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中文 要

於圖形處理單元 (GPU)環境中使用平行演算法及蒙地卡羅演算法模
擬了二維方格易辛模型並考慮次近鄰之交互作用，其中最近鄰 (J1)與
次近鄰 (J2)之交互作用皆為反鐵磁性且互為競爭關係，本篇展現了如
何計算出臨界指數與交互作用比例 (J2/J1)之關係，及利用 Metropolis
演算法模擬非平衡淬火至臨界溫度並計算出動力學指數。

關鍵字：古典蒙地卡羅演算法、有限尺度效應、圖形處理單元、二

維方格易辛模型考慮次近鄰之交互作用、淬火動力學、Kibble-Zurek機
制
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Abstract

We perform the Monte Carlo simulations of the J1 − J2 (frustrated) Ising

model on a square lattice with competing coupling J1 > 0 (nearest-neighbor,

anti-ferromagnetic) and J2 > 0 (next-nearest neighbor, also anti-ferromagnetic)

using the graphic processing unit (GPU). In this thesis, we present the critical

exponents evolution as one tunes J2/J1 and the extraction of the dynamical

exponent using non-equilibrium quenching with Metropolis algorithm to the

critical point.

Key words: Classical Monte Carlo, finite-size scaling, GPU, J1 −J2 Ising

model, quench dynamics, Kibble-Zurek mechanism
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Chapter 1

Introduction

The Ising model on a two dimensional (2D) square lattice is a rare example, which

can be solved exactly, so we can compute the quantities at any temperature. This allows

the calculation of the critical exponents of the continuous phase transition between the

ferromagnetic phase and the disorder state. Adding a competing interaction on the next-

nearest-neighbor sites provides new phases and new types of phase transition different

from the Ising universality class in some cases. In the 2D J1 − J2 Ising model, when the

ratio of interaction g = J2/J1 < 1/2, there is an Ising-like transition [1–10]. There is a

new striped phase which is with alternating stripes of positive and negative magnetization

oriented in either the x or the y direction when g > 1/2, the ordering breaks a four-fold Z4

symmetry as the temperature increases. Unlike the Ising transition with Z2 symmetry, the

phase transition between the Z4-ordered state and disordered state can not be described

simply by the symmetry of the order parameter so it cannot be solved exactly. The critical

exponents may vary with the ratio g and only ratios of the exponents are fixed at different

g. Some recent studies have found that there is a continuous transition which can be

mapped to Ashkin-Teller (AT) model for g > g∗, a weak first-order phase transition for

1/2 < g ≤ g∗ and a Potts transition point at g = g∗ where g∗ ≈ 0.67 [1–4].

The above paragraph is based on the theories which analyze the equilibrium states,

but what we are also interested in is a system in a non-equilibrium state, especially the

dynamics of a quenching system. Based on the renormalization group (RG) theory, the

theories of the finite-size scaling used to anaylze the equilibrium states are established
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[11–13]. The scaling hypotheses are also generalized to non-equilibrium phase transition

and the dynamic critical behavior [12, 14–19]. Some recent researches shows the quench

dynamics of the classical Ising transition [14,20], and we extend it to the continuous phase

transitions regimes in the J1 − J2 Ising model.

In this thesis, we present some evidences to support the types of the transitions men-

tioned in the first paragraph using Monte Carlo (MC) simulation, especially the critical

exponents. In addition, we focus on the non-equilibrium quenching to the critical temper-

ature Tc with Metropolis algorithm. Then we extract the dynamic exponent z considering

linear and non-linear quenches for different transitions.

We organize the thesis in following ways: In Ch. 2, we summarize some known sce-

narios of the J1 − J2 Ising model and the theories used to do the simulations and the anal-

yses. We then investigate the phase transitions and the quench dynamics of the J1 − J2

Ising model in Ch. 3. Finally, we give a brief conclusion of the results in Ch. 4.

2



Chapter 2

Theory

2.1 Ising model on a square lattice

Consider a classical magnetic system, an easy example is the Ising model. The Ising

model on a square lattice is defined by the hamiltonian

H = J
∑
⟨i,j⟩

σiσj − h
∑

i

σi, (2.1)

where J < 0(ferromagnetic), ⟨i, j⟩ denotes the nearest-neighbors on the square lattice, h

is a uniform external magnetic field, and the spin variables σi, σj = ±1 which point up

or down on the easy axis. The term −h
∑

i σi describes the Zeeman energy of the system,

which we do not focus on in this thesis. Note that the Ising model on a 2D square lattice

can be solved exactly, so it can be a start of studying the phase transition.

2.2 J1 − J2 Ising model on a square lattice

The 2D J1 − J2 Ising model, also called frustrated Ising model, is defined by the

hamiltonian

H = J1
∑
⟨i,j⟩

σiσj + J2
∑

⟨⟨i,j⟩⟩
σiσj, (2.2)

where ⟨i, j⟩ and ⟨⟨i, j⟩⟩ denotes first and second (diagonal) neighbors on the square lattice,

and the spin variables σi, σj = ±1. To make the couplings compete to each other, we
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have two choices. First, let J2 be positive (antiferromagnetic), and we can choose J1 to be

positive (antiferromagnetic) or negative(ferromagnetic). The two cases can be matched to

each other easily by changing all the signs of one sublattice. In this thesis, we choose the

first case.
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Figure 2.1: The black circles represent spins up and the white circles represent spins down.
If J1 is negative and |g| < 0.5, the ground state is ferromagnetic (shown in (a)); if J1
is positive and |g| < 0.5, the ground state is antiferromagnetic, also called as Neél state
(shown in (b)); if |g| > 0.5, the ground state is the striped state (shown in (c)(d)). Changing
the sign of J1 means changing the signs of all spins in sublattice 1 or 2. Examples are
shown as those from left to right or from right to left. It make the ground state from
ferromagnetic to antiferromagnetic for |g| < 0.5, and no specific change for |g| > 0.5.

When the ratio g = J2/J1 < 1/2, there is an Ising-like transition to a Néel state with

the ground state energy (per site) [1–10]:

ENéel = −2(J1 − J2). (2.3)
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And the ground state for g > 1/2 is a stripe phase with the ground state energy [3]:

Estripe = −2J2. (2.4)

Recent researches show that there is a very weak first-order transition for 1/2 < g < g∗

with g∗ ≈ 0.67. For g ≥ g∗ it is a continuous transition which can be mapped into the

Ashkin-Teller (AT) model, it back to be an Ising-like (2-state Potts) transition as g → ∞,

and there is a Potts transition point at g = g∗ [1, 2]. It is also an interesting point for

g = 1/2, the critical temperature seems to close to 0 at this point. [3, 8–10]

2.3 Monte Carlo simulation

2.3.1 Classical Monte Carlo method

The Monte-Carlo method is an algorithm to simulate a thermal ensemble [12,21–23].

Consider a system in state s. In the canonical ensemble with temperature T , the probability

of the state s with energy E is denoted by e−βE , where β = 1/kT . The partition function

of the canonical ensemble is given by

Z =
∑

s

e−βH(s), (2.5)

which sums over all possible states of the system. Here H(s) is the Hamiltonian of the

system at state s. And the thermodynamic average of a physical quantity is given by

⟨O⟩ = 1
Z

∑
s

e−βH(s)O(s). (2.6)

It is hard to sum over all states of the system since the number of micro-states is too

large for a reasonable system size. For instance, an Ising model of N spins with only two

spin configurations ±1 , the total number of states is 2N . So we should use a better way

to do the sample the configurations and replace the ensemble average by a time average.

Suppose we have a probability distribution of each states W (s) when we are doing the
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sampling, and the average becomes

⟨O⟩ =
∑

s e−βH(s)O(s)∑
s e−βH(s)

=
∑

s e−βH(s)O(s)/W (s)∑
s e−βH(s)/W (s)

.

(2.7)

The simplest choice for W (s) in Eq. (2.7) is W (s) ∼ e−βH(s), and the Boltzmann factor

cancels out, Eq. (2.7) reduces to

⟨O⟩ = 1
M

∑
s

O(s), (2.8)

where M is total number of micro-states. This method is also called the importance sam-

pling. Now we need generate a sequence of states s1 → s2 → · · · → si → si+1 → · · · ,

with initial state s1, and a series of “ warm up” steps, reach a steady sequence of the equi-

librium states from the n-th step. The time average of the equilibrium sequence should be

equal to the ensemble average of a canonical ensemble. So the objective is to construct a

Markov process with transition probability P (s1|s2) for s1 → s2 to satisfy the equilibrium

probability distribution

Weq(s) = e−βH(s)

z
. (2.9)

To find the conditional probability, we apply the following limitations:

P (si|sf ) ≥ 0, (2.10a)∑
sf

P (si|sf ) = 1, (2.10b)

Weq(si)P (si|sf ) = Weq(sf )P (sf |si). (2.10c)

The first two are the basic properties of probability. The last one is imposed by the prin-

ciple of detail balance.
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2.3.2 Metropolis algorithm

One of the convenient choice forP (si|sf ) is theMetropolis (also known asMetropolis-

Hastings) algorithm [12,21–23]. It goes as following:

1. Pick a random site α.

2. Compute the energy change △H = H(sf ) − H(si) if the spin at site α flipped.

3. Flip the spin if △H ≤ 0; flip it with probability e−β△H if △H > 0.

4. Repeat 1 to 3 until all the sites are checked.

Finish the above procedure once is called a Monte Carlo step (MCS). And one can check

the probability distribution easily by taking the probability into (2.10c).

2.3.3 Parallel tempering Monte Carlo method

The Metropolis algorithm can reach the correct probability distribution of the states

after equilibration. But to reach the equilibrium would need a large number of sweeps for

a system which is head to equilibrate. Unfortunately, the J1 − J2 Ising model perform

hard to reach equilibrium when g is near 1/2. So we need another tool to help us do the

simulations. A powerful way is called the parallel temping [21, 23, 24].

Figure 2.2: Sketch of a rough energy landscape. If a system at T1 is trapped in a local
minimum but not at T2. The system at T1 moves from initial state (solid circle, local
minimum), is hard to reach the final state (global minimum, open circle) with the simple
MC simulations. But the system at T1 is more likely to climb up the barrier and reaches
the global minimum with the help of parallel tempering.

M non-interacting copies of the system are simulated in parallel at different tempera-

tures {T1, T2, · · · , TM} where the temperature set is sorted as Ti < Ti+1 for convenience.
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Figure 2.3: Figure shows the probability distribution of system at 3 different temperatures,
where T1 < T2 < T3. The overlap is bigger if △T is smaller. If △T is too small, it may
decrease the efficiencies of the simulations; if △T is too large, the overlap is too small to
do the tempering.

After a fixed number of Monte-Carlo sweeps, two copies of neighboring temperatures Ti

and Ti+1 are exchanged with a acceptance probability

p = min{1, e(Ei+1−Ei)(βi+1−βi)}. (2.11)

Note that the exchanging probability also satisfy the detail balance. The Metropolis algo-

rithm is very inefficient when a configuration is trapped in a local minimum of energy, the

tempering can help it explore the energy landscape easily. Usually we choose the tempera-

ture set where the acceptance probabilities are approximately independent of temperatures

and between approximately 20%-80%.

2.3.4 Calculated observables

Before we go into the details, we define the observables measured in the MC simula-

tions for the J1 − J2 model first.

Since the J1 − J2 model we discussed is not in a ferromagnetic state, magnetization is

not a good order parameter. To distinguish the ordered phase and disordered phase. Let
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Figure 2.4: Fig. (a) shows the Neél state for g < 0.5. Fig. (b) show the striped states
for g < 0.5 in horizontal direction. One can easily define the order parameters of each by
split them into lattices with size 2 by 2. For example, MNéel = (M1 − M2 + M3 − M4)/4
in (a) and My = (M1 + M2 − M3 − M4)/4 in (b) where Mi is the average of the spins at
corner i of each 2 by 2 lattice.

us define the order parameters of both ground states. In Fig 2.4, one can define the order

parameters simply, just sum the spins in different sublattice timed different by a factor−1.

For the Néel state, the order parameter is defined as

MNéel = 1
N

N∑
i=1

σi(−1)xi+yi , (2.12)

where (xi, yi) are the coordinates of site i, L is the size of the 2D periodic lattice and

N = L2 is the number of spins. For the striped phase, we can define two components of

the order parameter in two directions

Mx = 1
N

N∑
i=1

σi(−1)xi , (2.13a)

My = 1
N

N∑
i=1

σi(−1)yi , (2.13b)

with a root-mean-square order parameter

Mrms =
√

M2
x + m2

y. (2.14)

9



By definition of the order parameters, we define the susceptibility as

χ = d⟨M⟩
dh

= N

T
(⟨M2⟩ − ⟨|M |⟩2), (2.15)

where h is the strength of a field coupling to the order parameter, and M is MNeel or Mrms

for each ground states. We also calculate the fourth order Binder cumulant [11, 25, 26]

U = n + 2
2

(
1 − n

n + 2
⟨M4⟩
⟨M2⟩2

)
, (2.16)

where n is the number of the components for the order parameter. In this case, n = 1 for

the Néel order, and n = 2 for the striped order. And the factors are chosen to make U be a

step function where U → 0 in the disordered state and U → 1 in the ordered state. Also.

we measure the specific heat

Cv = dE

dT
= N

T 2 (⟨E2⟩ − ⟨|E|⟩2), (2.17)

where E is energy per site.

2.4 Finite-size scaling

To discuss finite-size scaling [11–13, 21, 27], first we have to introduce some basic

ideas. In an infinite system, the correlation length diverges near the critical temperature

as

ξ ∼ |t|−ν , (2.18)

where t = T −Tc

Tc
, is the reduced temperature. Note that if the system size L ≫ ξ, the

system is finite but irrelevant and can be regarded as an infinite. If L ≪ ξ, then L is the

10



most relevant length-scale. Other observables also have the power-law dependence:

Cv ∼ |t|−α, (2.19a)

M ∼ |t|β, (2.19b)

χ ∼ |t|−γ. (2.19c)

Consider a quantity Q which have a power-law divergence at Tc,

Q ∼ |t|−κ. (2.20)

We also have t as a function of ξ by Eq. (2.18):

|t| ∼ ξ−1/ν , (2.21)

then Q can be rewrote as

Q ∼ ξκ/ν . (2.22)

Note that this from is applied for ξ ≪ L. Since we cannot do the simulation of the infinite

size, when ξ ≈ L, the divergence is no longer continue on the finite size. The critical

value of the quantity can be reached at the pseudo critical point when

|tc(L)| ∼ L−1/ν , (2.23)

and the critical value of the quantity (maximum or other distinguishable feature) is given

by [28]

Qc(L) ∼ Lκ/ν . (2.24)

The hypothesis is that the quantity is also controlled by a non-singular function of the ratio

ξ/L, so that the quantity is expressed as

Q(t, L) = Lκ/νf(ξ/L), (2.25)
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with (2.18), we can write as

Q(t, L) = Lκ/νg(tL1/ν), (2.26)

From (2.20) we get the above function form. Take (2.19) into (2.20), then we get

Cv = Lα/νC̃(tL1/ν), (2.27a)

M = L−β/νM̃(tL1/ν), (2.27b)

χ = Lγ/νχ̃(tL1/ν). (2.27c)

Note that the functions above are only valid for T is closed to Tc.

The scaling relations of exponents also had been found using other method (most com-

pleted by Fisher, Widom, Rushbrook and Josephson) [13, 27]

α + 2β + γ = 2, (2.28a)

νd = 2 − α, (2.28b)

γ = ν(2 − η) = β(δ − 1), (2.28c)

where d is the dimension of the system. These relations are helpful for checking numerical

calculation of the exponents, and one can use these relations to calculate other exponents

with two or three know exponents.

2.5 Non-equilibrium quenching

2.5.1 Kibble-Zurek Mechanism

The Kibble-Zurek (KZ) argument [29, 30] originally focus on the defect problem and

its extensions expand to include the rate of change of quantities of the system. The KZ

mechanism and its extensions are successfully used to describe the out-of-equilibrium

physics of phase transitions. [12, 14–19]
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Consider a system with critical temperature Tc and make the system be quenched from

an initial temperature Ti to some final temperature Tc < T < Ti. If the quench velocity is

sufficiently slow, the system evolves adiabatically to its equilibrium state at temperature

T . Else if quench velocity is so high that the system has lots of defects and the adiabatic

description breaks down. The KZ mechanism can be used to distinguish these regimes.

The following arguments are based on Ref. [14], and one can see Refs. [17–19] for

a general review. According to the arguments of KZ, in quasi-adiabatic regime, the total

quench time τq must be at least the order of the relaxation time τrel. The relexation time

is related to the equilibrium spatial correlation length ξT .

τrel ∼ ξz
T , (2.29)

where z is the dynamic exponent. The dynamic exponent z is depend on the equilibrium

universality class of phase transition and the stochastic dynamics imposed on the system.

So the total quench time related to the velocity v for a linear quench is expressed by

τq ∼ |Ti − T |/v ∼ τrel ∼ ξz
T ∼ |T − Tc|−zν , (2.30)

where ν is the equilibrium correlation length exponent. The remaining time τ is defined

as the time from T to critical temperature Tc if the quench is continue. The relation is

described as

τ = |Ti − T |/v ∼ |T − Tc|−zν . (2.31)

From the above relation one can define the KZ velocity

vKZ(T ) ∼ |T − Tc|1+zν , (2.32)

at which the system falls out the adiabatic regime at temperature T .

We also define the correlation length associated with a velocity ξv, which is the cor-

relation length reached at a freezing infinite system for a non-equilibrium state. Since
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ξv ∼ ξT for the quasi-adiabatic evolution and ξT ∼ |T − Tc|−ν at freezing point, we have

ξv ∼ v−1/(z+1/ν). (2.33)

For a finite system the length scale has maximum L,which means ξv ≤ L. The velocity

which separate the adiabatic and non-adiabatic regime can be get by replacing ξv by L

according to the finite-size scaling theory. The size-dependent KZ velocity is given by

vKZ(L) ∼ L−(z+1/ν). (2.34)

For v < vKZ(L), the system is in quasi-adiabatic regime; for v > vKZ(L), the quasi-

adiabaticity breaks down.

Here we combine the original finite-size scaling and the KZ mechanism. Adding a

velocity ratio v/vKZ into the original scaling function then we have the generalize KZ

finite-size scaling;

Q(t, L, v) = Lκ/νf ′(L/ξT , v/vKZ)

= Lκ/νg′(tL1/ν , vL(z+1/ν)).
(2.35)

2.5.2 Complete finite-size scaling form with linear quench and non-

linear quench

To consider the case of the non-linear quench, where the critical point is approached

according to a power-law of time t with total time τq and final temperature Tc,

T − Tc = v(τq − t)r, (2.36)

where v is the velocity. r describe the quench type, for example, r = 1 for a linear

quench, r = 2 for a quadratic quench and r = 0 for a sudden quench. In this thesis, we

use Ti = 1.5Tc and express v in units of Tc, so the velocity is described as

v = (Ti − Tc)/τ r
q ⇒ 0.5/τ r

q , (2.37)
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where τq is the total quench time. When using Metropolis algorithm, time is in units of

Monte-Carlo step.

We also extend the non-linear quench to the other quantities by replacing z by zr. The

KZ velocity considering the non-linear quench is expressed as

vKZ(L) ∼ L−(zr+1/ν). (2.38)

And the generalized KZ finite-size scaling now described as

Q(t, L, v) = Lκ/νg′(tL1/ν , vL(zr+1/ν)). (2.39)

Consider the case t = 0 (T = Tc),

Q(t = 0, L, v) = Lκ/νg′(vLzr+1/ν). (2.40)

The square of the order parameter shown in Fig 2.6, which is the main quantity studied

in the quench part of this thesis;

m2 =
(

1
N

N∑
i=1

σi

)2

. (2.41)

Replace κ by −2β in Eq. (2.39) and the scaling function at Tc is expressed as

⟨m2⟩ = L−2β/νF (vLzr+1/ν). (2.42)

When the quench velocity is very high and the simulated size is large enough (shown in

Fig. 2.7), i.e. the KZ correlation length ξv is much smaller then L, one expect

⟨m2⟩ = 1
N2

∑
i

∑
j

⟨σiσj⟩ = 1
N

∑
i

∑
j

⟨σ0σj⟩ ∼ L−d, (2.43)

where d is the number of dimensions; d = 2 for the J1 −J2 model in a square lattice. With
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(b) Non-linear quench with r = 2.

Figure 2.5: Figure shows temperature versus Monte Carlo steps of a system quenches start
at Ti = 1.5Tc and end at Tc with different r for g = 0.8.
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Figure 2.6: Figure shows ⟨m2⟩ changes as function of time of a system quenches start at
Ti = 1.5Tc and end at Tc with different r for g = 0.8 and simulated size L = 256.
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Figure 2.7: Figure shows ⟨m2⟩ versus time of a system quenches start at Ti = 1.5Tc and
end at Tc with different r for g = 0.8. One can easily find that the L−d dependence.
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the scaling form in Eq. (2.42), the function F is reduced to a power law of vLzr+1/ν ;

⟨m2⟩ ∼ L−2β/ν(vLzr+1/ν)−x, (2.44)

and this exponent x is obtain easily by the function being proportional to L−d, i.e.,

x = d − 2β/ν

zr + 1/ν
. (2.45)

So there is an intermediate universal scaling regime where

⟨m2⟩ ∼ L−dv−x. (2.46)

Note the relation above is not consistent with the sufficient high velocity. For a sufficient

high quench velocity, ⟨m2⟩ still converge to L−d and depend on v. If v reach ultimate

high velocity, the dependence of v is dropped out. On the contrast, is the velocity is low

enough, Eq. (2.42) tends to the standard finite-size behaviour;

⟨m2⟩ ∼ L−2β/ν , (2.47)

Then the scaling function’s form of ⟨m2⟩ is expressed and classified by three regimes:

⟨m2⟩ =


L−2β/ν ∑

n cn(vLzr+1/ν)n, v ≲ vKZ(L)

L−dcv−x, vKZ(L) ≪ v ≪ 1

L−d∑
n cn( 1

v
)n, v ≳ 1,

(2.48)

The velocity regime v ≲ vKZ(L) is called the quasi-adiabatic regime, vKZ(L) ≪ v ≪ 1

is called the universal scaling regime and v ≳ 1 is called the diabatic regime. In this thesis

we focuses on the universal scaling regime.
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2.6 Statistics and data analysis

To extract the scaling function g in Eq. (2.26), one can use data collapsing [11, 12].

We define

xL = tL1/ν , (2.49a)

yL = Q(t, L)L−κ/ν , (2.49b)

and plot yL versus xL for different temperature T and different system size L, if the hy-

pothesis is correct, all of the data should collapse to same curve, which is the scaling

function, g(x) = yL→∞(x). Given a set of parameters Tc, ν and κ, we have a set of data

points (xL, yL). A high-order polynomial is used to fit the scaling function. To find the

best set from the sets of parameters, we use the reduced-chi-square χ2
red to express the

goodness of the fit. The χ2
red is defined as

χ2
red = 1

n − p − 1

n∑
i=1

(f(xi) − yi)2

σ2
i

, (2.50)

where n is the number of the fitting points, p is the number of fitted parameters and σ2
i is

the y-variance of the data point (xi, yi). And the statistical variance σ2
i is defined as

σ2
i = 1

n

n∑
j=1

(yij − ȳij)2

= ⟨y2
i ⟩ − ⟨yi⟩2.

(2.51)

where the yij is the j-th y-value for xi. Note that σ is called the standard deviation. We

also define the statistical error SE:

SE = σ√
n − 1

. (2.52)

To find the best set of parameters, one should tend to minimize χres and let it be closed to

1 [11].

But the data collapsing is not always the best way to find the critical exponents and
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critical temperature, so we introduce the another methods to find the critical temperature

and the critical exponents.

Besides ξ/L, there is also other dimensionless quantities that is useful to extract Tc

independently of the critical exponents. The most common one is the Binder ratio [11,25,

26]:

R2 = ⟨M4⟩
⟨M2⟩2 = R̃2(tL1/ν), (2.53)

which can compose the Binder cumulant in (2.16). One can also define other ratios similar

to (2.53), e.g., R1 = ⟨M2⟩/⟨|M |⟩2 and RE = ⟨E4⟩/⟨E2⟩2. (Usually RE is used to find

the critical temperature in first-order transition.)

One can also extract a single exponent ν without measuring correlation length ξ, we

can start from (2.27b).

δ ln M

δK
= δ ln M

δM

δxt

δK

δM

δxt

= 1
M

(−KcL
1/ν)

K2
δM

δxt

≈ L1/νF (tL1/ν)

(2.54)

where K = 1/T , xt = tL1/ν and F is a new scaling function. The condition is that

T → Tc, so that K2 ≈ K2
c ≈ const.. From above equations and extend to another

quantity, we have [21, 24, 28, 31, 32]

(
δ ln M

δK

)
max

∼ L1/ν , (2.55a)(
δ ln M2

δK

)
max

∼ L1/ν , (2.55b)(
δU

δK

)
max

∼ L1/ν . (2.55c)

To calculate the above quantities, we may need the help of

δM

δK
= ⟨M⟩⟨E⟩ − ⟨ME⟩. (2.56)
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Take T = Tc (t = 0) in Eq. (2.27),

(Cv)c ∼ Lα/ν , (2.57a)

Mc ∼ L−β/ν , (2.57b)

χc ∼ Lγ/ν . (2.57c)

The above equations are not applicable to the case which Tc is not exact. From Eq. (2.24),

we have [28]

(Cv)max ∼ Lα/ν , (2.58a)

χmax ∼ Lγ/ν . (2.58b)

The pseudo critical point of the order parameter is not so clear that it is hard to find the

critical exponent similarly. And take t = (T − Tc)/Tc ≈ Kc(Kc − K) into (2.23),

Tc(L) − Tc ∼ L−1/ν , (2.59a)

Kc(L) − Kc ∼ L−1/ν . (2.59b)

From above equations one can extract the critical exponents and critical temperatures from

different quantities [21, 24, 28, 31, 32].

2.7 GPU

2.7.1 GPU architecture

Nowadays the existence of multicore Central Processing Units (CPUs) and manycore

Graphics Processing Units (GPUs) means that the processor chips are parallel system

now. This implies the parallel algorithm is now a widely applicable tool for program-

ming. CUDA is a parallel programming model applicable to GPUs’ calculations as an

extension of C language developed by NVIDIA.
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AGPUdevice consists ofmanymultithreaded StreamingMultiprocessors (SMs). Each

SM consists of many Scalar Processor (SP) cores, special function units for transcenden-

tals, a multithreaded instruction unit, and on-chip shared memory. Since the SP cores is

not as powerful as CPU cores and the sizes of the share memory and device memory are

limited if they are compare to a CPU device. So how to design the level of parallelism

and the memory allocation is the most important thing when doing the CUDA program-

ming [33].

Figure 2.8: GPU hardware model. [33]
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Figure 2.9: A sample of programming with GPUs. [33]
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2.7.2 Algorithm of J1 − J2 Ising model on GPU

Since we can use the CUDA language to program on GPUs, the problem is how to

parallelize theMC simulation on GPUs. Our algorithm is based on the Refs. [34] and [35],

the 2D and 3D Monte Carlo simulations on GPUs. The basic idea is to decompose the

system lattice into numbers of sublattices which the spins in the same sublattice are not

interacting with each others so one can update them in the same time [34, 35]. We use

the show the checkerbroads [21] in Fig. 2.10 to do the parallelism. To finish one MCS,

we first update all spins in one sublattice on numbers of threads and then update those

in another one and so on until all spins are updated. Note that the J1 − J2 Ising model

also include the classical Ising model for g = 0, we update the spins in the sublattices in

sequence {1, 4, 2, 3} to make sure it can also work in the classical Ising system.

1 2

(a)

1 2

3 4

(b)

Figure 2.10: Fig. (a) shows the checkerbroad decomposition of classical Ising model on
a square lattice [21,34]. Fig. (b) shows the checkerbroad decomposition of J1 − J2 Ising
model on a square lattice [21]. The spins in same color means the spins are in the same
sublattice, which are not interacting to each others. To finish one MCS, one should update
all spins in one sublattice then those in another one and so on until all spins are updated.
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Chapter 3

Results

3.1 Critical temperatures and critical exponents

In Sec. 2.2, we have referred that there are continuous phase transitions in both 0 ≤

g < 0.5, the Ising-like transition [1–10], and g > g∗ with g∗ ≈ 0.67, the AT-like transition

[1, 2]. There exists a the weak first-order phase transitions are in the range 0.5 < g < g∗

[1–4].

First we want to obtain the critical temperatures. The critical temperatures of continu-

ous phase transitions can be retrieved by finite-size scaling and the crossing of the Binder

cumulants at different size. For a first-order phase transition, we can not get the critical

temperature easily just similar to a continuous phase transition. Here we want to study

the case of the weak first-order phase transition, and the critical temperatures extracted

from the finite-size scaling and the Binder cumulant are good estimates of the critical

temperatures [36].

Then we use the finite-size scaling to extract the critical exponents and critical tem-

peratures for each g. Here we use three different quantities in Eq. (2.55) to extract ν.

From the pseudo critical point of each size and use Eq. (2.59), we can extract the critical

temperatures, here we just show the part of the results because they are similar to each

other.

After we know the values of ν, we can extract the other exponents by other scaling

relations. Note that the scaling function of specific heat, Eq. (2.27a) is only valid for α is
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Figure 3.1: Binder cumulants for both first-order and continuous phase transitions. The
figures show the crossing points of each size which refer to the critical temperatures. In
(a) the property of the first-order phase transition is dominated, a negative peak grow as
size increase. And the Binder cumulants of each size cross roughly at one point because
it is the weak first-order transition [36].
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28



positive, and the specific heat is a sensitive quantity so that the simple applications in Eq.

(2.58a) and Eq. (2.57a) is not applicable to many cases. For α ≤ 0, the specific heat still

have a weak, logarithmic divergence. When α is closed to 0, or g is closed to g∗ (the Potts

point), the scaling of the specific heat should consider subleading corrections [2,11,37,38].

Since we do not know when we should take the correction terms into account, here we just

show the exponents using Eq. (2.58a) and Eq. (2.57a). And the real α’s are calculated by

scaling relation in (2.28b) and ν’s.
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Figure 3.4: Figure shows one feature of the weak first-order transition for g = 0.55, the
L logarithmic dependence Cmax ∼ Lc, here c > 1 and c should close to d (number of the
dimensions of the system) when L is large enough.

Since the order parameter have no obvious extreme behaviour, it is hard to find the

pseudo critical temperature of each size. The exponent β can be extracted by the order

parameter at critical temperature of each size in Eq. (2.57b) or be calculated from scaling

relations in (2.28). Note that we do not have all the exact values of critical temperatures,

they may have the error up to 2 × 10−4 for some g, and it cause the errors of the extracted

values of β/ν’s about 10%.

We also extract γ from susceptibility using Eq. (2.58b) and Eq. (2.57c). Since suscep-

tibility is a stable quantity, we use γ as a basic exponent just like ν to calculate the other

exponents using scaling relations.
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Figure 3.5: Figure (a) shows the specific heat of each size in a classical square Ising lattice,
α/ν = 0 from exact solutions. But one can easily find out the specific heat still have a
logarithmic divergence of size, Cmax(L) ∼ Lk and k ≈ 0.18. In (b) we use the scaling
laws in Eq. (2.57a) and Eq. (2.58a), the extracted values of α are 0.434(5) and 0.437(4)
for g = 0.8.
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Figure 3.11: Figure shows the values of ν extracted from Eq. (2.55).
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lated by scaling relation (2.28b). Note that the correction of the scaling function is needed
near the Potts point [2, 38] and for α/ν closed to 0 [11, 37].
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Figure 3.13: Figure shows the values of β extracted from Eq. (2.57b) and calculated by
scaling relation (2.28).
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Figure 3.14: Figure shows the values of γ extracted from Eq. (2.57c) and (2.58b).
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From Fig. 3.11, 3.12, 3.13 and 3.14, we show the critical exponents of J1 − J2 Ising

model for different g. In the region 0 ≤ g < 0.5, J1 − J2 Ising model are in Ising-like

transition, so the critical exponents are the same as the Ising values just as we shown in

figures. For g∗ ≤ g, the model can be mapped to the Ashkin-Teller model; especially for

g = g∗, it can be mapped to the 4-state Potts model. If g → ∞, it goes back to the classical

2D Ising transition. In these figures, one can easily find that the values of each critical

exponents are moving from Potts value to the Ising value for g increasing from Potts point

to infinity.

3.2 Extraction of the dynamic exponent

In this section we study the square of the order parameters of linear and non-linear

quenches with Metropolis dynamics on 2D J1 − J2 Ising lattice for different g in both

Ising-like and AT-like regime. We predict that the dynamic exponents of the Metropolis

algorithm z in the Ising-like regime (0 ≤ g < 0.5) is a constant because all the critical

phenomena are similar for different g and z should close to the Ising value. From recent

studies, we know that the dynamic exponent z is different for different dimensionality in

the Ising model [39–41], and z has little difference in 3D Ising model and 3D Heisonberg

model [42], which imply that z may be different for different transition types. From Refs.

[43–46], we have z ≈ 2.17(1), which is approximately a constant for q = 2, 3, 4 in the

Potts model(See Tab. 3.1). Since the J1 − J2 Ising model have an AT-like transition in

region g∗ ≤ g, the model can be mapped to the 4-state Potts model at g = g∗, and it back

to the Ising-like transition as g → ∞, which is equivalent to the 2-state Potts transition,

we predict that z is roughly a constant in the AT-like region no matter the varying g (the

same as a varying K in AT model).

In Fig. 3.17, we find that the dynamic exponent of Metropolis algorithm z seems to

remain a constant with varying g in both Ising-like and AT-like regimes just as we predict.

It enhance the statement that z is the same value in Potts model for q = 2, 4, also implies

that z should be a constant in AT model with different K. Our result z = 2.17(1) is also

match the most reliable values of z of 2D Ising transition, 2.173(4) and 2.164(3) from
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(a) A linear quench with r = 1 for g = 0.8.
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(b) A non-linear quench with r = 2 for g = 0.8.

Figure 3.15: Data collapse in linear and non-linear quenches from Ti = 1.5Tc to Tc with
Metropolis dynamics of 2D J1 − J2 Ising model. Use quantities in Eq. (2.42) to find
the value of z. The left points out of straight line are in the quasi-adiabatic regime v ≲
vKZ(L), the center points are in the universal regime vKZ(L) ≪ v ≪ 1, and right most
points of each L are in the diabatic regime v ≳ 1. The dash line shows the slopes expected
in Eq. (2.44). The values of the extracted z’s of Metropolis algorithm are 2.18(1) and
2.17(1) for r = 1 and r = 2, separately. Note that the data-collapsing only consider the
points in the universal regime.
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(b) A non-linear quench with r = 2 for g = 0.8.

Figure 3.16: Linear and non-linear quenches from Ti = 1.5Tc to Tc with Metropolis
dynamics of 2D J1−J2 Ising model. Using the points in universal regime to extract z from
relation in Eq. (2.48). The values of the extracted dynamic exponent z’s of Metropolis
algorithm are 2.17(1) and 2.171(8) for r = 1 and r = 2.
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Figure 3.17: Figure shows the values of dynamic exponents z’s of Metropolis algorithm
extracted for different g from Eq. (2.44) and (2.48).

Ref. [14] and Ref. [20], and it is very close to 2.16(1) which is the value of case II in the

extended J1 − J2 model with vacancy order in Ref. [47] where the case is similar to the

J1 − J2 Ising model with g = 1.

Model z
2D Ising model [14] 2.173(4)
2D Ising model [20] 2.164(3)
q = 2 Potts (Ising) model [44] 2.167(2)
q = 3 Potts model [44] 2.174(2)
q = 3 Potts model [46] 2.164(7)
q = 4 Potts model [46] 2.16(1)
This work 2.17(1)

Table 3.1: The dynamic exponents from references.
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Chapter 4

Summary and Discussion

We have shown the Ising-like transitions fromNeél phase in the J1−J2 Isingmodel for

0 ≤ g < 1/2, the first-order phase transitions from striped ordered phase for 1/2 ≤ g < g∗

and the AT-like phase transitions from striped ordered phase for g∗ < g. For this model,

the point g = g∗ ≈ 0.67 corresponds to the 4-state Potts transition and the transition is

back to Ising (2-state Potts) transition as g → ∞. We provide the critical exponents with

varying g as an evidence of the transition types. The exponents of Ising-like transitions

have no g-dependence. And the exponents of AT-like transitions are changing from Potts

values to Ising values as g increasing from g∗ to infinity, just as those in AT model.

We also perform quench dynamics of the system with Metropolis algorithm for both

Ising-like and AT-like transitions. We have found that the dynamic exponent z of the

Metropolis dynamic in AT-like transitions remains a constant with varying g (the same

meaning as varyingK in ATmodel.) Also, z is a constant in Ising-like transition regime for

different g. And they are the same as each other and match the values from Refs. [14,20].

The consequencemakes sense because themodel corresponds to the 4-state Potts transition

at g = g∗, and is closed to the Ising-like (2-state Potts) transition as g → ∞.

Our future works include the quenching with different MCmethods, for instance, clus-

ter update, we expect that it is similar to the one with Metropolis method because the dif-

ferences between them are just like the differences of quench velocities. Another project

is to analyze the finite-size effects and the quench dynamics of AT-like transition regime

for g near the Potts point which depend on a logarithmic corrections [2, 48]. And finding
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the real value of g∗ is also a challenge. Moreover, there is still an open question for the

transitions in the regime 1/2 < g < g∗, especially for g → 1/2, where a unusual transition

occurs at T = 0.
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