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摘要

本篇論文描述一個將傳統鍵盤與操作指標裝置的觸控板合併在同

一個互動空間中的互動輸入系統，FlickBoard。本系統透過將兩個經常

交互使用的傳統輸入裝置合併成一個裝置來降低使用者的手部移動距

離，並且可以全自動的切換輸入模式。本團隊開發的原型機種將一個

58x20的電容式觸控線路嵌入在矽膠鍵盤膜上，並且直接固定在一般

的孤島式鍵盤上。本系統利用機器學習的演算法來分辨使用者目前的

意圖，並且自動啟用鍵盤或者觸控板。目前本系統在 5次交叉驗證中

可以達到 98%的準確率。
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Abstract

We present FlickBoard, which combines a touchpad and a keyboard into

the same interaction area to reduce hand movement between separate key-

boards and touchpads. It supports automatic input mode detection and switch-

ing (ie. touchpad vs keyboard mode) without explicit user input. We devel-

oped a prototype by embedding a 58x20 capacitive sensing grid into a soft

keyboard cover, and uses machine learning to distinguish between moving a

cursor (touchpad mode) and entering text (keyboard mode). We conducted

experimental studies that show automatic mode switching classification ac-

curacies of 98% are achievable with our technology. Finally, our prototype

has a thin profile and can be placed over existing keyboards.
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Chapter 1

Introduction

Operating GUI system requires both pointing devices and text input devices. However,

most of the commercially available computers put these two devices at two adjacent po-

sitions, which requires hand repositioning while switching between two devices. Past

works[1, 3, 6] tried to solve this problem by enabling touch sensing capability on the key-

board. In this work we take a step further to make the sensing layer that is easy to be added

on the off-the-shelf keyboards. Furthermore, the key issue of the dual functional keyboard

is how to automatically switch the pointing mode to the typing mode and vice versa. To

our knowledge, this issue has not been solved yet.

We present FlickBoard, a keyboard cover with capacitive touch sensing film to col-

lect user’s usage data and design an automatic mode switching algorithm based on users’

intention.
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Figure 1.1: We present a keyboard cover with capacitive touch sensing capability which
automatically disables itself while typing. Sensing wires are embedded into a typical key-
board cover (A), the modified cover is then put on an off-the-shelf keyboard (B). The sens-
ing grid is all over the keyboard with 0.5cm grid size (C). This results in a low-resolution
raw intensity image when hands are near the surface of the keyboard (D). The image is
then processed to obtain touched areas (E+F). The raw image can also be used to robustly
recognize whether user wants to type on the keyboard (G) or to control cursor with touch-
pad (H) using a machine learning-based classifier.
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Chapter 2

Related Work

2.1 Co-located Keyboard and Touchpad

Previous research has shown that co-locating two devices together will improve user per-

formance[1]. However, the integrated device still requires manual mode switching to

avoid false triggering of pointing device. ThumbSense[5] tried to implement an auto-

matic input mode switching for keyboard by maintaining a state machine controlled by

touchpad and keyboard event. Although it helps users keep their fingers on the home row,

it still requires users to move their thumb onto the touchpad. Longpad[2] has shown that

a larger touchpad occupies the whole area below keyboard can enable more possibilities

for interactions.

2.2 Keyboard with Motion Gesture

Type–Hover–Swipe[6] implemented a modified keyboard with infra-red proximity sen-

sors that recognizes in-air hand gestures and obtains coarse finger position. Some new

interaction techniques for in-air and on-surface gesture on keyboard are explored. The

depth map generated by infrared range finder is fast and stable, but the finger position

obtained by the system is too rough to control mouse cursor because the sensors were in-

terspersed between the key caps. Although the keyboard supports rich motion gestures,

it still cannot precisely track finger movement on keyboard surface. Capacitive sensing
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technology, in contrast, can obtain higher resolution image under this condition.[3]
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Chapter 3

System Overview

Our system consists of four parts: 1) sensing film, 2) capacitance-to-digital converters, 3)

graphical recognition system and 4) automatic mode switching predictor.

3.1 Sensing Cover

We built a capacitive sensing grid on a commercially available silicone keyboard cover.

The modified cover was placed over an Apple wireless keyboard. We connect ground end

to the body of Apple keyboard to stabilize the readings. The grid consists of 58 vertical

and 20 horizontal 30 AWG cooper wires. Each alphabetic and numeric key has 4x4 wires

under them. (Figure 3.4) With mutual capacitance sensing technique, each cross point of

vertical and horizontal wires can be a single sensing point, so the film can capture a 58x20

frame. The sensing resolution could be higher if the conductive pattern is directly printed

on the cover with higher line density. With this modified keyboard cover, we can enable

touch sensing capability on by simply putting it on an unmodified keyboard.

3.2 Capacitance To Digital Converters(CDC)

To measure the change of mutual capacitance value of the sensor grid cross points, we

referenced the design of SmartSkin [4] and built a customized CDC.

The main idea of this design is to measure the signal reduction of the square wave
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Figure 3.1: Keyboard film with cooper wire embedded. Each standard alphabetic and
numeric key has 4x4 wire under them.

signal passed through the sensor film, which can be viewed as a very small capacitor.

The square wave signal generated by a programmable clock generator is passed into sen-

sor films through analog demultiplexers, so we can raster scan through all the 58 vertical

wires by switching between the channels. 20 OP-Amps are connected to the horizon-

tal wires of the sensor grid, amplifying the weakened signal by a factor of 5 for further

processing. We remove the noise generated by circuits nearby with a simple lock-in am-

plifier, the lock-in amplifier takes noisy signals as input and outputs the signal strength

of the target frequency. The CDC also has a analog subtractor for hardware-based back-

ground substraction. The CDC samples the output level of analog subtractor with a 10-bit

Analog to Digital Converter(ADC) and send the data back to a computer with standard

USB serial device. The whole capacitive sensing system can be designed to be smaller

and portable.

3.3 Sensor Characteristics and Data

The CDC currently is capable of raster scanning through the sensor grid at 13 Hz. The

CDC subtracts background image internally. Calibration of the sensor is done by sampling

through the sensor grid for 10 times. The data generated by CDC can form a 58x20 pixels
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Figure 3.2: CDC circuit diagram. The switch and RC low-pass filter are the main compo-
nents of the lock-in amplifier.

Figure 3.3: The final version of CDC printed circuit board.

intensity, each pixel has 10-bit resolution. The sensor grid only responds to conductive

object in a very short range(<0.2cm).

Figure 3.4: Raw image of the obtained capacitive sensor data.
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3.4 Graphical Recognition System

The 58x20 10-bit intensity image is scaled up to 464x160 10-bit image with nearest-

neighbor interpolation to provide more accurate cursor positioning capability. (Figure 3.4)

Gaussian filter is then applied to the image for smoother blob images. Each row of the

filtered image is subtracted with the mean of the row since we found that the sensor value

will be interfered when there are some other touch points on the same horizontal sens-

ing wire.(Figure 1.1.E) The image is binarized with a simple local adaptive thresholding

algorithm. Finally, the system detects blobs in the binarized image as touched points.

(Figure 3.5) The calculated blob positions are filtered with a Kalman filter to stabilize

blob position and make cursor controlling possible.

Figure 3.5: Blurred (lower one) and binarized (upper one) images.

3.5 Automatic Mode Switching Prediction

We also implementedMotion Signature[6] to recognize whether user is trying to use point-

ing device or not. Since the sample rate is relatively lower (13Hz) compared to the origi-

nal condition(325Hz), we reduced the referenced frames to only 10 frames in the process

of building motion history image(MHI). Also, we removed binary-MHI(bMHI) from the

8



original MHI implementation because intensity-MHI already provides enough accuracy

for recognizing user intention. We classify the calculated MHIs with Random Decision

Forests(RDF), the same classifier used in Type–Hover–Swipe[6].
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Chapter 4

Training Data

In order to train a classifier to recognize the current operation performed by users, we need

to collect some usage data with ground truth.

We recruited 30 participants (15 females, 15 males, mean age 21) with an on-line

form. All participants are right-handed. In the training session, participants were asked

to use FlickBoard to fill in a questionnaire. In the testing session, participants are asked

to use FlickBoard to perform the following tasks: 1) Type a specified sentence in the text

processing software. 2) Change the font size of the sentence by moving mouse cursor to

select different size on the menu bar. 3) Continue tying another sentence and their own

name. 4) Insert a picture in the document with menu button, and resize the picture with

mouse cursor. 5) Close the text processing software and open a web browser. 6) Type

ẅww.facebook.comïn the location bar. 7) Browse the social network site, comment on

one of a post on the news feed. 8) Scroll back to the top of the page and upload a photo.

9) Add some comment on the uploaded photo. Participants were not allowed to use hot

keys. They can only type and controll the cursor or use scrolling gesture.

We designed the tasks to meet the following criteria: 1) The tasks must be using both

keyboard and touchpad alternately. Switching between two devices occurs frequently. 2)

The task must be simple enough for the users to perform while they also need to operating

an extra foot pedal. 3) The overall usage time of keyboard and touchpad should be as close

as possible. This would result in a more balanced dataset, which is better for building a

classifier.

10



The tasks we asked the participants to perform includes document editing and typeset-

ting in a text processing software, and browsing the social network site. All of these tasks

were very common tasks for a modern PC user, and should be performed without obstacle.

The ground truth of whether the user is trying to use keyboard or touchpad is collected

with a foot pedal switch operated by the participant. This foot pedal switch also act as

a manual mode switch in the system during the data collection session. Mouse button is

triggered with space bar in touchpad mode, and scrolling is controlled with the rightmost

area of the keyboard. Video of hand posture and its interaction with keyboard are recorded

for further analysis. The total operating time is 187.36 minutes, average operating time is

6.24 minutes per user.

Figure 4.1: Hardware setup of the data collection session. A foot pedal is placed under
the table to act as a manual mode switch.
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Chapter 5

Feature Extraction

We collected 150007 frames from the training data collection session, 25739 were key-

board frames, 61896 were touchpad frames. The remaining 62372 frames were frames

without any touched blobs, we call it blank frames. Since those frames don’t contain any

touched blobs, we can assume no user operation is present at this moment, so we cannot

classify it into neither keyboard nor touchpad frames. The blank frames were removed

from training data while building a classifier, and directly skipped while running on a

real-time interaction system.

We first tried to build a classifier with MHIs generated with filtered 58x20 10-bit im-

age, the recognition rate and result were both quite impressing. But the classifiers trained

with higher resolution images were more sensitive with touched position, which requires

too much training data, a 30-minute single user training data cannot generate a usable

classifier.

We then decided to build another classifier with down-scaled 29x10 10-bit image, it

significantly reduced the amount of data required to build a working classifier.
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Chapter 6

System Evaluation

We evaluate our system by running various cross-validation tests with usage data collected

with 30 participants. In this section, we describe the details of the validation process and

result.

6.1 Testing Parameters

The forest size improves the performance of RDF classifier at a linear cost of time, to

build a realtime interaction system, we set the number of trees to 30 for more accurate

recognition.

While running the experiments, we found the number of frames referencedwhile build-

ingMotion Signature (Nf ) can strongly affects the performance on recognizing user inten-

tion, do we need to find out a good parameter. We run a 5-fold cross validation with 1-20

frames referenced, the results are shown at Figure 6.1. We can find that the recognition

rate is very low when Nf is 1, then gradually rising while Nf is increasing. The recogni-

tion rate stabilized around 98% whenNf = 30. This means we only need to remember 30

frames to achieve a good recognition rate, and we can recognize the user’s intention with

about 2.3 seconds of previous surface action. According to the result, we set Nf = 30 in

the following experiments.
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Figure 6.1: Classification accuracy of 5-fold cross validation for each user and leave-one-
user-out cross validation. X axis is number of frame referenced while building Motion
Signature (Nf )

Keyboard Touchpad Blank
Keyboard 24709 1030 0
Touchpad 595 61301 0
Blank 0 0 62372

Table 6.1: Confusion matrix for three states,keyboard state, touchpad state and unknown
state in a 5-fold cross validation. Mean accuracy is 98.14%

6.2 Performance

We run a 5-fold cross validation with each participant’s own data with parameters shown

above, the averaged overall recognition rate is 98.83%, with maximum 99.52% and min-

imum 96.91%. We also conducted a leave-one-user-out cross validation, the averaged

overall recognition rate is 83.71%, with maximum 94.62% and minimum 49.53%. The

accuracy of leave-one-user-out cross validation strongly depends on users’ behavior. If a

user’s behavior is very similar with another one, his/her accuracy will be relatively higher.

When we build a shared classifier with all participant’s data, the performance is 98.42%

recognition rate in a 5-fold cross validation. The confusion matrix of shared classifier is

shown at Table 6.1.
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Chapter 7

Discussion

The performance evaluation of FlickBoard shows a satisfying result with usage data col-

lected from a variety of participants. To our knowledge, this is the first time that a au-

tomatic mode switching keyboard and touchpad hybrid device is presented. Because our

implementation is based on RDF, it is very easy to adapt to new user bahavior with small

amount of training data (about 6minutes). In this section, we discuss about the advantages,

limitations and future work of this prototype.

7.1 Preliminary User Behavior Observation

While we expect most of the users will rest their fingers on the surface of keyboard, we ob-

served that a large part (19 out of 30) of the users lifted their left hand while using touchpad

function. None of the participants can explain the reason of this behavior. However, we

spotted that when those users were typing, both hands will lift for smoother hand move-

ment. Users might apply their experience of using traditional keyboard onto FlickBoard

while controlling cursor, so they lifted their left hand while right hand is performing cursor

movement operation.

All of the participants use only one finger to move cursors without any instructions.

Participants report that they directly adapted their previous experience of using traditional

touchpad, so they use only one finger to touch on the surface of FlickBoard.

Most of the users will try to use touchpad in a very small area, about 3x3 cm. 20 of 30
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users operate cursors on the center area of the keyboard, 9 users operate on the center of

right side, the other 1 user operates on the bottom of right side.

Figure 7.1: A majority of participants raised their left hand and use one finger of right
hand to perform cursor movement in the trackpad mode.

7.2 Uneven Surface

Many users reports that the surface of FlickBoard is too uneven to perform smoother

cursor pointing operation. Users’ hands may get stuck between the key caps, which makes

user harder to move their finger to desired position. This drawback can be solved with

some physical modification, such as adding a mechanical structure to lift case of a Chiclet

keyboard to the top of key caps, forming a flat and smooth platform for users to perform

surface operation. We further built an automatically lift keyboard with our automatic mode

switching predictor. Wewill conduct an usability testing with this form factor in the future.

7.3 Higher Frame Rate and Resolution

Frame rate of current prototype may be too low for some time-critical interactions. There

are two major bottleneck of current implementations: sampling speed of the lock-in am-

plifier and speed of MCU.

Currently, the sampling speed of lock-in amplifier is bounded by two factors: the RC
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time constant of RC low-pass filter and sampling speed of ADC. Both of them can be im-

proved by using better implementation options, which requires modification of hardware

design.

On the other hand, we can save more MCU computing power by dividing the raster

scanning process into two stage. We can scan a lower resolution image first, calculate pos-

sible touch blobs position with it, and perform a higher resolution raster scanning around

touched blobs. This modified process is faster in most of the cases (number of touched

blobs < 5), and does not sacrifice precision. As a result, the frame rate can be higher

without modifying hardware setup.
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Chapter 8

Conclusions

In this work, we designed a keyboard add-on that is easy to install to enable touch capa-

bility on the regular keyboard. Our system can also automatically detect user’s intention

of switching between pointing and typing with a realtime recognizer. The proposed touch

sensing technique has higher resolution over the previous works on performing gestures

on keyboard, it can also be used for bimanual multitouch gestures or more.
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