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Abstract

We present an ab initio method to study the sub-cycle dynamics of hydrogen, helium
and neon atoms in near-infrared(NIR) laser fields subject to excitation by a single ex-
treme ultraviolet attosecond pulse(SAP). We extended the self-interaction-free time-
dependent density functional theory(TD-KLI-SIC) to describe multi-electron system
and solve the time-dependent Kohn-Sham equations by time-dependent generalized
pseudospectral(TDGPS) method. We calculated the photon emission spectra and
population of several excited states as the function of the time delay between the
NIR pulse and SAP. The phenomena can be explain by two-photon absorption.

keyword: attosecond, time-dependent density functional theory, subcycle dynamics
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Chapter 1

Introduction

In this chapter, we introduce the basic concept about attosecond physics and the

purpose of our work.

1.1 Attosecond Physics

Attosecond(as,107!® second) science and technology has been popular topic in recent
year since the first generation of attoscecond pulse in experiments|4, 5|. This tech-
nique allow us to study the electronic processes in atoms, molecules and surfaces at
the attosecond timescales. There are two main progresses in attosecond science. The
first one is that development of attosecond source. We want to generate more intense
and shorter attosecond pulse. In our group, we focus on High-Order Harmonic gen-
eration which can generate attosecond pulse. The second one is that application of
attosecond pulse. There are many experiments on which they use attosecond pulse
to discover ultra-fast the dynamic of electron|6, 7, 8, 9, 10, 11, 12|.The complete

discussion in attosecond physics can be found in [1]



1.2 Real-time observation with attosecond technol-

0ogy

In Fig. 1.1, this defines the characteristic time scale for motion of atoms in molecules
to hundreds of femtosecond. The motion of individual electrons in semiconductor
nanostructures, molecular orbitals, and the inner shells of atoms occurs from ten
femtosecond to one attosecond. Motion of nuclei is even faster, on a zeptosecond
time scale(1072! second). The main application of attosecond pules is to observe

ultrafast process in attosecond time scales.
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Figure 1.1: Characteristic length and time scales for structure and dynamics.|1]

Real-time observation of ultrafast motion requires the ability to trigger and probe
the process under scrutiny. Dynamical information is provided by an observable
varying as a function of the delay between triggering and probing events in a pump-
probe measurement in Fig. 1.2, where pump pulse triggers the process and probe
pulse images the process at some delay time. This quantity varies on the time

scale at which the motion occurs, affording the observer real-time access to the



process. If the observable can reveal the information on location of the moving
particles, a series of freeze-frame pump-probe images allows retrieval of the ultrafast
motion. Real-time observation and control of atomic motion relies on femtosecond
laser techniques, using cycle-averaged quantities such as field amplitude and carrier
frequency for triggering, probing and controlling dynamics. Attosecond technology
allow us to improve the resolution of probing and control by orders of magnitude

with sub-fs XUV pulse.

Photon or electron

Pump pulse energy or momentum
Sample distribution
Detector
Probe pulse = D

PG a8
L@ A (O

Figure 1.2: Ilustration of pump-probe (time-resolved) spectroscopy.|1]

1.3 Sub-cycle AC stark shift

Stark shift is the shift of atomic energy level in a external field, which can be
static(DC) or dynamic(AC). With the existing theory[13], when the monochromatic
field with wy, far from atomic resonance, the AC stark shift is equivalent to the
quadratic DC Stark shift. The energy shift is proportional to the cycle average of
the laser field’s square:

p By = =20l ¢ gy - _Celen)ull] )

where e(t) = ggcos(wrt) is the laser electric field. The polarizability «, =

Wraldral? . . . .
Yok 4a M depends on both the dipole matrix elements dg, coupling a with
Wie — WL



other states k and the detuning of the laser frequency wy. For highly excited states,
we have

1
2

lim o (wp) = — (1.2)

a—00 wL

which leads to the well-known upshift of ionization threshold by the ponderomotive
2

energy: U, =

UJ

Let |n) be the eigenstates of the time-independent Hamiltonian Hy, such that
Hy|n) = E%n)(n=1,2,...). (1.3)

The energy of |n) under the external field e(t) = () cos(wrt), based on second-

order time-dependent perturbation theory, is given by

E,(t) = EY +&(t) ,m—zZ/ dt'e(t)e(t') e “rn |, )2 (1.4)

k#n

_ 1t
Supposed that laser pulse envelop is €y(t) = €, ™ with duration 7, the integra-

tion in Eq. 1.4 can be simplified for multicycle pulses:

1 | | n
SEn(t) = 0lt)? Z[M cos(wpt) — “’;'—’“’ sin(2wyt)] =

fm, Wk T WL Wi, — W (1.5)
1
Eeo(t)2[o¢n cos?(wpt) — iy, sin(2wpt)].
where v, = >, 4n ‘:ﬂ ’“”‘ specifies the subcycle changes in the population of n as

it couples to k.

However, the average-cycle shift can be verified by using long-pulse( ns) but lacked
time resolution. Recently, pump-probe measurements using probe laser pulses longer
than the oscillation period of the Stark field revealed Stark shifts with time resolution
10 fs[14], but only the average-cycle shift can be measured.

To resolve the subcycle ac stark shift, we probe the atoms with single extreme
ultraviolet attosecond pulse(SAP) with duration nearly 20 times smaller than the
NIR Stark laser period. When the atom absorb an XUV photon, electrons can

be moved to one of the excited states or to the continuum states because the wide



frequencies range of XUV pulse. When the NIR field act on the electron, the effects of
the NIR field can be observed through the changes in the photo emission spectra and
population of excited states. In most experiments, they use the transient absorption
technique to observe the subcycle oscillation|15, 16, 17, 18]. But for our work, we

calculate the photo emission spectra and observe the similar features.

1.4 Purpose of this work

We give the main targets of this work.

1.We perform 3D calculation of the rare gas atoms (H,He,Ne) in the NIR field
subject to excitation by SAP. We have calculated the photon emission spectra and
the population of excited states with respect to time delay between the SAP and
NIR fields and then we found the subcycle oscillation.

2.We include that multi-electron correlation effect by using time dependent den-
sity functioanl theory (TDDFT). Unlike other theory which only makes single-active-
electron(SAE) model|6, 8, 9, 15, 17, 19] or time independent model potential|20].



Chapter 2

Theory and Method

In this chapter, we introduce the numerical method for solving PDE and the theory
for many-electron system. In addition, we also give simple introduction about graphic

processing unit(GPU), on which we can accelerate our calculations.

2.1 Time-dependent Generalized Pseudospectral Method

There are many numerical methods for solving PDE, finite difference(FD), finite
element(FE), and spectral method|2, 21, 22]. GPS is under the category of spectral
method. Spectral method is more accurate and efficient than FD and FE because
it needs less grid points and converges faster. Moreover, the grid points of GPS
are more denser near the origin, so we can describe Coulomb potential better than

equal-spacing grid points.

2.1.1 The eigenvalues problem

The basic idea of spectral method is to approximate function f(z) by order N poly-

nomial with orthogonal basis ¢,(z)

Alw) = )" aj0,(x) (2.



We need the coefficient a; for defining the function, so it requires the values of

function at NV + 1 grid points z;.

aj = sz’A(wz)@ (:) (2.2)

The approximation of function can be expressed by

N

Alx) =) Aly)g;(x) (2.3)

=0

where g;(x) is the cardinal function given by

g;i(x) = ZWiA($i)¢j(x) (2.4)

With the definition of the cardinal function and the collocation points{z;}, we

can obtain the differential operator matrix

dci" )=z, ZA xﬂ ) |o=a; = Z(DN)ijA(%) (2.5)

j=0

The value of weight and the form of the cardinal function and the differential
operator matrix are depend on basis function and grid points. How to choose the
basis function and grid points is dependent on the problems, mainly the boundary

condition and domain. We list the basis function in Fig 2.1



Periodic Non-Periodic
Fourier Chebyshev
or Legendre
6 (0,2 x] x €[-1,1]
Semi-Infinite Infinite

Rational Cheby. TL | Rational Cheby. TB
or Laguerre or Hermite or Sinc
> | >

XE[O,OC] XE[—OC,OO]

Figure 2.1: The basis function in correspond to domain.Reproduced from|2].

In this work, we choose the Legendre polynomials. And then we choose the grid
points from different boundary condition|21].
Legendre-Gauss
z;j(j=0,...,N)zeros of Py1;
2
(1 = 25) [Py ()]

wj: 2,j20,...,N.

Legendre-Gauss-Radau

B 2
T (N +1)2
1 — Ty .
Wi = y — 17...,N.
T (VPP ()P
Legendre-Gauss-Lobatto
ro=—1l,oy =1,2;(j =1,..., N — 1)zeros of Py_;

8



2
T NN + D[P ()P

We use Legendre-Gauss-Lobatto grid points for the radical coordinate and Legendre-

j=0,...,N.

Gauss grid points for the angular coordinate.

For atomic or molecule calculation including Coulomb potential, the general prob-
lem is the singularity at » = 0 and the long-range potential. We truncates the
semi-infinite (0,00) to the finite interval [rpin, Tmaez| to avoid the problem, but it
needs a lot of grid points for convergence and accuracy and cost much time for time
propagation.

The generalized pseudospectral method offers us the solution of above problem.
This method can be used in time-dependent problem. Follow the discussion, we use
nonlinear mapping function|23, 24| to map the [—1, 1] t0 [Fmin, Tmaz)

1+2x

_ 2.6
l—z+4+« ( )

r(z) =1rm

where 7y, and o = 22— is the mapping parameters. Here, we begin with the time-

independent Schrodinger equation for Hydrogen atom.

O 8,0) =Y Onlm“”"’ Yim(6, 6) (2.7)
n,Im
A pu(r) = (~5V2 4 Vilr)gulr) = Bupu(r) (2.9
where
1 I(l+1
Vulr) = L LD (2.9

Applying the nonlinear mapping for Eq. 2.6.

1, 1 d& "(z)d

-3 - = — = 2.1
S~ e @) T Vere) = Belr()  (210)
This equation is not symmetrical, so we choose p(r = /1 (z)f(x
1 1 d

2 () da? (z) + Vin(2)r'(z) f(x) + V(2)r' () f(z) = Er'(z) f(z) (2.11)



where
3(7,//)2 ) W
8’4

For special mapping Eq. 2.6, V,,(z) = 0. With a lot of effort, we finally translate the

Vm(x) =

(2.12)

problem into the symmetric eigenvalue problem.
1
———————A(z) + V(2)A(z) = FA(x) (2.13)

where
A(z) =1'(z)f(z) = /' (z)p() (2.14)

We throw Eq. 2.3 into Eq. 2.13

1 1 AdeQjCL’
1 Z() 9;(x)

V()Y Aly)gi(wi) = E Z A(z;)g;(x:)  (2.15)

(s (- 2
27 (x;) = r'(x;) Pz s - :
where[24]
Py (x;)
g] (xl) dz] PN(xj) ( : 6)
and
2 R .
A = ——"——[i # j.(ij) # (ON), (i) # (NO)] (2.17)
(i — ;)
N(N+1)-2
don = 3o = % (2.18)
N(N+1),. ,
d]] 3(1 _ $j)2[] 7& O>] 7& ] ( . 9)
N(N +1)[N(N +1)—2
02 = oy = YW TVINW A1) = 2] (2.20)
24
And the cardinal function has the property
9;(xi) = b (2.21)
and choose
2 A(z:)
A = 2.22
\/(N + 1)(N 4+ 2) Pyy1(x;) (2:22)

10



The whole equation is simplified to matrix form

> [(Da)ij + V(2:)6;5]A; = EA; (2.23)
J
The final wave function on the collection points is
A

ry/wir' (z;)

where the w; is the weight of the cardinal function. And then we can check the wave

A A
<Yl >= /—ZTQdT

7’2(,02'7"/(1’1‘)

U(r(z)) = (2.24)

function normalized.

Z AZA: 2 dr

= —r*—uw;

— 2w’ (x;)  dx (2.25)
- YA

Finally, we solve the Schrodinger equation and get the eigenvalues and eigenfunc-

tions of the system. Moreover, there are something we should be careful. The real

wave function is in Eq. 2.24 although the summation of A;Af is normalized by most

eigensolver. It’s convenient to see A; as the wave function numerically because some

variables are eliminated by integral elements in Eq. 2.25.

2.1.2 Time propagation

The next step is to do time propagation by second-order split operator technique[25]

in spherical coordinates:

o(r,t + 0t) ~ exp(—iHodt/2) exp(—iV (r, 0, t + 6t)5t) exp(—iHobt/2)p(r, t) + O(5t%)
(2.26)
The first term and third term is from time independent Hamiltonian. The the second

term is the time dependent potential, namely the laser field.

11



Y(r, 1)

Figure 2.2: Data distribution of wave function. N; and N, is the total number of

partial wave and the grid points of wave function.

We define the initial wave function for hydrogen.
Y(rp,l=1...N;—1)=0

(2.27)

where the 7 is the index of radical part of the wave function and [ is the partial
wave number from angular quantum number. N; and N, is the total number of
partial wave and the grid points of wave function. In general, we set N; = 32 and
N, = 256 for the hydrogen atom.
We define the exp(—iH°5t/2) by the eigenvalues and the eigenfunctions of Hamilto-

nian.

Si(1) = < rilln,1 > exp(—iEydt/2) < n,llr;,1 > (2.28)
where the eigenfunctions are < r;,l|n,l > and eigenvalues are F,;.

12



= 3) Yl =3)
1=2) Yt 1 =2)

by LF 1)

Figure 2.3: Illustration of matrix-vector multiplication.

We perform the operationexp(—iH%3t/2)1(r,0)in Fig. 2.1.2, composed of matrix-
vector multiplications for each [. The process can be paralleled by openmp or other
parallel methods.

Before we do exp(—iV(r,60,t)dt), we need to transform the representation(r,l) to

(r,0). The 6; is the Gaussion-Legendre points we mention before.

<ri79j’w >:Z <Ti79j|ri7l >< 7%”1# > (229)
!
The Eq. 2.29 can be illustrated in Fig. 2.1.2.
exp(—iV (r;, 8;,t)0t)(r;, 6;) (2.30)

And we transform the representation (r,#) back to (r,[) before we perform the oper-
ation ea:p(—zf] 0§t/2) again. To prevent reflection, the wave function are multiplied

by mask function after each time step. We partition our finite spatial grid into an

13



(i, D)

Figure 2.4: Ilustration of the transformation in Eq. 2.29
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inner region, which is large enough to completely contain the finite system of interest

, and a border region, where outgoing flux is to be absorbed.

Absorbing y Absorbing
region Inner region region
/ m(x)=1 \
> X
_x O xmax

max

Figure 2.5: Mask function for one dimensional spatial grid with absorbing boundary

condition. Reproduced from|3].

Throughout all processes above, we get the next time step wave function and we

can calculate the observables.
O(t) =< ¢(r,1)|Ol(r,t) > (2.31)

O(t) is the observables,like number of electron,electron density, dipole moment in
length form and in acceleration form. Finally, we don’t need to save the time depen-

dent wave function.
W(r, 1) =(r, 1, dt) (2.32)

where we set t as the initial wave function and then to get 26t,. .., % i

The TDGPS method can be applied to many kinds of system.

2.2 Time-Dependent Density Functional Theory

2.2.1 Density Functional Theory and Kohn-Sham scheme

Density functional theory is the most popular method for many-electron system,
atoms, molecules, and solid s. In 1964, Hohenberg and Sham develop the basic
theorem of density functional theory|26]. We give simple concept about the theorem.

First theorem, we can represent the energy as a functional of the electron density

15



for given potential. We don’t need to use wave functionW(ry,7s,...,7y), which
has 3N variables in N-electron system, but use electron densitypr), which has only 3
variables in N-electron system. That avoid the main computational difficulty. Second
theorem, The energy functional is minimized by the ground state density. We can find
the ground state potential by variantional principle. In Hohenberg-Kohn theorem, if
we know the exact form of the universe functional, we can find the ground state by
minimizing the functional. But we don’t know the exact functional and systematic
way to find such functional. In 1965, Kohn and Sham develop systematic way to
approximate the functional and find the ground state density.

Kohn and Sham develop another method|27] for the functional, by using non-
interacting system as auxiliary system. Therefore, the ground-state wave function is

the single slater-determinant.

U=

1
det o 2.33
m [901902 (PN] ( )

And the density is

o) = 323 Il = palr) + pstr) 234

(e

The energy functional is

Elpa; pg] = Tslp] + J[p] + Exclpa, ps] + / Veart (1) p(r)d’r (2.35)

Ts[p] is the non-interacting kinetic energy functional, the J[p] is the Hartree en-
ergy functional and the F,.[p] is called exchange-correlation energy functional. The
exchange energy is from the Pauli-expulsion and the correlation is from the ap-
proximation of single slater-determinant. The complexity of system is inside the
exchange-correlation functional. And finally we take the density derivative of the
energy functional, we get the Schrodinger-like equation

Hicsin(r) = [-5 V% + tano (") (r) = ciotn(r),
(2.36)

i=1,2,...,N,,

16



where v.¢, is the effective KS potential and o is the spin index. The effective

potential is
6J1p]  8Euclpa pe]

Vepfo = Vet (1) + (2.37)
1 ' 0po (1) o (1)
where v,.,(r) is the exchange-correlation potential
5EZBC )
vrey(r) = EzclPas 23] (2.38)
5p0(r>

The KS equations are solved self-consistently. One guesses the initial density at
first and then solves the KS equation to get the new density from new orbitals until

the convergence.

2.2.2 Optimized Effective Potential method and Krieger-Li-

Iafrate approximation

The self-interaction is from the classical Coulomb repulsion. The effect of self-
interaction should be cancelled by exchange-correlation functional, but for most of
exchange-correlation functionals, the self-interaction correction is not consider. One
of the most important error is the incorrect long-range tail of Kohn-Sham potential,
which will affect the ionization energy. Therefore, the self-interaction correction is
crucial for excited states.

Perdew and Zunger proposed the self-interaction correction(SIC)[28| by giving

the approximate exchange-correlation energy functional E,.[pa, psl,

No

E!Cpas psl = Eaclpas ps) = > Y AJ1piol + Euclpio, 01} (2.39)

o =1
where p;, is the one-electron density of the ith KS spin orbital.
However, the SIC energy functional is explicit orbital-dependence, so for each electron
orbital they have different potentials. That cause each orbital to be nonorthogonal

and be complicated.
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Another approach is the optimized effective potential method[29, 30| .In this
approach, one solves the set of one-electron equations, similar to the KS equations

in Eq. 2.36.

R 1
HOEP%U(T‘) = [—§V2 + USEP(T)]%U(T) = €w<ﬂia(7’)a

i=1,2,...,N,

(2.40)

The optimized effective potential v9F (1) is obtained by the orbitals {;, } in Eq. 2.40

which minimized the energy functional E{p;q, ¢;s],

0Eqzc[{pjo}]
SvOEP (1)

Eq. 2.41 can be written as, using chain rule for functional derivative,

—0 (2.41)

o 4 590 o( )
gy OB [ 1] 0 e = 9.42
Z/ 5050 (1) VOEP (1) +cc.=0 (2.42)

Eq. 2.42 leads to an integral equation that is complicated. Krieger, Li and
lafrate|31, 32, 33| make an approximate procedure to simplify the original OEP in-
tegral equations into the set of linear equations. Although the KLI procedure can’t
reach the exact exchange functional, it reduces the computational difficulty and the

its result is pretty close to OEP method.

2.2.3 KLI-SIC method

The OEP method and KLI approximation uses the exchange part of the density

functional contains a Hartree-Fock-like nonlocal functional.

Eexact{ jg} Z Z /d3 /d3 /pr QO]U|§ Eij(T%Oja(r) (2.43)

o i,j=1

Even though Eq. 2.43 provides more accurate exchange potential, it’s computa-
tionally more expensive than the traditional DFT functional with only local func-

tional. Therefore,we present the extension of KLI procedures to the SIC term|34, 35]
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in Eq. 2.39. This new KLI-SIC procedure can speed up the static DFT calcula-
tion and time dependent DFT calculation. This KLI-SIC procedure make the self-
interaction-free effective potential orbital-independent. In other word, this avoid the
problems with respect to nonorthogonal spin-orbitals. And the KLI-SIC procedure
give the optimized effective potential with the correct long-range behavior(—1/7)in

Fig. 2.6 and surprisingly improvement of ionization energy and excited states.

0 0 ‘
T T T T " LSDAKLI-SIC —— LSDAKLI-SIC —
LSDA s -
1t T i
2+ / A | /
.3 . / | |
~ =
] / 3 |
g 4 / : |
N / 3
= 5r ) : |
% % -0
> 6 : |
t L o
_7 L “‘
| -14
| |
: % -16 {L
-10 I I I | | | I -18 | ‘ ‘ | | |
0 1 2 3 4 5 6 7 8 0 1 2 3 4 . - :

r(au.) r(au.)

Figure 2.6: The effective potential rV, s with the LSDA and LSDA-KLI-SIC in neon
and argon(left to right).

Define the total energy functional with SIC to be

Z Z{J pw + E:cc pwv 0]}

where E9FP[{p;a, ¢;s}] is normal energy functional in Eq. 2.35.Following the OEP-

EOEP

SiC

EP P {pias pjs}] — (2.44)

[{©ias @is}] =

KLI procedure, one finds that

0 Eye[pas ps]
OEP zc|Fas 5
'USIC,U( = emt |T_T,| 5/)0( ) +USIC,0(T’), (2.45)
where
Vsic,e = Z ,Ow + USICJ @ia}a (246)
)Ozo B 5Emc[pia7 0] (2 47)
r— T’\ 0pia(r) '
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and
Ts10.0 =< Pio|Vs100(T)|@ic > (2.48)
Vie =< i |Vie(T)|@ic > (2.49)
The value of the Ug;¢, is unknown, but we can solve it through linear equations

Ns—1

D Gio — Mjio) Wiy — Tia) = 05y — Tjg (2.50)
=1
where
M;ji o = / md37" (2.51)
Po
and
= Do (1) )0 (1)
Uiy =< Qig| Y == pio > (2.52)
jzl pa(r)

The highest occupied orbital dominates the potential at the long-range. We choose

Elszlg‘jj = vy, to make sure the potential has correct asymptotic behavior.

2.2.4 TD-KLI-SIC method

We extend the KLI-SIC method into the time dependent system. The basic theorem
of time dependent density functional theory is from Runge and Gross|36], mainly the
similar structure of HK theorem and KS scheme. We’ll give the main theorems of
TDDFT.More detail proofs and discussions can be found in.

First theorem, there is a one-to-one correspondence between time dependent den-
sity and time dependent potential for any fixed initial states. In general, potential,
hamiltonian and wave function is the functional of the time dependent density. This
is the basic existence theorem of TDDFT.

Second theorem, we define the action A of the many-body system as the functional

of many-body wave function,

Al = [ at < wiolidy ~ HOWG) > (2.53)
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If the variation of the action is

to

b < (o) o~ )50 >
(2.54)

Al = [ ar <ol ~ oo > + [

t1 t1

We do integration by parts in the second term:

t2

i) = [t <ov @S- > + [ @< (2RO > +i < 0w 5|

t1 t1 at
(2.55)

The third term is zero because of the boundary condition on ¢; and t5. The 0 A[¢] = 0
leads to the time dependent Schrodinger equation (i2 — H(t))p(t) = 0. With the
first theorem, the wave function is the functional of density, so we define
to o .
Ap) = [ dt < elpl®liz; - HOIpl(0) > (2.56)

t1

And we rewrite the Eq. 2.56 as

Alp] = Aolp] — /t it / Erp(r. o(r, 1) (2.57)

The action Ay is the universal functional from kinetic and electron-electron interac-

tion term. The time dependent density can be solved from the variational principle.

3 A[p]
op(r,t)

Eq. 2.58 leads to the set of one-electron time dependent Schrodinger-like equation(TD

=0 (2.58)

Kohn-Sham equation).
1, 0
(_§V + Ueff,o(r7 t))(pia(T, t) = la%‘o—(ra t) (259)

where the effective potential is

p(?",t) dr’ + 5Ax6[p]

Vess(r,t) = v(r,t) + ] Sp(r 1)

(2.60)

The last term is the time dependent exchange-correlation potential.
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The OEP method is also available in the time dependent system[37].

Agele]
v E(r, )]

We present the TD-KLI-SIC method with adiabatic approximation[38]. The action

(2.61)

is defined as

to
AS1C — / AEES o]yt (2.62)

t1
The adiabatic approximation means that the system is only dependent on instant

time. The derivative of the action AS¢ leads to the time dependent potential,

E
USIC(T, t) _ J xc[poupﬁ]

o1t 2.63

ze,o 5PU(T7 t) + vsic, (’I" ) ( )
where

o T,t — —
wsrcalr ) = 30 20 0 (0) 4 T, (0 - Tl (200
Pic (T/) t) 3 7 5Ezc [Pim 0]
(1) = — [ DY) gayr  OZwelPio, ) 2.65
Vie (7,1 |r — /| " dpio(r,t) ( )

We solve the vgo o (r,t) with the same procedures as before.

Finally, we solve the TDKS Eq. 2.60 with TDGPS method. We define HO as
- 1 A
HO = —§V2 — — + Ua,eff<r7 0) (266)
r

And

V(r,t) = v[ploesr(r,t) — Voers(r,0) (2.67)
Therefore, we have to solve the static Kohn-Sham equation by the self-consistency.

And we follow the TDGPS method that we discuss before to propagate the wave

function.

2.3 Implement of numerical methods on graphics

processing unit

In this section, I'll give simple introduction about GPU and how to implement

TDGPS on GPU. I recommend this book for beginner|39].
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2.3.1 GPU architecture

Fig. 2.8 shows the architecture of the CUDA-capable graphic processing unit(GPU),
which is composed of many streaming multiprocessors(SMs). CUDA is the abbre-
viation of compute unified device architecture developed by NVIDIA. CUDA is the
hardware and software architecture for the programmers who can develop and ex-
ecute the programs in C, C++, Fortran and other languages. The programmer
organizes the threads in blocks and grids of blocks in the program, which is called
kernel, compile and execute. The programmer don’t worry about how the GPU ex-
ecutes the threads and only focus on how to organize the threads. When executing
a kernel, the machine will distribute the threads to SMs in the blocks. And for each
SMs, the threads in the same block will be distribute to stream processors(SPs) in
a SM in Fig. 2.7. In the Tesla K20, there are 13 SMs and 192 SPs in single SM. In
general, a group of 32 threads forms a warp to hide the latency, so the threads in a
warp was executed by the same SM. If threads are not organized well, the perfor-
mance of the GPU would be bad. Therefore, we need to know the architecture in

order to exploit the the power from GPU.

TPC TPC TPC TPC

i

TPC TPC TPC TPC
[ [

il il |
Figure 2.7: GPU architecture.
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Streaming
Multiprocessor (SM)

Figure 2.8: SM architecture.

GPU has several memory spaces, mainly global, shared, register. The memory is
crucial for speeding up the programs. The register memory is for each thread. It’s
very small, of scale of ten bytes but the fastest. The shared memory is for each block,
so the threads in the same block share the shared memory which is of the scale of
kilo-bytes. The global memory is of the scale of giga-bytes and it can be accessed by
any thread but it’s slower than shared memory and register memory. Even though
the global memory is not faster, it’s still far faster than CPU memory. Among all
the memory access, the slowest one is the communication between CPU and GPU,

so we minimize data transferring between them.
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Per-thread local
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Figure 2.9: GPU Memory.
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2.3.2 Implementation on GPU

Algorithm 1 pseudocode for TDGPS on GPU
Input: 9 (r,0),exp(—iHdt/2),Grid points(r;,6;),0t

Output: O(t)(Observables in each time step)
1: Allocate and Transfer GPU device memory for (r,t),exp(—iH%3t/2),Grid

points(r;, 0;)
2: fort =0tot=1t,,, do

3: Operation ¥ (r,t) = exp(—iH"dt/2)1(r, 0)
4: Operation (7, t) = exp(—iV (r, 0, t)dt)y (r, t)
5: Operation ¥(r, §t) = exp(—iH 0t /2)1y(r, t)

)
6: Operation < 7, 5t)|@|w(r, at) >
7 w(ra O) = ¢(T7 5t)

8: end for

9: Transfer O(t) from GPU to CPU

Here we show the pseudocode for TDGPS on GPU. Because we solve Schrédinger
equation at only one time, we can do that on CPU. Next step is to allocate and
transfer GPU device memory for wave functions, operators and grid points. This is
a basic and important programming technique. Just like preparing ingredients for the
cooking. The crucial part is to perform time propagation on GPU. Fortunately, we
use the CUBLAS library to perform matrix-matrix and matrix-vector multiplications
and it really reduces the difficulty of programming. But we still have to program
some parts which the CUBLAS can’t include. Finally, we transfer data from GPU to
CPU and print the results. For TDDFT, we solve the static Kohn-Sham equations
on CPU because we do that only one time. And in the each time propagation, we
have to calculate the effective potential which is the functional of the time dependent

density.
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2.3.3 Result

60.030 221.487 3.69
Ne 210.561 781.637 3.71
Ar 350.625 1282.828 3.69

Figure 2.10: Runtime of the TDGPS and TD-KLI-SIC on one GPU and 16-cores
CPU with different atoms. (nvidia Kepler K20(GPU) and Intel(R) Xeon(R) CPU
E5-2690 2.9GHz(16 cores CPU))

Here we show that we speed up our program on GPU. We use the intel mkl library and
openmp on multi-core CPU and use the CUBLAS library and parallel the programs
on GPU. In our workstation, there are four GPU cards and we can also execute all
of these cards at the same time. But I want to say there are some limitations on
GPU. There only 5 GB on each GPU card, so we can’t put the data more than 5
GB on single GPU card. Even for four cards, the maximum memory is still only 20
GB which is not large enough for some AMO problems with thousands grid points.

How to reduce the data on time propagation is the main question in our research.
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Chapter 3

Result and Discussion

In this chapter, we show the result of the calculation and give explanations of the

phenomena.

3.1 Hydrogen

Hydrogen atoms is the simplest system in all atoms. We don’t need to use any
approximations about multi-electron effect(only one electron).

We solve the time-dependent SchrAtdinger equation by TDGPS method.

0 p(r, 1) = [~V — v D (r, ) (3.1)

The laser fields are polarized along z-axis:
Vext (1, 1) = —2z[ex (t) + e (¢)] (3.2)

The SAP field can be defined as follow:

ex(t) = Fy exp(—2 1“(2)%‘ ) cos(wx(t — ta)) (3.3)

Here, Fx is the peak field strength of the SAP, 7x = 140as is its full width at

half maximum(FWHM), and wyx = 13.6 €V is its central frequency(here we choose

the laser frequency as the ionization energy of 1s orbital because we want to excite
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atoms). The SAP peak intensity is 1 x 10'°1W/cm?. The parameter t4 represents
the time delay between the NIR and SAP; the negative time delay refers to the SAP
arriving first. The NIR field has the form:

21n(2)t?
er(t) = Fp, exp(—%) cos(wrt) (3.4)
L
Here, F7, is the peak field of the NIR pulse, 7, fs is its FWHM, and wy, is the central
frequency of the NIR field(here we choose the laser wavelength as 800 nm |w; = 1.55

e.V] and 656 nm |w;, = 1.89 e.V]). The NIR laser peak intensity is 1 x 102 /cm?.

0.006 T

T T T T T T 6e-05
SAP ——
NIR
0.004 —
Delay
0.002 + B
i
3 ‘! 3
S I S
= 0— ] 0 =
\ETC o
Z g
-0.002 —
-0.004 —
-0.006 L L L L L L L -6e-05
-20 -15 -10 -5 0 5 10 15 20
Time (fs)

Figure 3.1: Hlustration of SAP and NIR with time delay -5 fs.

After the time-propagation procedure, the dipole moment and the dipole accel-

eration can be expressed as follow:

d(t) = (p(r,t)|rle(r,t)) (3.5)

lt) = (o DIV (.~ v, 1), 1) (36)

The spectral density of the radiation energy is given by the following expression:
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w

37rc3 | / t) exp(—iwt)dt|? (3.7)

Here w is the frequency of radiation, ¢ is the velocity of light. S(w) has the meaning
of the energy emitted per unit frequency.

In the calculation, we use 128 radial and 32 angular grid points and the time
step — 102 5 (nearly 0.1 a.u.). The maximum radius is 60 a.u. and we place absorber
between 40 a.u. and 60 a.u. describe the ionization process. The time delay was
varied in steps of Aty = 20as within the range of —20fs < t; < 20fs (2048 steps in
total).
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i

1s3p

1s2p

Delay (fs)

Figure 3.2: Photon emission energy spectrum of the exicted states (2p[3s — 5s] and
2p[3d — 4d] as a function of the time delay between the NIR pulse and SAP. The
yellow color indicates the highest energy emitted. The color bars are represented by

the logyy S(w) of the spectral density in Eq. 3.7

In Fig. 3.2 we show the 3D plot of the photon emission spectrum as a function
of t4 for the excited states 1snp(n < 5). The higher excited states (1sdp and 1s5p)
are shifted by the pondermotive potential U, of the NIR field, where U, = (222)2;
for the field strength and frequency used, U, = 0.17 €V.
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Figure 3.3: Photon emission energy spectrum of the 1s2p excited state as a function

of the time delay between the NIR pulse and SAP.
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Figure 3.4: Photon emission energy spectrum of the 1s3p excited state as a function

of the time delay between the NIR pulse and SAP.
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Figure 3.5: Photon emission energy spectrum of the 1s4p excited state as a function

of the time delay between the NIR pulse and SAP.

The density plots of the photon emission spectrum in Fig. 3.3-3.5 depict the
transition from 1s2p, 1s3p and 1sd4p as the function of ¢;. We can observe the
oscillation structure in the region where the NIR and SAP overlap. The period of
the oscillation is 1.1 fs, which is half of the NIR laser optical cycle. This phenomenon
was also observed in theoretical calculation where they use absorption spectra|12].

In Fig. 3.3 and Fig. 3.4 we observe the splitting of the lines near t; ~ 10fs. The
electron absorbs one XUV photon to np states and then absorbs more NIR photons
to forbidden states, ns or nd. If we try the NIR with wavelength of 656nm, the
transition is more obvious. The splitting has been known as result of Autler-Townes
effect|40]. We can identify this splitting by the Hamiltonian without some of the
excited states. For 1s2p transition, we choose the t; = 10fs and remove 3s and 3d
states in the Hamiltonian and for 1s3p transition we choose the t; = 10fs and remove
2s states in the Hamiltonian in Fig. 3.2. The splitting disappears in both of them
and make sure this splitting can be explained in terms of two-photon absorption and

emission process. The SAP excites the ground state to 1snp states; then the NIR
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Figure 3.6: (left) Energy emitted near 1s2p transition (right) Energy emitted near

1s3p transition

couples these states to forbidden states 1sns and 1snd which causes splitting and

shift.

3s 3p 3d
-1.5eV

2s NIR
-3.4eV . ]

1s SAP

-13.6eV

Figure 3.7: Illustration of Autler-Townes effect in hydrogen. When SAP comes first,

the electron can be exicted to np orbitals. The NIR is not weak for excited states,

so it can make 2p3s and 2p3d transition happen.

34



3e-06 T T T T T T T
1s3s
1s2p
1s3p
2.5e-06 14p B
1s3d
2e-06 i
o 15e-06 R
1e-06 R
507 ... .
-10 5 10 15 20 25 30

Time Delay (fs)

Figure 3.8: Population of several excited states as a function of the time delay

between the NIR pulse and SAP. The center frequency of NIR is 800 nm.

Here we calculate the populations of the exited states in Fig. 3.8. We can see the
resonances between the 1s2p and 1s3s and 1s3d states, when 1s2p population goes
down, and the 1s3s and 1s3d go up in the region where SAP and NIR overlap(—8 <
tq < 8). The 1s2p state is substantially ionized or excited to forbidden states in the
two photon absorption, SAP and NIR photon.
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Figure 3.9: llustration of two photon absorption.



And we try use the 656nm(=1.89 eV, energy different the n=2 and n=3) as the
NIR frequency. The excited states 1s3s and 1s3d are more obvious. That’s because

of Autler-Townes effect and it’s also shown in [12].
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Figure 3.10: Population of several excited states as a function of the time delay

between the NIR pulse and SAP.The center frequency of NIR is 800 nm.
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3.2 Helium

Next atom is Helium, which has two electrons on 1s orbital. To obtain the time-
dependent electron density and calculate the induced dipole moments, one has to

solve a set of the time-dependent Kohn-Sham equations for the spin-orbitals ;. (7, t):

0 1 4
ia%‘o—(ﬁ t) = [—§V2 - + Vext (7, 1) + VUKLI(T, i (r,t),i=1,...,Ny, (3.8)

Here the Z = 2 is the nucleus charge and v.,; is the interaction of the electron
with the external field. Compared with Eq. 3.1, we add the VEM(r ¢) from the
TD-KLI-SIC procedure to describe electron correlation effect.

Here we use the same laser pulse and parameters as we do in hydrogen, but
we change the central frequency of the NIR to 750 nm and increase the NIR peak
intensity to 3 x 10'2W /cm”.
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Figure 3.11: Photon emission energy spectrum of the exicted states (1s[2p — 5p| as a
function of the time delay between the NIR pulse and SAP. The yellow color indicates
the highest energy emitted. The color bars are represented by the log,, S(w) of the
spectral density in Eq. 3.7

In Fig. 3.11 we show the 3D plot of the photon emission spectrum as a function

of t4 for the excited states lsnp(n < 5). The higher excited states (1sdp and 1sbp)
S

(2WL)2 ’

are shifted by the pondermotive potential U, of the NIR field, where U, =
for the field strength and frequency used, U, = 0.15 eV.
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Figure 3.12: Photon emission energy spectrum of the 1s2p excited state as a function

of the time delay between the NIR pulse and SAP.
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Figure 3.13: Photon emission energy spectrum of the 1s3p excited state as a function

of the time delay between the NIR pulse and SAP.
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Figure 3.14: Photon emission energy spectrum of the 1s4p excited state as a function

of the time delay between the NIR pulse and SAP.

We show the more clearer 3D plot of photon emission spectrum transition from
1s2p, 1s3p and 1s4p in Figs. 3.12-3.14. In the region where the NIR pulse and
SAP overlap (-8 < t4 < 8 fs), the photon emission lines have oscillations with a
period of 1.3 fs, which is half of the NIR laser optical cycle. This is a instantaneous
shift of the electronic energy levels in the NIR laser field(or instantaneous Stark
shift[41, 42, 43, 44]). This phenomena was also observed in recent experimental
works|16, 15] where the transient absorption technique was used.

In Fig. 3.12 and 3.13 we see the splitting of the lines in the photon emission spectrum.
It’s understood as Autler-Townes effect[40]. We can remove some of excited states
in Hamiltonian like we’ve done in hydrogen atoms. But for 1s3p in helium atoms,

we found the splitting is not from the 2s state but the other nd states.
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Figure 3.15: (left) Energy emitted near 1s2p transition (right) Energy emitted near

1s3p transition
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Figure 3.16: Population of several excited states as a function of the time delay

between the NIR pulse and SAP.

Here we show the population of the several excited states as a function of the
time delay. Before the overlapping of two pulses(ty, < —8fs), the population of 1s3s

and 1s3d are zero because of selection rule. The population of 1s2p , 1s3p and
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1s4p are straight line when NIR pulse comes first because NIR pulse is too weak to
change the population of excited state. But for the region where the NIR and SAP
(—8 < tq < 8fs), the NIR pulse is not weak for excited states. The population of 1s3s
and 1s3d are increasing and oscillation with period of subcycle as the decreasing of

1s2p. Even for t, > 8fs, we can still observe the oscillation.

43



3.3 Neon

Neon has ten electrons with configuration 1522s22p°. Because intensity of the laser
field is weak to ionize the inner shell electrons 152, we don’t need to propagate the
Ls orbital. And for p orbitals, we need to identify the 2p?,_, on z-axis and 2p? _, on
xy-plane because of laser field. To obtain the time-dependent electron density and
calculate the induced dipole moments, one has to solve a set of the time-dependent

Kohn-Sham equations for the spin-orbitals ¢;, (7, t):

0 1 A
ia%o(ﬁ t) = [—§V2 - + Vet (1, 1) + VUKLI(r, O]pic(r,t),i=1,...,Ny, (3.9)

Here the Z = 10 is the nucleus charge and v.,; is the interaction of the electron
with the external field. Compared with Helium, we have 4 orbitals and it’s a little
complicated. But we use the SAP with center frequency 0.808 eV (the ionization
energy of 2p) and the laser field is on z-axis, so we focus on the transition of 2pj.

In the calculation, we use 256 radial and 32 angular grid points and the time
step mgTﬂwL (nearly 0.1 a.u.). The maximum radius is 100 a.u. and we place absorber
between 60 a.u. and 100 a.u. describing the ionization process. The time delay was
varied in steps of Aty = 20as within the range of —20fs < t; < 20fs (2048 steps in
total).
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Figure 3.17: Photon emission energy spectrum of the excited states (2p[3s — 5s] and
2p[3d — 4d] as a function of the time delay between the NIR pulse and SAP. The
yellow color indicates the highest energy emitted. The color bars are represented by

the logyy S(w) of the spectral density in Eq. 3.7

In Fig. 3.17 we show the 3D plot of the photon emission spectrum as a function
of t4 for the excited states 2p[3s — 5s] and 2p[3d — 4d]|. The higher excited states
(1sdp and 1sbs) are shifted by the pondermotive potential U, of the NIR field, where

2
U, = E—LQ; for the field strength and frequency used, U, = 0.15 e¢V. The other

(QCUL)

transition can be seen only if we zoom in the plot on next page.
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Figure 3.18: Photon emission energy spectrum of the 2p3s excited state as a function

of the time delay between the NIR pulse and SAP.
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Figure 3.19: Photon emission energy spectrum of the 2p4s excited state as a function

of the time delay between the NIR pulse and SAP.
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Figure 3.20: Photon emission energy spectrum of the 2p3d excited state as a function

of the time delay between the NIR pulse and SAP.
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Figure 3.21: Photon emission energy spectrum of the 2p5s , 2p4d and 2p6s(down to
up) excited states as a function of the time delay between the NIR pulse and SAP.



We show the more clearer 3D plot of photon emission spectrum transition from
2p3s, 2pds, 2pbs 2p6s,2p3d and 2pdd in Figs. 3.18-3.21. In the region where the
NIR pulse and SAP overlap (—8 < t; < 8 fs), the photon emission lines have oscilla-
tions with a period of 1.3 fs, which is half of the NIR laser optical cycle. This is a
instantaneous shift of the electronic energy levels in the NIR laser field(or instanta-
neous Stark shift). This phenomena was also observed in recent experimental works
where the transient absorption technique was used|20]. Compared with Helium, the
transition from 2p is more complicated because p orbitals can go to s and d orbitals.
Moreover, their energies are sometimes close to one other in Fig. 3.21 ;so it’s hard
to identify each excited states. We don’t see the Aulter-Townes effect in the photon
emission spectra, but we can observe the population of np orbitals and it’s too weak

to show.
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Figure 3.22: Population of several excited states as a function of the time delay

between the NIR pulse and SAP.

Here we show the population of excited state as the function of the time delay.
In the region where the NIR and SAP overlap we can see the 2p3s decreasing and
2p4s and 2p3d populating. These are also shown on the photon emission spectra.
We also see the populations of excited states are changed with period of half optical

cycle.
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Chapter 4
Conclusions and Perspectives

In this thesis, we present the 3D calculation of the hydrogen, helium and neon atoms
in NIR laser field subject to excitation by a SAP. We use the TD-KLI-SIC includ-
ing the electron correlation effect and proper long-range potential and solve time
dependent Kohn-Sham equation nonperturbatively with TDGPS method.

We have explored the subcycle dynamical hehavior of the photon emission with
respect to many transition with hydrogen, helium and neon atoms on a subfemtosec-
ond time scale as the function of time delay. We observe the oscillation structure
with a period of half optical cycle. Moreover, we find the Aulter-Townes effect and
the population of excited states involving NIR and SAP photons absorption and
ionization in subcycle time scales. Even for neon atoms with ten-electron, the TD-
KLI-SIC is still available for the complicated system. In the future, we’ll research

the argon atoms and more intense laser field with TD-KLI-SIC.
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