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Abstract

Water is a precious and scarce resource on the Earth and can be utilized by human

beings. Due to the complex interaction between hydrological, meteorological,

geographical factors and human activities with climate change effects, the

hydro-environment that we live by is facing imbalanced conditions, such as intensive

storms and typhoons with short durations and the degradation of the water quality in

groundwater and urban rivers. Therefore, this dissertation is dedicated to the two main

problems encountered in hydro-environmental systems: water quantity and water quality,

and endeavors to develop novel dynamic artificial neural networks and modeling

schemes to overcome problems for analyzing and estimating the dynamic variability of

water quantity and water quality. Recurrent neural networks (RNNs) are

computationally powerful nonlinear models that are capable of extracting dynamic

behaviors from complex systems through internal recurrence and have attracted much

attention for years. In the first part of this dissertation, a multi-step-ahead (MSA)

reinforced real-time recurrent learning algorithm for RNNs (R-RTRL NN) is developed

for adjusting connection weights by incorporating the latest observed values and model

outputs into the online training process, and the sequential formulation of the R-RTRL

NN is derived. To demonstrate its reliability and effectiveness, the proposed R-RTRL

\Y



NN is implemented to make 2-, 4- and 6-step-ahead forecasts through a famous

benchmark chaotic time series and a reservoir inflow series during typhoon events in

North Taiwan. Numerical and experimental results indicate that the R-RTRL NN not

only achieves superior performance than the comparative networks but also

significantly improves the precision of MSA forecasts with effective mitigation in

time-lag problems for both chaotic time series and reservoir inflow case during typhoon

events. In the second part of the dissertation, the systematical dynamic-neural modeling

(SDM) scheme that consists of the Gamma test for input factor selection and the

nonlinear autoregressive with exogenous input (NARX) network for spatio-temporal

estimation is proposed. The SDM is then applied to urban flood control to explore the

contribution of recurrent connections and provide reliable results for forecasting the

floodwater storage pond (FSP) water level in the Yu-Cheng pumping station. And the

SDM is further utilized to estimate the regional arsenic (As) and total phosphate (TP)

concentrations in groundwater and river systems, respectively. Results demonstrate that

the SDM satisfactorily overcomes the difficulty raised by traditional methods in

estimating the temporal and spatial variability of water quality parameters, such as

identification of key input factors, data scarcity issue, model over-fitting problem and

poor estimation performance. In addition, the SDM bears the ability to reconstruct the

time series of the estimated water quality parameter from the original monitoring scale

Vi



to a shorter monitoring scale through the recurrent connections of the NARX network.
In summary, the two developed novel techniques in learning algorithm and modeling
scheme, the R-RTRL NN and SDM, have broad applicability and are suitable to deal
with water quantity and water quality issues in hydro-environmental systems, which
beneficially provides useful information to water authorities for the management of
reservoir operation, river basin, urban flood control and groundwater contamination.

Keywords : Recurrent neural network (RNN); Reinforced real-time recurrent learning
(R-RTRL) algorithm; Gamma test; Nonlinear autoregressive with eXogenous input
(NARX) neural network; Multi-step-ahead forecast; Urban flood control; Water quality;

Arsenic (As); Total phosphate (TP).
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1. Introduction

1.1 Motivation

Water resources are precious and can be utilized by human beings. The scarce

sources of water on the Earth have gained more and more attention for decades. Water

resources support the activities of agricultural, industrial, household, recreational,

environmental and various sectors. Therefore, we all live in hydro-environmental

systems and have complex interactions with these systems. In recent years, due to the

comprehensive interactions between hydrological, meteorological, geographical factors

and human activities with climate change effects, the hydro-environment that we live by

is facing imbalanced conditions. The intensive storms and typhoons with short durations

and the degradation of the water quality in groundwater and urban rivers are becoming

serious but common disasters. To tackle such challenges, this dissertation focuses on

two main problems that have occurred in hydro-environmental systems: water quantity

and water quality issues, and endeavors to develop novel dynamic artificial neural

networks and modeling schemes to solve these water-related problems.

Artificial neural networks (ANNSs) are biologically motivated methods in which

large numbers of neurons communicate with each other through weighted connections,

and have the ability to approximate nonlinear functions for modeling time series. ANNs



are also considered as an alternative computational approach to modeling

physical-based problems. In the last decades, ANNs have been widely applied with

success to various water resources problems, such as rainfall-runoff modeling (Antar et

al., 2006; Chang et al., 2007; Chen and Yu, 2007; Chang et al., 2013; Chang et al., 2014;

Yang et al., 1999), flood control (Chang et al., 2008), evaporation estimation (Chang

and Sun, 2013; Chang et al., 2013), reservoir operation (Chang et al., 2010; Chang and

Wang, 2013; Wang et al., 2010), groundwater level prediction (Krishna, et al., 2008 ;

Nikolos, et al., 2008), and water quality estimation (Khalil et al., 2011; McNamara et al.,

2008; Sahoo et al., 2006). However, static neural networks may not be able to establish

reliable nonlinear models for predicting dynamical systems, especially for many

time-step-ahead forecasting or regional estimation. Recurrent neural networks (RNNS),

which belong to a class of dynamic ANNs, are powerful nonlinear tools capable of

extracting dynamic behaviors from complex systems through internal recurrence and

have attracted much attention for years (Assaad et al., 2005; Chang et al., 2012; Chiang

et al., 2010; Ma et al., 2008; Serpen and Xu, 2003). Nevertheless the batch training of

an RNN could be time consuming (Ahmad and Jie, 2002; Xie et al., 2006), and the

behaviors of recurrent connections in spatio-temporal estimation has not been fully

explored yet. Therefore, this dissertation develops a reinforced online-learning

algorithm for RNNs and explores the practical meaning as well as the importance of
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recurrent connections of the NARX network through topic 1: water quantity issues

involving reservoir inflow forecasting and urban flood control; and topic 2: water

quality issues involving the spatio-temporal estimation with respect to the arsenic (As)

concentration in groundwater and the total phosphate (TP) concentration in a river

basin.

1.2 Research objectives

A. Topic 1: Water quantity issues for reservoir inflow forecasting and urban flood

control

Accurate multi-step-ahead (MSA) forecasting is valuable and desired in many

engineering problems, however it is a challenging task that is difficult to achieve. A

common approach for improving the accuracy of MSA forecasting is to update network

parameters through online learning techniques. Online learning is a supervised

machine-learning framework, which adopts the latest information to adjust model

parameters for a better mapping between instances and true values in an arbitrary

system. Because most observational disciplines tend to infer the properties of an

uncertain system from the analysis of time-dependent data, the analytical techniques for

extracting the meaningful characteristics of time series data have certain inherent

limitations, which have been widely discussed (Brockwell and Davis, 1987; Jaeger and

Haas, 2004). Owing to the continual receipt of true values for adjusting model

3



parameters, online learning algorithms have several practical and theoretical advantages

such as memory-efficient implementation, runtime-efficient implementation and strong

guarantees on performance, even in a highly variable data structure of time series

(Shalev-Shwartz et al., 2004). Nevertheless, the main defect of online learning can be

attributed to the requirement for continual true values. Engineering problems often

require models to predict many time steps into the future without the availability of

measurements in the horizon of interest. The lack of true values makes it difficult to

make MSA forecasts. In addition, many studies indicated that it is not an adequate

strategy to recursively adopt single-step-ahead predictions for many time steps into the

future because the errors of MSA predictors will be accumulated based on the

single-step-ahead predictor (Parlos et al., 2000; Yong et al., 2010). Such time-lag

problems may cause significant degradation in performance when dealing with MSA

forecasting for real-world applications. For the MSA streamflow forecasting during

typhoon events, models with time-lag problems (i.e., the latest observed values are

unavailable) cannot keep flow trails, especially in peak flows, as the forecasting step

increases. To mitigate time-lag phenomena that occur in online learning algorithms, it is

argued that whether iterative adjustments of model parameters in consideration of

additional information, such as the latest true values and/or antecedent model outputs,

would be beneficial to MSA forecasting.



The real-time recurrent learning (RTRL) algorithm, proposed by Williams and

Zipser (1989), is an effective and efficient online learning algorithm for training

recurrent networks, in which real-time adjustments are made to the synaptic weights of

recurrent networks. Several studies demonstrated that the RTRL algorithm for RNNs is

very effective in modeling the dynamics of complex processes for providing accurate

predictions (Chang et al., 2002; Chang et al., 2012; Hirasawa et al., 2000; Li et al.,

2002).

The first main goal of topic 1 is to develop a reinforced RTRL algorithm for RNNs

(R-RTRL NN) to mitigate time-lag effects for increasing the accuracy of MSA

forecasting. The sequential formulation of the R-RTRL NN is derived, and its reliability

and applicability are further demonstrated through two-step-ahead (2SA),

four-step-ahead (4SA) and six-step-ahead (6SA) forecasting made for a famous

benchmark chaotic time series and a reservoir inflow case in Taiwan. Comparative

models consist of the original RTRL algorithm for RNNs (RTRL NN), the Elman

neural network (Elman NN) (Elman, 1990; Liu and Wang, 2008; Liu et al., 2012) and

the backpropagation neural network (BPNN, the most popular static ANN).

Urban flood control is a crucial and challenging task, particularly in developed

cities. Urban floods are flashy in nature mainly due to severe thunderstorms and occur

both on urbanized surfaces and in small urban creeks, which deliver mass water to cities.
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On account of more impervious areas resulting from the rapid urbanization in
metropolitan areas, less water infiltration has resulted in an increase in the flow rate and
the amount of surface runoff over the last decades. Taiwan is located in the northwestern
Pacific Ocean where subtropical air currents frequently introduce typhoons and
convective rains. The urban flood hydrographs in Taiwan typically have large peak
flows and fast-rising limbs in a matter of minutes, which could cause serious disasters.
For example, Typhoon Nari brought massive rainfalls at an astonishing level of 500
mm/day on September 17" in 2001, which resulted in 27 deaths, inundations at some
stations of the Taipei Metro System, and countless economic losses. The heavy rainfall
event on June 12" in 2012 brought astonishing rainfalls with a cumulative amount of
54.1 mm/hr, which directly resulted in quick and wide surface flooding such that the
transportation system collapsed in most of the southern Taipei City. It appears that
floods cannot be prevented, but planning emergency measures through flood
management might mitigate disastrous consequences.

In response to the flood threats to residents and property, the Taipei City
Government has long-term endeavored to develop flood control-related infrastructures,
such as increasing levee heights and enhancing sewerage systems, and therefore urban
inundations have been significantly mitigated and controlled in recent years. As a result,

the main threat to the city turns out to be the floodwater inside the levee system. A

6



surface inundation will inevitably take place if surface runoff exceeds the capacity of a

storm drainage system. To tackle this problem, pumping stations play an important role

in flood mitigation at metropolitan areas and are principal hydraulic facilities built to

manage internal stormwater flows at places under the condition that gravity drainage

cannot be achieved. The operation of a pumping station highly depends on the water

level information of its floodwater storage pond (FSP). Within the catchment of a

pumping station, surface runoff will drain to its FSP for storage and subsequent disposal

through gravity drainage. When the water level of the FSP reaches the start level of duty

pumps, the pumps will be activated according to operation rules for discharging the

stored floodwater into the nearby river of the pumping station. For floodwater control

management during heavy rainfall or typhoon events, it is imperative to construct an

efficient and accurate model to forecast many step-ahead FSP water levels by utilizing

the information of the current FSP water level and the rainfall measured at the

neighboring rainfall gauging stations of the pumping station. The proposed model is

expected to provide sufficient response time for warming up the pumps in advance for

enhancing secure pumping operations and urban flood control management.

The greatest success in flood forecasting is commonly achieved on large rivers.

Nevertheless, flash urban floods associated with heavy thunderstorms in cities are often

very uncertain and are more difficult to predict due to complex dynamic phenomena
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involved. Many studies demonstrated the predictability of streamflow through soft

computation methods (Maity and Kumar, 2008) while only few papers investigated the

prediction performance of inundation and/or sewerage systems in urban areas (Chiang

et al., 2010). The second main goal of topic 1 intends to investigate the reliability and

accuracy of short-term (10- to 60-minute) forecasting models for the FSP of a

sewer-pumping system in Taipei City. Multi-step-ahead FSP water level forecasting

models for flood pumping control during heavy rainfall and/or typhoon events are

tailored made through a static ANN (the BPNN) and two dynamic ANNSs (the Elman

NN; the NARX network). Consequently, the comparison results of these three ANN

models are evaluated to identify the effectiveness of recurrent connections. The

forecasting system is designed to anticipate the occurrence of flooding and to take

measures necessary to reduce flood-induced losses. The study will give a boost to the

efforts for urban flood disaster management and will strengthen the Taipei City

Government with more proactive disaster preparedness.

B. Topic 2: Water quality issues for the spatio-temporal estimation with respect to

the As concentration in groundwater and the TP concentration in a river basin

The second topic of this dissertation focuses on water quality issues for which the

stabilization and variation of concentrations are important tasks for preserving healthy

human and hydro-environmental systems.



As contamination in groundwater has been reported and resulted in a massive

epidemic of As toxication in several countries such as Bangladesh, Vietnam, Cambodia,

China and Taiwan. It is estimated that approximately 57 million people have drunk

As-contaminated groundwater with concentrations exceeding the drinking water

standard recommended by the WHO (World Health Organization) (BGS-DPHE, 2001;

Chakraborti et al., 2010). As pollution affects not only crop productivity and water

quality but also the quality of water bodies, which threatens the health of animals and

human beings by way of food chains. Long-term exposure to As through drinking water

has been implicated in a variety of health concerns including cancers, cardiovascular

diseases, diabetes and neurological effects (National Research Council, 1999).

Blackfoot disease and cancers of the skin, bladder, lung and liver have been associated

with drinking As-contaminated groundwater (Chiou et al., 1997; Rahman, 1999).

As-contaminated groundwater is derived naturally from As-rich aquifer sediments, and

the geochemistry of As can be rather complex (Stollenwerk, 2003). Various

hydrogeological and biogeochemical factors affecting As concentration in groundwater

have been detected, such as sediment mineralogy, microbial oxidation or reduction of

As, groundwater recharge, groundwater flow paths (Ford et al., 2006; Wang et al., 2007

& 2011; Xie et al., 2012), and the presence of fractures in bedrock formations (Ayotte et

al., 2003; Liao et al., 2011). Even though the processes controlling the release of As into
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groundwater systems have been extensively discussed over the past decades, exact

chemical conditions and reactions leading to As mobilization still remain a subject of

intense debate (Goovaertset al., 2005; Polizzotto et al., 2006; Winkel et al., 2008).

Moreover, the high variability of As concentration can occur within a short distance

and/or in different depths of groundwater wells due to the diversity in geology and

geomorphology (Serre et al., 2003; Yu et al., 2003). Besides, the detection of As

contamination in groundwater by using graphite atomic absorption spectrophotometry

or inductively coupled plasma mass spectroscopy can be laborious and cost intensive.

Consequently, how to adequately estimate As concentrations in complex

hydro-geological systems is a crucial and challenging task.

The hyper-endemic blackfoot disease in the Yun-Lin County of Taiwan has been

verified to be associated with high As concentrations in groundwater (Chen et al., 1995;

Chiou et al., 1997). The residents have long-term exposed themselves to As through

various paths such as the ingestion of aquacultural and agricultural products, and thus

have dangerously posed carcinogenic risks to their health (Liu et al., 2008). Due to great

concern for the potential effects of As on human health, there is a growing need for

efficiently modeling the spatial distribution of As contamination in groundwater. One of

the popular modeling approaches in use is the multiple linear regression (MLR), this

approach, however, may fail to estimate the spatial distribution of As contamination due
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to the great variability of As concentration and complex nonlinear processes involved in

geology and geomorphology. Lately, using ANNs for the estimation of heavy metal

concentration in groundwater has been attempted and gained a reasonably good degree

of success (Chang et al., 2010; Cho, et al., 2011; Giri et al., 2011; Mondal et al., 2012;

Purkait et al., 2008). The modeling results indicated that ANN techniques can produce

higher estimation accuracy than conventional methods such as MLR. These studies

were mostly dedicated to exploring the applicability of static ANNSs, such as the BPNN,

for building the relationship between As concentration in groundwater and

hydro-geological parameters in As-affected areas. Nevertheless, the natural

characteristics of hydrogeological processes are not only complex but also dynamic.

The static neural networks might fail to establish reliable models for predicting the

dynamical features, such that the delivered relationship might be simply the possible

impacts of factors on temporal characteristics of local environments. Consequently, the

comprehensive analysis of dynamic hydrogeological features and the estimation of As

concentration variability over As-affected regions remains a great challenge that needs

to be overcome.

The seasonal variation of steamflow in Taiwan is very high, where long-lasting low

flows in drought seasons could dramatically increase the pollution levels in rivers.

Pollution in the downstreams of rivers raises a major environmental issue because many

11



industrial facilities and large populated cities are located along rivers. The water quality

of the Dahan River in northern Taiwan has deteriorated rapidly due to heavy pollutant

loads from surrounding urban areas. Considering the scattered watersheds over Taiwan

and the high cost of field sampling, it is unlikely to obtain continuous water-quality time

series data with complete properties at all sampling locations. Alternatively, the Water

Quality Index (WQI) has been designed to assess the general conditions of water bodies

in rivers, lakes or reservoirs. The WQI is sensitive to light pollution, and therefore it is a

more suitable index adopted for water quality management. The WQI numerically

summarizes the information of multiple water quality parameters into a single value,

including dissolved oxygen (DO), coliform group, power of hydrogen (pH),

biochemical oxygen demand (BOD), ammonia nitrogen (NHs-N), suspended solid (SS)

and total phosphate (TP). Except for TP (measured quarterly), the other water quality

parameters adopted in the WQI are measured monthly in Taiwan. Therefore, a monthly

WQI incorporated with TP would be more comprehensive and more beneficial to

short-term (monthly) water quality management.

TP, a combination of orthophosphate, polyphosphate and organic phosphate, is

regarded as an index used in representation of the phosphorus quantity in river water.

Phosphorus is an essential element for all life forms (Correll, 1998). When phosphorus

enters into a river, it is usually in the form of phosphate and can be transported from
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upstream to downstream by flowing water. Excessive phosphorus is the most common

cause of eutrophication in freshwater lakes, reservoirs, streams, and headwaters of

estuarine systems. Orthophosphate chemicals are commonly used in agricultural

fertilizers, and thus enter surface water easily during rainfall periods. Many studies

reported that the phosphorus fertilizer form affects phosphorus loss to waterways

(Azevedo et al., 2013; Davis and Koop, 2006). Polyphosphate is a primary chemical

element added with considerable amount into detergents. Organic phosphates are

basically formed by biochemical procedures associated with excrement, kitchen waste,

water plants, etc. Phosphorus is one of the key elements essential for the growth of

plants and animals. Nevertheless, the anthropogenic nutrient enrichment of natural

water is of environmental importance as it can evoke declines in water quality, changes

in biotic population structures, and low dissolved oxygen concentrations in rivers

(Dodds et al., 2009; Austin et al., 1996). Excessive phosphorus has been shown to be a

main cause of eutrophication, for example, naturally-occurring nutrients in large

concentrations can often cause algae blooms (McDowell et al., 2010; Carpenter et al.,

1998).

Water quality models are useful tools for estimating the levels and risks of

chemical pollutants in a given water body (Duda, 1993). When building (or just

applying) a water quality model, it is necessary to have long and sufficient field data to
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validate model applicability and reliability. Water quality monitoring programs, however,

are expensive and time-consuming. Modeling practices commonly face limited budgets

and time, and thus suffer a deficiency of field data. Under this condition, the

implemented water quality models might fail to fit known hypotheses and/or

assumptions or cause difficulties in making estimations within an acceptable range of

errors or uncertainty. With the development of model theory and the fast-updating

computer techniques, many artificial intelligent techniques have been developed with

various analytical algorithms to overcome data scarcity issues and simultaneously

increase model reliability.

The NARX network (Lin et al., 1996), a sub-class of RNNs, is suitable to build

long-term temporal input-output patterns (Menezes Jr. and Barreto, 2008). The NARX

network has been demonstrated to perform well in several nonlinear systems, such as

waste water treatment plants (Su and McAvoy, 1991; Su et al., 1992) and time series

forecasting (Shen and Chang, 2013). However, the dynamic feature and feasibility of

the recurrent connections in the NARX network as a nonlinear tool for water quality

time series modeling under limited data sets has not been fully explored yet. Therefore,

topic 2 will explore the practical meaning and importance of recurrent connections in

the NARX network when dealing with spatio-temporal water quality estimation

problems.
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In topic 2, a systematical dynamic-neural modeling (SDM) scheme incorporated

with a dynamic neural network and advanced statistical methods is developed for

building spatio-temporal estimation models for (1) As concentration at decommissioned

wells based on the easily-measured water quality parameters at nearby functioning wells

to offer an applicable and useful reference to decision makers for dealing with

groundwater management and preventing residents from drinking or using toxic

groundwater; and (2) TP concentrations at seven sites along the Dahan River in a

quarterly scale based on easily-measured water quality parameters. In addition, TP

concentration data are reconstructed in a monthly scale through a process that adopts the

dynamical neural architecture of the constructed NARX network, and thus the

reconstructed monthly data can be used to produce the monthly WQI for short-term

hydro-environmental management.

1.3 Dissertation layout

The framework of this dissertation is shown in Fig. 1.1. The novel learning

algorithm (R-RTRL) and the modeling procedure (SDM) are developed to deal with two

main topics in hydro-environmental systems: water quantity and water quality. First,

The R-RTRL NN can repeatedly adjust model parameters through the reinforced

process with the current information including the latest observed values and model

outputs to enhance the reliability and the forecast accuracy of the proposed method. To

15



demonstrate its reliability and effectiveness, the proposed R-RTRL NN is implemented

to make 2-, 4- and 6-step-ahead forecasts in a famous benchmark chaotic time series

and a reservoir flood inflow series in North Taiwan. Second, the SDM which consists of

the Gamma test (GT) for input factor selection and the NARX network for

spatio-temporal estimation is proposed. The SDM is then applied to 1) urban flood

control problems to explore the contribution of recurrent connections and 2) the

spatio-temporal estimation of As and TP concentrations to provide useful information to

water authorities for dealing with groundwater and river basin management.
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2. Methodology

2.1 MSA R-RTRL algorithm for RNNs
A. Rationale of MSA online learning algorithm

Two common strategies for MSA forecasting are the iterated prediction and the
direct prediction. For n-step-ahead (nSA) prediction, the iterated method tackles the
issue by iterating n times a one-step-ahead prediction whereas the direct method trains
the model by conducting a direct forecast at time t+n. The debate on the superiority
between these two methods still remains open; nevertheless both methods possess a
common feature: the visibility of stochastic dependencies between future values
becomes relatively vague as the time of prediction horizon increases, consequently the
reliability and accuracy of predictions decreases. A possible way to remedy this
shortcoming is to implement online learning techniques for repeatedly adjusting model
parameters with the most current information including the latest true (observed) values
and model outputs. An online learning algorithm proceeds in a sequence of trials
through receiving an instance and making a prediction in each online-learning round to
improve model performance.

The original RTRL algorithm, an online learning algorithm, was derived for
one-step-ahead forecasting from the fact that real-time adjustments are made to the

synaptic weights of a fully connected recurrent neural network (Williams and Zipser,
18



1989). For nSA forecasting, the weight adjustment of the RTRL algorithm cannot be
conducted until obtaining the observed value at time t+n, in which the observed values
and model outputs during time t+1 and t+n-1 are worthless and totally ignored.
Therefore, the effectiveness of the original RTRL algorithm decreases considerably
when time step n increases, which implies time lags occur in the weight adjustment
process.

This dissertation proposes a novel reinforced RTRL algorithm based on RNN
infrastructures (R-RTRL NN) for MSA forecasting through incorporating the latest
antecedent forecasted and observed values into consecutive temporary networks for
weight adjustments in the learning process. In other words, the R-RTRL algorithm
repeatedly updates the synaptic weights by utilizing the most current obtainable
information. The applicability and effectiveness of the R-RTRL NN is further
investigated in Section 3.

The upper diagram of Fig. 2.1 shows the weight adjustment procedure of the
R-RTRL algorithm for 2SA forecasting (Chang et al., 2012). At time t+2, the weights
are adjusted by the differences between observed and forecasted values. A reinforced
process is introduced: the RNNmp With adjusted weights can be used to produce a temp

output 2(t+3, 1)at time t+1, and the error between the temp output and forecasted

output at time t+1 can then be utilized to reinforce the weight adjustments, AW, (t) and
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AV, (t+1). As this reinforced process repeats n-1 times, the weight adjustment procedure
can be extended to a general procedure for nSA (n>2, ne N) forecasting, shown in the
lower diagram of Fig. 2.1. In summary, the proposed R-RTRL algorithm not only
adequately utilizes the up-to-date information of the observed values and their
corresponding model outputs but also strengthens the usefulness of the latest observed
values by the reinforced process to mitigate the time-lag phenomenon for MSA
forecasting. The detailed sequential formulation of the R-RTRL algorithm is described

as follows.

B. Deriving the MSA R-RTRL algorithm

Fig. 2.2 shows the MSA RNN architecture incorporated with the R-RTRL
algorithm, in which there are M external inputs and one output. Let X(t) denote the M x
1 input vector at discrete time t, Y(t+1) denote the corresponding N x 1 vector at time
t+1 in the processing layer, and Z(t + n) denote the corresponding output value for nSA
(n>2, ne N) forecasting.

The X(t) and Y(t) are concatenated to form the (M + N ) x 1 vector U(t), whose i
element is denoted by xi(t). Let A denote the set of indices i for which x;(t) is an external
input, and B denote the set of indices i for which y;j(t) is the output of the processing

layer. Thus, vector ui(t) can be represented as Eq. (1).
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wi(t) = {yi(t) ifi €B

1)

W and V denote the weight matrices in the processing layer and the output layer,
respectively. W < wj; and V < v; are of matrix forms. The output of neuron j in the
processing layer that presents the transformation of information from the concatenated

layer through nonlinear system f is given by:
Yt +1) = f(nei(c+1) = f( > w,-l-<t)ui(t)> @)
iEAUB

The net output of the output layer at time t + n through nonlinear system f is
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computed by:

2t +n) = f(net(t +n)) = f ZVj(t+1)yj(t+1) @A)

J

Let d(t + n) denote the target value at time t+n. The time-varying error e and
instantaneous error E is defined by:

[d(t +n) — z(t + n)]? (4)

N =

E(t+n)= %ez(t+n) =

Then the weight adjustments can be computed by minimizing the instantaneous error

attimet+n.
OE(t + 1)
AVj(t +1)= —nlm (5)
]
JE(t +n)
Aw;i(8) = -1 w0 (6)

where n; and m, are learning-rate parameters. The detailed recurrent learning

algorithm for one-step-ahead weight adjustment can be found in Williams and Zipser

(1989), and that for two-step-ahead weight adjustment can be found in Chang et al.

(2012). The entire antecedent information is considered crucial and could diminish

time-lag effects. Consequently, the reinforced two-step weight adjustments (Chang et al.

2012) can be extended to n-step weight adjustments, and the information obtained from

time t+1 to t+n-1 can contribute to weight adjustments. The adjusted weights are used

to re-calculate the forecasted values at time from t+1 to t+n-1, and then the adjusted

weights are further modified by minimizing the total error between original forecasted
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values (z(t +n+ 1) to z(t + 2n — 1)) and the re-forecasted values (Z2(t + n + 1) to
2(t +2n—1)).

The re-forecasted value Z(t +n + p) is calculated by the following equations:

$;(t+p+1) = f (7€t (¢ +p + 1))

(7)
= f( Z (Wji(t) + Awy; (t)) pi(t + P))
iEAUB
2(t+n+p) = f(net(t+n+p))
(8)

=f z (vj(t +1) + A (¢ + 1))yj(t +p+1)

]

where p denotes the time step (p = 1, 2, ..., n-1). Therefore, the total reinforced error is

defined by:
1n—1 1
E=§Zé2(t+n+p)=§[2(t+n+P)—Z(t+n+P)]2 9)
p=1

The reinforced weight adjustments can be expressed as:

oE
Af)](t + 1) = 13 m (10)
]
80 oF (1w
Wi = —
7t s ow;;(t)

where n; and m, are learning-rate parameters.

The weight adjustments of the R-RTRL algorithm for n-step-ahead RNNs are then

shown as follows:

24



vi(t+2)=v;(t+ 1) +Av;(t+ 1) +AV;(t+1) (13)
In sum, the reinforced process is implemented for nSA forecasting so that the

adjusted weights are further modified through the comparison between the original

forecasted values and the re-forecasted values.

2.2 Systematical Dynamic-neural Modeling (SDM)

The proposed SDM incorporates two core methods, the GT and the NARX
network, with three optional statistical techniques to tackle rainfall-runoff modeling and
spatio-temporal estimation problems, and its implementation procedure is shown in Fig.
2.3. The SDM first adopts the GT to effectively extract the non-trivial factors that
significantly affect the fluctuations of the target variable (e.g., FSP water level, As or TP
concentrations). The NARX network is then utilized to obtain forecasted or estimated
values of the target variable with inputs consisting of the extracted non-trivial factors
and the previous output values derived from recurrent connections. In addition, the time
series of the target variable can be reconstructed in a minor scale (e.g., from a seasonal
scale to a monthly scale) through the constructed NARX network for further evaluation
of water quality. The scarcity of field data is commonly encountered in water quality

modeling, and the following three optional methods can be incorporated into the
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Fig. 2.3 Implementation procedure of the proposed SDM

proposed SDM to tackle data scarcity problems: the Bayesian regularization method;
the cross validation technique; and the indicator kriging (IK). The Bayesian
regularization method is configured to control the network complexity for preventing
over-fitting. The cross validation technique is used to produce a low-bias estimator of
the generalizability, and thus provides a sensible criterion for model selection in the
calibration stage. Finally, the IK can be implemented to derive the probability map of

the target variable in unsampled areas. The methods for use in the SDM are introduced
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as follows:

A. Core techniques in the SDM

1) Gamma test (GT)
The GT, presented by Koncar (1997) and Agalbjorn et al. (1997), is a data analysis
technique for assessing the extent to which a given set of M data points can be modeled
by an unknown smooth non-linear function.

Suppose a set of input-output observation data is given in the form of:
[(x., ). 1<i<M] (14)

where vectors x; are d dimensional vectors (with a record length of M) and the
corresponding outputs y; are scalars. The underlying relationship of the system is

expressed as:
y=f(X...x5)+r (15)

where f is an unknown smooth function, and r denotes a random variable that represents
noise. The Gamma statistic (I") is an estimate of the variance of model outputs, which
cannot be accounted for through a smooth data model. The GT is assessed based on the

k™ (lgké p) nearest neighbor X for each vector X; and then the GT can be

N (ik)

derived from the Delta function of input vectors:

1™ 2
Su(K)=—-3[Xi = X[ (1<k<p) (16)
M i=t
where [ is the Euclidean distance, and the corresponding Gamma function of the
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output values is given in Eqg. (15). The number of p depends on the density of sampling
data (Koncar, 1997). In this dissertation, the number of p is determined as the value that

produces the minimum T value through trial and error (p ranges from 10 to 50).

1 ™ 2
m (k)=mi§1‘YN(i,k)_Yi‘ (l<k<p) (17)

where 'y, Is the corresponding y-value for the k™ nearest neighbor of X; in Eq. (14).

For computing ' , a least squares regression line is constructed for p points

(O (K), 7 (k) as Eq. (16):
y=AS+1I (18)

where A is the gradient.

Performing a single GT is a fast procedure, which can provide the noise estimate
(T value) for each subset of input variables. When the subset for which its associated
[ value is the closest to zero, it can be considered as “the best combination” of input
variables. As the result, the GT is different from other input selection methods or
preprocessing methods, such as the correlation coefficient analysis or the principle
component analysis (PCA). The correlation coefficient analysis can only provide linear
estimation for the input-output datasets, and the principle components determined by
the PCA are calculated from all input variables and thus can neither extract the most
important factors nor reduce the dimension of input datasets.

Several studies discussed about the GT theory and its applications in time series
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forecasting (Durrant, 2001; Tsui et al., 2002). Lately, research findings indicated that
it is suitable and effective to combine ANNs with the GT for reducing the input
dimension through identifying non-trivial input variables and thus produces precise
outputs of ANNs (Moghaddamnia et al., 2009; Noori et al., 2010; Noori et al., 2011).
Therefore, the NARX network combined with the GT is used to estimate water quality

and forecast water level in this dissertation.

2) Nonlinear Autoregressive with eXogenous input (NARX) network

The NARX network is a recurrent network, which is suitable for time series
prediction (Chang et al., 2013; Jiang and Song, 2011; Menezes Jr. and Barreto, 2008,
Shen and Chang, 2013). Figure 2.4 shows the architecture of the NARX network used
in this dissertation. The NARX network consists of three layers and produces recurrent
connections from the outputs, which may delay several unit times to form new inputs.
Therefore, this nonlinear system for estimation (N =0) and N-step-ahead forecasting
(N >1) can be mathematically represented by the following equation:

2(t+N) = f[z(t+ N =1),....z(t+ N —q);U ()] (19)
where U(t) and z(t+N) denote the input vector and output value at the time step t,

respectively. f( ) is the nonlinear function, and q is the output-memory order. There are
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two input regressors: the regressor z(t+N-i) (i ranges from 1 to q) plays the role of an
autoregressive model while U(t) plays the role of an implicit exogenous variable in time
series.

There are two ways to train the NARX network. The first mode is the
Series-parallel (SP) mode, where the output’s regressor in the input layer is formedonly
by the target (actual) values of the system, d(t).

z(t+N) = fld(t+N-12),....dt+N—-q)U()] (20)

The other alternative is the Parallel (P) mode, where estimated outputs are fed back
into the output’s regressor in the input layer, which can also be mathematically
represented as Eq. (19). In practice, when forecasting is conducted for more than

two-step-ahead (N >1), the g antecedent actual values (d(t+N—1), d(t+N-2),. . .,
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z(t+N—q)) are future data that cannot be obtained at current time. Therefore, the NARX

network is trained in P mode with imperfect information and retains similar

characteristics of input—output patterns in the testing stages such that the constructed

NARX network can maintain similar capability of real time multi-step-ahead

forecasting in both training and testing stages.

For water quality estimation, it is common that a regional model for estimating

target variable (output) at unsampled times or at unmonitored sites often produces poor

performance. The reasons are that the availability of the actual values of target variable

may not always hold at certain monitoring stations and the consistency (autoregression)

of the target variable is usually not as strong as that in rainfall-runoff modeling.

Therefore, the relationship between actual and estimated values of the target variable

can be established by the NARX network trained in the SP mode. Then the trained

NARX network in the P mode can be applied at unrecorded periods or at ungauged sites

for improving estimation accuracy through recurrent connections. It indicates that the

recurrent connections of the NARX network are practically meaningful when modelling

at unrecorded times or at ungauged sites.
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B. Optional techniques in the SDM

1) Bayesian regularization

The regularization method proposed by MacKay (1992) can improve the
generalizability of a neural network through minimizing an objective function that
constrains the value of network weights. The idea is based on that the true underlying
function is assumed to have a degree of smoothness controlled by the network
parameters, and the network response will be smooth as the values of parameters are
kept small. Thus the network is able to sufficiently represent the true function, rather
than capture the noise. The objective function of the network in the regularization
method is given by:
MW) = fE; +aE,, (21)
where Ep is the mean square error of network outputs:
Eo =5 200 - 20) )
where n is the number of samples, and Ey is a penalty term of network complexity in
the regularization method, in which the smaller values of network weights imply lower
connection complexity for network weights. Ey is given in Eq.(23).

1o

By =52 W' (29)

i=1

where w; is the weight value of the network, and m is the number of weights. « and g
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are regularization parameters that can be determined by Bayesian techniques. Therefore,

the weights of the network can be considered as random variables. Let W be the

network weight vector and D be the sample data. The posterior distribution according to

the Bayes’ rule is shown as follows:

P(D|W, 8 H)PW | a,H)
P(Dle,f,H)

PW |D,a,8,H) = (24)
where P(W |«,H) is the prior density, P(D|W, ,H) is the likelihood function,
P(D|«, B,H) is the normalization factor, and H presents the structure of the network.

Assuming the noise and the prior distribution for the weights are both Gaussian, the

probability densities can be written as:

m

PW |a, H) = L exp(—aE,, ) ,Z, (@)= (2”j (25)
Zw(a) o

and

P(D|W’ﬂ’H)=Z 1(ﬂ) exp(—fEp) ,ZD(ﬂ){%jz (26)

Substituting (25) and (26) into (24), it becomes:

POV | D.ar . H) = - (i SO0 fEy —aE,) = (i ool M) 27)
where
Zy(@B)=[ (-MW))w (28)

From the Bayesian framework, the optimal weights can be derived by maximizing

the posterior probability, which is equivalent to minimizing the regularized objective
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function shown in Eq.(21).

The value of aand g can also be optimized by applying the Bayes’ rule.

P(D|a,p,H)P(a, | H)
P(D[H)

P(a, | D,H) = (29)
Therefore, the values of aand g can then be inferred at the minimum Wy of M(W) ,

which are shown as:

_ T

aMP - 2EW (VVMP) (30)
_ M=%

ﬂMP - 2ED (VVMP) (31)

where y  presents the effective number of network parameters.

2) Cross Validation

Cross-validation, which requires partitioning data into training and testing sets, is
commonly used to obtain a reliable estimate of the test error for model performance or
for use as a model selection criterion. In the k-fold cross-validation for model selection,
the first step is to assign a setting for model parameters (i.e., initial weights, epoch
numbers, the number of neurons in the hidden layer, and the output-memory order of
the NARX network), and then the original sample is partitioned into k subsamples.
Among the k subsamples, a single subsample is retained as validation data for
validating the model, and the remaining k-1 subsamples are used as training data. The

cross-validation process is then repeated k times, with each of the k subsamples being
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used exactly once as validation data. The k results from the folds in each round are
averaged into a single estimation error, and the model in association with the minimum
estimation error of multiple rounds is considered the most appropriate for use in the
testing stage.

Cross validation can produce a low-bias estimator for the generalization ability of a
model, and therefore provides a sensible criterion for model selection and performance
comparison to tackle data scarcity (Kohavi, 1995; Stone, 1974), especially for samples

that are hazardous, costly or difficult to collect, such as As or TP.

3) Indicator Kriging (IK) Method

In the application of As estimation, the IK is utilized to illustrate the variation of
As concentration for the whole study area for reducing the influence of the extreme
values of the estimated As concentration on the variogram and mitigating the
uncertainty of the As estimation made by the NARX network model. The IK is a
non-parametric geostatistical technique that involves the transformation of one variable
to a binary response (0, 1) (Journel, 1983). The geostatistical spatial assumption
generally holds on condition that the regionalized variable is second-order stationary.
The geostatistical semivariogram of the data should be first determined, which

quantifies the spatial variability of random variables between two areas. In practice, an
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experimental semivariogram 7 (h) is calculated by:

N(h)

?(h)=ﬁ(h){gz(ui +h)—Z(Ui)2} (32)
where 7(h) represents the semivariogram for a lag distance class h; N(h) denotes the
set of pairs at a lag distance class h, and z(u;) and z(u, +h) are the values of the
regionalized variables of interest at locations u, and u, +h, respectively.

The experimental semivariogram, 7(h), is fitted by a theoretical model, (h), such
as spherical, exponential or Gaussian functions, to determine three parameters: the
nugget effect (c,); the sill (c); and the range (a).

The geostatistical method is used to estimate the probability of exceeding a
specific cut-off value (threshold), z, , at a given location. Then the stochastic variable,

Z(u), is transformed into an indicator variable with a binary distribution shown as

follows:

I(u;z,) = VZ(u)<z 33
(1:2) {0 * otherwise " -\ = % 3

The expected value of I(u; z, ), subject to n neighboring data, can be formed as:
E[I(u;z,]=Prob{Z(u) <z, } = F(u;z,) (34)
P(u;z,) =1-F(u;z,) (35)
where F (u;z,) is the conditional cumulative distribution function of Z(u)<z, ,and

P(u;z,) is the probability that Z(u)>z,. At an unsampled location (U, ), an estimation
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must utilize both the IK and indicator estimator, 17(u,;2,), according to:

NORERES WACHUTHED (@)

=

where 17 (u,; z, ) represents the values of the indicator at the measurement locations, u;
j=1.2...,n, and 4;is the weighting factor of 1(u;z, ) when estimating 1" (u,;z,). The IK
estimation must be unbiased with the minimum estimation error variance; that is,
E[1"(us; ) — 1(u; 2,)] (37)

min {var[l*(uo; z,)—1(u; zk)]} (38)

The weights, 4;, are the solutions to the following system:

Zn:lj (z)y (U —u;;2,) -z )=y, (U —Up;z,) > Vi=ltoN

iﬂj =1
i=L

(39)

where ¢(z,) is the Lagrange multiplier y, (ui - uj;zk), which specifies the semivariogram
value between the indicator variables at the i™ and j" sampling points; and
7,(u, -uy;2z,) is the semivarigram value between the indicator variables at the i"
sampling point and U, .

In the case study of modeling As concentration, the cut-off value is adequately set
as 10ugl™, the WHO drinking water standard for As concentration. Therefore, the 1K
can derive the probability map that discloses the probability of As concentration

exceeding the WHO drinking water standard in the study area.
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2.3 Comparative neural network models

In this dissertation, comparative models mainly consist of the most popular static

ANN (i.e., BPNN), the original RTRL algorithm for RNNs (RTRL NN) and the Elman

NN. The methodology of the BPNN and the EIman NN are briefly addressed as follows:

A. Backpropagation neural network (BPNN)

The BPNN is one of the most popular ANNs (Rumelhart, 1986). It belongs to a

typical three-layered static feedforward neural network, which is comprised of multiple

elements including nodes and weight connections (W and V) that link nodes. The

network is divided into an input layer, a hidden layer and an output layer. Fig. 2.5 (a)

shows the structure of the BPNN. In this dissertation, the BPNN is trained by the

Levenberg—Marquardt back propagation algorithm based on the model output (z(t+N))

and observed data (d(t+N)).

B. Elman neural network (EIman NN)

The Elman NN is a three-layer RNN with internal time-delay feedback connections

in the hidden layer. Each input neuron is connected to a hidden neuron, where each

hidden neuron has its corresponding time-delay unit. The structure of the EIman NN is

shown in Fig. 2.5 (b). A recurrent connection allows its time-delay unit to store the

information of this hidden neuron as an additional input to all hidden neurons at the next

time step.
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Fig. 2.5 Architectures of (a) the BPNN; and (b) the EIman NN.

Therefore, the EIman NN has an inherent dynamic memory given by the recurrent

connections of the time-delay units, and its output depends not only on the current input

information but also on the previous states of the network. In this dissertation, the

Elman NN is trained by the Levenberg—Marquardt back propagation algorithm.
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3. Case studies

3.1 Reinforced recurrent neural networks for multi-step-ahead flood forecasting

In this section, the reliability and applicability of the proposed R-RTRL NN is

demonstrated through two-step-ahead (2SA), four-step-ahead (4SA) and six-step-ahead

(6SA) forecasting made for a famous benchmark chaotic time series and a reservoir

inflow case in Taiwan.

A. Numerical simulation
1) Phase space reconstruction

The first stage in the analysis of chaotic time series is to implement the phase space

reconstruction theory, which can reconstruct a nonlinear model with a low-dimensional

phase space to reflect the actual dynamic system. Based on the Takens’ embedding

theorem (Takens, 1981), a series of observations from a chaotic system can reconstruct

an attractor, a subset of the phase space of the system with two parameters of time delay

(T) and dimension (D). If appropriate T and D are selected, the attractor will retain

topological properties and reveal the hidden information of the original dynamic system.

The mutual information method (Fraser and Swinney, 1986) and the Cao’s method (Cao,

1997) are used to determine the proper T and D, respectively.

Therefore, for an observed time series x(t), the attractor X(t) = [x(t), x(t —

T),..,x(t— (D —1)T)] can be formed. Then the future value at time t+n is
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determined by the nonlinear function F, which governs the system. The nonlinear
function F is defined as follows:
x(t+n)=F{x@®),xt—-T),..,.x(t— (D —-1DT)]|} (40)

The well trained ANN models can approximate the governing function F. As a
result, the patterns of input-output data pairs of all ANN models in this study case are
shown as {X(t),x(t + n)} and are applied to chaotic time series.
2) MSA forecasting of Mackey-Glass time series

To demonstrate and evaluate whether the proposed R-RTRL NN can construct a
reliable multi-step-ahead predictor by effectively utilizing the most current information,
the developed neural network model is first compared with a simulated chaotic system
(Mackey-Glass time series) for direct 2SA, 4SA and 6SA forecasting. Its performance is
then compared with that of the RTRL NN, the EIman NN and the BPNN. The Elman
NN and the BPNN configurations are used in many filtering and modeling applications
for time series, which have already been widely discussed (Chen et al., 2010; Zabiri et
al., 2009).

The Mackey-Glass differential delay equation (MacKey and Glass, 1977) is

defined below:

dx(t)  02x(t—1)
dt  1+x1t—1)

— 0.1x(t) (41)

where the initial condition x(0) = 1.2 and t = 17. 1000 input-output data pairs are
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generated, where the first 500 pairs are used for training while the remaining 500 pairs

are used for testing. The embedding dimension D = 3 and time delay T = 7 are

determined, according to the Cao’s method and the mutual information method.

For forecasting 2SA, 4SA and 6SA Mackey-Glass time series, the input and

processing layers of the RTRL NN and the proposed R-RTRL NN consist of 3 and 8

neurons, respectively, while the two-layer EIman NN and BPNN trained by the

Levenberg-Marquardt back propagation algorithm also consist of 3 and 8 neurons in the

input and hidden layers, respectively. The numbers of the processing (hidden layer)

neurons and layers determined above for these four models are identified as the best

structures by trial and error. A training dataset is used to construct the aforementioned

four neural network models for direct 2SA, 4SA and 6SA forecasting.

The root mean square error (RMSE), mean absolute error (MAE), and the

goodness-of-fit with respect to the benchmark time series (Gpencn) are used as

performance criteria (Nash and Sutcliffe, 1970; Seibert, 2001) and are defined as:

(42)

(43)
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Gbench =1- L (44)

where Qjis the observed value in the i step, @, is the forecasted value in the i step,
and n is the number of data points. Qjpench IS the antecedent observed value, i.e., Qi pench
= Qi _n for NSA forecasting. To compare the proposed R-RTRL NN with comparative
models, the criterion Gpench,1 1S defined, where the benchmark Q; pencn is the forecasted
value of the proposed R-RTRL NN in the i" step.

The results of model comparison are summarized in Table 1. It appears that: 1) all
the models are suitably trained, and their training and testing results are quite consistent
in all the cases; 2) the recurrent neural networks (i.e., R-RTRL NN, RTRL NN and
Elman NN) can provide much better performance than the static time-delay BPNN, in
terms of RMSE and MAE values; and 3) the proposed R-RTRL NN produces better
performance than the RTRL NN, the ElIman NN and the BPNN models for 2SA, 4SA
and 6SA forecasting. Furthermore, the negative Gpenchi Values produced by the RTRL
NN, the EIman NN and the BPNN reveal the superiority of the R-RTRL NN in MSA
forecasting. In sum, the results demonstrate the proposed online learning algorithm
(R-RTRL) that takes the closest antecedent information into consideration can
effectively re-adjust synaptic weights in real time and the constructed model (R-RTRL

NN) can provide reliable and accurate forecasts in real-time MSA forecasting.
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Table 3.1 Model performance of two- to six-step-ahead forecasting for Mackey-Glass
time series

Training Testing
RMSE MAE RMSE MAE Goench  Gpencit
2SA  3.56E-03  2.79E-03 351E-03 2.77E-03  0.997 -
R-RTRLNN  4SA  4.23E-03 2.59E-03 4.06E-03 252E-03 0.999 -
6SA  4.79E-03  3.33E-03 479E-03 3.35E-03 0.999 -
2SA  6.69E-03  5.40E-03 6.51E-03 5.30E-03 0.990 244
RTRLNN  4SA  7.43E-03 5.17E-03 7.40E-03 5.13E-03 0997 232
6SA  9.09E-03  7.17E-03 8.94E-03 7.01E-03 0.998  -249
2SA  6.37E-03  4.44E-03 6.27E-03  4.31E-03 0990  -138
ElImanNN  4SA  6.49E-03  5.08E-03 6.43E-03 5.00E-03 0998 0.0
6SA  6.60E-03  5.17E-03 6.49E-03 5.10E-03 0999 242
2SA  9.01E-03  6.16E-03 9.05E-03 6.07E-03 098l 566
BPNN 4SA  1.30E-02  1.03E-02 1.29E-02 1.02E-02 0.990  -9.08
6SA  1.52E-02  1.32E-02 152E-02 1.31E-02 0.993  -9.03

B. Application of MSA reservoir inflow forecasting

1) Study area and datasets

Taiwan, located in the subtropical zone of the North Pacific Ocean, is an island
with mountainous terrains and steep landforms, where typhoons usually couple with
heavy rainfall and thus cause downstream flooding within a few hours. The Shihmen
Reservoir, situated upstream of the Tahan Creek in northern Taiwan, has operated for
multiple purposes including water supply, hydropower generation, flood mitigation,
education and tourism. The reservoir has notably contributed to agricultural production,
industrial development and the alleviation of drought disasters for decades. The basin
area of the reservoir is about 763.4 km?, and the effective reservoir capacity is 251.88
million cubic meters. The Shihmen Reservoir is for sure the most important water

resources facility to
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Fig. 3.1 Locations of the Shihmen Reservoir and rainfall gauging stations.

Table 3.2 Summary statistics of reservoir inflow and average hourly rainfall in training

and testing datasets

Training dataset

Testing dataset

Mean sD? Max Min Mean SD Max Min

Inflow (cms) 725 1154 8594 1.26 720 910 5300 8.57

Average rainfall ofl 40 79 55.1 0.0 4.0 7.1 45.7 0.0
downstream (mm h™)

A_verage rainfall oI 48 96 63.5 0.0 4.5 75 47.3 0.0
midstream (mm h™)

Average rainfall of 44 8.8 62.0 0.0 45 71 46.6 0.0

upstream (mm h)

!Standard deviation
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Taipei metropolitan areas. An accurate inflow forecasting model for the reservoir is

desired and crucial to flood control and water resources management (Huang and Hsieh,

2010). The longer the forecasting steps into the future, the more beneficial it is, in terms

of time to adjust reservoir operation and reduce flood damages.

Figure 3.1 shows the locations of the basin and rainfall gauging stations in this case

study. The hourly inflow and rainfall data of 22 typhoon events during 2001 and 2009

were collected. A total of 2136 datasets are used in this study, where 1296 datasets

collected from 2001 to 2006 are used for training while the remaining 840 datasets

collected from 2007 to 2009 are used to test the models independently. The Shihmen

basin is divided into three areas (up-, mid- and downstream areas shown in Fig. 3.1),

and the weighted average rainfall of each area is computed by the Thiessen polygon

method (Thiessen, 1911). The summary statistics for reservoir inflow and average

rainfall datasets are presented in Table 3.2, in which the extremely high inflow and the

large variance of inflow implies that the MSA inflow forecasting is an important and

challenging task in the Shihmen Reservoir.

2) MSA forecasting of reservoir inflow time series

The proposed R-RTRL NN is applied to the Shihmen Reservoir for forecasting

reservoir inflow during typhoon events and is also compared with the other three

models (RTRL NN, Elman NN and BPNN) for performance evaluation. Because the
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transit time of flows moving from rainfall gauging stations to the Shihmen Reservoir is

different, the Kendall’s tau rank and Pearson’s correlation coefficient are applied to the

identification of the highest correlation among the different time lags between rainfall

and reservoir inflow. The time lags of rainfall traveling from the up-, mid- and

downstream basins to the reservoir are identified as seven, six and five hours,

respectively. Therefore, the input layers of these different network models are

established based on current inflow data (Q(t)) together with antecedent rainfall data

(denoted by Ru(t-7), Rm(t-6) and Rd(t-5) accordingly) collected at up-, mid- and

downstream basins with associated time lags. For direct 2SA inflow forecasting, the

input and processing layers of the RTRL NN and R-RTRL NN consist of 4 and 6

neurons, respectively. The two-layer Elman NN and BPNN trained by the

Levenberg-Marquardt back propagation algorithm also consists of 4 and 6 neurons in

the input and hidden layers, respectively. The numbers of the processing (hidden layer)

neurons and layers determined above for these models are identified as the best

structures through a great number of trial-and-error processes. The numbers of neurons

in the processing and hidden layers of these four models are increased to 8 for direct

4SA and 6SA inflow forecasting. The performance of these four models is evaluated by

the criteria of RMSE, MAE, coefficient of efficiency (Nash Efficiency, or CE) (Nash

and Sutcliffe, 1970), coefficient of correlation (CC), Gpench and Gpench.ii- The CE and CC
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are defined as:

CE=1-" (45)

(46)

Summarized results are presented in Tables 3.3-3.5. Results indicate that the

proposed R-RTRL NN model can produces acceptable RMSE values (184 to 490 cms)

when compared with the mean and standard deviation (720.10£910.44 cms in the

testing dataset of Table 3.2) of observed inflow data, and it has smaller RMSE and MAE

values and higher CE, CC and Gpench Values than the RTRL NN, the EIman NN and the

BPNN models in both training and testing phases for 2SA, 4SA and 6SA inflow

forecasting. It can be noticed that the proposed R-RTRL NN makes less difference in

RMSE values between training and testing phases than comparative models, which

demonstrates the impressive generalizability of the proposed R-RTRL NN. In addition,

the proposed R-RTRL NN model produces positive Gpencn Values in the testing datasets

for 2SA, 4SA and 6SA forecasting whereas the comparative models only produce either

negative or near-zero Gpench Values in the testing datasets. The results indicate the

proposed online
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Table 3.3 Model performance of two-step-ahead forecasting for reservoir inflow

Training Testing
RMSE MAE CE CC Gpeen RMSE MAE CE CC  Gpenh  Goenchul
(cms)  (cms) (cms)  (cms)

R-RTRLNN 177 106 098 0.99 0.59 184 106 0.96 0.98 0.30 -
RTRL NN 214 112 097 0.98 0.0 228 124 094 0.97 -0.07 -0.53
Elman NN 211 107 097 0.98 042 220 118  0.94 0.97 -2.72E-04 -0.43

BPNN 220 113 096 098 0.37 232 125 093 097 -0.11 -0.59
Table 3.4 Model performance of four-step-ahead forecasting for reservoir inflow
Training Testing
RMSE MAE CE CC Gpenen RMSE MAE CE CC  Gpench  Goenchil
(cms)  (cms) (cms)  (cms)

R-RTRL NN 308 161 093 096 0.63 314 172 088 094 0.6 -
RTRL NN 351 177 091 095 0.3 362 198 084 092 0.02 -0.33
Elman NN 345 172 091 095 0.54 360 198 084 092  0.03 -0.32

BPNN 357 181 091 095 051 365 200 0.83 092 1.82E-03 -0.35
Table 3.5 Model performance of six-step-ahead forecasting for reservoir inflow
Training Testing
RMSE MAE CE CC Gpen RMSE MAE CE CC  Gpeneh  Goenchil
(cms)  (cms) (cms)  (cms)

R-RTRL NN 440 238 086 093 062 490 302 071 085 0.07 -
RTRL NN 498 263 082 091 052 559 316 063 082 -022 -0.30
Elman NN 481 254 083 091 055 542 303 065 083 -015 -0.22

BPNN 525 276 0.80 0.89 0.6 600 324 057 082 -040 -0.50
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learning algorithm (R-RTRL) that adopts the most current information can effectively

mitigate time-lag problems and the R-RTRL NN model can make more reliable and

accurate MSA forecasts. When closely assessing the Gpenchii Values (where the bench

series is the forecasted values of the proposed R-RTRL NN), all comparative models

produce negative values for 2SA, 4SA and 6SA inflow forecasting in the testing phases.

This result provides extra evidence that the proposed R-RTRL NN achieves superior

performance than comparative networks.

Figs. 3.2-3.4 show the corresponding residuals and their mean and standard

deviation produced by the R-RTRL NN, the RTRL NN, the EIman NN and the BPNN

models for 2SA, 4SA and 6SA forecasting in the testing datasets. The barplots of

residuals clearly indicate that the R-RTRL NN provides the smallest residuals and less

over-estimation results (the positive mean, smallest absolute mean and standard

deviation) as compared with the comparative models. To easily distinguish the

performance of these four models, three typhoon events (Typhoons Krosa, Sinlaku and

Jangmi) with high peak flow data (above 3000 cms) are extracted from the testing

dataset to illustrate the hydrographs of observed and 4SA forecasted inflow obtained

from the proposed R-RTRL algorithm and comparative models (Fig. 3.5). It

demonstrates that the proposed R-RTRL NN can mitigate time-lag problems and well

forecast 4SA inflow values whereas all comparative models not only have significant
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Fig. 3.6 Relationship between inflow forecast errors (RMSE) and forecasting steps of
four neural network models.

time-lag phenomena but fail to well forecast 4SA inflow values (seriously over-estimate
and oscillate at peak flows; and the Gpencnh Values of comparative models are negative).
In addition, the low Gpencn value (0.07) in Table 3.5 indicates the maximum forecast
time step for the proposed R-RTRL NN to reach is six (6 hrs) in this study case, which
can provide sufficient response time to fully open the floodgates in the Shihmen
Reservoir (usually take about two hours) and more response time for both reservoir
flood control and flood warnings to downstream areas.

In summary, the relationship between forecast errors (RMSE) and forecasting steps
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of these four models is presented in Fig. 3.6. It shows that these four models have

similar error-rising rates (slopes) when the forecasting step increases from 2SA to 4SA.

However, the BPNN has the steepest slope when the forecasting step increases from

4SA to 6SA, which indicates the static neural network fails to extract the dynamic

characteristics of time variation for MSA forecasting. Alternatively, the proposed

R-RTRL NN has similar error-rising rate to the Elman NN but has much smaller

forecast errors than the EIman NN for 2SA, 4SA and 6SA forecasts. It appears that the

proposed methodology can adequately utilize the closest antecedent information to

effectively re-adjust synaptic weights. As a result, the constructed R-RTRL NN

significantly diminishes time-lag effects and effectively provides much better and

adequate MSA forecasts.

3.2 Real-time multi-step-ahead water level forecasting by recurrent neural

networks for urban flood control

In this case study, various ANNs are used to make water level forecasts for

representing the behavior of the rainfall-sewer flow processes in storm events. Flood

levels can be forecasted on the basis of (a) rainfall data; (b) previous water levels; and (c)

a combination of both data sets. Three ANNs coupled with statistical techniques are

adopted to construct real time multi-step-ahead FSP forecasting models. The
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Fig. 3.7 Study flow of real-time MSA water level forecasting.

implementation procedure is shown in Fig. 3.7. The time span of rainfall affecting the

rise of FSP water level is first identified by the correlation analysis. Next the GT is

applied to extracting effective rainfall factors from all possible rainfall-related input
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combinations. One static (BPNN) and two dynamic (Elman NN and NARX network)

neural networks are proposed to construct MSA FSP water level forecasting models for

two scenarios (w/ and w/o current FSP water level information). Finally, the proposed

SDM with core techniques (GT and NARX network) and two other ANN models

(Elman NN and BPNN) are evaluated by performance criteria. Because the main

purpose of this case study is to identify the effectiveness between static and dynamic

network models as well as different types of recurrent connections, the static BPNN and

the dynamic Elman NN and NARX network that have different types of recurrent

connections are selected for comparison purpose. These three network models are

trained through batch learning algorithms. Therefore, the proposed R-RTRL NN that has

the same type of recurrent connections as the ElIman NN but is trained by a unique

online learning algorithm is excluded in this case study.

A. Study area and dataset

Taiwan, an island located in the subtropical zone of the North Pacific Ocean, is

covered with mountainous terrains and steep landforms. Taipei City, situated in the

Taipei Basin of northern Taiwan, is surrounded by the Danshui River whose narrow

estuary makes it difficult to discharge water effectively from the city. Consequently, the

high levees along the Danshui River have been built to prevent outer flood into the city

with a return period of two-hundred-year flood protection standard. Typhoons and/or
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Fig. 3.8 Locations of the Yu-Cheng catchment and rainfall gauging stations.

heavy rainfall events are usually coupled with intensive rainfalls and thus easily cause

urban flooding within a few hours, even within a few minutes, in Taipei City. Because

of the high levees, the main threat to the city now turns out to be the floodwater inside

the levee system. Therefore, pumping stations play an important role in managing

internal stormwater flows for urban flood control. The Yu-Cheng catchment, located in

southeastern Taipei, is selected as the study area (Fig. 3.8). There are six rainfall

gauging stations (R1-R6, denoted as red dots in Fig. 3.8). Although station R2 is out of

the catchment, it still belongs to a sewerage system that diverts floodwater to the
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Yu-Cheng pumping station and the Keelung River. There also exist a number of water

level gauging stations in this study catchment. However, the malfunctions of water level

gauges caused by their collisions with unknown objects and siltation in sewerage

systems raise the difficulty in the maintenance of water level gauges and their on-line

monitoring. The water level data collected from the sewerage system are neither stable

nor accurate, which means the FSP water level forecasting models for the Yu-Cheng

Pumping Station would mostly rely on the rainfall information retrieved from its

neighboring rainfall gauging stations.

The Yu-Cheng catchment occupies an area of about 1627 ha and owns the biggest

drainage system in Taipei City. The Yu-Cheng Pumping Station was built in 1987 to

drain or pump the internal stormwater flows into the Keelung River, a chief tributary of

the Danshui River, and it was considered the most advanced and the largest pumping

station in Asia in the 1980s. The pumping station is currently equipped with 11 pumps

reaching a total pumping capacity of 234.1 cms, and the operation of the pumping

station highly depends on the FSP water level information. If the FSP water level rises

up to the warning level (1.8 m) during heavy rainfall or typhoon events, duty pumps are

activated with a 3-minute warm up. Then stromwater starts to be pumped from the FSP

into the Keelung River when the FSP water level reaches the start level (2.2 m). The

start level is the lowest water level designed for the start of stormwater pumping as well
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as for the prevention against the idle running of pumps to avoid pump damage. These 11
pump units operate independently and maintain a sequential operation according to the
laddered FSP water levels during typhoon or heavy rainfall periods. This means the
pumping operation begins with one pump unit, and only one pump unit, instead of all
remaining pump units, will join the operation at a time if the next higher rung of the
laddered water levels is reached. On the contrary, running pumps will be shut down
sequentially as the FSP water level decreases to the next lower rung. The operational
procedure of the Yu-Cheng Pumping Station is quite different from those of Hong Kong,
Tokyo or Singapore, where all the pump units are activated at the beginning if the FSP
water level exceeds the start level, then the pump units stop running as the FSP water
level drops to the stop level (DSD, 2000; PUB, 2013; Tamoto et al., 2008). It suggests
that the pumping operation in Taipei City is much more sensitive to the fluctuation of
FSP water level than those of big cities in Monsoon Asia.

Data of FSP water levels and rainfall at stations R1-R6 were collected with a
temporal resolution of 10 minutes from 13 typhoon and heavy rainfall events during
2004 and 2013. A total of 1985 datasets are used for constructing forecasting models in
this study, and the numbers of datasets allocated into training, validation and testing
stages are 826 (from 6 events), 651 (from 3 events) and 508 (from 4 events)

accordingly.
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Table 3.6 Summary statistics for FSP water levels (m) and the peaks of average rainfall
(mm/10 min)

Event Model Number Peak of average Max FSP Mean FSP Standard

- . rainfall intensity ~ water level water level deviation
Configuration Stage of data (mm/10min) (m) (m) (m)
1 15.3 5.68 3.12 1.04
2 8.43 3.08 2.50 0.24
3 8.03 2.73 2.25 0.28
Training 826
4 3.37 2.40 2.07 0.14
5 2.26 2.41 2.13 0.09
6 5.17 2.57 1.79 0.37
7 11.0 3.69 2.23 0.48
8 Validation 651 10.1 2.68 2.05 0.39
9 591 2.85 2.07 0.31
10 5.47 2.84 2.17 0.18
11 6.99 2.69 2.25 0.19
Testing 508
12 4.92 2.50 2.08 0.26
13 12.4 4.59 2.57 0.55

Such allocation is made to maintain similar statistic characteristics in these three
datasets in consideration of the summary statistics of the 13 events shown in Table 3.6.
In addition, the weighted average rainfall (Rayg) over the Yu-Cheng catchment is
computed by the Thiessen polygon method and is also considered as a potential input to
the forecasting models. Furthermore, because the original FSP water level is indeed
affected by the operation of pumping units, the original FSP water levels were
recovered prior to model construction according to a recovery equation (provided by the
Taipei City Government) that involves pumping capacity and pumping-affected area.
The summary statistics for FSP water levels and rainfall datasets are presented in Table

3.6.
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B. lIdentification of the time span of rainfall affecting the rise of the FSP water
level
For constructing a rainfall-sewer flow model, the first step is to identify the
temporal impacts of rainfall on the rise of FSP water level. In this study, the Pearson’s
correlation coefficient is applied to learning the linear relationship and the recognition
of the highest correlations between FSP water level and rainfall at different time lags for

each station (R1-R6) as well as the weighted average rainfall (Ravg) over the Yu-Cheng
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catchment. The results shown in Fig. 3.9 indicate that it consistently takes about 40
minutes for rainfall at stations R1-R6 to cause an increase in the FSP water level,
similarly for the Rayg. It is worthy to note that, in contrast to river channels, a sewerage
system can be implicitly considered as a small-scale volume control system on account
of the relatively small catchment with which the system was associated. The variation of
the FSP water level is mainly affected by the rainfall aggregated within a short period of
time in the catchment. As a result, the time span of rainfall affecting the rise of FSP
water level at the Yu-Cheng Pumping Station is set as 40 minutes. It is noted that “time
span” is used in this study while “concentration time” is usually used in river channel
studies.
C. Extraction of effective rainfall factors and model construction

The Pearson’s correlation coefficients between the FSP water level and rainfall at
gauging stations R1-R6 as well as Rayg are not very high but quite similar (ranging from
0.41 to 0.63), which could be due to the lumped effect of rainfall falling to the
catchment and the complex interactions between rainfall and sewer flow. In order to
identify effective rainfall stations that significantly affect the fluctuations of FSP water
level for modeling purpose, the GT is implemented in this study. That is to say,
rainfall-related inputs to the estimation models of FSP water level is determined by the

GT.
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In this case study, one- to six-step-ahead FSP water level forecasting models during
heavy rainfall and typhoon events for the Yu-Cheng Pumping Station are constructed
through the BPNN, the Elman NN and the NARX network based on the inputs
determined by the GT. The practical meaning and contribution of three forecasting
models will be surveyed under two scenarios: (1) the information of current FSP water
level is available (denoted as scenario | hereinafter); (2) the information of current FSP
water level is not available (denoted as scenario Il hereinafter). The applicability and
reliability of these three constructed forecasting models at different forecasting steps are
evaluated by the RMSE, CC and CE.

D. Results and discussion

This section presents the selection result of effective rainfall factors and the
forecast performance of the static (BPNN) and dynamic (Elman NN and NARX
network) neural networks in two scenarios (w/ and w/o current FSP water level
information). The results and discussion are addressed in details, shown as follows:

1) Identification of effective rainfall stations

For extracting effective rainfall factors, data of the antecedent 40-minute rainfall

collected at six gauging stations together with the average rainfall (R1(t-4)-R6(t-4),

Ravg(t-4)) are first scaled to [-1,1]. Then a total of 127 (=2-1) T values corresponding
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Fig. 3.10 Determination of effective rainfall stations by the GT results.

to all possible rainfall-related input combinations are calculated through the GT. The
produced I' values are next sorted in an ascending order, in which T values smaller
than the 10™ percentile (Iy, = 0.10) are classified as the best group (Frgrlo ), whereas
those bigger than the 90™ percentile (Ty, = 0.17) are classified as the worst group
(Frzrgo). Fig. 3.10 shows the result of the GT, where blue bars represent the occurrence
frequency of factors in the best group (Frgm) while orange bars represent the
occurrence frequency of factors in the worst group (Frzrgo ), and factor scores
calculated by Eq. (47) for each rainfall factors are drawn into a green dotted line.

Frzrgo

factor score = 1- (47)

T<Iy,

where the factor score ranges from —oo to 1.
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Therefore, effective rainfall factors can be identified as those factors that are
associated with higher factor scores, and the threshold of the factor score is set as 0.5 in
this study. Consequently, R2, R3and R5 are identified as the effective rainfall factors to
be used in the forecasting models.

2) Performance of FSP water level forecasting in scenario I: current FSP water level is
available

In scenario I, data of the current FSP water level and rainfall of R2, R3and R5 are
utilized to construct 10- to 60-min-ahead (N = 1-6) FSP water level forecasting models
through three ANNSs. The input-output patterns of three ANN models can be represented
as follows:

WL (t+ N) = f [WLego (1), R2(t + N —4), R3(t + N —4), R5(t + N — 4)]

N e1—4(10min) (48)

WLgp (t+N) = f [WLeso (1), R2(t), R3(t), R5(1)]

, (49)
N € 5-6(10min)

where WI:FSP(t + N) s the forecasted value at a lead time of N (10-min unit).

After implementing trial-and-error procedures for model configuration based on
the training and validation data sets, the output-memory order ¢ for NARX networks
is 1 and all the three models are configured to have only one hidden layer with 2-4

nodes for different forecasting steps. Summarized results are presented in Tables 3.7.
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Table 3.7 Model performance of one- to six-step-ahead forecasting for FSP water levels

in scenario |
. BPNN Elman NN NARX
wp s s RMSE oo oo RMSE oo RMSE oo
(m) (m) (m)
Training 0.07 099 0.99 0.07 099 0.99 0.07 0.99 0.99
t+1 2 Validation  0.07 0.98 0.96 0.07 098 0.97 0.07 0.98 0.96
Testing 010 096 0.92 0.09 096 0.93 0.09 097 0.93
Training 0.12 098 0.96 011 098 0.97 0.11 098 0.96
t+2 2 Validation  0.12  0.94 0.89 010 096 091 0.12 094 0.89
Testing 0.17 0.90 0.77 015 091 0.82 0.16 091 0.79
Training 0.14 097 0.95 0.14 097 0.95 0.14 097 095
t+3 2 Validation  0.14 091 0.83 0.14 092 0.84 015 090 0.81
Testing 0.18 089 0.71 0.18 088 0.72 0.18 088 0.72
Training 015 0.97 0.94 015 097 0.94 0.18 096 0.91
t+4 2 Validation  0.16 0.88 0.78 0.17 088 0.77 020 082 0.65
Testing 021 087 0.62 019 088 0.67 0.18 0.86 0.70
Training 020 095 0.89 019 095 0.90 0.17 096 0.92
t+5 3 Validation  0.19 0.85 0.70 017 087 0.75 019 085 0.70
Testing 022 082 0.57 020 083 0.65 019 087 0.69
Training 024 092 084 022 094 0.87 0.16 0.96 0.93
t+6 4 Validation  0.19 0.85 0.70 019 084 0.69 022 078 0.58
Testing 023 077 052 022 079 0.58 019 088 0.67

Results indicate that the three comparative models perform rather consistently in the

training and validation stages while both dynamic neural networks (the EIman NN and

the NARX network) perform better than the static one (the BPNN) in the testing stages.

Besides, the NARX network outperforms the EIman NN as the forecasting step exceeds
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Fig. 3.11 (a) 20, (b) 50 and (c) 60-min-ahead forecasting of the 612 heavy rainfall event
for scenario | with respect to the BPNN, the EIman NN and the NARX network.

four, and it even produces a high CE value (close to 0.7) as the forecasting step reaches
six (60-min-ahead forecasting). The 612 heavy rainfall event (12.4 mm/10 min; 54.1
mm/hr) with the highest peak FSP water level above 4.5 m is selected to illustrate the

hydrographs of observed versus 20-, 50- and 60-min-ahead forecasted FSP water levels
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in the testing stages of three models (Fig. 3.11). During the peak flow period (about 10

hours) of this event, 6 up to 11 pumping units were operated. Results show that the

Elman NN produces the best performance for 20-min-ahead forecasting because its

over-estimation between 10 and 20 time steps is comparatively less serious. However,

the NARX network can significantly mitigate time-lag problems at peak values and well

forecast the 50- and 60-min-ahead FSP water level, whereas the other two comparative

models not only have significant time-lag phenomena but fail to well forecast 50- and

60-min-ahead water levels, in which fluctuations occur near peak values.

Fig. 3.12 (a) shows the CE of 10- to 60-min-ahead forecasting in the testing stages

of three models in scenario I. The three network models perform equally well for one-

to three-step-ahead forecasting, whereas significant differences among their

performances are found as the forecast time step exceeds four (40 min). The reason is

that the time span of rainfall affecting the rise of the FSP water level is 40 minutes such

that the rainfall-water level processes at 1-4 time steps could be suitably presented by

rainfall input data and FSP water level output data (Eg. (7)). In addition to the fact that

the persistence of FSP water level decreases as the time step increases, the time lag of

rainfall becomes significant as the forecast time step exceeds four. As a result, both

conditions would cause a reduction in forecast accuracy. It clearly indicates that the

NARX networks produce much higher CE values than the other two models for
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Fig. 3.12 (a) CE of 10- to 60-min-ahead forecasting and (b) relationship between FSP
water level forecast errors (RMSE) and forecasting steps with respect to three
forecasting models in the testing stages for scenario I.
four- to six-step-ahead forecasting, whereas the EIman NNs perform slightly better than

the BPNNS.

Finally, the relationship between forecast errors (RMSE) and forecasting steps of

these three models is presented in Fig. 12 (b). The RMSE trend of the NARX network
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model increases gradually as the forecasting step increases, and it becomes flat after

three forecasting steps. Nevertheless the RMSE trends of the BPNN and the Elman NN

models significantly increase as the forecasting step increases, and they have steeper

slopes than that of the NARX network after three forecasting steps. The results provide

evidence that with the feedbacks of imperfect outputs representing the information the

closest to the forecasting horizon to the input layer, the NARX network can effectively

adopt extra information to promote the accuracy and reliability of multi-step-ahead FSP

water level forecasting.

3) Performance of FSP water level forecasting in Scenario Il: current FSP water level

is unavailable

In the flood control centre of the Taipei City Government, the datasets of the

current FSP water levels at sixty-five pumping stations during typhoon events are

transmitted only through two channels of radio waves, and thus the backend system of

the flood control centre may not successfully receive the current FSP water level

information every ten minutes. Furthermore, the preliminary correlation analysis results

indicate that the time span between the FSP water level and rainfall over the study

catchment is about 40 minutes. An alternative to the forecasting model of scenario 1 is

considered essential for auxiliary purposes. In this scenario (1), FSP water level
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forecasting models are constructed based only on the rainfall of R2, R3 and R5 to
prevent any possible delay in the receipt of the current FSP water level due to the
unstable frequency of data transmission. The input-output patterns of three ANN models
can be represented as follows:

WL (t+ N) = f[R2(t + N —4),R3(t + N — 4),R5(t + N — 4)]

N e1—4(10min) (50)

WL (t+ N) = f[R2(t), R3(t), R5(t)]
N € 5—6(10min)

(51)
where WI:FSP(t + N) is the forecasted value at a lead time of N (10-min unit).

After implementing trial-and-error procedures for model configuration based on
the training and validation data sets, the output-memory order g for NARX networks
is 1 and all the three models are configured to have only one hidden layer with 2-4
nodes for different forecasting steps. Summarized results are presented in Tables 3.8.
Results indicate that the NARX networks significantly outperform the other two
network models in terms of lower RMSE values and higher CC and CE values in all
three stages (training, validation and testing) for one- to six-step-ahead forecasting. It is
noted that the performance of three ANN models in scenario Il is not as good as that of

scenario I. The reason is that only rainfall information is utilized as model inputs in

scenario 11, while another important factor, i.e., the persistent effect (auto-regression) of
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Table 3.8 Model performance of one- to six-step-ahead forecasting for FSP water levels

in scenario 11
. BPNN Elman NN NARX
Tslgnpe glfunngggg “sﬂtzgﬁl RMSE oo g RMSE o0 g RMSE 0 o
(m) (m) (m)
Training 0.44 071 0.49 039 0.78 0.59 027 090 081
t+1 3 Validation  0.35 0.46 0.01 033 042 013 031 056 025
Testing 026 0.68 0.44 029 0.62 0.30 021 081 063
Training 048 074 0.39 039 0.78 0.59 027 090 081
t+2 2 Validation  0.34  0.39 0.07 032 044 015 029 061 029
Testing 0.26 066 0.43 027 0.66 0.37 020 084 0.67
Training 042 075 053 038 0.79 0.60 024 092 0.84
t+3 2 Validation  0.33 044 0.06 032 043 0.13 031 062 021
Testing 026 066 0.41 028 0.65 0.34 021 080 0.64
Training 047 074 0.0 039 0.78 0.60 025 091 0.83
t+4 2 Validation  0.32 042 0.14 032 042 012 029 062 031
Testing 0.27 064 0.38 027 0.66 0.35 019 083 0.67
Training 048 0.62 0.38 039 079 0.59 026 091 0.82
t+5 3 Validation  0.37 0.38 -0.17 032 045 0.16 029 061 029
Testing 0.28 058 0.30 030 0.60 0.21 021 082 059
Training 048 0.64 0.38 043 0.71 0.50 026 091 0.82
t+6 4 Validation  0.36 041 -0.07 0.33 046 0.09 031 052 0.8
Testing 028 056 0.27 029 051 025 024 071 047

the FSP water level, is not considered (or unavailable) in this circumstance. Under such

condition, the NARX network equipped with recurrent connections from imperfect

outputs can produce much more satisfactory results than the EIman NN and the BPNN.

Similar to that of scenario I, an analysis is conducted on the 612 heavy rainfall

event for scenario Il. The rainfall input datasets from three gauging stations and
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Fig. 3.13 Rainfall input datasets from three gauging stations and 50-min-ahead
forecasting of the 612 heavy rainfall event for scenario Il with respect to the BPNN, the
Elman NN and the NARX network.

50-min-ahead forecasting are illustrated in Fig. 3.13. It demonstrates that the NARX
network can well forecast the 50-min-ahead FSP water level and maintain the water
level trail with less fluctuation than the BPNN and the Elman NN. The strong
fluctuations occurring in the hydrographs associated with the BPNN and the ElIman NN
are mainly because these two models are driven only by the rainfall-related inputs that
originally bear high variations, whereas the NARX network facilitates extra input

information from the previous forecasted FSP water level to smooth the fluctuations of
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the forecasted hydrograph.

Fig. 3.14(a) shows the CE of 10- to 60-min-ahead forecasting in the testing stages

of three network models in scenario Il. It clearly indicates that the NARX networks

produce much higher CE values than the other two network models, while the Elman

NNs perform even worse than the BPNNs, which implies the recurrent connections

from the hidden layer of each Elman NNs magnify the highly variable rainfall

information and thus do not increase the reliability of the EIman NNs.

Fig. 3.14(b) illustrates the relationship between forecast errors (RMSE) and

forecasting steps of these three models. The results show that the NARX network

produces much lower RMSE values than the other two models for one- to

six-step-ahead forecasting, and the RMSE values of three models are relatively

consistent (flat) for one- to four-step-ahead forecasting. For the NARX network, the

RMSE value is the lowest at the 4th forecasting step and starts fast rising afterward.

This is mainly because only current rainfall information is available as the forecasting

step increases to five and six steps, which significantly causes the degradation of model

performance at the 5th and 6th forecasting steps. This phenomenon is consistent with

the 40-min time span of rainfall affecting the rise of the FSP water level, which is

determined by the correlation analysis shown in Fig 3.9.
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Fig. 3.14 (a) CE of 10- to 60-min-ahead forecasting and (b) relationship between FSP
water level forecast errors (RMSE) and forecasting steps with respect to three
forecasting models in the testing stages for scenario 11.

In brief, the NARX network implemented without the input of the current FSP
water level information can still provide reasonable and reliable multi-step-ahead FSP

water level forecasts, and therefore this model can be adopted for auxiliary purposes.

75



4) Summary of forecast performance

We explore the explanatory power in multi-step-ahead forecasting for FSP water

levels through one static neural network (BPNN) and two dynamic neural networks

(NARX network and Elmann NN). Results of scenario | demonstrate that the static

network is inferior to the dynamic ones because the inputs of the static network depend

solely on observed data, whereas those of the dynamic networks incorporate observed

data with time delay units through recurrent connections either from the output layer

(NARX network) or from the hidden layer (Elman NN), which makes significant

contribution to the forecasted values.

We further explore the ability of these two recurrent neural networks (NARX

network and Elman NN) to solve the problem of long—term dependencies in a time

series. We find that although the NARX network may not completely circumvent this

problem, it can much effectively discover the long-term dependencies through its

recursive outputs and mitigate the fluctuation problem (instability) in its output. As

comparing the results obtained from scenario I, it is easy to tell that the recurrent

connection from the output layer of the NARX network is more effective in modeling

the long-term dependencies than the recurrent connection from the hidden layer of the

Elman NN. This result provides extra evidence that the backward connections from the

hidden layer (EIman NN) could only maintain the previous values of the hidden units
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with an emphasis on the highly variable rainfall information. Consequently the

backward connections from the hidden layer (Elman NN) impose less effects on the

output than the backward connections from the output layer (NARX network), and the

generalizability of the ElIman NN is weaker than that of the NARX network and the

BPNN.

We notice that for the NARX and the EIman NN the validation results are worse

than the testing ones in all the cases of scenario 1l and in the t+4, t+5 and t+6 cases of

scenario I. This is mainly because the variability of rainfall intensity (which also results

in the higher variability of FSP water level) in the validation set is higher than that in the

testing set (Table 3.6), and rainfall effect would decrease as the forecasting step exceeds

the time span of rainfall affecting the rise of the FSP water level over the catchment (in

our case: 40 minutes).

From Tables 3.7 and 3.8, we notice that all the three forecasting models perform

better in scenario | (w/ current FSP water level) than in scenario Il (w/o current FSP

water level). This reveals that the FSP water level is the dominant factor for the

forecasting process. In terms of CE values produced by the NARX network in scenario

Il (Table 3.8), we notice that the training cases perform equally well (0.81-0.84) for one-

to six-step-ahead forecasting whereas the testing cases perform relatively poor

(0.47-0.67). This is mainly because the observed input-output data (i.e., rainfall and
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water level) in the training stages are used to train and optimize the corresponding

weights of the networks, whereas similar strategies are not implemented in the

validation and testing stages.

3.3 Regional estimation of groundwater Arsenic concentration through

Systematical Dynamic-neural Modeling

To reliably modelling water quality, it is important to understand the impacts of

factors on real competence, the interaction and evolvement of factors within an

operation system, and the measurements of factors. In this case study, we aim to present

a novel model of case competence with good accuracy and predictability, in which

certain assumptions are made for the nature of cases. The proposed SDM incorporates

the GT into a dynamic neural network accompanied with three optional statistical

techniques to tackle regional estimation problems for water quality management, and its

implementation procedure is shown in Fig. 3.15. The SDM first effectively extracts the

non-trivial factors that significantly affect the fluctuations of As concentrations through

the GT. The NARX network is then utilized to obtain As concentration at ungauged

sites with inputs consisting of the extracted non-trivial factors and the estimated As

concentrations obtained from recurrent connections. The Bayesian regularization

method is configured to control the network complexity for preventing over-fitting. The

cross validation technique is used to produce a low-bias estimator of model
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generalizability and thus provides a sensible criterion for model selection in the
calibration stage. Finally, the IK is implemented to derive the probability map of As
concentrations for detecting unsampled areas with As concentrations exceeding the

WHO drinking water standard.

A. Study area

Yun-Lin County is located in the southwestern alluvial fan of the Chou-Shui River
in Central Taiwan (Fig. 3.16). Based on hydrogeological settings, the southern Choushui
River alluvial fan is classified mainly into the proximal-fan, the mid-fan and the
distal-fan areas (Central Geological Survey, 1999), in which the coastal region of the
Yun-Lin County is located in the distal-fan area. The hydrogeological formation of the
distal-fan can be divided into six inter-layered sequences: three marine sequences; and
three non-marine sequences. The non-marine sequences with coarse sediments (from
medium sand to highly permeable gravel) are considered as aquifers, whereas the
marine sequences with fine sediments are considered as aquitards. The annual average
precipitation is 1417 mm, which mainly occurs during wet seasons (i.e., between May
and September). Aquaculture is the primary revenue source for the inhabitants in the

coastal region of Yun-Lin County. Due to high water demand but limited water supply,
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Fig. 3.16 Locations of twenty-six groundwater wells at the Yun-Lin coastal area,

Taiwan.

groundwater has become a vital water resource in this area for decades. In 1992 the

Water Resources Agency installed 26 groundwater monitoring wells (well depths range

from 8m to 110m) distributed in this area for groundwater quality monitoring,

particularly for As pollution and other potential contamination in groundwater.
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Approximately 757 million m® of groundwater was extracted annually from the aquifers
in this area, of which 268 million m® was considered to be over-pumped (Liu et al.,
2001). High As concentration (93.2+161 ugl™) was detected in the monitoring wells in
this area (WHO drinking water standard: 10 ugl™). Liu et al. (2006) indicated that
over-pumping groundwater induces dissolved oxygen and increases As mobility in
water and thus the relatively high As content has accumulated and been deposited in the

marine sequences with fine sediments.

B. Data collection and preliminary analysis

In this case study, sampling data of groundwater quality parameters were collected
quarterly at 26 wells between 1992 and 1999, and the field sampling methods of As
concentration was determined by hydride generation followed by atomic absorption
spectroscopy, APHA Method 3500-arsenic Part B (APHA, 1992). The maintenance of
groundwater monitoring wells is laborious and cost intensive, and therefore only six
wells (#3, #6, #7, #12, #17 and #19) have continued monitoring groundwater quality
after 1999. The proposed method intends to estimate the As fluctuations of 20
un-monitored wells based on other water quality parameters that are easier to measure.
We assume that 20 un-monitored wells are ungauged sites and 6 monitored wells are

gauge stations (Fig. 3.16).
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Table 3.9 Statistics of groundwater quality parameters at six gauging stations (wells)
during 1992 and 2005.

Item unit #3 #6 #7 #12 #17 #19
Well depth m 22.8 17.0 19.0 19.6 8.4 14.9
Mean SD* Mean SD Mean SD Mean SD Mean SD Mean SD
As ug/L 75.9467.6 177.0+109.5 450.4+314.3 43.7+30.7 39.5+47.6 38.1+30.7
temp C 25.8+1.0 25.7+0.9 25.8+1.0 25.9+1.3 26.1+1.4 26.1+1.3
pH 7.7£0.4 7.9+0.4 7.940.2 7.7£0.5 7.6+0.4 7.6+0.3
umho/cm
EC 25 23383+18221  16509+8317 2209+912.2 21795+13886 1408+970.8 1729547677
DO uS/cm 104047347 419.0+2923 51.0+349.1 1.3+1.0 1.3+1.0 1.3+1.0
Alk ug/L 356.2+137.3 560.2+138.5 504.4+84.8 384.1+123.9 315.0+55.7 504.2+143.0
TDS ug/L 15822+10285  10963+4149 1432+626.2 1399447302 885.9+637.7 1179045426
cr ug/L 6851+4652 4479+1819 391.94215.6 5945+3419 233.6v236.3 4937+2155
S0, ug/L 690.9+784.1 512.0+270.8 102.9+82.8 960.0+588.1 64.5+57.4 515.6+467.0
Na* ug/L 3772+2604 2708+998.5 293.5+90.8 3297+1806 179.2v121.7 2756+1133
K* ug/L 201.1+105.6 145.2+46.1 38.7+£15.5 133.4+57.6 17.0v11.4 142.4+91.9
Mg** ug/L 598.8+954.6 254.7+205.5 73.2430.3 427.5+296.4 32.2v22.6 323.8+156.3
Cca%* ug/L 216.0+133.1 74.9450.1 59.0+£19.7 281.8+174.3 88.0+46.7 150.4+75.8

! standard deviation

A total of 270 (=45x6 wells) data sets of twelve water quality parameters [ power

of hydrogen (pH), alkalinity (Alk), cadmium ion (Ca®"), chlorine ion (CI), total

dissolved solid (TDS), electrical conductivity (EC), sodium ion (Na*), sulfate ion

(SO4%), potassium ion (K*), dissolved oxygen (DO), magnesium ion (Mg?") and

temperature (temp)] were collected at six gauging stations (wells) between 1992 and

2005, which are used for model construction in this study. Table 3.9 shows the well
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Table 3.10 Correlation matrix of As concentration and water quality parameters
collected at six gauging stations (wells) during 1992 and 2005.

As pH Alk Ca* CI' TDS EC Na" SO, K" DO Mg* temp

As 1.00 032 0.13 -0.34 -0.32 -0.31 -0.30 -0.30 -0.27 -0.26 0.19 -0.18 -0.07

pH 1.00 0.46 -0.56 -0.48 -0.43 -0.51 -0.44 -0.47 -0.37 0.26 -0.33 -0.03
Alk 1.00 -0.41 -0.27 -0.20 -0.28 -0.22 -0.33 -0.16 0.14 -0.17 0.04
ca® 1.00 0.77 0.71 0.76 0.73 0.74 062 -0.22 052 0.2
cr 1.00 0.93 097 097 0.88 087 -0.16 055 -0.05
TDS 1.00 093 093 081 084 -018 051 -0.07
EC 1.00 096 0.88 0.86 -0.19 053 -0.06
Na"* 1.00 0.84 0.88 -0.19 052 -0.09
S0.% 1.00 0.72 -0.08 042 -0.06
K* 1.00 -0.11 0.47 -0.07
DO 1.00 -0.12 -0.02
Mg** 1.00 0.2
Temp 1.00

depth, mean and standard deviation (SD) of groundwater quality parameters at these 6

gauging stations, in which high mean and variation of As concentration occur,

especially at wells #6 and #7. The depth intervals of the three aquifers were <60m,

120-200m, and 280-350 m, respectively (Agricultural Engineering Research Center,

2008). This indicates that the 6 monitored wells (well depth: 8.4-22.8m) are in the same

confined aquifer. Table 3.10 shows that all the correlation coefficients between As and

twelve water quality parameters are smaller than 0.34 (in an absolute sense), which

implies the difficulty in determining non-trivial factors that affect As concentration

based solely on such traditional correlation analysis. Therefore, we adopt a more
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sophisticated method to effectively extract non-trivial factors from water quality
parameters for building an As concentration estimation model.
C. Results and discussion
1) Extracting effective water quality factors

The six wells (#3, #6, #7, #12, #17 and #19) that have sufficient water quality data
are assumed as gauging stations for As concentration and are utilized by the GT. Data
sets of twelve water quality factors are first scaled to [-1,1], and a total of 4095 (=2'%-1)
I' values corresponding to all possible input combinations are derived through the GT.
The derived I' values are next sorted in an ascending order, in which I' values
smaller than the 10" percentile (I, = 0.0089) are classified as the best group ( Frer,)
whereas T values bigger than the 90" percentile (I'y, =0.136) are classified as the
worst group ( Frzrgo). Figure 3.17 shows the results of the GT, where blue bars represent
the occurrence frequency of variables in the best group ( Frgrw) and red bars represent
the occurrence frequency of variables in the worst group can then be identified as the
variables associated with higher blue bars and lower red bars simultaneously, and such
ratios are shown by the dotted line in Fig. 3.17. And therefore we can extract a subset of
input variables that ranks top three in the ratio of Frgm to Frzrgo. The GT results
indicate that Alk, Ca’*and pH value are the non-trivial factors for use in the estimation

models (the NARX network and the BPNN).
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Fig. 3.17 Determination of non-trivial factors by the GT results.

These results are consistent with several studies, which indicated the increase in As
leaching efficiency depends on high pH values and Alk concentration (Anawar et al.,
2004; Kim et al., 2000; Kuo and Chang, 2010; Liu et al., 2003; Park et al., 2006; Pierce
and Moore, 1982). The major C-containing species in the reducing condition in
groundwater are HCO3 and H,CO;, which cause high pH values and Alk
concentration (Wang et al., 2007). In addition, salinization and As enrichment are two
main hydro-geochemical characteristics in the Yun-Lin coastal area, and they were
estimated by the factor analysis (Wang et al., 2007). Respectable cation, such as calcium
ions, and anion contents carried by seawater intrusion initially increased the ion strength
in groundwater and induced As desorption (Appelo et al., 2002; Keon et al., 2001). On
the one hand, As anions could sorb or bind using carbonates in natural systems (Bauer

et al., 2008; Rothwell et al., 2009). Therefore the relationship between As and calcium
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ions might be caused by the dissolution of calcium arsenates and/or the competitive
desorption of calcium (Bothe and Brown, 1999; Mihaljevicet al., 2003; Nishimura and
Robins, 1998). In the Yun-Lin coastal area, the shallow aquifer has suffered serious
salinization that affects the concentration of the calcium ion due to the over-pumping of
groundwater. This exercise gives evidence that the GT can effectively identify
non-trivial and meaningful factors that affect the fluctuations of As concentration,
compared with the identification difficulty raised by the traditional correlation matrix
shown in Table 3.10.
2) Estimating As concentration at ungauged sites by the NARX network

In this case study, the NARX network is proposed to estimate the regional As
concentration in Yun-Lin County. Variables Alk, Ca’* and pH determined by the GT are
used as exogenous inputs to the NARX network. The data sets collected at six gauging
stations between 1992 and 2005 are used for model calibration. Therefore, the NARX
network in the SP mode trained by the Bayesian regularization method is calibrated by a
30-fold cross validation. The log-sigmoid function and the linear function are the
transfer functions used in the hidden and output layers of the NARX network,
respectively. The most appropriate NARX network comprises two output-memory

orders and 20 neurons in the hidden layer by trial and error method, and the effective

number of network parameters () is 23.74.
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To demonstrate the effectiveness and usefulness of the NARX network established,
the BPNN is implemented for comparison purpose. The constructed BPNN consists of
the same input variables as those of the NARX network and six neurons in the hidden
layer. The hyperbolic tangent sigmoid function and the linear function are the transfer
functions used in the hidden and output layers of the BPNN, respectively. The BPNN
trained with the Levenberg-Marquardt optimization algorithm is also calibrated by a
30-fold cross validation. The results show that the average RMSE of the NARX
network in the training and validation phases are 95.11 and 106.13 ugl™, respectively,
whereas the average RMSE of the BPNN in the training and validation phases
considerably increases to 121.54 and 143.37 ugl™, respectively. The results demonstrate
that the NARX network has much better performance than the BPNN. It is noted that
both models produce large errors (average RMSE), this is mainly due to the high
uncertainty attached to the sampled values, where the mean (138.26 ugl™) and standard
deviation (205.25 ugl™) of As concentration contributes to the poor model accuracy.

It is worth noting that the effective number of network parameters () for the
NARX network has been optimized from 141 to 23.74 after the re-calibration of the
network by using the Bayesian regularization method. This demonstrates that the
Bayesian regularization method can significantly reduce the effective number of

network parameters and thus avoid the over-fitting problem caused in a rather complex
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network structure. As a result, the NARX network produces suitable results and has
similar performance in the training and validation phases (average RMSE: 95.11 ugl™
and 106.13 ugl™ accordingly). In contrast, the BPNN requires fewer neurons in the
hidden layer to prevent the over-fitting problem but still performs poor in the validation
phase (average RMSE: 143.37 ugl™).

After model configuration, a total of 100 (=20x5 months) As concentration data
collected at twenty assumed ungauged sites in five monitoring months (January 1995,
October 1996, October 1997, September 1998 and January 1999) are utilized to test the
two constructed models. In addition to RMSE, the normalized mean squared error
(NMSE), R-square value (R?) and F test are also used as performance criteria in the

testing phase. The NMSE is defined as:

i(oi —ﬁi)2
NMSEz'an— (52)
Z(Oi _6)2

where O,and Zi are the observed and estimated As concentration from the i assumed

ungauged sites in the same year, respectively, O represents the average of observed As
concentrations in a certain year, and n is the length of data.

The results of model comparison in the testing phase are summarized in Table 3.11,
which indicates the NARX network has much smaller RMSE as well as NMSE values

and higher R? values than the BPNN. Besides, when assessing the results of the
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Table 3.11 Estimation performance of the NARX network and the BPNN for As
concentration at 20 ungauged sites between 1995 and 1999 in the testing phase.

Estimation RMSE Ftest Data Mean Data SD.

. ) NMSE  R? i
time (ugl™) p-valuez  (ugl™) (ugl™)
1995 Jan. 57.31 0.19 0.89 0.105 85.63 134.80
NARX 1996 Oct. 91.53 0.29 0.89 0.010 90.71 173.61
1997 Oct. 40.24 0.11 0.96 0.291 64.51 125.99
network
1998 Sept. 48.34 0.26 0.91 0.731 47.83 97.02
1999 Jan. 41.35 0.07 0.98 0.816 75.57 155.91

1995 Jan. 109.02 0.69 0.41 0.025 85.63 134.80
1996 Oct. 158.70 0.88 0.17 0.002 90.71 173.61
BPNN 1997 Oct. 142.42 1.35 0.18 0.070 64.51 125.99
1998 Sept. 114.63 1.47 0.29 0.302 47.83 97.02
1999 Jan. 140.21 0.85 0.25 0.004 75.57 155.91

'Standard deviation
>The null hypothesis is rejected at the 5% level (p-value < 0.05)

F test, the null hypothesis is rejected only at the 5% level of the estimation values in
October 1996 for the NARX network, whereas the null hypothesis is rejected in January
1995, October 1996 and January 1999 for the BPNN. Figure 3.18 shows the scatter
plots of observed and estimated As concentrations in five different months during 1995
and 1999 derived from the NARX network and the BPNN. The estimation values
obtained from the NARX network are close to the ideal line and only have few
underestimations at extremely high As concentrations, whereas the BPNN overestimates

As concentrations at values lower than 200 ugl™ and seriously underestimates As
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Fig. 3.18 Scatter plots of observed and estimated As concentration (conc.) derived from
the NARX network and the BPNN at twenty ungauged sites (1995-1999).
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Fig. 3.19 Estimation results of As concentrations at ungauged well #14 during 1995 and
1999 in the testing phases of the NARX network and the BPNN.

concentrations at values higher than 200 ugl™. Furthermore, Fig. 3.19 shows the
estimation results of As concentrations at the ungauged well #14, which is located at the
central Yun-Lin coastal area and is far from other gauging and ungauged wells, during
1995 and 1999 in the testing phases of the NARX network and the BPNN. Results
indicate that the NARX network only underestimates As concentration in 1995, whereas
the BPNN highly overestimates As concentration in all five testing years.

In sum, the NARX network adequately utilizes the information of model outputs
through recurrent connections to the network itself for producing reliable estimations of
As concentrations at twenty ungauged sites. Owing to the implementation of the

Bayesian regularization method into the NARX network, the constructed network
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shows impressive generalizability and performs well in the testing phase, which can be
proved through the similar NMSE values in five testing years (Table 3.11).
3) Deriving the risk map of As concentration through the IK

From the previous section, the NARX network can provide reliable point
estimation of As concentration at twenty ungauged sites. The IK is next employed to
estimate the regional spatial distribution and to compute the probability of the exposure
to high As pollution in unsampled areas. Because the WHO drinking water standard for
As concentration is 10ugl™, the investigation of this study mainly focuses on the
threshold of 10ugl™. Therefore, the estimated As concentration obtained from the
NARX network at twenty ungauged sites and the observed As concentration at six
gauging stations are utilized to construct the semivariogram models for the IK.

The NARX network coupled with the IK can illustrate the unknown probability of
the exposure to high As concentrations at neighboring areas of all 26 wells. If the
observed and estimated As concentrations exceed the threshold set in the adjacent
region, the IK will assign a high probability of concentration in the region of interest.
The probability maps of As concentration under the threshold of WHO drinking water
standard (10ugl™) in different time spans are shown in Fig. 3.20. In January 1995, high

exceeding probabilities (>10 ugl™) of As concentration occurred in northern and
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southern areas, whereas both the surrounding area of well #5 and the central area

(located between Old Huwei River and New Huwei River) had low exceeding

probabilities of As concentration. In October 1996, the exceeding probability was high

in the southern area of the Old Huwei River. In contrast, the exceeding probability of As

concentration was gradually and significantly mitigated in the central and northern areas

from October 1997 to January 1999, and the Old Huwei River could be deemed as a

clear boundary between high and low As concentrations in an exceeding probability

sense. These risk maps reveal the high As-prone areas. As a result, the information of

the risk maps derived from the IK of the proposed SDM can consequently help decision

makers manage groundwater quality and thus prevent residents from drinking or using

toxic groundwater.

3.4 Modeling spatio-temporal total phosphate (TP) concentration through

Systematical Dynamic-neural Modeling

It is a great challenge to model the spatio-temporal variability of water quality

along a highly dynamic river channel. Various difficulties may be commonly

encountered in modeling, such as the scarcity of field data, the identification of key

factors affecting the output, instability and unreliability. To tackle the possible

difficulties, the proposed SDM that comprises a dynamic neural network with three
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statistical techniques: the GT; the Bayesian regularization method; and the cross

validation technique, is adopted to model the TP concentrations along the Dahan river

channel based on the limited data sets of nine water quality parameters. The GT is first

used to effectively extract key factors that significantly affect the fluctuations of TP

concentrations. Then the NARX network is constructed to simultaneously estimate

quarterly TP concentrations at seven monitoring stations based on the selected key

factors, in which the network complexity is controlled automatically by the Bayesian

regularization method to avoid over-fitting; and the cross validation technique is

adopted as a sensible criterion for model selection in the calibration stage to overcome

data scarcity. Through the constructed NARX network, TP concentrations can be

reconstructed in a monthly scale for producing the monthly WQI (including TP). For the

purpose of comparison, the BPNN is also implemented for comparison purpose. The

implementation procedure is illustrated in Fig. 3.21.

A. Study area

The Dahan River is one of the most polluted rivers in northern Taiwan, and its

water quality has decreased for the past decades. Figure 3.22 shows the location of the

Dahan River basin, which is divided into two zones based on land-use morphology: the

upstream zone (from Shihmen Dam to Yuanshan Weir: water quality monitoring stations

S1-S3); and the downstream zone (from Yuanshan Weir to the confluence point of the
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Dahan River and the Xintian River: S4-S7). According to the disclosure of the WQI, the

water quality of the upstream zone is better than that of the downstream one, which can

be attributed to the high degrees of urbanization and industrialization in the downstream

Zone.
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B. Data collection

A water quality survey was carried out at seven water quality monitoring stations

(S1-S7) along the Dahan River channel from July 2002 to June 2012, which consisted

of the quarterly-measured TP and nine monthly-measured water quality parameters:

power of hydrogen (pH), electro conductivity (EC), dissolved oxygen (DO),

biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solid

(SS), coliform group (Coliform), ammonia nitrogen (NH3-N) and water temperature

(temp). A total of 280 quarterly TP data sets collected at S1-S7 are separated into two
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Table 3.12 Test methods and preliminary statistics of water quality parameters collected
at water quality monitoring stations S1-S7 in the Dahan River basin during the model
calibration period (2002-2009).

pH EC DO BOD COD SS Coliform  NHs-N temp TP
Variable uth/CIIl 1 1 1 1 CFU/100 1 o 1
25 mgl mgl mgl mgl mL mgl| C mgl

NIEA NIEA NIEA NIEA NIEA NIEA NIEA NIEA NIEA NIEA
W424.52A W203.51B W455.52C W510.55B W515.54A W210.58A E202.55B W448.51B W217.51A W427.53B

Test method

min 6.6 182 0.00 1.00 4.00 3.6 10 0.02 13.0 0.01
max 10.4 1200 14.10 22.80 535.00 13600 6.8E07 14.40 33.6 6.88
median 8.0 311 7.70 2.60 12.35 38.4 4750 0.36 235 0.13
mean 7.9 413 6.70 5.04 23.64 560 858244 1.94 22.9 0.40
sD. 0.6 218 3.18 5.20 44.28 1832 5499257 3.12 5.4 0.79

CC’with TP 0.19 0.56 -0.54 0.65 0.66 0.70 0.25 0.49 -0.02 -
N® 210 210 210 210 210 210 210 210 210 210

! Standard deviation
2 Correlation coefficient
® Number of samples

stages for modeling: 210 data sets (30 x 7 stations) collected during 2002/07 and
2009/12 are for calibration purpose; and 70 data sets (10 x 7 stations) collected during
2010/03 and 2012/06 are for testing purpose. Table 3.12 shows the test methods and the
statistical analysis of water quality parameters at the study area during the period of the
model calibration (2002-2009), in which the maximum TP concentration exceeds 6
mgl™. The standard deviations of COD, SS, Coliform, NHs-N and TP are high. Through
checking the original data, it makes significant differences in the concentrations of these
parameters between the upstream zone and the downstream zone, and such phenomena
could be caused mainly by the human activities at the downstream zone. The

relationship between TP and nine water quality parameters in the study area is
99



discovered by the correlation coefficient (CC) analysis (Table 3.12), which discloses

that EC, BOD, COD, SS and DO have relatively stronger relationship with TP (absolute

CC values > 0.5) than the remaining parameters. On account of the limited data sets and

the weak linear relationships between the inputs (nine parameters) and the output (TP),

a more sophisticated nonlinear analysis with parsimounous parameters for model input

selection is expected.

C. Results and discussion

In this case study, TP concentration was measured in a quarterly scale, and the

SDM is proposed to modeling spatio-temporal TP concentration. The NARX network is

constructed to simultaneously produce quarterly TP estimates at individual water

quality monitoring stations (S1-S7) based on water quality data measured at each station

in the same months as TP was sampled during 2002 and 2012. As the estimation model

Is constructed, it can be utilized to reconstruct monthly TP concentrations by being fed

with the monthly data of the selected water quality parameters at each monitoring

stations (S1-S7). That is to say, the monthly reconstructions of seasonal TP data can be

carried out, and thus the monthly WQI (including TP) can be obtained.

1) Determination of TP-affected water quality factors by the GT

For model input selection, it is difficult to identify key factors affecting TP

concentrations by the traditional correlation matrix showyn in Table 1 because linear
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correlations may not fully explain highly non-linear systems such as the study case.
Alternatively, this study adopts the GT to detect the key factors for modeling TP
concentration. Data collected at water quality monitoring stations S1-S7 during 2002
and 2009 are first utilized by the GT and then are used for the calibration of the
spatio-temporal estimation model. The data sets of nine water quality parameters are
scaled to [-1,1], and a total of 511 (=2°-1) T values corresponding to all possible input
combinations are calculated through the GT. A small subset of inputs significantly
relevant to the output (the target variable-TP) can be extracted by examining the
occurrence frequency of each input variable in the best results of the GT. T' values
smaller than the 10" percentile (I, = 0.028) of all T values are defined as the best
results of the GT, whereas T' values bigger than the 90" percentile (Iy, = 0.217) of all
I' values are defined as the worst results of the GT. Fig. 3.23 shows the GT results,
where the blue bars represent the occurrence frequency of each variable in the best
results (Fr<r,,) and the red bars represent the occurrence frequency of each variable in
the worst results (Fr»r,,). As a consequence, key factors are those producing higher
blue bars and lower red bars simultaneously, which can be easily identified by the ratios
of Frer,, (best)to Fror,, (worst), as the dotted line shown in Fig. 3.23.

The results of the GT indicate that EC and SS are the desired key factors, while the

rest of the parameters are not considered useful and/or important for modeling TP
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Fig. 3.23 Determination of key factors by the GT results.

concentration. We notice that Temp has the lowest absolute CC value and the lowest
ratio of Fr<r,, 10 Frsr,, (as shown in Table 3.12), nevertheless DO and BOD have
relatively high absolute CC values but lower ratios of Fr<r , t0 Frsr,,. The results
suggest that if DO and BOD are used as input variables, the constructed model might
not be as reliable (stable) as expected.

TP-related geochemical processes also support the selection of EC and SS as key
factors. EC is a measure of the ability of water to pass an electrical current. The United
States Environmental Protection Agency (USEPA) indicated that EC has certain
relationship with TP concentrations because conductivity in water is affected by the
presence of inorganic dissolved solids such as chloride, nitrate, sulfate, phosphate

anions or sodium, magnesium, calcium, iron and aluminum cations (USEPA, 1987).
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Therefore, EC and TP are closely related to each other owing to the mechanism that

hydrolyzes phosphorus in water into the form of phosphate anions. As for SS, Bowes et

al. (2003) indicated that dissolved inorganic phosphorus not only interacts strongly with

sediments but involves various precipitation dissolution reactions, such as calcium

carbonate phosphate and iron/aluminium oxide minerals, which reveals the reason why

SS is also a key factor. In brief, although the GT cannot detect the specific chemical

mechanism of TP, it can still effectively extract non-trivial and meaningful factors that

affect the fluctuations of TP concentrations.

2) Spatio-temporal estimation of TP concentrations by the NARX network

The NARX network is employed in this study to estimate the spatio-temporal TP

concentration in the Dahan River. EC and SS determined by the GT are used as

exogenous inputs to the NARX network, and 210 data sets collected at water quality

monitoring stations S1-S7 are used for model calibration. The NARX network in the SP

mode trained by the Bayesian regularization method is calibrated by a 42-fold cross

validation. The most appropriate NARX network comprises two output-memory orders

and 10 hidden layer neurons.

To explore an effective and useful NARX network in this spatio-temporal

estimation task, the BPNN is also implemented with its network structure (without

recurrent connections) similar to that of the NARX network. The BPNN trained with the
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Levenberg-Marquardt optimization algorithm is also calibrated by a 42-fold cross
validation. The constructed BPNN consists of two inputs (EC and SS) and six hidden
layer neurons. The results show that the average RMSEs in the training and validation
phases of the NARX network are 0.188 and 0.375 mgl™, respectively, whereas those of
the BPNN are significantly increased to 0.262 and 0.665 mgl™, respectively. It is worth
noting that the effective number of network parameters has been optimized at 37.74
(notably dropped from 61 = ((2+2) x 10 + 10) parameters + (10+1) biases) as the
Bayesian regulation method is employed. This demonstrates that the Bayesian
regularization method can effectively restrain the network weights and equivalently
reduce the number of network connections to avoid the over-fitting problem caused in a
rather complex network structure. In brief, the NARX network produces acceptable
results, compared with the mean and standard deviation (0.40+0.79mgl™) of the TP
concentrations at seven monitoring stations, and similar performance is achieved in the
training and validation phases. Compared with the NARX network, the BPNN requires
fewer hidden layer neurons to prevent the over-fitting problem but performs poorly in
both training and validation phases. The BPNN results suggest that this static neural
network with two key input variables could not well simulate the spatio-temporal TP

concentration and thus produce neither reliable nor stable results.
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Table 3.13 Performance of the NARX network and the BPNN in the testing phases
(2010-2012) for TP concentration estimation at water quality monitoring stations S1-S7.

RMSE MAE Data Mean Data SD™.
Year Model 4 4 CE CcC a a
(mgl™) (mgl™) (mgl™) (mgl™)
NARX
network 0.075 0.052 0.86 0.95
2010 0.222 0.210
BPNN 0.230 0.144 -0.30 0.25
NARX
2011 0.237 0.297
BPNN 0.276 0.181 0.11 0.40
NARX
network 0.057 0.037 0.79 0.90
2012 0.147 0.130
BPNN 0.136 0.102 -0.18 0.25

IStandard deviation

After finishing model calibration, 70 data sets collected at seven monitoring
stations S1-S7 during 2010 and 2012 are utilized to test the two constructed
spatio-temporal models, in which TP data collected in March and June of 2010 are used
as the initial values for the output regressor of the NARX network. In addition to RMSE,
MAE, CE, and CC are also used in the testing stages for comparison purpose.

The results of model comparison in the testing phases are summarized in Table
3.13 The results clearly indicate that the NARX remarkably outperforms the BPNN, in
term of much smaller RMSE and MAE values but much higher CE and CC values. The
estimations of TP concentrations at monitoring stations S4-S7 of the downstream zone

(more polluted) in three testing years are shown in Fig. 3.24. Results indicate that the
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NARX network can well capture the trend of the TP concentrations at all four
monitoring stations each year, whereas the BPNN cannot reflect the fluctuations of the
TP concentrations at most of the monitoring stations. The BPNN even produces a
reverse trend as compared with the observed time series, in particular for peak values
observed at the downstream stations (S5-S7). Results demonstrate that the NARX
network can adequately utilize the information of model outputs through recurrently
connecting to the network itself and capture the important dynamic and static features of
the time series, which significantly increases estimation reliability. In sum, the NARX
network coupled with the Bayesian regularization method shows an impressive
generalizability and makes good contribution to model reliability.
3) Reconstruction of the monthly TP time series and monthly WQI

Following the previous section, the constructed NARX network can provide
reliable point estimation and extract the trend of TP concentrations at seven monitoring
stations S1-S7. Therefore, it can be utilized to reconstruct the time series of estimated
TP concentrations from quarterly to monthly monitoring scales. Figures 3.25 and 3.26
show the reconstructed monthly time series and the distribution color map of TP
concentrations at S1-S7 during 2010 and 2012, respectively. For the prevention of plant
nuisances in streams or other flowing waters from being discharged directly to lakes or

impoundments, USEPA has suggested 0.1 mgl™ as the desired TP goal (Mackenthun,
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Fig. 3.24 Estimation results of TP concentrations at water quality monitoring stations (a)
S4, (b) S5, (c) S6 and (d) S7 during 2010 and 2012 in the testing phases of the NARX
network and the BPNN.

1973; USEPA, 1987) (the blue dashed line in Figure 3.25). Results indicate that TP
concentration exceeds the quadruple of the desired TP goal at S4-S7 (downstream
stations), especially in 2011. The reason for such distribution of TP concentration along
the Dahan River might be ascribed to the channel dredging task executed by the New

Taipei City Government during 2011, which affects the disturbance of benthal deposits
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Fig. 3.25 Reconstructed monthly TP time series based on quarterly TP data estimated at
water quality monitoring stations S1-S7 (2010-2012).
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Fig. 3.26 Colormap of the reconstructed monthly TP concentrations at water quality

monitoring stations S1-S7 (2010-2012).
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Fig. 3.27 Monthly WQI values (including TP) at water quality monitoring stations
S1-S7 by incorporating the reconstructed monthly TP concentrations (2010-2012).

and thus causes the fluctuations of SS, EC and TP concentrations. According to the

reconstructed TP time series (Fig. 3.25) and the threshold (0.4 mgl™) of TP

concentration distribution (the red dotted line in Fig. 3.26), TP concentrations are the

highest and fluctuate seriously at downstream monitoring stations S6 and S7. Finally,
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monthly WQI (including TP) can be calculated by incorporating the reconstructed
monthly TP data, and the WQI then be converted into five water quality levels for
convenience: 0-25 (poor); 25-50 (bad); 50-70 (medium); 70-90 (good); and 90-100
(excellent) (Fig. 3.27). Monthly WQI also indicates that water quality is either bad or

poor at S6 and S7 in almost every month.

4. Conclusion and suggestion

4.1 Conclusion

This dissertation focuses on the two main problems that are commonly
encountered in hydro-environmental systems: water quantity and water quality
management, and endeavors to develop novel dynamic artificial neural networks and
modeling schemes to solve these problems. ANNs have the ability to approximate
nonlinear functions as valuable tools for modeling time series and are considered an
alternative computational approach to modeling physical-based problems. RNNs are a
class of ANNs and are computationally powerful nonlinear models capable of extracting
dynamic behaviors from complex systems through internal dynamic recurrence, which
are suitable for the applications of hydro-environmental systems. Therefore, this

dissertation develops the reinforced online learning algorithm for RNNs (R-RTRL NN)
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and the systematical dynamic-neural modeling (SDM) scheme for topic 1: water

quantity issues for reservoir inflow forecasting and urban flood control; and topic 2:

water quality issues for spatio-temporal estimation with respect to the As concentration

in groundwater and the TP concentration in a river basin. A total of four case studies are

investigated in this dissertation.

The case study of the “Reinforced recurrent neural networks for multi-step-ahead

flood forecastings” is devoted to dealing with the connatural limitation of online

learning algorithms that is caused by a lack of future target values for MSA forecasting.

A novel R-RTRL NN is proposed to not only adequately utilize the antecedent

information of the observations as well as model outputs but also strengthen their

usefulness to mitigate time-lag phenomena as well as increases model accuracy in MSA

forecasting. The rigorous demonstration with respect to the superiority of MSA

R-RTRL NN necessitates the use of a benchmark chaotic time series and the real-world

application of the flood time series induced by typhoons at the Shihmen Reservoir in

northern Taiwan. For comparison purpose, the original RTRL NN, the ElIman NN and

the BPNN are also performed. In the cases of benchmark time series, results indicate

that the proposed R-RTRL NN has much better performance than comparative models

for MSA forecasts. When modeling the flood time series, the proposed R-RTRL NN

also shows great superiority on 2SA, 4SA and 6SA forecasts with significant reductions
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in time-lag effects than the original RTRL NN, Elman NN and BPNN. This case study

demonstrates that the developed R-RTRL algorithm for RNNs by incorporating the

closest antecedent information into the online learning process has good practicability

and produces high accuracy for MSA forecasts.

In the case study of the “Real-time multi-step-ahead water level forecasting by

recurrent neural networks for urban flood control 7, three ANN models (one static — the

BPNN, two dynamic — the EIman NN and the NARX network) are developed to make

forecasts on the evolution of water level at FSP as a function of current FSP water level

and rainfall information based on the inputs extracted by an advanced factor selection

method (GT) for allowing sufficient time advance to warm up the pumping system and

enhancing secure pumping operations to prevent flooding of the city. The temporal

resolution of water level and rainfall data is 10 minutes, and the forecasting horizon is

60 minutes (i.e., 6 time-step-ahead). The results demonstrate that the GT can efficiently

identify the effective rainfall factors as important inputs to the ANNs for obtain

promising forecasting results; and the NARX network has higher applicability than the

BPNN and the EIman NN, in term of lower RMSE and higher CC and CE values for

multi-step-ahead forecasts in both scenarios. The NARX network can well forecast the

hydrograph of FSP water level and maintain the water level trail with less fluctuation.
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In technical aspects, the outputs of the static network (the BPNN) depends solely

on observed data, whereas the outputs of the dynamic networks incorporate observed

data with time delay units through recurrent connections and thus significant

contribution could be made to the output values. The dynamic networks have the merits

to effectively discover the long—term dependencies through their recursive outputs and

mitigate the fluctuation problem (instability) in their outputs.

In sum, the proposed SDM with two core methods of the GT and the NARX

network can well construct multi-step-ahead hydrological water level forecasting

models for urban flood control pumping. The results of this case study are beneficial to

the identification of inundation risks induced by inner stormwater and can be

incorporated into suitable operational strategies for enhancing the pumping efficiency at

inundation-prone areas.

The third case study is the “Regional estimation of groundwater Arsenic

concentrations through Systematical Dynamic-neural Modeling . The blackfoot disease

in the Yun-Lin County of Taiwan has been verified to be associated with high As

concentrations in groundwater. Due to great concern for the potential effects of As on

human health, there is a growing need for efficiently modeling the presence and the

amount of As in groundwater. In this case study, the proposed SDM that incorporates

the GT into the NARX network accompanied with three optional statistical techniques
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is utilized to adequately estimate As concentration in the area of Yun-Lin County. The
BPNN is adopted as a comparative model. The modeling processes and related results
suggest that 1) the GT can effectively extract non-trivial factors that affect the target
variable; 2) the Bayesian regularization method that constrains the weight values of the
network does improve network generalizability; 3) the cross validation technique can
produce a low-bias estimator of the generalization ability of networks; 4) the NARX
network can provide reliable estimation of As concentration at both gauged and
ungauged sites; and 5) the IK suitably derives the probability maps of As concentration
under the threshold of WHO drinking water standard in the study area.

The results demonstrate that the NARX network produces much better
performance than the BPNN. The configured NARX network can suitably and
accurately estimate As concentrations at 20 ungauged sites in five testing years (all the
R? values are high (0.82 to 0.95)), whereas the BPNN fails to provide suitable
estimations (all the R® values are low (0.17 to 0.41)). It proves that the recurrent
connections of output information (As concentrations) to the NARX network itself
makes significant contribution to the accuracy of the spatio-temporal estimation model.

Finally, the IK can suitably derive the probability maps of As concentration under
the threshold of the WHO drinking water standard in the study area, which is

meaningful and useful for the authorities to manage water resources so that prevent
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residents from using and drinking As-contaminated groundwater. In particular, the
construction of the proposed SDM requires As concentration data at six gauging
stations and data of three easily-measured water quality variables (Alk, Ca** and pH) at
six gauging stations and the other twenty ungauged sites. It merely requires data of three
three-easily measured water quality variables for the constructed SDM to effectively
and suitably estimate As concentrations at ungauged sites. This approach could
significantly reduce the manpower cost of monitoring wells and effectively provide
reliable estimation of As concentration at ungauged sites. In summary, the proposed
SDM scheme for the estimation of As concentration using on-site measurement data of
other water quality variables can be an alternative way to quantify As contamination
and to provide predictive information for better public health management.

In the fourth case study of the “Modeling spatio-temporal total phosphate (TP)
concentration through Systematical Dynamic-neural Modeling ”, the developed SDM is
utilized to estimate seasonal TP concentrations in a river channel as a function of
easily-measured water quality parameters with an extension to monthly TP estimation to
provide the monthly WQI (including TP) in response to the sudden changes in river
pollution levels caused by natural processes and/or human activities for timely
hydro-environmental management. Two different neural network models (one static/one

dynamic) are developed based on the inputs selected as significant factors from a
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preliminary data analysis. Their performances are compared to derive guidelines for

model selection. The prediction time horizon can be reduced from three months

(seasonal) to one month. Results demonstrate that the NARX network (dynamic

network) gives better estimation than the BPNN (static network). The proposed SDM

can be beneficial to water authorities for hydro-environmental management with

countermeasures in a shorter time scale (from quarterly to monthly). And it is believed

that the proposed SDM can be reliably applied to spatio-temporal estimation for missing,

hazardous or costly data of interest.

4.2 Suggestion

This dissertation have developed the reinforced online learning algorithm for

RNNs (R-RTRL NN) and the systematical dynamic-neural modeling (SDM) scheme for

water quantity and water quality issues in hydro-environmental systems.

The sequential formulation of the R-RTRL NN is derived, and its reliability and

applicability are demonstrated through two- to six-step-ahead forecasting made for a

famous benchmark chaotic time series and a reservoir inflow case in Taiwan. In the

future, it can be further applied to other rivers and/or urban basins for MSA stream flow

and/or water level forecasting, and thus the practical conditions under various

rainfall-runoff patterns suitable for adopting the online R-RTRL NN can be identified.
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In the other way, although batch learning is more popular than online learning for

training ANNS, online learning is still useful in certain situations. Online learning

algorithms can be utilized when the input-output patterns of datasets change over time.

For example, input data may not be available at every time step, so the estimated input

values will usually be used under this circumstance. As a result, the input-output

mapping pattern will change over time for different input data sources (observed

input-output and estimated input-output). Moreover, the proposed reinforced online

learning algorithm can be combined not only with the RNN but also with any arbitrary

type of models for MSA forecasting, which can be further explored and/or applied.

Second, the SDM whose kernel consists of the GT for key factor selection and the

NARX network for spatio-temporal estimation is proposed. The SDM is then applied to

1) urban flood control problems for exploring the contribution of recurrent connections

of the NARX network; and 2) the spatio-temporal estimation of As and TP

concentration for providing water authorities with useful information to deal with

groundwater and river basin management. The proposed SDM has been applied with

success to three different study areas: Yu-Cheng catchment; Yun-Lin coastal area; and

Dahan River. It is believed that the SDM can also be easily and appropriately applied to

larger-scale and more complex hydro-environmental systems, e.g., the Shihmen

Reservoir-Tamsui estuary river system, for modeling target water quality parameters.
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First, the river system can be divided into three sub-areas: upstream basin

(Shihmen Reservoir); midstream basin (Dahan River); and downstream basin (Tamsui

River). The GT can extract the non-trivial factors that significantly affect the

fluctuations of target parameters in these three different sub-areas, respectively. Then a

series-connection of three different NARX networks associated with these three

sub-basins can be constructed. It means the estimated output of the NARX network

associated with the upstream basin is one of the exogenous input to the NARX network

associated with the midstream basin, and the estimated output of the NARX network

associated with the midstream basin is also one of the exogenous input of the NARX

network associated with the downstream basin. In this way, the SDM bears the ability in

modeling the external (geographic dependency) and internal (temporal dependency)

characteristics of the target variable in the whole river system.
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Reinforced Two-Step-Ahead Weight Adjustment
Technique for Online Training of
Recurrent Neural Networks

Li-Chiu Chang, Pin-An Chen, and Fi-John Chang

Abstract— A reliable forecast of future events possesses great
value. The main purpose of this paper is to propose an innovative
learning technique for reinforcing the accuracy of two-step-
ahead (2SA) forecasts. The real-time recurrent learning (RTRL)
algorithm for recurrent neural networks (RNNs) can effectively
model the dynamics of complex processes and has been used
successfully in one-step-ahead forecasts for various time series.
A reinforced RTRL algorithm for 2SA forecasts using RNNs
is proposed in this paper, and its performance is investigated
by two famous benchmark time series and a streamflow during
flood events in Taiwan. Results demonstrate that the proposed
reinforced 2SA RTRL algorithm for RNNs can adequately
forecast the benchmark (theoretical) time series, significantly
improve the accuracy of flood forecasts, and effectively reduce
time-lag effects.

Index Terms— Real-time recurrent learning (RTRL) algorithm,
recurrent neural network (RNN), streamflow forecast, time series
forecast.

I. INTRODUCTION

OST observational disciplines tend to infer proper-

ties of an uncertain system from the analysis of its
measured data. The analytical technologies for extracting
the meaningful characteristics of time series data have been
widely discussed for a long time [1]. Many mature tech-
niques associated with time series analysis were used in many
important applications such as environment and marketing [2].
Because observations closer together in time generally would
be more closely related than observations further apart, it is
more difficult to obtain a satisfactory multistep-ahead forecast.
The recursive use of one-step-ahead forecasts for many time
steps into the future is a commonly used strategy, which
unfortunately has been shown to have shortcomings in real-
world applications [3]. This is mainly because a small forecast
error at the beginning could propagate into the future. To solve
such a problem, it is argued whether an iterative adjustment of
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the model’s parameters based on additional information, such
as antecedent observed values and/or model outputs, would be
beneficial to multistep-ahead forecasts.

Over the last few decades, artificial neural networks (ANNs)
have been recognized for modeling the underlying nonlin-
carities and complexities in artificial or physical systems.
Many ANNs were developed to solve different problems,
such as rainfall and streamflow forecasting [4]-[9], seismic
[10], reservoir flood control [11], financial forecasts [12],
sunspot activity [13], and many other disciplines for multistep-
ahead forecasts [13]-[17]. Most of these applied with neural
networks are classified into static neural networks and can
simulate the short-term memory structures within processes,
whereas the extraordinary time variation characteristics of time
series might not be well retained.

Lately, recurrent neural networks (RNNs) have attracted
much attention [ 18]-[24] for extracting dynamic time variation
characteristics. Because of their dynamic nature, RNNs have
been successfully applied to a wide variety of problems such
as system identification [25]—[27], speech processing and plant
control [28], and time series forecasting [29]-[33]. RNNs are
capable of improving forecast accuracy [3], [34]-[36]. The
training of an RNN, however, could be time consuming [13],
[37], such as back-propagation through time (BPTT). BPTT,
designed for training RNNs, can be derived by unfolding the
temporal operation of the network into a multilayer feedfor-
ward network. The two familiar implementations of BPTT
are the batch mode (epoch-wise BPTT) and real-time mode
(truncated BPTT) [38]. A potential drawback of truncated
BPTT is that the memory effects exceeding the truncation
depth (duration) cannot be captured by RNNs.

The real-time recurrent learning (RTRL) algorithm,
proposed by Williams and Zipser [39], is an effective and
efficient algorithm for training recurrent networks, and its
name is derived from the fact that real-time adjustments
are made to the synaptic weights of an RNN. A num-
ber of previous studies demonstrated that the RTRL algo-
rithm for RNNs is very effective in modeling the dynamics
of complex processes and can provide accurate forecasts
[40]-[42], while some studies further made efforts to reduce
the time complexity of the RTRL algorithm [43]-[45].

Due to geophysical conditions, reservoirs in Taiwan are
relatively small when considering the amount of water falling
on watersheds during typhoon events. A controlled spillway
is equipped with mechanical gates to control the water release

2162-237X/$31.00 © 2012 IEEE
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SUMMARY

Keywords:
Reinforced real-time recurrent learning
(R-RTRL) algorithm

Considering true values cannot be available at every time step in an online learning algorithm for multi-
step-ahead (MSA) forecasts, a MSA reinforced real-time recurrent learning algorithm for recurrent neural
networks (R-RTRL NN) is proposed. The main merit of the proposed method is to repeatedly adjust model
parameters with the current information including the latest observed values and model’s outputs to
enhance the reliability and the forecast accuracy of the proposed method. The sequential formulation
of the R-RTRL NN is derived. To demonstrate its reliability and effectiveness, the proposed R-RTRL NN
is implemented to make 2-, 4- and 6-step-ahead forecasts in a famous benchmark chaotic time series
and a reservoir flood inflow series in North Taiwan. For comparison purpose, three comparative neural
networks (two dynamic and one static neural networks) were performed. Numerical and experimental
results indicate that the R-RTRL NN not only achieves superior performance to comparative networks
but significantly improves the precision of MSA forecasts for both chaotic time series and reservoir inflow
case during typhoon events with effective mitigation in the time-lag problem.

Recurrent neural network (RNN)
Multi-step-ahead forecast
Flood forecast

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Accurate multi-step-ahead (MSA) forecast is valuable and
desired in many engineering problems, such as rainfall and flood
forecasts, however it is a challenging task and difficult to achieve.
A common approach to the MSA forecast is to update network
parameters through online learning techniques. Online learning
is a supervised machine-learning framework, which adopts the lat-
est observed values to adjust model parameters for better map-
pings between instances and true values in a system. Because
most observational disciplines tend to infer properties of an uncer-
tain system from the analysis of time-dependent data, analytical
technologies for extracting the meaningful characteristics of time
series data have some inherent limitations, which has been a
widely discussed issue for a long time (Brockwell and Davis,
1991; Jaeger and Haas, 2004; Jothiprakash and Magar, 2012; Nair
et al., 2001). Online learning algorithms have several practical
and theoretical advantages such as memory-efficient implementa-
tion, runtime-efficient implementation and strong guarantees on
performance even in a highly variable data structure of time series
(Shalev-Shwartz et al., 2004) owing to the continual receipt of true
values for adjusting model parameters. Nevertheless, the main
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defect of online learning is ascribed to the requirement for contin-
ual true values. Engineering problems frequently require models to
predict many time-steps into the future without the availability of
measurements in the horizon of interest. The lack of true values
makes it difficult to achieve MSA forecasts. In addition, many stud-
ies indicated it is not an adequate strategy to recursively adopt sin-
gle-step-ahead predictions for many time-steps into the future
because the errors of MSA predictors will be accumulated based
on the single-step-ahead predictor (Parlos et al., 2000; Yong
et al, 2010). Such time-lag problems may cause significant
performance degradation when dealing with MSA forecasts for
real-world applications. For the MSA streamflow forecasts during
typhoon events, models with time-lag problems (i.e. no updating
latest observed values) cannot keep flow trails, especially in peak
flows, as the forecasting step increases. To mitigate time-lag phe-
nomena occurred in online learning algorithms, it is argued
whether iterative adjustments of model parameters based on addi-
tional information, such as the latest true values and/or antecedent
model outputs, would be beneficial to MSA forecasts.

Artificial neural networks (ANNs) have the ability to approxi-
mate nonlinear functions and therefore become valuable tools for
various water resources problems (Cho et al., 2011; Nayak et al.,
2005; Nikolos et al., 2008; Nourani et al., 2011; Nourani and
Sayyah Frad, 2012). However, static neural networks might fail to
establish reliable nonlinear models for predicting dynamical
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SUMMARY

Arsenic (As) is an odorless semi-metal that occurs naturally in rock and soil, and As contamination in
groundwater resources has become a serious threat to human health. Thus, assessing the spatial and tem-
poral variability of As concentration is highly desirable, particularly in heavily As-contaminated areas.
However, various difficulties may be encountered in the regional estimation of As concentration such
as cost-intensive field monitoring, scarcity of field data, identification of important factors affecting As,
over-fitting or poor estimation accuracy. This study develops a novel systematical dynamic-neural mod-
eling (SDM) for effectively estimating regional As-contaminated water quality by using easily-measured
water quality variables. To tackle the difficulties commonly encountered in regional estimation, the SDM
comprises of a neural network and four statistical techniques: the Nonlinear Autoregressive with eXog-
enous input (NARX) network, Gamma test, cross-validation, Bayesian regularization method and indica-
tor kriging (IK). For practical application, this study investigated a heavily As-contaminated area in
Taiwan. The backpropagation neural network (BPNN) is adopted for comparison purpose. The results
demonstrate that the NARX network (Root mean square error (RMSE): 95.11 ugl~' for training;
106.13 pg 1! for validation) outperforms the BPNN (RMSE: 121.54 pg 1! for training; 143.37 ug 1! for
validation). The constructed SDM can provide reliable estimation (R? > 0.89) of As concentration at unga-
uged sites based merely on three easily-measured water quality variables (Alk, Ca>* and pH). In addition,
risk maps under the threshold of the WHO drinking water standard (10 pg1~') are derived by the IK to
visually display the spatial and temporal variation of the As concentration in the whole study area at dif-
ferent time spans. The proposed SDM can be practically applied with satisfaction to the regional estima-
tion in study areas of interest and the estimation of missing, hazardous or costly data to facilitate water
resources management.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

been associated with drinking As-contaminated groundwater
(Chiou et al., 1997; Rahman et al., 1999). As-contaminated ground-

Arsenic (As) contamination in groundwater has been reported
and resulted in a massive epidemic of As toxication in several
countries such as Bangladesh, Vietnam, Cambodia, China and Tai-
wan. It is estimated that approximately 57 million people drink
As-contaminated groundwater with concentrations exceeding the
drinking water standard recommended by the WHO (World Health
Organization) (BGS-DPHE, 2001; Chakraborti et al., 2010). As pollu-
tion affects not only crop productivity and water quality but also
the quality of water bodies, which threatens the health of animals
and human beings by way of food chains. Long-term exposure to
As in drinking water has been implicated in a variety of health con-
cerns including cancers, cardiovascular diseases, diabetes and neu-
rological effects (National Research Council, 1999). Blackfoot
disease as well as cancers of the skin, bladder, lung and liver have
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water is derived naturally from As-rich aquifer sediments, and the
geochemistry of As can be rather complex (Stollenwerk, 2003).
Various hydrogeological and biogeochemical factors affecting As
concentration in groundwater have been detected, such as sedi-
ment mineralogy, microbial oxidation or reduction of As, ground-
water recharge, groundwater flow paths (Ford et al., 2006; Wang
et al., 2007, 2011; Xie et al., 2013), and the presence of fractures
in bedrock formations (Ayotte et al., 2003; Liao et al., 2011). Even
though the processes controlling the release of As into groundwa-
ter systems have been extensively discussed over the past decade,
the exact chemical conditions and reactions leading to As mobiliza-
tion still remain a subject of intense debate (Goovaerts et al., 2005;
Polizzotto et al., 2006; Winkel et al., 2008). Moreover, the high var-
iability of arsenic concentration can occur within a short distance
and/or in different well depths due to the diversity in geology
and geomorphology (Serre et al., 2003; Yu et al., 2003). Besides,
the detection of As contamination in groundwater by using
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Urban flood control is a crucial task, which commonly faces fast rising peak flows resulting from urban-
ization. To mitigate future flood damages, it is imperative to construct an on-line accurate model to fore-
cast inundation levels during flood periods. The Yu-Cheng Pumping Station located in Taipei City of
Taiwan is selected as the study area. Firstly, historical hydrologic data are fully explored by statistical
techniques to identify the time span of rainfall affecting the rise of the water level in the floodwater stor-
age pond (FSP) at the pumping station. Secondly, effective factors (rainfall stations) that significantly
affect the FSP water level are extracted by the Gamma test (GT). Thirdly, one static artificial neural
network (ANN) (backpropagation neural network-BPNN) and two dynamic ANNs (Elman neural
network-Elman NN; nonlinear autoregressive network with exogenous inputs-NARX network) are used
to construct multi-step-ahead FSP water level forecast models through two scenarios, in which scenario
I adopts rainfall and FSP water level data as model inputs while scenario II adopts only rainfall data as
model inputs. The results demonstrate that the GT can efficiently identify the effective rainfall stations
as important inputs to the three ANNs; the recurrent connections from the output layer (NARX network)
impose more effects on the output than those of the hidden layer (Elman NN) do; and the NARX network
performs the best in real-time forecasting. The NARX network produces coefficients of efficiency within
0.9-0.7 (scenario 1) and 0.7-0.5 (scenario II) in the testing stages for 10-60-min-ahead forecasts
accordingly. This study suggests that the proposed NARX models can be valuable and beneficial to the
government authority for urban flood control.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

deaths, inundations at some stations of the Taipei Metro System,
and countless economic losses. The heavy rainfall event on June

Urban flood control is a crucial and challenging task, particu-
larly in developed cities. Urban floods are flashy in nature mainly
due to severe thunderstorms and occur both on urbanized surfaces
and in small urban creeks, which deliver mass water to cities. On
account of more impervious areas resulting from the rapid urban-
ization in metropolitan areas, less water infiltration has resulted in
an increase in the flow rate and the amount of surface runoff over
the last decades. Taiwan is located in the northwestern Pacific
Ocean where subtropical air currents frequently introduce
typhoons and convective rains. The urban flood hydrographs in
Taiwan typically have large peak flows and fast-rising limbs in a
matter of minutes, which could cause serious disasters. For exam-
ple, Typhoon Nari brought massive rainfalls at an astounding level
of 500 mm/day on September 17th in 2001, which resulted in 27

* Corresponding author. Tel.: +886 2 23639461; fax: +886 2 23635854,
E-mail address: changfji@ntu.edu.tw (F.-]. Chang).

http://dx.doi.org/10.1016/j.jhydrol.2014.06.013
0022-1694/© 2014 Elsevier B.V. All rights reserved.

12th in 2012 brought astonishing rainfalls with a cumulative
amount of 54.1 mm/hr, which directly resulted in quick and wide
surface flooding such that the transportation system collapsed in
most of the southern Taipei City. It appears floods cannot be pre-
vented, but planning emergency measures through flood manage-
ment might mitigate disastrous consequences.

In response to the flood threat to residents and property, the
Taipei City Government has long-term endeavored in developing
flood control-related infrastructures, such as increasing levee
heights and enhancing sewerage systems, and urban inundations
have been significantly mitigated and controlled in recent years.
As a result, the main threat to the city turns out to be the floodwa-
ter inside the levee system. A surface inundation will inevitably
take place if surface runoff exceeds the capacity of a storm drain-
age system. To tackle this problem, pumping stations play an
important role in flood mitigation at metropolitan areas and are
principal hydraulic facilities built to manage internal stormwater
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