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摘要

實作密碼學系統時，常見許多多維代數結構間的運算。若要在較低階的組合語

言上實作，必須轉換成基本元素的運算。運算數量龐大時，必須有自動化工具來

輔助。此外，在低階語言上無法高階地描述系統或演算法，增加程式設計者的困

難，以及出錯的可能性。

我們提出一個嵌於Haskell中的特定領域語言，讓程式設計者能以方便的語法
和多維的代數結構，描述密碼演算法和系統。程式會被表示成樹狀的表示式，並

且由編譯器自動展開代數結構的運算，轉成中間語言，再進行優化並產生目標語

言。

編譯器結合了兩個優化器，並且實作了兩種目標語言，分別是Hydra處理器上
的組合語言，以及C++，支援的代數結構有擴張體和矩陣。程式設計者也能加入
自己所需的代數結構、優化或是目標語言。我們在此特定領域語言上實作了兩個

應用：最佳配對和一個基於LWE的密鑰交換系統。
使用此特定領域語言實作密碼系統，可將數學演算法、優化和輸出語言各自獨

立，節省重複的工作，並且程式設計者在實作時可把重點放在密碼系統高階的描

述。

關鍵字: 密碼工程、特定領域語言、Haskell、Hydra處理器、編譯器優化



Abstract

Multidimensional algebraic structures are common in the description of crypto-

graphic systems. They have to be translated to computations between basic ele-

ments by automation before being implemented on low-level assembly languages.

Besides, the programmer cannot write programs in a high-level way, which makes

them more error-prone.

In this thesis, we propose a domain-specific language embedded in Haskell, so

that the programmer can implement cryptographic systems in convenient syntax.

The computations of algebraic structures will be expanded, supporting extension

fields and matrices.

Our compiler is combined with two optimizers, and supports two target lan-

guages: Hydra assembly and C++. The programmer can add his own algebraic

structures, optimizations, and target language as needed. We also implement two

applications in this DSL: optimal pairing and a key exchange with LWE.

The algorithm description, optimizations and code generations is separated and

independent. The programmer can focus on the high-level descriptions of the cryp-

tographic systems.

Keywords: cryptographic engineering, domain-specific language, Haskell, Hy-

dra coprocessor, compiler optimizations
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Chapter 1

Introduction

Cryptographic engineering is using cryptography to solve problems, such as ensuring

data confidentiality, authenticating people or devices, or verifying data integrity. It

is a complex, multidisciplinary field, including:

• Mathematics: finite groups, rings, fields, lattices, etc.

• Computer engineering: hardware design, ASIC, embedded system, FPGAs,

etc.

• Computer science: algorithms, complexity theory, software design, etc.

In this thesis, we focus on the problems of implementing cryptographic systems in

software.

Sometimes, the implementation has to be done in instructions for processors or

coprocessors. The programmer will face the following challenges:

• Cryptographic protocols are usually expressed in terms of multidimensional

algebraic structures, such as extension fields or matrices. For example, an

n × n matrix over a field F represents n2 elements in F . When the program

is written in low-level languages without objects to represent matrices, the

programmer will have to explicitly rewrite a single matrix multiplication into

n3 multiplications in F . This can be tedious without help from automation.
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• Writing in low-level languages is inconvenient, and error-prone. Also, to gen-

erate code for another machine, the programmer will have to learn new lan-

guages.

• The program needs to be optimized for efficiency. Some optimizations are

machine-independent, and should be abstracted to avoid duplicated work.

1.1 Embedded Domain-Specific Language

A domain-specific language (DSL) is a computer language specialized to a particular

domain. A DSL can be embedded in a general purpose host language, while adding

domain specific elements, such as data types, functions, etc. In this way the DSL can

exploit the existing syntax, type system, and libraries of its host language, saving

the designers from the details of language implementation.

There are two ways to embed a language: shallow embedding and deep em-

bedding. Shallow embedding uses host language functions and values as its own

functions and values, while deep embedding uses algebraic data types to represent

the abstract syntax tree. Since we want the language to be compiled to an interme-

diate representation, deep embedding is our choice.

Embedding code-generating domain-specific languages in Haskell was originally

advocated by Leijen and Meijer [LM99]. It has been popular choices for domains

including parsing [Hut92], pretty-printing [Hug95], efficient image manipulation

[EFDM03], robotics [PNH02] and hardware circuit design [BCSS98]. Its advantage

includes:

• Functional. Good at expressing mathematical functions, no side effects.

• Strong, static typing. Bugs can be caught early.

• Higher ordered functions are convenient.
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• Algebraic data types and pattern matching makes embedding language sim-

pler.

1.2 Hydra

Hydra [CHH+] is a complete, proof-of-concept public-key cryptography (PKC) based

system. It demonstrates that strong, hardware-assisted PKC can be feasible for

M2M sensors [SHH+13].

Hydra contains a scalable and programmable cryptographic coprocessor. It has

specialized instructions to perform modular arithmetic operations in finite fields

with large characteristics.

1.3 Contribution

We propose a domain-specific language embedded in Haskell for efficient crypto-

graphic engineering, with the following features:

• When the programmer is implementing an algorithm or a system, he/she can

focus on the high-level description.

• The algorithm representation, target language implementation, and machine-

independent optimizations can be implemented separately and reused. In par-

ticular, adding a new target language requires only an implementation from

the intermediate representation to the new target language. The algorithms

do not need to be rewritten.

• The language allows programmers to use multidimensional algebraic data

types other than vectors or other basic data types. We demonstrate a method

to translate those expressions into expressions in the base field. We provide

two built-in algebraic structures: extension fields, and matrices. The program-
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mer can easily add new algebraic structures as needed, based on the interface

we provide.

• We provide two target language implementations: Hydra’s assembly language

and C++. The programmer can easily add new target languages implemen-

tations.

• We provide two applications: optimal pairing and key exchange with LWE.

• The compiler is combined with two optimizers. The programmer can also

combine his/her own optimizers.

4



Chapter 2

Overall Structure

The programmer provides the Haskell program, which will be represented as an AST.

Then, the computations of algebraic structures will be expanded, and compiled to

an intermediate representation (IR). Finally, the IR goes through optimization and

code generation, and the target code is produced.

Figure 2.1: The overall compilation process. The red blocks are the program in
multiple representations, and the blue blocks are components of the compiler.
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Chapter 3

Language Embedding

3.1 Expressions

Our goal is to allow the programmer to write programs almost as if he/she is writing

in standard Haskell. Specifically, we do not want to force the programmer to write

the program in monadic style.

We want to store the computation as abstract syntax trees in recursively defined

expressions. In previous work [EFDM03, MM10], the underlying expressions are

untyped, but wrapped by a polymorphic type with a phantom type variable. Untyped

expressions are easier to handle, but they can only hold expressions of certain built-

in types, such as Int, Float or Arrays, etc. We want to deal with many kinds of

algebraic structures, so we use a typed expression with generalized algebraic data

types (GADTs) like this:

data Exp a where
Const :: a -> Exp a
Input :: String -> Exp a
Add :: Exp a -> Exp a -> Exp a
Sub :: Exp a -> Exp a -> Exp a
Mul :: Exp a -> Exp a -> Exp a
Equal :: Exp a -> Exp a -> Exp Bool
IfThenElse :: Exp Bool -> Exp a -> Exp a -> Exp a

An expression of type a holds either a constant of type a, a String to identify
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an input variable, a binary operation of two expressions of type a, etc. Since the

expressions are typed, Haskell will do the type check for us. The programmer is not

allowed to add Exp a and Exp b together if a is not the same as b. A Boolean

expression will be of type Exp Bool, which can be used as the first argument of

IfThenElse.

3.1.1 Standard Mathematical Operators

The programmer should be able to use standard mathematical operators like +, −,

and ∗. Thanks to Haskell’s type classes, we can make Exp an instance of the Num

type class to overload the operators.

instance Num a => Num (Exp a) where
x + y = Add x y
x - y = Sub x y
x * y = Mul x y

fromInteger = Const . fromInteger

The definition of fromInteger may seem recursive, but the signatures of them

are different. The former one has signature Integer -> Exp a and the latter

one has signature Integer -> a.

3.1.2 Functions

Our language directly uses Haskell’s function. Consider a function square in

Haskell:

square :: (Num a) => Exp a -> Exp a
square x = x * x

It simply multiplies the input value to itself. Since the mathematical operators are

overloaded, the function body needs little modification. To get the representing

computation in an expression, we evaluate square (Input "x"), and get the

following representation:

7



Mul (Input "x") (Input "x")

3.2 Let-sharing

If the input is more complicated, say x+1 for example, we will get this output

expression:

Mul (Add (Input "x") (Const 1))
(Add (Input "x") (Const 1))

When we traverse the tree, we end up processing the same expression repeatedly.

Even though GHC will represent it in memory like in figure 3.1, we cannot directly

observe the sharing introduced by Haskell bindings, even if we use the let expression

in Haskell.

Figure 3.1: The in-memory representation of square (x+1).

To compute large integer powers of a number fast, square-and-multiply algorithm

is often used. Its complexity is linear to the number of bits of the integer power,

because it repeatedly squaring the base. Now, consider square being iterated

twice, which is square (square (Input "x")). It evaluates to:

Mul (Mul (Input "x") (Input "x"))
(Mul (Input "x") (Input "x"))

Then consider square (square (square (Input "x"))), which evaluates

to:
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Mul (Mul (Mul (Input "x") (Input "x"))
(Mul (Input "x") (Input "x")))

(Mul (Mul (Input "x") (Input "x"))
(Mul (Input "x") (Input "x")))

We can see that the number of Mul operations in the expression is growing expo-

nentially, because each time the function square is called, the input expression is

evaluated twice.

To represent the sharing, we have to introduce some other types of expressions:

data Exp a where
Let :: String -> Exp b -> Exp a -> Exp a
Var :: String -> Exp a

The first argument of Let is the name of the variable assigned to the second argu-

ment Exp a, and the body of the whole Let expression is an Exp b. In the body,

the programmer can use Var "name" to refer to the variable defined by Let, but

the definition cannot be used outside the body of a Let expression.

Now, the programmer can rewrite the function square in the following way:

square :: (Num a) => Exp a -> Exp a
square x = Let "y" x ((Var "y") * (Var "y"))

In this way, our library can recognize the sharing.

There is no ambiguity to the use of Var "y", because we always refer to the

closest definition of the used variable. Even if there is an outer Let expression

defining a variable also named y, in square the Var "y" will always refer to the

input argument x.

Now, if the final version of square is iterated three times, the result would be:

Let (Var "y")
(Let (Var "y")

(Let (Var "y")
(Input "x")
(Mul (Var "y") (Var "y")))

(Mul (Var "y") (Var "y")))
(Mul (Var "y") (Var "y"))

9



The number of Mul operations is linear to the number of iterations. Even though

there are three variables named y in this example, the scope of the variable is well

defined. As long as the programmer does not reuse the same variable name in a

single scope, there will be no ambiguity.

The explicit Let expressions require a little more modifications than we wanted.

A technique was proposed by Gill [Gil09] to make the sharing implicit, using a

reification monad to maintain a map from the stable name of an expression to its

rewritten form, and thus allow the programmer to use Haskell’s native let bindings.

We leave the implementation of implicit let-sharing to future work.

3.3 Control Flow

There is no loop in our expressions. Loops in the embedded language are all unrolled.
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Chapter 4

Algebraic Structure Expansion

4.1 Extension Field

Let K be a subfield of a field L. We also say that L is an extension of K. Quotient

rings are often used to construct field extensions. Suppose K is some field and f is

an irreducible polynomial in K[x]. Then the quotient ring L = K[x]/(f) is a field

whose minimal polynomial is f . The elements are the polynomials with coefficients

in K. The addition and multiplication in L are under modulo f .

For example, consider the ring R[x] of polynomials in the variable x with real

coefficients. The quotient ring R[x]/(x2 + 1) is isomorphic to the field of complex

numbers C, with x playing the role of the imaginary unit i. The reason is that in

the quotient ring, addition and multiplication are modulo x2 + 1, so x2 + 1 = 0, i.e.

x2 = −1, which is the defining property of i.

4.2 A Small Example

Given a, b ∈ K2 = K[x]/(x2 + 2) for some field K, we try to compute c = ab. We

know a and b can be represented as a1x + a0 and b1x + b0 respectively. Hence,

c = (a1x+a0)(b1x+b0) = a1b1x
2+(a1b0+a0b1)x+a0b0 = (a1b0+a0b1)x+(a0b0−2a1b1).
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Therefore, if c is represented as c1x + c0, we get the two equations:

c1 = a1b0 + a0b1, c0 = a0b0 − 2a1b1.

That is, when we get an expression Mul (Input "a") (Input "b") of type

Exp K2, it has to be expanded to two expressions of type Exp K

Add (Mul (Input "a1") (Input "b0"))
(Mul (Input "a0") (Input "b1"))

and

Sub (Mul (Input "a0") (Input "b0"))
(Mul 2 (Mul (Input "a0") (Input "b1")))

This may not seem difficult, but the extension fields in real applications are much

more complicated. The implementation of the optimal pairing in Hydra uses a

three-level extension field K12:

K12 = K6[x]/(x2 − y)

K6 = K2[y]/(y2 − z − 1)

K2 = K[z]/(z2 + 2)

K = Fp

The expansion has to be done three times, and there will be 12 equations with 24

variables, which are kind of messy. That is why we need to expand them by the

compiler.

4.3 Haskell For Maths

A benefit of embedding language in a rich host language is that the existing library

can be exploited. We are going to use a library called HaskellForMaths1, which
1http://hackage.haskell.org/package/HaskellForMaths
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contains implementations to many algebraic structures.

4.3.1 Base Field

First, we use HaskellForMaths to define a base field with p elements, where p is a

prime:

data Tp
instance IntegerAsType Tp

where value _ = p
type K = Fp Tp
g1 = 1 :: K

The type class IntegerAsType is defined in HaskellForMaths as follows:

class IntegerAsType a where
value :: a -> Integer

The data type Tp is a type holding an integer. The function value is defined such

that the integer that Tp represents can be found by

value (undefined :: Tp)

Then Fp Tp is a field with p elements and modular arithmetic.

4.3.2 Extension Field

Then, we use HaskellForMaths to define an extension field.

data DefPolyK2
instance PolynomialAsType K DefPolyK2

where pvalue _ = x^2 + 2 where x = UP [0, 1]
type K2 = ExtensionField K DefPolyK2
x = Ext (UP [0, 1]) :: K2

The type class PolynomialAsType means DefPolyK2 holds a polynomial with

coefficients in K, which we can retrieve from

pvalue (undefined :: (K, DefPolyK2))

13



since the definition of PolynomialAsType is:

class PolynomialAsType k poly where
pvalue :: (k,poly) -> UPoly k

Then, ExtensionField K DefPolyK2 defines an extension field, whose mini-

mal polynomial is x2 + 2. The constructor UP constructs a univariate polynomial

from a list, and the constructor Ext constructs an element of an extension field from

a univariate polynomial.

We can try to evaluate (x+1)*(x+2) and get 3x because

(x + 1)(x + 2) = x2 + 3x + 2 = 3x,

since the calculation are modulo x2 + 2. The HaskellForMaths library will do the

modular operation for us to make the degree of the results smaller than the modular

polynomial.

Now when we get the expression Mul (Input "a") (Input "b"), where

Input "a" and Input "b" are of type Exp K2. Since the degree of K2 is 2, we

expand Input "a" to Ext (UP [Input "a0", Input "a1"]), which is an

extension field element with coefficients Input "a1" and Input "a0" in Exp

K. The name a0 and a1 are created by appending numbers to the original name a.

Similar expansion is done to Input "b", now we can multiply them together:

Ext (UP [Input "a0", Input "a1"])

* Ext (UP [Input "b0", Input "b1"])

Then, the two field elements are multiplied as if their coefficients are normal num-

bers, and we retrieve the two coefficients in Exp K respectively:

Sub (Mul (Input "a0") (Input "b0"))
(Mul 2 (Mul (Input "a0") (Input "b1")))

and

Add (Mul (Input "a1") (Input "b0"))

14



(Mul (Input "a0") (Input "b1"))

4.4 For General Algebraic Structures

What we just did here was to expand the original expression of type:

Exp (ExtensionField K DefPolyK2)

to:

ExtensionField (Exp K) DefPolyK2

That is, turning an expression of an extension field to an element of an extension

field whose coefficients are expressions. Then, the desired operations are done by

Haskell libraries, and retrieve the resulting expressions from the coefficients.

To make this process more general, we define a type family SubType, and a

type class Expandable as follows:

type family SubType a

class Expandable a where
size :: a -> Int
coefficients :: a -> [SubType a]
expandSpec :: Exp a -> [Exp (SubType a)]
expand :: Exp a -> [Exp (SubType a)]
expand (Const ...) = ...
expand (Input ...) = ...
expand (Var ...) = ...
expand (Let ...) = ...
expand e = expandSpec e

To make type a expandable, first we have to define the SubType of a. Then we have

to be able to infer the size of an element, because when Input "a" and Input

"b" are expanded, we need to know the dimension of the extension. We also have

to know how to get its coefficients, which is a list of SubType a. Once size and

coefficients are implemented, a default implementation of expand will take

care of the expressions in the form of Const, Input, Var and Let. The rest of
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the cases will be implemented in expandSpec, such as the binary operations. The

instance declaration of ExtensionField k poly looks like this:

type instance SubType (ExtensionField k poly) = k

instance Expandable (ExtensionField k poly)
where
size _ = deg (pvalue (undefined :: (k, poly))) - 1
coefficients (Ext (UP xs)) = xs
expandSpec (Add x y) = coefficients $ x’ + y’ where

x’ = Ext (UP (expand x)) :: ExtensionField (Exp k) poly
y’ = Ext (UP (expand y)) :: ExtensionField (Exp k) poly

expandSpec (Sub x y) = ...
expandSpec (Mul x y) = ...

If the programmer is dealing with algebraic structures other than the built-in ones,

they can simply make an instance declaration, and then the expansion will be taken

care of.
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Chapter 5

Compiling Embedded Language

5.1 Intermediate Representation

After algebraic structure expansion, the expression representing users’ program is

translated into an intermediate representation that is more suitable for optimizations

before generating target code. The intermediate language we use is three-address

code (TAC). Besides, it is in static single assignment form (SSA). In three-address

code, a complicated expression will be broken down into many separate instructions.

They can be translated easily to different target languages, including assembly lan-

guages. It is also easier to detect common subexpressions.

Each TAC in Haskell looks like this:

type Address = Int

data IR = ConstI Address String
| AddI Address Address Address
| SubI Address Address Address
| MulI Address Address Address

Address are symbolic addresses of each operand, and will later be translated to

actual addresses. A TAC instruction t3 := t1 + t2 will be AddI 3 1 2. The IR no

longer has its own type variable like an expression, so the constants are stored in

String form. Instruction t4 := 0 is represented as ConstI 4 "0"
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5.2 Expressions to IR

We replace the Input’s String field with two addresses marking the begin and

the end of the input’s address:

data Exp a = ...
| Input Address Address

Since the instructions are SSA, each instruction comes with a new symbolic ad-

dress, and they are enumerated sequentially. We use the State monads to keep track

of the address number and the variable mapping introduced by the Let expression.

5.2.1 Type Class

We defined the type class Compilable to make the function toIR polymorphic.

type Env = [(String, [Address])]

class Compilable a where
toIRSpec :: Exp a -> State (Address, Env) ([IR], [Address])
toIR :: Exp a -> State (Address, Env) ([IR], [Address])
toIR (Input start end) = return ([], [start..end])
toIR (Let (Var x) e1 e2) = ...
toIR (Var x) = ...
toIR e = toIRSpec e

The function toIR is a stateful computation. The state is the used address number

so far, and the environment Env, which is an association list, storing the map from

variable name to the address of the expression. The results of toIR are a list of

three-address code, and a list of addresses, where the results of this expression are

stored. There may be multiple addresses because a may be multidimensional.

5.2.2 Default Implementation

A default implementation is provided for several cases. Compiling Input is simply

returning the addresses. Compiling Var is looking up the variable name in the

environment. Compiling Let is a little more complicated:
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toIR (Let (VarE x) e1 e2) = do
(ir1, res1) <- toIR e1
(i, env) <- get
put (i, (x, res1):env)
(ir2, res2) <- toIR e2
(i’, env’) <- get
put (i’, delete (x, res1) env’)
return (ir1 ++ ir2, res2)

What the above code does is:

1. Compile e1.

2. Add the mapping from x to the resulting address of e1 to the environment.

3. Compile e2.

4. Delete x from the environment, since its scope is over.

5. Return the IR and addresses, note that the result of the entire Let expression

is the results of the body, res2.

If there are two or more variables with the same name, the newest one will be closer

to the head of the association list, which will be returned by the lookup function.

The older binding will be shadowed until the scope of the new one is over. This is

consistent with normal programming languages.

5.2.3 Instance Example

The cases not implemented in toIR should be implemented in toIRSpec in the

instance declaration. The instance declaration of extension field looks like this:

instance (PolynomialAsType k poly)
=> Compilable (ExtensionField k poly) where

toIRSpec (Const ...) = ...
toIRSpec (Add e1 e2) = ...
toIRSpec (Sub e1 e2) = ...
toIRSpec (Mul e1 e2) = ...
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Compiling a constant of an extension field is to recursively compile each of its coef-

ficients. The Add, Sub and Mul are expanded as described in the last chapter.

The recursion will boil down to the base field. The instance declaration of the

base field is:

instance Compile (Fp a) where
toIRSpec (Add e1 e2) = do

(ir1, [res1]) <- toIR e1
(ir2, [res2]) <- toIR e2
i <- newAddress
return (ir1++ir2++[Add i res1 res2], [i])

toIRSpec (Sub e1 e2) = ...
toIRSpec (Mul e1 e2) = ...
toIRSpec (Const c) = getConstant (show c)

Compiling a binary operation of e1 and e2 is to compile them each, generate a new

address, and append an instruction at the end. We always generate new addresses

for new results, so if the target code is an assembly with limited number of registers,

the IR should go through register allocation first.

Our compiler deals with constants in a special way. The function getConstant

will append a ConstI instruction when the constant is asked for the first time, and

stores the address in the environment. The next time the constant is asked for, the

address will be returned.

getConstant s = do
(i, env) <- get
case lookup s env of

Just res -> do
return ([], res)

Nothing -> do
put (i+1, (s, [i]):env)
return ([ConstI i s], [i])
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Chapter 6

Optimizations and Code Generation

Now that we have an intermediate representation, we can perform optimizations

on it. The programmer can also implement customized optimizations, as long as it

takes the IR as input, and output an IR as well.

6.1 Common Subexpression Elimination

The multiplication of extension field elements is essentially polynomial multiplica-

tion. Karatsuba algorithm [KO63] is a way to reduce the number of operations in

polynomial multiplications. Alternatively, Chen has developed a tool using Max-

SAT to reduce the number of operations in the multiplications of polynomials in

binary fields [Che14], and implemented an optimizer for our compiler. His tool

takes our expanded expression as input, and output the IR, on which we can do

further optimizations and code generations.

6.2 Linear Register Allocation

In the intermediate representation, we could use arbitrarily many variables, but in

the assembly, we only have a small, finite set of registers to use. Memory accesses

slow down the program, so register allocation is very important.
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We use an implementation of linear scan register allocation by Yang [Yan13]. It

is also implemented in Haskell, and the representation is very similar to our IR, so

it is easy to be combined with our compiler.

In Hydra, in order for the operands of a binary operation to load in a single cycle,

they should come from two different register banks. The register allocation algorithm

by Yang was designed for ARM processors, so it did not have this constraint, so we

end up wasting some time loading the operands. We leave this part to future work.

6.3 Code Generation

6.3.1 Hydra

Translating three-address code to assembly is pretty straightforward, but there are

a few things to notice. The operations in Hydra are designed to modulo a large

prime, set by the instruction setrn.

Montgomery Multiplication

The mul instruction performs Montgomery multiplication [Mon85], which given the

operands a and b, calculates:

c = a× b×R−1 (modN),

where R = 2256. The Montgomery algorithm makes it faster than a naive modular

multiplication, c = a× b (modN).

Each input and each constant should be transformed to the residue, defined by:

ā = aR (modN),

b̄ = bR (modN).
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Addition and subtraction are the same. If c = a + b, then

c̄ = cR = (a + b)R = aR + bR = ā + b̄ (modN).

Now if c = a× b, then

c̄ = cR = (a× b)R = (aR× bR)R−1 = (ā× b̄)R−1.

So we can perform all the operations in the residue form, and convert the results of

the computations back by

c = c̄R−1 (modN).

6.3.2 C++

We also implemented a code generation to produce C++ code.
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Chapter 7

Applications

We have implemented two following applications.

7.1 Pairing

Let G1, G2 be additive groups, and GT be multiplicative groups. A pairing is a

map of the form e : G1 ×G2 → GT , where G1, G2 are additive groups and GT is a

multiplicative group. The following properties should hold:

1. Bilinear: For all P ∈ G1, Q ∈ G2 and for all a, b ∈ Z, e(aP, bQ) = e(P,Q)ab.

2. Non-degenerate: There exists P ∈ G1 and Q ∈ G2 such that e(P,Q) 6= 1.

3. Computable: Given P ∈ G1, Q ∈ G2, there is an efficient algorithm, to com-

pute e(P,Q).

Pairing can been used to construct identity-based encryption.

We implement the optimal pairing [Ver10], and compile it to Hydra assembly.

The program in our DSL is about 300 lines, and the generated assembly contains

about 2×106 instructions. The compilation takes about 4 minutes on a 4.4Hz AMD

Phenom(tm) 9550 Quad-Core Processor, which is long but still tolerable, as we do

not emphasize compile time. Speeding up the compilation process is left for future

work.
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7.2 Key Exchange Protocol from LWE

Learning with errors (LWE) is a problem that is as hard as several lattice problems.

The problem is to distinguish polynomially many noisy inner-product samples (a, b ≈

〈a, s〉) from uniformly random samples.

There is a provably secure key exchange protocol based on LWE [DL12]. Alice

and Bob have secret keys sA, sB ∈ Zn
q respectively. There are public parameters

M ∈ Zn×n
q . They send each other pA = MsA + eA and pB = MT sB + eB. Upon

receiving pB, Alice computes sTApB, and Bob computes sTBpA. The two values are

very close to sTAM
T sB, and a shared secret can be derived.

We implement the protocol, and generate codes in C++. Hydra cannot handle

the protocol, because it requires random number generation. We need to call the

library in C to generate random numbers. The target code length and compilation

time are proportional to the square of vector size.
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Chapter 8

Summary

We present a domain-specific language embedded in Haskell and an embedded com-

piler that enables the programmer to write programs in high-level language, and

using complex algebraic structures. We show that sharing is vital for tree-structured

expressions, and use explicit let-sharing. Type classes are defined for the program-

mers to declare customized algebraic structure expansion, other than the built-in

extension fields and matrices. We provide two applications with two target code

generations, and our compiler is combined with two optimizers. The optimizations

and code generation are separated from the program itself, so the programmer can

focus on the high-level description of the cryptographic systems.

8.1 Related Work

See the comparison in table 8.1.

8.2 Future Work

• Implicit sharing. Allow programmers to use the native Haskell binding, and

let the compiler figure out the expressions to be shared.

• Loops and functions. Making the expression able to represent loops and func-
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DSL Nikola [MM10] Accelerate
[CKL+11,
MCKL13]

Our DSL

Host language Haskell Haskell Haskell
Target language CUDA CUDA Hydra assembly,

C++
Data Structure Vector Vector Extension Field,

Matrix
Sharing Implicit Implicit Explicit
Extensibility No No Yes
Feature Minimum syntactic

overhead, function
compilation

More expressive:
fold, scan, etc.

More algebraic
structures,
extensibility.

Table 8.1: Comparison with related work

tion calls could reduce the target code size significantly.

• More optimizations. The possible ways are:

– Implement more optimizations to our intermediate representation.

– Use Hoopl, a Haskell tool for dataflow analysis and code transformation.

– Try to connect our compiler with the middle-end and back-end of LLVM.

• Use the syntactic library [Axe12] to make our compiler extensible without

modifying the existing code.

• Shorten the compilation time. When we build this compiler, the compilation

time is not our first concern. Still it is better to reduce the compilation time

from minutes to seconds. A possible way is to replace the lists with difference

lists to save time for append and concatenation.
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