R 2B FTWFTAFRTF 1 REF A
FEL 2
Graduate Institute of Electronics Engineering

College of Electrical Engineering & Computer Science

National Taiwan University

Master Thesis

ARV RS B2kt g

Design and Implementation of a
Distributed Video Decoder

iz

Ho, Meng-Hsuan

#fa Whris i mb L
Advisor: Chen, Sao-Jie, Ph.D.

¢ 2% K 103 & 10
October, 2014

z+
LS

TR A BRI o & R i R B §
A B R R i Rk R AR BB E D @ R
E#HM L RERENPFLOTR{EEOLHT FL AP L TR #
Frifgegk P rLLe rhhe (#xd o

Py eS RS Ee 2 pEPORFSIEM RHATEL L
PRt dpaaedip o NERREOFEE Fhos R FehicE oG 99
BB R JoB s Bk o 245 100 schE R R B RE S REZ
EekF o g b enfle{edlps o 101 cnfe F P o~ i o~ g S
B bk F AL L AR - AR B R H O] 102 i 5 &
FoFEBA KRG G EPPR BRI AR F HES o

B REHADRA R A ARFPR LI chL o 2 AR L EH

o

e

¥

Ry L LRIy U SEP R

LA LA

&

AR R L RS AR LT S
(Moving Picture Experts Group)# ! e MPEG #5% ~ RS T G WE T G H&E

3

P 26X N E E o S B AR S i B E B il B R e
PR e B8 PR RPN TS SRR T St KR s X
T#T SRR B N S] H_(LA S dg A i L SRt &5 AR
BEA Y E T M s B TR SRR B B R ARk S A N AR
B HAEE] R AR) 0 A 4C5S AL %S 012 & 12 Slepian-Wolf 32 4e Wyner-Ziv
LTI N

B HT Y o NPT R BAAGYARN RS B A e Hipe 5 A
R e AR RAEE AP M SRURCA] 3 T RAL R iR
TSMC 90nm GUTM # 42 % = A $758 430 245 B > 444 QCIF £ /) chip|3& B 7| 7
AL TIE £y 30 5 hBi i o & 1 (P T i 7] 100MHzZ » & % il R e
B L 690K » & %+ 4 4.67mm?e

BAET P AR EBE C AR NBAF R ABEEE - FFT 0

N N
» ~

>
»

I

iy

>
>

5!
iy

ke

(%]

iy

s

iy

N

B FTFVAL T S B PEIE oo [

2E T#'fr"? PR b

(it

b AR GAE Y 3 S BB Y KRBT R 2 R AT R
EL MBI R FE BT R RGRATH > A H264/AVC 50 5 B
PR S RADT R A A RA S PEE § Y R E 0 H264/AVC
BAEE Y SR - KA 5 JRES R S RAE e B Y R R S E
wmﬁ%$ﬁ¢§§§ﬁ4ﬁﬁﬁﬁﬁﬁﬁﬁﬁ”%{ﬁﬁﬁﬂﬁﬁﬁ’

ki
PEL R MF YA S MG Rk F o F A G - AT A

AEGURTGIES B ¥ 2§ § B RA PR DA SRR

EE CEE ET SR

=F
Y
012
Exs
>4
i
3
Iy
it
oy
T
s
ik

¥-F
A RT3V AR S G PRI

PREETAHELG A A BALIGUIRARB DR ¢ 75 - BARR D Pk
3 (Pixel Domain) ¢4 §7 5% 430 % f6 2 1 ~ 2 14 k& B & 3 # 3 (Transform
Domain)ehZg 4 » j&B 5% § D3 Hmidm BhA L X LR E " ik B hiRE
BOAEFARE > GATFLR Y PR EBFRZE a2 12
4 e DISCOVER(Distributed Coding for Video Services)# 4 1 » iT k& & 4] &
FT5 AR (Hybrid DVC) 8 BAtde > B s M2 A E 54 - K - &
PR EERERENT NREEBEE S - BRI DS IGUR R RE B
~ DISCOVER & 73V AR S 388 B H ~ iR & A4 A VIR Sh 248 B4R -

Vil

¥=%
R R

-y
-
H
.\.;

5 AR AR S RS NI A T e JE A R R e fRAE 0
XL FAR LRy W R EATAIER BATSER €3 S fRB R

- W PEFRAB ARG o Fpt A PP R £ A A AR S R B 0 T 0

12 F A R e 3N j\FI PORE 2 (8 rrl,q_ FF% T ATHE I ATV AR RS R D

B R LA RS AU AR AR CREMEEE BT RAL
AT RiE{or 1 34T

*

N

i o R 1 F A0 MR B0

r2LE

R

RFENDLAGURA B BT SR %o A § Al Ao
I FRITAR A B F Lo P R B SRR g F o2

B BRI BRERAE DR REE o

574

1%
*

&

R RIS SR RA B 0 R IR 245 B R W 19
FpiE e A P a2 £ 5 4 0t DISCOVER i o > 77§ ehbf 44t e 238
FRAAL B A MR AR R ABIEBENTLFRAES F ¢ T FAH
FAfrL EF AR o B EERRH P AR P T RI R * TSMC
90nm GUTM #l4% » 275 B & ¥ 7 f245 %) 30 38 QCIF %] cviian » fliveng ¥
Pk 7 i 100MHz > & # % 4.67mm? > B4ER #cp 5 690K -

=fa

~

<

IR L

ABSTRACT

In conventional video coding, lots of coding techniques were proposed to
exploit redundancy of the spatial and temporal signals in the encoder. These coding
techniques are focused on compressing video data as high as possible, such as MEPG
(Moving Picture Experts Group) and H.26X proposed by International
Telecommunication Union. These conventional techniques tried to extremely reduce
spatial and temporal redundancies, so all the computing efforts were majorly spent on
the encoder. Conventional video coding is not suitable for the situations where little
encoders and big decoders are used, like wireless video sensors that have a low
computing capability and need a low power consumption. To meet the requirement of
a low-complexity and low-power encoder, a new video coding paradigm, distributed
video coding, based on Slepian-Wolf Theorem and Wyner-Ziv Theorem, was
proposed.

In this Thesis, we design and implement a distributed video decoder which is
majorly composed of LDPCA, correlation noise modeling, soft input computation,
and side information creation. Our proposed DVC decoder, implemented in TSMC
90nm GUTM process technology, can meet the requirement of decoding a QCIF
video with a speed of 30fps. The maximum operation frequency is 100MHz, the chip

area is 4.67 mmz2, and gate count is 690K.

Keywords: Distributed Video Decoder, LDPCA Decoder, Side Information Creation.

TABLE OF CONTENTS
A B S T R A T et nae e i
LIST OF FIGURES ...ttt \
LIST OF TABLES ...ttt Vil
CHAPTER 1 INTRODUCTION ...t 1
1.1 Splepian-Wolf Theorem and Wyner-Ziv Theoremcccccocevvvvnvnineincnnenn 1
1.2 VWYNEI-ZIV COURT ...t 3
1.3 Distributed VIideo COUINGcoviiiieieiieieie st 5
1.4 IMOTIVALION ...ttt bbbt 6
1.5 ThesisS OrganizZationccccooeiiririnieieiese st 7
CHAPTER 2 OVERVIEW OF DISTRIBUTED VIDEO CODING 9
2.1 First PractiCal DVC ..ot 9
2.2 DISCOVER DVC.....ooiiiiieee ettt 11
p 2T 2 1o I)Y GO 15

CHAPTER 3 PROPOSED ARCHITECTURE AND IMPLEMENTATION ...21

3.1
3.2
3.3

3.4
3.5
3.6
3.7

Proposed Architecture 0F DV C........cooiiiiiiiiiiiieecee e 21
LDPCA DECOUENcoeieeeeeieesieeie sttt eee st e e sie et eesneesneeneeeneenneens 25
Side INFormation Creationccoceieriiiniiieieeee e 38
3.3.1 Spatial Motion SMOOthiNG........ccoovriiiiiiiice e, 39
3.3.2 BiDirectional Motion COMPENSatioN...........ccccererenerinesineeeeeen, 44
3.3.3 INtErPOIALION ... 46
(O \V] O B -0 o L] USSR 47
DCT, IDCT, Quantization, and De-Quantizationccccceevveriverrernennnn, 49
Correlation Noise Modeling and Soft Input Computationc.cccceeuee. 52
RECONSIIUCTION ...t nre s 53

CHAPTER 4 EXPERIMENT RESULTSooooiiiee e 55

4.1 DESIGN FIOW .. .ot et ans 55
4.2 Testing CONSIAIALIONccuviieiieieiie et nies 56
4.3 Chip Implementation ReSUIL............coeiiiiiiiiie e 59
4.4 SIMUIAION RESUILS........oiiiiiiiiiiieee e 60
CHAPTER 5 CONCLUSION ...ttt 65

REFERENGCE e 67

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1-1.
1-2.

1-4.
1-5.
1-6.
1-7.
2-1.
2-2.
2-3.
2-4.

3-1.
3-2.
3-3.
3-4.

3-6.
3-7.
3-8.

3-10.
3-11.
3-12.
3-13.

LIST OF FIGURES
Correlated Source Coding Configurationc.ccecevereneneneneneseeeees 2
Achievable Rate Region for Dependent X and Ycccccveiiiininiinieenienn, 2
ENtropies of X and Y ...ooooiiiic s 3
A Practical WYNer-Ziv COAENccoiiiiiiiiiiiieeeeee e 3
Tanner Graph and Accumulated Check NOUEScccvevvrieiieiiiiieieeiene 4
Parity-Check Matrix of the LDPCAIN Fig. 1-5.....ccccooiiiiiiiiiiiieicicee, 5
Achieving Different Source Rates by Accumulating Check Nodes 5
First Practical DV C COUBC........cceiueriiriiiiiiniesiieiee e 11
DISCOVER COUEC ..ottt 12
Frame Interpolation Frameworkc.ccocviiiiiiiiinc e, 12
Motion Vectors (a) Before and (b) After Spatial Motion Smoothing 13
The Hybrid DVC Framework ... 15
Proposed Architecture 0f DVC ..., 22
Proposed System Architecture and Data FIOW...........cccccooveviveniiinivennne 24
TANNET GraPhS ... 26
Tanner Graphs with Accumulated Syndrome BitS..........ccocoovvvvviiiicnnnn 27
Parity-Check Matrix of the LDPCA shown in Fig. 3.2 (8)cc.cvvvvevenennnn. 28
Parity-Check Matrix of the LDPCA shown in Fig. 3.3.......ccccoviiiiiniennn, 28
Proposed Architecture of Comparing Treecccoovieiiieneninisieeee, 31
Schematic Diagram of Wires Connected to VNs and BNS............cccc....... 33
A 3-Input Minimum-Value GENerator.............ccoceveienenenene s 33
A 4-Input Minimum-Value GENerator...........c.ccocveererenenene s 34
An Example of Comparing Tree Consisting of Check Nodes.................... 35
An Example of Merging Check Nodes in Code Rate of 4/6...................... 36
An Example of Merging Check Nodes in Code Rate of 5/6.............c........ 36

Vi

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.
3-21.
3-22.
3-23.
3-24.
3-25.
3-26.
3-217.
3-28.
3-29.

4-1.
4-2.
4-3.
4-4,
45,
4-6.
4-7.
4-8.
4-9.

Proposed Architecture of LDPCA DECOUEScceeverieeriinieiiieieeersiis e 37
State Diagram of Proposed LDPCA DeCOUErcceveereeieieeiiesiiesieesnenns 38
Proposed Framework of Side Information Creation..............ccceecinuecnnnn, 39
Proposed Architecture of Weighted Vector Median Filterccooueee. 41
Architecture of Datapath of DIStanCecocvvvieieieienreeseeeeee, 42
Architecture of Datapath 0f SAD ..., 43
Architecture of Weighing & Minimum Selector...........ccccccovvvvviiieivenee 44
Motion Vectors of (a) Forward and (b) Backward Compensations............ 45
Architecture of Motion COMPENSALIONcccvvvrieieieiecereee e, 46
Architecture of INterpolation...........cccooeiiiiiiiiiince e, 47
Decoding Flow of CAVLC DeCOENcooviiriiieieie e, 48
Block Diagram of CAVLC DECOUENccereiieieieieie e, 49
Hardware of Direct 2-D TransSform.........cccoccevvveiiiiniieie e 51
Architectures of DCT, IDCT, Quantization, and De-Quantization............ 52
Hardware of Correlation Noise Modeling and Soft Input Computation....53
Hardware 0f RECONSLIUCTIONccveivieriieieciecee e 53
Cell-based DeSIGN FIOW..........ccooiiiiiiniiiiiiiieeee e 56
Uncollapsed Stuck Fault Summary Report.........ccccceveiiieiiiiniiiecee, 57
Measurement CoNSIAEIAtIONS.ccueiiririrerieieiee e, 58
MeEaSUrEMENT FIOW..........ooiiieieee et 58
Result of Place and ROULEcccovviieiieiceceee e 59
RD Performance of Coastguard QCIF 15fPS......cccccovviiieiiiiniiieieee, 61
RD Performance of Foreman QCIF 15fPSccoviiiiniiiniiiiicecee, 62
RD Performance of Hall QCIF 15fPScccoviiiiiiiiieie e, 62
Rate Performance of Regular Degree-3 LDPCA of Length 396 63

Table. 1-1.
Table. 2-1.
Table. 3-1.
Table. 4-1.
Table. 4-2.

vii

LIST OF TABLES
Decoding Time for Foreman QCIF 150 Frames..........cccoocvvienieeneninnnnn 6
Coding Modes and DecCiSion RUIES............cccovvieiieieiie e, 18
Transmitted Nodes in Different Code RatesS...........ccovovevvrivenenncninnnnn 30
Specification Tablecccooeiiiii 60

Synthesis Result 0Ff LDPCA ..o 60

viii

CHAPTER 1
INTRODUCTION

In conventional video coding, lots of coding techniques were proposed to
exploit redundancy of the spatial and temporal signals in the encoder. These coding
techniques are focused on compressing video data as high as possible, such as
H.264/AVC [1]. To extremely reduce spatial and temporal redundancy, all the
computing efforts are majorly spent on the encoder. The H.264/AVC architecture is
suitable for the situation of broadcasting video services that are encoded once and
decoded many times, while they are not suitable for the situation of using little
encoders and big decoders, like wireless video sensors that have a low computing
capability and need a low power consumption. To meet the requirement of
low-complexity and low-power encoders, a new video coding paradigm, distributed

video coding (DVC) [2], was proposed.

1.1 Splepian-Wolf Theorem and Wyner-Ziv Theorem

DVC is based on two theorems, Slepian-Wolf Theorem [3] and Wyner-Ziv
Theorem [4], where separately encoded and correlated sources could be jointly
decoded with a rate of the joint entropy in theory.

Consider two correlated sources X and Y, which are respectively encoded with Ry

and Ry bit rates and transmitted to the decoder from the encoders as shown in Fig. 1-1.

.. X1, Xo, X1, ... X ...01100 ... - Xa*, Xo*, X1, ...
Encoder RATE Ry
Correlated Decoder
Sources
Y, Yo, Y, o Y ...00111 ... LYa¥® Yo¥, YaF, L
Encoder RATE Ry

Fig. 1-1. Correlated Source Coding Configuration [3].

The rate region of the Slepian-Wolf Theorem is shown in Fig. 1-2, where H(X)
and H(Y) are respectively the individual entropies of X and Y, H(X|Y) and H(Y|X) are

respectively the conditional entropies of X and Y, and H(X,Y) is the joint entropy of X

and Y.

/N
Ry
H(Y) -
Vanishing error probability for
lona seauences
HYpO |-
. Re+ Re= HXY)
| "
| N
/7
HXY) HX) Rx

Fig. 1-2. Achievable Rate Region for Dependent X and Y [2].

Figure 1-3 states the relationship of different entropies where 1(X;Y) is the mutual

entropy of X and Y. The region as shown in Fig. 1-2 can be expressed by the

following equations:
Ry + Ry 2 H(X,Y) (1-1)

Ry > H(X|Y), Ry = H(Y|X) (1-2)

In spite of encoding X and Y separately, Slepian-Wolf Theorem states that the total

rate can be reduced to a joint entropy by joint decoding.

H) H(Y)

HXY)

Fig. 1-3. Entropies of X and Y.

Slepian-Wolf Theorem can be extended to perform lossy coding within a
bounded distortion. Assume that source X is encoded in the encoder without referring
to the source Y, Wyner-Ziv Theorem proved that there is a lower bounded distortion
between source X and the reconstructed data X’ in the decoder. In practical
applications, Wyner-Ziv coder consists of a Slepian-Wolf coder, a quantizer, and a

distortion reconstructor as shown in Fig. 1-4.

Wyner-Ziv Encoder Wyner-Ziv Decoder

|
|
i
X . Q Slepian- ! Slepian- Q M‘lnlmgm- X’
—» Quantizer |—» Wolf :- Wolf — Distortion L
Encoder ! Decoder Reconstructor
I
|
! Y

Fig. 1-4. A Practical Wyner-Ziv Coder [2].

1.2 Wyner-Ziv Coder
To implement a practical Wyner-Ziv coder and to obtain less RD performance
loss, choosing a proper error correcting code is important. Low-density parity-check

accumulate (LDPCA) [4] will be the core of Wyner-Ziv coder in our work for its

ability of error correcting can result in better Rate-Distortion (RD) performance [5].
LDPCA is presented by a tanner graph where solid cycles and solid squares are
used to represent bit nodes and check nodes respectively, and dotted cycles are for
accumulating check nodes as shown in Fig. 1-5. And Fig. 1-6 depicts its parity-check
matrix. The reason of using LDPCA is that different video sequences require different
proper source rates. Though high code rate always guarantees decoding the side
information (SI) successfully, but it can cause excessive bit rate if the conditional

entropy of the encoded information and Sl is low.

T T
’ N
R ! i
C) A ,
by
-
I
A A
- -~
a \1
Cio == A |
AY
e
I
A A
.
Jl/ N
Va2 C F-= A2
N\ r
~-
I
J//Fi\\
\'E G F-m As
'\ r
-
I
/’Fq—\\
A
Vi Co F—-» Ad |
\ r
-
-
I
A4
. *\
Vs Cs bF---»1 As |
N

Fig. 1-5. Tanner Graph and Accumulated Check Nodes.

Vo Vi1 V2 V3 Vi /s

1 0 1 0 0 17 Co
0 1.0 0 1 0ofCG
H = 1 0 01 0 1] C
0O 1 1 1 0 0fGs
0O 0 0 1 1 1| Cs
1 1 0 0 1 0 CGCs

Fig. 1-6. Parity-Check Matrix of the LDPCA in Fig. 1-5.

The method of accumulating syndromes make decoding SI with syndromes of
different source rates possible. For example, we can change the source rate from 6/6

to 5/6 by accumulating CO and C1 in Fig. 1-7.

Co Vo
Co+C1

C Vi
v C A% C
v Cs v C
Vu Cs Y, C.
Vs Cs Vs Cs

Source rate = 6/6 Source rate = 5/6

Fig. 1-7. Achieving Different Source Rates by Accumulating Check Nodes.

1.3 Distributed Video Coding
In a typical DVC, there are two types of coding frames, Wyner-Ziv (WZ) frames

and key frames. The key frames are coded by an H.264/AVC [1] Intra encoder. The

WZ frames are coded through a WZ encoder. In the DVC encoder, WZ frames will be
transformed by a discrete cosine transform (DCT). The quantizer keeps the data of
different frequencies according to a selected quantization factor. Then, syndromes
created by the LDPCA encoder will be stored in a buffer. In the decoder, periodically
inserted key frames will be referred to generate Sl using bidirectional motion
estimation and motion compensation. Then, frames are reconstructed by the LDPCA

decoder from Sl and received syndromes.

1.4 Motivation

The architecture of distributed video coding is different from the architecture of
conventional video coding since many parts with high computing complexity like
LDPCA decoder and side information creation are used in the distributed video
decoder. We evaluate respective computing complexities by running a Hybrid DVC
decoding software with a test sequence of Foreman in QCIF format and 150 frames
on a server with an Intel i7-2600 CPU. Table 1-1 shows the decoding time with
different quality parameters (QPs). When QP is 8, frames can be only decoded in
0.156 fps, 150 frames divided by 958.9205 seconds. Hence, we will focus on

implementing a hardware of DVC decoder to decode frames in real time.

Table 1-1. Decoding Time for Foreman QCIF 150 Frames.

Quality Parameter |Decoding Time (Sec.)
1 42.3858
75.6814
75.9458
123.5452
123.3386
186.7416
390.6234
958.9205

(N[O |[fwDN

1.5 Thesis Organization

The rest of this Thesis is organized as follows. In Chapter 2, we will review
previous architectures of DVC including components used in DVC. Our improved
architecture of DVC with better RD performance will be presented in Chapter 3. Then,
Chapter 4 will discuss the experiment results of our proposed DVC implementation.

In Chapter 5, we make a conclusion on our work.

CHAPTER 2
OVERVIEW OF DISTRIBUTED VIDEO CODING

In this chapter, we will review some previous, representative architectures of
DVC including components used in DVC. One of the first practical pixel domain
DVC codec was proposed in [6]. Then, the pixel domain codec was evolved into a
transform domain scheme [7]. The results of above designs showed that the RD
performance of a transform domain codec is better than a pixel domain codec by
using DCT to exploit spatial correlation of each frame and truncating less important
bit planes to save bit rate. A more efficient DVC codec, DISCOVER [5] (Distributed
Coding for Video Services), a project resulted from the IST (Information Society
Technologies) FET (Future and Emerging Technologies) program of the European
Union, was proposed later. Recently, a new Hybrid DVC design with residual coding
and frame level coding mode selection [8] was proposed and achieved high-efficiency
coding compared to DISCOVER. In the following sections, we will review advance
of transform domain codecs from the first practical DVC [7], DISCOVER DVC [5],
to Hybrid DVC [8].

2.1 First Practical DVC

The first practical DVC was proposed in [7] which is a basic Wyner-Ziv codec
consisting of an intraframe encoder and an interframe encoder as shown in Fig. 2-1,
where video sequences are classified into Wyner-Ziv frames and Key frames. Key
frames are encoded and decoded by a conventional intra codec, while Wyner-Ziv
frames are coded by a Wyner-Ziv codec. Wyner-Ziv frames will first be processed by
Discrete Cosine Transform (DCT) to separate the frequencies into spatial signals.
Signals of high frequency can usually be truncated, for most of the signals with a

larger energy are located in the lower frequency range. After truncated by the

10

Quantizer, bit planes split by Extract Bit-planes will be coded by a channel encoder,
the Turbo Encoder, then being stored in a Buffer. The whole encoding process only
exploits the spatial correlation within each frame, hence called Intraframe Encoder. In
Interframe Decoder, side information is generated by Interpolation and Extrapolation.
Interpolation is a method where the side information is generated by referring to the
previous key frame and the next key frame, while the method of Extrapolation is
where the side information is generated by referring to two previous key frames. The
key frames are encoded by a Conventional Intraframe Encoder and are decoded by a
Conventional Intraframe Decoder. And both of Interpolation and Extrapolation use
reference frames to estimate motion vectors, then generate the side information by
motion compensation. The methods of generating side information is the basic idea
proposed by the first practical DVC, which provided significant improvement of RD
performance in some test sequences. After generating the side information, a channel
decoder, the Turbo Decoder, will be used to correct errors in the side information.
Finally, each bit plane of the Wyner-Ziv frames is reconstructed by Reconstruction,
processed by an Inverse Discrete Cosine Transform (IDCT) and used to make up the
decoded Wyner-Ziv Frames. This architecture provides a basis of DVC with the idea

of generating side information through Interpolation and Extrapolation.

11

Intraframe | Interframe
Encoder | Decoder
| | 1L Decoded
Wyner-Ziv e — = L - |, T T T ~_ Wyner-Ziv
Frames N | Y Frames
I
I
I
DCT | IDCT
I
I
Y I
|
. Extract Turbo Turbo .
Quantizer Bit-planes Encoder —»@—?—» Decoder ™| Reconstruction
|
]t
| Side
Requrest bits Information
I
| DCT
I
\ t
‘ Interpolation/
| Extrapolation
|
Ke Conventional | Conventional T Decoded
Framyes Intraframe T Intraframe > Key
Encoder | Decoder Frames
I

Fig. 2-1. First Practical DVC Codec [7].

2.2 DISCOVER DVC

The performance of DISCOVER DVC [5] is improved significantly for adopting

some new methods including LDPCA codec, Soft Input Computation, and Virtual

Channel Model. The architecture of DISCOVER DVC is shown in Fig. 2-2.

I
|
|
|
. Decoded
Wyner-Ziv__| DCT |— Quantizer —» Extrac‘[LOPCA || Buffer ‘ LoPcA || Reconstruction — IDCT |—» Wyner-Ziv
Frames Bit-planes Encoder | Decoder E
| rames
T T—M
Requeést bits
Minimum I ;
Rate - ‘ Virtual
Estimation | Softinput | | 5op Channel
Computation
| Model
|
I Side
| Information
| Extraction
Ke Conventional I Conventional Decoded
Framyes — Intraframe ! Intraframe Key
Encoder | Decoder Frames
|

Fig. 2-2. DISCOVER Codec [5].

The parts of encoder including DCT, Quantizer, Extract Bit-planes, Buffer, and

Conventional Intraframe Encoder are the same as the first practical DVC mentioned

in Section 2.1. And the parts of decoder including Reconstruction, IDCT, and

Conventional Intraframe Decoder are also the same as the first practical DVC.

12

Channel coding uses an LDPCA coder which consists of an LDPCA Encoder and an
LDPCA Decoder because of its better ability of correcting errors. And Minimum Rate
Estimation is used to estimate the initial source rate of LDPCA such that the total
number of iterations in the LDPCA Decoder could be reduced.

The quality of side information has a great impact on the RD performance of
Wyner-Ziv frames, so choosing appropriate techniques to implement Side Information
Extraction and to generate side information is important. Thus, a Frame Interpolation
Framework including some techniques proposed in [9] was applied to improve the

accuracy of motion-compensated side information as shown in Fig. 2-3.

' ' ' '

Forward BiDirectional Spatial BiDirectional
Motion = Motion > Motion ! Motion
Estimation Estimation Smoothing Compensation

i f i f

Previous
Low Pass
Reference e

Frame Filter

Interpolated
Frame

Next
Reference LowPass | |

Filter
Frame e

Fig. 2-3. Frame Interpolation Framework [9].

First, the input Previous Reference Frame and Next Reference Frame are
processed by a Low Pass Filter. The function of Low Pass Filter in DVC is to average
the values in pixel domain within a specific region. Then, Forward Motion Estimation
is used to find motion vectors approximate to the true motion vectors between low
pass filtered Previous Reference Frame and low-pass filtered Next Reference Frame.
The Bidirectional Motion Estimation refines the motion vectors within a small offset
which could be half pixel or quarter pixel of the approximate motion vectors. The
method used to find appropriate motion vectors of each block is to choose the smallest
SAD of each block between the compensated previous reference frame and the
compensated next reference frame. Then, an adaptively weighted vector-median filter
[10] is used for Spatial Motion Smoothing. The function of Motion Smoothing is to
find more smoothing motion vectors for each block within a specified region. The

technique could be applied to the situations as depicted in Fig. 2-4, where the original

13

motion vectors were just obtained by minimum SAD (Fig. 2-4(a)) while Spatial
Motion Smoothing considered not only minimum SAD but also adjacent motion

vectors to refine motion vectors (Fig. 2-4 (b)).

(@) (b)

Fig. 2-4. Motion Vectors (a) Before and (b) After Spatial Motion Smoothing.

The criterion is defined by the following equation:
?{=1 MSE(xmef'B)(lxwvmf _le + |wimf - YJD = (2-1)
N MSE(xe, BY(IX: — X;| + Y = Y3,

where x,,,ns is the motion vector obtained at the output of the weighted
vector-median filters, N is the number of motion vectors within a specified region, x,
is the current appropriate motion vector, X and Y are x-dimension and y-dimension
values of motion vectors respectively, MSE(x, B) means the mean square error of the
motion vector x of current block compensated by previous and next reference frames.
Finally, Bidirectional Motion Compensation is applied, where the side information
consists of a Previous Reference Frame compensated by forward motion and a Next

Reference Frame compensated by backward motion, and the motion vectors are the

14

output of this Bidirectional Motion Estimation.
The Virtual Channel Model adopted in DISCOVER DVC is a Laplacian
distribution as proposed in [11, 12]. The Laplacian distribution used in correlation

noise modeling is described by the following probability density function:

pIWZ(x,y) = SI(x,y)] = S exp[~alWZ(x,y) — SI(x,)] (2-2)

where WZ(x,y) is the pixel of Wyner-Ziv frames in the position of (x,y), SI(x,y) is the
pixel of side information in the position of (x,y), and « is the Laplacian distribution
parameter. The Laplacian distribution parameter is calculated at both the DCT band
level and the coefficient level where the former means the parameter being associated
with a DCT band of each frame and the latter means the parameter being associated
with a DCT band of each block in each frame. We will describe calculation of the
Laplacian distribution parameter at the DCT band level. To calculate the Laplacian
distribution parameter for the transform domain noise model, the residual frame will
be transformed by DCT. Then, the variance can be computed through the transformed

residual. The variance is defined by the following equations:

0§ = Ey[ITI3] = (E,[IT1,)? (2-3)
Ey[IT1) = 21 1715 () (2-4)
E,(ITI3] =), [IT1, (D] (2-5)

where ¢y is the variance of a DCT-band b, |T|, is an absolute transformed residual
|T| of a DCT-band b, E,[|T|,] is the expectation of an absolute transformed residual
of band b, E,[|T|2] is the expectation of the square of absolute transformed residual
of band b, and J is the number of transform blocks in a frame. The Laplacian

distribution parameter of the DCT-band b is defined by Equation 2-6:

15
=[5 (26

The probability inputted to LDPCA Decoder is calculated through Soft Input
Computation by using the above Laplacian distribution parameters generated by the
Virtual Channel Model.

Errors of bit planes in side information are corrected by LDPCA Decoder. And
these bit planes are reconstructed by Reconstruction to form a transformed frame.
Finally, the transformed frame will be processed by IDCT to become a pixel-domain

frame, a decoded Wyner-Ziv frame.

2.3 Hybrid DVC
Hybrid distributed video coding with frame level coding selection was proposed

in [8] and its framework is shown in Fig. 2-5.

Coding Mode
Selection

1

o—»

LDPCA
Encoder

Wyner-Ziv DCT [+ Quantizer [—»| SKIPMode —I—A
Frames Decision
- Entropy

o—»|
Encoder

I;DP(;A Decoded
ecoder DI— Reconstruction Wyner-Ziv

Frames
Entropy
|

Decoder

Soft Input

Computation Sl Refinement

Correlation
Noise Modeling

Sl Creation

Frame

Buffer Frame

Buffer

Decoded
Key
Frames

Intra ﬁ
Decoder

Key Intra T
Frames Encoder

Fig. 2-5. The Hybrid DVC Framework [8].

Correlation Noise Modeling, Intra Encoder, and Intra Decoder are respectively the
same as Virtual Channel Model, Conventional Intraframe Encoder, and Conventional
Intraframe Decoder in DISCOVER as mentioned in Section 2.2. Besides the parts of

DCT, Quantizer, LDPCA Encoder, LDPCA Decoder, Reconstruction, Soft Input

16

Computation, Correlation Noise Modeling, Intra Encoder, and Intra Decoder as
mentioned in Section 2.2, there are some new blocks in Hybrid DVC including Skip
Mode Decision, Coding Mode Selection, Entropy Encoder, Entropy Decoder, and
Side Information (SI) Refinement. The main idea of the Hybrid DVC is that the
authors applied conventional video techniques including residual coding, entropy
coding, and skip mode to the framework. Therefore, they need a Coding Mode
Selection in their frame level coding.

In the encoder, applying a residual codec to DVC can efficiently reduce the data
needed to be transmitted from encoder to decoder by exploring the temporal
redundancy between key frames and WZ frames at the cost of a little increase in

computing complexity. The residual is calculated by the following equation:

r(x,y) =fWZ(x;y)_fkey(x:y)a (2'7)

where r is the residual value, fy,; is the current WZ frame, fy., is the reference key
frame, and (x,y) is the coordinate of each frame. In order to coordinate residual
coding, a new method of quantization step size was applied to the Hybrid DVC to fit
the balance of RD performance. The new quantization step size is defined by

Equation 2-8:

2|max(b;)|

Q; = max(—3——, Qimin)> (2-8)

2M_1

where Q; is the quantization step size of band i, b; is the value of band i, Q;in IS
the pre-defined minimum quantization step size of band i, and M is the number of
bitplanes.

The residual frames processed by DCT and Quantizer will be input to Skip Mode
Decision used in the encoder, which will help to reduce largely the transmitted data
but add little error to the reconstructed frame. Unit of skip mode is a 4x4 block and
the threshold of skip mode is defined by the following equation by calculating the

transformed residual value:

17

Dist(n) = ¥i=3 X5=0 4 (W, v), (2-9)

where n is the index of block in the residual frame, and q2(u, v) is the square of
transformed residual value in the block. If the value calculated by Equation (2-9) is
lower than a defined threshold, the block will be skipped, which is controlled by Skip
Mode Decision. And the skip flag will be coded by a run-length encoder to further
reduce the transmitted data.

Then, Coding Mode Selection will decide the coding mode of non-skipped
blocks and this is a new idea proposed in [8]. This decision is made for every frame
meaning that all non-skipped blocks in a frame will be coded by the same coding
mode. There are totally four modes including Channel Coding, Hybrid Mode 1,
Hybrid Mode 2, and Entropy Coding. Channel Coding in the Hybrid DVC uses a
low-density parity-check accumulate (LDPCA) coder and Entropy Coding uses a
context-adaptive variable-length coder (CAVLC). Hybrid Modes combined with
Channel Coding and Entropy Coding are used to code different frequency bands. In
Channel Coding mode, all bands are coded by LDPCA. In Entropy Coding mode, all
bands are coded by CAVLC. In Hybrid Mode 1, the lower three bands are coded by
LDPCA and CAVLC is used to code the other bands. In Hybrid Mode 2, the lower six
bands are coded by LDPCA and CAVLC is used to code the other bands. The rule of

choosing a proper coding mode is shown in Table 2-1:

18

Table 2-1. Coding Modes and Decision Rules [8].

Coding mode Decision rule

Channel Coding | Eg>r1o, E1 >, E2 > 1)

Hybrid Mode 1 Eo>10, E1 <1

Hybrid Mode 2 | Eo>ro, E;1 >, E2 <1y

Entropy Coding Eo<ro

In Table 2-1, Eo, E;, E; are the energy of three different groups and ro, r1, 2 are
defined thresholds of these three groups of energy. The energy Ey is the summation of
average amplitudes of the lower three zigzag-scan ordered bands, E; is the summation
of average amplitudes of the next three zigzag-scan ordered bands, and E; is the
summation of the other average amplitudes. The energy in each of the three groups is

defined by the following equations:

EO = bO + bl + bz (2'10)
E1 = b3 + b4 + b5 (2'11)
E2 = b6 + b7 + bg + bg + b10 + b11 + b12 + b13 + b14 + b15 (2'12)

The average amplitude b of each band i is denoted as:
by = < TN 4n (D), (2-13)

where N is the number of blocks, g, (i) is the transformed residual value of band i
within block n.

In the decoder, WZ frames will be reconstructed through three paths which are
skipped block, entropy decoding, and channel decoding. If the block is a skipped

block, the values of the block are completely copied from the reference frame. Then,

19

the bands coded by Entropy Coding are reconstructed through the path of Entropy
Decoder. The bands coded by Channel Coding will be reconstructed through the path
of a Channel Decoder. The path of the Channel Decoder is the most complex for the
side information must be generated by Side Information (SI) Creation and refined by
Side Information Refinement [13]. The Side Information Creation includes Low Pass
Filter, Forward Motion Estimation, Bidirectional Motion estimation, Spatial Motion
Smoothing, and Bidirectional Motion Compensation as mentioned in Section 2.2. And
the side information will be refined after the channel decoding of a bit plane. Some
blocks of WZ frames flagged as skipped block are reconstructed through directly
copying from reference frames. Other blocks of WZ frames are reconstructed by
Entropy Decoding or Channel Decoding according the four coding modes. Then,

decoded WZ frames are reconstructed by these decoded blocks.

20

21

CHAPTER 3
PROPOSED ARCHITECTURE AND IMPLEMENTATION

Lots of architectures of DVC have been proposed, and their goal is to improve
the RD performance by adding extra components in the decoder, which also increases
the complexity of the decoding process. High complexity of the decoding process
causes that the decoded video cannot be played in real time. Hence, we propose an
architecture of DVC based on Hybrid DVC [8] to improve these situations and
implement this architecture in hardware. In the following sections, we will describe
the proposed architectures of DVC, LDCPA Decoder, Side Information Creation
including Motion Compensation and Spatial Motion Smoothing, CAVLC Decoder,
DCT, IDCT, Quantization, De-Quantization, Correlation Noise Modeling, Soft Input

Computation, and Reconstruction.

3.1 Proposed Architecture of DVC
The proposed DVC decoder is shown in Fig. 3-1. A new idea of our proposed
architecture is that the motion vector is predicted in the DVC encoder in a small range

such that more precise motion vectors can be input to the DVC decoder.

22

|

|

T

|

Coding |
f——= Mode |
|

|

|

|

|

Selection

I CAVLC
™ Encoder

Wyner-Ziv, Skip Mode
Frames DCT ™| Quantzer 1™ “pecision R v_]' Quar?l\iatlcr\ Ll ipcT || Reconstruction 4.V\{:yner-zw
- | rames
LDPCA LDPCA J
R

|
|
Encoder | Decoder |
[Side Information Creation

Motion
Compensation

Soft Input

| Motion
izat et | interpolation Compensation
g - o]
Computation Quantization |
atial

t

|

|

|

|

|

|

| | i

Correlation Il compensation Smoothing

! Noise |

I"| Modeling d L,,% 77777 {777
Frame 1

|

|

|

|

|

|

|

|

|

Buffer

Key H.264 Intra
Frames Encoder

H.264 Intra Key
Decoder Frames

Fig. 3-1. Proposed Architecture of DVC.

Adding motion estimation in the DVC decoder will result in an increase of time
complexity in the encoding process, but could improve RD performance. And
compared to software simulation, it will only increase about ten percent of time
complexity in the encoding process.

Most blocks of our proposed DVC decoder, including LDPCA Decoder, CAVLC
Decoder, Soft Input Computation, Correlation Noise Modeling, Quantization,
De-Quantization, DCT, IDCT, Bidirectional Motion Compensation, Spatial Motion
Smoothing, Frame Buffer, and H.264 Intra Decoder, have been depicted in previous
chapter, but there are some new blocks such as Motion Compensation and
Interpolation to be presented. Since the residue frames in the proposed DVC encoder
come from motion-compensated key frames and WZ frames, we need a Motion
Compensation in the DVC decoder. And the reason of adding Interpolation in Side
Information Creation is that the frames generated by Bidirectional Motion
Compensation sometimes are less precise than the frames generated by Motion
Compensation. Using Interpolation can help us to get better SI because of its
averaging the errors of motion vectors from DVC encoder and Spatial Smoothing.
Besides, the input data to the Reconstruction of the proposed DVC decoder are
motion-compensated key frames and residue frames generated from

motion-compensated key frames and WZ frames. And they could reduce the data

23

needed to be transmitted from encoder to decoder compared to those residue frames
generated from key frames and WZ frames.

Most blocks of our proposed DVC encoder have been described in previous
chapter, except the following two blocks, Motion Estimation and Motion
Compensation. The reason why we added these two blocks is that the amplitudes of
residue frames can be reduced and motion vectors predicted in the encoder can be
used to create more precise side information in the decoder.

The proposed system architecture and data flow is shown in Fig. 3-2. The
proposed system consists of external memory and blocks described in the previous
paragraph. Dotted lines present that a frame-based process is within this region. Until
a frame-based process is finished, the followed process will start. In each frame-based
process, the external memory can only be accessed by a certain block. Hence, we
schedule the system that only one certain block is running at a time. The encoded bits
of H.264 are decoded by H.264 Intra Decoder to generate Key Frames. The
Whyner-Ziv Frames are decoded by the Wyner-Ziv Decoder consisting of Spatial
Motion Smoothing, Bidirectional Motion Compensation, Motion Compensation,
Interpolation, I/DCT & De/Quant., Correlation Noise Modeling & Soft Input
Computation, LDPCA Decoder, CAVLC Decoder, and Reconstruction. In decoding
Wyner-Ziv Frames, input data is Key Frames, Motion \ectors, Syndrome Bits, and

Encoded Bits of CAVLC, and some intermediate Transform-Domain Residue Frames.

24

Access
External Memory

Access
External Memory

Key Frames

H.264 Intra
Decoder

Encoded Bits of

External Memory

Transform-Domain

Residue Frames

Transform-Domain
Residue Frames

Transform-Domain
Residue Frames

Wyner-Ziv Frames

Wyner-Ziv Decoder

| | |
| | |
I I I
:	
ﬂo_‘_‘m_m:o:	
Spatial Motion Motion N per	Noise Modeling LDPCA
Smoothing	Compensation Interpolation
Compensation Quant. Soft Input IDCT	
W W Computation W W	
, , , 3 ,	
i i i : i	
[[[[[
)	
EIE e	Key Frames Key Frames Key Frames
Key Frames	
I I I I I	
I I I I I	
I I I I I	
I I I I I	
I I I I I .	

Fig. 3-2. Proposed System Architecture and Data Flow.

25

In this Thesis, we focus on the hardware design of our proposed DVC decoder.
And the design of each block in the proposed DVC decoder will be described in the

following sections.

3.2 LDPCA Decoder

Low Density Parity Check (LDPC) code, a linear block code, was invented by
Gallager [14] in 1962. Then, Tanner’s graph [15] transformed from the sparse
parity-check matrix was proposed to clearly depict the concept of LDPC. Urbanke [16]
proved that the error-correcting performance of LDPC is only 0.0045 dB far from
Shannon limit. With its outstanding error-correcting performance, LDPC code has
been applied to some digital communication systems as channel coding. Besides,
LDPC code is used in fixed-rate distributed source coding [17]. We can use LDPC in
a syndrome code form to transmit different amount of syndromes to achieve the goal
of data compression. Though LDPC in syndrome code form can be used to compress
data, there is a disadvantage that not every variable nodes are connected to check
nodes in high compression rate as shown in Fig. 3-3, where V.5 present the variable

nodes and Co.s present the check nodes.

26

Vi Ci Vi G
V2 G V2
. @

(@) (b)

Fig. 3-3. Tanner Graphs.

Figure 3-3(a) shows that the encoder transmitted the entire syndrome bits and
Fig. 3-3(b) shows that the encoder only transmitted odd-index syndrome bits. There
are some variable nodes in Fig. 3-3(b) not connected to any check nodes or just
connected to one check node. To solve this problem, low density parity check
accumulate (LDPCA) was proposed [4]. The idea of LDPCA is that the syndrome
generated by the encoder will be accumulated such that variable nodes will not be
unconnected to check nodes. Fig. 3-4 shows the decoding graph with accumulated

syndrome bits.

27

Co+Ca

Co+ Cs

Ci+Cs

Fig. 3-4. Tanner Graphs with Accumulated Syndrome Bits.

Parity-check matrices of Fig. 3-3(a) and Fig. 3-4 are respectively shown in Fig.
3-5 and Fig. 3.6. We can see that two rows are merged when two check nodes are
merged. Merging rows means that the elements from the same position in each of the

two rows are binary added.

28

Vo Vi1 V2 V3 Va Vs

10 1 0 0 17
0100 1 0fc
|1 00 10 1fc
011 10 0]c
000 1 1 1]
1 10 0 1 olg

Fig. 3-5. Parity-Check Matrix of the LDPCA shown in Fig. 3.3(a).

Vo Vi V2 V3 Va Vs

1110 1 1] e
H = 1 1 1 0 0 1 Cz+4 C3
11010 1,

Fig. 3-6. Parity-Check Matrix of the LDPCA shown in Fig. 3.4.

For example, Row 1 in Fig. 3-6 is obtained by merging the elements from Row 1

and Row 2 in Fig. 3-5. Binary addition of rows is shown below:

[T 1 1 0 1 1]=[1t 0 1 0 0 1]+[0 1 0 0 1 O]

There are some properties of LDPCA:

1. The Log-Likelihood Ratios (LLR) of message and syndrome bits are inputs of
LDPCA, while the LLR of a code word (original message bits and redundancy
bits) is the input of LDPC.

2. The total decoding iteration number of LDPCA is directly proportional to the
number of different code rates.

3. The advantage is on its ability of compressing data and error correcting.

4. The disadvantage is on its high computation complexity.

After introduction of LDPCA, we are going to define the equations of check nodes

merging. Only syndrome bits are generated by the LDPCA encoder, which form the

29

parity-check matrix used by the LDPCA encoder. Syndrome bits are defined in the

following equation:

Ck = X150 Hii " Vi (3-1)

where Cj is the k" syndrome bit, n is the code length, V; is the i™ source bit, and
Hy; is the (k,i) element of the parity-check matrix. The accumulated syndrome bits

are defined in Equation 3-2:
A = Zi20 G, (3-2)

where 4, is the k™ accumulated syndrome bit. The merged syndrome bit from check

node j to check node k is defined in Equation 3-3:

(3-3)

{Aj—l DA ifj#0
Cix=

Ag, else

To simplify the transmitting process of different code rates, every 66 syndrome
bits are grouped together. If data cannot be decoded completely in a current code rate,
the encoder just transmits additional syndrome bits in a pre-determined order. The

transmitted nodes in different code rates are listed in Table 3-1:

30

Table 3-1. Transmitted Nodes in Different Code Rates.

rate \ txNode

o

o

=

3

<

)

23

25

o

1032133

o>
=N

o
%

=~

46

N
3
IS
£3)
N
o

o
S

o

o
N

o
o

N

64 |65

o

olo|o

ololo|e

olo|ole|e

olololelo|e|w

olololelo|e|e

olololele|e|e|e

olelolele|le(elo|e

olololelolelele|e|e

olololelolelelelele|e

olololelolelelelele|e|e

olololelele(clelele|le|e|e

olololololelelelelelelo|le|o |«

olololololeleleleleleleole|e|e

SYSHEY S SN S 53 S (3 S8 S SFf S (S S (S (S8 (S (58 (S (S (S (S (S8 (S (53 (S (S8 (54 (S (S8 (S (S8 (S (S (S8 (S (SF (S (53 (S (S8 (S (S (S8 (S (53 (S (S8 (54 (S (S8 (S (S (S (S8 (S (S (S8 (S (58 (5] (=

olololololee e~

SEEEEEEEERE R R EEEEE R

ClellllllllEllllllll iRl lrlllllllele el

olololololelelelelelelelelelelelele|e|le|e o |-

SEEEEEEEERE R R EEEE R

Clelelelllllelrlrlrllrlllle ool el oo bl lrlele ool e o ool P Rl

olololelolelelelelelelelelcleleleleleleleclele|e oo e

SEEEEEEEERE R R R EEEEF R

Plelllelellelelelelelelelellelelolelelele Pl e oo ool o oo ol oo o oo

oleloleleleleleleclelelele|ele|e|o|e

SEEEEEEEERE R E R

Clelelelllllelelrlllllllelelelrlelelelellele el kool el Rl 2R

olololelelelelelelelelelelele(elelelelelelelelele oo |e

Rl bl b bl ol b B EEE R R R R R

Clelllllllelelelellelelellelelelelelle el ool e ool R R[]

olololololeleleleleleloleleleleleole|e|e

bl ool bl ol oo FEEEEEEEEEEEEEE R

clelllllllelrlelellelellelelelelellelelellelelelelelelelpllelolololelle oo oo el oo

olololelolelelelelelelelelelelelolelelelelele|e

CElbl ol bl bl ol oo FEEEEE R EEEEEEEEEEEE R

clelelelelellelelelelelelelelellelelelelelelelelelelelolelelelle oo oo lololele oo o2

olololelolelelelelelelele|e|e|e

olololololelolelelelelelelelelcleleleleleleleclelelelelele|e|eo|e

Clelelelllelrlelelrllllllelelelelelelolelololelolololellolelolole oo ool lelololo o oo ool ool le o o o[l

lelelelllllelelelllellllelelelelellelellelelelelelele e lelelelellr e lelelelrlr Rl oo ol

olololeloleleleleleleloleleleleclelelelelelelelelelo|le|e|e

Skl bl bl ol FEEEEEEEEEEEEEEEEE R EE R R E

clelelelelllelelelelelelelelelelelelelelelelelellelolelelelele oo lelolololelele o oo oo o lole o

olololelolelelelelelelelelelelelele|e|e|e

LR R Rl E R EEEEEEEEE R

clelelelellellelelelelle o lelelolololelele P e lele oo lololele oo ol

olololelolelelelelelelolelelelelelelelelele|e|e|e

E LR R EEEEE R EEERERERL

Clelllelellelelelelellelellelelelelelelolrlolele o lole el lololo oo oo lo oo oo 2o

olololololelelelelolelele|ele|e|e

SEEEEEEEEEE R R R R

Pl ool ool lplple ool e e ool ool

olololelolelelelelelelelelcleleleleleleleclele|ele|e e

SEEEEEEEERER LR R E R F R ERER

el lelelelelelelelele oo el el le o ool lplo oo ol Rl o 2[R [R 2

olololelolelelelelelelelelele|e|e|e|e

SRR EEEEERE R R R

el el llle ool Rl el ER

olololelelelelelelelelelelelelelele|e e |e|e

Rl bRl bl o R E R EE R EE R REER

clelelelelellelolelelelelelellelelelelelele el e lolelelele oo ool ol

ololole|le|ele(e oo |e

lelelelelelelelelelellelelelelelelelelelelelelelelelolelelelelelelele o lelelelele o lelelo oo ool oo lo o o o oo ool

31

In this work, we implement the LDPCA using a Min-Sum Algorithm [18]. Since

the check nodes of LDPCA could be merged in different compression rates and the

syndrome bits are accumulated in every 66 check nodes, we proposed an architecture

of Comparing Tree consisting of basic check nodes and stacking nodes to find the first

and second minimum LLRs to be merged into Check Nodes (CNs) as shown in Fig.

3-7.

P

P

Stacking CN

Stacking CN

5588

min_1st Q Q min_2nd

Stacking CN

Basic CN

060

Basic CN

5855

P

Basic CN

elele

666?

66 basic check nodes

Fig. 3-7. Proposed Architecture of Comparing Tree.

Each wire in the Comparing Tree is used to transmit minimum values and parity

of variable nodes to check nodes. According to the parity-check matrix proposed by

Varodayan et al. [4], we design an algorithm to generate wires connecting Basic CNs

and Stacking CNs. Besides, to implement the hardware, we change the number of

32

accumulated syndrome bits to 66 only, without accumulating all the syndrome bits.

The flow of creating a Comparing Tree based on 66 basic check nodes is as follows:

(1) Allocate an array for Basic CNs and an array for pointers which are initially
pointing to Basic CNs.

(2) From the code rate of 66/66 to the code rate of 2/66, every time the code rate is
changed, a Stacking CN will be inserted to the Comparing Tree. The pointers of
the to-be-merged two check nodes will point to the new inserted Stacking CN.
The pointer of the pointer array in the position of a transmitting node will point to
the new inserted Stacking CN, while the pointer in the position of the
to-be-merged node of the pointer array will point to null.

(3) After iterations of code rates from 66/66 to 2/66 in Step 2 are done, we can
traverse from the array of Basic CNs by breadth-first search to know how many
Stacking CNs are inserted and wires are connected to Basic CNs and Stacking
CNs.

The schematic diagram of wires connected to Variable Nodes (VNs), Basic CNs,

and Stacking CNs is shown in Fig. 3-8.

66 VNs —=

Fig. 3-8. Schematic Diagram of Wires Connected to VNs and BNs.

The units of the Basic CNs and Stacking CNs in the Comparing Tree are
different. There are three input values and two outputs for the first and second
minimum values in the Basic CNs. There are two pairs of inputs of sorted values and
two outputs for the first and second minimum values in the Stacking CNs. Their
function is to find the first two minimum values with minimum-value generators [19]

as shown in Fig. 3-9 and Fig. 3-10.

X0 —e1—
Comp

mn0

mnl

6 stages

Zo

Cpo

71

min_lst

min_2nd

Fig. 3-9. A 3-Input Minimum-Value Generator.

33

34

mlA 70
mn0

m2A (Coo
mlB

mnl 0

min_Ist

m2B —

min_2nd

2
mn 7

Fig. 3-10. A 4-Input Minimum-Value Generator.

In Fig. 3-9, Xo, X3, and X; are inputs; Comp is a two-input comparator; mn0 and
mnl are two 2-input minimum-value generators outputting a minimum value and an
index of a minimum value; Z, and Z; are minimum values; Cp is the index of a
minimum value; min_1st and min_2nd are the first minimum value and the second
minimum value respectively. In Fig. 3-10, m1A, m2A, m1B, and m2B are two pairs
of sorted minimum values; mnO, mnl, and mn2 are three 2-input minimum-value
generators; Zy, Zi, and Z, are minimum values; min_1st and min_2nd are the first
minimum value and the second minimum value respectively.

Figure 3-11 is an example of Comparing Tree consisting of Basic CNs and
Stacking CNs. Co, Cy, Cy, C3, C4, and Cs are Basic CNs. SCy, SCy, and SC, are
Stacking CNs. The numbers on the left side of Basic CNs are the order of transmitted
accumulated syndrome bits. Code rates, 6/6, 5/6, 4/6, and 3/6 present different steps
of inserting Stacking CNs as described in the previous flow of creating Comparing
Tree(p.32). According to proposed algorithm of creating Comparing Tree, Basic CNs
are inserted first. From the code rate of 5/6 to the code rate of 3/6, every time the code
rate is changed, a Stacking CN is inserted to the Comparing Tree. And the wires are

connected to the merged Basic CN and the inserted Stacking CN.

1

6/6

Co

Ci

5/6

4/6

C

Ca

SCi

Cs

SCo

35

3/6

SC

Fig. 3-11. An Example of Comparing Tree Consisting of Check Nodes.

Two examples of merging check nodes are shown in Fig. 3-12 and Fig. 3-13

where Vo, V1, Vo, V3, V4, and Vs are variable nodes, Cy, Cq, Cy, C3, Cy4, and Cs are

Basic CNs, and SCy, SC;, and SC, are Stacking CNs. In Fig. 3-12, code rate is 4/6.

Basic CNs, C, and Cs, are merged first; then Basic CNs, C, and Cs, are merged.

Variable nodes connected to Merged Check Nodes are updated by message passing

from SCy and SC; while other variable nodes are updated by message passing from Cy

and C;. In Fig. 3-13, code rate is 5/6 and there is only one Merged Check Node since

there is only one accumulated syndrome bit not received by LDPCA decoder. Variable

nodes connected to Merged Check Node are updated by message passing from SCy

while other variable nodes are updated by message passing from Coy, C4, C,, and Cs.

Other code rates can be achieved by the same way.

Vo Co

Vi w Ci SCa
Merged Check Node

Va C2

Vs G + SCi

Vi Cs

Vs Cs SCo

Merged Check Node

Fig. 3-12. An Example of Merging Check Nodes in Code Rate of 4/6.

SCa

SCi

Cs SCo

Merged Check Node

Fig. 3-13. An Example of Merging Check Nodes in Code Rate of 5/6.

37

In Fig. 3-8, there are 6 stages of Stacking CNs because 66 Basic CNs are included.
Since the order of transmitting accumulated syndrome bits in each grouping of the 66
VNs is the same, the Comparing Tree of each group of 66 CNs is also the same. Thus,

we proposed an architecture of LDPCA decoder as shown in Fig. 3-14.

Accumulated
Intrinsic Syndrome
LLR Bits

Comparing Tree

De-Accumulator | | Syndrome Buffer H—

Comparing Tree

Bit Nodes [Edge

De-Accumulator

| Syndrome Buffer

(I

Comparing Tree

Extrinsic @ De-Accumulator | | Syndrome Buffer
LLR

Parity Check

Fig. 3-14. Proposed Architecture of LDPCA Decoder.

Intrinsic LLR and Accumulated Syndrome Bits are input data, and extrinsic LLR
will be outputted when the decoding process is finished. Each Accumulated Syndrome
Bits stored in the Syndrome Buffer are required by the LDPCA decoder in different
code rates according to Table 3-1. Basic CNs merged in the same CN will fetch the
same syndrome bits. The syndrome bits fetched by basic check nodes are generated

by a De-Accumulator. The De-Accumulator is a combinational circuit implementing

38

the function of Equation (3-3) and its input is the accumulated syndrome bits stored in
the Syndrome Buffer. Exclusive-Or is used for binary addition in Equation (3-3).
Edges of Bit Nodes in the Comparing Tree are generated according to the
parity-check matrix proposed in [4]. And Parity Check is also designed according to
the same parity-check matrix proposed in [4].

The state diagram of the proposed LDPCA decoder is shown in Fig. 3-15. First,
LDPCA decoder reads the channel value, reads syndromes, and initializes message.
Check nodes and variable nodes are updated. Then, we decide whether the syndromes
are matched and the iteration number is equal to the maximum iteration number. If the
checked syndrome is not matched and the iteration number is not equal to the
minimum iteration number, the LDPCA decoder continues reading syndromes and
performing decoding process. If the checking syndrome is matched, or if the source
rate is 66/66 and the maximum iteration number is matched, the decoding process is

finished. Finally, the decoded values are outputted.

Read
syndromes and
initialize
message

Check
syndrome &
max. iteration

Read the
channel value

Update check
nodes

Update
variable nodes

Not achieve max. iterationr—————————

Achieve max. iteration

Terminate
decoding
process

Parity checking is matched
Or source rate is 66/66 & achieve max. iteration

A

Fig. 3-15. State Diagram of Proposed LDPCA Decoder.

3.3 Side Information Creation

Side information creation is used to generate approximate Wyner-Ziv frames
called side information. The proposed framework of side information creation is
shown in Fig. 3-16. The proposed side information creation consists of three parts
including Spatial Motion Smoothing, BiDirectional Motion Compensation, and

Interpolation. First, Spatial Motion Smoothing adjusts the motion vectors on a frame

39

according to the input motion vectors of Previous Key Frame and Next Key Frame.
Next, a motion-compensated key frame is generated by BiDirectional Motion
Compensation using adjusted motion vectors. Then, the motion-compensated key
frame and a Motion-Compensated Previous Key Frame are combined by Interpolation
to create Side Information. Details of Spatial Motion Smoothing, BiDirectional
Motion Compensation, and Interpolation will be described in the following

subsections.

Motion-
Compensated
Previous Key

Frame

' ! !

Previous |
Key Frame o
Spatial BiDirectional
Motion Vectors ———— Motion > Motion » Interpolation —— Side Information
Smoothing Compensation
Next N
Key Frame "

Fig. 3-16. Proposed Framework of Side Information Creation.

3.3.1 Spatial Motion Smoothing

The function of Spatial Motion Smoothing is to find the appropriate motion
vectors within a specified window since there might be some errors in motion vectors
predicted by block matched motion estimation. For example, Fig. 2-4(a) presents the
motion vectors predicted by motion estimation and Fig. 2-4(b) presents the motion
vectors after Spatial Motion Smoothing that refines the motion vectors according to
the motion vectors of neighboring blocks within a specified window. In this example,
the motion vector in the center of Fig. 2-4(a) is not correct because it just was
predicted by the sum of absolute differences (SAD) which might cause block effect.
After Spatial Motion Smoothing, the motion vector in the center was corrected such
that block effect can be avoided.

In our work, we use a weighted vector median filter [20] to implement the

40

function of Spatial Motion Smoothing in a block. The idea of this filter is that not
only distance of motion vectors within a specified window but also a weighted value
are considered as predicted values. And the weighted value is the SAD of the previous
forward motion-compensated block and next backward motion-compensated block.

The criterion of the weighted vector median filter is defined in the following equation:
271 SAD (xtwmvg, B) (| Xwwms = Xj| + [Ywms — Yj|) <
YL1SAD (xe, BY(IX: — Xj| + |Y: — i), (3-4)

The above equation is similar with Equation (2-1) except the SAD. x,,,,,,f is the
motion vector obtained at the output of the weighted vector-median filters, N is the
number of motion vectors within a specified region, x. is the current appropriate
motion vector, X and Y are x-dimension and y-dimension values of motion vectors
respectively, and SAD(x, B) means the sum of absolute differences of the motion
vector x of current block compensated by previous and next reference frames.

As shown in Fig. 3-17, the proposed architecture of weighted vector median
filter is modified from [21]. The architecture consists of Control Unit, Datapath of
Distance, Weighing & Minimum Selector, and Datapath of SAD. Control Unit is used
to control the dataflow of motion vectors, pixels of frames, and output vector.
Datapath of Distance is used to calculate the distance of motion vectors. Datapath of
SAD is used to calculate the SAD of compensated blocks. Weighting & Minimum
Selector is used to calculate the weighting factor and select the candidate motion

vector.

Control
Unit

Datapath of
Distance

'

Weighting &
Minimum
Selector

T

Datapath of
SAD

Fig. 3-17. Proposed Architecture of Weighted Vector Median Filter.

41

The architecture of Datapath of Distance is shown in Fig. 3-18. In this

architecture, the window size is nine blocks. The motion vector is inputted through

Vin to each register, V1 Reg. to Vg Reg. The mux is used to select the proper motion

vectors, V1 to Vg, in different calculation phases. When the specified window moves,

the number of input motion vectors is different. We have to input nine motion vectors

into the nine registers, Vi1 Reg. to Vg Reg., when the specified window is at the

leftmost of the row. We only input three motion vectors into the three registers, V3

Reg., Vs Reg., and Vg Reg., when the specified window is not at the leftmost of the

row. After calculation through absolute, adder, and storing in the register, D; contains

the distance of motion vectors.

42

Vin

1] 1] 1] 2 ¥ 1]
Vi Reg V2 Reg V3 Reg Va Reg Vs Reg Ve Reg V7 Reg Vs Reg Vo Reg

I I ‘ I I ‘ I I
N B e s D B W =

Vo —»
Mux 1 Mux 2 Mux 3 Mux 4 Mux 5 Mux 6 Mux 7 Mux 8

Vs —»

Vi —»

PP epUYYy

Vi })

XN\

Fig. 3-18. Architecture of Datapath of Distance.

The architecture of Datapath of SAD is shown in Fig. 3-19. Pixels of a current
block and compensated by the input previous and next reference frames, Pprey and Prext,
controlled by the Control Unit. First, these two input values are calculated through a
subtractor. Next, the absolute value of this difference value is obtained by Abs. Then,
the absolute value is added with a temporary weighting factor, W;, and the sum is
stored in a register. Finally, calculation of weighting factor is completed after reading

every pixels of the block.

43

Pprev Prext

Registers

Fig. 3-19. Architecture of Datapath of SAD.

The architecture of Weighting & Minimum Selector is shown in Fig. 3-20. The
functions of Weighting & Minimum Selector are multiplying the weighting factor and
the distance, and selecting the motion vector with a minimum weighting value. The
weighting values of components x and y are separately computed. The weighting
value of x, WD, is equal to weighting factor, Wi, multiplied by the distance of
component x, Dix. The weighting value of y is calculated like the weighting value of x.
The sum of weighting values will be compared with the value stored in the register to
find the minimum weighting value by the Comparator. If the weighting value is
smaller than the value stored in the register, the value stored in the register will be
substituted by the weighting value and the previous motion vector will be substituted

by the current motion vector.

44

Wi
Registers

Wiy

Diy Reg \{V‘Diy
Dix Reg /V(VDix "’

Reg

Joresedwo)
\i

Wix

Wi
Registers

Fig. 3-20. Architecture of Weighing & Minimum Selector.

3.3.2 BiDirectional Motion Compensation

BiDirectional Motion Compensation means that using motion vectors filtered by
a vector median filter to get forward motion-compensated frame and backward
motion-compensated frame. The residue frames of forward motion-compensated
frames and backward motion-compensated frames are used to be the inputs of
Correlation Noise Modeling. The interpolation frames of forward
motion-compensated frames and backward motion-compensated frames form exactly
the side information.

The inputs of BiDirectional Motion compensation are motion vectors and key
frames. The motion vectors of a forward motion-compensated frame and a backward
motion-compensated frame are only different in sign bit. The direction of motion
vectors of forward motion compensation and backward motion compensation is

opposite as shown in Fig. 3-21.

45

@ (b)

Fig. 3-21. Motion Vectors of (a) Forward and (b) Backward Compensations.

Key frames are read from external memory units, previous key frame buffer and
next key frame buffer. The motion vectors stored by the vector median filter are read
from SRAM. The motion vectors for backward motion compensation are obtained by
letting the input motion vectors multiplied by negative 1, while the motion vectors for
forward motion compensation are the input motion vectors.

The hardware of motion compensation is mainly for the control of reading
address and writing address, and signal of writing. Besides, we have to consider the
situation where motion vectors are pointing to the outside of the frame boundary. In
this situation, we will use the nearest pixel of this frame instead.

The architecture of motion compensation is shown in Fig. 3-22. Motion Vectors
are stored into registers first. Pixel Address of a reference frame is calculated by
Control according to these stored motion vectors and current block. Pixel will stored
into Buffer, and Control will send signal of Enable to present the Compensated Pixel
is ready. The process between calculating Pixel Address and presenting the
Compensated Pixel is ready will repeat until each Compensated Pixel of a frame is

completed.

46

Motion Vectors — | Registers

Pixel Control ——» Enable
Address

Compensated

Pixe]| ———— Buffer ———»)
Pixel

Fig. 3-22. Architecture of Motion Compensation.

3.3.3 Interpolation
The function of Interpolation in Side Information Creation is to calculate the
mean values of pixels between bidirectional motion-compensated frames. The

interpolated pixel can be presented as the following equation:

pi = (pr+pp+1)» 1, (3-5)

where p; is the interpolated pixel, ps is the pixel in a forward motion-compensated
frame, and py, is the pixel in a backward motion-compensated frame. Adding one and
right shifting one in Equation (3-5) means the content is divided by 2 and rounded to a
single digit.

Implementation of Interpolation mainly consists of memory accessing and a
combinational circuit of adder and shifter. Pixels are read from external memory and
stored to external memory. The stored pixels will be read by the next stage. The
combinational circuit is to implement the function of Equation (3-5).

The architecture of Interpolation is shown in Fig. 3-23. Psowarg IS the pixel in a
forward motion-compensated frame, and Ppackward IS the pixel in a backward
motion-compensated frame. We obtain the interpolation pixel, Poward, by right

47

Pforward Pbackward

N
(C>>1

Pinterpolation

Fig. 3-23. Architecture of Interpolation.

3.4 CAVLC Decoder

Context-based Adaptive Variable Length Code (CAVLC) is proposed to code the
coefficients after transform and quantization. CAVLC provides a good compression
with some lossy compression techniques like quantization. The hardware of CAVLC

used in our work is proposed in [22]. The decoding flow is shown in Fig. 3.24.

48

1. Decode the number of
non-zero coefficients and

trailing ones.
Number of Coeff

Number
of Tl

2. Decode the sign of each
training ones.

5. Decode each run of zeros.

3. Decode the levels of the
remaining non-zero
coefficients.

4. Decode the total number
of zeros before the last
coefficient.

Number of Coeff -
Number of T1

Fig. 3-24. Decoding Flow of CAVLC Decoder [22].

The flow of decoding process is as follows:

(1) According to the number of non-zero coefficients in the left block and top block,
and look-up table, we can decode the number of non-zero coefficients (Coeff)
and number of training ones (T1). The range of the number of Coeff is from 0 to
16, and the range of the number T1 is from 0 to 3. There are five look-up tables
in decoding the number of Coeff and T1, one of them is for chroma.

(2) After knowing the number of T1, we can immediately decode T1 according to
the bit stream. Only one bit is used to decode the sign of T1. Bit 1 means
negative 1 and Bits 0 means positive 1.

(3) In this step, the level of Coeff will be decoded according to 7 look-up tables,
Level-VLCO to Level-VLC6. The decision is dependent on the number of Coeff,
the number of T1, and the threshold of decoded values. Initially, if the number of
Coeff is greater than 10 and the number of T1 is less than 3, Level-VLC1, or
Level-VLCO will be chosen. The coefficient with the highest frequency will be
decoded first. If the magnitude of the previous decoded coefficient is greater than
the threshold of the current table, the next table will be chosen.

(4) According to the number of Coeff, decode the total number of zero before the

last coefficient.

49

(5) Run-before zeroes is decoded according to the total number of zeroes, the
previous number of zeroes of the coefficient, and the run-before table.

The block diagram of CAVLC Decoder is shown in Fig. 3-25. Bitstream will be
fetched into RO and R1. According to the signals of Controller and Accumulator, the
correct 16-bit data will be outputted to Coeff_Token Decoder, TotalZero Decoder,
Run_Before Decoder, and T1 Decoder through Barrel Shifter. The functions of these
five decoders are depicted in previous decoding process. After finishing the decoding
process, the 16 decoded level values will be stored in Registers and outputted to next

stage.

Bitstream

'

R1] RO

”—l

Barrel Shifter <— Accumulator

A

Yy Yy Yy Yy Yy

Coeff_Token TotalZero Run_Before T1 Decoder Level Controller
Decoder Decoder Decoder Decoder

| }TAA A

¢V¢

Registers

!

Decoded Level Values

Fig. 3-25. Block Diagram of CAVLC Decoder.

3.5 DCT, IDCT, Quantization, and De-Quantization
Forward integer discrete cosine transform (DCT) and Quantization are the lossy
compression techniques applied in distributed video coding. In the encoder, these two

techniques are used to reduce the data rate. In the decoder, these two techniques are

50

used to create side information. Inverse integer discrete cosine transform (IDCT) and
De-Quantization are used to transform a quantized and transformed domain residue to
a pixel domain residue.

In our work, we implement a direct 2-D transform coding [23] hardware as a
core for forward and inverse integer discrete cosine transforms. The 4x4 integer

transform is shown as the following equation:

Y =(CXCT ®E
11 1 1 1 2 1 1
2 1 -1 =2 11 -1 -1
=(7 S o 1 [Blp S5 g Per (3-6)
1 -2 2 -1 1 -2 1 -1

where X is the input data, Y is the output data, E is the matrix of scaling factors, and
CXCT is the core of 2-D transform. After row-column decomposition and equation

substitution, we can obtain the following equations:

Mtu = Zi3=0 Ctl ' Xlu) t) u= OF e :3 (3'7)
YSt = Z‘i:O Csu) (M‘ZL"t)) Sl t = OI l3 (3'8)

where M is the intermediate data between the transform process. After substituting
Equation 3-7 into Equation 3-8, the equations of forward transform can be expressed

as following equations:

[Yso] _ g3 17 [Xou + Xay] ~
Yool Zu=o Csu ([1 _1] X, + X2u_)' s=0,..3 (3-9)
[Ys1] _ g3 12 17 [Xou — Xau] ~

Viz] Zu:o Csu ([1 _2] X1y — qu_)' s=0,..3 (3-10)

In the same way, we can obtain the equations of inverse transform shown in

Equation 3-11 and Equation 3-12.

XSO] —_ V'3 inv 1 1 . You + Y2y _
[Xs3 = Zu=o Csu [1 —1] Y1u+§xgu)' §=0,..3 (3-11)

51

1 1].lX0u_X2u

Xs1 — V3 inv . :
[st] - Zu:o Csu [1 -1 %Xlu — Xay,), s=0,..,3 (3-12)

According to Equation 3-9, Equation 3-10, Equation 3-11, and Equation 3-12,

the hardware of direct 2-D transform coding is proposed as shown in Fig. 3-26.

M10 M0O
M30 M20
1

M11 MO

/" MPE-1 Isft_en
Y00 X00 —

Y20 X30 ——3 () ()
Y10X10 —y enl T
=0, O,

Y30 X20 —

= X01 X00 Y01 Y00

rsft_en: 3

4 N

Isft_en

f» X11 X10 Y21 Y20
Y02 X01 —™
Y22 X31 —»
Y12 X11 —p!

™ X21 X20 Y11 Y10
MPE-1

M31 M21
-

Y32 X21 | ™ X31 X30 Y31 Y30

N
AN

Y01 X02 ™|
Y21 X32 —
Y11 X12 —|

X02 X03 Y03 Y02
MPE-1

X12 X13 Y23 Y22
Y31 X22 ™

X22 X23 Y13 Y12

N
AN

Y03 X03 —™|
Y23 X33 —
Y13 X13 —

X32 X33 Y33 Y32
MPE-1

Y33 X23 ™

- /

Fig. 3-26. Hardware of Direct 2-D Transform [23].

In MPE-1 (Multi-transform Processing Element), the enable signal of 1sft en
is for My, and M;,, the enable signals of rsft enl and rsft en2 are for
inverse transform, the “+” is for My, and M,,, the “-” is for M;, and Ms3,. In
MPE-2, 1/2, 1, -1, and - are for inverse transform.

The architecture of DCT, IDCT, Quantization, and De-Quantization is shown in
Fig. 3-27. When signal of sel is 1, forward transform, Coef. Multiplier & Shifter,
and Quantization will be applied to input data. When signal of sel is 0,
DeQuantization, Coef. Multiplier & Shifter, and inverse transform will be applied to

input data.

52

Coef.

DeQuantization —| Multiplier & 0 0
Shifter Output Data
Transform
Input Data Coef.
1 Multiplier & = Quantization
Shifter

sel sel sel

Fig. 3-27. Architectures of DCT, IDCT, Quantization, and De-Quantization.

3.6 Correlation Noise Modeling and Soft Input Computation
The Correlation Noise Modeling adopted in our work is a Laplacian distribution
as proposed in [11, 12]. The Laplacian distribution is described by the following

probability density function as depicted in Chapter 2.

pIWZ(x,y) = SI(x,y)] = %exp[—QIWZ(x, y) = SI(x, y)ll, (3-13)

In hardware implementation, we will calculate the probability density function
using the bits of a current bit plane. The probability of zero and one will be calculated
using a lookup table for fixed alpha value and binary side information values. Then,
the other lookup table is used to find the log-likelihood ratio shown as Equation 3-14

where P(1) is the probability of 1 and P(0) is the probability of 0.

P(1
L= ln(ﬁ , (3-14)

The hardware of Correlation Noise Modeling and Soft Input Computation is
shown in Fig. 3-28. The Lookup Table 1 is used to get the probability of each bit in a
current bit plane described in Equation 3-13. The Lookup Table 2 is used to get the
log-likelihood ration described in Equation 3-14. Each bit of a current bit plane, Bit, is
inputted to Lookup Table 1. Lookup Table 1 generates the probability of zero and one,
P(0) and P(1). Lookup Table 2 generates the log-likelihood ratio, LLR, according to

the inputted probability of zero and one.

P(0)

53

Lookup
Table 1 P(1)

Bit ——

A

[y

Lookup
Table 2

— LLR

Fig. 3-28. Hardware of Correlation Noise Modeling and Soft Input Computation.

3.7 Reconstruction

The Reconstruction is used to reconstruct the Wyner-Ziv frame by adding each

motion-compensated pixel and each de-quantized residue value. The hardware of the

Reconstruction is shown in Fig. 3-29. The 16 residue values are stored into Registers.

One Motion-Compensated Pixel generated by Motion Compensation is inputted at a

time. The Control decides which Residue Value is outputted to the adder. Each

Reconstructed Pixel is obtained from the output of the adder. An entire reconstructed

Wyner-Ziv frame will be generated by processing one pixel at a time.

Motion-Compensated
Pixel

4x4 Residue
values

Control

Fig. 3-29. Hardware of Reconstruction.

Registers —

Reconstructed

Pixel

54

55

CHAPTER 4
EXPERIMENT RESULTS

In this chapter, we present the experiment results of our proposed distributed
video decoder. First, cell-based design flow will be described. Second, we depict how
to test our design. Third, we show chip implementation result. Finally, we describe the

simulation results.

4.1 Design Flow

The Cell-based Design Flow is shown in Fig. 4-1. First, we use C++ to simulate
the algorithm of our proposed distributed video coding. We implement the hardware
of our design by coding RTL. Next, the results of C++ simulation and simulation of
NC-Verilog will be compared to confirm function correctness. We use Synopsys
Design Compiler to synthesize RTL code into gate-level netlist. Candence Comformal
is used to check logical equivalence. Then, we use Candence SOC Encounter to floor
plane, place, and route. Calibre is used to check DRC (Design Rule Check) and LVS
(Layout Versus Schematic). PrimeTime is used to perform static timing analysis
checking whether there are setup time and hold time violations. Finally, we will do
post-layout simulation. If all the previous steps are passed, we tape out our design.

The testing consideration will be described in next section.

56

\ 4

RTL Simulation
(NC-Verilog)

Function Correctness

Algorithm Simulation v
(C++) Auto Place & Route D
(Cadence SOC Encounter) E
¥ VES
RTL Design

Logical Equivalence
(Cadence Comformal)

YES

DRC & LVS
(Calibre)

YES
YES
YES
v
RTL Synthesis Static Timing Analysis

(Synopsys Design Compiler)

Logical Equivalence
(Cadence Comformal &
NC-Verilog)

(PrimeTime)

YES

Post-layout Simulation
(Nanosim)

YES

Tape Out

Fig. 4-1. Cell-based Design Flow.

4.2 Testing Consideration

In the stage of RTL synthesis, to check whether our chip is manufactured without
any defect, we insert DFT (Design for Testability) circuit to the chip. In our work, we
insert 6 scan chains to achieve a fault coverage of 98.93%. The DFT report is shown

in Fig. 4-2.

57

Uncollapsed Stuck Fault Summary Report

fault class code #faults
Detected DT 2093462
Possibly detected PT 0
Undetectable up 21437
ATPG untestable AU g
Not detected ND 1166
total faults 2116074
test coverage 99 .94%
fault coverage 08.93%

#internal patterns 3590
#basic scan patterns 3590

Fig. 4-2. Uncollapsed Stuck Fault Summary Report.

After chip was taped out, we use CIC93000 testing machine to measure our chip.
The measurement considerations are shown in Fig. 4-3, and the measurement flow is
shown in Fig. 4-4. First, we use the pattern of ATPG (Automatic Test Pattern
Generation) to test whether there is any defect in manufacturing process. In the stage
of ATPG, signal of test_se is 0, test pattern is inputted through test_si, and the result
of test pattern is outputted through test_so. Then, we input a bitstream of test
sequences. If testing of the decoding process is passed, the measurement process is
finished. If testing is failed, we will switch test_mode to a different mode to test each

part of the decoder including AVC intra decoder and LDPCA decoder.

58

data_in

test_si data_out

test_se
test_so

test_mode

Fig. 4-3. Measurement Considerations.

ATPG
\
Decoding
Work No
_<
o
* Y
Switch
Pass Mode to
Find Faults

Fig. 4-4. Measurement Flow.

59

4.3 Chip Implementation Result

The process used in the design of our chip is TSMC 90nm GUTM CMOS. There
are totally 191 1/O pins including 45 power/ground pins and 146 signal pins. The chip
area is 4.67 mm?, and gate count is 690K. The peak frequency of our design is
100MHz. The dynamic power dissipation of our design is 302 mW. The result of
place and route is shown in Fig. 4-5. The specification table is listed in Table 4-1. And

the synthesis result of LDPCA is listed in Table 4-2.

H.264 Intra

Decoder

Side
Information
Creation

Suppon
asioN
uoljep.tio)
anduj 3j05

UoRINIISU0IY

Fig. 4-5. Result of Place and Route.

60

Table 4-1. Specification Table.

Process TSMC 90-nm GUTM
Power Supply 1.0V

Gate Count 690K

Chip Area 4.67 mm?

Frequency 100 MHz

Pins 191

Resolution QCIF@30fps

Power 302 mW

Table 4-2. Synthesis Result of LDPCA.

Process TSMC 90-nm GUTM
Code Length 396 bits
Code Rate 2/66 — 66/66

(support 65 code rates)

Gate Count 364K
Frequency 100 MHz
Power 17.96 mW

4.4 Simulation Results

The RD (Rate Distortion) performance of different test sequences is shown in
following figures. In Fig. 4-6, Fig. 4-7, and Fig. 4-8, we compare the RD performance
of our design and other designs including representative DVC, DISCOVER, H.264
Intra, and H.264 No Motion. The RD Performance of our hardware version is better
than DISCOVER or almost the same with DISCOVER. The difference between

software version and hardware version is on the block length of LDCPA and the

61

simplified soft input computation. In the software version, the block length of LDPCA
is 1584 and the soft input computation is the same with the Hybrid DVC. In the
hardware version, the block length of LDPCA is 396 and the soft input computation is

simplified to using lookup tables.

Coastguard QCIF 15fps

38
37 %
36 o X
35 .
34
Eg 33 o ¥ x
= 32 §<§> 2 o-Software
31 o
% < ;@ O Hardware
a 30 a
59 x - DISCOVER
28 < H.264 Intra
27 = x-H.264 No Motion
26
25
0 100 200 300 400 500 600
Bitrate(kbps)

Fig. 4-6. RD Performance of Coastguard QCIF 15fps.

62

40
39
38
37
36
35

=34

B33

gsz

K3
30
29
28
27
26
25

Foreman QCIF 15fps

A x
0
0O
X ol
P
Xl’[]' f‘
X & s
, SA : o Software
ﬁ’f,x;i O Hardware
o %—DISCOVER
A-H.264 Intra
*x-H.264 No Motion
100 200 300 400 500
Bitrate(kbps)

Fig. 4-7. RD Performance of Foreman QCIF 15fps.

Hall QCIF 15fps

/0
& X X
% X ©o-Software
“D" O-Hardware
/4 x—DISCOVER
o%x AA A-H.264 Intra
A *-H.264 No Motion
100 200 300 400 500

Bitrate(kbps)

Fig. 4-8. RD Performance of Hall QCIF 15fps.

63

The reason that we chose LDPCA with a 396 block length is to save hardware cost.
Though the throughput of an LDPCA of length 1584 is faster than that of an LDPCA
of length 396, the hardware cost of the LDPCA of length 1584 is higher than the
LDPCA of length 396 since the hardware costs of their respective comparing trees are
proportional to the block length of LDPCA. In our work, we chose an LDPCA of
length 396 since it meets the required throughput to decode the test sequences of
QCIF videos in real time. The rate performance of a regular degree-3 LDPCA of

length 396 bits over BSC (Binary Symmetric Channel) is shown in Fig. 4-9.

0.9 7 /
0.8 7 7

0.7 7 s

0.6 < -

Rate

0.5 // 7

0.4
~ P
0.3

0.2 7
0.1 7

0 01 02 03 04 05 06 07 08 09 1
H(X]Y)

Fig. 4-9. Rate Performance of Regular Degree-3 LDPCA of Length 396.

64

65

CHAPTER 5
CONCLUSION

In this Thesis, we implemented a distributed video decoder which can decode
video sequences in real time. We presented the architecture of a distributed video
codec which RD performance is better than the presentative distributed video codec,
DISCOVER. The crucial challenge for a real-time distributed video decoder is that
the computing complexities of side information creation and LDPCA are high. Our
approach is to design a hardware of distributed video decoder, which is not only
focused on improving the architectures of LDPCA and side information creation but
also considers the trade-off between hardware cost and performance.

A prototype of our proposed DVC decoder was implemented in TSMC 90nm
GUTM process technology and fabricated through CIC. Our decoder can meet the
requirement of decoding a QCIF video with a speed of 30fps. The maximum
operation frequency of our design in the post-layout stage is 100MHz. The chip area

is 4.67 mm?, and gate count is 690K.

66

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

67

REFERENCE

Information Technology—Coding of Audio-Visual Objects—Part 10: Advanced
Video Coding (H.264), ISO/IEC JTC 1/SC 29 14496-10, 2004.

B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed Video
Coding,” Proc. IEEE, vol.93, no.1, pp. 71-83, Jan. 2005.

D. Slepian and J. K. Wolf, "Noiseless Coding of Correlated Information
Sources," IEEE Trans. on Information Theory, vol. 19, no. 4, pp. 471-480, Jul.
1973.

D. Varodayan, A. Aaron, and B. Girod, "Rate-Adaptive Codes for Distributed
Source Coding,” EURASIP Signal Processing Journal, Special Section on
Distributed Source Coding, vol. 86, no. 11, pp. 3123-3130, Nov. 2006.

DISCOVER DVC Final Results: http://www.img.Ix.it.pt/~discover/home.html.

A. Aaron, R. Zhang, and B. Girod, "Wyner-Ziv Coding of Motion Video,"
Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, vol.1, pp.
240-244, Nov. 2002.

A. Aaron, S. Rane, E. Setton, and B. Girod, “Transform-Domain Wyner—Ziv
Codec for Video,” Proc. of Society of Photo-Optical Instrumentation Engineers
— Visual Communications and Image Processing, San Jose, CA, USA, Jan. 2004.

C.-C. Chiu, S.-Y. Chien, C.-H. Lee, V.S. Somayazulu, and Y.-K. Chen, "Hybrid
Distributed Video Coding with Frame Level Coding Mode Selection,” IEEE
International Conference on Image Processing (ICIP), pp. 1561-1564, Oct.
2012.

J. Ascenso, C. Brites, F. Pereira, "Content Adaptive Wyner-ZIV Video Coding
Driven by Motion Activity,” IEEE International Conference on Image
Processing, pp. 605-608, Oct. 2006.

[10] L. Alparone, M. Barni, F. Bartolini, and V. Cappellini, "Adaptively Weighted

Vector-Median Filters for Motion-Fields Smoothing,” IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol.4, pp. 2267-2270,

68
May 1996.

[11] C. Brites, J. Ascenso, and F. Pereira, "Studying Temporal Correlation Noise
Modeling for Pixel Based Wyner-Ziv Video Coding,” IEEE International
Conference on Image Processing, pp.273-276, Oct. 2006.

[12] C. Brites and F. Pereira, "Correlation Noise Modeling for Efficient Pixel and
Transform Domain Wyner—Ziv Video Coding,"” IEEE Trans. on Circuits and
Systems for Video Technology, vol.18, no.9, pp.1177-1190, Sep. 2008.

[13] R. Martins, C. Brites, J. Ascenso, and F. Pereira, "Refining Side Information for
Improved Transform Domain Wyner-Ziv Video Coding,"” IEEE Trans. on
Circuits and Systems for Video Technology, vol.19, no.9, pp.1327-1341, Sep.
2009.

[14] R. G. Gallager, “Low Density Parity Check Codes,” IRE Trans. Information
Theory, vol. IT-8, no. 1, pp. 21-28, Jan. 1962.

[15] R. M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans.
Information Theory, vol. IT-27, no.5, pp. 533-547, Sep. 1981.

[16] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. L. Urbanke, “On the Design
of Low-Density Party-Check Codes within 0.0045 dB of the Shannon Limit,”
IEEE Communication Letters, vol. 5, no. 2, pp. 58-60, Feb. 2001.

[17] A. Liveris, Z. Xiong, and C. Georghiades, “Compression of Binary Sources with
Side Information at the Decoder using LDPC Codes,” IEEE Communications
Letters, vol. 6, n0.10, pp.440-442, Oct. 2002.

[18] M. P. C. Fossorier, M. Mihaljevi’c, and H. Imai, “Reduced Complexity Iterative
Decoding of Low-Density Parity Check Codes Based on Belief Propagation,”
IEEE Trans. Communications, vol. 47, no.5, pp.673-680, May 1999.

[19] C. L. Wey, M. D. Shieh, and S. Y. Lin, “Algorithms of Finding the First Two
Minimum Values and their Hardware Implementation,” IEEE Trans. on Circuits
and Systems-I: Regular Papers, val. 55, no. 11, pp. 3430-3437, Dec. 2008.

[20] L. Alparone, M. Barni, F. Bartolini, and V. Cappellini, "Adaptively Weighted
Vector-Median Filters for Motion-Fields Smoothing,” IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol.4, pp. 2267-2270,
May 1996.

69

[21] O. Tasdizen and I. Hamzaoglu, "Computation Reduction Techniques for Vector
Median Filtering and their Hardware Implementation,” The 13th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools (DSD),
pp.731-736, Sep. 2010.

[22] H.-C. Chang, C.-C. Lin, and J.-I. Guo, "A Novel Low-Cost High-Performance
VLSI Architecture for MPEG-4 AVC/H.264 CAVLC Decoding,” IEEE
International Symposium on Circuits and Systems, vol.6, pp. 6110-6113, May
2005.

[23] K.-H. Chen, J.-l. Guo, and J.-S. Wang, "A High-Performance Direct 2-D
Transform Coding IP Design for MPEG-4AVC/H.264," IEEE Trans. on Circuits
and Systems for Video Technology, vol.16, no.4, pp. 472-483, April 2006.

