
國立臺灣大學電機資訊學院資訊工程學系

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

行動系統之隱性耗電活動分析

How Is the Energy Wasted -

Exploring Unperceived Activities of Mobile Systems

林季萱

Chi-Hsuan Lin

指導教授：郭大維 博士 / 修丕承 博士

Advisor: Ta-Wei Kuo, Ph.D. / Pi-Cheng Hsiu, Ph.D.

 中華民國 103年 6月

June 2014

ii

中文摘要

如智慧型手機等的行動系統已成為現代人生活中不可或缺的一部份。由於行動裝置

上電池容量相當的有限，如何了解系統中的耗電分布並減少不必要的耗電一直是重

要的課題。在考慮使用者觀感(User Perception)的情況下，我們發現目前的行動系統

很可能存在嚴重的耗電浪費。因此我們提出了隱性活動(Unperceived Activity)的概

念，並設計一連串的提驗及分析，證明其嚴重性，並觀察發生的原因和特性。根據

分析的結果，我們提出並實作了可能的解決方向，並在驗證實驗中證明這些方法可

以達到可觀的省電效果。

關鍵詞：行動系統、行動裝置、耗電分析、能源效率、使用者觀感、應用程式

iii

Abstract

Smartphones have become an essential part of our daily life. As mobile devices and appli-

cations keep becoming more powerful and complicated, the demand for energy on mobile

devices also rise continuously. Due to the limited battery capacity, power consumption

analysis has been an essential study to make the usage of energy more efficient. In this

work, we propose an power analysis considering user perception to investigate whether

energy consumption is really worthy to users. We propose the concept of Unperceived

Activity and waste of energy caused by it. A series of experiments is conducted to prove

the seriousness of waste and find out the sources and characteristics of different unper-

ceived activities. Potential directions are suggested to solve the problem. Some simple

remedies are also implemented and evaluated to be able to reduce the waste effectively.

Keywords: Power consumption, User perception, Energy efficiency, Mobile applications,

Mobile devices.

iv

Contents

Abstract in Chinese iii

Abstract iv

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background and Motivation 4

2.1 Background . 4

2.2 Motivation . 6

3 Impact of Unperceived Activities 8

3.1 Unperceived Activities . 8

3.2 Exploration of Unperceived Activities 10

3.2.1 Observation Methodology . 10

3.2.2 Results . 11

3.3 Questions to Answer . 14

3.3.1 What causes power impulses in idle session? 14

v

3.3.2 How long are the wake-ups? . 16

3.3.3 How many wake-up events occur? How is the distribution among

different causes? . 16

3.3.4 How is the energy impact of different types of wake-up? 19

3.3.5 How many redundant activities are made? 21

3.3.6 What are the purposes of these redundant activities? 23

3.3.7 How is the energy impact of different redundant activities? 24

4 Insights to Potential Solutions 28

4.1 Directions to Potential Solutions . 28

4.1.1 Idling . 28

4.1.2 Interactive . 29

4.2 Implementation: Alarm Alignment . 30

4.3 Implementation: Swap Space . 32

5 Conclusion 34

Bibliography 35

Curriculum Vitae 39

vi

List of Figures

2.1 Android system power states . 5

2.2 Energy consumption of a smartphone after lasting for 30 minutes. The

case with UA happens after installing some custom apps. 7

3.1 Energy consumption with and without unperceived activity in idle session 11

3.2 Energy consumption with and without unperceived activity in interactive

session . 12

3.3 Sample power trace in idle session experiments 12

3.4 Sample power trace in interactive session experiments 13

3.5 Distribution of wake-up durations every 30 minutes. 16

3.6 Number of active and passive events every 30 minutes. 17

3.7 Ratio of different causes of events. 17

3.8 Ratio of energy incurred by active and passive events. 20

3.9 Ratio of energy incurred by different causes of events. 20

3.10 Amount of redundancy in storage access. 21

3.11 Amount of redundancy in communication. 22

3.12 Amount of redundancy in computation. 22

3.13 Energy consumption with different amount of redundant activities. 25

3.14 Content size and computation workload of the websites for real case study. 26

3.15 Loading energy of the websites. 26

vii

4.1 Idling energy consumption per 30 minutes with different number of apps

before and after applying alignment. 31

4.2 Idling energy consumption using different alignment period with LINE,

Chrome, Facebook installed.) . 31

4.3 Energy saving of paging-out(swapping space) 33

viii

List of Tables

3.1 Types of computation redundancies observed from kmsg and syslog . . . 24

ix

Chapter 1

Introduction

Mobile devices have become an essential part of our daily life, and our need for them

keeps expanding. The shipment of mobile device is predicted to reach 1.8 million by

2018[13], as the number of applications downloaded from Google Play app store have

exceeded 60 billions at the end of 2013 [6]. More and more people rely on smartphones

to complete various jobs from daily routines like listening musics, receiving emails, and

brows the Internet to specific utilities like real-time navigation, word recognition/transla-

tion, and health monitoring. To fulfill the needs, diverse hardware components and appli-

cations have been developed and applied to mobile devices. The ability and functionally

of hardwares keep evolving, and the behavior of applications also becomes more com-

plex to satisfy users demand on performance and convenience. Under this trend, the thirst

for energy on mobile devices has grown more and more serious. However, the growth

of battery capacity on smartphones is relatively much slower than the demand of energy.

From 2000 till now, the factor of increase in battery capacity is no more than 3, while the

processing power and screen resolution have increased 12 and 13 times respectively [4].

Under this trends ,how to understand the distribution of energy consumption and reduce

1

the unnecessary parts have become a crucial issue on mobile systems.

To solve the problem, we have to understand how the energy is spent on the de-

vices. Through analyzing the distribution of power consumption, we can discover some

hot-spots of energy drain, find out the causes, and design the corresponding solutions.

Various studies in power analysis on smartphones have been proposed from different as-

pects. Many studies focus on the characteristics of power consumption among different

hardware components through direct measurements or estimation to build their power

models [18] [9] [27] [22]. Differences among some type of hardwares are also analyzed to

choose proper components for power saving. For example, since the usage of network re-

sources is prevailing, many studies focus on comparing the energy efficiency between Wi-

Fi and 3G[8] [20]. As the number and variety of applications increase, researchers start

to analysis the resource usage among different applications or functionalities [23] [25].

Profiling techniques are developed to understand the distribution of energy consumption

within a single app [26] [19]. Some are also exploring how user behavior influence the

usage of app and hardware resource under various scenarios [22] [23].

Based on these efforts, many power saving strategies have been developed. Af-

ter recognizing CPU to be a major energy drain, Dynamic Voltage and Frequency Scal-

ing(DVFS) and Dynamic Power Management(DMP) are applied to scale the frequency of

cores or shutdown idling cores based on various policies to prevent redundant CPU energy

consumption [12][10][11][15]. As backlight is also a main source of drain, many studies

suggest dynamic back light scaling and switching policies to dim or shutdown the back

light without influence user experience [14][16][11]. For other hardwares associated with

data transmission, the strategies are mainly to manage the resource usage through traffic

scheduling or transmission power adapting [21][17][28].

The analysis studies above only focus on how much energy are consumed on

2

which hardware or software components, and the proposed solutions are meant to increase

the energy efficiency of the energy draining components. We can only know that which

parts are the major sources and try to improve the energy efficiency of the components,

while the improvements are usually limited and difficult to achieve. One question more

important but yet to answer is that how much energy is consumed necessarily? For

various reasons and purposes the power is consumed for, how much of them are

worthy? If we can find out the unnecessary ones and identify their sources, we can simple

remove the source to save more power. To achieve the goal, we propose the concept of

Unperceived Activity in terms of user perception. These activities cannot improve user

experience directly, and the energy consumption it cost is then considered to be wasted.

Through a series of experiments, we quantify the unnecessary(wasted) energy caused

by them and find out their sources and purposes. Based on our observations, potential

directions to ease the waste are also suggested and evaluated.

The rest of this paper is organized as follows: Section 2 presents the background

knowledge about mobile system design, user behavior, and our motivation. In Section 3

we define the concept of unperceived activity and reveal the waste they cause. Possible

directions are proposed to eliminate the waste, and their effectiveness is shown through

evaluation experiments. Section 5 will introduce the related work of power analysis on

mobile devices. Section 6 is the conclusion.

3

Chapter 2

Background and Motivation

2.1 Background

Reducing energy consumption has been a challenging and essential issue for mobile de-

vices due to its limited battery capacity to sustain daily usage. However, the ever-rich

functions of hardware as well as the rapidly-growing number of software (applications)

complicate the system behavior and hinder the analysis from easily breaking down the

power usage on mobile phones. In this work, we take a well-known mobile platform, e.g.,

Android system, as a example to study the power issues and explore those power-hungry

activities in different points of view.

An Android operating system is actually a Linux-based system, where each ap-

plication is an unique process that has its own Dalvik Virtual Machine (DVM) to execute

application’s code in an isolation environment. An typical android application could be

constructed out of these four components, Activity, Service, Content Provider and Broad-

cast Receiver. Activity is used to provide graphic user interface (GUI) to interact with

4

users, whereas Service runs in the background to perform routine jobs or specific tasks

without interacting with user. Content Provider acts as a data manager to store (resp.

load) shared data in (resp. from) different kinds of file systems or databases, and Broad-

cast Receiver is responsible to respond to the system-wide notifications, i.e., the battery is

low. Therefore, various types of applications could be implemented in different way. For

example, the gaming applications should adopt Activity to interact with users, the music-

playing applications could use Service to play music in background, the news-related

applications could utilize Content Provider to organize the daily news, and a downloader

application could exploit Broadcast Receivers to notify the users of when a file is suc-

cessfully downloaded. As any running applications might be suspended to background

whenever they are closed or other applications are switched to foreground, some system

services, such as Google Cloud Messaging (GCM) manager or AlarmManager, are pro-

vided to let the applications register their tasks to execute when needed. Thus, once the

system is interrupted by the system events, i.e., timer timeout or the arrival of network

packet, Android will send an INTEND message to activate the applications that register

the corresponding task to handle the events in spite of that the system is currently put into

sleep mode or other applications are running.

Figure 2.1: Android system power states

5

In order to prevent the system from being woke up arbitrarily to run out of the

battery, an straightforward mechanism, called wake lock, is provided to let applications

themselves take charge of acquiring the hardware resources, such as CPU, backlight or

network, when system is woke up from sleep mode to perform the applications’ regis-

tered tasks. In general, the android system would switch among three states, e.g., awake,

notification and sleep, depended on which type of wake lock is acquired currently as de-

picted in Figure 2.1. When a full wake lock [3] is acquired, the hardware resources, i.e.,

CPU and backlight, could be utilized by application’s own choice, and the system will

enter awake state. If the system idles for a certain period of time, the state will transfer

to notification state such that those resources that are not locked currently by the wake

locks will be turned off at once. Finally, the system will go into sleep state if no wake

lock is held for a while. Hence, any misuse of wake lock might lead to long stay in awake

or notification state, where the power consumption of these two states is far larger than

that of idle state. For example, in Galaxy S3, the power consumption of awake state is

about 800–1000 mW, whereas the power consumption of idle state is only 17–30 mW on

average.

2.2 Motivation

Even though many excellent works that are proposed for power management, i.e., wake

lock on Android, and power analysis have been extensively studied, little work is done

to explore or reduce those power-hungry activities which are not directly perceived or

needed by users. In particular, such activities might occur more frequently and hard to be

identified due to more complicated hardware, software along with unpredictable user be-

havior. A simple experiment under two scenarios was conducted to observe the existence

of energy consumption hidden behind user attention. The first scenario was evaluated

6

based on a smart phone without installing any application except for the default ones,

whereas the phone in the second scenario additionally installed two popular applications,

namely GMAIL (email application) and Line (instant messaging application), and con-

nected to a Wi-Fi AP with broadcast packets sent every minute. Both scenarios last for

30 minutes with the screen off, and their energy consumption were reported as shown

in Figure 2.2. Even if we already make sure that no meaningful activities, i.e., email

synchronization for GMAIL or new message from Line, could be captured during the

30 minutes, the significant difference (70J and 207J) of energy consumption could be

observed from the results.

 0

 50

 100

 150

 200

 250

w/oUA w/UA

E
ne

rg
y(

J)

Figure 2.2: Energy consumption of a smartphone after lasting for 30 minutes. The case
with UA happens after installing some custom apps.

As a result, the above observations motives us to seek to understand 1) how

much energy is actually needed by users, instead of that wasted on each components 2)

what unperceived activities drain the energy behind the scenes. Very different from the

past works on analyzing the power consumption of either the CPU for software execution

or other hardware components such as backlight, we emphasize on the finding of those

power-hungry activities that is not directly contributed to users. In this work, a series of

experiments was conduct to simultaneously capture the log of the real activities and the

instant power on a mobile phone. By means of jointly investigating both traces, more

profound and insightful finding could be explored and helpful for system designer to

further improve the energy efficiency.

7

Chapter 3

Impact of Unperceived Activities

3.1 Unperceived Activities

To systematically inspect the impact of unperceived activities on energy consumption, the

system activities were studied in terms of two scenarios: idle and interactive session. The

idle session is defined as the period that users do not pay attention to their mobile devices

currently, where the devices will be in sleep mode for most of the time. On the other

hand, the interactive session comes about when users are interacting with mobile phones

by touch screen or other input devices, where more hardware resources might be turned

on in this session. It should be noticed that the unperceived activities in both two sessions

will show up in different way.

For the idle session, the unperceived activities are the processes (applications)

that work in background without using or triggering any user-perceived hardware such

as screen or speaker to draw user attention. For example, some applications might keep

in background to periodically perform synchronization with remote server, constantly

8

backup the system log or repeatedly check the hardware status such as battery; however,

most of the time, these applications might be overly and actively executed to addition-

ally create more energy consumption and do not generate any substantial outputs, e.g.,

incoming message notification, which could be perceived by users.

Even when users are using smartphones, energy cost is not always worthy as

well. Redundant activities may occur and cost extra energy. For example, when using a

web album application, the app may download the pictures first, decode and layout the

pictures, and them draw the UI components to show the content. However, due to some

errors like inconsistency of state, the action of downloading, layout, and drawing may be

done all over again. Since the final contents are the same no matter whether redundant

activities happened or not, users cannot perceive the redundancy directly. Therefore, we

define the unperceived activities as redundant activities in interactive session.

In the following sections, we conduct a series of experiments to observe the

power consumption in the scenarios of power wastes, reveal the seriousness, and ana-

lyze the causes of them to discover possible strategies to eliminate these wastes. For idle

sessions, we discover that smartphones are waked up through interrupts passively of ac-

tively, which contribute a majority of energy consumption when idling. We also analyze

the distribution and purposes of different interrupts, and how they consume energy. As for

interactive sessions, we show that there are lots of redundant works due to the unexpected

rebuild of apps by reproducing the app switching processes. We then further categorize

the redundancies, make a breakdown of energy costs, and point out the main cause of

these redundancies.

9

3.2 Exploration of Unperceived Activities

3.2.1 Observation Methodology

Environment and tools

All of the experiments are conducted on Samsung Galaxy S3 I9300 model, with

1.4 GHz Cortex-A9 quad-core CPU, 1G DRAM memory, 32GB internal storage. It sup-

ports Wi-fi, 3G for network transmission. The operating system is Android 4.1.2 on Linux

3.1, and all the modifications are based on them. Instant power and accumulated energy

consumption of the smartphone is measured through Monsoon Power Monitor [5]. The

samples are tagged with timestamps and plotted on the graph. The experiments are con-

ducted under Wi-Fi or 3G network connections to reflect the influence of network usage.

To study the impact of app behavior, we chose some popular and representative apps of

different types and applied to our experiments. It is reported that text messaging, social

network, and web browsing are the top 3 frequently used types of applications [1]. Based

on the report, we chose LINE, Facebook, and Chrome respectively to represent the typical

behavior of the 3 apps types.

Steps

For each session, we design a scenario respectively to measure and compare the

energy consumption with and without unperceived activity. In idle session, all custom

apps are removed except one single target app. Before start measuring, we start the app

and press HOME button to preempt the target app to background and then turn off the

screen. After making sure it has entered the sleep mode, we start the power measuring

for 30 minutes to get the power trace and total energy consumption. During the processes

of experiments, we also make sure there is no interference that makes screen on. As for

10

interactive session, we operate a series of app switching and measure the energy con-

sumption during the interaction with each target app. We start a target app, switch to a

predefined series of apps, switch back to the target app at last, and measure the energy

consumption. Besides the target apps, Gmail, Google Map, and Samsung browser are

used in the scenario.

To observe the activity of Linux kernel and Android framework, we capture 2

existing logs: kmsg and syslog in Linux and Android respectively. Messages from device

drivers can be captured through kmsg, while the activities of Android system and appli-

cations can be observed in syslog. We use tcpdump to monitor Wi-fi or 3G network traffic

in idling session. WireShark [7] is utilized to visualize the time line of network traffic.

By tracing back the source of packets using IP address, we can also identify which app a

packet from. We use Traceroute to see the name space of each IP and identify whether it

belongs to a server of target apps. For file access activities, we use Linux inotify API to

monitor read/write requests to their file and cache folders of each target app.

3.2.2 Results

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Chrome LINE Facebook

E
ne

rg
y(

J)

Wi-Fi w/o UA
Wi-Fi w/ UA
3G w/o UA
3G w/ UA

Figure 3.1: Energy consumption with and without unperceived activity in idle session

11

 0
 20
 40
 60
 80

 100
 120
 140

LINE Facebook Chrome

E
ne

rg
y(

J)

Wi-Fi w/o UA
Wi-Fi w/ UA
3G w/o UA
3G w/ UA

Figure 3.2: Energy consumption with and without unperceived activity in interactive ses-
sion

Figure 3.1 and figure 3.2 show the total energy consumption with and without

unperceived activity of each test case in idle and interactive sessions. As shown in the

graphs, the waste of energy do exists in all test cases in varing degrees. Among the cases

in idle session, the maximum amount of energy increase is up to 136% if unperceived

activity occurs when using 3G and Facebook. It can also reach more than 60% in interac-

tive session in the case of Chrome under Wi-Fi connection. We can also observed that the

amount of increase is higher under 3G connection, and the seriousness of energy waste

varies among the three apps. Even the same app in different sessions introduces different

amount of waste. For instance, LINE and Facebook introduce more waste than Chrome

in idle session, while Chrome and Facebook cause more in interactive session.

Figure 3.3: Sample power trace in idle session experiments

12

In idle session, we found that power impulses contribute most of the total energy

consumption as shown in figure 3.3. Although the impulses last only seconds and are

usually sparse, the average power level of them is much higher compared to the baseline

power. While the baseline power remains not higher than 40 mW, the impulse power can

reach up to 1000 mW. The shape and size of impulses also diverse. Some impulses are

longer and higher than others; impulses in 3G environment may have some specific shape,

which is due to the power state transitions of 3G RRC.

Loading and

other post-process

(a) Without UA (b) With UA

Figure 3.4: Sample power trace in interactive session experiments

In interactive session, as shown in figure 3.4, we found that the power usually

remains high when unperceived activity happens. The power will initially remains at

baseline, and rises sharply when an app is about to switch back to foreground, causing a

series of impulses. Even after completely presenting the content, the power will still goes

high for a period of time, causing up to half of the loading energy. For example, after

Facebook showed the post list and the first power impulse finished, there was another

impulse persisted for about 2 to 4 seconds.

13

3.3 Questions to Answer

We have shown that unperceived activities could take up lots of energy during the usage

process of smartphones. To reduce the waste, we have to understand their purpose and

analysis their features to design effective strategies to solve the problem.

3.3.1 What causes power impulses in idle session?

We found that the power impulses are mainly caused by wake-up interrupts. It’s reason-

able since after the smartphone enters the sleep mode, CPU itself will also be suspended,

and then only interrupts can wake the smartphone up. In our trace, we observed 2 types

of wake-up interrupts: clock interrupts caused by Android AlarmManager, I/O interrupts

from wireless modules and modems. Smartphone apps and Android system will utilize

AlarmManager to register timers in order to wake the smartphone up and operate the

planned works in some future time. These interrupts are thought to be Active since they

are requested and caused by apps of system themselves. On the other hand, wake-ups

due to the interrupts from network components are caused external events like an arrival

of packet. Therefore, they are referred as Passive since they are not caused by system or

apps them selves. Some common sources of these events are listed below:

Active event:

Some features of apps like instant messaging, data synchronization, and system

update need the latest information from servers in time. They usually rely on polling or

push notification to know when to fetch the data from servers. Common implementations

of push technology usually need to exchange messages with the servers occasionally or

periodically in order to maintain the network connections with them. We observed that

14

Facebook and LINE maintain multiple TCP connections and make transmission period-

ically, which is a typical behavior of push service. Another example is that some apps

will dump user usage patterns, app performance records, and other statistics back to their

servers for analysis. The data are often batched and sent back with longer period and

larger data size. Facebook will send data back to their server every hour by a background

service AnalyticsEventUploader, causing bursts up to 6 seconds.

Passive event:

Receiving response packets is one of the main source of passive events. Some

are the pushed information from the servers, while some are the delayed responses of

earlier requests. After sending the request in the first wake-up, the smartphone may be

suspended again due to the expiration of wakelocks [?] before the delayed packets come

back. When the response arrived, the smartphone will be waked up again to receive the

data, causing passive interrupts.

Besides, other devices in WLAN will perform network probing through broad-

cast or multicast to maintain certain network information. For example, in wireless net-

work environment, Address Resolution Protocol(ARP) will broadcast to ask the MAC

address of devices in the network. We also have observed Internet Control Message Pro-

tocol(ICMP), Internet Group Management Protocol(IGMP), and many other network pro-

tocol activities that have similar behaviors.

Note that not only the target apps or works that directly associated with interrupts

cause extra energy consumption. Once the smartphone is waked up, other suspended jobs

will also be triggered and increase both workload and energy consumption before going

back to sleep again. For example, we observed that BatteryService will start update the

display of battery status everytime the smartphone wakes up, even though users cannot

15

perceive these updates since the screen is still off.

3.3.2 How long are the wake-ups?

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 >

N
um

be
r

of
 in

te
rr

up
ts

Active
Passive

Figure 3.5: Distribution of wake-up durations every 30 minutes.

Figure 3.5 shows the distribution of wake-up durations induced by active or pas-

sive events. Most of the events are no longer than 3 seconds, causing short power impulses

as we observed in the former section. Some of the passive events last longer than 8 sec-

onds, because RRC inactivity timer may keep smartphones active for a period of time

after data transmission using 3G connection. However, most of them from modem are

still short because no actual transmission occurs. Despite the short wake-up durations,

these interrupts can still induce high power impulses.

3.3.3 How many wake-up events occur? How is the distribution among

different causes?

Figure 3.6 shows the number of different wake-up events with each target apps. Basically,

more events occur in the cases of LINE and Facebook. Beside, the number of passive

events under each target app is much more in 3G than in Wi-Fi and takes up about 50%

16

 0

 5

 10

 15

 20

 25

Chrome

LINE
Facebook

N
um

be
r

of
 in

te
rr

up
ts

Active
Passive

(a) Wi-fi

 0

 5

 10

 15

 20

 25

Chrome

LINE
Facebook

N
um

be
r

of
 in

te
rr

up
ts

Active
Passive

(b) 3G

Figure 3.6: Number of active and passive events every 30 minutes.

to 60% of the total events. On the contrary, active events are more frequent in Wi-Fi and

take up 70% to 95% of the events.

Figure 3.7: Ratio of different causes of events.

We then further breakdown active and passive events based on their causes as

shown in figure 3.7. Through mapping packet bursts to the wake-up events using times-

tamps, we can know that if an event triggers a series of packet transmissions, say traffic

bursts. Through examining the source IP of the first packet in every traffic burst, we can

determine if the burst is initiated by remote servers or the smartphone itself. The other

details about how we identify the causes are listed below:

17

• Active - Network Probing Some network protocols require clients to send packets

actively in order to obtain network environment information, e.g. to resolve ad-

dresses. Here we filter out the events with bursts initiated by ICMP(Internet Con-

trol Message Protocol), ARP(Address Resolution Protocol), DNS(Domain Name

Service), and other similar protocols as network probing events.

• Active - Connection maintenance Usually, the processes of maintaining connec-

tion are simply sending acknowledgment messages between clients and servers.

Therefore, the number of packets in a burst is usually small. We take the events

with burst that is 1) in TCP, SSL, or other stateful connections 2)smaller than 10

packets(but not network probing) as this category.

• Active - Data Synchronization Unlike maintaining connection, the size of data is

usually larger that requires more packets to carry, causing larger traffic bursts. In

our cases, filtering the events with burst larger than 10 packets can properly identify

most of the data synchronizations.

• Active - Others They are active events are not mapped to traffic bursts.

• Passive - Network Probing Similar to active network probing events, they are

caused by network protocols that aim to probe network environment.

• Passive - Response As mentioned, if there exists connections between clients and

servers, servers can actively push data back to the clients. We simply take the events

with traffic bursts that sent from remote servers with stateful protocols as response

events.

• Passive - Delayed Response If a passive event whose traffic burst is the response

of the former active event, e.g. ack from server for maintaining maintenance, it is

viewed as delayed response. To be more specific, if the source IP of the active event

18

is the destination IP of the passive event and vice versa, then the passive event is the

delayed response of the former active event. However, if the two events are distant

in time, they are not considered to have any relationship.

• Passive - Others Active events are not mapped to traffic bursts. This might be due

to some control signals sent by modems to communicate with the system.

Under Wi-Fi environment, most of the active events belong to connection main-

tenance, which take up about 30% of the total events. They becomes more frequent after

installing Facebook. The number of others active events is also about 20%-40% of the

total events, which means that there are still lots of events caused by apps for unknown

purposes. In 3G, passive events of response and delayed response increase obviously

compared with Wi-Fi in all cases. They take about 25%-40% of the total events in 3G,

while they almost do not exist in Wi-Fi. Compared with Chrome, the amount of increase

is higher in LINE and facebook because they tend to have more network transmission

actions in nature, and thus more packets will be possibly delayed. The numbers of ac-

tive events in 3G decrease slightly, but their distribution is almost the same. This may

be due to that apps will adjust their strategy of network usage. For example, the period

of polling for connection maintenance may be shorter to prevent losing connections and

provide better services.

3.3.4 How is the energy impact of different types of wake-up?

Figure 3.8 shows the energy breakdown among different type of events. Baseline denotes

the baseline energy to support the smartphone, which is consumed by neither passive nor

active events. The energy cost by these wake-up events is about 20%-33% in the cases of

Wi-Fi, and it can even reach up to 58%-68% in 3G. The total energy consumption is much

19

 0

 50

 100

 150

 200

Chrome LINE Facebook

E
ne

rg
y(

J)

Active
Passive
Baseline

(a) Wi-fi

 0

 50

 100

 150

 200

Chrome LINE Facebook

E
ne

rg
y(

J)

Active
Passive
Baseline

(b) 3G

Figure 3.8: Ratio of energy incurred by active and passive events.

higher in 3G since it consumes more power in nature when transmitting packets. This

implies that the impact of these UA is more serious under 3G environment. Consistent

with the distribution of events, active events induce most of the energy consumption(70%-

87% among the energy cost by events) under Wi-fi, while passive events contributes the

most(74%-76%) under 3G environment.

Figure 3.9: Ratio of energy incurred by different causes of events.

Figure 3.9 shows the detail distribution among different causes of events. It is

also similar to the distribution of the occurrence of events in each case. In Wi-Fi en-

20

vironment, others dominates the energy consumption in Chrome. On the other hand,

connection maintenance, network probing, and others consume the majority of energy

consumption in LINE and Facebook. As for 3G, response dominates in all three apps.

Delayed response takes more in LINE and Facebook like the distribution of event num-

bers. This means that the frequency of interrupt may be the main factor the power

waste during the idle session.

3.3.5 How many redundant activities are made?

To evaluate the amount of redundant activities, we choose the number of file accesses,

number of network packets transmitted, and CPU utilization as general matrices. File

accesses include read and write actions, and packets sent and received are counted alto-

gether. CPU cycles are normalized to the highest CPU frequency. We think they are fairly

enough to reflect the increase of both computation-intensive and data-intensive activities.

 0

 500

 1000

 1500

 2000

 2500

LINE
Facebook

Chrome

N
um

be
r

of
 f

ile
 a

cc
es

se
s(

re
ad

/w
ri

te
) w/o UA

w/ UA

(a) Read

 0

 500

 1000

 1500

 2000

 2500

LINE
Facebook

Chrome

N
um

be
r

of
 f

ile
 a

cc
es

se
s(

re
ad

/w
ri

te
) w/o UA

w/ UA

(b) Write

Figure 3.10: Amount of redundancy in storage access.

Figure 3.12, 3.10 and 3.11 show the increase ratio of file access, network packets,

and CPU cycles required to load target apps with and without redundant activities. When

21

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

LINE
Facebook

Chrome

N
um

be
r

of
 p

ac
ke

ts

w/o UA
w/ UA

(a) Wi-fi

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

LINE
Facebook

Chrome

N
um

be
r

of
 p

ac
ke

ts

w/o UA
w/ UA

(b) 3G

Figure 3.11: Amount of redundancy in communication.

 0

 2000

 4000

 6000

 8000

 10000

 12000

LINE
Facebook

Chrome

N
um

be
r

of
 c

yc
le

s

w/o UA
w/ UA

(a) Wi-fi

 0

 2000

 4000

 6000

 8000

 10000

 12000

LINE
Facebook

Chrome

N
um

be
r

of
 c

yc
le

s

w/o UA
w/ UA

(b) 3G

Figure 3.12: Amount of redundancy in computation.

there are redundant activities, all the three indexes increase with all target apps. The

diversity of apps again makes the ratio of increase differs among target apps. For Chrome,

the number of file accesses even expands up to 200 times higher under the waste scenario,

and the packets transmission also expands 10 to 100 times higher. This is because Chrome

will reload data from local cache or even from the servers. Facebook also has similar

behaviors that will cause extra file accesses and network usage. CPU utilization also rises

in all target apps. The growth rate of Chrome is higher since the rendering of websites

requires lots of CPU workload.

22

3.3.6 What are the purposes of these redundant activities?

To analyze the cause of the wastes during app reloading, we group the kmsg and syslog

traces based on their scenario and use CHI square to select feature events of normal and

waste scenario respectively.

Table 3.1 shows some typical feature events of the waste scenario. We found

that most of the feature events are for building user interfaces, loading libraries, system

services registration, and other works related to application initializations. Various cus-

tomized tasks are also observed in different apps. For example, repeated rendering of web

pages also exists in our logs. Garbage collection, Android memory trimming events, and

process killing by Low-memory Killer also becomes more frequent.

Based on these observations, we suggest that these redundancies may be caused

by aggressive memory recycling. For example, rebuilding of processes and virtual ma-

chines happens when a app which has been killed by the Low Memory Killer is opened

again. It is usually followed by the redrawing of GUI and request of system services.

Even not killed by LMK, some apps will still release some GUI components or data

structures themselves to save heap spaces, causing rebuilding of GUI and re-computation

of data. For instance, Chrome will release opened tabs(pages) when smartphones are near

low-memory, and the web pages will need to be loaded and rendered again when opened.

The increase of network transmission and file access also supports our sugges-

tion. Many apps, like browser or map, need to download contents from the Internet and

therefore use network interfaces intensively. If those contents cannot be preserved in

memory or cached in local storage, they will need to be re-downloaded from the Internet,

causing extra network transmissions. Multimedia contents with larger size like images or

videos make downloading even more expensive since the transmission time will become

23

Category Item
GUI drawing OpenGLRenderer

WindowManager
AbsListView

TextLayoutCache
libEGL, ManagedEGLContext

Choreographer
Service Requesting MotionRecognitionService

LocationManagerService
MediaPlayerService, MediaPlayer

MediaPlayer-JNI
Process initialization Bundle

MtpDeviceJNI
dalvikvm

Table 3.1: Types of computation redundancies observed from kmsg and syslog

longer.

Further more, apps may store static data like user accounts, images, history, and

other statistics in the local storage and load them into memory as needed. For example,

Facebook and LINE will cache the thumbnail of user profiles or other pictures as local

files, and user accounts are also saved in local databases. If these contents are recycled,

all the data must be reloaded from the files.

3.3.7 How is the energy impact of different redundant activities?

Unlike idle session, it’s very difficult to break down the energy consumption to different

redundant activities since they could operate asynchronously. For instance, smartphones

can be playing a video while the later part of the video is still being downloaded. There-

fore, we made a real case study on Chrome by utilizing a customized website to control

the amount of redundant activities of computation and data acquisition. We utilized the

amount of Javascript loops to simulate different computation workload of redundant ac-

24

tivities. As for data acquisition, we used the number of pictures to control the content size.

We then went through the former experiment scenario for interactive session to compare

the energy consumption with and without redundancy.

 0

 10

 20

 30

 40

 50

1 7 14 21 28

E
ne

rg
y(

J)

Number of images(640x480)

w/ UA

w/o UA

(a) Data Acquisition - File Ac-
cess

 0

 10

 20

 30

 40

 50

1 7 14 21 28

E
ne

rg
y(

J)

Number of images(640x480)

w/ UA(3g)

w/ UA(Wi-Fi)

w/o UA

(b) Data Acquisition - Network

 0

 10

 20

 30

 40

 50

1 20 40 80 100

E
ne

rg
y(

J)

Number of loops(K)

w/ UA

w/o UA

(c) Computation

Figure 3.13: Energy consumption with different amount of redundant activities.

From figure 3.13, we could see that the amount of computation redundancy is

proportional to the amount of waste. Data acquisition also increases the amount of waste.

However, data acquisition activities through storage accesses have less influence than

through network. For data acquisition activities through network transmission, it causes

more waste through 3G than through Wi-Fi.

This can also help us explain the variances of the waste induced by Facebook and

Chrome in the former experiment. The fast changing content in Facebook and the diver-

sity of multimedia files(like thumbnail, film, etc.) make the energy vary along test cases.

As for Chrome, because the page could be either loaded from cache or re-downloaded

from network, whether a page will be cached depends on the current app status, caus-

ing consumption distribution varies among tests. Larger variance is also caused by the

memory management implementation within Chrome itself. Chrome will recover some

of the preserved pages under different degrees of low-memory situation to save memory

and prevent itself from being killed by LMK. Despite not being killed, the pages will be

abandoned by Chrome itself, making extra consumptions.

25

To support the former observation, we also apply the case study to some famous

existing websites to observe the energy consumption when UA occurs. Here we use

Wi-Fi as network interface. Computation workload of the websites is represented by the

Javascript execution time, and content size means the total size of website, including style

sheets and other multimedia components. Data size of the websites are calculated through

accumulating all data received throughout loading process. These statistics are measured

through Chrome Development Tool.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

D
at

a
si

ze
(k

b)

Execution time(ms)

GoogleCNNBBC

Instagram
Twitter

Facebook
Gmail

Apple

Google Play

Apple store

Figure 3.14: Content size and computation workload of the websites for real case study.

 0

 20

 40

 60

 80

 100

Google search

CNN
BBC

Instagram

Twitter

Facebook

Gmail

Apple

Google Play

Apple store

E
ne

rg
y(

J)

w/o UA
Wi-Fi with UA
3G with UA

Figure 3.15: Loading energy of the websites.

26

Similar with the controlled case study, as the data size and computation workload

of website increase, more energy are cost to load the website with UA happened. There

are some exceptions(e.g.) which are mainly due to the routing delay to the servers rather

than the delay of wireless connection.

27

Chapter 4

Insights to Potential Solutions

In this section, we proposed several potential directions to reduce unperceived activities

we observed in both idle and interactive sections.

4.1 Directions to Potential Solutions

4.1.1 Idling

• Wake-up Alignment

To reduce the frequency of active events, the usage of alarm should be managed. If

systems simply grant every request from every app, the number of active events will

increase and raise energy consumption as more and more apps that utilize alarms are

installed on smartphones. Therefore, we think the fire of alarms should be aligned

together as much as possible to reduce the frequency of active wake-up events. This

can be achieve on smartphones through the scheduling of alarms from apps. We cab

28

align delay-tolerable alarms or alarms that have least common multiply in periods.

Another way is to provide a centralized notification service. Currently, apps usually

implements their own notification services, which means that they have to maintain

one or even multiple connections to their servers and thus incur more active events.

Therefore, we think that notification services should be provided by a single service

so that there will be only one connection needed to be maintain on a smartphone.

Google Cloud Service has provide a similar mechanism.

• Network Probing Filtering The main problem of network probing is that some

broadcasts are actually useless to the system and appse, but they are still able to

force the device to wake up. If we can filter out those unimportant broadcast packets

in Wi-fi or 3G modems before they wake up the system, the number of wake-up

events can be reduced effectively.

4.1.2 Interactive

• Finer Memory Management Strategy Considering Energy Cost

One of the main source of redundant activities is aggressive memory management

with insufficient memory space. Because Android will try to keep background apps

in memory as long as possible, the space occupied will expand as users switch

between different apps. Once memory usage exceed the specific threshold, An-

droid Low-Memory Killer(LMK) will start killing background apps. If the user

switches back to an app that just has been killed, it will need to be rebuilt through-

out. This means the whole process of app initialization, including process building,

GUI drawing, and other specific jobs of different apps, must be done all over again.

To reduce the number of app reload actions, we could utilize the history of app

usage to predict what apps are unlikely to be opened next time and choose these

29

apps to kill when low-memroy. Similar mechanism has been provided in [24].

The cost of app rebuilding should be considered when recycling apps to reduce the

overhead. If the cost to rebuild an app A is higher than app B, then app B should

have higher priority of being killed than app A. We could also use swap space to

make a fine-grain memory management, and reduce the possibility for smartphone

to enter low-memory scenario. When system needs more memory space, it can be

obtained by swapping some pages out temporarily rather than killing a whole app.

• Prevent Redundant Resource Usage in Apps

Another cause of redundancy is the inefficient usage of GUI components. For in-

stance, programmer may use multiple Android Activities to show different part of

contents. However, some of them can be shown with partial update of an Activity

without building a whole new Activity; When switching between pages presented

as Activities, some of the loaded Activities may be released after users pressing

the BACK button, and the whole Activity must be rebuild once the page is opened

again.

Therefore, programmers should prevent from using too much redundant GUI com-

ponents to deliver little information. For example, using Android Fragment [2] for

partial update of Activities; During the switching of pages in an app, the loaded

Activity should be preserved rather than released after users pressing the BACK

button.

4.2 Implementation: Alarm Alignment

We modify the Linux module managing real time clock(RTC) to schedule the alarm re-

quests from apps. We simply buffer the alarms that can wake up the system(alarms with

30

typeELAPSED REALTIME WAKEUP and RTC WAKEUP) and launch them at once

every specific period. The period can be specified through proc file system.

In our evaluation, we first consider multiple apps that will send packets every

60 seconds in background even when smartphones are idling. Figure 4.1 shows the to-

tal energy consumption after idling for 30 minutes with different number of the testing

apps installed. As the number of apps increases, the total energy consumption without

alignment rises continuously. After applying alignment, the energy consumption can be

reduced up to 50% under Wi-Fi and 63% under 3G network when installing 6 apps; more

apps installed, more energy it can save.

 0

 100

 200

 300

 400

 500

 600

 700

2 3 4 5 6

E
ne

rg
y(

J)

Number of apps

Wi-Fi aligned
Wi-Fi misaligned
3G aligned
3G misaligned

Figure 4.1: Idling energy consumption per 30 minutes with different number of apps
before and after applying alignment.

 0

 50

 100

 150

 200

no align p60 p300 p600

E
ne

rg
y(

J)

Align periods

Wi-Fi

(a) Wi-Fi

 0

 50

 100

 150

 200

 250

 300

 350

 400

no align p60 p300 p600

E
ne

rg
y(

J)

Align periods

3G

(b) 3G

Figure 4.2: Idling energy consumption using different alignment period with LINE,
Chrome, Facebook installed.)

Real-case evaluation is also made using our target apps. Figure shows the total

energy consumption before and after applying alignment with all 3 target apps installed.

Under Wi-Fi network, the energy consumption drops as the align period increases since

31

the number of active events is limited by the align period effectively. However the energy

consumption under 3g network seems to have no dependency on the align periods. This

is because that the energy consumption is dominated by passive events, which cannot be

controlled through alignment. The number of passive events are about 6 times of active

events. Therefore, alignment is still ineffective with 3G although the number of active

event has been reduced.

4.3 Implementation: Swap Space

Since Android disabled swap space by default, we modified the configurations of Galaxy

S3 stock kernel, rebuild, and flash it into our machine. Then we make a swap file with

512MB in the inner eMMC storage with ext4 file system.

Here we repeat the experiment of interactive session in section 3.2 with swap

space enabled. In Figure 4.3, We compare the energy consumption of target apps with

UAs before and after applying swap space. In the cases with less waste in the former

experiment like LINE, the amount of saving is unapparent; the case with 3G connection

consumes even more after using swap space due to the overhead of swapping pages.

Nevertheless, the energy consumption can still be cut down effectively in other cases.

The ratio of saving can reach up to 32% in the case of Chrome.

32

 0
 20
 40
 60
 80

 100
 120
 140

LINE Facebook Chrome

E
ne

rg
y(

J)

Wi-Fi w/ swap
Wi-Fi w/o swap
3G w/ swap
3G w/o swap

Figure 4.3: Energy saving of paging-out(swapping space)

33

Chapter 5

Conclusion

In this work, we propose an power analysis considering user perception to investigate

whether energy consumption is really worthy to users. We propose the concept of Unper-

ceived Activity and waste of energy caused by it. A series of experiments is conducted

to prove the serious of waste and find out the sources and characteristics of different un-

perceived activities. We found out that these unperceived activities could lead to energy

increase up to 136%. Potential directions are suggested to solve the problem. Some

simple remedies are also implemented, and energy saved can reach up to 63% in our

evaluations.

In our future research, we shall apply this analysis to more applications and

different mobile devices, say wearable devices. Based on their characteristics and the

observations from the analysis, we can develop more delicate solutions to these devices.

34

Bibliography

[1] Americans spend 58 minutes a day on their smartphones.

http://www.experian.com/blogs/marketing-forward/2013/05/28/americans-spend-

58-minutes-a-day-on-their-smartphones/.

[2] Android fragment http://developer.android.com/guide/components/fragments.html.

[3] Android power manager. http://developer.android.com/reference/android/os/Power-

Manager.html.

[4] Making smartphones brilliant: ten trends. http://community.arm.com/groups/arm-

mali-graphics/blog/2014/03/25/gpu-compute-dealing-with-the-elephant-in-the-

room.

[5] Monsoon solutions inc. http://www.msoon.com/.

[6] Number of applications downloaded from google play.

http://www.statista.com/statistics/281106/number-of-android-app-downloads-

from-google-play/.

[7] Wireshark. http://www.wireshark.org/.

[8] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. En-

ergy consumption in mobile phones: A measurement study and implications for

network applications. In Proceedings of the 9th ACM SIGCOMM Conference on

Internet Measurement Conference, IMC ’09, 2009.

35

[9] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-

phone. In Proceedings of the 2010 USENIX Conference on USENIX Annual Tech-

nical Conference, USENIXATC’10, 2010.

[10] Yu-Ming Chang, Pi-Cheng Hsiu, Yuan-Hao Chang, and Che-Wei Chang. A

resource-driven dvfs scheme for smart handheld devices. ACM Trans. Embed. Com-

put. Syst., 2013.

[11] Brad K. Donohoo, Chris Ohlsen, and Sudeep Pasricha. Aura: An application and

user interaction aware middleware framework for energy optimization in mobile de-

vices. In Proceedings of the 2011 IEEE 29th International Conference on Computer

Design, ICCD ’11, 2011.

[12] Selim Gurun and Chandra Krintz. Autodvs: An automatic, general-purpose, dy-

namic clock scheduling system for hand-held devices, 2005.

[13] IDC. Worldwide smartphone market growth in the first quarter of 2014.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414.

[14] Ali Iranli, Wonbok Lee, and Massoud Pedram. Backlight dimming in power-aware

mobile displays. In Proceedings of the 43rd Annual Design Automation Conference,

DAC ’06.

[15] J. Kim, Y. Kim, and S. Chung. Stabilizing cpu frequency and voltage for

temperature-aware dvfs in mobile devices. Computers, IEEE Transactions on, 2013.

[16] Chun-Han Lin, Pi-Cheng Hsiu, and Cheng-Kang Hsieh. Dynamic backlight scaling

optimization: A cloud-based energy-saving service for mobile streaming applica-

tions. Computers, IEEE Transactions on, 2014.

[17] Kaisen Lin, Aman Kansal, Dimitrios Lymberopoulos, and Feng Zhao. Energy-

accuracy trade-off for continuous mobile device location. In ACM Mobisys, 2010.

36

[18] Aqeel Mahesri and Vibhore Vardhan. Power consumption breakdown on a modern

laptop. In Proceedings of the 4th International Conference on Power-Aware Com-

puter Systems, PACS’04, 2005.

[19] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent in-

side my app?: Fine grained energy accounting on smartphones with eprof. In In

Proceedings of the 7th ACM European Conference on Computer Systems, 2012.

[20] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen,

and Oliver Spatscheck. Profiling resource usage for mobile applications: A cross-

layer approach. In Proceedings of the 9th International Conference on Mobile Sys-

tems, Applications, and Services, 2011.

[21] Aaron Schulman, Vishnu Navda, Ran Ramjee, Neil Spring, Pralhad Deshp, Calvin

Grunewald, Kamal Jain, and Venkata N. Padmanabhan. Bartendr: A practical ap-

proach to energy-aware cellular data scheduling. In In Mobicom, 2010.

[22] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: Studying

real user activity patterns to guide power optimizations for mobile architectures. In

Proceedings of the 42Nd Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 42, 2009.

[23] Alex Shye, Benjamin Scholbrock, Gokhan Memik, and Peter A. Dinda. Charac-

terizing and Modeling User Activity on Smartphones: Summary. In Proc. of ACM

SIGMETRICS, pages 375–376, 2010.

[24] Wook Song, Yeseong Kim, Hakbong Kim, Jehun Lim, and Jihong Kim. Personal-

ized optimization for android smartphones. ACM Transaction on Embedded Com-

puting Systems, 13(2s), January 2014.

37

[25] Narendran Thiagarajan, Gaurav Aggarwal, Angela Nicoara, Dan Boneh, and Jatin-

der Pal Singh. Who killed my battery?: Analyzing mobile browser energy con-

sumption. In Proceedings of the 21st International Conference on World Wide Web,

WWW ’12.

[26] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha.

Appscope: Application energy metering framework for android smartphones using

kernel activity monitoring. In Proceedings of the 2012 USENIX Conference on An-

nual Technical Conference, USENIX ATC’12, 2012.

[27] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuo-

qing Morley Mao, and Lei Yang. Accurate online power estimation and automatic

battery behavior based power model generation for smartphones. In Proceedings of

the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis, CODES/ISSS ’10, 2010.

[28] Xinyu Zhang and Kang G. Shin. E-mili: Energy-minimizing idle listening in wire-

less networks. In Proceedings of the 17th Annual International Conference on Mo-

bile Computing and Networking, MobiCom ’11.

38

Curriculum Vitae

Chi-Hsuan Lin was born in 1990 in Taipei, Taiwan. She received his B.S. degree in

Department of Computer Science from National Tsing-Hua University, Hsinchu, Taiwan,

in 2012. Her primary research interests include low-power strategies on embedded mobile

devices and applications, information retrieval, and data visualization.

39

