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中文摘要 

藥物不良反應（Adverse Drug Reactions，簡稱 ADRs）係指接受藥物治療後所

產生的嚴重健康危害。更由於 ADRs 是當今主要死因之一，故妥善監視上市後藥

物成為一重要課題。然而，傳統的失衡分析法（disproportionality analysis）與貝氏

偵測方法（Bayesian signal detection）仰賴預先收集的 ADR 通報案例，以及需事先

定義、無統一標準的門檻值，其偵測結果也經常無法一致。另一方面，用以進行

偵測的資料集長久受限於兩個資料庫—美國 FDA 之 FAERS 與 WHO 之 VigiBase，

於這些資料庫的偵測也存在諸多困難。 

為解決上述問題，本研究使用全民健康保險研究資料庫，以一週為單位聚合

每位病患之歷史就診紀錄後，建立藥物與診斷先後關係。我們並提出一結合三種

偵測分數：回歸 t 值（REG）、通報相對比例值（PRR）與通報相對勝算比（ROR）

作為輸入特徵的新模型，用以偵測藥物不良反應。實驗結果顯示，相較單獨使用

一種分數，結合三種偵測分數的新模型之準確度（Accuracy）最高有 9.5%的提升。 

 

關鍵字：藥物不良反應、訊號偵測、健康資料庫、藥物安全監視、藥物主動監視 

 

 



 

 

Abstract 

 Adverse Drug Reactions (ADRs) are fatal health problems due to medical treat-

ments. ADRs are leading cause of death, and thus it is crucial to properly monitor 

post-marketing drugs. However, traditional disproportionality analysis and Bayesian 

signal detection depend on pre-collected ADR reports and a not universal, predefined 

threshold; the results are often inconsistent. Moreover, the available data sources were 

limited to two databases — U.S. FDA’s FAERS and WHO’s VigiBase; there are also 

several difficulties when detecting ADRs in these databases. 

To address above problems, in this study, we proposed a model combining three 

detecting scores: regression’s t-value (REG), proportional reporting ratio (PRR), and 

reporting odds ratio (ROR), as features for detecting serious drug-ADR pairs from 

one-week aggregated patient-week information with precedence relationship between 

drugs and diagnoses, in an health insurance claims database NHIRD (National Health 

Insurance Research Database). We demonstrated that the proposed combined score led 

to an improvement (up to 9.5%) of signal detection accuracy over applying each of 

score independently. 

 

Keywords: adverse drug reaction, signal detection, administrative health database, drug 

safety surveillance, pharmacovigilance
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 Introduction Chapter 1

 In pharmacology, drugs are crucial substances used in the treatment, cure, preven-

tion, or diagnosis of disease. However, instead of treating the disease, sometimes drugs 

could harm patients or even threaten their life. Adverse Drug Reactions (ADRs, also 

called adverse events, or AEs) refer to fatal health problems, life-threating events due to 

medical treatments (Harpaz, Vilar, et al., 2013; Pharmaceutical data mining, 2010). 

U.S. FDA (Food and Drug Administration) reported that there were over 2 million 

serious ADRs yearly (Lazarou, Pomeranz, & Corey, 1998), at an annual cost of 

USD$136 billion (Johnson, 1995). Moreover, a recent study estimated that in 2008 over 

180,000 Americans would die from ADRs after using FDA-approved drugs, and ADRs 

are the sixth leading cause of death worldwide (Hacker, Messer, & Bachmann, 2009). 

To put this into perspective, consider that in 2008 there were around 120,000 Americans 

died from accidents, which was fewer than those caused by ADRs (Miniño, Murphy, Xu, 

& Kochanek, 2011). In Taiwan, it was reported that there were 831 ADR reports in 2013, 

an increase of 3500% over the last ten years (蔡雅婷, 陳文雯, & 蔡翠敏, 2014). 

However, former researches also showed that 42% life-threating and serious ADRs were 

preventable with proper administration (Bates, 1995). Therefore, systematically tracking 

and validating ADRs are critical issues in both financial and social aspects. 

In recent years, there has been increasing interest in using data mining techniques 

to automatically detect suspected ADRs. Organizations like WHO and U.S. FDA have 

built spontaneous reporting systems to record reported ADRs. They have also developed 

several statistical methods for routinely detecting possible ADRs from databases. How-

ever, we find that the methods introduced in former studies had the following problems 

when screening out possible ADRs: (1) easily affected by the number of reports, (2) do 
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not perform consistently, and (3) need predefined thresholds. We will further discuss 

them in Chapter 2.1.3. In addition, the choices of data sources used for ADR detection 

were limited to two reporting databases (database that collects ADR reports) — U.S. 

FDA’s FAERS and WHO’s VigiBase, and detecting from reporting databases failed to 

consider never reported drugs. 

This study focuses the following research questions: 

1. Is it possible to develop a new model with good performance and address the exist-

ed issues in ADR detection? 

2. Is there any other source suitable for ADR detection? How should these data be ad-

justed for detection? 

Therefore, in this research, we proposed a new methodology, which combined 

three scores (regression’s t-value, proportional reporting ratio, and reporting odds ratio) 

from aggregated patient-week information and put the scores into three classifiers 

(RBF-SVM, random forest, and logistic regression) for detecting possible drug-ADR 

pairs in the Taiwan’s National Health Insurance claims database (NHIRD). 

Six known ADR groups in three categories: Cardiovascular Disease, Hepatotoxici-

ty, and Cancer were selected for investigation. The evaluation process is expressed as a 

classification problem with three classes, including one serious type and other two types 

of drug-ADR pairs. We argued that our model with combined scores outperforms indi-

vidual scores in separating serious type of pairs from other pairs when evaluating in ac-

curacy, precision, recall, F-measure. 

This research differs from the previous research that ran detection processes using 

traditional disproportionality analysis or Bayesian signal detection on reports-based da-

tabases (A Bate & Evans, 2009; Dumouchel, 1999; Kubota, Koide, & Hirai, 2004; 

Pharmaceutical data mining, 2010). Since we detect ADRs through a supervised classi-



 

 3

fication on a health database, neither ADR reports nor predefined thresholds (both are 

required in traditional methods) are needed in our model. Moreover, with only three 

simple scores, our model is easy to implement and time-efficient. 

This paper is organized as follows. In chapter 2, we will review related literatures. 

Chapter 3 will describe the data, methodology, and evaluation method used in this paper. 

Chapter 4 will report and discuss the results. Finally, we will make a short conclusion in 

Chapter 5. 
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 Literatures Review Chapter 2

 Our study covers several research issues, including ADR signal detection, the 

methods used for signal detection, the data sources for signal detection, and the evalua-

tion processes. In this chapter, we will discuss the related literatures for them. 

 

2.1 ADR Signal Detection 

 Signal detection, or drug safety, is defined as a series of activities for understand-

ing and preventing adverse drug reactions (World Health Organization & WHO 

Collaborating Centre for International Drug Monitoring, 2002). To record and trace 

ADRs, WHO requires drug firms and medical staff to report possible or confirmed ADRs 

for post-marketing drugs, and then gathered the drug name, used record, diagnosis and 

basic information about the patient into the VigiBase, an electronic reporting database 

developed and maintained by WHO UMC (Uppsala Monitoring Centre) (Norén, 

Sundberg, Bate, & Edwards, 2008). U.S. FDA also started a similar system in 1969, and 

stored the collected data in their FAERS (FDA Adverse Event Reporting System) data-

base (Dumouchel, 1999). As of the third quarter of 2010, there had been more than 4 

million reports on FAERS (Harpaz, Vilar, et al., 2013); and in April 2013, the number of 

cases in the WHO VigiBase reached 8 million (Uppsala Monitoring Centre, 2013). 

Through the adoption of reporting databases, it is expected that ADRs can be de-

tected as early as possible (Cornelius, Sauzet, & Evans, 2012; Dumouchel, 1999), and 

then the firms can improve their products, or the authorities can withdrawn the prob-

lematic drugs (Pharmaceutical data mining, 2010). This may minimize the impact of 

ADRs on patients (Harpaz, Chase, & Friedman, 2010; Jha et al., 1998). 

 The most important task on the reporting databases is to detect suspicious ADR 
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“signal” on reporting data through its properties such as its severity and reporting num-

bers (Harpaz, Vilar, et al., 2013; Pharmaceutical data mining, 2010). WHO defines the 

process of signal detection as “Reported information on a possible causal relationship 

between an adverse event and a drug, the relationship being unknown or incompletely 

documented previously.” Though the above vision is attractive, there are several limita-

tions when conducting ADR signal detection using reporting databases (A Bate & Evans, 

2009; Pharmaceutical data mining, 2010). 

Firstly, to obtain robust and comprehensive result, experiments on large datasets for 

the long period of time are required. Bright et al. assessed five CDSS (Clinical Decision 

Support System) studies and showed that neither these studies had significant effect on 

reducing ADRs due to deficient evaluation period (Bright et al., 2012). However, it is 

nearly impossible to manually detect all possible ADR signals with limited time and 

human power. To detect signals more effectively, a series of quantitative approaches 

were constructed (A Bate & Evans, 2009). The main idea behind these approaches is to 

monitor and detect drug-ADR or drug-symptom patterns. These approaches will be in-

troduced in the following paragraphs. 

Secondly, the detecting process may filter out clinically insignificant ADR alerts 

that domain experts may ignore (Kuperman et al., 2007), which may result in useless 

detection results. Hence, it is crucial to evaluate the system performance carefully. 

Finally, the detecting process can work only when patients’ health records, such as 

diagnosis and drug records, are fully entered into the databases (Kuperman et al., 2007). 

On the other hand, the other information provided by databases is also valuable. 

They are: patients’ demographics, longitudinal data for drug usage, and institutions’ in-

formation, etc. For example, we can perform stratum specific estimates, and thus prevent 

from misleading with a certain stratum (A Bate & Evans, 2009). 
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2.1.1 Disproportionality Analysis (DPA) 

 The most widely used procedure of detecting ADR is Disproportionality Analysis 

(DPA). The concept behind DPA is accessing the “relative risk” of a drug-ADR pair in 

comparison with other pairs. However, due to the lack of accurate denominator (i.e., 

number of doses of administered drug), it is hard to identify the potential combinations 

from the spontaneous reports. Thus, in DPA method, there is an assumption of “baseline 

frequencies” (or baseline risk) as denominator. 

We now focus on the 2x2 contingency table for drugs and ADRs, as shown in Ta-

ble 1. Take relative report rates (RR) for example. The expected baseline frequencies are [( + ) × ( + )]/( + + + ) when reports involving focused drug are statisti-

cally independent of reports involving focused ADR. Intuitively, we can decide whether 

focused drug-ADR pair is suspected by evaluating the ratio of its number of reports ( ) 
and the corresponding baseline frequencies [( + ) × ( + ) ]/ 	( + + + ) . 

Hence, the RR is [ × ( + + + )]/[( + ) × ( + )]. In practice, we first cal-

culate the degree of disproportionality through a predefined formula (e.g., RR), and then 

examine the confidence interval (CI) for disproportionality. If the lower limit of CI is 

higher than a given threshold, the relationship between the drug and the ADR is consid-

ered suspected. 

Table 2 demonstrates the formula for calculating disproportionality and threshold 

under each DPA method, including RR, PRR (Proportional Reporting Ratio), ROR 

(Reporting Odds Ratio), and MCA (a comprehensive metric suggested by UK’s Medi-

cines and Healthcare Products Regulatory Agency) (Kubota et al., 2004). 
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Table 1  Contingency Table for Detecting ADR 

 Reports of focused ADR Reports of other ADRs Total 

Reports of focused drug a b a + b 

Reports of other drugs c d c + d 

Total a + c b + d a + b + c +d 

 

Table 2  Some DPA methods for detecting ADR 

Method Formula Threshold Adoption 

RR 
a(a + b + c + d)( + )( + )  No unified threshold.  

PRR 
a/(a + b)/( + ) PRR – 1.96SE > 1 

Netherlands PFL*

ROR 
a/c/  ROR – 1.96SE > 1 

MCA PRR, a,  PRR ≥ 2, a ≥ 3, and ≥ 4 UK’s MHRA** 

* Pharmacovigilance Foundation Lareb 

** Medicines and Healthcare Products Regulatory Agency 

 

2.1.2 Bayesian Signal Detection (BSD) 

 Another popular choice for detecting ADRs is Bayesian Signal Detection (BSD). 

BSD is actually an extension of DPA with Bayesian inference. 

Although DPA is a simple method, its results are easily affected by the number of 

reports in Table 1. Take RR for example. When total amount of drug-ADR combina-

tions N = a + b + c + d is very large (e.g., N = 1,000,000) but the amount of reports is 

relatively small (e.g., a = 1), the baseline frequencies of reports in RR may be consider-

ably small. Small baseline frequencies would lead to fairly large RR value. However, a 

combination with relatively small count means lower support, thus its RR value is 

meaningless. Under traditional DPA framework, these meaningless drug-ADR combina-
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tions will be wrongly screened out (Dumouchel, 1999). 

U.S. FDA has deployed Empirical Bayes Gamma-Poisson Shrinker (EBGPS) for 

routine ADRs screening to find whether a combination of drug and ADR is frequently 

reported than expected. By introducing gamma prior, EBGPS method shrinks RR and 

then addresses above problem. EBGPS utilizes Bayes' theorem to obtain the ratio of 

observation to expected number of reports for a combination. For a focused drug-ADR 

combination (drug i, ADR j), the statistic is defined below: EBGPS = 2 [ ( ) / 	( ) 
Equation 2.1.1 

 =  denotes the observed count of reports for (i, j) drawn from a Poisson dis-

tribution with a mean . In the , = ∑ . . / ..  denotes the expected 

amount of reports for a drug-ADR combination (i, j), where . = ∑  and 

. = ∑  denote the total number of observed reports involving drug i and j under 

a stratum (includes time and age) k respectively, whereas .. = ∑ ∑  denotes to-

tal number of observed reports belonging to the stratum k. 

If the lower limit of the 95% CI of EBGPS  is higher than a threshold (0.5 as 

recommended by the FDA) (Deshpande, Gogolak, & Smith, 2010), then the combina-

tion (i, j) is considered a possible drug-ADR pair (A Bate & Evans, 2009; Dumouchel, 

1999). 

 WHO screens out ADRs through Bayesian Confidence Propagation Neural Net-

work (BCPNN) (Andrew Bate, Lindquist, Edwards, & Orre, 2002; Orre, Lansner, Bate, 

& Lindquist, 2000), which is done by evaluating information component (IC) (in fact, 

IC itself is another DPA measure): 
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IC = log ( , )( ) ( ) = log ( + + + )( + )( + )  

Equation 2.1.2 

 IC can be used to examine the degree of relationship between drug x and ADR y. p 

(x) and p (y) stands for the proportion of drug x and ADR y in all reports, respectively. 

The higher IC means the stronger relationship between drug x and ADR y. If the lower 

limit of the 95% confidence interval of the Bayesian posterior (through Bayesian infer-

ence. we omitted the inference here.) of IC is higher than 0 (Deshpande et al., 2010), 

then the combination is considered a possible drug-ADR pair. 

 

2.1.3 The Problems of Traditional Approaches for ADR Detection 

 Both DPA and BSD are widely used methods for ADR detection. However, there 

are several problems in the two traditional approaches. 

First, for DPA, we have known that the effect of small number of reports may gen-

erate bad drug-ADR combinations through the discussion in the beginning of 2.1.2. Se-

cond, every traditional method requires a predefined threshold, which is decided by 

specific data source. For DPA, the last column in Table 2 shows the data source; for 

BSD, the thresholds of EBGPS and BCPNN are decided according to the data stored in 

FAERS and VigiBase, respectively (Deshpande et al., 2010). However, a threshold de-

signed for one data source may be unsuitable for other sources. Moreover, when N in 

Table 1 equals 1 or 2, former studies found that the Kappa statistics between DPA, 

BCPNN and EBGPS are small, showing the inconsistency among traditional methods 

(Kubota et al., 2004). 

Therefore, an ideal approach for ADR detection should be a simple and 

well-performed model without the need for reports and thresholds. In addition, building 
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a model that combines multiple detection methods may reduce the inconsistency among 

methods and then improve the performance. 

 

2.1.4 Other Approaches for ADR Detection 

Other than traditional DPA and Bayesian methods, there are still many approaches 

for detecting ADRs in electrical databases. They may be an extension of DPA or Bayes-

ian concept, or based on other data mining techniques, such as frequent pattern mining. 

Norén et al. proposed a disproportionality measure, which is based on a baseline 

model with additive risk, for exploratory analysis of suspected drug-drug interaction (DI) 

in VigiBase (Norén et al., 2008). They provided examples and argued that this modified 

DPA method can detect more DIs in comparison with the model using third-order 

log-odds ratio. Choi et al. applied this measure to the Korean National Health Insurance 

claims database and successfully screened out an actual DI between two drugs (Choi, 

Chang, Choi, Chung, & Shin, 2013). However, both of the above two studies failed to 

show the credibility of this measure due to limited numbers of case studies. 

Jin et al. utilized the concept of temporal association rule and developed a mining 

algorithm MUTARA (Mining Unexpected Temporal Association Rules given the Ante-

cedent) to highlight the “unexpected drug-to-diagnosis patterns” (Jin et al., 2010). This 

algorithm finds the unexpected patterns by removing the “expected diagnoses” occurred 

before focused drug, in the time-constrained hazard period. They also proposed a meas-

ure called rankRatio, which combined the rank under traditional temporal association 

rule and that under their unexpected temporal association rule. They showed that MU-

TARA and rankRatio could signal more ADRs than traditional temporal association rule 

mining techniques. 
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2.2 The Data Sources Used for ADR Detection 

 Although there is no shortage of methods to detect possible ADRs, the choices of 

databases used to analyze are limited. U.S. FDA’s FAERS and WHO’s VigiBase, the 

two databases mentioned above, are the main data sources adopted in previous studies 

(Harpaz et al., 2010). Also, this kind of reporting system has several shortcomings 

leading to difficulties in analysis. Firstly, lack of the number of drug uses at a specific 

time and patient makes it impossible to estimate incidence density and risk. Secondly, 

clinicians may underreport the frequency of ADRs due to extra workload, insufficient 

attention for ADR, and fear of lawsuits (Jin et al., 2010). Finally, these systems require 

direct reports from medical staff, thus delaying the detecting process (Cornelius et al., 

2012). 

 On the other hand, recently, population-based administrative health databases like 

health insurance claims databases and electronic health records (EHR) have become 

popular choices for ADR signal detection (Coloma et al., 2012; Johansson, Wallander, de 

Abajo, & García Rodríguez, 2010; Park et al., 2011). Compared to traditional reporting 

databases, population-based databases have more comprehensive information for all pa-

tients, whether they were exposed to the drug or not (Cornelius et al., 2012; Sauzet, 

Carvajal, Escudero, Molokhia, & Cornelius, 2013). This makes it possible to detect 

signals for those drugs not included in the traditional reporting databases, and to make 

longitudinal studies (Cornelius et al., 2012). 

Jha et al. established a rule-based monitoring program, which contained 52 unique 

rules (Most of the rules are laboratory abnormalities), to find ADRs from a hospital’s 

clinical-results reporting system. They showed that this computer monitoring strategy not 

only had acceptable capture rate (45% vs. 65%) on ADRs but required fewer people in-
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volved (11 person-hours vs. 55 person-hours) when compared with traditional chart re-

view (Jha et al., 1998). 

Sauzet et al. applied the Weibull Shape Parameter (WSP) test (a time-to-event 

model for finding the time to high risk ADRs) (Cornelius et al., 2012) to the Health Im-

provement Network (THIN), an EHR database in UK, and successfully detected two 

well-known ADRs (Sauzet et al., 2013). 

Harpaz et al. tried to combine the detected signals using U.S FAERS and the one 

using narratives processed with natural language processing (NLP). They found that the 

combined signals showed better precision, including precision at K and F-measure 

(Harpaz, Vilar, et al., 2013).  

Overall, administrative health database is a potential resource for ADR detection 

due to its better availability and richer content. Hence, in this study, we want to detect 

ADR signals over a long period of time in a large administrative health database. 

 

2.3 Evaluating Performance in ADR Detection 

Evaluating the performance is another important and challenging issue in ADR de-

tection. Table 3 lists the reference standard, measures used in former studies, accompa-

nied with primary results. 
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Table 3  Reference Standard, Performance Measures and Results in Previous Studies 

# Study Performance Measures and Results Reference Standard or Evaluation Process

1 Jha et al. (1998) PPV*: 0.17 Domain experts reviewed the results. 

2 Dumouchel (1999)  Compare the ranking. 

3 Norén et al. (2008)  Compare the ranking. 

4 
A Bate & Evans 

(2009) 

PPV: 0.44 

NPV: 0.85 

Retrospective evaluation by using ADRs 

listed in 2000 

5 Jin et al. (2010) Accuracy: 0.313 Domain experts reviewed the results. 

6 
Cornelius et al. 

(2012) 

Accuracy: 0.53~0.93 

Sensitivity: 0.21~1.0 

Specificity: 0.81~0.87 

False positive rate: 0.07~0.12 

False negative rate: 0~0.39 

30,000 simulated datasets for ADRs across 

time 

7 
Harpaz et al. 

(2013) 
AUC***: 0.76~0.94 

380 positive and negative cases 

(drug-outcome) 

8 
Harpaz, Vilar, et al. 

(2013) 

Precision at K: 0.27~0.85 

Recall at K: 0.15~0.2 

F-measure: 0.17~0.31 

Known drug-ADR pairs 

* Positive predictive rate 

** Negative predictive rate 

*** Area under the curve of ROC (receiver operating characteristic) 

Results are in a range for different parameter settings. 

 

Overall, there are three types of reference standard used in ADR detection. The 

first is a prepared list of known ADRs, which had been used in study #6, #7 and #8. 

This kind of reference is easy to build, but the results of evaluation will be limited to the 

reference list. The second is a retrospective evaluation, which defines an ADR as a 

“signal” when it is detected from historical data and newly appears at a later time. For 
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instance, study #4 detected ADR signals from the reports in 1993, and those signals are 

compared with all signals newly appeared in 2000. Then, the “true” signals will be the 

matched ones. Retrospective evaluation is reasonable and widely used, but it only works 

on a dataset with temporal information. The third is directly sending the ADR prediction 

to domain experts for further examination. Study #1 and #5 are two examples. This 

method is the most straightforward and reliable; however, this evaluation process in-

volves human power, thus increasing the screening time. 

 The majority of performance measures involve metrics of a classification test, in-

cluding accuracy, precision (positive predictive rate, or the PPV), recall (sensitivity), 

specificity (true negative rate), F-measure, false positive rate, AUC (area under the 

curve of receiver operating characteristic), etc. From the third column in Table 3, we 

have a general idea about how the former screening performed despite the fact that the 

results vary under different settings, dataset, and evaluation process. 

Note that instead of using above metrics, studies #2 and #3 compared the 

top-ranked signals detected by proposed method and baselines. This method provides 

another choice for evaluation when there exist significant difference in ranking results 

between methods. 
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 Data and Models Chapter 3

 This chapter will discuss the dataset and methodology used in this research. Our 

work is motivated by the belief that there exists precedence relationship for a patient 

among history of drug use and the diagnoses happened afterwards. A series of patient 

visits from Taiwan’s National Health Insurance Research Database (NHIRD) will be 

aggregated to obtain drugs and diagnoses information of each patient in each one-week 

period (in Chapter 3.2). Then these patient weeks will be used for calculating regres-

sion’s t-value, PRR, and ROR score for each drug-diagnosis pair (in Chapter 3.3). Fi-

nally, these three scores will be combined and provided as features to detect serious 

drug-ADR pairs using three classification algorithms (in Chapter 3.5). Figure 1 provides 

an outline of the process. 

 

Figure 1  Processing pipeline for generating patient weeks, calculating scores and 

evaluating detected drug-ADR pairs 

 

 

Scores of 
Drug-diagnosis 

Pairs 

PRR 

ROR 

REG 

Evaluation 

Logistic 
Regression 

RBF-SVM 

Random 
Forest 

Reference 
Standard 

Patient weeks 

Aggregate NHIRD 

Patient 
visits 



 

 16

3.1 Data Source 

Our study adopted NHIRD, which is an administrative health database contains 

healthcare service claims submitted to National Health Insurance Administration (NHI) 

by healthcare providers. The data include information on medical treatments and diag-

noses for both inpatients and outpatients. 

We extracted three years of inpatient and outpatient data (from 23 December 2007 

to 1 January 2011) from the NHIRD. We only considered patients older than age 20. 

Data tables and fields used in this research are shown as Table 4. Note that due to the 

lack of definition of visit time in the inpatient data (DD table), we used date of admis-

sion (IN DATE) here. Similarly, prescribing date (FUNC DATE) is used to represent 

date of visit in the contracted pharmacies data (GD table). We included contracted 

pharmacies here because in many medical facilities (e.g., local clinics) drugs are pre-

scribed by medical staff and then made up by contracted pharmacies. 

Diagnoses were encoded according to the International Classification of Diseases, 

9th Revision, Clinical Modification (ICD-9-CM) system. For drugs, since they were 

encoded according to NHI’s self-defined coding schemes, we mapped them to the WHO 

Anatomical Therapeutic Chemical (ATC) system. The mapping table was retrieved from 

the NHI’s website (National Health Insurance Administraction, Ministry of Health and 

Welfare, 2014) and examined by domain experts. 
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Table 4  Data Tables and Fields Used in This Research 

Data Table Field Meaning 

2000 Registry for Beneficiaries 

(ID2000) 

ID_BIRTHDAY 

ID_SEX 

For controlling confounding 

factors. 

Ambulatory Care Expenditures by Vis-

its (CD) 

FUNC_DATE Date of visit 

ACODE_ICD9_1 

ACODE_ICD9_2 

ACODE_ICD9_3 

Diagnosis 

Details of Ambulatory Care Orders 

(OO) 
DRUG_NO Drug code* 

Inpatient Expenditures by Admissions 

(DD) 

IN_DATE Date of visit 

ICD9CM_CODE 

ICD9CM_CODE_1 

ICD9CM_CODE_2 

ICD9CM_CODE_3 

ICD9CM_CODE_4 

Diagnosis 

Details of Inpatient Orders (DO) ORDER_CODE Drug code* 

Expenditures for Prescriptions Dis-

pensed at Contracted Pharmacies (GD)
FUNC_DATE Date of visit 

Details of Prescriptions Dispensed at 

Contracted Pharmacies (GO) 
DRUG_NO Drug code* 

2000 Registry for drug prescriptions 

(DRUG2000) 
DRUG_ID Definition of drug codes 

* Drug codes have been mapped to ATC. 
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3.2 Patient Week Aggregation 

To build the precedence relationships among drugs and diagnoses, we aggregated 

the diagnoses (from ACODE_ICD9s in CD table and ICD9CM_CODEs in DD table) 

and prescribed drugs (from DRUG_NO in OO table, ORDER_CODE in DO table, and 

DRUG_NO in GO table) in every patient visit according one-week time period. We se-

lected seven days as time period because we found that the choice of period length has 

no significant effect on performance (we will discuss more in Chapter 4.4.) and aggre-

gation by shorter period may generate more patient visits (i.e., more training examples). 

The term patient week is used to depict a set of aggregated visits of a patient in a 

one-week period. Moreover, we removed drugs prescribed less than 30 times in all pe-

riods. 

With the above processing, as shown in Table 5, we got approximately 7.5 million 

aggregated patient weeks accompanied with diagnoses, prescribed drugs, and basic pa-

tient information (age and sex) for 614,080 patients in 158 time periods. We will use 

these aggregated patient weeks as our dataset in our study. Table 5 also shows other de-

scriptive statistics of our dataset. The preprocessing was completed using a PostgreSQL 

9.1 database system (available at www.postgresql.org). 

 

Table 5  Descriptive Statistics of The Dataset 

Number of unique diagnoses 1,125 

Number of unique drugs (encoded by ATC) 1,326 

Number of patient weeks 7,534,707 

Number of unique patients (age ≥ 20) Male: 326,587 

Female: 287,493 

Total: 614,080 
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Mean/Median age of patients 54.1/54 

Max/Min age of patients 107/20 

Mean of diagnoses per patient week 2.24 

Standard deviation of diagnoses per patient week 1.48 

Mean of prescribed drugs per patient week 4.24 

Standard deviation of prescribed drugs per patient week 3.39 

 

3.3 Feature Generation 

The following notation is useful: 

 

Therefore, a focused drug-diagnosis pair can be expressed as ( , ). 

Now we can calculate three “scores” for each drug-diagnosis pair: (1) PRR by the 

formula of PRR, (2) ROR by the formula of ROR, and (3) regression’s t-value. We se-

lect these three scores for two reasons. Firstly, PRR and ROR have been widely used to 

find the relationship between drug and diagnosis, and the regression’s t-value has been a 

popular metric for measuring relationships among variables as well. Secondly, all the 

three scores are easy to calculate through a predefined formula (for PRR and ROR) or a 

simple closed-form solution to the model (for regression). 

For the first two scores: PRR and ROR, the count of a focused ( , ) was generat-

ed as cumulative number of diagnosis  happened in the current period  after using 

drug  in the past one period − 1 for all patients  in all periods . Take patient 1 

in Figure 2 for example, there are three diagnoses = 3, 4, 5 in current period  and 

 = 	1, 2, . . . : The time period index. 

 = 1, 2, . . . : The patient index. 

 = 1, 2, . . . : The focused diagnosis index. 

 = 1, 2, . . . : The focused drug index. 
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three drugs = 2, 3, 5 in past one period − 1; therefore, the count of the following 

drug-diagnosis pairs: (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (5, 3), (5, 4), (5, 5) will be 

increased by one. After accumulating the counts of drug-diagnosis pairs, we can calcu-

late PRR and ROR using the formula listed in Table 2. 

To illustrate, if there are only four patient weeks as shown in Figure 2, for a fo-

cused drug-diagnosis pair (5, 3), The contingency table (Table 1) can be filled with (a = 

2, b = 2, c = 3, d = 4). Hence, the PRR for pair (5, 3) will be [2/(2+2)]/[3/(3+4)] = 1.17 

and the ROR for pair (5, 3) will be [2/3]/[2/4] = 1.33. 

 

 

 

 

 

 

 

 

Figure 2  Illustration of aggregated diagnoses and drugs of two patients in the current 

period  and the past one period − 1. 
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For the regression’s t-value score, we will conduct a multivariate linear regression 

to obtain the t-value of each drug-diagnosis pair. We first let 

 

We assume that for a patient , the diagnoses happened during current period  

(i.e., , ) is determined by drugs used in the past one period − 1 (i.e., , ). 

However, consider that current drugs ,  may affect current diagnoses , , to con-

trol this effect, we also added ,  to our regression model; ,  was added to the 

model for the same reason. Finally, to control confounding factors, all patients were 

stratified based on their age and gender, and were denoted by 

 A , = 0, ( 	 	 ) 	< 60	1, ( 	 	 ) 	≥ 60  and S = 0, 	 	 	 	1, 	 	 	 respectively. 

In the research dataset, there are 4,562,381 patient weeks whose patients aged un-

der 60 (but over 20 by settings) and 2,972,326 patient weeks whose patients aged over 

60. 

Then, the precedence relationship between ,  and ,  can be represented as 

following multivariate regression: 

, = , + , + , + β A , + β S + ε ,  

Equation 3.3.1 

where = [1, ] , = [ + 1, + ] , = [ + + 1, 2 + ] , = 2 + +1, and = 2 + + 2 denote the indexes for model parameter . ε ,  is a zero 

mean Gaussian random variable with variance . 

 , = ( , , …	, , . . . ) : A vector of  elements. Each  indicates 

whether a patient  has the correspond diagnosis  during period . 

 , = ( , , …	, , . . . ) : A vector of  elements. Each  indicates 

whether a patient  uses the correspond drug  during period . 
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To illustrate, for Patient 　 = 1 in Figure 2, a drug-diagnosis relationship can be 

represented as ( , , , , , , , , A , = 	1, S = 0), where 

, = ( = = = 1, ℎ = 0), 
, = ( = = = 1, ℎ = 0),  

, = ( = = = 1, ℎ = 0), and 

, = ( = = = 1, ℎ = 0). 
To simplify the expression, we put the independent variables ( , , , , , , A , , and S ) together as one vector , which has 2 + + 2	 variables. Then Equa-

tion 3.3.1 can be written in the following form: = +  

Equation 3.3.2 

Through Maximum Likelihood Estimation, we obtain the optimal (2 + +2)-dimensional parameter vector  for each ∈ ,  = ( )  

Equation 3.3.3 

And, for the model stability, we added a tiny smoothing constant 0.001 in every 

element on the main diagonal of . 

For convenience, we define S  as the -th element (independent variable) on the 

main diagonal of ( ) . Then the variance of  can be expressed as: 
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Var( ) = ( ) σ  

= σ S ⋯ ⋯ ⋯ ⋯⋮ S ⋯ ⋯ ⋮⋮ ⋯ ⋯ ⋯ ⋮⋮ ⋯ ⋯ S ⋮⋯ ⋯ ⋯ ⋯ S( )( )
 

= σ 	S ⋯ ⋯ ⋯ ⋯⋮ σ 	S ⋯ ⋯ ⋮⋮ ⋯ ⋯ ⋯ ⋮⋮ ⋯ ⋯ σ 	S ⋮⋯ ⋯ ⋯ ⋯ σ 	S( )( )
 

Equation 3.3.4 

where σ = ( )  is the variance of error variable = − , 

		~	 (0, σ ). 
Therefore, to realize how does a diagnosis  be influenced by a drug , we can 

calculate t-value t ,  by: β ,σ S  

Equation 3.3.5 

If a certain drug  has higher t , , it may have more influence on diagnosis . 

And the drug-diagnosis pair ( , ) may be considered as a possible ADR signal. We 

hereinafter used the term REG to represent the calculated t-values through regression. 

All the three scores (REG, PRR, and ROR) were calculated using statistical soft-

ware R (available at www.r-project.org). Given computed REG, PRR, and ROR to all 

drug-diagnosis pairs, our methodology is to combine all the three scores as features and 

put them into a supervised classification algorithm to detect serious drug-ADR pairs 

from those candidate pairs. 
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3.4 Reference Standard 

To evaluate the performance, we constructed a reference standard by labeling 

known drug-ADR pairs for six ADR groups in three categories: Cardiovascular Disease 

(CV), Hepatotoxicity (HEP), and Cancer (CAN) with drugs that may induce the ADRs. 

We combined these ADRs and drugs and then used these drug-ADR pairs for the refer-

ence standard in this study. Our reference standard dataset covers 75 ICD-9-CM codes 

and 553 drugs. 

The domain experts classified a drug-ADR pair into six types: Type I (indications; 

valid usages to use drug for diagnosis), A (validated by large-scale experiments), B 

(validated by case reports), C (validated by animal studies), D (carried in leaflets of 

drugs), and no-relations. The reference standard is shown as Table 6 (we omitted the 

information of no-relation pairs). 

 

Table 6  Reference Standard 

ADR Cat. ADR Group ICD-9-CM 
Num. of

Drugs 

Number of Drug-ADR Pairs 

I A B C D 

CV 

Myocardial Infarction (MI) 410, 411 56 44 56 6 0 12

Angina (ANG) 413, 414 31 28 26 12 0 2 

Arrhythmia (ATA) 426, 427 139 24 154 38 0 37

Congestive Heart Failure (CHF) 402, 404, 428 50 18 96 15 0 24

HEP Hepatotoxicity (HEP) 570, 573, 576 244 60 63 396 0 222

CAN Cancer (CAN) 
140 to 208 

(63 in total) 
33 1575 504 0 63 0 

Total 553 1,749 899 467 63 297

Note: The combinations of each drug-ADR pair do not equal the sum of pairs for each type, because some 

pairs were identified by more than one type. 
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3.5 Evaluation 

Through the discussion in Chapter 3.4, apparently, only Type A, B, and C are the 

reasonable “serious” drug-ADR pairs we should focus on. Hence, the evaluation process 

can be expressed as a classification problem with three classes, including one serious 

type of pairs (consist of Type A, B and C) and other two types of pairs (Type I and D 

respectively). As shown in Table 6, there are 1,429 (899 + 467 + 63) serious pairs, 1,749 

type I pairs, and 297 type D pairs on the reference list. 

With a prepared reference list, our evaluation process is simple and efficient in 

comparison with retrospective evaluation and expert examination. Additionally, because 

we only consider some serious drug-ADR pairs, it will not be a problem to limit detec-

tion results within our reference list. 

We compared the proposed combined model with models that use PRR, ROR, and 

REG for feature independently on classification performance. The experimental settings 

are shown as Table 7. Among four feature settings, #4 is the proposed setting and #1~#3 

are control groups with single feature. We put the four feature settings into three classi-

fication algorithms: random forest, RBF-kernel SVM, and logistic regression, respec-

tively. By testing multiple classifiers, the bias of specific classifier should be prevented. 

R package randomForest, e1071, nnet are used for random forest, SVM, and logistic 

regression modeling respectively. In addition, for all algorithms, the evaluation was 

done by 10-fold cross-validation based on all test cases; for RBF-kernel SVM, a 10-fold 

cross-validation was conducted to select the best model parameters C (cost) and γ in the 

radial basis function. 
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Table 7  Experimental Settings 

# Feature Setting 

1 REG 

2 PRR 

3 ROR 

4 Combined (PRR + ROR + REG) 

 

Performance was measured using accuracy, macro-average precision, mac-

ro-average recall, and macro-average F-measure. We considered the model with higher 

classification performance a better model for detecting serious drug-ADR pairs. Note 

that here we used the macro-average measures rather than ordinary ones because there 

were three classes to predict in this classification problem; moreover, we omitted the 

micro-average ones because in this problem each sample is always classified to belong 

to one of classes and therefore micro-averages are exactly the same as macro-averages. 
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 Results Chapter 4

4.1  Signaling Performance 

Firstly, we report that the proposed methodology can reliably detect potential seri-

ous ADR signals among the drug-diagnosis pairs with different classifiers. Table 8 

demonstrates comparison of the signal detection (classification) accuracy across indi-

vidual scores and combined score by using three classifiers. Overall, the accuracies of 

combined scores are better than that of individual scores when evaluating by RBF-SVM 

and random forest; when it comes to logistic regression, the accuracies of combined 

scores are nearly the same as that of PRR and ROR, and better than that of REG. The 

similar results were found when comparing the F-measures of combined and individual 

scores in Table 9, except for that of Hepatotoxicity. Thus, overall, combined scores per-

formed well than individual scores did not specific to particular classifier. 

 

Table 8  Accuracies of Combined and Individual Scores by Three Classifiers 

 SVM Random Forest Logistic Regression 

REG PRR ROR Combined REG PRR ROR Combined REG PRR ROR Combined

CV_ANG 0.593  0.712  0.712 0.729  0.507 0.557 0.557 0.650  0.502  0.652  0.652 0.626  

CV_ATA 0.682  0.682  0.682 0.682  0.461 0.558 0.558 0.573  0.686  0.682  0.682 0.678  

CV_CHF 0.701  0.730  0.723 0.716  0.545 0.609 0.623 0.665  0.694  0.730  0.730 0.716  

CV_MI 0.600  0.655  0.655 0.664  0.473 0.473 0.473 0.545  0.518  0.655  0.655 0.673  

HEP 0.620  0.601  0.600 0.617  0.481 0.463 0.469 0.533  0.612  0.616  0.616 0.613  

CAN 0.710  0.710  0.710 0.710  0.575 0.572 0.568 0.624  0.710  0.710  0.710 0.710  

Avg. 0.651  0.682  0.680 0.686  0.507 0.539 0.541 0.598  0.620  0.674  0.674 0.669  
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Table 9  F-measures of Combined and Individual Scores by Three Classifiers 

 SVM Random Forest Logistic Regression 

REG PRR ROR Combined REG PRR ROR Combined REG PRR ROR Combined

CV_ANG 0.641  0.733 0.733 0.753  0.550 0.580 0.580 0.664  0.636  0.665 0.665 0.659  

CV_ATA 0.809  0.808 0.808 0.809  0.478 0.526 0.531 0.560  0.798  0.808 0.808 0.786  

CV_CHF 0.816  0.794 0.803 0.794  0.637 0.650 0.618 0.740  0.812  0.794 0.794 0.798  

CV_MI 0.603  0.641 0.641 0.666  0.492 0.509 0.509 0.560  0.654  0.652 0.652 0.677  

HEP 0.675  0.541 0.541 0.519  0.410 0.403 0.408 0.439  0.757  0.458 0.458 0.477  

CAN 0.830  0.830 0.830 0.830  0.482 0.478 0.472 0.478  0.830  0.830 0.830 0.830  

Avg. 0.729  0.725 0.726 0.729  0.508 0.524 0.520 0.574  0.748  0.701 0.701 0.705  

 

Before we further analyze the different between combined and individual scores, it 

is necessary to select a classifier, which has the best performance in classification, for 

comparisons. Because both of Table 8 and Table 9 show that RBF-SVM has the best 

performance, we still chose it as the main classifier for comparison of the performance 

under combined and individual scores. 

 

4.2 Marginal Improvement of Combined Model 

We calculated average performance of signal detection across combined and indi-

vidual scores, including average accuracy, precision, recall, and F-measure, as shown in 

Table 10. The relative improvement ranges from 0.3% for the F-measure of ROR, to an 

improvement of 9.5% for the recall of REG. Moreover, when comparing the three indi-

vidual scores, PRR and ROR are at the same level of classification performance, where-

as REG has slightly low performance. 
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Table 10   Marginal Improvement of Combined Model 

(1) Combined (2) REG (1)-(2) (3) PRR (1)-(3) (4) ROR (1)-(4) 

Accuracy 0.686  0.651  5.4% 0.682  0.7% 0.680  0.9% 

Precision 0.672  0.668  0.5% 0.660  1.8% 0.657  2.2% 

Recall 0.480  0.439  9.5% 0.476  0.9% 0.473  1.6% 

F-measure 0.729  0.729  - 0.725  0.5% 0.726  0.3% 

 

4.3 Differences between ADRs 

We also noticed that the results vary across ADRs. Table 11 displays the obvious 

differences in average detection performance between each ADR under combined 

scores. The F-measure ranges from 0.519 (Hepatotoxicity) to 0.830 (Cancer). Overall, 

the combined scores proposed in this research performed better in detection for two 

ADRs: Angina (All measures are > 0.7) and Cancer (All measures are > 0.7 except for 

macro-average recall). 

 
Table 11  Average Performance of Six ADRs 

 Accuracy Precision Recall F-measure

CV_ANG 0.729  0.700  0.710 0.753  

CV_ATA 0.682  0.682  0.333 0.809  

CV_CHF 0.716  0.692  0.430 0.794  

CV_MI 0.664  0.748  0.542 0.666  

HEP 0.617  0.498  0.367 0.519  

CAN 0.710  0.710  0.500 0.830  

 

4.4 The Effect of Period Length 

 Since ADRs are usually in the form of diagnoses, and diagnoses can be classified 

as either acute or chronic, the length of aggregated period  may affect the perfor-

mance of detection. To learn about the effect of period length, we calculated the accura-

cies for combined scores under different length of  (7, 30, 60, 90 and 120 days) using 
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RBF-SVM classifier, and the results are shown in Table 12. Interestingly, the choice of 

period length has no significant effect on performance, and the similar results were also 

found in other measures (precision, recall, and F-measure). Hence, to obtain more pa-

tient weeks, we selected shorter length (i.e., seven days) of period when aggregating 

visit information for each patient. 

 

Table 12  Accuracies for Combined Scores under Different Length of Period  

Length of  7 30 60 90 120 

CV_ANG 0.729 0.745 0.729 0.743 0.731  

CV_ATA 0.682 0.683 0.682 0.682 0.681  

CV_CHF 0.716 0.702 0.739 0.744 0.737  

CV_MI 0.664 0.700 0.700 0.709 0.718  

HEP 0.617 0.607 0.615 0.610 0.603  

CAN 0.710 0.710 0.710 0.710 0.710  

Avg. 0.686 0.691 0.696 0.700 0.697  
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 Conclusion Chapter 5

5.1 Contributions 

In this study, we shed light on the possibility of using health insurance claims data 

as data source for signal detection by developing a novel methodology, which was in-

spired by the precedence relationships existed among drugs and diagnoses. A series of 

patient weeks were built and used for calculating REG, PRR, and ROR score. These 

three scores were combined and provided as features to classification algorithms. 

We also introduced a special evaluation process that carries on a classification for 

distinguishing serious drug-ADR pairs from other pairs. This process may provide a 

new direction for initially screening out serious drug-ADR pairs. 

Through different analyses we demonstrated that the proposed combined score led 

to an improvement of signal detection accuracy over applying each of score inde-

pendently. We also showed that the results varied across ADRs but not the length of ag-

gregate period. 

 

5.2 Managerial Implication 

Being routinely collected and covering over 99% of the population in Taiwan 

(Bureau of National Health Insurance, Department of Health, Executive Yuan, Taiwan, 

2012), health insurance claims data involve more drugs and diagnoses than existed re-

porting systems. Therefore, if these clams data can be used for ADR signaling and de-

tect possible ADRs for drugs in early post-marketing phase, it is expected to signifi-

cantly reduce the number of ADR reports and then save time and cost to medical staff 

for reporting ADRs. 
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5.3 Limitations and Future Work 

Our study assumed that drug usage may have the chance to cause ADRs one week 

later. In practice, however, the time from using a drug to an attack of an adverse event 

may be much longer. Although our results showed that there was no significant effect 

between different lengths of aggregated period in the detection performance, time factor 

is still an important issue when detecting ADRs in health databases. For instance, we 

can consider two nonadjacent patient weeks when building the precedence relationship 

between drugs and diagnoses to represent the deferred effect of drugs. 

Moreover, our dataset covers near 1.5 million drug-diagnosis pairs (the combina-

tion of 1,125 diagnoses and 1,326 drugs); however, ADRs form a relatively small part of 

all the diagnoses in NHIRD. This data imbalance problem may bring difficulties when 

screening drug-ADR pairs in all drug-diagnosis pairs. 

Finally, detection performance may be further improved by bringing more proper-

ties, e.g., dosage of the drug, to the aggregated patient weeks. Other scores introduced in 

Chapter 2, e.g., information component, may be added to the combined detecting scores. 

However, we should consider the impact of feature expansion on time efficiency (in our 

study, it took less than four hours to calculate scores for 7.5 million patient weeks by a 

computer equipped with an Intel Core-i7 3.2Ghz CPU). 
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