

國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering

College of Electrical Engineering & Computer Science

National Taiwan University

Master Thesis

分散式視訊解碼器之設計與實現

Design and Implementation of a

Distributed Video Decoder

何孟宣

Ho, Meng-Hsuan

指導教授：陳少傑 博士

Advisor: Chen, Sao-Jie, Ph.D.

 中華民國 103 年 10 月

October, 2014

誌 謝

可以完成論文並且順利取得碩士學位，要特別感謝指導教授陳少傑教授，多

虧指導教授精闢的見解與指導建議，使研究過程中的種種難題都得以迎刃而解，

感謝簡韶逸教授提供我們研究的資源和建議，感謝口試委員們在學位考試中對於

研究主題所提出的寶貴意見使本篇論文更佳完善。

研究所在學期間受到各位學長姐以及同學們的照顧與協助，感謝鑫平學長在

研究上不吝指導與耐心鼓勵，以及實驗室的學長姐: 盈如、逸霈的教導。還有 99

級的學長們: 和昇、居翰、翊耀，100 級的學長們: 仁豪、俊儒、承志、懷傑，

在課業和研究上的幫助和鼓勵。101 級的同學們: 勝翔、偉澤、瀚漳、榮鴻、柏

叡，在課業或研究上都是很好的夥伴，一起度過煎熬的時刻。102 級的學弟們: 晟

豪、詩堯、岱鑫、鼎鈞，有你們的加入讓實驗室充滿朝氣與活力。

最後要感謝我的父母和家人，在求學期間給予的支持，以及鼓勵我完成這份

學業。

謹以本文感謝所有關心我的人，願與你們分享這份榮耀。

中 文 部 分

壹

摘 要

在傳統視訊編碼中有許多標準化的視訊編碼格式，像是動態影像專家組

(Moving Picture Experts Group)提出的 MPEG 格式、國際電信聯盟電信標準化

部門提出的 H.26X格式等等，這些傳統視訊編碼的特點是盡量讓編碼器探索冗餘

的時間和空間資訊，也就是使用影格內編碼或影隔間編碼來壓縮視訊，在這樣架

構下的編碼器負擔很大。但是傳統的視訊編碼不適用於只擁有低運算複雜度的編

碼器或考量到低功耗的編碼器，像是無線視訊感測器或監視系統，分散式視訊編

碼技術因此被提出，分散式視訊編碼的根本以 Slepian-Wolf 理論和 Wyner-Ziv

理論為基礎。

在此論文中，我們設計並實現一個分散式視訊解碼器，提出的架構包含累積

低密度奇偶檢查碼解碼器、相關雜訊模型、軟輸入計算、邊資訊產生，實作採用

TSMC 90nm GUTM 製程完成分散式視訊解碼器，針對 QCIF 大小的測試序列可

解碼達到每秒 30 張的影像，此晶片工作頻率可達到 100MHz，使用的邏輯閘數

目為 690K，晶片大小為 4.67 mm
2。

關鍵字：分散式視訊解碼器、累積低密度同位檢查碼解碼器、邊資訊產生。

貳

參

目 錄

第一章 簡介 ... 伍

第二章 分散式視訊編碼概述 .. 陸

第三章 架構和實現.. 柒

第四章 實驗結果.. 捌

第五章 結論 ... 玖

肆

伍

第一章

簡介

在傳統視訊編碼中，許多編碼技術被提出用來探索時間或空間上冗余的資訊，

這些編碼技術主要著重在盡可能壓縮視訊資料，像是 H.264/AVC 為了盡量縮減

時間或空間上冗余的資訊，所有複雜度高的運算會集中於編碼器，H.264/AVC 的

架構適用於編碼一次而多次解碼的視訊廣播服務，但是卻不適用於具有許多運算

資源有限的編碼器和少量運算能力較強的解碼器的架構，像是無線視訊感應器，

這些考量到低運算能力或低功耗需求的設備，因此才有一種新的視訊架構－分散

式視訊編碼器被提出。

本論文著重在分散式視訊解碼器的設計與實現，我們會在第二章回顧先前的

分散式視訊編解碼器的架構，第三章會呈現我們設計的分散式視訊解碼器的架構，

第四章則是實驗結果以及晶片設計流程，第五章對研究做總結。

陸

第二章

分散式視訊編碼概述

此章節會回顧具有代表性的分散式視訊編碼的架構，包含第一個被提出的像

素域(Pixel Domain)的分散式視訊編碼架構、及後來發展成轉換域(Transform

Domain)的架構，從其結果看出轉換域編解碼器的失真率表現會比像素域編解碼

器的失真率表現佳，這是因為使用離散餘弦轉換探索空間上的相關性。之後具代

表性的 DISCOVER(Distributed Coding for Video Services)被提出，近來混合型分

散式視訊(Hybrid DVC)編碼器被提出，其編碼效率以及失真率表現更上一層。在

此章節會依序描述以下的編解碼器架構：第一個被提出的分散式視訊編解碼器架

構、DISCOVER 分散式視訊編解碼器架構、混合型分散式視訊編解碼器架構。

柒

第三章

架構和實現

許多分散式視訊編解碼器的架構被提出，這些架構主要藉由增加解碼器的元

件來改善失真率表現，但同時也增加解碼過程的複雜度，高複雜度會造成解碼器

無法即時解碼視訊。因此我們根據混合式分散式視訊編解碼器提出的架構，並且

以實現硬體的方式來改善問題，在之後的章節會展示所提出分散式視訊解碼器的

架構，以及各元件的架構，分別是：累積低密度同位檢查碼解碼器、邊資訊產生

器、離散餘弦反變換和反量化器、離散餘弦變換和量化器、相關雜訊模型、軟輸

入計算。

捌

第四章

實驗結果

在此章節會呈現提出的分散式視訊解碼器的實驗結果，首先會先描述如何從

演算法階段至晶片製作的設計流程，接著是如何使用機台測試我們的晶片，以及

呈現晶片的規格，最後則是不同測試序列的實驗結果。

玖

第五章

結論

本論文實現即時解碼的分散式視訊解碼器，並呈現此解碼器的硬體架構，根

據模擬結果我們架構的失真率表現比 DISCOVER 佳，在此研究的關鍵挑戰是邊

資訊產生器和累積低密度同位檢查碼解碼器的運算複雜度高，因此會考量到硬體

成本和失真率表現的取捨。晶片透過國家晶片系統設計中心下線並使用 TSMC

90nm GUTM 製程，解碼器晶片可解碼每秒 30 張 QCIF 大小的視訊，製作的晶片

時脈可達 100MHz，面積為 4.67mm
2，邏輯閘數目為 690K。

壹拾

英 文 部 分

i

ABSTRACT

In conventional video coding, lots of coding techniques were proposed to

exploit redundancy of the spatial and temporal signals in the encoder. These coding

techniques are focused on compressing video data as high as possible, such as MEPG

(Moving Picture Experts Group) and H.26X proposed by International

Telecommunication Union. These conventional techniques tried to extremely reduce

spatial and temporal redundancies, so all the computing efforts were majorly spent on

the encoder. Conventional video coding is not suitable for the situations where little

encoders and big decoders are used, like wireless video sensors that have a low

computing capability and need a low power consumption. To meet the requirement of

a low-complexity and low-power encoder, a new video coding paradigm, distributed

video coding, based on Slepian-Wolf Theorem and Wyner-Ziv Theorem, was

proposed.

In this Thesis, we design and implement a distributed video decoder which is

majorly composed of LDPCA, correlation noise modeling, soft input computation,

and side information creation. Our proposed DVC decoder, implemented in TSMC

90nm GUTM process technology, can meet the requirement of decoding a QCIF

video with a speed of 30fps. The maximum operation frequency is 100MHz, the chip

area is 4.67 mm2, and gate count is 690K.

Keywords: Distributed Video Decoder, LDPCA Decoder, Side Information Creation.

ii

iii

TABLE OF CONTENTS

ABSTRACT .. i

LIST OF FIGURES ... v

LIST OF TABLES ... vii

CHAPTER 1 INTRODUCTION .. 1

1.1 Splepian-Wolf Theorem and Wyner-Ziv Theorem .. 1

1.2 Wyner-Ziv Coder ... 3

1.3 Distributed Video Coding .. 5

1.4 Motivation ... 6

1.5 Thesis Organization ... 7

CHAPTER 2 OVERVIEW OF DISTRIBUTED VIDEO CODING 9

2.1 First Practical DVC ... 9

2.2 DISCOVER DVC .. 11

2.3 Hybrid DVC .. 15

CHAPTER 3 PROPOSED ARCHITECTURE AND IMPLEMENTATION ... 21

3.1 Proposed Architecture of DVC .. 21

3.2 LDPCA Decoder .. 25

3.3 Side Information Creation ... 38

3.3.1 Spatial Motion Smoothing ... 39

3.3.2 BiDirectional Motion Compensation... 44

3.3.3 Interpolation .. 46

3.4 CAVLC Decoder .. 47

3.5 DCT, IDCT, Quantization, and De-Quantization .. 49

3.6 Correlation Noise Modeling and Soft Input Computation 52

3.7 Reconstruction ... 53

CHAPTER 4 EXPERIMENT RESULTS ... 55

iv

4.1 Design Flow ... 55

4.2 Testing Consideration .. 56

4.3 Chip Implementation Result .. 59

4.4 Simulation Results ... 60

CHAPTER 5 CONCLUSION ... 65

REFERENCE ... 67

v

LIST OF FIGURES

Fig. 1-1. Correlated Source Coding Configuration .. 2

Fig. 1-2. Achievable Rate Region for Dependent X and Y .. 2

Fig. 1-3. Entropies of X and Y ... 3

Fig. 1-4. A Practical Wyner-Ziv Coder ... 3

Fig. 1-5. Tanner Graph and Accumulated Check Nodes .. 4

Fig. 1-6. Parity-Check Matrix of the LDPCA in Fig. 1-5 ... 5

Fig. 1-7. Achieving Different Source Rates by Accumulating Check Nodes 5

Fig. 2-1. First Practical DVC Codec... 11

Fig. 2-2. DISCOVER Codec .. 12

Fig. 2-3. Frame Interpolation Framework .. 12

Fig. 2-4. Motion Vectors (a) Before and (b) After Spatial Motion Smoothing 13

Fig. 2-5. The Hybrid DVC Framework .. 15

Fig. 3-1. Proposed Architecture of DVC .. 22

Fig. 3-2. Proposed System Architecture and Data Flow... 24

Fig. 3-3. Tanner Graphs .. 26

Fig. 3-4. Tanner Graphs with Accumulated Syndrome Bits 27

Fig. 3-5. Parity-Check Matrix of the LDPCA shown in Fig. 3.2 (a) 28

Fig. 3-6. Parity-Check Matrix of the LDPCA shown in Fig. 3.3.............................. 28

Fig. 3-7. Proposed Architecture of Comparing Tree .. 31

Fig. 3-8. Schematic Diagram of Wires Connected to VNs and BNs 33

Fig. 3-9. A 3-Input Minimum-Value Generator .. 33

Fig. 3-10. A 4-Input Minimum-Value Generator .. 34

Fig. 3-11. An Example of Comparing Tree Consisting of Check Nodes 35

Fig. 3-12. An Example of Merging Check Nodes in Code Rate of 4/6 36

Fig. 3-13. An Example of Merging Check Nodes in Code Rate of 5/6 36

vi

Fig. 3-14. Proposed Architecture of LDPCA Decoder ... 37

Fig. 3-15. State Diagram of Proposed LDPCA Decoder .. 38

Fig. 3-16. Proposed Framework of Side Information Creation 39

Fig. 3-17. Proposed Architecture of Weighted Vector Median Filter 41

Fig. 3-18. Architecture of Datapath of Distance .. 42

Fig. 3-19. Architecture of Datapath of SAD .. 43

Fig. 3-20. Architecture of Weighing & Minimum Selector .. 44

Fig. 3-21. Motion Vectors of (a) Forward and (b) Backward Compensations 45

Fig. 3-22. Architecture of Motion Compensation .. 46

Fig. 3-23. Architecture of Interpolation.. 47

Fig. 3-24. Decoding Flow of CAVLC Decoder .. 48

Fig. 3-25. Block Diagram of CAVLC Decoder .. 49

Fig. 3-26. Hardware of Direct 2-D Transform.. 51

Fig. 3-27. Architectures of DCT, IDCT, Quantization, and De-Quantization 52

Fig. 3-28. Hardware of Correlation Noise Modeling and Soft Input Computation 53

Fig. 3-29. Hardware of Reconstruction .. 53

Fig. 4-1. Cell-based Design Flow ... 56

Fig. 4-2. Uncollapsed Stuck Fault Summary Report .. 57

Fig. 4-3. Measurement Considerations ... 58

Fig. 4-4. Measurement Flow... 58

Fig. 4-5. Result of Place and Route .. 59

Fig. 4-6. RD Performance of Coastguard QCIF 15fps ... 61

Fig. 4-7. RD Performance of Foreman QCIF 15fps ... 62

Fig. 4-8. RD Performance of Hall QCIF 15fps .. 62

Fig. 4-9. Rate Performance of Regular Degree-3 LDPCA of Length 396 63

 vii

LIST OF TABLES

Table. 1-1. Decoding Time for Foreman QCIF 150 Frames 6

Table. 2-1. Coding Modes and Decision Rules ... 18

Table. 3-1. Transmitted Nodes in Different Code Rates ... 30

Table. 4-1. Specification Table ... 60

Table. 4-2. Synthesis Result of LDPCA ... 60

viii

 1

CHAPTER 1

INTRODUCTION

In conventional video coding, lots of coding techniques were proposed to

exploit redundancy of the spatial and temporal signals in the encoder. These coding

techniques are focused on compressing video data as high as possible, such as

H.264/AVC [1]. To extremely reduce spatial and temporal redundancy, all the

computing efforts are majorly spent on the encoder. The H.264/AVC architecture is

suitable for the situation of broadcasting video services that are encoded once and

decoded many times, while they are not suitable for the situation of using little

encoders and big decoders, like wireless video sensors that have a low computing

capability and need a low power consumption. To meet the requirement of

low-complexity and low-power encoders, a new video coding paradigm, distributed

video coding (DVC) [2], was proposed.

1.1 Splepian-Wolf Theorem and Wyner-Ziv Theorem

DVC is based on two theorems, Slepian-Wolf Theorem [3] and Wyner-Ziv

Theorem [4], where separately encoded and correlated sources could be jointly

decoded with a rate of the joint entropy in theory.

Consider two correlated sources X and Y, which are respectively encoded with RX

and RY bit rates and transmitted to the decoder from the encoders as shown in Fig. 1-1.

2

Fig. 1-1. Correlated Source Coding Configuration [3].

 The rate region of the Slepian-Wolf Theorem is shown in Fig. 1-2, where H(X)

and H(Y) are respectively the individual entropies of X and Y, H(X|Y) and H(Y|X) are

respectively the conditional entropies of X and Y, and H(X,Y) is the joint entropy of X

and Y.

Fig. 1-2. Achievable Rate Region for Dependent X and Y [2].

 Figure 1-3 states the relationship of different entropies where I(X;Y) is the mutual

entropy of X and Y. The region as shown in Fig. 1-2 can be expressed by the

following equations:

𝑅𝑋 + 𝑅𝑌 ≥ 𝐻(𝑋, 𝑌) (1-1)

𝑅𝑋 ≥ 𝐻(𝑋|𝑌), 𝑅𝑌 ≥ 𝐻(𝑌|𝑋) (1-2)

 3

In spite of encoding X and Y separately, Slepian-Wolf Theorem states that the total

rate can be reduced to a joint entropy by joint decoding.

Fig. 1-3. Entropies of X and Y.

Slepian-Wolf Theorem can be extended to perform lossy coding within a

bounded distortion. Assume that source X is encoded in the encoder without referring

to the source Y, Wyner-Ziv Theorem proved that there is a lower bounded distortion

between source X and the reconstructed data X’ in the decoder. In practical

applications, Wyner-Ziv coder consists of a Slepian-Wolf coder, a quantizer, and a

distortion reconstructor as shown in Fig. 1-4.

Fig. 1-4. A Practical Wyner-Ziv Coder [2].

1.2 Wyner-Ziv Coder

To implement a practical Wyner-Ziv coder and to obtain less RD performance

loss, choosing a proper error correcting code is important. Low-density parity-check

accumulate (LDPCA) [4] will be the core of Wyner-Ziv coder in our work for its

4

ability of error correcting can result in better Rate-Distortion (RD) performance [5].

LDPCA is presented by a tanner graph where solid cycles and solid squares are

used to represent bit nodes and check nodes respectively, and dotted cycles are for

accumulating check nodes as shown in Fig. 1-5. And Fig. 1-6 depicts its parity-check

matrix. The reason of using LDPCA is that different video sequences require different

proper source rates. Though high code rate always guarantees decoding the side

information (SI) successfully, but it can cause excessive bit rate if the conditional

entropy of the encoded information and SI is low.

Fig. 1-5. Tanner Graph and Accumulated Check Nodes.

 5

Fig. 1-6. Parity-Check Matrix of the LDPCA in Fig. 1-5.

 The method of accumulating syndromes make decoding SI with syndromes of

different source rates possible. For example, we can change the source rate from 6/6

to 5/6 by accumulating C0 and C1 in Fig. 1-7.

Fig. 1-7. Achieving Different Source Rates by Accumulating Check Nodes.

1.3 Distributed Video Coding

In a typical DVC, there are two types of coding frames, Wyner-Ziv (WZ) frames

and key frames. The key frames are coded by an H.264/AVC [1] Intra encoder. The

6

WZ frames are coded through a WZ encoder. In the DVC encoder, WZ frames will be

transformed by a discrete cosine transform (DCT). The quantizer keeps the data of

different frequencies according to a selected quantization factor. Then, syndromes

created by the LDPCA encoder will be stored in a buffer. In the decoder, periodically

inserted key frames will be referred to generate SI using bidirectional motion

estimation and motion compensation. Then, frames are reconstructed by the LDPCA

decoder from SI and received syndromes.

1.4 Motivation

The architecture of distributed video coding is different from the architecture of

conventional video coding since many parts with high computing complexity like

LDPCA decoder and side information creation are used in the distributed video

decoder. We evaluate respective computing complexities by running a Hybrid DVC

decoding software with a test sequence of Foreman in QCIF format and 150 frames

on a server with an Intel i7-2600 CPU. Table 1-1 shows the decoding time with

different quality parameters (QPs). When QP is 8, frames can be only decoded in

0.156 fps, 150 frames divided by 958.9205 seconds. Hence, we will focus on

implementing a hardware of DVC decoder to decode frames in real time.

Table 1-1. Decoding Time for Foreman QCIF 150 Frames.

Quality Parameter Decoding Time (Sec.)

1 42.3858

2 75.6814

3 75.9458

4 123.5452

5 123.3386

6 186.7416

7 390.6234

8 958.9205

 7

1.5 Thesis Organization

The rest of this Thesis is organized as follows. In Chapter 2, we will review

previous architectures of DVC including components used in DVC. Our improved

architecture of DVC with better RD performance will be presented in Chapter 3. Then,

Chapter 4 will discuss the experiment results of our proposed DVC implementation.

In Chapter 5, we make a conclusion on our work.

8

 9

CHAPTER 2

OVERVIEW OF DISTRIBUTED VIDEO CODING

In this chapter, we will review some previous, representative architectures of

DVC including components used in DVC. One of the first practical pixel domain

DVC codec was proposed in [6]. Then, the pixel domain codec was evolved into a

transform domain scheme [7]. The results of above designs showed that the RD

performance of a transform domain codec is better than a pixel domain codec by

using DCT to exploit spatial correlation of each frame and truncating less important

bit planes to save bit rate. A more efficient DVC codec, DISCOVER [5] (Distributed

Coding for Video Services), a project resulted from the IST (Information Society

Technologies) FET (Future and Emerging Technologies) program of the European

Union, was proposed later. Recently, a new Hybrid DVC design with residual coding

and frame level coding mode selection [8] was proposed and achieved high-efficiency

coding compared to DISCOVER. In the following sections, we will review advance

of transform domain codecs from the first practical DVC [7], DISCOVER DVC [5],

to Hybrid DVC [8].

2.1 First Practical DVC

The first practical DVC was proposed in [7] which is a basic Wyner-Ziv codec

consisting of an intraframe encoder and an interframe encoder as shown in Fig. 2-1,

where video sequences are classified into Wyner-Ziv frames and Key frames. Key

frames are encoded and decoded by a conventional intra codec, while Wyner-Ziv

frames are coded by a Wyner-Ziv codec. Wyner-Ziv frames will first be processed by

Discrete Cosine Transform (DCT) to separate the frequencies into spatial signals.

Signals of high frequency can usually be truncated, for most of the signals with a

larger energy are located in the lower frequency range. After truncated by the

10

Quantizer, bit planes split by Extract Bit-planes will be coded by a channel encoder,

the Turbo Encoder, then being stored in a Buffer. The whole encoding process only

exploits the spatial correlation within each frame, hence called Intraframe Encoder. In

Interframe Decoder, side information is generated by Interpolation and Extrapolation.

Interpolation is a method where the side information is generated by referring to the

previous key frame and the next key frame, while the method of Extrapolation is

where the side information is generated by referring to two previous key frames. The

key frames are encoded by a Conventional Intraframe Encoder and are decoded by a

Conventional Intraframe Decoder. And both of Interpolation and Extrapolation use

reference frames to estimate motion vectors, then generate the side information by

motion compensation. The methods of generating side information is the basic idea

proposed by the first practical DVC, which provided significant improvement of RD

performance in some test sequences. After generating the side information, a channel

decoder, the Turbo Decoder, will be used to correct errors in the side information.

Finally, each bit plane of the Wyner-Ziv frames is reconstructed by Reconstruction,

processed by an Inverse Discrete Cosine Transform (IDCT) and used to make up the

decoded Wyner-Ziv Frames. This architecture provides a basis of DVC with the idea

of generating side information through Interpolation and Extrapolation.

 11

DCT

Quantizer
Extract

Bit-planes

Turbo

Encoder
Buffer

Turbo

Decoder
Reconstruction

IDCT

Conventional

Intraframe

Encoder

Conventional

Intraframe

Decoder

Interpolation/

Extrapolation

DCT

Wyner-Ziv

Frames

Key

Frames

Decoded

Wyner-Ziv

Frames

Decoded

Key

Frames

Intraframe

Encoder

Interframe

Decoder

Side

Information
Request bits

Fig. 2-1. First Practical DVC Codec [7].

2.2 DISCOVER DVC

The performance of DISCOVER DVC [5] is improved significantly for adopting

some new methods including LDPCA codec, Soft Input Computation, and Virtual

Channel Model. The architecture of DISCOVER DVC is shown in Fig. 2-2.

DCT Quantizer
Extract

Bit-planes

LDPCA

Encoder
Buffer

LDPCA

Decoder
Reconstruction IDCT

Conventional

Intraframe

Encoder

Conventional

Intraframe

Decoder

Side

Information

Extraction

DCT

Wyner-Ziv

Frames

Key

Frames

Decoded

Wyner-Ziv

Frames

Decoded

Key

Frames

Request bits

Minimum

Rate

Estimation Soft Input

Computation

Virtual

Channel

Model

Fig. 2-2. DISCOVER Codec [5].

The parts of encoder including DCT, Quantizer, Extract Bit-planes, Buffer, and

Conventional Intraframe Encoder are the same as the first practical DVC mentioned

in Section 2.1. And the parts of decoder including Reconstruction, IDCT, and

Conventional Intraframe Decoder are also the same as the first practical DVC.

12

Channel coding uses an LDPCA coder which consists of an LDPCA Encoder and an

LDPCA Decoder because of its better ability of correcting errors. And Minimum Rate

Estimation is used to estimate the initial source rate of LDPCA such that the total

number of iterations in the LDPCA Decoder could be reduced.

The quality of side information has a great impact on the RD performance of

Wyner-Ziv frames, so choosing appropriate techniques to implement Side Information

Extraction and to generate side information is important. Thus, a Frame Interpolation

Framework including some techniques proposed in [9] was applied to improve the

accuracy of motion-compensated side information as shown in Fig. 2-3.

Low Pass

Filter

Low Pass

Filter

Forward

Motion

Estimation

BiDirectional

Motion

Estimation

Spatial

Motion

Smoothing

BiDirectional

Motion

Compensation

Previous

Reference

Frame

Next

Reference

Frame

Interpolated

Frame

Fig. 2-3. Frame Interpolation Framework [9].

First, the input Previous Reference Frame and Next Reference Frame are

processed by a Low Pass Filter. The function of Low Pass Filter in DVC is to average

the values in pixel domain within a specific region. Then, Forward Motion Estimation

is used to find motion vectors approximate to the true motion vectors between low

pass filtered Previous Reference Frame and low-pass filtered Next Reference Frame.

The Bidirectional Motion Estimation refines the motion vectors within a small offset

which could be half pixel or quarter pixel of the approximate motion vectors. The

method used to find appropriate motion vectors of each block is to choose the smallest

SAD of each block between the compensated previous reference frame and the

compensated next reference frame. Then, an adaptively weighted vector-median filter

[10] is used for Spatial Motion Smoothing. The function of Motion Smoothing is to

find more smoothing motion vectors for each block within a specified region. The

technique could be applied to the situations as depicted in Fig. 2-4, where the original

 13

motion vectors were just obtained by minimum SAD (Fig. 2-4(a)) while Spatial

Motion Smoothing considered not only minimum SAD but also adjacent motion

vectors to refine motion vectors (Fig. 2-4 (b)).

(a) (b)

Fig. 2-4. Motion Vectors (a) Before and (b) After Spatial Motion Smoothing.

The criterion is defined by the following equation:

∑ 𝑀𝑆𝐸(𝑥𝑤𝑚𝑣𝑓 , 𝐵)(|𝑋𝑤𝑣𝑚𝑓 − 𝑋𝑗| + |𝑌𝑤𝑣𝑚𝑓 − 𝑌𝑗|)
𝑁
𝑗=1 ≤ (2-1)

∑ 𝑀𝑆𝐸(𝑥𝑐, 𝐵)(|𝑋𝑐 − 𝑋𝑗| + |𝑌𝑐 − 𝑌𝑗|)
𝑁
𝑗=1 ,

where 𝑥𝑤𝑣𝑚𝑓 is the motion vector obtained at the output of the weighted

vector-median filters, N is the number of motion vectors within a specified region, 𝑥𝑐

is the current appropriate motion vector, X and Y are x-dimension and y-dimension

values of motion vectors respectively, MSE(x, B) means the mean square error of the

motion vector x of current block compensated by previous and next reference frames.

Finally, Bidirectional Motion Compensation is applied, where the side information

consists of a Previous Reference Frame compensated by forward motion and a Next

Reference Frame compensated by backward motion, and the motion vectors are the

14

output of this Bidirectional Motion Estimation.

 The Virtual Channel Model adopted in DISCOVER DVC is a Laplacian

distribution as proposed in [11, 12]. The Laplacian distribution used in correlation

noise modeling is described by the following probability density function:

𝑝[𝑊𝑍(𝑥, 𝑦) − 𝑆𝐼(𝑥, 𝑦)] =
𝛼

2
𝑒𝑥𝑝[−𝛼|𝑊𝑍(𝑥, 𝑦) − 𝑆𝐼(𝑥, 𝑦)|], (2-2)

where WZ(x,y) is the pixel of Wyner-Ziv frames in the position of (x,y), SI(x,y) is the

pixel of side information in the position of (x,y), and α is the Laplacian distribution

parameter. The Laplacian distribution parameter is calculated at both the DCT band

level and the coefficient level where the former means the parameter being associated

with a DCT band of each frame and the latter means the parameter being associated

with a DCT band of each block in each frame. We will describe calculation of the

Laplacian distribution parameter at the DCT band level. To calculate the Laplacian

distribution parameter for the transform domain noise model, the residual frame will

be transformed by DCT. Then, the variance can be computed through the transformed

residual. The variance is defined by the following equations:

 𝜎𝑏
2 = 𝐸𝑏[|𝑇|𝑏

2] − (𝐸𝑏[|𝑇|𝑏])
2 (2-3)

 𝐸𝑏[|𝑇|𝑏] =
1

𝐽
∑ |𝑇|𝑏(𝑗)
𝐽
𝑗=1 (2-4)

 𝐸𝑏[|𝑇|𝑏
2] =

1

𝐽
∑ [|𝑇|𝑏(𝑗)]

2𝐽
𝑗=1 (2-5)

where σb is the variance of a DCT-band b,|𝑇|𝑏 is an absolute transformed residual

|𝑇| of a DCT-band b, 𝐸𝑏[|𝑇|𝑏] is the expectation of an absolute transformed residual

of band b, 𝐸𝑏[|𝑇|𝑏
2] is the expectation of the square of absolute transformed residual

of band b, and J is the number of transform blocks in a frame. The Laplacian

distribution parameter of the DCT-band b is defined by Equation 2-6:

 15

 𝛼𝑏 = √
2

𝜎𝑏
2 (2-6)

The probability inputted to LDPCA Decoder is calculated through Soft Input

Computation by using the above Laplacian distribution parameters generated by the

Virtual Channel Model.

 Errors of bit planes in side information are corrected by LDPCA Decoder. And

these bit planes are reconstructed by Reconstruction to form a transformed frame.

Finally, the transformed frame will be processed by IDCT to become a pixel-domain

frame, a decoded Wyner-Ziv frame.

2.3 Hybrid DVC

Hybrid distributed video coding with frame level coding selection was proposed

in [8] and its framework is shown in Fig. 2-5.

DCT Quantizer
Skip Mode

Decision

LDPCA

Encoder

Entropy

Encoder

Coding Mode

Selection

Frame

Buffer

Intra

Encoder

Intra

Decoder

Frame

Buffer

LDPCA

Decoder

Entropy

Decoder

Soft Input

Computation

Reconstruction

SI Refinement

SI Creation

Correlation

Noise Modeling

Wyner-Ziv

Frames
-

Key

Frames

Decoded

Wyner-Ziv

Frames

Decoded

Key

Frames

-

Fig. 2-5. The Hybrid DVC Framework [8].

Correlation Noise Modeling, Intra Encoder, and Intra Decoder are respectively the

same as Virtual Channel Model, Conventional Intraframe Encoder, and Conventional

Intraframe Decoder in DISCOVER as mentioned in Section 2.2. Besides the parts of

DCT, Quantizer, LDPCA Encoder, LDPCA Decoder, Reconstruction, Soft Input

16

Computation, Correlation Noise Modeling, Intra Encoder, and Intra Decoder as

mentioned in Section 2.2, there are some new blocks in Hybrid DVC including Skip

Mode Decision, Coding Mode Selection, Entropy Encoder, Entropy Decoder, and

Side Information (SI) Refinement. The main idea of the Hybrid DVC is that the

authors applied conventional video techniques including residual coding, entropy

coding, and skip mode to the framework. Therefore, they need a Coding Mode

Selection in their frame level coding.

 In the encoder, applying a residual codec to DVC can efficiently reduce the data

needed to be transmitted from encoder to decoder by exploring the temporal

redundancy between key frames and WZ frames at the cost of a little increase in

computing complexity. The residual is calculated by the following equation:

 𝑟(𝑥, 𝑦) = 𝑓𝑊𝑍(𝑥, 𝑦) − 𝑓𝑘𝑒𝑦(𝑥, 𝑦), (2-7)

where r is the residual value, 𝑓𝑊𝑍 is the current WZ frame, 𝑓𝑘𝑒𝑦 is the reference key

frame, and (𝑥, 𝑦) is the coordinate of each frame. In order to coordinate residual

coding, a new method of quantization step size was applied to the Hybrid DVC to fit

the balance of RD performance. The new quantization step size is defined by

Equation 2-8:

 𝑄𝑖 = 𝑚𝑎𝑥(
2|𝑚𝑎𝑥(𝑏𝑖)|

2𝑀−1
, 𝑄𝑖,𝑚𝑖𝑛), (2-8)

where 𝑄𝑖 is the quantization step size of band i, 𝑏𝑖 is the value of band i, 𝑄𝑖,𝑚𝑖𝑛 is

the pre-defined minimum quantization step size of band i, and M is the number of

bitplanes.

 The residual frames processed by DCT and Quantizer will be input to Skip Mode

Decision used in the encoder, which will help to reduce largely the transmitted data

but add little error to the reconstructed frame. Unit of skip mode is a 4x4 block and

the threshold of skip mode is defined by the following equation by calculating the

transformed residual value:

 17

 𝐷𝑖𝑠𝑡(𝑛) = ∑ ∑ 𝑞𝑛
2(𝑢, 𝑣)3

𝑣=0
3
𝑢=3 , (2-9)

where n is the index of block in the residual frame, and 𝑞𝑛
2(𝑢, 𝑣) is the square of

transformed residual value in the block. If the value calculated by Equation (2-9) is

lower than a defined threshold, the block will be skipped, which is controlled by Skip

Mode Decision. And the skip flag will be coded by a run-length encoder to further

reduce the transmitted data.

 Then, Coding Mode Selection will decide the coding mode of non-skipped

blocks and this is a new idea proposed in [8]. This decision is made for every frame

meaning that all non-skipped blocks in a frame will be coded by the same coding

mode. There are totally four modes including Channel Coding, Hybrid Mode 1,

Hybrid Mode 2, and Entropy Coding. Channel Coding in the Hybrid DVC uses a

low-density parity-check accumulate (LDPCA) coder and Entropy Coding uses a

context-adaptive variable-length coder (CAVLC). Hybrid Modes combined with

Channel Coding and Entropy Coding are used to code different frequency bands. In

Channel Coding mode, all bands are coded by LDPCA. In Entropy Coding mode, all

bands are coded by CAVLC. In Hybrid Mode 1, the lower three bands are coded by

LDPCA and CAVLC is used to code the other bands. In Hybrid Mode 2, the lower six

bands are coded by LDPCA and CAVLC is used to code the other bands. The rule of

choosing a proper coding mode is shown in Table 2-1:

18

Table 2-1. Coding Modes and Decision Rules [8].

Coding mode Decision rule

Channel Coding E0 > г0, E1 > г1, E2 > г2

Hybrid Mode 1 E0 > г0, E1 ≤ г1

Hybrid Mode 2 E0 > г0, E1 > г1, E2 ≤ г2

Entropy Coding E0 ≤ г0

In Table 2-1, E0, E1, E2 are the energy of three different groups and г0, г1, г2 are

defined thresholds of these three groups of energy. The energy E0 is the summation of

average amplitudes of the lower three zigzag-scan ordered bands, E1 is the summation

of average amplitudes of the next three zigzag-scan ordered bands, and E2 is the

summation of the other average amplitudes. The energy in each of the three groups is

defined by the following equations:

 𝐸0 = 𝑏0 + 𝑏1 + 𝑏2 (2-10)

 𝐸1 = 𝑏3 + 𝑏4 + 𝑏5 (2-11)

 𝐸2 = 𝑏6 + 𝑏7 + 𝑏8 + 𝑏9 + 𝑏10 + 𝑏11 + 𝑏12 + 𝑏13 + 𝑏14 + 𝑏15 (2-12)

The average amplitude b of each band i is denoted as:

 𝑏𝑖 =
1

𝑁
∑ 𝑞𝑛(𝑖)
𝑁
𝑛=1 , (2-13)

where N is the number of blocks, 𝑞𝑛(𝑖) is the transformed residual value of band i

within block n.

 In the decoder, WZ frames will be reconstructed through three paths which are

skipped block, entropy decoding, and channel decoding. If the block is a skipped

block, the values of the block are completely copied from the reference frame. Then,

 19

the bands coded by Entropy Coding are reconstructed through the path of Entropy

Decoder. The bands coded by Channel Coding will be reconstructed through the path

of a Channel Decoder. The path of the Channel Decoder is the most complex for the

side information must be generated by Side Information (SI) Creation and refined by

Side Information Refinement [13]. The Side Information Creation includes Low Pass

Filter, Forward Motion Estimation, Bidirectional Motion estimation, Spatial Motion

Smoothing, and Bidirectional Motion Compensation as mentioned in Section 2.2. And

the side information will be refined after the channel decoding of a bit plane. Some

blocks of WZ frames flagged as skipped block are reconstructed through directly

copying from reference frames. Other blocks of WZ frames are reconstructed by

Entropy Decoding or Channel Decoding according the four coding modes. Then,

decoded WZ frames are reconstructed by these decoded blocks.

20

 21

CHAPTER 3

PROPOSED ARCHITECTURE AND IMPLEMENTATION

Lots of architectures of DVC have been proposed, and their goal is to improve

the RD performance by adding extra components in the decoder, which also increases

the complexity of the decoding process. High complexity of the decoding process

causes that the decoded video cannot be played in real time. Hence, we propose an

architecture of DVC based on Hybrid DVC [8] to improve these situations and

implement this architecture in hardware. In the following sections, we will describe

the proposed architectures of DVC, LDCPA Decoder, Side Information Creation

including Motion Compensation and Spatial Motion Smoothing, CAVLC Decoder,

DCT, IDCT, Quantization, De-Quantization, Correlation Noise Modeling, Soft Input

Computation, and Reconstruction.

3.1 Proposed Architecture of DVC

The proposed DVC decoder is shown in Fig. 3-1. A new idea of our proposed

architecture is that the motion vector is predicted in the DVC encoder in a small range

such that more precise motion vectors can be input to the DVC decoder.

22

LDPCA

Decoder

CAVLC

Decoder

Soft Input

Computation

H.264 Intra

Decoder

Motion

Compensation

Correlation

Noise

Modeling

Frame Buffer

De-

Quantization
IDCT Reconstruction Wyner-Ziv

Frames

Key

Frames

Spatial

Motion

Smoothing

Bidirectinal

Motion

Compensation

Interpolation
DCTQuantization

Side Information Creation

-

DCT Quantizer
Skip Mode

Decision

LDPCA

Encoder

CAVLC

Encoder

Coding

Mode

Selection

Frame

Buffer

H.264 Intra

Encoder

Wyner-Ziv

Frames
-

Key

Frames

Motion

Estimation

Motion

Compensation

Fig. 3-1. Proposed Architecture of DVC.

Adding motion estimation in the DVC decoder will result in an increase of time

complexity in the encoding process, but could improve RD performance. And

compared to software simulation, it will only increase about ten percent of time

complexity in the encoding process.

Most blocks of our proposed DVC decoder, including LDPCA Decoder, CAVLC

Decoder, Soft Input Computation, Correlation Noise Modeling, Quantization,

De-Quantization, DCT, IDCT, Bidirectional Motion Compensation, Spatial Motion

Smoothing, Frame Buffer, and H.264 Intra Decoder, have been depicted in previous

chapter, but there are some new blocks such as Motion Compensation and

Interpolation to be presented. Since the residue frames in the proposed DVC encoder

come from motion-compensated key frames and WZ frames, we need a Motion

Compensation in the DVC decoder. And the reason of adding Interpolation in Side

Information Creation is that the frames generated by Bidirectional Motion

Compensation sometimes are less precise than the frames generated by Motion

Compensation. Using Interpolation can help us to get better SI because of its

averaging the errors of motion vectors from DVC encoder and Spatial Smoothing.

Besides, the input data to the Reconstruction of the proposed DVC decoder are

motion-compensated key frames and residue frames generated from

motion-compensated key frames and WZ frames. And they could reduce the data

 23

needed to be transmitted from encoder to decoder compared to those residue frames

generated from key frames and WZ frames.

Most blocks of our proposed DVC encoder have been described in previous

chapter, except the following two blocks, Motion Estimation and Motion

Compensation. The reason why we added these two blocks is that the amplitudes of

residue frames can be reduced and motion vectors predicted in the encoder can be

used to create more precise side information in the decoder.

The proposed system architecture and data flow is shown in Fig. 3-2. The

proposed system consists of external memory and blocks described in the previous

paragraph. Dotted lines present that a frame-based process is within this region. Until

a frame-based process is finished, the followed process will start. In each frame-based

process, the external memory can only be accessed by a certain block. Hence, we

schedule the system that only one certain block is running at a time. The encoded bits

of H.264 are decoded by H.264 Intra Decoder to generate Key Frames. The

Wyner-Ziv Frames are decoded by the Wyner-Ziv Decoder consisting of Spatial

Motion Smoothing, Bidirectional Motion Compensation, Motion Compensation,

Interpolation, I/DCT & De/Quant., Correlation Noise Modeling & Soft Input

Computation, LDPCA Decoder, CAVLC Decoder, and Reconstruction. In decoding

Wyner-Ziv Frames, input data is Key Frames, Motion Vectors, Syndrome Bits, and

Encoded Bits of CAVLC, and some intermediate Transform-Domain Residue Frames.

24

Spatial M
o

tion

Sm
o

o
th

ing

M
o

tio
n

 V
ecto

rs
K

ey Fram
es

B
id

irectio
nal

M
o

tio
n

C

o
m

p
en

satio
n

K
ey Fram

es

M
o

tio
n

C

o
m

p
en

satio
n

K
ey Fram

es

D
C

T
&

Q
uan

t.

Transfo
rm

-D
o

m
ain

R

esid
u

e Fram
es

In
terpo

latio
n

K
ey Fram

es

C
A

V
LC

D
e

co
de

r

Transfo
rm

-D
o

m
ain

R

esid
u

e Fram
es

D
e

-Q
uan

t.
&

ID
C

T

Transfo
rm

-D
o

m
ain

R

esid
u

e Fram
es

M
o

tio
n

C

o
m

p
en

satio
n

H
.26

4 In
tra

D
e

co
de

r

K
ey Fram

es

En
co

de
d

 B
its o

f
C

A
V

LC

C
o

rrelatio
n

N

o
ise

 M
o

d
elin

g
&

Soft In
p

u
t

C
o

m
p

utatio
n

Transfo
rm

-D
o

m
ain

R

esid
u

e Fram
es

LD
P

C
A

D
e

co
de

r

Transfo
rm

-D
o

m
ain

R

esid
u

e Fram
es

Tim
e

Syn
d

ro
m

e B
its

En
co

de
d

 B
its o

f
H

.26
4

A
ccess

Exte
rn

al M
e

m
o

ry

A
ccess

E
xte

rn
al M

e
m

o
ry

A
ccess

E
xte

rn
al M

e
m

o
ry

M
o

tio
n

 V
ecto

rs
K

ey Fram
es

R
eco

n
stru

ctio
n

W
yn

er-Ziv Fram
es

K
ey Fram

es

W
yn

er-Ziv D
eco

d
er

Fig. 3-2. Proposed System Architecture and Data Flow.

 25

In this Thesis, we focus on the hardware design of our proposed DVC decoder.

And the design of each block in the proposed DVC decoder will be described in the

following sections.

3.2 LDPCA Decoder

Low Density Parity Check (LDPC) code, a linear block code, was invented by

Gallager [14] in 1962. Then, Tanner’s graph [15] transformed from the sparse

parity-check matrix was proposed to clearly depict the concept of LDPC. Urbanke [16]

proved that the error-correcting performance of LDPC is only 0.0045 dB far from

Shannon limit. With its outstanding error-correcting performance, LDPC code has

been applied to some digital communication systems as channel coding. Besides,

LDPC code is used in fixed-rate distributed source coding [17]. We can use LDPC in

a syndrome code form to transmit different amount of syndromes to achieve the goal

of data compression. Though LDPC in syndrome code form can be used to compress

data, there is a disadvantage that not every variable nodes are connected to check

nodes in high compression rate as shown in Fig. 3-3, where V0-5 present the variable

nodes and C0-5 present the check nodes.

26

V0

V1

V2

V3

V4

V5

C0

C1

C2

C3

C4

C5

(a) (b)

V0

V1

V2

V3

V4

V5

C1

C3

C5

Fig. 3-3. Tanner Graphs.

Figure 3-3(a) shows that the encoder transmitted the entire syndrome bits and

Fig. 3-3(b) shows that the encoder only transmitted odd-index syndrome bits. There

are some variable nodes in Fig. 3-3(b) not connected to any check nodes or just

connected to one check node. To solve this problem, low density parity check

accumulate (LDPCA) was proposed [4]. The idea of LDPCA is that the syndrome

generated by the encoder will be accumulated such that variable nodes will not be

unconnected to check nodes. Fig. 3-4 shows the decoding graph with accumulated

syndrome bits.

 27

V0

V1

V2

V3

V4

V5

C0 + C1

C2 + C3

C4 + C5

Fig. 3-4. Tanner Graphs with Accumulated Syndrome Bits.

Parity-check matrices of Fig. 3-3(a) and Fig. 3-4 are respectively shown in Fig.

3-5 and Fig. 3.6. We can see that two rows are merged when two check nodes are

merged. Merging rows means that the elements from the same position in each of the

two rows are binary added.

28

Fig. 3-5. Parity-Check Matrix of the LDPCA shown in Fig. 3.3(a).

Fig. 3-6. Parity-Check Matrix of the LDPCA shown in Fig. 3.4.

For example, Row 1 in Fig. 3-6 is obtained by merging the elements from Row 1

and Row 2 in Fig. 3-5. Binary addition of rows is shown below:

[1 1 1 0 1 1] = [1 0 1 0 0 1] + [0 1 0 0 1 0]

There are some properties of LDPCA:

1. The Log-Likelihood Ratios (LLR) of message and syndrome bits are inputs of

LDPCA, while the LLR of a code word (original message bits and redundancy

bits) is the input of LDPC.

2. The total decoding iteration number of LDPCA is directly proportional to the

number of different code rates.

3. The advantage is on its ability of compressing data and error correcting.

4. The disadvantage is on its high computation complexity.

After introduction of LDPCA, we are going to define the equations of check nodes

merging. Only syndrome bits are generated by the LDPCA encoder, which form the

 29

parity-check matrix used by the LDPCA encoder. Syndrome bits are defined in the

following equation:

𝐶𝑘 = ∑ 𝐻𝑘𝑖 ∙ 𝑉𝑖
𝑛−1
𝑖=0 , (3-1)

where 𝐶𝑘 is the k
th

 syndrome bit, n is the code length, 𝑉𝑖 is the i
th

 source bit, and

𝐻𝑘𝑖 is the (k,i) element of the parity-check matrix. The accumulated syndrome bits

are defined in Equation 3-2:

𝐴𝑘 = ∑ 𝐶𝑘
𝑘
𝑖=0 , (3-2)

where 𝐴𝑘 is the k
th

 accumulated syndrome bit. The merged syndrome bit from check

node j to check node k is defined in Equation 3-3:

𝐶𝑗…𝑘 = {
𝐴𝑗−1 ⊕𝐴𝑘 , 𝑖𝑓 𝑗 ≠ 0

𝐴𝑘 , 𝑒𝑙𝑠𝑒
 (3-3)

To simplify the transmitting process of different code rates, every 66 syndrome

bits are grouped together. If data cannot be decoded completely in a current code rate,

the encoder just transmits additional syndrome bits in a pre-determined order. The

transmitted nodes in different code rates are listed in Table 3-1:

30

rate \ txN

ode
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

2/66
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

3/66
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

4/66
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

5/66
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1

6/66
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1

7/66
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1

8/66
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1

9/66
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1

10/66
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1

11/66
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1

12/66
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1

13/66
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

1

14/66
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

1

15/66
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

1

16/66
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
0

1

17/66
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
1

0
0

1

18/66
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

1
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
1

0
0

1

19/66
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

1
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
1

0
0

1

20/66
0

0
0

1
0

0
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

1
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
1

0
0

1

21/66
0

0
0

1
0

0
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

1
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
0

1

22/66
0

0
0

1
0

0
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

0
1

0
0

0
1

0
0

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
0

1

23/66
0

0
0

1
0

0
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
0

1

24/66
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
0

1

25/66
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
0

1

26/66
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
0

1

27/66
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
0

1

28/66
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
0

1

29/66
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
0

1

30/66
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
0

1

31/66
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
0

1

32/66
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
0

1

33/66
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
0

1

34/66
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
0

1

35/66
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
0

1

36/66
0

1
0

1
0

1
0

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
0

1

37/66
0

1
0

1
0

1
0

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
0

1

38/66
0

1
0

1
0

1
0

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
0

1

39/66
0

1
0

1
0

1
0

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
0

1

40/66
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
0

1

41/66
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

1
1

0
1

1
0

1

42/66
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
1

1
0

1
1

0
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

1
1

0
1

1
0

1

43/66
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
1

1
0

1
1

0
1

0
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

1
1

0
1

1
0

1

44/66
0

1
0

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
1

1
0

1
1

0
1

0
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
1

0
1

1
1

0
1

1
1

0
1

1
0

1

45/66
0

1
0

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
1

1
0

1
1

0
1

0
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
0

1

46/66
0

1
0

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

0
1

0
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
0

1

47/66
0

1
0

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
0

1

48/66
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
0

1

49/66
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

1
1

1
0

1

50/66
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
1

1
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

1
1

1
0

1

51/66
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
1

1
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

1
1

1
0

1

52/66
0

1
1

1
0

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
1

1
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

1
1

1
0

1

53/66
0

1
1

1
0

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
0

1
1

1
0

1
1

1
1

1
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
0

1

54/66
0

1
1

1
0

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

0
1

0
1

1
1

0
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
0

1

55/66
0

1
1

1
0

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

0
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
0

1

56/66
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

0
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
0

1

57/66
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

0
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1

58/66
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1

59/66
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1

60/66
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1

61/66
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1

62/66
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1

63/66
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1

64/66
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1

65/66
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

66/66
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

Table 3-1. Transmitted Nodes in Different Code Rates.

 31

In this work, we implement the LDPCA using a Min-Sum Algorithm [18]. Since

the check nodes of LDPCA could be merged in different compression rates and the

syndrome bits are accumulated in every 66 check nodes, we proposed an architecture

of Comparing Tree consisting of basic check nodes and stacking nodes to find the first

and second minimum LLRs to be merged into Check Nodes (CNs) as shown in Fig.

3-7.

Basic CN

m

Basic CN

m
min_1st min_2nd

… …
Basic CN

m

Stacking CN

m
min_1st min_2nd

… …

66 basic check nodes

Stacking CN

m

Stacking CN

m

 Fig. 3-7. Proposed Architecture of Comparing Tree.

Each wire in the Comparing Tree is used to transmit minimum values and parity

of variable nodes to check nodes. According to the parity-check matrix proposed by

Varodayan et al. [4], we design an algorithm to generate wires connecting Basic CNs

and Stacking CNs. Besides, to implement the hardware, we change the number of

32

accumulated syndrome bits to 66 only, without accumulating all the syndrome bits.

The flow of creating a Comparing Tree based on 66 basic check nodes is as follows:

(1) Allocate an array for Basic CNs and an array for pointers which are initially

pointing to Basic CNs.

(2) From the code rate of 66/66 to the code rate of 2/66, every time the code rate is

changed, a Stacking CN will be inserted to the Comparing Tree. The pointers of

the to-be-merged two check nodes will point to the new inserted Stacking CN.

The pointer of the pointer array in the position of a transmitting node will point to

the new inserted Stacking CN, while the pointer in the position of the

to-be-merged node of the pointer array will point to null.

(3) After iterations of code rates from 66/66 to 2/66 in Step 2 are done, we can

traverse from the array of Basic CNs by breadth-first search to know how many

Stacking CNs are inserted and wires are connected to Basic CNs and Stacking

CNs.

 The schematic diagram of wires connected to Variable Nodes (VNs), Basic CNs,

and Stacking CNs is shown in Fig. 3-8.

 33

Fig. 3-8. Schematic Diagram of Wires Connected to VNs and BNs.

The units of the Basic CNs and Stacking CNs in the Comparing Tree are

different. There are three input values and two outputs for the first and second

minimum values in the Basic CNs. There are two pairs of inputs of sorted values and

two outputs for the first and second minimum values in the Stacking CNs. Their

function is to find the first two minimum values with minimum-value generators [19]

as shown in Fig. 3-9 and Fig. 3-10.

Comp
X0

X1

X2

0

1

0

1

mn0

mn1

min_1st

min_2nd

0

1

Z0

Cp0

Z1

Fig. 3-9. A 3-Input Minimum-Value Generator.

34

m1A

m2A

m1B

m2B

mn0
Z0 min_1st

0

1

mn1

mn2

Cp0

Z1

Z2

min_2nd

Fig. 3-10. A 4-Input Minimum-Value Generator.

In Fig. 3-9, X0, X1, and X2 are inputs; Comp is a two-input comparator; mn0 and

mn1 are two 2-input minimum-value generators outputting a minimum value and an

index of a minimum value; Z0 and Z1 are minimum values; Cp0 is the index of a

minimum value; min_1st and min_2nd are the first minimum value and the second

minimum value respectively. In Fig. 3-10, m1A, m2A, m1B, and m2B are two pairs

of sorted minimum values; mn0, mn1, and mn2 are three 2-input minimum-value

generators; Z0, Z1, and Z2 are minimum values; min_1st and min_2nd are the first

minimum value and the second minimum value respectively.

Figure 3-11 is an example of Comparing Tree consisting of Basic CNs and

Stacking CNs. C0, C1, C2, C3, C4, and C5 are Basic CNs. SC0, SC1, and SC2 are

Stacking CNs. The numbers on the left side of Basic CNs are the order of transmitted

accumulated syndrome bits. Code rates, 6/6, 5/6, 4/6, and 3/6 present different steps

of inserting Stacking CNs as described in the previous flow of creating Comparing

Tree(p.32). According to proposed algorithm of creating Comparing Tree, Basic CNs

are inserted first. From the code rate of 5/6 to the code rate of 3/6, every time the code

rate is changed, a Stacking CN is inserted to the Comparing Tree. And the wires are

connected to the merged Basic CN and the inserted Stacking CN.

 35

C0

C1

C2

C3

C4

C5 SC0

1

1

1

2

3

4

SC1

SC2

6/6 5/6 4/6 3/6

Fig. 3-11. An Example of Comparing Tree Consisting of Check Nodes.

Two examples of merging check nodes are shown in Fig. 3-12 and Fig. 3-13

where V0, V1, V2, V3, V4, and V5 are variable nodes, C0, C1, C2, C3, C4, and C5 are

Basic CNs, and SC0, SC1, and SC2 are Stacking CNs. In Fig. 3-12, code rate is 4/6.

Basic CNs, C2 and C3, are merged first; then Basic CNs, C4 and C5, are merged.

Variable nodes connected to Merged Check Nodes are updated by message passing

from SC0 and SC1 while other variable nodes are updated by message passing from C0

and C1. In Fig. 3-13, code rate is 5/6 and there is only one Merged Check Node since

there is only one accumulated syndrome bit not received by LDPCA decoder. Variable

nodes connected to Merged Check Node are updated by message passing from SC0

while other variable nodes are updated by message passing from C0, C1, C2, and C3.

Other code rates can be achieved by the same way.

36

V0

V1

V2

V3

V4

V5

C0

C1

C2

C3

C4

C5 SC0

SC1

SC2

Merged Check Node

Merged Check Node

Fig. 3-12. An Example of Merging Check Nodes in Code Rate of 4/6.

V0

V1

V2

V3

V4

V5

C0

C1

C2

C3

C4

C5 SC0

SC1

SC2

Merged Check Node

Fig. 3-13. An Example of Merging Check Nodes in Code Rate of 5/6.

 37

In Fig. 3-8, there are 6 stages of Stacking CNs because 66 Basic CNs are included.

Since the order of transmitting accumulated syndrome bits in each grouping of the 66

VNs is the same, the Comparing Tree of each group of 66 CNs is also the same. Thus,

we proposed an architecture of LDPCA decoder as shown in Fig. 3-14.

Extrinsic
LLR

Syndrome BufferDe-Accumulator

Syndrome BufferDe-Accumulator

Comparing Tree

Syndrome BufferDe-Accumulator

...

Bit Nodes

Parity Check

Edge

Intrinsic
LLR

Accumulated
Syndrome

Bits

Comparing Tree

Comparing Tree

Fig. 3-14. Proposed Architecture of LDPCA Decoder.

Intrinsic LLR and Accumulated Syndrome Bits are input data, and extrinsic LLR

will be outputted when the decoding process is finished. Each Accumulated Syndrome

Bits stored in the Syndrome Buffer are required by the LDPCA decoder in different

code rates according to Table 3-1. Basic CNs merged in the same CN will fetch the

same syndrome bits. The syndrome bits fetched by basic check nodes are generated

by a De-Accumulator. The De-Accumulator is a combinational circuit implementing

38

the function of Equation (3-3) and its input is the accumulated syndrome bits stored in

the Syndrome Buffer. Exclusive-Or is used for binary addition in Equation (3-3).

Edges of Bit Nodes in the Comparing Tree are generated according to the

parity-check matrix proposed in [4]. And Parity Check is also designed according to

the same parity-check matrix proposed in [4].

The state diagram of the proposed LDPCA decoder is shown in Fig. 3-15. First,

LDPCA decoder reads the channel value, reads syndromes, and initializes message.

Check nodes and variable nodes are updated. Then, we decide whether the syndromes

are matched and the iteration number is equal to the maximum iteration number. If the

checked syndrome is not matched and the iteration number is not equal to the

minimum iteration number, the LDPCA decoder continues reading syndromes and

performing decoding process. If the checking syndrome is matched, or if the source

rate is 66/66 and the maximum iteration number is matched, the decoding process is

finished. Finally, the decoded values are outputted.

Read the
channel value

Read
syndromes and

initialize
message

Update
variable nodes

Update check
nodes

Check
syndrome &

max. iteration

Terminate
decoding
process

Parity checking is matched
Or source rate is 66/66 & achieve max. iteration

Achieve max. iteration

Reset

Not achieve max. iteration

Fig. 3-15. State Diagram of Proposed LDPCA Decoder.

3.3 Side Information Creation

Side information creation is used to generate approximate Wyner-Ziv frames

called side information. The proposed framework of side information creation is

shown in Fig. 3-16. The proposed side information creation consists of three parts

including Spatial Motion Smoothing, BiDirectional Motion Compensation, and

Interpolation. First, Spatial Motion Smoothing adjusts the motion vectors on a frame

 39

according to the input motion vectors of Previous Key Frame and Next Key Frame.

Next, a motion-compensated key frame is generated by BiDirectional Motion

Compensation using adjusted motion vectors. Then, the motion-compensated key

frame and a Motion-Compensated Previous Key Frame are combined by Interpolation

to create Side Information. Details of Spatial Motion Smoothing, BiDirectional

Motion Compensation, and Interpolation will be described in the following

subsections.

Spatial

Motion

Smoothing

BiDirectional

Motion

Compensation

Previous

Key Frame

Next

Key Frame

Motion-

Compensated

Previous Key

Frame

Motion Vectors Interpolation Side Information

Fig. 3-16. Proposed Framework of Side Information Creation.

3.3.1 Spatial Motion Smoothing

The function of Spatial Motion Smoothing is to find the appropriate motion

vectors within a specified window since there might be some errors in motion vectors

predicted by block matched motion estimation. For example, Fig. 2-4(a) presents the

motion vectors predicted by motion estimation and Fig. 2-4(b) presents the motion

vectors after Spatial Motion Smoothing that refines the motion vectors according to

the motion vectors of neighboring blocks within a specified window. In this example,

the motion vector in the center of Fig. 2-4(a) is not correct because it just was

predicted by the sum of absolute differences (SAD) which might cause block effect.

After Spatial Motion Smoothing, the motion vector in the center was corrected such

that block effect can be avoided.

In our work, we use a weighted vector median filter [20] to implement the

40

function of Spatial Motion Smoothing in a block. The idea of this filter is that not

only distance of motion vectors within a specified window but also a weighted value

are considered as predicted values. And the weighted value is the SAD of the previous

forward motion-compensated block and next backward motion-compensated block.

The criterion of the weighted vector median filter is defined in the following equation:

 ∑ 𝑆𝐴𝐷(𝑥𝑤𝑚𝑣𝑓 , 𝐵)(|𝑋𝑤𝑣𝑚𝑓 − 𝑋𝑗| + |𝑌𝑤𝑣𝑚𝑓 − 𝑌𝑗|)
𝑁
𝑗=1 ≤

 ∑ 𝑆𝐴𝐷(𝑥𝑐, 𝐵)(|𝑋𝑐 − 𝑋𝑗| + |𝑌𝑐 − 𝑌𝑗|)
𝑁
𝑗=1 , (3-4)

The above equation is similar with Equation (2-1) except the SAD. 𝑥𝑤𝑣𝑚𝑓 is the

motion vector obtained at the output of the weighted vector-median filters, N is the

number of motion vectors within a specified region, 𝑥𝑐 is the current appropriate

motion vector, X and Y are x-dimension and y-dimension values of motion vectors

respectively, and SAD(x, B) means the sum of absolute differences of the motion

vector x of current block compensated by previous and next reference frames.

As shown in Fig. 3-17, the proposed architecture of weighted vector median

filter is modified from [21]. The architecture consists of Control Unit, Datapath of

Distance, Weighing & Minimum Selector, and Datapath of SAD. Control Unit is used

to control the dataflow of motion vectors, pixels of frames, and output vector.

Datapath of Distance is used to calculate the distance of motion vectors. Datapath of

SAD is used to calculate the SAD of compensated blocks. Weighting & Minimum

Selector is used to calculate the weighting factor and select the candidate motion

vector.

 41

Control

Unit

Datapath of

Distance

Datapath of

SAD

Weighting &

Minimum

Selector

Fig. 3-17. Proposed Architecture of Weighted Vector Median Filter.

 The architecture of Datapath of Distance is shown in Fig. 3-18. In this

architecture, the window size is nine blocks. The motion vector is inputted through

Vin to each register, V1 Reg. to V9 Reg. The mux is used to select the proper motion

vectors, V1 to V9, in different calculation phases. When the specified window moves,

the number of input motion vectors is different. We have to input nine motion vectors

into the nine registers, V1 Reg. to V9 Reg., when the specified window is at the

leftmost of the row. We only input three motion vectors into the three registers, V3

Reg., V6 Reg., and V9 Reg., when the specified window is not at the leftmost of the

row. After calculation through absolute, adder, and storing in the register, Di contains

the distance of motion vectors.

42

V1 Reg V2 Reg V3 Reg V4 Reg V6 Reg V7 RegV5 Reg V8 Reg V9 Reg

Mux 1 Mux 2 Mux 3 Mux 4 Mux 5 Mux 6 Mux 7 Mux 8

Vin

Abs

Reg

Abs

Reg

Reg

Abs

Reg

Abs

Reg

Reg

Abs

Reg

Abs

Reg

Reg

Abs

Reg

Abs

Reg

Reg

Reg

Di

M
u
x

V1

V2

V3

V4

V5

V6

V7

V8

V9

Fig. 3-18. Architecture of Datapath of Distance.

 The architecture of Datapath of SAD is shown in Fig. 3-19. Pixels of a current

block and compensated by the input previous and next reference frames, Pprev and Pnext,

controlled by the Control Unit. First, these two input values are calculated through a

subtractor. Next, the absolute value of this difference value is obtained by Abs. Then,

the absolute value is added with a temporary weighting factor, Wi, and the sum is

stored in a register. Finally, calculation of weighting factor is completed after reading

every pixels of the block.

 43

Abs

Wi

Registers

Pprev Pnext

Fig. 3-19. Architecture of Datapath of SAD.

 The architecture of Weighting & Minimum Selector is shown in Fig. 3-20. The

functions of Weighting & Minimum Selector are multiplying the weighting factor and

the distance, and selecting the motion vector with a minimum weighting value. The

weighting values of components x and y are separately computed. The weighting

value of x, WDix, is equal to weighting factor, Wix, multiplied by the distance of

component x, Dix. The weighting value of y is calculated like the weighting value of x.

The sum of weighting values will be compared with the value stored in the register to

find the minimum weighting value by the Comparator. If the weighting value is

smaller than the value stored in the register, the value stored in the register will be

substituted by the weighting value and the previous motion vector will be substituted

by the current motion vector.

44

X

X

Reg

Reg

�

Wi

Registers

Wi

Registers

C
o

m
p

a
ra

to
r

Reg

Diy

Dix

Wiy

Wix

WDiy

WDix

Fig. 3-20. Architecture of Weighing & Minimum Selector.

3.3.2 BiDirectional Motion Compensation

BiDirectional Motion Compensation means that using motion vectors filtered by

a vector median filter to get forward motion-compensated frame and backward

motion-compensated frame. The residue frames of forward motion-compensated

frames and backward motion-compensated frames are used to be the inputs of

Correlation Noise Modeling. The interpolation frames of forward

motion-compensated frames and backward motion-compensated frames form exactly

the side information.

The inputs of BiDirectional Motion compensation are motion vectors and key

frames. The motion vectors of a forward motion-compensated frame and a backward

motion-compensated frame are only different in sign bit. The direction of motion

vectors of forward motion compensation and backward motion compensation is

opposite as shown in Fig. 3-21.

 45

(b)(a)

Fig. 3-21. Motion Vectors of (a) Forward and (b) Backward Compensations.

Key frames are read from external memory units, previous key frame buffer and

next key frame buffer. The motion vectors stored by the vector median filter are read

from SRAM. The motion vectors for backward motion compensation are obtained by

letting the input motion vectors multiplied by negative 1, while the motion vectors for

forward motion compensation are the input motion vectors.

The hardware of motion compensation is mainly for the control of reading

address and writing address, and signal of writing. Besides, we have to consider the

situation where motion vectors are pointing to the outside of the frame boundary. In

this situation, we will use the nearest pixel of this frame instead.

The architecture of motion compensation is shown in Fig. 3-22. Motion Vectors

are stored into registers first. Pixel Address of a reference frame is calculated by

Control according to these stored motion vectors and current block. Pixel will stored

into Buffer, and Control will send signal of Enable to present the Compensated Pixel

is ready. The process between calculating Pixel Address and presenting the

Compensated Pixel is ready will repeat until each Compensated Pixel of a frame is

completed.

46

RegistersMotion Vectors

Control

BufferPixel

Pixel
Address

Compensated
Pixel

Enable

Fig. 3-22. Architecture of Motion Compensation.

3.3.3 Interpolation

 The function of Interpolation in Side Information Creation is to calculate the

mean values of pixels between bidirectional motion-compensated frames. The

interpolated pixel can be presented as the following equation:

 𝑝𝑖 = (𝑝𝑓 + 𝑝𝑏 + 1) ≫ 1, (3-5)

where pi is the interpolated pixel, pf is the pixel in a forward motion-compensated

frame, and pb is the pixel in a backward motion-compensated frame. Adding one and

right shifting one in Equation (3-5) means the content is divided by 2 and rounded to a

single digit.

 Implementation of Interpolation mainly consists of memory accessing and a

combinational circuit of adder and shifter. Pixels are read from external memory and

stored to external memory. The stored pixels will be read by the next stage. The

combinational circuit is to implement the function of Equation (3-5).

 The architecture of Interpolation is shown in Fig. 3-23. Pforward is the pixel in a

forward motion-compensated frame, and Pbackward is the pixel in a backward

motion-compensated frame. We obtain the interpolation pixel, Pforward, by right

shifting the sum of Pforward, Pbackward, and 1 one bit.

 47

>>1

Pforward Pbackward

1

Pinterpolation

Fig. 3-23. Architecture of Interpolation.

3.4 CAVLC Decoder

 Context-based Adaptive Variable Length Code (CAVLC) is proposed to code the

coefficients after transform and quantization. CAVLC provides a good compression

with some lossy compression techniques like quantization. The hardware of CAVLC

used in our work is proposed in [22]. The decoding flow is shown in Fig. 3.24.

48

1. Decode the number of
non-zero coefficients and

trailing ones.

2. Decode the sign of each
training ones.

3. Decode the levels of the
remaining non-zero

coefficients.

4. Decode the total number
of zeros before the last

coefficient.

5. Decode each run of zeros.
Number
of T1

Number of Coeff –
Number of T1

Number of Coeff

Fig. 3-24. Decoding Flow of CAVLC Decoder [22].

The flow of decoding process is as follows:

(1) According to the number of non-zero coefficients in the left block and top block,

and look-up table, we can decode the number of non-zero coefficients (Coeff)

and number of training ones (T1). The range of the number of Coeff is from 0 to

16, and the range of the number T1 is from 0 to 3. There are five look-up tables

in decoding the number of Coeff and T1, one of them is for chroma.

(2) After knowing the number of T1, we can immediately decode T1 according to

the bit stream. Only one bit is used to decode the sign of T1. Bit 1 means

negative 1 and Bits 0 means positive 1.

(3) In this step, the level of Coeff will be decoded according to 7 look-up tables,

Level-VLC0 to Level-VLC6. The decision is dependent on the number of Coeff,

the number of T1, and the threshold of decoded values. Initially, if the number of

Coeff is greater than 10 and the number of T1 is less than 3, Level-VLC1, or

Level-VLC0 will be chosen. The coefficient with the highest frequency will be

decoded first. If the magnitude of the previous decoded coefficient is greater than

the threshold of the current table, the next table will be chosen.

(4) According to the number of Coeff, decode the total number of zero before the

last coefficient.

 49

(5) Run-before zeroes is decoded according to the total number of zeroes, the

previous number of zeroes of the coefficient, and the run-before table.

 The block diagram of CAVLC Decoder is shown in Fig. 3-25. Bitstream will be

fetched into R0 and R1. According to the signals of Controller and Accumulator, the

correct 16-bit data will be outputted to Coeff_Token Decoder, TotalZero Decoder,

Run_Before Decoder, and T1 Decoder through Barrel Shifter. The functions of these

five decoders are depicted in previous decoding process. After finishing the decoding

process, the 16 decoded level values will be stored in Registers and outputted to next

stage.

Coeff_Token
Decoder

TotalZero
Decoder

Run_Before
Decoder

T1 Decoder
Level

Decoder
Controller

Registers

Barrel Shifter Accumulator

R1 R0

Bitstream

Decoded Level Values

Fig. 3-25. Block Diagram of CAVLC Decoder.

3.5 DCT, IDCT, Quantization, and De-Quantization

 Forward integer discrete cosine transform (DCT) and Quantization are the lossy

compression techniques applied in distributed video coding. In the encoder, these two

techniques are used to reduce the data rate. In the decoder, these two techniques are

50

used to create side information. Inverse integer discrete cosine transform (IDCT) and

De-Quantization are used to transform a quantized and transformed domain residue to

a pixel domain residue.

 In our work, we implement a direct 2-D transform coding [23] hardware as a

core for forward and inverse integer discrete cosine transforms. The 4x4 integer

transform is shown as the following equation:

 𝑌 = (𝐶𝑋𝐶𝑇)⊗ 𝐸

 = ([

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

] [𝑋] [

1 2 1 1
1 1 −1 −1
1 −1 −1 2
1 −2 1 −1

]) ⊗ 𝐸, (3-6)

where X is the input data, Y is the output data, E is the matrix of scaling factors, and

𝐶X𝐶𝑇 is the core of 2-D transform. After row-column decomposition and equation

substitution, we can obtain the following equations:

 𝑀𝑡𝑢 = ∑ 𝐶𝑡𝑖 ∙ 𝑋𝑖𝑢
3
𝑖=0 ,𝑡, 𝑢 = 0,… ,3 (3-7)

 𝑌𝑠𝑡 = ∑ 𝐶𝑠𝑢 ∙ (𝑀𝑢𝑡
𝑇)3

𝑢=0 ,𝑠, 𝑡 = 0,… ,3 (3-8)

where M is the intermediate data between the transform process. After substituting

Equation 3-7 into Equation 3-8, the equations of forward transform can be expressed

as following equations:

 [
𝑌𝑠0
𝑌𝑠2

] = ∑ 𝐶𝑠𝑢 ∙ ([
1 1
1 −1

] ∙ [
𝑋0𝑢 + 𝑋3𝑢
𝑋1𝑢 + 𝑋2𝑢

])3
𝑢=0 ,𝑠 = 0,… ,3 (3-9)

 [
𝑌𝑠1
𝑌𝑠3

] = ∑ 𝐶𝑠𝑢 ∙ ([
2 1
1 −2

] ∙ [
𝑋0𝑢 − 𝑋3𝑢
𝑋1𝑢 − 𝑋2𝑢

])3
𝑢=0 ,𝑠 = 0,… ,3 (3-10)

 In the same way, we can obtain the equations of inverse transform shown in

Equation 3-11 and Equation 3-12.

 [
𝑋𝑠0
𝑋𝑠3

] = ∑ 𝐶𝑠𝑢
𝑖𝑛𝑣 ∙ ([

1 1
1 −1

] ∙ [
𝑌0𝑢 + 𝑌2𝑢

𝑌1𝑢 +
1

2
𝑋3𝑢

])3
𝑢=0 ,𝑠 = 0,… ,3 (3-11)

 51

 [
𝑋𝑠1
𝑋𝑠2

] = ∑ 𝐶𝑠𝑢
𝑖𝑛𝑣 ∙ ([

1 1
1 −1

] ∙ [
𝑋0𝑢 − 𝑋2𝑢
1

2
𝑋1𝑢 − 𝑋3𝑢

])3
𝑢=0 ,𝑠 = 0, … ,3 (3-12)

 According to Equation 3-9, Equation 3-10, Equation 3-11, and Equation 3-12,

the hardware of direct 2-D transform coding is proposed as shown in Fig. 3-26.

+

+

<<1 +

<<1 +
>>1

>>1

lsft_en

lsft_en

rsft_en1

rsft_en2

MPE-1

+/-

+/-
- +

+

+

+

+

+

+

+

MPE-2

1,1/2

-1,1/2

-2,-12,1

+/-

-

-

-

MPE-1

MPE-1

MPE-1

MPE-2

Y00 X00

Y20 X30

Y10 X10

Y30 X20

Y02 X01

Y22 X31

Y12 X11

Y32 X21

Y01 X02

Y21 X32

Y11 X12

Y31 X22

Y03 X03

Y23 X33

Y13 X13

Y33 X23

X01 X00 Y01 Y00

X11 X10 Y21 Y20

X21 X20 Y11 Y10

X31 X30 Y31 Y30

X02 X03 Y03 Y02

X12 X13 Y23 Y22

X22 X23 Y13 Y12

X32 X33 Y33 Y32

M10 M00

M30 M20

M11 M01

M31 M21

M12 M02

M32 M22

M13 M03

M33 M23

Fig. 3-26. Hardware of Direct 2-D Transform [23].

 In MPE-1 (Multi-transform Processing Element), the enable signal of lsft_en

is for 𝑀10 and 𝑀30, the enable signals of rsft_en1 and rsft_en2 are for

inverse transform, the “+” is for 𝑀00 and 𝑀20, the “-” is for 𝑀10 and 𝑀30. In

MPE-2, 1/2, 1, -1, and “-” are for inverse transform.

 The architecture of DCT, IDCT, Quantization, and De-Quantization is shown in

Fig. 3-27. When signal of sel is 1, forward transform, Coef. Multiplier & Shifter,

and Quantization will be applied to input data. When signal of sel is 0,

DeQuantization, Coef. Multiplier & Shifter, and inverse transform will be applied to

input data.

52

DeQuantization
Coef.

Multiplier &
Shifter

Coef.
Multiplier &

Shifter
Quantization

Transform
Input Data

Output Data
0

1

0

1

sel selsel

 Fig. 3-27. Architectures of DCT, IDCT, Quantization, and De-Quantization.

3.6 Correlation Noise Modeling and Soft Input Computation

 The Correlation Noise Modeling adopted in our work is a Laplacian distribution

as proposed in [11, 12]. The Laplacian distribution is described by the following

probability density function as depicted in Chapter 2.

𝑝[𝑊𝑍(𝑥, 𝑦) − 𝑆𝐼(𝑥, 𝑦)] =
𝛼

2
𝑒𝑥𝑝[−𝛼|𝑊𝑍(𝑥, 𝑦) − 𝑆𝐼(𝑥, 𝑦)|], (3-13)

 In hardware implementation, we will calculate the probability density function

using the bits of a current bit plane. The probability of zero and one will be calculated

using a lookup table for fixed alpha value and binary side information values. Then,

the other lookup table is used to find the log-likelihood ratio shown as Equation 3-14

where P(1) is the probability of 1 and P(0) is the probability of 0.

 𝐿 = 𝑙𝑛(
𝑃(1)

𝑃(0)
), (3-14)

 The hardware of Correlation Noise Modeling and Soft Input Computation is

shown in Fig. 3-28. The Lookup Table 1 is used to get the probability of each bit in a

current bit plane described in Equation 3-13. The Lookup Table 2 is used to get the

log-likelihood ration described in Equation 3-14. Each bit of a current bit plane, Bit, is

inputted to Lookup Table 1. Lookup Table 1 generates the probability of zero and one,

P(0) and P(1). Lookup Table 2 generates the log-likelihood ratio, LLR, according to

the inputted probability of zero and one.

 53

Bit
Lookup
Table 1

Lookup
Table 2

P(0)

P(1)
LLR

Fig. 3-28. Hardware of Correlation Noise Modeling and Soft Input Computation.

3.7 Reconstruction

 The Reconstruction is used to reconstruct the Wyner-Ziv frame by adding each

motion-compensated pixel and each de-quantized residue value. The hardware of the

Reconstruction is shown in Fig. 3-29. The 16 residue values are stored into Registers.

One Motion-Compensated Pixel generated by Motion Compensation is inputted at a

time. The Control decides which Residue Value is outputted to the adder. Each

Reconstructed Pixel is obtained from the output of the adder. An entire reconstructed

Wyner-Ziv frame will be generated by processing one pixel at a time.

Registers
4x4 Residue

values

Control

Motion-Compensated
Pixel

Reconstructed
Pixel

Fig. 3-29. Hardware of Reconstruction.

54

 55

CHAPTER 4

EXPERIMENT RESULTS

In this chapter, we present the experiment results of our proposed distributed

video decoder. First, cell-based design flow will be described. Second, we depict how

to test our design. Third, we show chip implementation result. Finally, we describe the

simulation results.

4.1 Design Flow

The Cell-based Design Flow is shown in Fig. 4-1. First, we use C++ to simulate

the algorithm of our proposed distributed video coding. We implement the hardware

of our design by coding RTL. Next, the results of C++ simulation and simulation of

NC-Verilog will be compared to confirm function correctness. We use Synopsys

Design Compiler to synthesize RTL code into gate-level netlist. Candence Comformal

is used to check logical equivalence. Then, we use Candence SOC Encounter to floor

plane, place, and route. Calibre is used to check DRC (Design Rule Check) and LVS

(Layout Versus Schematic). PrimeTime is used to perform static timing analysis

checking whether there are setup time and hold time violations. Finally, we will do

post-layout simulation. If all the previous steps are passed, we tape out our design.

The testing consideration will be described in next section.

56

Algorithm Simulation

(C++)

RTL Design

RTL Simulation

(NC-Verilog)

Function Correctness

NO

RTL Synthesis

(Synopsys Design Compiler)

YES

Logical Equivalence

(Cadence Comformal &

NC-Verilog)

NO

Auto Place & Route

(Cadence SOC Encounter)

YES

Logical Equivalence

(Cadence Comformal)

YES

DRC & LVS

(Calibre)

YES

Static Timing Analysis

(PrimeTime)

YES

Post-layout Simulation

(Nanosim)

YES

NO

Tape Out

YES

 Fig. 4-1. Cell-based Design Flow.

4.2 Testing Consideration

In the stage of RTL synthesis, to check whether our chip is manufactured without

any defect, we insert DFT (Design for Testability) circuit to the chip. In our work, we

insert 6 scan chains to achieve a fault coverage of 98.93%. The DFT report is shown

in Fig. 4-2.

 57

Fig. 4-2. Uncollapsed Stuck Fault Summary Report.

After chip was taped out, we use CIC93000 testing machine to measure our chip.

The measurement considerations are shown in Fig. 4-3, and the measurement flow is

shown in Fig. 4-4. First, we use the pattern of ATPG (Automatic Test Pattern

Generation) to test whether there is any defect in manufacturing process. In the stage

of ATPG, signal of test_se is 0, test pattern is inputted through test_si, and the result

of test pattern is outputted through test_so. Then, we input a bitstream of test

sequences. If testing of the decoding process is passed, the measurement process is

finished. If testing is failed, we will switch test_mode to a different mode to test each

part of the decoder including AVC intra decoder and LDPCA decoder.

58

CHIP

test_se

test_si

test_so

data_in

data_out

test_mode

 Fig. 4-3. Measurement Considerations.

ATPG

Decoding

Work

Pass
Switch

Mode to
Find Faults

Y
e

s

Fig. 4-4. Measurement Flow.

 59

4.3 Chip Implementation Result

The process used in the design of our chip is TSMC 90nm GUTM CMOS. There

are totally 191 I/O pins including 45 power/ground pins and 146 signal pins. The chip

area is 4.67 mm
2
, and gate count is 690K. The peak frequency of our design is

100MHz. The dynamic power dissipation of our design is 302 mW. The result of

place and route is shown in Fig. 4-5. The specification table is listed in Table 4-1. And

the synthesis result of LDPCA is listed in Table 4-2.

H.264 Intra
Decoder

LDPCA
Decoder

CAVLC
DecoderI/D

C
T

D
e

/Q
u

an
tizatio

n

So
ft In

p
u

t
C

o
m

p
u

tatio
n

C
orrelation

N
o

ise
M

o
d

elin
g

Side
Information

Creation R
econ

structio
n

MC

 Fig. 4-5. Result of Place and Route.

60

Table 4-1. Specification Table.

Process TSMC 90-nm GUTM

Power Supply 1.0 V

Gate Count 690K

Chip Area 4.67 mm
2

Frequency 100 MHz

Pins 191

Resolution QCIF@30fps

Power 302 mW

Table 4-2. Synthesis Result of LDPCA.

Process TSMC 90-nm GUTM

Code Length 396 bits

Code Rate 2/66 – 66/66

(support 65 code rates)

Gate Count 364K

Frequency 100 MHz

Power 17.96 mW

4.4 Simulation Results

The RD (Rate Distortion) performance of different test sequences is shown in

following figures. In Fig. 4-6, Fig. 4-7, and Fig. 4-8, we compare the RD performance

of our design and other designs including representative DVC, DISCOVER, H.264

Intra, and H.264 No Motion. The RD Performance of our hardware version is better

than DISCOVER or almost the same with DISCOVER. The difference between

software version and hardware version is on the block length of LDCPA and the

 61

simplified soft input computation. In the software version, the block length of LDPCA

is 1584 and the soft input computation is the same with the Hybrid DVC. In the

hardware version, the block length of LDPCA is 396 and the soft input computation is

simplified to using lookup tables.

Fig. 4-6. RD Performance of Coastguard QCIF 15fps.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

0 100 200 300 400 500 600

P
SN

R
(d

B
)

Bitrate(kbps)

Coastguard QCIF 15fps

Software

Hardware

DISCOVER

H.264 Intra

H.264 No Motion

62

Fig. 4-7. RD Performance of Foreman QCIF 15fps.

Fig. 4-8. RD Performance of Hall QCIF 15fps.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0 100 200 300 400 500

P
SN

R
(d

B
)

Bitrate(kbps)

Foreman QCIF 15fps

Software
Hardware
DISCOVER
H.264 Intra
H.264 No Motion

30

31

32

33

34

35

36

37

38

39

40

41

42

0 100 200 300 400 500

P
SN

R
(d

B
)

Bitrate(kbps)

Hall QCIF 15fps

Software
Hardware
DISCOVER
H.264 Intra
H.264 No Motion

 63

The reason that we chose LDPCA with a 396 block length is to save hardware cost.

Though the throughput of an LDPCA of length 1584 is faster than that of an LDPCA

of length 396, the hardware cost of the LDPCA of length 1584 is higher than the

LDPCA of length 396 since the hardware costs of their respective comparing trees are

proportional to the block length of LDPCA. In our work, we chose an LDPCA of

length 396 since it meets the required throughput to decode the test sequences of

QCIF videos in real time. The rate performance of a regular degree-3 LDPCA of

length 396 bits over BSC (Binary Symmetric Channel) is shown in Fig. 4-9.

Fig. 4-9. Rate Performance of Regular Degree-3 LDPCA of Length 396.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

e

H(X|Y)

64

 65

CHAPTER 5

CONCLUSION

In this Thesis, we implemented a distributed video decoder which can decode

video sequences in real time. We presented the architecture of a distributed video

codec which RD performance is better than the presentative distributed video codec,

DISCOVER. The crucial challenge for a real-time distributed video decoder is that

the computing complexities of side information creation and LDPCA are high. Our

approach is to design a hardware of distributed video decoder, which is not only

focused on improving the architectures of LDPCA and side information creation but

also considers the trade-off between hardware cost and performance.

A prototype of our proposed DVC decoder was implemented in TSMC 90nm

GUTM process technology and fabricated through CIC. Our decoder can meet the

requirement of decoding a QCIF video with a speed of 30fps. The maximum

operation frequency of our design in the post-layout stage is 100MHz. The chip area

is 4.67 mm
2
, and gate count is 690K.

66

 67

REFERENCE

[1] Information Technology—Coding of Audio-Visual Objects—Part 10: Advanced

Video Coding (H.264), ISO/IEC JTC 1/SC 29 14496-10, 2004.

[2] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed Video

Coding,” Proc. IEEE, vol.93, no.1, pp. 71-83, Jan. 2005.

[3] D. Slepian and J. K. Wolf, "Noiseless Coding of Correlated Information

Sources," IEEE Trans. on Information Theory, vol. 19, no. 4, pp. 471-480, Jul.

1973.

[4] D. Varodayan, A. Aaron, and B. Girod, "Rate-Adaptive Codes for Distributed

Source Coding," EURASIP Signal Processing Journal, Special Section on

Distributed Source Coding, vol. 86, no. 11, pp. 3123-3130, Nov. 2006.

[5] DISCOVER DVC Final Results: http://www.img.lx.it.pt/~discover/home.html.

[6] A. Aaron, R. Zhang, and B. Girod, "Wyner-Ziv Coding of Motion Video,"

Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, vol.1, pp.

240-244, Nov. 2002.

[7] A. Aaron, S. Rane, E. Setton, and B. Girod, “Transform-Domain Wyner–Ziv

Codec for Video,” Proc. of Society of Photo-Optical Instrumentation Engineers

– Visual Communications and Image Processing, San Jose, CA, USA, Jan. 2004.

[8] C.-C. Chiu, S.-Y. Chien, C.-H. Lee, V.S. Somayazulu, and Y.-K. Chen, "Hybrid

Distributed Video Coding with Frame Level Coding Mode Selection," IEEE

International Conference on Image Processing (ICIP), pp. 1561-1564, Oct.

2012.

[9] J. Ascenso, C. Brites, F. Pereira, "Content Adaptive Wyner-ZIV Video Coding

Driven by Motion Activity," IEEE International Conference on Image

Processing, pp. 605-608, Oct. 2006.

[10] L. Alparone, M. Barni, F. Bartolini, and V. Cappellini, "Adaptively Weighted

Vector-Median Filters for Motion-Fields Smoothing," IEEE International

Conference on Acoustics, Speech, and Signal Processing, vol.4, pp. 2267-2270,

68

May 1996.

[11] C. Brites, J. Ascenso, and F. Pereira, "Studying Temporal Correlation Noise

Modeling for Pixel Based Wyner-Ziv Video Coding," IEEE International

Conference on Image Processing, pp.273-276, Oct. 2006.

[12] C. Brites and F. Pereira, "Correlation Noise Modeling for Efficient Pixel and

Transform Domain Wyner–Ziv Video Coding," IEEE Trans. on Circuits and

Systems for Video Technology, vol.18, no.9, pp.1177-1190, Sep. 2008.

[13] R. Martins, C. Brites, J. Ascenso, and F. Pereira, "Refining Side Information for

Improved Transform Domain Wyner-Ziv Video Coding," IEEE Trans. on

Circuits and Systems for Video Technology, vol.19, no.9, pp.1327-1341, Sep.

2009.

[14] R. G. Gallager, “Low Density Parity Check Codes,” IRE Trans. Information

Theory, vol. IT-8, no. 1, pp. 21-28, Jan. 1962.

[15] R. M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans.

Information Theory, vol. IT-27, no.5, pp. 533-547, Sep. 1981.

[16] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. L. Urbanke, “On the Design

of Low-Density Party-Check Codes within 0.0045 dB of the Shannon Limit,”

IEEE Communication Letters, vol. 5, no. 2, pp. 58-60, Feb. 2001.

[17] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of Binary Sources with

Side Information at the Decoder using LDPC Codes,” IEEE Communications

Letters, vol. 6, no.10, pp.440-442, Oct. 2002.

[18] M. P. C. Fossorier, M. Mihaljevi’c, and H. Imai, “Reduced Complexity Iterative

Decoding of Low-Density Parity Check Codes Based on Belief Propagation,”

IEEE Trans. Communications, vol. 47, no.5, pp.673-680, May 1999.

[19] C. L. Wey, M. D. Shieh, and S. Y. Lin, “Algorithms of Finding the First Two

Minimum Values and their Hardware Implementation,” IEEE Trans. on Circuits

and Systems-I: Regular Papers, val. 55, no. 11, pp. 3430-3437, Dec. 2008.

[20] L. Alparone, M. Barni, F. Bartolini, and V. Cappellini, "Adaptively Weighted

Vector-Median Filters for Motion-Fields Smoothing," IEEE International

Conference on Acoustics, Speech, and Signal Processing, vol.4, pp. 2267-2270,

May 1996.

 69

[21] O. Tasdizen and I. Hamzaoglu, "Computation Reduction Techniques for Vector

Median Filtering and their Hardware Implementation," The 13th Euromicro

Conference on Digital System Design: Architectures, Methods and Tools (DSD),

pp.731-736, Sep. 2010.

[22] H.-C. Chang, C.-C. Lin, and J.-I. Guo, "A Novel Low-Cost High-Performance

VLSI Architecture for MPEG-4 AVC/H.264 CAVLC Decoding," IEEE

International Symposium on Circuits and Systems, vol.6, pp. 6110-6113, May

2005.

[23] K.-H. Chen, J.-I. Guo, and J.-S. Wang, "A High-Performance Direct 2-D

Transform Coding IP Design for MPEG-4AVC/H.264," IEEE Trans. on Circuits

and Systems for Video Technology, vol.16, no.4, pp. 472-483, April 2006.

