
國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

在共享記憶體系統的快速平行隨機梯度下降法矩陣分解

A Fast Parallel Stochastic Gradient Method for
Matrix Factorization in Shared Memory Systems

阮毓欽

Yu-Chin Juan

指導教授：林智仁 博士

Advisor: Chih-Jen Lin, Ph.D.

中華民國 103年 7月

July, 2014

i

中文摘要

在推薦系統上，矩陣分解是一個非常有效的技術。對於矩陣分解問題，隨機梯度
下降法是一個高效的演算法。然而，這個演算法並不容易被平行。這篇論文，在共
享記憶體系統中，我們開發一個新的平行演算法叫做FPSG。藉由解決負載不平衡問
題及快取失效問題，我們開發的平行演算法比現有的平行演算法更加有效。

關鍵詞: 推薦系統，矩陣分解，隨機梯度下降法，平行計算，共享記憶體演算法。

ii

ABSTRACT

Matrix factorization is known to be an effective method for recommender systems

that are given only the ratings from users to items. Currently, stochastic gradient (SG)

method is one of the most popular algorithms for matrix factorization. However, as a

sequential approach, SG is difficult to be parallelized for handling web-scale problems.

In this thesis, we develop a fast parallel SG method, FPSG, for shared memory systems.

By dramatically reducing the cache-miss rate and carefully addressing the load balance

of threads, FPSG is more efficient than state-of-the-art parallel algorithms for matrix

factorization.

KEYWORDS: Recommender system, Matrix factorization, Stochastic gradient de-

scent, Parallel computing, Shared memory algorithm.

iii

TABLE OF CONTENTS

口口口試試試委委委員員員會會會審審審定定定書書書 . i

中中中文文文摘摘摘要要要 . ii

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . viii

CHAPTER

I. Introduction . 1

II. Existing Parallelized Stochastic Gradient Descent Algorithms
and Coordinate Descent Methods 6

2.1 HogWild . 6
2.2 DSGD . 8
2.3 CCD++ . 9

III. Problems in Parallel SG Methods for Matrix Factorization . . 13

3.1 Locking Problem . 13
3.2 Memory Discontinuity . 14

IV. Our Approaches . 16

4.1 Lock-Free Scheduling . 16
4.2 Partial Random Method . 18
4.3 Overview of FPSG . 21
4.4 Implementation Issues . 22

V. Experiments . 25

5.1 Settings . 25

iv

5.2 Comparison of Methods on Training Time versus RMSE 27
5.2.1 The effectiveness of addressing the locking problem . 27
5.2.2 The effectiveness of having better memory locality . . 28
5.2.3 Comparison with the state-of-the-art methods 28
5.2.4 Comparison with CCD++ for Non-negative Matrix

Factorization . 29
5.3 Speedup of FPSG . 31

VI. Discussion . 33

6.1 Data Locality and the Update Order 33
6.2 Number of Blocks . 34

VII. Conclusions and Future Works . 38

BIBLIOGRAPHY . 40

APPENDICES . 42

v

LIST OF FIGURES

Figure

2.1 An example shows updating sequences of two threads in HogWild. . . 8
2.2 Patterns of independent blocks for a 3 by 3 grided matrix. 10
2.3 An illustration of the DSGD algorithm. 11
3.1 An example of the locking problem in DSGD. Each dot represents a

rating; gray blocks indicate a set of independent blocks. Ratings in
white blocks are not shown. 14

3.2 A random method to select rating instances for update. 15
4.1 An illustration of how the split of R to blocks affects the job scheduling.

T1 is the thread that is updating block b0,0. T2 is the thread that is
getting a new block from the scheduler. Blocks with “x” are dependent
on block b0,0, so they cannot be updated by T2. 18

4.2 DoI on four data sets. R is grided into 13 × 13 blocks after being
randomly shuffled and 12 threads are used. 19

4.3 Ordered method to select rating instances for update. 20
4.4 A comparison between the random method and the ordered method

using the Yahoo!Music data set. One thread is used. 21
4.5 An illustration of the partial random method. Each color indicates

the block being processed by a thread. Within each block, the update
sequence is ordered like that in Figure 4.3. If block (1,1) is finished
first, three candidates independent of the two other running blocks
(2,2) and (3,3) are (1,4), (4,1), and (4,4), which are indicated by red
arrows. If these three candidates have been accessed by the same
number of times, then one is randomly chosen. This example explains
how we achieve the random order of blocks. 22

4.6 A comparison between the ordered method, the random method, and
the partial random method on the set Yahoo!Music. One thread is used. 23

4.7 An illustration of the partial random method. After the random shuffle
of data, some indices (in red color) are not ordered within each block.
We make the row indices ordered (in blue color) by a sorting procedure. 23

4.8 A comparison between two implementations of FPSG in Netflix and
Yahoo!Music. FPSG implements the two techniques discussed in Chap-
ter 4.4, while FPSG* does not. 23

5.1 A comparison between FPSG** and FPSG. 28
5.2 A comparison between the partial random method and the random

method. 29

vi

5.3 A comparison among the state-of-the-art parallel matrix factorization
methods. 30

5.4 A comparison between CCD++ and FPSG for non-negative matrix
factorization. 31

5.5 Speedup of different matrix factorization methods. 32

vii

LIST OF TABLES

Table

5.1 The statistics and parameters for each data set. Note that the Hugewiki
set used here contains only one quarter of the original set. 26

6.1 Execution time (in seconds) of 50 iterations of FPSG 34
6.2 The performance of FPSG on MovieLens with different number of

blocks. The target RMSE is 0.858. Time is in seconds. 34
6.3 The performance of FPSG on Netflix with different number of blocks.

The target RMSE is 0.941. Time is in seconds. 35
6.4 The performance of FPSG on Yahoo!Music with different number of

blocks. The target RMSE is 22.40. Time is in seconds. 36
A.1 Symbols in (A.1). 43

viii

CHAPTER I

Introduction

Many customers are overwhelmed with the choices of products in the e-commerce

activities. For example, Yahoo!Music and GrooveShark provide a huge number of songs

for on-line audiences. An important problem is how to let users efficiently find items

meeting their needs. Recommender systems have been constructed for such a purpose.

As demonstrated in KDD Cup 2011 (Dror et al., 2012) and Netflix competition (Bell

and Koren, 2007), a collaborative filter using latent factors has been considered as one

of the best models for recommender systems. This approach maps both users and

items into a latent feature space. A latent factor, though not directly measurable,

often contains some useful abstract information. The affinity between a user and an

item is defined by the inner product of their latent-factor vectors. More specifically,

given m users, n items, and a rating matrix R that encodes the preference of the

uth user on the vth item at the (u,v) entry, ru,v, matrix factorization (Koren et al.,

2009) is a technique to find two dense factor matrices P ∈ Rk×m and Q ∈ Rk×n such

that ru,v ' pT
uqv, where k is the pre-specified number of latent factors, and pu ∈ Rk

and qv ∈ Rk are respectively the uth column of P and the vth column of Q. The

optimization problem is

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

uqv)
2 + λP ‖pu‖2 + λQ ‖qv‖2

)
, (1.1)

1

where ‖·‖ is the Euclidean norm, (u, v) ∈ R indicates that rating ru,v is available, λP

and λQ are regularization coefficients for avoiding over-fitting.1 Because
∑

(u,v)∈R
(
ru,v − pT

uqv

)2
is a non-convex function of P and Q, (1.1) is a difficult optimization problem. Many

past studies have proposed optimization methods to solve (1.1), e.g., (Koren et al.,

2009; Pilászy et al., 2010; Zhou et al., 2008). Among them, stochastic gradient (SG)

is popularly used. For example, all of the top three teams in KDD Cup 2011 (track 1)

employed SG in their winning approaches.

The basic idea of SG is that, instead of expensively calculating the gradient of (1.1),

it randomly selects a (u,v) entry from the summation and calculates the corresponding

gradient (Kiefer and Wolfowitz, 1952; Robbins and Monro, 1951). Once ru,v is chosen,

the objective function in (1.1) is reduced to

(
ru,v − pT

uqv

)2
+ λPp

T
upu + λQq

T
v qv.

After calculating the sub-gradient over pu and qv, variables are updated by the follow-

ing rules

pu ← pu + γ (eu,vqv − λPpu) , (1.2)

qv ← qv + γ (eu,vpu − λQqv) , (1.3)

where

eu,v = ru,v − pT
uqv

is the error between the real and predicted ratings for the (u,v) entry, and γ is the

learning rate. The overall procedure of SG is to iteratively select an instance ru,v ,

apply update rules (1.2)-(1.3), and may adjust the learning rate.

1The regularization terms can be rewritten in an alternative form,
∑

u,v λP ‖pu‖2 =

λP
∑m

u=1 |Ωu| ‖pu‖2 and
∑

u,v λQ ‖qv‖
2

= λQ
∑n

v=1 |Ω̄v| ‖qv‖2, where |Ωu| and |Ω̄v| indicate the num-
ber of non-zero ratings associated with the uth user and the vth item, respectively.

2

Although SG has been successfully applied to matrix factorization, it is not ap-

plicable to handle large-scale data. The iterative process of applying (1.2)-(1.3) is

inherently sequential, so it is difficult to parallelize SG under advanced architectures

such as GPU, multi-core CPU or distributed clusters. Several parallel SG approaches

have been proposed (e.g., (Gemulla et al., 2011; Hall et al., 2010; Mann et al., 2009;

McDonald et al., 2010; Niu et al., 2011; Zinkevich et al., 2010)), although their focuses

may be on other machine learning techniques rather than matrix factorization. In this

work, we aim at developing an effective parallel SG method for matrix factorization in

a shared memory environment. Although for huge data a distributed system must be

used, in many situations running SG on a data set that can fit in memory is still very

time consuming. For example, the size of the KDD Cup 2011 data is less than 4GB

and can be easily stored in the memory of one computer, but a single SG iteration of

implementing (1.2)-(1.3) takes more than 30 seconds. The overall SG procedure may

take hours. Therefore, an efficient parallel SG to fully take the power of multi-core

CPU can be very useful in practice.

Among existing parallel-SG methods for matrix factorization, some are directly

designed or can be adapted for shared-memory systems. We briefly discuss two state-

of-the-art methods because our method will improve upon them. HogWild (Niu et al.,

2011) randomly selects a subset of ru,v instances and apply rules (1.2)-(1.3) in all avail-

able threads simultaneously without synchronization between threads. The reason why

they can drop the synchronization is that their algorithm guarantees the convergence

when factorizing a highly sparse matrix with the rare existence of the over-writing

problem where different threads access the same data or variables such as ru,v, pu and

qv at the same time. That is, one thread is allowed to over-write another’s work. DSGD

(Gemulla et al., 2011) is another popular parallel SG approach although it is mainly

3

designed for cluster environments. Given s computation nodes and a rating matrix R,

DSGD uniformly grids R into s by s blocks first. Then DSGD assigns s different blocks

to the s nodes. On each node, DSGD performs (1.2)-(1.3) on all ratings of the block

in a random order. As expected, DSGD can be adapted for shared-memory systems if

we replace a computational node with a thread.

In this thesis, we point out that existing parallel SG methods may suffer from the

following issues when they are applied in a shared-memory system.

• Data discontinuity: the algorithm may randomly access data or variables so that

a high cache-miss rate is endured.

• Block imbalance: for approaches that split data to blocks and utilize them in

parallel, cores/CPUs for sparser blocks (i.e., a block contains fewer ratings) must

wait for those assigned to denser blocks.

Our main contribution is to design an effective method to alleviate these issues. This

thesis is organized as follows. We give details of HogWild and DSGD in Chapter II.

Another parallel matrix factorization method CCD++ is also discussed in this chapter.

Then Chapter III discusses difficulties in parallelizing SG for matrix factorization. Our

proposed method FPSG (Fast Parallel SG) is introduced in Chapter IV. We compare

our method with state-of-the-art algorithms using root mean square error (RMSE) as

the evaluation measure in Chapter V. RMSE is defined as√
1

number of ratings

∑
(u,v)∈R

(ru,v − r̂u,v)2, (1.4)

where R is the rating matrix of the test set and r̂u,v is the predicted rating value. In

Chapter VI, we discuss some miscellaneous issues related to our proposed approach.

Finally, Chapter VII summarizes our work and gives future directions.

A preliminary version of this work appears in a conference thesis (Zhuang et al.,

2013). The major extensions in this journal version include first we add more experi-

4

ments to show the effectiveness of FPSG, second we compare the speedup of state-of-

the-art methods, and third many detailed descriptions are now given.

5

CHAPTER II

Existing Parallelized Stochastic Gradient Descent

Algorithms and Coordinate Descent Methods

Following the discussion in Chapter I, in this chapter, we present two parallel SG

methods, HogWild (Niu et al., 2011) and DSGD (Gemulla et al., 2011), in detail. We

also discuss a non-SG method CCD++ (Yu et al., 2012) because it is included for

comparison in Chapter V. CCD++ is a parallel coordinate descent method that is

considered state-of-the-art for matrix factorization.

2.1 HogWild

HogWild (Niu et al., 2011) assumes that the rating matrix is highly sparse and

deduces that for two randomly sampled ratings, the two serial updates via (1.2)-(1.3)

are likely to be independent. The reason is that the selected ratings to be updated

almost never share the same user identity and item identity. Then, iterations of SG,

(1.2)-(1.3), can be parallely executed in different threads. With the assumption of

independent updates, HogWild does not synchronize the state of each thread for pre-

venting concurrent variable access. Instead, HogWild employs atomic operations, each

of which is a series of CPU instructions that can not be interrupted. Therefore, as a

kind of asynchronous methods, HogWild saves the time for synchronization. Although

the potential over-writing may occur (i.e., the ratings to be updated share the same

6

Algorithm 1 HogWild’s Algorithm

Require: number of threads s, R ∈ Rm×n, P ∈ Rk×m, and Q ∈ Rk×n

1: for each thread i parallelly do
2: while true do
3: randomly select an instance ru,v from R
4: update corresponding pu and qv using (1.2)-(1.3), respectively
5: end while
6: end for

user identity or item identity), Niu et al. (2011) prove the convergence under some

assumptions such as the rating matrix is very sparse.

Algorithm 1 shows the whole process of HogWild. We use Figure 2.1 to illustrate

how two threads run SG updates simultaneously. The left matrix and the right matrix

are the updating sequences of two threads, where black dots are ratings randomly

selected by a thread and arrows indicate the order of processed ratings. The red dot,

which is simultaneously accessed by two threads in their last iterations in Figure 2.1,

indicates the occurrence of the over-writing problem. That is, two threads conduct SG

updates using the same rating value ri,j. From Algorithm 2.1, the operations include

• reading ri,j, pi and qj,

• evaluating the right-hand sides of (1.2)-(1.3), and

• assigning values to the left-hand sides of (1.2)-(1.3)

The second operation does not change shared variables because it is a series of arith-

metic operations on local variables ri,j, pi and qj. However, for the first and the

last operations, we use atomic instructions that are executed without considering the

situation of other threads. All available threads would continuously execute the above-

mentioned procedure until achieving the user-defined number of iterations.

7

Figure 2.1: An example shows updating sequences of two threads in HogWild.

2.2 DSGD

Although SG is a sequential process, DSGD (Gemulla et al., 2011) takes the prop-

erty that some blocks of the rating matrix are mutually independent and their corre-

sponding variables can be updated in parallel. DSGD uniformly grids the rating matrix

R into many sub-matrices (also called blocks), and applies SG to some independent

blocks simultaneously. In the following discussion, we say two blocks are independent

to each other if they share neither any common column nor any common row of the

rating matrix. For example, in Figure 2.2, the six patterns of gray blocks in R cover all

possible patterns of independent blocks. Note that Gemulla et al. (2011) restrict the

number of blocks in each patten to be s, the number of available computational nodes,

for reducing the data communication in distributed systems; see also the explanation

below.

The overall algorithm of DSGD is shown in Algorithm 2, where T is the maximal

number of iterations. In line 2, R is grided into s× s uniform blocks, and the interme-

diate for-loop continuously assigns s independent blocks to computation nodes until

all blocks in R have been processed once. The bth iteration of the innermost for-loop

updates P and Q by performing SG on ratings in the block b. Given a 4-by-4 divided

rating matrix and 4 threads as an example in Figure 2.3a, we show two consecutive

iterations of the innermost for-loop in Figure 2.3b. The left iteration assigns 4 diagonal

8

Algorithm 2 DSGD’s Algorithm

Require: number of threads s, maximum iterations T , R ∈ Rm×n, P ∈ Rk×m, and
Q ∈ Rk×n

1: grid R into s× s blocks B and generate s patterns covering all blocks
2: for t = {1, . . . , T} do
3: Decide the order of s patterns sequentially or by random permutation
4: for each pattern of s independent blocks of B do
5: assign s selected blocks to s threads
6: for b = {1, . . . , s} parallellly do
7: randomly sample ratings from block b
8: apply (1.2)-(1.3) on all sampled ratings
9: end for

10: end for
11: end for

blocks to 4 nodes (i0, i1, i2, i3); node i0 updates p0 and q0, node i1 updates p1 and q1,

and so on. In the next (right) iteration, each node updates the same segment of P , but

for Q, q1, q2, q3 and q0 are respectively updated by nodes i0, i1, i2 and i3. This exam-

ple shows that we can keep pk in node ik to avoid the communication of P . However,

nodes must exchange their segments of Q, which are alternatively updated by different

nodes in different iterations. For example, from Figure 2.3a to Figure 2.3b, node i0

must send node i3 the segment q0 after finishing its computation. Consequently, the

total amount of data transferred in one iteration of the intermediate loop is the size

of Q because each of s nodes sends |Q|/s and receives |Q|/s entries of Q from another

node, where |Q| is the total number of entries in Q.

2.3 CCD++

CCD++ (Yu et al., 2012) is a parallel method for matrix factorization in both

shared-memory and distributed environments. Based on the concept of a coordinate

descent method, CCD++ sequentially updates one row of P and one row of Q corre-

9

Figure 2.2: Patterns of independent blocks for a 3 by 3 grided matrix.

sponding to the same latent dimension while fixing other variables. Let

p̂1, . . . , p̂k be P ’s rows and

q̂1, . . . , q̂k be Q’s rows.

CCD++ cyclically updates (p̂1, q̂1) until (p̂k, q̂k). Let (p̂, q̂) be the current values of

the selected row and denote (w,h) as the corresponding variables to be determined.

Because other rows are fixed, the objective function in (1.1) can be converted to

∑
(u,v)∈R

(
ru,v − pT

uqv + p̂uq̂v − wuhv
)2

+ λP

(
m∑

u=1

‖pu‖2 −
m∑

u=1

p̂2u +
m∑

u=1

w2
u

)

+ λQ

(
n∑

v=1

‖qv‖2 −
n∑

v=1

q̂2v +
n∑

v=1

h2v

) (2.1)

or ∑
(u,v)∈R

(eu,v + p̂uq̂v − wuhv)
2 + λP

m∑
u=1

w2
u + λQ

n∑
v=1

h2v (2.2)

by dropping terms that do not depend on w or h. If w (or h) is fixed, the minimization

of (2.2) becomes a least square problem. Yu et al. (2012) alternatively update w and

h several times (called inner iterations in CCD++). In the case where h is fixed as

the current q̂, (2.2) becomes

m∑
u=1

 ∑
v: (u,v)∈R

(eu,v + p̂uq̂v − wuq̂v)
2 + λPw

2
u

+ constant. (2.3)

10

=

R PT Q

b3,0

b2,0

b1,0

b0,0

b3,1

b2,1

b1,1

b0,1

b3,2

b2,2

b1,2

b0,2

b3,3

b2,3

b1,3

b0,3

p3

p2

p1

p0 q0 q1 q2 q3

(a) 4 by 4 grided rating matrix R and corresponding segments of P and Q. Note that pi is
the ith segment of P and qj is the jth segment of Q.

R R

p3

p2

p1

p0

q3

q2

q1

q0

p3

p2

p1

p0

q0

q3

q2

q1i0

i1

i2

i3 i3

i0

i1

i2

(b) An example of two consecutive iterations (the left is before the right) of the innermost
for-loop of Algorithm 2. Each iteration considers a set of 4 independent blocks.

Figure 2.3: An illustration of the DSGD algorithm.

It can be decomposed into m independent problems

min
wu

∑
v: (u,v)∈R

(eu,v + p̂uq̂v − wuq̂v)
2 + λPw

2
u, ∀u = 1, . . . ,m. (2.4)

Each involves a quadratic function of a single variable, so a closed-form solution exists.

Then for any u, eu,v can be updated by

eu,v ← eu,v + (p̂u − wu)q̂v, ∀v with (u, v) ∈ R.

Similarly, by fixing w, we solve the following n independent problems to find h for

updating q̂.

min
hv

∑
u: (u,v)∈R

(eu,v + p̂uq̂v − p̂uhv)2 + λQh
2
v, ∀v = 1, . . . , n. (2.5)

The parallelism of CCD++ is achieved by solving those independent problems in (2.4)

and (2.5) simultaneously. See Algorithm 3 for the whole procedure of CCD++.

11

Algorithm 3 CCD++’s Algorithm

Require: maximum outer iterations T , R ∈ Rm×n, P ∈ Rk×m, and Q ∈ Rk×n

1: Initialize P as a zero matrix
2: Calculate rating error eu,v = ru,v for all (u, v) ∈ R
3: for t = {1, . . . , T} do
4: for tk = {1, . . . , k} do
5: Let p̂ and q̂ be the tkth row of P and Q, respectively.
6: for u = {1, . . . ,m} parallely do
7: Solve (2.4) under the given u, and then update p̂u and
eu,v, ∀v with (u, v) ∈ R

8: end for
9: for v = {1, . . . , n} parallely do

10: Solve (2.5) under the given v, and then update q̂v and
eu,v, ∀u with (u, v) ∈ R

11: end for
12: Copy p̂ and q̂ back to the tkth row of P and Q, respectively.
13: end for
14: end for

12

CHAPTER III

Problems in Parallel SG Methods for Matrix

Factorization

In this chapter, we point out that parallel SG methods discussed in Chapter II

may suffer some problems when they are applied in a shared-memory environment.

These problems are locking problem and memory discontinuity. We introduce what

these problems are, and explain how they result in performance degradation.

3.1 Locking Problem

For a parallel algorithm, to maximize the performance, keeping all threads busy is

important. The locking problem occurs if a thread idles because of waiting for other

threads. In DSGD, if s threads are used, then according to Algorithm 2, s independent

blocks are updated in a batch. However, if the running time for each block varies, then

a thread that finishes its job earlier may need to wait for other threads.

The locking problem may be more serious if R is unbalanced. That is, available

ratings are not uniformly distributed across all positions in R. In such a case, the

thread updating a block with fewer ratings may need to wait for other threads. For

example, in Figure 3.1, after all ratings in block b1,1 have been processed, only one

third of ratings in block b0,0 have been handled. Hence the thread updating b1,1 idles

most of the time.

13

2

1

0

0 1 2

Figure 3.1: An example of the locking problem in DSGD. Each dot represents a rating;
gray blocks indicate a set of independent blocks. Ratings in white blocks are not shown.

A simple method to make R more balanced is random shuffling, which randomly

permutes user identities and item identities before processing. However, the amount

of ratings in each block may still not be exactly the same. Further, even if each

block contains the same amount of ratings, the computing time of each code can still

be slightly different. Therefore, other techniques are needed to address the locking

problem.

Interestingly, DSGD has a reason to ensure that s blocks are processed before

moving to the next s. As mentioned in Chapter 2.2, it is designed for distributed

systems, so minimizing the communication cost between computing nodes may be

more important than reducing the idle time of nodes. However, in shared memory

systems the locking problem becomes an important issue.

3.2 Memory Discontinuity

When a program accesses data in memory discontinuously, it suffers from a high

cache-miss rate and performance degradation. Most SG solvers for matrix factorization

including HogWild and DSGD randomly pick instances from R (or from a block of R)

to be updated. We call this setting as the random method, which is illustrated in Figure

3.2. Though the random method generally enjoys good convergence, it suffers from

14

R

=

P T Q

Figure 3.2: A random method to select rating instances for update.

the memory discontinuity seriously. The reason is that not only are rating instances

randomly accessed, but also user/item identities become discontinuous.

The seriousness of the memory discontinuity varies in different methods. In Hog-

Wild, each thread randomly picks instances among R independently, so it suffers from

memory discontinuity in R, P , and Q. In contrast, for DSGD, though ratings in a

block are randomly selected, as we will see in Chapter 4.2, we can easily change the

update order to mitigate the memory discontinuity.

15

CHAPTER IV

Our Approaches

In this thesis, we propose two techniques, lock-free scheduling and partial random

method, to respectively solve the locking problem mentioned in Chapter 3.1 and the

memory discontinuity mentioned in Chapter 3.2. We name the new parallel SG method

as fast parallel SG (FPSG). In Chapter 4.1, we discuss how FPSG flexibly assigns

blocks to threads to avoid the locking problem. In Chapter 4.2, we observe that a

comprehensive random selection may not be necessary, and show that randomization

can be applied only among blocks instead of within blocks to maintain both the memory

continuity and the fast convergence. In Chapter 4.3, we overview the complete design

of FPSG. Finally, in Chapter 4.4, we introduce our implementation techniques to

accelerate the computation.

4.1 Lock-Free Scheduling

We follow DSGD to grid R into blocks and design a scheduler to keep s threads

busy in running a set of independent blocks. For a block bi,j, if it is independent from

all blocks being processed, then we call it as a free block. Otherwise, it is a non-free

block. When a thread finishes processing a block, the scheduler assigns a new block

that meets the following two criteria:

1. It is a free block.

16

2. Its number of past updates is the smallest among all free blocks.

The number of updates of a block indicates how many times it has been processed.

The second criterion is applied because we want to keep a similar number of updates for

each block. If two or more blocks meet the above two criteria, then we randomly select

one. Given s threads, we show that FPSG should grid R into at least (s+ 1)× (s+ 1)

blocks. Take two threads as an example. Let T1 be a thread that is updating certain

block and T2 be a thread that just finished updating a block and is getting a new job

from the scheduler. If we grid R into 2 × 2 blocks shown in Figure 4.1a, then T2 has

only one choice: the block it just processed. A similar situation happens when T1 gets

its new job. Because T1 and T2 always process the same block, the remaining two

blocks are never processed. In contrast, if we grid R into 3× 3 blocks like Figure 4.1b,

T2 has three choices b1,1, b1,2 and b2,1 when getting a new block.

As discussed above, because we can always assign a free block to a thread when

it finishes updating the previous one, our scheduler does not suffer from the locking

problem. However, for extremely unbalanced data sets, where most available ratings

are in certain blocks, our scheduler is unable to keep the number of updates in all

blocks balanced. In such a case blocks with many ratings are updated only very few

times. A simple remedy is the random shuffling technique introduced in Chapter 3.1.

In our experience, after random shuffling, the number of ratings in the heaviest block

is smaller than twice of the lightest block. We then experimentally check how serious

the imbalance problem is after random shuffling. Here we define degree of imbalance

(DoI) to check the number of updates in all blocks. Let UTM(t) and UTm(t) be the

maximal and the minimal numbers of updates in all blocks, respectively, where t is the

iteration index. (FPSG does not have the concept of iterations. Here we call every

17

T1

T2x

x0

1

0 1

(a) 2× 2 blocks

T1

T2x

x

x x

2

1

0

0 1 2

(b) 3× 3 blocks

Figure 4.1: An illustration of how the split of R to blocks affects the job scheduling.
T1 is the thread that is updating block b0,0. T2 is the thread that is getting a new
block from the scheduler. Blocks with “x” are dependent on block b0,0, so they cannot
be updated by T2.

cycle of processing (s+ 1)2 blocks as an iteration.) DoI is defined as

DoI =
UTM(t)− UTm(t)

t
.

A small DoI indicates that the number of updates is similar across all blocks. In Figure

4.2, we show DoI for four different data sets. We can see that our scheduler reduces

DoI to be close to zero in just a few iterations. For details of the data sets used in

Figure 4.2, please refer to Chapter 5.1.

4.2 Partial Random Method

To achieve memory continuity, in contrast to the random method, we can consider

an ordered method to sequentially select rating instances by user identities or item

identities. Figure 4.3 gives an example of following the order of users. Then matrix

P can be accessed continuously. Alternatively, if we follow the order of items, then

the continuous access of Q can be achieved. For R, if the order of selecting rating

instances is fixed, we can store R into memory with the same order to ensure its

continuous access. Although the ordered method can access data in a more continuous

manner, empirically we find that it is not stable. Figure 4.4 gives an example showing

that under two slightly different learning rates for SG, the ordered method can be

18

0 200 400 600 800 1000

0

0.5

1

1.5

2

D
o

I

Iteration

(a) MovieLens

0 200 400 600 800 1000

0

0.5

1

1.5

2

D
o

I

Iteration

(b) Netflix

0 200 400 600 800 1000

0

0.5

1

1.5

2

2.5

3

D
o

I

Iteration

(c) Yahoo!Music

0 50 100 150 200 250

0

0.5

1

1.5

2

Iteration
D

o
I

(d) Hugewiki

Figure 4.2: DoI on four data sets. R is grided into 13×13 blocks after being randomly
shuffled and 12 threads are used.

either much faster or much slower than the random method.

The above experiment indicates that a random access of data/variables may be

useful for the convergence. This property has been observed in related optimization

techniques. For example, in coordinate descent methods to solve some optimization

problems, Chang et al. (2008) show that a random rather than a sequential order to

update variables significantly improves the convergence speed. To compromise be-

tween data continuity and convergence speed, in FPSG, we propose a partial random

method, which selects ratings in a block orderly but randomizes the selection of blocks.

Although our scheduling is close to deterministic by choosing blocks with the smallest

numbers of accesses, the randomness can be enhanced by griding R into more blocks.

Then at any time point, some blocks have been processed by the same number of

times, so the scheduler can randomly select one of them. Figure 4.5 illustrates how

19

R

=

P T Q

Figure 4.3: Ordered method to select rating instances for update.

the partial random method works using three threads. Figure 4.6 extends the running

time comparison in Figure 4.4 to include FPSG. We can see that FPSG enjoys both

fast convergence and excellent RMSE. Some related methods have been investigated

in (Gemulla et al., 2011), although they showed that the convergence on the ordered

method in terms of training loss is worse than the random method. Their observation

is opposite to our experimental results. A possible reason is that we consider RMSE

on the testing set while they consider the training loss.

Some subtle implementation details must be noted. We discussed in Chapter 4.1

that FPSG applies random shuffling to avoid the unbalanced number of updates of each

block. However, after applying the random shuffling and griding R in to blocks, the

ratings in each block are not sorted by user (or item) identities. To apply the partial

random method we must sort user identities before processing each block because an

ordered method is applied within the block. We give an illustration in Figure 4.7.

In the beginning, we make the rating matrix more balanced by randomly shuffling

all ratings; see the middle figure in Figure 4.7. However, user identities and item

identities become not ordered, so we cannot achieve memory continuity by using the

update strategy shown in Figure 4.3. Therefore, we must rearrange ratings in each

block so that their row indices (i.e., user identities) are ordered; see the last figure in

Figure 4.7.

20

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

R
M

S
E

Time(s)

Ordered
Random

(a) γ = 0.0001

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

Time(s)

R
M

S
E

Ordered
Random

(b) γ = 0.0005

Figure 4.4: A comparison between the random method and the ordered method using
the Yahoo!Music data set. One thread is used.

Algorithm 4 The overall procedure of FPSG

1: randomly shuffle R
2: grid R into a set B with at least (s+ 1)× (s+ 1) blocks
3: sort each block by user (or item) identities
4: construct a scheduler
5: launch s working threads
6: wait until the total number of updates reaches a user-defined value

4.3 Overview of FPSG

Algorithm 4 gives the overall procedure of FPSG. Based on the discussion in Chap-

ter 4.1, FPSG first randomly shuffles R to avoid data imbalance. Then it grids R into

at least (s + 1) × (s + 1) blocks and applies the partial random method discussed in

Chapter 4.2 by sorting each block by user (or item) identities. Finally it constructs

a scheduler and launches s working threads. After the required number of iterations

is reached, it notifies the scheduler to stop all working threads. The pseudo code of

the scheduler and each working thread are shown in Algorithm 5 and Algorithm 6,

respectively. Each working thread continuously gets a block from the scheduler by

invoking get job, and the scheduler returns a block that meets criteria mentioned in

Chapter 4.1. After a working thread gets a new block, it processes ratings in the block

in an ordered manner (see Chapter 4.2). In the end, the thread invokes put job of the

scheduler to update the number of times that the block has been processed.

21

Figure 4.5: An illustration of the partial random method. Each color indicates the
block being processed by a thread. Within each block, the update sequence is ordered
like that in Figure 4.3. If block (1,1) is finished first, three candidates independent
of the two other running blocks (2,2) and (3,3) are (1,4), (4,1), and (4,4), which are
indicated by red arrows. If these three candidates have been accessed by the same
number of times, then one is randomly chosen. This example explains how we achieve
the random order of blocks.

4.4 Implementation Issues

FPSG uses the standard thread class in C++ implemented by pthread to do the

parallelization. For the data set Yahoo!Music of about 250M ratings, using a typical

machine (details specified in Chapter 5.1), FPSG finishes processing all ratings once in

6 seconds and takes only about 8 minutes to converge to a reasonable RMSE. Here we

describe some techniques employed in our implementation. First, empirically we find

that using single-precision floating-point computation does not suffer from numerical

error accumulation. For the data set Netflix, using single precision runs 1.1 times

faster then using double precision. Second, modern CPU provides SSE instructions

that can concurrently run floating-point multiplications and additions. We apply SSE

instructions for vector inner products and additions. For Yahoo!Music data set, the

speed up is 2.4 times. Figure 4.81 shows the speedup after these techniques are applied

in two data sets.

1For experimental settings, see Chapter 5.1.

22

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

R
M

S
E

Time(s)

Ordered
Random
Partial Random

(a) γ = 0.0001

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

Time(s)

R
M

S
E

Ordered
Random
Partial Random

(b) γ = 0.0005

Figure 4.6: A comparison between the ordered method, the random method, and the
partial random method on the set Yahoo!Music. One thread is used.

1

1

2

2

3

3

4

4

5

5

6

6 3

5

2

6

4

1

146325

5

3

6

2

4

1

146325

Rating Matrix After the random shuffle Sort row indices in each block

Figure 4.7: An illustration of the partial random method. After the random shuffle of
data, some indices (in red color) are not ordered within each block. We make the row
indices ordered (in blue color) by a sorting procedure.

0 50 100 150 200 250

0.92

0.94

0.96

0.98

1

R
M

S
E

Time(s)

FPSG*
FPSG

(a) Netflix

0 500 1000 1500 2000

22

23

24

25

26

27

R
M

S
E

Time(s)

FPSG*
FPSG

(b) Yahoo!Music

Figure 4.8: A comparison between two implementations of FPSG in Netflix and Ya-
hoo!Music. FPSG implements the two techniques discussed in Chapter 4.4, while
FPSG* does not.

23

Algorithm 5 Scheduler of FPSG

1: procedure get job
2: Initialize an empty list b and b.utmin =∞ . ut: number of updates
3: for all b in B do
4: if b is non-free then
5: continue
6: else
7: if b.ut == b.utmin then
8: Add b into b
9: else if b.ut < b.utmin then

10: b.utmin = b.ut
11: Make b empty and add b into b
12: end if
13: end if
14: end for
15: Randomly select an element denoted by bx from b
16: return bx
17: end procedure
18: procedure put job(b)
19: b.ut = b.ut+ 1
20: end procedure

Algorithm 6 Working thread of FPSG

1: while true do
2: get a block b from scheduler → get job()
3: process elements orderly in this block
4: scheduler → put job(b)
5: end while

24

CHAPTER V

Experiments

In this chapter, we provide the details about our experimental settings, and compare

FPSG with other parallel matrix factorization algorithms mentioned in Chapter II.

5.1 Settings

Data Sets: Four data sets, MovieLens,1 Netflix, Yahoo!Music, and Hugewiki,2 are

used for the experiments. For reproducibility, we consider the original training/test sets

in our experiments if they are available (for MovieLens, we use Part B of the original

data set generated by the official script). Because the test set of Yahoo!Music is not

available, we consider the last four ratings of each user for testing, while the remaining

ratings for training set. The data set Hugewiki is too large to fit in our machines, so

we sample one quarter of the data randomly, and split them into training/test sets.

The statistics of each data set is in Table 5.1.

Platform: We use a server with two Intel Xeon E5-2620 2.0GHz processors and

64 GB memory. There are six cores in each processor.

Parameters: Table 5.1 lists the parameters used for each data set. The parameters

k, λP , λQ may be chosen by a validation procedure although here we mainly borrow

1http://www.grouplens.org/node/73
2http://graphlab.org/downloads/datasets/

25

http://www.grouplens.org/node/73
http://graphlab.org/downloads/datasets/

Data Set MovieLens Netflix Yahoo!Music Hugewiki
m 71,567 2,649,429 1,000,990 39,706
n 65,133 17,770 624,961 25,034,863

#Training 9,301,274 99,072,112 252,800,275 761,429,411
#Test 698,780 1,408,395 4,003,960 100,000,000

k 40 40 100 100
λP 0.05 0.05 1 0.01
λQ 0.05 0.05 1 0.01
γ 0.003 0.002 0.0001 0.004

Table 5.1: The statistics and parameters for each data set. Note that the Hugewiki
set used here contains only one quarter of the original set.

values from earlier works to obtain comparable results. For Netflix and Yahoo!Music,

we use the parameters in (Yu et al., 2012); see values listed in Table 5.1. Although (Yu

et al., 2012) have considered MovieLens, we use a different setting of λP = λQ = 0.05

for a better RMSE. For Hugewiki, we consider the same parameters as in (Yun et al.,

2014). The initial values of P and Q are chosen randomly under a uniform distribution.

This setting is the same as that in (Yu et al., 2012). The learning rate is determined

by an ad hoc parameter selection. Because we focus on the running speed rather than

RMSE in this thesis, we do not apply an adaptive learning rate.

In our platform, 12 physical cores are available, so we use 12 threads in all exper-

iments. For FPSG, even though Chapter IV shows that (s + 1) × (s + 1) blocks are

already enough for s threads, we use more blocks to ensure the randomness of blocks

that are simultaneously processed. For Netflix, Yahoo!Music and Hugewiki, R is grided

into 32×32 blocks; for MovieLens, R is grided into 16×16 blocks because the number

of non-zeros is smaller.

Evaluation: As most recommender systems do, the metric adopted as our evalu-

ation is RMSE on the test set, which is disjoint with the training set; see Eq. (1.4).

In addition, the time in each figure refers to the training time.

26

Implementations: Among methods included for comparison, HogWild3 and CCD++4

are publicly available. We reimplement HogWild under the same framework of our

FPSG and DSGD implementations for a fairer comparison. In the official HogWild

package, the formulation includes the average value of training ratings. After trying

different settings, the program still fails to converge. Therefore, we present only results

of our HogWild implementation in the experiments.

The publicly available CCD++ code uses double precision. Because ours uses single

precision following the discussion in Chapter 4.4, for a fair comparison, we obtain a

singles-precision version of CCD++ from its authors. Note that OpenMP5 is used in

their implementation.

5.2 Comparison of Methods on Training Time versus RMSE

We first illustrate the effectiveness of our solutions for data imbalance and mem-

ory discontinuity. Then, we compare parallel matrix factorization methods including

DSGD, CCD++, HogWild and our FPSG.

5.2.1 The effectiveness of addressing the locking problem

In Chapter 3.1, we mentioned that updating several blocks in a batch may suffer

from the locking problem if the data is unbalanced. To verify the effectiveness of FPSG,

in Figure 5.1, we compare it with a modification where the scheduler processes a batch

of independent blocks as DSGD (Algorithm 2) does. We call the modified algorithm

as FPSG**. It can be clearly seen that FPSG runs much faster than FPSG** because

it does not suffer from the locking problem.

3http://hazy.cs.wisc.edu/hazy/victor/
4http://www.cs.utexas.edu/~rofuyu/libpmf/
5http://openmp.org/

27

http://hazy.cs.wisc.edu/hazy/victor/
http://www.cs.utexas.edu/~rofuyu/libpmf/
http://openmp.org/

0 5 10 15 20 25
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Time (s)

R
M

S
E

FPSG**
FPSG

(a) MovieLens

0 20 40 60 80 100 120

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Time (s)

R
M

S
E

FPSG**
FPSG

(b) Netflix

0 100 200 300 400 500 600 700
21.5

22

22.5

23

23.5

24

Time (s)

R
M

S
E

FPSG**
FPSG

(c) Yahoo!Music

0 200 400 600 800 1000

0.55

0.6

0.65

0.7

Time (s)
R

M
S

E

FPSG**
FPSG

(d) Hugewiki

Figure 5.1: A comparison between FPSG** and FPSG.

5.2.2 The effectiveness of having better memory locality

We conduct experiments to investigate if the proposed partial random method

can not only avoid memory discontinuity, but also keep good convergence. In Figure

5.2, we select rating instances in each block orderly (the partial random method) or

randomly (the random method). Both methods converge to a similar RMSE, but

the training time of the partial random method is obviously shorter than that of the

random method.

5.2.3 Comparison with the state-of-the-art methods

Figure 5.3 presents the test RMSE and training time of various parallel matrix

factorization methods. Among the three parallel SG methods, FPSG is faster than

DSGD and HogWild. We believe that this result is because FPSG is designed to effec-

tively address issues mentioned in Chapter III. However, we must note that for DSGD,

it is also easy to incorporate similar techniques (e.g., the partial random method) to

28

0 50 100 150
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Time (s)

R
M

S
E

Random
Partial Random

(a) MovieLens

0 500 1000 1500

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Time (s)

R
M

S
E

Random
Partial Random

(b) Netflix

0 1000 2000 3000 4000 5000 6000

22

22.5

23

23.5

24

Time (s)

R
M

S
E

Random
Partial Random

(c) Yahoo!Music

0 1000 2000 3000 4000 5000

0.55

0.6

0.65

0.7

Time (s)
R

M
S

E

Random
Partial Random

(d) Hugewiki

Figure 5.2: A comparison between the partial random method and the random method.

improve its performance.

As shown in Figure 5.3, CCD++ is the fastest in the beginning, but becomes slower

than FPSG. Because the optimization problem of matrix factorization is non-convex

and CCD++ is a more greedy setting than SG by accurately minimizing the objective

function over certain variables at each step, we suspect that CCD++ may converge

to some local minimum pre-maturely. On the contrary, SG-based methods may be

able to escape from a local minimum because of the randomness. Furthermore, for

the Hugewiki in Figure 5.3, CCD++ does not give a satisfactory RMSE. Note that in

addition to the regularization parameter used in this experiment, (Yun et al., 2014)

have applied larger parameters for Hugewiki. The resulting RMSE can be improved.

5.2.4 Comparison with CCD++ for Non-negative Matrix Factorization

We have seen that FPSG and CCD++ are two state-of-the-art algorithms for stan-

dard matrix factorization. It is interesting to see if FPSG can be extended to solve

29

0 20 40 60 80 100 120 140

0.84

0.86

0.88

0.9

0.92

Time (s)

R
M

S
E

DSGD
HogWild
CCD++
FPSG

(a) MovieLens

0 500 1000 1500 2000 2500

0.92

0.93

0.94

0.95

0.96

Time (s)

R
M

S
E

DSGD
HogWild
CCD++
FPSG

(b) Netflix

0 500 1000 1500 2000 2500 3000

22

22.5

23

23.5

24

Time (s)

R
M

S
E

DSGD
HogWild
CCD++
FPSG

(c) Yahoo!Music

0 500 1000 1500 2000 2500 3000

0.55

0.6

0.65

0.7

0.75

0.8

Time (s)
R

M
S

E

DSGD
HogWild
CCD++
FPSG

(d) Hugewiki

Figure 5.3: A comparison among the state-of-the-art parallel matrix factorization
methods.

other matrix factorization problems. We consider non-negative matrix factorization

(NMF) that requires the non-negativity of P and Q.

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

uqv)
2 + λP ‖pu‖2 + λQ ‖qv‖2

)
, (5.1)

subject to Piu ≥ 0, Qiv ≥ 0, ∀i ∈ {1, · · · , k}.

It is straightforward to warp FPSG for solving (5.1) with a simple projection (Gemulla

et al., 2011), and the corresponding update rules are

pu ← max(0,pu + γ (eu,vqv − λPpu))

qv ← max(0, qv + γ (eu,vpu − λQqv)),

(5.2)

where max(·, ·) is an element-wise maximum operation.

For CCD++, a modification for NMF has been proposed in (Hsieh and Dhillon,

2011). Like (5.2), it projects negative values back to zero during the coordinate descent

30

0 2 4 6 8 10

0.85

0.9

0.95

1

Time (s)

R
M

S
E

CCD++
FPSG

(a) MovieLens

0 20 40 60 80

0.95

1

1.05

Time (s)

R
M

S
E

CCD++
FPSG

(b) Netflix

0 200 400 600 800

22.5

23

23.5

24

24.5

25

Time (s)

R
M

S
E

CCD++
FPSG

(c) Yahoo!Music

0 100 200 300

0.55

0.6

0.65

0.7

0.75

Time (s)
R

M
S

E

CCD++
FPSG

(d) Hugewiki

Figure 5.4: A comparison between CCD++ and FPSG for non-negative matrix fac-
torization.

method. Our experimental comparison on CCD++ and FPSG is presented in Figure

5.4. Similar to Figure 5.3, FPSG outperforms CCD++ on NMF.

5.3 Speedup of FPSG

Speedup is an indicator on the effectiveness of a parallel algorithm. On a shared

memory system, it refers to the time reduction from using one core to several cores.

In this chapter, we compare the speedup of FPSG with other methods. From Figure

5.5, FPSG outperforms DSGD and HogWild. This result is expected because FPSG

aims at improving some shortcomings of these two methods.

Compared with CCD++, FPSG is better on two data sets, while CCD++ is bet-

ter on the others. As Algorithm 3 and Algorithm 4 show, FPSG and CCD++ are

parallelized with very different ideas. Because speedup is determined by many factors

in their respective parallel algorithms, it is difficult to explain why one is better than

31

1 2 3 4 5 6 7 8 9 10 11 12
1

3

5

7

9

Number of cores

S
p
e
e
d
u
p

DSGD
HogWild
CCD++
FPSG

(a) MovieLens

1 2 3 4 5 6 7 8 9 10 11 12
1

3

5

7

9

Number of cores

S
p
e
e
d
u
p

DSGD
HogWild
CCD++
FPSG

(b) Netflix

1 2 3 4 5 6 7 8 9 10 11 12
1

3

5

7

9

11

Number of cores

S
p
e
e
d
u
p

DSGD
HogWild
CCD++
FPSG

(c) Yahoo!Music

1 2 3 4 5 6 7 8 9 10 11 12
1

3

5

7

Number of cores

S
p
e
e
d
u
p

DSGD
HogWild
CCD++
FPSG

(d) Hugewiki

Figure 5.5: Speedup of different matrix factorization methods.

the other on some problems. Nevertheless, even though CCD++ gives better speedup

in some occasions, its overall performance (running time and RMSE) is still worse

than FPSG in Figure 5.3. Thus parallel SG remains a compelling method for matrix

factorization.

32

CHAPTER VI

Discussion

We discuss some miscellaneous issues in this chapter. Chapter 6.1 demonstrates

that taking the advantage of data locality can further improve the proposed FPSG

method. In Chapter 6.2, the selection of the number of blocks is discussed.

6.1 Data Locality and the Update Order

In our partial random method, ratings in each block are ordered. We can consider

a user-oriented or item-oriented ordering. Interestingly, these two ways may cause

different costs on the data access. For example, in Figure 4.3, we consider a user-

oriented setting, so under a given u

Ru,v and qv, ∀(u, v) ∈ R

must be accessed. While Ru,v is a scalar, qv, ∀(u, v) ∈ R involve many columns of

the dense matrix Q. Therefore, for going through all users, Q is needed many times.

Alternatively, if an item-oriented setting is used, for every item, P T is needed. Now

if m � n, P ’s size (k × m) is much larger than Q (k × n). Under the user-oriented

setting, it is possible that Q (or a significant portion of Q) can be stored in a higher

layer of the memory hierarchy because of its small size. Thus we do not waste time to

frequently load Q from a lower layer. In contrast, under the item-oriented setting, P

33

XXXXXXXXXX
Order

Data set MovieLens Netflix Yahoo!Music Hugewiki

User 2.27 22.50 173.34 1531.14
Item 2.91 43.26 294.19 1016.19

Table 6.1: Execution time (in seconds) of 50 iterations of FPSG

item blocks 16 16 16 16 32 32 32 32
user blocks 16 32 48 64 16 32 48 64
iterations 50 48 49 48 48 49 49 49
time 3.25 3.37 3.66 3.94 3.28 3.86 4.74 6.98
item blocks 48 48 48 48 64 64 64 64
item blocks 16 32 48 64 16 32 48 64
iterations 49 49 49 49 49 49 48 49
time 3.43 4.83 8.15 13.30 3.67 6.94 12.87 21.16

Table 6.2: The performance of FPSG on MovieLens with different number of blocks.
The target RMSE is 0.858. Time is in seconds.

may have to be swapped out to lower-level memory several times. Thus the cost for

data movements is higher. Based on this discussion, we conjecture that

m� n⇒ user-oriented access should be used,

m� n⇒ item-oriented access should be used.

(6.1)

We compare the two update orders in Table 6.1. For Netflix and Yahoo!Music, the user-

wise approach is much faster. From Table 5.1, these two data sets have m � n. On

the contrary, because n� m, the item-oriented approach is much better for Hugewiki.

This experiment fully confirms our conclusion in (6.1).

6.2 Number of Blocks

Recall that in FPSG, R is separated to at least (s + 1) × (s + 1) blocks, where s

is the number of threads. We conduct experiments to see how the number of blocks

affects the performance of FPSG. The results on three data sets are listed in Table 6.2,

Table 6.3, and Table 6.4. In these tables, “iterations” and “time” respectively mean

34

item blocks 16 16 16 16 16 16 16
user blocks 16 32 48 64 80 96 112
iterations 50 50 49 50 49 50 50
time 28.92 28.39 30.73 30.69 29.66 32.34 30.61
item blocks 32 32 32 32 32 32 32
user blocks 16 32 48 64 80 96 112
iterations 50 50 50 50 50 50 50
time 33.45 32.10 32.58 31.38 33.51 32.56 34.73
item blocks 48 48 48 48 48 48 48
user blocks 16 32 48 64 80 96 112
iterations 50 50 50 49 50 50 50
time 39.29 33.99 37.12 31.91 39.08 39.36 43.25
item blocks 64 64 64 64 64 64 64
user blocks 16 32 48 64 80 96 112
iterations 50 50 50 50 50 50 50
time 34.25 39.99 35.37 35.92 47.98 49.11 59.18
item blocks 80 80 80 80 80 80 80
user blocks 16 32 48 64 80 96 112
iterations 49 50 50 50 50 50 50
time 45.54 35.98 43.60 51.92 53.88 66.30 87.09
item blocks 96 96 96 96 96 96 96
user blocks 16 32 48 64 80 96 112
iterations 50 49 50 50 50 50 50
time 49.62 56.06 40.43 48.70 67.52 91.23 124.01
item blocks 112 112 112 112 112 112 112
user blocks 16 32 48 64 80 96 112
iterations 50 50 50 50 50 50 50
time 54.21 39.97 50.68 65.97 87.69 123.57 170.75

Table 6.3: The performance of FPSG on Netflix with different number of blocks. The
target RMSE is 0.941. Time is in seconds.

35

item blocks 32 32 32 32 32 32
user blocks 32 64 96 128 160 192
iterations 50 50 50 50 50 50
time 188.13 180.21 184.57 183.51 186.66 187.02
item blocks 64 64 64 64 64 64
user blocks 32 64 96 128 160 192
iterations 50 50 50 50 50 50
time 172.74 182.90 218.67 196.95 189.23 211.93
item blocks 96 96 96 96 96 96
user blocks 32 64 96 128 160 192
iterations 50 50 50 50 50 50
time 188.57 179.78 205.17 203.49 227.86 254.71
item blocks 128 128 128 128 128 128
user blocks 32 64 96 128 160 192
iterations 50 50 49 50 50 50
time 192.20 188.69 218.00 242.98 379.63 565.25
item blocks 160 160 160 160 160 160
user blocks 32 64 96 128 160 192
iterations 50 50 50 50 50 50
time 195.24 201.39 254.64 374.44 606.47 842.62
item blocks 192 192 192 192 192 192
user blocks 32 64 96 128 160 192
iterations 50 50 50 50 50 50
time 196.41 217.05 246.15 563.86 842.81 1170.79

Table 6.4: The performance of FPSG on Yahoo!Music with different number of blocks.
The target RMSE is 22.40. Time is in seconds.

36

the number of iterations and time used to achieve a target RMSE value.1 We use 12

threads for the experiments.

On each data set, different numbers of blocks achieve the target RMSE in a similar

number of iterations. Clearly, the number of blocks does not seem to affect the conver-

gence. However, when many blocks are used, the running time dramatically increases.

Taking MovieLens as an example, FPSG takes only 3.25 seconds if 16× 16 blocks are

used, while 21.16 seconds are required if 64×64 blocks are used. To explain this result,

let us check what happens when the number of blocks increases. First, the overhead

of getting a job increases because the selection is from a pool of more blocks. Second,

the execution time per block decreases as a block contains less ratings. Third, the

scheduler is executed more frequently because the execution time per block decreases.

The overall impact is that the scheduling becomes cost-ineffective. That is, we spend

innegligible time to select a block, but the block is quickly processed. Further, we

explain that the CPU utilization may be lowered when too many blocks are used. In

this situation, the scheduler takes more time to assign a block to a thread, but during

this process, another thread that needs to get a block must wait.

The above discussion suggests that we should avoid splitting R to too many blocks.

However, whether the number of blocks is too many or not depends on the data set. The

64× 64 setting is too many for MovieLens, but seems adequate for Netflix. Therefore,

the selection of the number of blocks is not easy. From the experimental results, using

(s+ 1)× (s+ 1) to 2s× 2s blocks may be a suitable choice.

1The cost of experiments would be very high if the best RMSE is considered, so we use a moderate
one.

37

CHAPTER VII

Conclusions and Future Works

To provide a more complete SG solver for recommender systems, we will extend our

algorithm to solve variants of matrix-factorization problems. In addition, to further

reduce the cache-miss rate, we will investigate non-uniform splits of the rating matrix

or other permutation methods such as Cuthill-McKee ordering. Very recently a new

parallel matrix factorization method NOMAD (Yun et al., 2014) has been released.

It uses an asynchronization setting to reduce the waiting time at any thread. This

technique is related to our non-blocking scheduling. Another parallel solver for matrix

factorization is in GraphChi (Kyrola et al., 2012), which is a framework for graph

computation.1 Their method divides R into m blocks, where each block contains the

ratings of a particular user, and these blocks are updated in parallel. An important

difference between ours and theirs is that they do not require blocks being processed

are mutually independent. Therefore, the over-writing problem discussed in Chapter

2.1 may occur. We plan to conduct comparisons between our method, NOMAD, and

GraphChi.

In conclusion, we point out some computational bottlenecks in existing parallel SG

methods for shared-memory systems. We propose FPSG to address these issues and

1In their thesis, they use alternative least square method (ALS) as the solver. However, an SG
implementation has been included in their latest release available at https://github.com/GraphChi/
graphchi-cpp. We discuss their SG-based method in the context.

38

https://github.com/GraphChi/graphchi-cpp
https://github.com/GraphChi/graphchi-cpp

confirm its effectiveness by experiments. The comparison shows that FPSG is more

efficient than state-of-the-art methods. Programs used for experiments in this thesis

can be found at

http://www.csie.ntu.edu.tw/~cjlin/libmf/exps/

Further, based on this study, we develop an easy-to-use package LIBMF available at

http://www.csie.ntu.edu.tw/~cjlin/libmf

for public use. Appendix A describes the formulation used in LIBMF.

Acknowledgement

This is a joint work with Wei-Sheng Chin and Yong Zhuang.

39

http://www.csie.ntu.edu.tw/~cjlin/libmf/exps/
http://www.csie.ntu.edu.tw/~cjlin/libmf

BIBLIOGRAPHY

R. M. Bell and Y. Koren. Lessons from the Netflix prize challenge. ACM SIGKDD
Explorations Newsletter, 9(2):75–79, 2007.

K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-
scale L2-loss linear SVM. Journal of Machine Learning Research, 9:1369–1398,
2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf.

G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The Yahoo! music dataset
and KDD-Cup 11. In JMLR Workshop and Conference Proceedings: Proceedings
of KDD Cup 2011, volume 18, pages 3–18, 2012.

R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factor-
ization with distributed stochastic gradient descent. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 69–77, 2011.

K. B. Hall, S. Gilpin, and G. Mann. MapReduce/Bigtable for distributed op-
timization. In Neural Information Processing Systems Workshop on Leaning on
Cores, Clusters, and Clouds, 2010.

C.-J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with variable se-
lection for non-negative matrix factorization. In Proceedings of the Seventeenth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, 2011.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, 23(3):462–466, 1952.

Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for rec-
ommender systems. Computer, 42(8):30–37, 2009.

A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computa-
tion on just a pc. In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’12), Hollywood, October 2012.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-
scale distributed training of conditional maximum entropy models. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances
in Neural Information Processing Systems 22, pages 1231–1239. 2009.

40

http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf

R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the struc-
tured perceptron. In Proceedings of the 48th Annual Meeting of the Association
of Computational Linguistics (ACL), pages 456–464, 2010.

F. Niu, B. Recht, C. Ré, and S. J. Wright. HOGWILD!: A lock-free ap-
proach to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 24, pages 693–701, 2011.

I. Pilászy, D. Zibriczky, and D. Tikk. Fast ALS-based matrix factorization for
explicit and implicit feedback datasets. In Proceedings of the Fourth ACM Con-
ference on Recommender Systems, pages 71–78, 2010.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Scalable coordinate descent ap-
proaches to parallel matrix factorization for recommender systems. In Proceedings
of the IEEE International Conference on Data Mining, pages 765–774, 2012.

H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. S. Dhillon. Nomad:
Non-locking, stochastic multi-machine algorithm for asynchronous and decentral-
ized matrix completion. In International Conference on Very Large Data Bases
(VLDB), 2014.

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collabo-
rative filtering for the Netflix prize. In Proceedings of the Fourth International
Conference on Algorithmic Aspects in Information and Management, pages 337–
348, 2008.

Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel SGD for
matrix factorization in shared memory systems. In Proceedings of the ACM Rec-
ommender Systems, 2013. URL http://www.csie.ntu.edu.tw/~cjlin/papers/

libmf.pdf.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient de-
scent. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems 23, pages 2595–2603.
2010.

41

http://www.csie.ntu.edu.tw/~cjlin/papers/libmf.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/libmf.pdf

APPENDICES

42

APPENDIX A. Formulation Used in LIBMF

In LIBMF, in addition to P and Q, we add user bias, item bias, and average terms,

which are useful for recommender systems. The formulation is described in (A.1).

Table A.1 shows the dimension and meaning of symbols in the formulation.

min
P,Q,a,b

∑
(u,v)∈R

(
(ru,v − pT

uqv − au − bv − avg)2

+ λP ||pu||2 + λQ||qv||2 + λa||a||2 + λb||b||2
) (A.1)

Symbol Dimension Meaning
m,n 1 × 1 number of users and items
k 1 × 1 number of latent dimensions
u, v 1 × 1 index indicates uth user and vth item
R m × n rating matrix
ru,v 1 × 1 (u, v)th rating of R
P k × m latent matrix
Q k × n latent matrix
pu, qv k × 1 uth column of P and vth column of Q
a m × 1 user bias vector
b n × 1 item bias vector
au, bv 1 × 1 uth element of a and vth element of b
λP , λQ 1 × 1 penalty of regularized term of P and Q
λa, λb 1 × 1 penalty of regularized term of a and b
avg 1 × 1 average rating in training data

Table A.1: Symbols in (A.1).

43

	口試委員會審定書
	中文摘要
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	 I. Introduction
	 II. Existing Parallelized Stochastic Gradient Descent Algorithms and Coordinate Descent Methods
	2.1 HogWild
	2.2 DSGD
	2.3 CCD++

	 III. Problems in Parallel SG Methods for Matrix Factorization
	3.1 Locking Problem
	3.2 Memory Discontinuity

	 IV. Our Approaches
	4.1 Lock-Free Scheduling
	4.2 Partial Random Method
	4.3 Overview of FPSG
	4.4 Implementation Issues

	 V. Experiments
	5.1 Settings
	5.2 Comparison of Methods on Training Time versus RMSE
	5.2.1 The effectiveness of addressing the locking problem
	5.2.2 The effectiveness of having better memory locality
	5.2.3 Comparison with the state-of-the-art methods
	5.2.4 Comparison with CCD++ for Non-negative Matrix Factorization

	5.3 Speedup of FPSG

	 VI. Discussion
	6.1 Data Locality and the Update Order
	6.2 Number of Blocks

	 VII. Conclusions and Future Works
	BIBLIOGRAPHY
	APPENDICES

