finally choose the label fi with 

the least cost for each pixel i in a winner-take-all fashion: 
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where |W| is the normalization factor. Equation (3.4) indicates a cross bilateral filter where 

the filter weight W(i, j; Ip) depends on the spatial closeness between the pixels i and j (the 

first exponential term in (3.6)) and the intensity difference in the guidance image Ip(i) and 

Ip(j) (second exponential term in (3.6)). Intuitively explained, for each slice, the cost of a 

pixel at a given position is aggregated from its neighborhoods that have similar signal 

intensity. The nearer and the closer the signal intensity the given pixel’s neighborhoods 

are, the more the given pixel will be influenced by them. 

However, brute force implementation of (3.6) is O(Nr2) time with filter weight size 

r. To boost the computational efficiency, we choose to implement CVF with the guided 

filter proposed by He et al., which is O(N) time and non-approximate [31]. Now, given 

the guidance image Ip, the filter weight WGF of guided filter is given explicitly by 
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where k is the index, μk the mean, and σk
2 the variance of the polar image Ip within the 
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window ω that is centered at i=(i, j), and |ω| is the number of elements in ω. The parameter 

ε controls the smoothness of the filtered output. For further explanation of (3.7) refer to 

[31]. 

 In our implementation, we use (3.7) with window size of 17x17 and ε = 10−8 for 

filtering the cost slices. Cost-volume filtering is complete after filtering every slice of the 

cost volume. As mentioned before, we repeat this process 100 times in order to converge 

the cost. Afterwards, the primary connected component is extracted in the same fashion 

as in Section 3.3.2. 

Up to this point, we have only exploited the region homogeneity of LV blood pool—

that we group the pixels presumably belonging to the LV blood pool based on their 

similarity in signal intensity and their spatial connectedness. Later we will explore the 

possibility of exploiting gradient information of the image in Section 3.4.2. 

 

3.4 Endocardial Contour Processing 

3.4.1 Generating contour from detected LV blood pool  

The CVF-filtered binary image is now a 2D representation of the LV cavity where the 

 

Fig. 3.7 Detection and analysis of contour fluctuations. 
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cluster of white pixels is where the LV blood pool situates, which is still somewhat 

premature because LV blood pool is not a good representation of the LV cavity. In fact, 

LV cavity includes both the LV blood pool and the PMTC (papillary muscles and 

trabeculae carneae) tissues. In order to generate accurate endocardial contour from the 

CVF-filtered binary image, we translate this 2D representation of LV cavity into a 1D 

contour function and correct it. 

To generate the contour function, denoted as f, we project vertical rays upwards from 

below the binary image. When the individual ray hits the major connected component, 

the ray stops. The hit spots are translated into a one-dimensional contour function f, in 

which the x-axis denotes the angle and the y-axis denotes the distance to the centroid 

(determined in ROI localization step).  

The contour function f will have some abrupt fluctuations, which occurs mostly 

where the PMTC are present. The fluctuation’s exact onset and termination can clearly 

be determined once we derive the first-order derivative f ′ of the contour function. See 

Fig. 3.8 for visual illustration. It is obvious that the spikes in f ′ occurs with the presence 

of PMTC. Since the PMTC is, by convention, a part of the LV cavity, we will regularize 

the contour function in order to align the contour function closely with the endocardium. 

Therefore, the preliminary contour correction is introduced. It involves two steps: First, 

the onset and the termination of each fluctuation are detected. Second, the fluctuation is 

substituted with linear interpolation.  

 The main idea of detecting the fluctuations is illustrated in Fig. 3.7. Depending on 

test subject’s heart health and anatomic variations, there are several types of fluctuations 

which can be observed in the contour function. Type 1 fluctuations exhibit sharp changes 

in both onset and termination. To detect Type 1 fluctuations, we calculate the first-order 

derivative f ′ of the contour function. The resultant output will have positive and negative 
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spikes representing onset and termination, respectively (illustrated in Fig. 3.7). However, 

the spikes are recognized as onset and termination only if each one’s absolute value 

exceeds a certain threshold t1. Type 2 fluctuations exhibit less abrupt changes than Type 

1 does, and their first-order derivative are less significant. To detect Type 2 fluctuation, 

the first-order derivative is convoluted with a box filter of unit height and width w2. The 

resultant output will have hill- or triangle-like responses. The local maximum and 

minimum are picked up as onset and termination only if each one’s absolute value exceeds 

a certain threshold t2. Type 3 fluctuations occur mostly in subjects with thicker PMTC 

tissues. Since they are much smoother in appearance than the previous two types, we use 

a wider box filter with unit height and width w3. The onset and termination is determined 

in the same fashion with a threshold value of t3. All the threshold values and box filter 

 

Fig. 3.8 Contour function fluctuations in relation with its first-order derivative (Top) 

Polar image of the ROI with LV cavity marked in overlay. (Middle) Contour function 

of the LV cavity. (Bottom) First-order derivative of the contour function 
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widths are determined experimentally.  

The fluctuations exhibit a pattern in which the onset and termination come in pairs 

and in order. That is, an onset, by definition, always entails a termination; the reverse is 

not true. If the position of onset and that of termination are denoted as x0 and x1, 

respectively, then the contour f in the interval ],[ 10 xx  is corrected by connecting a 

straight line through f(x0) and f(x1), namely: 
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where g is the corrected contour function. The contour function goes through Type 1, 2, 

and 3 detectors in successive order, and (3.8) is repeated for each interval found. At the 

 

Fig. 3.9 Demonstrating contour function correction (a)(b)(c) Correcting the curve in 

successive order. Label ‘O’ on the curve denotes candidate onset and ‘X’ denotes 

candidate termination. Bounded by vertical lines are detected fluctuations. (d) Corrected 

contour (e) Corrected contour superimposed with CVF-based segmentation result. 
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same time, we maintain a set that records the contour segments that have been corrected, 

which is denoted as SetCorrected. 

The pseudo code for correcting the contour function is summarized in Table 3.1 and 

the complete workflow and the resulting output is illustrated in Fig. 3.9.  

 

 

Table 3.1 Pseudo code for contour function correction 

 

3.4.2 Complementary contour generation 

The contour segments that were corrected using simple linear interpolation in the last step 

may not match closely enough with the desired endocardial contour. To overcome this, 

we utilize the gradient information of the image because high gradient magnitude 

response can be observed along the endocardium. Exploiting this fact allows us to 

complement the contour segments B with these additional information, further improving 

the accuracy of the detected contour.  

In our attempt to exploit gradient information, we choose Canny’s edge detector [32] 

because it suppresses non-maximum gradient response and works well over a wide range 

of MR images. However, not only the endocardial contour responds to Canny’s edge 

Generate the contour function f 

Initialize SetCorrected as a null set 

f ′ ← derivative of f 

for each detector i: 

Convolute f ′ with box filter wi 

  if both the absolute value of local extrema > ti  

 x0/x1←position of positive/negative extrema  

    Linear interpolation by (3.8) 

    SetCorrected←SetCorrected ],[ 10 xxU  

  end if 

end for  
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detector, other tissues, PMTC in particular, and MR distortions could also return false 

positives that lead to erroneous results. To extract the endocardial contour from the rest 

of the edge responses, we use the contour generated based on CVF after contour 

correction to act a guide. See Fig. 3.10 for the workflow. The guide picks up nearby edge 

responses generated by Canny’s edge detector. Finally, the picked-up edge response is 

refined through a process of discarding connected components that are less than 16 

elements, and employing morphological closing operation with circular structure element 

of radius 10. The refined edge response is then transformed into a contour function (refer 

to Section 3.4.1 for contour function generation) and is denoted as fc, the complementary 

contour function. Similar to the contour function generated by CVF-based segmentation 

result, the complementary contour function fc also has some fluctuations due to lack of 

sufficient edge information, and is corrected in the same manner as described in Table 3.1. 

 

Fig. 3.10 Workflow of complimentary contour generation 
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3.4.3 Endocardial contour regularization 

In this step, we propose a regularization step in order to incorporate the information 

gathered from region-based (Section 3.3.4) and gradient-based (Section 3.4.2) methods 

from CVF and Canny’s edge detector, respectively. Specifically, two raw contours 

obtained from region-based CVF and gradient-based Canny’s edge detector undergo a 

combination and smoothing process during which suitable weighting function for each 

raw contour are determined and additional constraints are enforced. 

 Let us denote I as the contour generated from CVF-based segmentation after contour 

correction, C as the complementary contour generated from Canny’s edge detector after 

contour correction. Now, we want to obtain a final regularized endocardial contour E, 

where the regularization is done by minimizing the following objective function: 

[ ] [ ] [ ]
2 2 2

min ( ) ( ) ( ) ( ) ( ) ( )
p B p G p

O E E p C p E p I p E pλ
∈ ∈

′′= − − +∑ ∑ ∑＋  (3.9) 

subject to 

( ) ( )E p I x p> ∀ , (3.10) 

 

Fig. 3.11 Workflow of endocardial contour regularization 
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where the set B is the set of the CVF-based contour segments that have been corrected, 

set G is the set of the CVF-based contour segments that do not require correction, and is 

equivalent to the complement of the set B. The workflow is illustrated in Fig. 3.11. The 

rationale of using the complementary contour only at the set B is because Canny’s edge 

response is generally less reliable because it sometimes returns false positive edge 

responses. However, when discerning the fine edge response between the endocardium 

and PMTC tissues, Canny’s edge detector is more suitable in doing so. 

As shown in (3.9), the final endocardial contour E is driven by two factors: the data 

term (first two terms) and the smoothness term (the third term). Since the objective 

function is a cascade of quadratic terms summed together, minimizing it becomes an 

effort to make every term as close to zero as possible while fulfilling some constraints 

specified in (3.10). The data term tries to minimize the error between the final contour 

and the two contour functions at specific segments dictated by set B and G. The 

smoothness of the final endocardial contour is done by minimizing second-order 

derivative of the final contour itself, where the degree of smoothness is controlled by 

 

Fig. 3.12 Comparison of segmentation results (a) Auto without constraint (b) Auto 

with constraint. Notice the improved accuracy. (c) Expert-drawn. 
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weighting λ. Furthermore, the additional constraint in (3.10) ensures that the final 

endocardial contour E fully encloses the LV cavity (see Fig. 3.12), represented by the 

contour I generated from CVF-based segmentation result. This additional constraint is 

designed to fully enclose PMTC tissues as well as the LV blood pool inside the final 

endocardial contour. In our experiments, we set λ=1000 because it has a good balance 

between over-smoothing and minimal smoothness. 

 

3.5 Cardiac Cycle Determination 

To derive left ventricular ejection fraction (EF), one needs to determine the end-systolic 

volume (ESV) and end-diastolic volume (EDV), which in turn requires the time moment 

when end-systolic (ES) phase and end-diastolic (ED) phase occur. This can be determined 

automatically by the proposed method. After integrating the voxels within the endocardial 

contour, we are able to compute the left ventricular blood volume over time. The ES phase 

is then designated by the time moment of minimum blood volume, and the ED phase the 

time moment of maximum blood volume. While ES and ED can be determined 

automatically by the proposed method, other methods such as ECG signal is also possible.  
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Chapter 4 Results and Discussion 

4.1 Test Dataset and Evaluation Metrics 

We adopt an open test dataset provided by Sunnybrook Health Science Center at Toronto, 

Canada [33] for evaluating the performance of the proposed algorithm. The dataset 

provides CMR scans acquired from 45 patients encompassing one healthy and three 

distinct pathological cases (see Table 4.1). Endocardial contours at both end-systole and 

end-diastole drawn by experienced cardiologists are provided, as well as the source code 

for evaluating the performance of the segmentation results. Technical details regarding 

the test CMR datasets are: 

• Acquisition protocol: Steady-state free precession (SSFP) MR short-axis view 

(SAX) images are obtained during 10-15 second breath-holds with a temporal 

resolution of 20 cardiac phases over the heart cycle, and scanned from the end-

diastole. Six to 12 SAX images were obtained from the atrioventricular ring to the 

apex. 

• MRI scanner: 1.5T GE Signa MRI with field of view=320mm*320mm, matrix= 

256*256, slice thickness=8mm, gap between slices=8mm. 

Case Subject’s pathology 
# of 
subject 

SC-N Healthy 9 

SC-HF-I 
Heart failure with 
infarction 

12 

SC-HF-NI 
Heart failure with non-
ischemic disease 

12 

SC-HYP Hypertrophy 12 

Table 4.1 Pathological cases in the adopted test dataset 
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Given an automatically computed contour A and manually drawn contour M, two 

metrics depicting how close these two contours relate to one another are: 

• Average perpendicular distance (APD), which measures the absolute distance 

from any given point in contour A to contour M in the direction of its normal 

vector, averaged over all points in contour A. It can be interpreted as mean 

absolute error from the gold standard. Therefore, lower APD indicates better 

segmentation accuracy. 

• Dice metric (DM), which measures the proportion of the overlapped area of A 

and M over the union of A and M. The value of DM is always between 0 and 1. 

A higher DM typically implies a closer match between the two contours, but it 

is not necessarily true, as will be discussed later in this chapter. Define AX as 

the area enclosed by contour X, DM of two contours is defined as: 

       
MA

MA

AA

AA

U

I )(2
DM = . (4.1) 

 

Fig. 4.1 Summary of evaluation metrics used in CMR segmentation results 
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Also important is the third evaluation metric: success rate (SR)6, defined as the number 

of successfully detected contours (computed contour is deemed successful when 

APD<5mm) over the total number of contours from apical to basal slices in a given CMR 

scan. Therefore, the higher the success rate, the less failed contours that need to be 

manually corrected. These three evaluation metrics are summarized in Fig. 4.1. Success 

rate has been somehow overlooked in previous literature [7], where some seemingly high 

accuracy segmentation results that are reported by previous works are blinded by the fact 

of omitting certain amount of CMR slices (e.g., more problematic basal and apical slices), 

making the result appears better. It is important that all three metrics must be considered 

as a whole when evaluating the performance of CMR segmentation algorithm. 

 

4.2 Evaluating Segmentation Results 

All 45 patients’ CMR volume at ED and ES phases, which is a total of 800 images, are 

used to evaluate the proposed method. Of which 52 (approx. 6.7%) computed endocardial 

contours are rejected by the evaluation tool due to high APD (>5mm).  

Performance analysis shows that the proposed method for delineating LV 

endocardial contour achieves high success rate (SR) of 94.1±6.1%. Average 

perpendicular distance (APD) and dice metric (DM) read 1.75±0.42mm and 0.91±0.03 

respectively, which implies the automated LV segmentation results are not only robust, 

they also match closely to the gold standard. Table 4.2 confirms that the proposed method 

is one of the most competitive among recent works7. In particular, the proposed method 

                                                 

6 In some literature, the success rate (SR) is alternatively named “good percentage.” 

7 As regulated by the evaluation tool, rejected contours are not included in the statistics of APD and DM. 
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has the best APD and DM among all recent methods. The SR ranks slightly behind the 

method proposed by Ngo et al. It is noteworthy that only the methods from Huang 2011, 

Lu 2013, and Constantinides 2012 (auto) are automatic. Others require either drawing a 

rough initial contour or annotated datasets for training the prior models. By contrast, the 

 SR (%) APD (mm) DM 

Group Mean StD Mean StD Mean StD 

SC-HF-I 94.2 7.7 1.542 0.296 0.93 0.02 

SC-HF-NI 95.1 4.1 1.736 0.459 0.92 0.02 

SC-HYP 93.6 6.5 1.900 0.420 0.88 0.03 

SC-N 93.4 5.3 1.834 0.377 0.89 0.02 

Overall 94.1 6.1 1.748 0.417 0.91 0.03 

Table 4.3 Evaluation of proposed method on each of the four groups plus all 45 

patients. 

Method 
SR (%) 

 Mean(StD) 
APD (mm) 
Mean(StD) 

DM  
Mean(StD) 

Huang 2011  
(auto) [10] 

81.5(18.0) 2.19(0.44) 0.91(0.03) 

Hu 2013  
(auto) [14] 

91.1(9.4) 2.24(0.40) 0.89(0.03) 

Constantinides 2012 
(semi-auto) [16]  

91.0(8.0) 1.94(0.42) 0.89(0.04) 

Constantinides 2012 
(auto) [16] 

80.0(16.0) 2.44(0.56) 0.86(0.05) 

Ngo 2013  
(semi-auto) [34] 

97.9(6.18) 2.08(0.40) 0.90(0.03) 

Ours (auto) 94.1(6.1) 1.75(0.42) 0.91(0.03) 

Table 4.2 Performance comparison of proposed method. All results listed are 

evaluated by the same Sunnybrook CMR database consisting of 45 patients. 
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proposed method requires no training; we only ask the operator for one click on anywhere 

inside the LV cavity if the assumption that the LV lies near the center of MR images is 

violated. For streamlining the evaluation process, however, this initial knowledge is 

provided by the operator for every MR image. This prerequisite can be easily removed if 

we adopt existing algorithms [4], [8], [28] that locate the rough position of the LV to 

replace the simple manual initialization step. Therefore, we believe it is sufficient to claim 

the proposed method is fully automatic. By this regard, the proposed method is currently 

the top performer comparing to all other automatic methods. 

Table 4.3 looks into the performance variation for each pathological group. The 

performance of the proposed method is not sensitive to any particular pathological group, 

 

Fig. 4.2 Selected slices at ES phase showing segmentation result for the case of 

hypertrophy (SC-HYP-08). Top row shows computed contour (red solid line) versus 

manually-drawn contour (purple dashed line). Bottom row shows close range view of 

the region of interest. 
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though it can still be observed that the APD for the group of heart failure (SC-HF-I and 

SC-HF-NI) is the lowest while APD for the group of hypertrophy (SC-HYP) is slightly 

higher. The reason explaining this finding is because hearts afflicted by heart failure often 

have clearly defined endocardial contour across all time phases, therefore it is easier to 

be detected accurately. In extremely hypertrophic cases, by contrast, the LV blood pool at 

ES phase can barely be seen—a result of an abnormally thick muscle wall that leaves 

little chamber volume for blood fill. See Fig. 4.2 for example of a hypertrophic case we 

encountered. The leftmost image shows sub-par yet still acceptable segmentation result, 

in which a portion of the endocardial contour can still be seen. As the MR scanning plane 

goes further down the slices (from left to right), papillary muscles and trabeculae carneae 

(PMTC) begin to obscure all of the endocardial contour, and the proposed method also 

Method 
SR (%) 

 Mean(StD) 
APD (mm) 
Mean(StD) 

DM  
Mean(StD) 

Jolly 2009* 95.62(8.83) 2.26(0.59) 0.88(0.04) 

Lu 2009* 72.45(18.86) 2.07(0.61) 0.89(0.03) 

Huang 2009* -- 2.10(044) 0.89(0.04) 

Wijnhout 2009* 86.47(11) 2.29(0.57) 0.89(0.03) 

Constantinides 2009* 92.28(--) 2.04(0.47) 0.89(0.04) 

Marák 2009* -- 3.00(0.59) 0.86(0.04) 

Feng 2013 92.8(9.2) 1.93(0.37) 0.86(0.04) 

Ngo 2013  96.58(3.66) 2.22(0.46) 0.89(0.03) 

Ours  96.31(4.85) 1.67(0.40) 0.91(0.03) 

Table 4.4 Performance comparison with Sunnybrook CMR “validation” set 

consisting of 15 patients (N=3, HYP=4, HF-I=4, HF-NI=4). Results published in the 

MICCAI 2009 Challenge are marked by asterisk (*). 
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begins to fail. In the rightmost image in Fig. 4.2, the segmentation result is rejected mainly 

due to the fact that the PMTC tissues are so densely collapsed together that no endocardial 

contour can be seen. Of course, by tracing the motion of the muscle wall over time, it is 

possible to recover the endocardial contour even if it is completely obscured. It is however 

beyond the design of the proposed method. Nevertheless, tracing the motion of the muscle 

wall is a very interesting and highly practical way of improving the segmentation accuracy. 

We leave it for future works. 

Table 4.4 lists the result comparison8 using a portion of the Sunnybrook CMR 

database. This portion is the “validation” set, on which all the published results of the 

competing methods in MICCAI 2009 Challenge are based. Again, the proposed method 

outperforms all other competing methods in terms of APD (1.67±0.40mm) and DM 

(0.91±0.03). In summary, strong evidences lead us to believe that the proposed method is 

one of the most competitive method among current state-of-the-arts. 

 

4.3 Evaluating Left Ventricular Functions 

Cardiac parameters extracted from the CMR volume are the most relevant information to 

clinicians. The proposed method answers this need: it also provides accurate assessment 

of the left ventricular parameters derived from the intermediate automatic segmentation. 

The mean bias between automatically versus manually computed ejection fraction (EF) 

over all 45 patients is 1.61±4.72. Mean bias between automatically versus manually 

computed end-systolic volume (ESV) and end-diastolic volume (EDV) are minus 

                                                 

8 Likewise, all methods [11], [12], [17], [34]–[37] listed in Table 4.4 follow the principle that the rejected 

contours are not included in the statistics of APD and DM. 
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7.19mL±10.53mL and minus 7.76mL±16.92mL, respectively.  

. Refer to Table 4.5 for detailed error analysis for each pathological group. The mean 

bias of EF is almost negligible for all four pathological groups as well as for the overall 

evaluation. On the other hand, the computed ESV and EDV have an almost universal, but 

slight, negative bias regardless of pathological groups. This is an expected consequence: 

due to segmentation error, the computed endocardial contour often lies inside the 

manually annotated endocardial contour (a clear example is shown in Fig. 4.2). As a result, 

the proposed algorithm tends to underestimate the ESV and EDV. However, the tendency 

to underestimate the LV blood volume is consistent enough, therefore the bias will be 

negated when computing the EF (because estimating EF involves the difference of EDV 

and ESV; refer to Section 2.3). This is confirmed by Bland-Altman analysis9 shown in  

                                                 

9 Bland-Altman analysis compares the value X from a new measurement techniques against a reference 

value Y. The x-axis is the mean (X+Y)/2 and the y-axis is the residual X-Y. In this case, the value X is the 

computed cardiac parameters and Y is the gold standard. The smaller the residual, the higher the agreement 

between two measurement techniques. 

 EF error ESV error (mL) EDV error (mL) 

Group Mean  StD Mean  StD Mean StD 

SC-HF-I -0.15 2.89 -8.56 13.23 -10.65 18.64 

SC-HF-NI 2.27 4.64 -11.11 10.76 -8.45 17.66 

SC-HYP 2.13 5.01 -6.49 7.93 -10.94 12.89 

SC-N 2.39 5.70 -1.07 4.69 1.71 14.68 

Overall 1.61 4.72 -7.19 10.53 -7.67 16.92 

Table 4.5 Evaluating cardiac parameters with respect to each pathological group. 
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Fig. 4.3 Bland-Altman analysis (left) and regression analysis (right) of cardiac parameters. 
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Fig. 4.3, left column. Bland-Altman analysis for EF shows no systematic bias for all four 

pathological cases, which makes the proposed method ideal for estimating the EF. As for 

the computed ESV and EDV, the Bland-Altman analysis shows increasing negative bias 

as mean value increases for heart failure cases (SC-HF-I & SC-HF-NI). However, 

evaluation of the segmentation results already confirms the proposed method achieves 

the best APD and DM in heart failure cases. What causes the seemingly contradicting 

evidences? The reason behind this discrepancy can be explained: depending on the LV 

cavity size, a small segmentation error may result in large difference in terms of the 

segmented area, and ultimately, the LV blood volume. This effect can be further amplified 

when dealing with enlarged LV cavity, which is exactly the case for patients suffering 

from heart failure, whose heart chambers are usually pathologically oversized. In the 

Bland-Altman plot, one can observe that data points deviating from the ideal reference 

line (y=0) are exclusively heart failure cases (note that not all heart failure cases show the 

same amount of bias). Given the above findings, we conclude that the bias for ESV and 

EDV is approximately proportional to the mean of two measurements. For EF, a 

negligible bias is observed, and the measurement error is consistent across all range. 

Regression analysis shows strong correlation between automatically and manually 

computed cardiac parameters, shown in Fig. 4.3, right column. Coefficient of 

determination (R2) between automatically and manually obtained EF, ESV, and EDV are 

0.94, 0.99, and 0.97, respectively. Other reported R2 for EF, while not necessarily using 

the same database for evaluation, are: 0.87 by Cocosco et al. [8], 0.90 by Lu et al. [6], 

0.92 by Lorenzo-Valdés et al. [25], 0.92 by Cordero-Grande et al. [38], and 0.83 by 

Constantinides et al. [16]. This is a strong evidence that the proposed method achieves 

top-of-the-line result. The above results are organized in Table 4.6. 
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Aside from these EF, ESV, and EDV, it is also possible to evaluate peak ejection 

rate (PER) and peak filling rate (PFR). However, the database that we adopted provides 

only the gold standard contours at ES and ED phases, therefore we do not have a true 

reference value. Nevertheless, we are optimistic that it will yield accurate results too given 

the high performance of the proposed method, shows the evaluation and the results 

presented above.  

 

4.4 Discussion 

The main advantage of the proposed method is the ability to negate the effect of PMTC 

tissues effectively through the proposed myocardial contour processing steps. The 

effectiveness is backed by the CVF-based image segmentation, which is able to detect 

most of the LV blood volume while being resistant to artifacts affecting the MR images 

such as field inhomogeneity and partial volume effect. First, we would like to discuss 

these two artifacts and how CVF is able to overcome them. 

Method R2 for EF 

Lorenzo-Valdés 2004 0.92 

Cocosco 2008 0.90  

Cordero-Grande 2011 0.92 

Constantinides 2012 0.83 

Lu 2013 0.92 

Hu 2013 0.938 

Ours 0.942 

Table 4.6 Reported coefficient of determination R2 for EF. 
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The former, the field inhomogeneity, imposes a bias field on the afflicted MR image, 

resulting in non-uniform signal intensity which is observable on LV blood pool and other 

tissue types. As a consequence, we should not solely rely on simple histogram-based 

techniques (including Otsu’s thresholding, GMM-based thresholding) to classify the LV 

blood pool as they completely ignore the spatial relationship of the neighboring pixels (or 

voxels in the context of CMR volume). In CVF-based segmentation, the image is first 

transformed into cost volume and the label with least cost is selected after cost within 

every cost slice is aggregated based on spatial proximity and intensity similarity. 

Therefore, CVF will return clustered group of labels. Furthermore, CVF acts like a 

classifier with adaptive threshold. These characteristics makes CVF ideal for combating 

against field inhomogeneity. See Fig. 4.4 for an example. Point A (PA) and Point B (PB) 

belongs to the region of LV blood pool. Due to field inhomogeneity, they apparently do 

not have the same signal intensity. What is interesting here is the darkest area in the blood 

pool is almost the same as the brightest area in the myocardium. Depending on the 

threshold value chosen, too high, we risk mistakenly label the myocardium as LV blood 

 

Fig. 4.4 Robustness against field inhomogeneity 
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pool. Too low, then not all LV blood pool can be correctly labeled. We may need adaptive 

threshold for this case. Here, we choose CVF because it is more versatile: it is a general 

solution for refining multi-label problems. And we can alter the cost for each label in 

different situations. For example, in hypertrophic cases, we alter the cost so that it is easier 

to be classified as LV blood pool, and we have found this versatility valuable in the 

context of CMR image segmentation. 

The latter, the partial volume effect, causes the signal of many tissue types to mix up 

and averaged together if the tissue are in close proximity to each other. Partial volume 

effect is very common in areas where the papillary muscle and trabeculae carneae are 

almost collapsed together with the endocardium border. It causes an ambiguity that 

previous methods are often failed to label correctly. We argue that CVF is effective against 

partial volume effect. See Fig. 4.5 for examples of two similar cases. In Fig. 4.5(a) shows 

the original images of the LV after polar transformation. Fig. 4.5(b) and (c) compares the 

segmentation result from Otsu’s thresholding and CVF-based method, respectively. The 

CVF-based method shows vast improvement over the popular Otsu’s method. All the 

 

Fig. 4.5 Robustness against partial volume effect. 
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ambiguities caused by partial volume effect are recovered by the proposed CVF-based 

segmentation. All these improvements add up. Combined with the proposed endocardial 

processing framework, the CVF indeed returns results that show major improvements 

over previous methods. 

For additional visual assessment of the proposed method, Fig. 4.6 demonstrates one 

of our best results from patients stricken by heart failure. Since the endocardium border 

is clearly defined in both ES and ED phases, the proposed method delineates the 

endocardium accurately. Fig. 4.7 and Fig. 4.8 show relatively poor performance in the 

case of hypertrophy. However, delineating endocardium border in hypertrophic hearts is 

recognized as a very challenging task, as shown in previous findings [11], [12], [17], [34], 

[37]. Our segmentation result is nevertheless an improvement over previous works. 

With little modification to cost volume initialization, we also attempted to apply the 

method to LV epicardium delineation. However, preliminary result is not favorable. It is 

at best among the ranks of average performers. And since it is only experimental, we do 

not publish the exact results here. One reason for the proposed method to fall short on 

epicardium delineation is the intrinsic limitation of CVF: that CVF relies on intensity 

similarity to gather costs from corresponding neighbors. Since the signal intensity 

difference between the myocardium and its neighboring tissues is not as clearly defined 

as that between the myocardium and blood pool, it is very easy to mislabel the nearby 

tissues. Given this finding, it might not be suitable to use intensity similarity for 

epicardium delineation. Gradient-based methods, such as active appearance model or 

active contour model, could be more promising. It will need more investigation to see 

whether gradient information can be used in CVF to prevent such mislabel problems. 
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Fig. 4.6 Selected results from patient SC-HF-I-06.  

ES phase 

ED phase 

— Solid line: auto 

- - Dashed line: manual 
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ES phase 

ED phase 

Fig. 4.7 Selected results from patient SC-HYP-37. The proposed algorithm still manage 

to find the endocardium border even when PMTC tissues collapse together. 

— Solid line: auto 

- - Dashed line: manual 
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ES phase 

ED phase 

Fig. 4.8 Selected results from patient SC-HYP-38. The PMTC tissues collapse together 

and obscure the endocardium border at ES; segmentation error can be observed. 

— Solid line: auto 

- - Dashed line: manual 
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Chapter 5 Conclusion 

In this thesis, we have proposed a computational framework that automatically segments 

the left ventricle in short-axis (SAX) view cine cardiac magnetic resonance (CMR) 

images. We employ novel cost-volume filtering (CVF) scheme combined with novel 

myocardial contour processing framework to overcome the segmentation difficulty 

resulted from PMTC (papillary muscle and trabeculae carneae) tissues that prevents 

previous methods from achieving high segmentation accuracy. Experimental result shows 

improved accuracy and robustness over previous works. Highlights regarding this work 

are: 

• The first work to use CVF in the context of medical image segmentation. 

Furthermore, we have proposed a novel cost initialization scheme specifically 

tailored to CMR images for improved accuracy. 

• The contour processing framework processes the 1D contour function 

transformed from the segmentation result produced by CVF. By exploiting 

gradient information, a complimentary contour is also generated. In the final 

stage, two raw contours obtained from region-based CVF and gradient-based 

Canny’s edge detector undergo a combination and regularization process in 

which suitable weighting function for each raw contour are determined and 

additional constraints are enforced.  

• One of the issues in previous left ventricle segmentation methods is erroneously 

including the papillary muscle and trabeculae as a part of the myocardium. A 

new constraint in contour regularization process is proposed to ensure exclusion 

of them. To our knowledge, no other works have used similar methods nor do 

they consider this piece of information to improve myocardial contour accuracy.  
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• Our method is robust against various pathologies. Specifically, a total of 45 

subjects spanning three pathological plus one healthy cases are tested. All four 

cases show improvement in segmentation accuracy and in derived cardiac 

parameters. 

Furthermore, given that many information are yet to be exploited, such as the 

inherent 3D information in CMR volume and heart movement constraints, we believe the 

performance of the proposed segmentation algorithm can be improved much further once 

all the information is taken into consideration. In addition to the quantitative analysis that 

shows close correlation between manual and automated segmentation, the high 

segmentation accuracy and low manual intervention rate suggest our work has potential 

to accurate 3D reconstruction of left ventricle for visualizing the shape and motion of the 

left ventricle. Future work includes exploiting inter-slice and inter-time relationships in 

order to optimize the contour globally, as well as extending this methodology to the 

delineation of left ventricular epicardial contour, which will make additional clinical 

parameters such as myocardial mass available. 
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