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ᄔ要

在統計與凝態物理中，相變與臨界現象是相當重要的主題。而在研

究這類問題上，晶格模型扮演了非常重要的角色。基於普適性與臨界

現象的理論，理論模型的臨界行為經常能對應到真實物理系統。因此，

對於理論模型的研究是了解臨界現象的關鍵之一。

蒙地卡羅方法被廣泛用於了解晶格模型的相變上。利用隨機過程，

可以利用在態空間中隨機取樣得到各種熱力學性質的近似值。而基於

有限尺度標度變換，從有限尺度的結果可以推估臨界指數的值，也可

以幫助了解相變的性質。然而，在有限大小的結果中，不相關的場會

造成一些修正項，在計算臨界指數時，這會造成系統誤差。因此，必

須模擬更大的晶格。在本文中，為了在模擬大晶格模型時有更高的效

率，我們利用了圖形處理器 (GPU)將程序平行化處理。

在本論文中，利用圖形處理器上的蒙地卡羅模擬，我們研究了簡單

XY模型，以及將交互作用項推廣為非線性的 XY模型。簡單 XY模型

的臨界現象與 4He的 λ相變屬於相同的普適類。而在 q 大於 4時，Zq

異向性都是危險不相關的。推廣的 XY模型的情形則是不同，當自旋

間的交互作用越來越接近 delta函數，模型的行為會越來越接近 Potts

模型，相變變為一階。在參數位於某些區域時，可以明顯觀察到異向

性是相干的，甚至可能因為異向性強度的增加，相變轉變為一階相變。
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Abstract

In statistical and condensed matter physics, the phase transition and the

critical behavior are very important topics. To study on them, the lattice

models play important roles. For the theory of universality, the behaviors

of models correspond to realistic physical systems. Therefore, the studies of

theoretic models are keys to understand the critical behaviors.

The Monte Carlo simulation is a widely-used way to study the phase tran-

sitions of lattice models. With the stochastic process, we can sample in the

space of states and get the approximations of the thermal observables. Ac-

cording to the finite-size scaling, from the finite-size results, the critical ex-

ponents can be extracted and the properties of the transition can be studied.

However, in finite-size cases, there are correction terms cause by the irrel-

evant fields, so them cause the systematic errors of exponents. To simulate

the system with larger sizes more quickly, in this thesis, we parallelize the

procedures of Monte Carlo simulations on GPUs.

With the GPU Monte Carlo simulations, we study the simple XY model

and the generalized cases with nonlinear interactions between spins. The sim-

ple XY model is in the same universality class with the λ-transition of 4He,

and the Zq anisotropy is dangerously irrelevant for q ≥ 4. In the general-

ized XY models, the behavior approaches the Potts models as the potential

of interactions approaching the delta function. In some region of the parame-

ters, the anisotropy is significantly relevant. The transitions may even become

first-order as anisotropy increases.
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Chapter 1

Introduction

1.1 Phase transitions

In statistical mechanics, we study the macroscopic properties of materials, for ex-

ample, their density or magnetization. In ordinary situations, thermal quantities change

smoothly with the thermodynamic fields, such as the temperature and the magnetic field.

However, at some special points of the thermodynamic fields, the properties of the ma-

terial may change abruptly. It is called a phase transition.[1, 2] We can find the phe-

nomena of phase transitions in many materials, for example, the transition from water

to ice, the ferromagnet-paramagnet phase transitions at the Curie temperature and the

superconductor-metal phase transitions.

Take the Curie point of a ferromagnetic system as an example: when the temperature is

higher than Tc, there is no magnetization and the system is rotational invariant. In contrast,

the magnetization spontaneously emerges and rotational symmetry is broken below the

critical temperature. Separated by the transition temperature, there are two phases. The

lower-temperature phase with reduction of the symmetry is called an ordered phase while

the high-temperature phase is disordered. To describe the symmetry of a phase transition

and to distinct ordered and disordered phases, an extra parameter, called order parameter,

is defined[1, 2]. In this case, the magnetization is the order parameter, denoted by m, a
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three-component vector. The order parameter tends to zero at the critical temperature and

in the disordered phase. The order parameter is related to the broken symmetry of the

system. For example, the single-component order parameter of liquid-gas system is the

difference of density.

The correlation between particles plays an important role. The correlation function of

an order parameter is defined as

Γ(r) = ⟨m(r)m(0)⟩ − ⟨m(r)⟩ ⟨m(0)⟩ . (1.1)

The correlation function decays exponentially with a characteristic length scale, the cor-

relation length, denoted by ξ. According to fluctuation-dissipation theorem[1, 2], the cor-

relation function can be asymptotically given by the Ornstein-Zernike form

Γ ∝ r−(d−1)/2e−r/ξ, (1.2)

where ξ is called the correlation length, an important characteristic in a phase transition.

The transition between two phases can be categorized into two types: the first-order

phase transition and the continuous phase transition. According to the Ehrenfest clas-

sification[3, 4], the order of a phase transition is defined by the free energy. If the first

derivative of the free energy is discontinuous, the phase transition is first-order; in con-

trast, the first derivatives are continuous for continuous phase transitions, as shown in Fig.

1.1.

In a first-order phase transition, at the critical temperature, the ordered and disordered

phases co-exist. There is a jump for the internal energy, called latent heat. Various thermo-

dynamic quantities are also discontinuous. Famous examples of the first-order transitions

are the phase transitions between gas and liquid and the melting of solid. There are often

hysteresis, i.e. we can find metastable states in some region of conjugate fields. At the

transition, the correlation length ξ is finite.

In the case of continuous phase transitions, the correlation length ξ diverges at Tc. Un-

like the first-order transition, the energy density and the magnetization, change smoothly.

2
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Figure 1.1: Schematic temperature dependence of the free energy and the internal energy
for the first-order (left) and the continuous (right) phase transitions.

A famous example of continuous phase transitions is the paramagnet to ferromagnet at

the Curie temperature. The schematic phase diagram of water is shown in Fig. 1.2. The

first-order liquid-gas transition becomes continuous at the end point of line of water-steam

phase transition line, the so-called critical point. The critical behaviors of continuous tran-

sitions can be described by theories established on the divergence of the correlation length,

which will be introduced in next section.

The behaviors of phase transitions are fruitful, and often hard to solve exactly. There-

fore, numerical methods and simulations are important for understanding and classifying

phase transitions. Based on stochastic process, Monte Carlo simulations are widely used

to study both classical and quantum systems. The main purpose of this thesis is to study

the phase transitions of theoretical models with classical Monte Carlo simulations.
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Figure 1.2: Simplified phase diagram for water.

1.2 Critical behavior and scaling law

1.2.1 Critical exponent

For continuous phase transitions, singularities of various quantities depend on the re-

duced distance,

t =

∣∣∣∣T − Tc

Tc

∣∣∣∣ .
For t → 0, we can divide the quantity into regular and singular parts. The singular part

diverges at Tc and is proportional to some power of t.

Therefore, we can define the critical exponents[1]:

Specific heat : Cv ∝ t−α, (1.3)

Order parameter : M ∝ tβ, (1.4)

Susceptibility : χ ∝ t−γ, (1.5)

Correlationlength : ξ ∝ t−ν , (1.6)
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where the susceptibility χ is defined as

χ =
dM

dH
. (1.7)

At T = Tc, there is another relation of the order parameterM and the conjugate field

H , written as

M ∝ H1/δ. (1.8)

Considering the the correlation function at Tc, it decays as a power-law of the distance

Γ(r) ∝ rd−2−η (1.9)

In total, there are six critical exponents, α, β, γ, ν, δ and η, defined for different

quantities.

1.2.2 Universality

If we compare the critical exponents of many different systems, we will find some of

them have the same set of exponents, shown in Fig. 1.3. The theoretic three-dimensional(3D)

XY model and λ-transition of 4He, also have the same set of critical exponents. By these

universal behaviors, the systems with the set of exponents are classified into the same uni-

versality class. The properties, spatial dimensionality, spin dimensionality, interactions

and symmetries may determine the universality class. Even systems with different order

parameters, e.g. density and magnetization, may belong to a same universality class. This

indicates that we can use simple models to study the critical behaviors of real systems.

1.2.3 Scaling laws

We have six critical exponents. However, they are not independent. Given the lattice

dimensionality d, there are four relations between the exponents, and there are only two

5



Figure 1.3: An example of the universality class. Diagram of reduced temperature and
reduced density in the gas-liquid coexistence region.

independent exponents. The four relations, which are also called scaling laws, are

α + 2β + γ = 2, (1.10)

γ = β(δ − 1), (1.11)

γ = ν(2− η), (1.12)

νd = 2− α. (1.13)

We can understand these laws by the scaling hypothesis. We follow Kadanoff’s picture

to give an explanation[5]. First, we start from the free energy. The singular portion of it

can be written as

G = G±(t, h). (1.14)

where h is proportional to the external field. It means that the free energy of a system

only relative to these two variables. Shown in Fig. 1.4, when we perform the Kadanoff

block-spin transformation, we regard spins in a ld block as one spin. We assume that when

l ≪ ξ, the form of the free energy G±(t, h) will not change and the free energy should

6
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Figure 1.4: Picture of block spins

be the same after the transformation. However, after performing the coarse-graining, the

correlation length looks shorter and t and h are related to it. Therefore, t and h should

be rescaled into tlyt and hlyh . And, the number of spins is divided by ld. Therefore, the

scaling of free energy is written as

G(t, h) = l−dG±(tl
yt , hlyh). (1.15)

In a similar way, for the length between spins increases and the scaling of correlation

length is given by

ξ(t, h) = lξ±(tl
yt , hlyh). (1.16)

We can obtain the scaling laws from these two homogeneous function, and the general

form of scaling hypothesis. Replacing l with |t|−1/yt , and assuming h = 0, Eq. (1.16)

turns into

ξ(t, 0) = t1/ytξ±(1, 0). (1.17)

7



Comparing with Eq. (1.6), we get ν = 1/yt. And from Eq. (1.15), we get the scaling of

specific heat

C = |t|−2+dν C±(1, 0). (1.18)

Comparing with Eq. (1.3), we can find the relation Eq. (1.13). In a similar way, we can

get all of the scaling relations, or we can represent the critical exponents by independent

variables, yt and yh, These relations are necessary to obtain the critical exponents and

decide the universality class.

1.3 Ising Model, XY model and Potts model

In section 1.1, we already mention the importance of numerical methods and simula-

tions in studying phase transitions. In many cases, experimental results are not enough or

not available. By comparing with simulation data, we can examine the theoretical descrip-

tion. There also exist real world physical systems which are so complex that are hard to

model. With simulation results, the system can be described and studied more clearly. For

example, with theMonte Carlo simulations, we can study the critical behavior and find the

values of the critical exponents more precisely to compare with the theoretical predictions

and the experimental results. Simulation can be a support of theory and experiment, and

as a tool to find new system with new phenomena. However, since the real interactions

of particles are complicated, physicists try to solve or simulate some simplified model.

From the renormalization group theory and the universality, though the interactions are

simplified, the critical behaviors of simplified models are usually well corresponding to

real physical systems.

The most famous of these theoretical models is Ising model, which was invented by

Wilhelm Lenz and first studied by Ernst Ising[2, 6]. We describe the interaction by the

8



Figure 1.5: Ising model and XY model

Hamiltonian

H = −J
∑
⟨i,j⟩

sisj − h
∑
i

si, (1.19)

where si represent classical spins with values ±1 on a chain in one-dimensional(1D) sys-

tem or higher-dimensional lattice, shown in Fig. 1.5. ⟨i, j⟩ means that the interaction is

between nearest-neighbor sites. For J > 0, the spins tend to point to the same direction,

while the nearest-neighbor spins tend to point to the opposite directions for J < 0. We

can define the order parameters of these ordered phases, ferromagnetic phase and anti-

ferromagnetic phase. Taking the ferromagnetic phase for example, we define the order

parameter by the average magnetization per spin

m =

∑N
i si
N

, (1.20)

where N is the number of spins.

Though there is no finite-temperature phase transition for the Ising model in 1D, there

exist finite-temperature continuous phase transitions in 2D or 3D. The 2D Ising model is

exactly solved by Onsager[7], and the 3D Ising model, which can not be solved exactly,

has been widely studied by classical Monte Carlo Methods. For lattice dimensionality

d ≥ 4, the critical behaviors are described by mean field theory. The critical exponents of

2D and 3D Ising universality are shown in Table. 1.1[7, 8].

Table 1.1: Critical exponents of Ising Models

9



d ν α β γ δ η

2 1 0 1/8 7/4 15 1/4

3 0.63005(18) 0.10985 0.32648 1.23717(28) 4.7894 0.03639

4 1/2 0 1/2 1 3

In classical XY models, which are also called rigid-rotator model, 2-component unit

vectors Si = (cos(θi), sin(θi)) are placed on every lattice sites, as shown in Fig. 1.5. The

simplest XY model is described by the Hamiltonian with nearest-neighbor interactions

H = −J
∑
⟨i,j⟩

Si · Sj = −J
∑
⟨i,j⟩

cos(θi − θj). (1.21)

Like the Ising model, it is ferromagnetic for J > 0 and antiferromanetic for J < 0. Since

the magnetization can be in any direction, we define the order parameter as the magnitude

of magnetization

m ≡ M

N
≡
(M2

x +M2
y )

1/2

N
, (1.22)

where

mx ≡Mx

N
≡

N∑
i=1

cos(θi)

N
,my ≡

My

N
≡

N∑
i=1

sin(θi)

N
. (1.23)

Based on the Goldstone’s theorem, the Mermin-Wagner theorem predicts that for

d ≤ 2, the symmetry of continuous spin systems cannot be spontaneously broken at fi-

nite temperature[2, 9]. Nevertheless, in the two-dimensional XY model, instead of ordi-

nary continuous phase transition, there is a special transition, which is called Kosterlitz-

Thouless transition. Below the temperature TKT , the correlation function decay as a power

law, and we can regard this region as a line of critical points. The KT-transition is widely

studied and explained with vortices and bound vortex pairs[10].

In the 3D case, there is a continuous phase transition. The transition correspond to the

λ-transition of 4He[11–13]. Our study will focus on this model and its extension.

Another important model I will discuss in this thesis is the Potts model. For a q-state

10



Potts model, there are q states at every site. The Hamiltonian of the model is given by

H = −J
∑
<i,j>

δσiσj
, (1.24)

where σi = 1, 2, . . . , q. The energy is zero when σi and σj are in different states. It

is obvious that the two-state Potts model is equal to the Ising Model. The q-state Potts

models have first order phase transitions for q > 4 in two dimensions and for q > 2 in

three dimension[14].

In this thesis, we study the transitions of the XY models and the cases with effects

of nonlinearity and anisotropy. In Ch. 2, we will introduce the Monte Carlo simulations

and how to implement them on GPUs. In Ch. 3, the method for data analysis and the

finite-size scaling are introduced. The part of results is Ch. 4 and Ch. 5. In Ch. 4, we

show our results of the simple XY model with and without the anisotropy. The results of

the nonlinear XY models will be in Ch. 5.
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Chapter 2

Classical Monte Carlo Method with

Graphics Processing Unit

In this chapter, we introduce Monte Carlo simulations and how to implement Monte

Carlo simulations on Graphics Processing Unit.

2.1 Classical Monte Carlo

In 1940s, as the development of computers, physicists invent a class of algorithms

studying problems with stochastic process, called Monte Carlo methods[4, 6]. The con-

cept of Monte Carlo methods is simple. In order to measure volumes, integrations or

summations in a large space, we can estimate them by many random samples with statisti-

cal errors as the price. These methods have outstanding performance for studying spaces

with large dimensionality. And, the technique of sampling plays a very important role in

increasing the efficiency.

In this thesis, when we use the term ”classical Monte Carlo methods”, we mean the

Monte Carlo algorithms for the classical systems in statistical mechanics. The widely used

one is theMetropolis algorithm, based on theMarkov chain. To explain how to useMonte

Carlo methods on statistical systems, we begin with the partition function in the canonical
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ensemble

Z =
∑
s

e−βH(s), (2.1)

where s means states and H(s) represents the energy of the state s, and we sum over all

states to get the partition function. We can write the expectation value of observable O as

⟨O⟩ =
∑

s O(s)e−βH(s)

Z
, (2.2)

where O(s) means the value of observable O of state s. For example, we can use this

equation to get the energy and the magnetization.

However, when the system is very large, it is impossible to go through all micro-states

to find out the thermal properties. It is time to perform Monte Carlo simulations. Though

we can not sum over all states, we can choose samples randomly, and get the expectation

values of observables. For instance, if we do sampling of states with uniform probability,

the approaches of expectation values of observable could be written as

⟨O⟩ ≈ Ō =

N∑
i=0

O(s)e−βH(si)

N∑
i=0

e−βH(si)

, (2.3)

which is similar to Eq. (2.2), but the series {s1, s2......., sN} represents states chosen ran-

domly. As N increases, Ō approaches to ⟨O⟩ with decreasing statistical error. However,

besides sampling more times, how to choose the random samples plays an important role

to approach the real expectation. From Eq. (2.3), we find that if we choose the samples

with the uniform distribution, many of themmay have very small contribution to our result

because of their small Boltzmann factors, thus wasting computational resources.

2.1.1 Importance sampling and Markov chain Monte Carlo

For higher efficiency, instead of choosing samples with the uniform distribution, we

choose samples according to their weight. It is called the importance sampling. If choosing

states with the Boltzmann weights directly, the expectation value can be written as an

13



average of the observable O(s)

Ō =

N∑
i=0

O(s)

N
, (2.4)

and we would not waste time to go through many states with small Boltzmann weights.

Therefore, the problem is how to choose samples according to the weights. A common

solution is using the Markov chain. In a Markov chain, the probabilities of next states

only depend on the present states. When we perform sampling, we start from a randomly

chosen state s1 and generating next state with probability only depending on present state

P (i → i+ 1). The sequence will be

s1 → s2 → · · · → si−1 → si → si+1 → . . . . (2.5)

From a Markov chain, after many steps, there will be an unique steady-state probability

distribution depending on the transition probabilities. Therefore, by choosing appropriate

transition probability, the unique steady-state probability distribution can become equal

to the Boltzmann distribution, and importance sampling can be implemented. For the

Metropolis algorithm, assuming the Markov chain reversible, the transition probability

should obey the condition of detailed balance

π(sa)P (sa → sb) = π(sb)P (sb → sa), (2.6)

where π(sa) and π(sb)mean the steady-state weight of state sa and sb. Let the steady-state

probability distribution be the Boltzmann distribution. The transition probability depends

on the energy difference of the states, written as

P (sa → sb)

P (sb → sa)
=

π(sb)

π(sa)
= e−β(E(sb)−E(sa)) = e−β∆E. (2.7)

Therefore, we generate the next state using the probability of Eq. (2.7). At first, choose

a state s′ as a candidate of si+1. With the acceptance rate P (si → s′), if the the change

accept, si+1 = s′; otherwise, si+1 = si. For lattice systems, we perform single-spin flips,

i.e. choosing the state with a spin flipped as the candidate. Following are the steps of the
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algorithm:

1. Choose an initial configuration.

2. Choose a site p.

3. Calculate the energy difference ∆E which occur if the spin at p is flipped.

4. Flip the spin with the probability min(1, e−β∆E).

5. Repeat steps 1 to 3.

AMonte Carlo sweep is the process repeating steps 1 to 3 at all sites on the lattice once,

which is the unit of Monte Carlo updates. In our Monte Carlo simulations, at first, many

Monte Carlo sweeps are performed as the equilibration to make the Markov chain reach

the correct distribution, and then measurement is taken after every or every few Monte

Carlo sweeps. After many measurements, we can finally get the expectation values of

observables by Eq. 2.4.

2.1.2 Measurements

To perform a measurement on internal energy E and the order parameter, Eq. (1.21)

and (1.22) or Eq. (1.19) and Eq. (1.20) are used for XYModels and IsingModels. Besides

the properties can be measured from microstates, we are also interested in macroscopic

properties measured with the thermal fluctuations, such as susceptibility and specific heat.

Using the relation in thermal dynamics and statistical mechanics[1], the specific heat can

be measured with the fluctuation of internal energy.

Cv =
1

N

dE

dT
= β2 ⟨E2⟩ − ⟨E⟩2

N
= β2N

⟨
e2
⟩
− ⟨e⟩2 , (2.8)

where e represents E/N , the energy per site. And, susceptibility is given by

χ = βN(
⟨
M2

⟩
− ⟨M⟩2). (2.9)
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In the thermodynamic limit, as Eq. (1.3) and Eq. (1.5) show, the specific heat and the

susceptibility diverge at Tc, and the critical behaviors are described by the critical expo-

nents, α and γ. In the simulations of finite system, instead of divergence, there are peaks

near Tc, and the critical exponents can be estimated with the finite-size behaviors, which

we will introduce in next chapter.

The correlation length is also measurable. Instead of using the definition based on the

decay of the correlation function, which is hard to be measured in the simulations, we can

define it in a way easy to practice the measurement. First, consider the Fourier transform

of the correlation function, which is called the structure factor,

S(q) = ⟨s−qsq⟩ =
∑
r

e−iq·rΓ(r) =
∑
r

cos(q · r)Γ(r), (2.10)

where sq is Fourier transform of the spin configuration,

sq =
1√
N

∑
j

∑
sje

−iq·rj . (2.11)

Since we study on the ferromagnetic systems, the wave-vector of the dominant correlation

Q is (0, 0, 0). S(q) represents S(Q+qû), where û denote the reciprocal-space unit vector,

which can be in any direction, and for convenience, we alway choose in x-direction. A

correlation length ξa is defined with structure factor of q = 0 and q1 = 2π/L

ξa =
1

q1

√
S(0)

S(q1)
− 1, (2.12)

which holds a relation with the original correlation function ξ

ξa = ξ

√
(1 + d)(3 + d)

8d
. (2.13)

Fig. 2.1 shows the results of ξa/L for XY model. Unlike the original correlation

length, since this correlation length is not defined using the connected correlation function,

and it goes to infinity in the ordered phase.
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Figure 2.1: Correlation length of XY model defined by Eq. (2.12).

2.1.3 Parallel tempering

In many systems, for example, glassy systems, the states may be hard to reach the

equilibrium, and this equilibration takes much time. The configuration may trap in a local

minimum and hard to jump to another configuration for the rugged free energy landscape,

as shown in Fig. 2.2 with the dashed red line. The probability of jumping from a local

minimum configuration to another is very small.

The solution of this problem is the parallel tempering[6, 15]. For a descending tem-

perature series T1, T2, . . . , TM , simulate M replicas of the system in parallel at different

temperatures. The set of these replicas is considered in a large ensemble. In this ensemble,

it is allowed that replicas at different temperatures can be exchanged. As we perform the

parallel tempering, the replicas at every neighbor temperatures Tj and Tj+1 are exchanged

with the acceptance probability

PCj↔Cj+1
= min(1, e(E(Cj)−E(Cj+1))(βj−βj+1)), (2.14)
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Figure 2.2: Sketch map of parallel tempering and the free energy landscape

whereCj represents the configuration of replicas. This process satisfy the detailed balance

and is used to update the system. With the parallel tempering, it is easier for the system

to cross barriers in the landscape as the blue solid line shown in Fig. 2.2. Therefore, as

we perform Monte Carlo simulations, the parallel tempering is carried out after every or

every few Monte Carlo sweeps.

To perform the parallel tempering, there are many configurations which should be

updated in parallel. In addition, to get more precise results, we want to simulate large

systems. However, as the number of spins increase, the time grows in proportion. To

accelerate the simulations, graphics processing units are used.

2.2 GPU architecture and CUDA framework

For the demand for high-definition 3D graphics, nowadays, graphics processing units

(GPU) are designed as high-parallel and multi-core processors[16]. The GPU cores focus

on the calculations of floating points number and are normally much slower than CPU

cores. With hundreds of processors, GPUs have very impressive performance on problems

that can be expressed as data-parallel computations.
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Figure 2.3: GPU layout

Take the Tesla architecture of NVIDIA as an example. It is composed of a scalable

array of streaming multiprocessors(SMs), which contains several cores, called scalar pro-

cessor(SP) cores. A SP core is the unit carrying out one of the parallel computations.

Each core can execute a floating point instruction per clock cycle. There is global device

memory, which every core in every processor can read/write, but the speed is limited by

the memory bus. Texture and constant memory are also located on the device memory,

but there are read-only cache for the multiprocessors. The shared memory is in every SM,

and it can be read or written by cores in the same multiprocessors.

CUDA is a scalable parallel programming model and software environment. As an

extension of C language, it provide methods to parallelize calculations into GPU cores.

The basic idea is organizing parallelized calculation into blocks and threads. In imple-

mentation, we write a GPU kernel function in C which will be executed by every thread.

Several threads are grouped in a block, and they share the same shared memory, but the

number of threads in a single block has a upper bound determined by the device. Every

thread and block has its unique ID. We use the thread and block ID to perform the calcu-

lation of different data for the same kernel function. For example, the thread ID can be

used to decide the data position. Since the reading or writing of data of different thread

may interrupt each other and it may cause the race condition, after changing the data, there
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Figure 2.4: A grid of blocks, containing threads
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should be synchronization to wait for all threads reach the same point. To communicate

with host function executed on CPU, duplication between device memory and host mem-

ory is necessary. Therefore, how to allocate data on different types of memory is dominant

in performance.

The architecture for managing large number of threads running on multiprocessors

is called single-instruction multiple thread (SIMT). The multiprocessors will map every

thread into one SP core, and each thread executes independently. The SIMT group 32

threads into a warp, which are handled in the same SMwith the same instructions. If there

is any condition expression in the kernel function, it will result in warp divergence. The

warp execute each conditional branch with the thread not on the branch ignored. It implies

that it takes the summation of the time taking on all branches, so it is better to avoid using

condition expressions and loops in kernel functions.

2.3 Implementation of classical Monte Carlo simulation

on GPU

To implement Monte Carlo simulations on a GPU, the first problem is how to paral-

lelize the process of Monte Carlo simulations. There must exist some steps executed over

and over again that can be parallelized and executed in many threads. The single-spin flip

on a site (step 2 to step 4 in Metropolis method) seems to be accord with these conditions.

However, the interactions between spins are changed while spins flip. Trying to flip two

spins with interaction simultaneously will cause the race condition and the inconsistency

between the acceptance rates and the configuration of spins. Therefore, updating all spins

with parallel thread in the same time is invalid.

Our scheme is a method called checkerboard update algorithm[17]. The basic idea is

dividing spins into several sublattices, in one of which spins in the same sublattice have

no interaction with each other. Take the system with nearest-neighbor interactions as an

example, shown in Fig. 2.5. The internal energy of interactions of a spin in the red sublat-
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tice only depends on the spins in the white sublattice and itself, so we can update all spins

in the red or white sublattice in parallel with no race condition. Therefore, a Monte Carlo

sweep is broken into one red sublattice update and onewhite sublattice update. Rather than

update every single spin in sequence, GPU cores update half of spins simultaneously, and

it takes much less time with a large number of GPU cores.

As the blue dotted line shown in Fig. 2.5, rather than handle only one spin, a kernel

function may handle several spins. In our program, a kernel function updates spins in one

sublattice in a 2 × 2 × 2 cubic. For convenience, take the 2D case as an example. The

lattice is divided into many 2 × 2 squares, and every thread handles one of them. In the

kernel function for red sublattice, every thread updates left-top and right-bottom spins in

its own square, while in the other kernel function, every thread updates left-top and right-

bottom spins. As an example, in our 3D XY simulations for a 48× 48× 48 lattice, since a

thread handle a 2× 2× 2 cubic, there is 24× 24× 24 threads. We group 8× 8× 4 threads

as a block. There are 54 blocks, and each of them govern 16× 16× 8 spins.

The measurements of energy and magnetization can also perform on the GPU with

parallelized process. We use the same assignment of spins, threads and blocks. The first

step is that each thread calculates the local summation of observables, and restore it in

Figure 2.5: Sublattices of 2D and 3D system with nearest-neighbor interaction for the
checkerboard algorithm.
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blockHOST

Figure 2.6: Summation over all threads in a block.

sharedmemory. There is no need to consider sublattices, because there is no race condition

here. As shown in Fig. 2.6, the next step is summing up the local energy or magnetization

in a block using a tree. With this method, only log2N summations are carried out for each

thread, and we only need to transfer the summation of the observables of spins in blocks

to the host.

To implement the parallel tempering, all replicas are updated simultaneously, and the

temperatures in different threads are determined by the thread ID and block ID. When car-

rying out the replica-exchange, we exchange the order of temperatures on CPU and copy

them to device memory. Therefore, the only two situations to transfer the spin configura-

tions between host and kernel are just the begin and the end of the simulation. Minimizing

the data transfered is important for the speed-up.

Comparingwith the performance of CPU, the speed-up is significant. In our simulation

on XYmodels, for a update, a Monte Carlo sweep and a parallel tempering are carried out,

and we measure helicity, magnetization, energy and correlation length. On average, about

3× 108 spins can be updated and measured per second.
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Figure 2.7: Allocation of values of spins.

2.4 Multispin coding on GPU

For the Ising model, the value of a spin So ∈ {−1, 1} can be just represented in one

bit with S ∈ {0, 1}. However, the size of a variable in computers can not be less than

1 byte. In Ref. 18, to make the best usage of the memory, the values of many spins are

stored in one integer. For example, in a 32-bit integer, 32 values are stored. This method

is called multispin coding.

To perform the multispin coding, the first step is to allocate the value of spins. In Ref.

18, they show that the unified allocation has the good efficiency. According to the unified

allocation, the value of spins on the same site in many replicas are stored in one integer,

as shown in Fig. 2.7. The replicas can be at different temperatures for parallel tempering

or different copies for glassy systems.

Besides reduction of the memory use, the calculation of spins within an integer can be

done together. For a single-spin flip, the calculations for internal energies of every single

spin are necessary. These calculations can be accelerated by replacing the multiplication

of 32 bonds by a bitwise XOR, as shown in Fig. 2.8. Since we represent the interaction

Jo ∈ {−1, 1} and So by J ∈ {0, 1} and S, there are a shift and rescale between the real

energy and the result gotten by the bitwise XOR. However, since we find the probabilities
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Figure 2.8: Calculation of energies of bonds by a bitwise XOR.

with the look-up table, this is not a problem.

To perform a single-spin flip, we should sum over all the bond energies of a spin, and

this value can not be stored in one bit. Therefore, there are many different schemes to do

the bitwise XOR and the summation. In Ref. 18, they show the scheme, called Compact

Asynchronous Multispin Coding(CAMSC), with the best efficiency.

As Fig. 2.9 demonstrates, at first we get the bond energies by the bitwise XOR. Since

we need three bits for the storage of the local energy of a spin, the replicas are divided into

four groups. For the x − th group, we extract the energies for 4n + x th replicas by the

bitwise AND. Now, there are four bits to store the local energy, so we can sum the energies

of bonds directly and get the local energies of the replicas in the x − th group. Even

though the calculations are broken into four groups, the calculations are much faster than

individual calculations of the energy of single spins. In my implementation, comparing

with the program without multispin coding, the single-spin flip performed with CAMSC

is four times faster.
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Figure 2.9: CAMSC scheme to calculate the energies of every single spin.
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Chapter 3

Data Analysis and Finite-Size Scaling

In the previous chapter, we have mentioned the way to get the approximations of ob-

servables from the importance sampling. In this chapter, we present the details about data

analysis of observables and how to estimate the critical exponents.

3.1 Data analysis

The expectation value of the observable O obtained from Monte Carlo simulation is

given by

⟨O⟩ ≈ Ō =
1

N

N∑
i=1

O(si), (3.1)

where O(si) represents a measurement of quantity O of the configuration si and N is the

number of measurement. However, since Ō is just a approximation, we must estimate the

statistical error. We define the standard deviation of the mean values as the error of the

mean value

σ2
Ō =

⟨
Ō2

⟩
−
⟨
Ō
⟩2

. (3.2)

According to the equation of variance, we have to repeat the sets of measurements for

many times to get many mean values to estimate the error. It is neither realistic nor nec-
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essary, because the variance of the mean values can be estimated by the variance of mea-

surements.

We start from combining Eq. (3.1) and Eq. (3.2), getting

σ2
Ō =

1

N2

N∑
i,j

⟨OiOj⟩ −
1

N2

N∑
i,j

⟨Oi⟩ ⟨Oj⟩ , (3.3)

where O(σi) is represented by Oi. We rearrange (3.3) and get

σ2
Ō =

1

N2

N∑
i

(
⟨
O2

i

⟩
− ⟨Oi⟩2) +

1

N2

N∑
i ̸=j

(⟨OiOj⟩ − ⟨Oi⟩ ⟨Oj⟩). (3.4)

We assume that all measurements are independent, so the second term should be zero,

and the first term can be represented be the variance of individual measurements, so the

variance of means can be written as

σ2
Ō =

σ2
O

N
, (3.5)

which is the relation between the variance of means and the variance of single measure-

ments.

In the previous derivation, we assume that the measurements are independent, but the

measurements between two consecutive configurations generated byMetropolis algorithm

are strongly correlated. We can observe this phenomena in Fig. 3.1, themagnetization in x

direction of the XY model. It takes thousands of MC sweeps to get statistical independent

states. The feature of correlation between two measurements can be described by the

autocorrelation function

AO(t) =
⟨Oi+tOi⟩ − ⟨O⟩2

⟨O2⟩ − ⟨O⟩2
, (3.6)

where t is the simulation time between two measurements. The autocorrelation function

asymptotically decay in exponential, AO(t) ∼ e−t/τA , where τA is the autocorrelation

time[4, 9]. Instead of Eq. (3.5), considering the correlation, the error must have a correc-
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Figure 3.1: The magnetization in x direction versus Monte Carlo sweeps.

tion term contributed by the correlation. Starting from Eq. (3.4), we can get the error

σ2
Ō =

σ2
O

N
(1 + 2τA). (3.7)

However, estimating the autocorrelation time is complicated. In practical, we would not

estimate the autocorrelation time and use Eq. (3.7) to get the correct errors. Instead, we

perform the data-binning, i.e. we group data into bins with length M . If the length M

is much longer than the autocorrelation time, the mean value and variance of the mean

values can be written as

Ō =
1

B

B∑
b=1

O(σb), σ2
Ō = σ2

Ob
/B. (3.8)

A simple way to understand why Eq. (3.8) works is starting from Eq. (3.7). Replacing

Ō with Ob, we can find that the factor contributed by the autocorrelation is fully counting

in σ2
Ob

for M large enough. Therefore, Ob’s are statistical independent. The method to

examine whether M is large enough is re-binning, combining Mb bins into a larger bin

with size MbM . If M is large enough, the error we get from Eq. (3.8) will not change.

There are many other advantages to store all bin averages, For example, that make it easy

to add new data and perform Bootstrap and Jackknife resampling on the data.
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3.2 Finite-size scaling

Like Eq. (1.16), the scaling ansatz of quantity Q can be written as a homogeneous

function

Q(t, l) = lσf(tl1/ν), (3.9)

where x is an exponent depending on Q, and l is the length of coarse graining. In the

thermodynamic limit , the length of coarse graining can be the correlation length, l =

t1/ν ∼ ξ. For finite sizes, the largest length of coarse graining is the size of the system.

Eq. 3.9 for systems with infinite size and finite size can be written down

Q(t) = tνσf(1) , for L → ∞, (3.10)

Q(t) = Lσf(tL1/ν) , for finite L, (3.11)

where L here represents the size of system. Comparing Eq. 3.10 with the definition of

critical exponents, we can write the finite-size scaling form of thermal quantities as

m = L−β/νM0(tL
1/ν), (3.12)

χ = Lγ/νχ0(tL
1/ν), (3.13)

Cv = Lα/νC0(tL1/ν), (3.14)

ξ = Lξ(tL1/ν). (3.15)

With these finite-size scaling forms, the critical exponents can be extracted from sim-

ulation results of different sizes. Shown in Fig. 3.2, by tuning the critical exponents in

the scaling form, the data of different sizes collapse to a universal curve of the scaling

function f(x). Using the data-collapse, the approximation of critical exponents are ex-

tracted. In this thesis, to perform data-collapse, we use the program by Harada [19] based

on Bayesian inference.

According to the scaling form, if the scaling function of quantityQ has maximum near

t = 0, such as χ0 and C0, Qmax is proportional to Lσ. Therefore, we can get the value
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Figure 3.2: Data collapse of χ of the 3D XY model.

of γ/ν or α/ν by finding the maximum. With linear regression of the logarithm of the

maximums and sizes, we can obtain the values. Besides, since for t = 0, f(tL1/ν) is a

constant, we also can find critical exponents with Qt=0.

To extract the critical temperature and the critical exponent ν, we use a set of parame-

ters, which are called phenomenological coupling [8, 20]. A phenomenological coupling

holds the property that it is size independent at Tc. A frequently-used one is the Binder

ratio

R4 =
⟨m4⟩
⟨m2⟩2

, (3.16)

which is defined by the distribution of order parameter. We can also define ratios of other

powers of m, such as R2 =
⟨m2⟩
⟨|m|⟩ . For convenience, we can rescale the Binder ratio and

get the Binder cumulant,

U4 =
n+ 2

2

(
1− n

n+ 2

)
, (3.17)

where n is the number of components of order parameter. For L → ∞, U4 → 1 for

T < Tc, while U4 → 0 for T > Tc. According to Eq. (3.15), ξ/L is also a parameter

31



independent of size at Tc.

If we do not consider the correction terms, the phenomenological couplings will ex-

actly cross at Tc. The derivatives of them near Tc is proportional to L1/ν , for example,

∂U4

∂T
∼ L1/ν . (3.18)

The logarithmic derivatives ofmn holds the same property. In this thesis, using this prop-

erty, we do fittings to find ν.

However, there exist correction terms caused by the irrelevant scaling fields. The sub-

leading correction term is proportional to L−w, where w depends on the system. It is very

hard to fitting many exponents simultaneously. Therefore, in this thesis, our strategy is to

ignore the correction terms and simulate with larger size to diminish the correction terms.
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Chapter 4

Three-dimensional XY model with Zq

Anisotropy

In this chapter, we study the three-dimensional XYmodel and the casewithZq anisotropy,

which is described with the Hamiltonian

H = −J
∑
⟨i,j⟩

cos(θi − θj)− h
∑
i

cos(qθi), (4.1)

where h is the strength of anisotropy. We study the ferromagnetic case J > 0, and for

convenience, we assume J = 1 in the following.

4.1 3D XY model

The continuous phase transition in 3D XYmodel and the 3D XY universality class are

widely studied, because there are physical systems with critical behaviors in the 3D XY

universality class. The most famous one is the λ-transition of 4He. In Ref. 13, they carried

out the measurements of the specific heat in the superfluid transition in zero gravity. They

estimated the value of the specific heat exponentα = −0.0127(3), and by the hyperscaling

relation, we know the value of the exponent ν = 0.6709(1).
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Following this experimental result, Burovski et al. [21] obtained ν = 0.6717(3) with

the high-precision simulations, and Campostrini et al. [11] estimated ν = 0.6717(1) with

the high temperature expansion and the Monte Carlo simulations. They use finite-size

scaling to analyze the results from Monte Carlo simulations. They considered the sub-

leading correction term, since it will cause the systematic errors especially with small

lattice sizes. And, they perform the simulations of the improved model of the ϕ4 model to

minimize the correction.

In our simulations, we perform simulations only up to L = 80, and do not consider

the correction term. We perform fitting to find the log-log slope of the sizes and the

maximums of logarithmic derivative of ⟨|m|⟩, ⟨m2⟩ and ⟨m4⟩ with our simulation results

of the sizes L = 48, 64, 80, obtaining ν = 0.6708(1). We also get γ = 1.324(4) by the

maximum of susceptibility χ. Tc = 2.2018(1) is estimated using the Binder cumulant and

correlation length. Our results are consistent with previous results.

Our results of per site energy ⟨e⟩, magnetization ⟨m⟩ , susceptibility χ, specific heat

Cv, Binder cumulant and correlation length are shown as follows.
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Figure 4.1: Energy per site v.s. T of the XY model.
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Figure 4.2: Magnetization v.s. T of the XY model.
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Figure 4.3: Specific heat of the XY model.
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Figure 4.4: Susceptibility of the XY model.
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Figure 4.5: Binder cumulant of the XY model.
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Figure 4.6: Finite size scaling plot of correlation length of the XY model.
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Figure 4.7: Finite size scaling plot of Binder cumulant of the XY model.
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4.2 3D XY Model with Zq anisotropy and emergent U(1)

symmetry

In this section, we follows Ref. [22] to discuss the XY model with anisotropy as a

preparation for the next chapter.

Theoretic studies on the anisotropic XY model, such as the renormalization group

theory, implies that the anisotropy is dangerously irrelevant for q ≥ 4[23–26]; i.e. the

anisotropic fields are irrelevant and the universality classmaintain the same as the isotropic

XYuniversality class. And it is also consistent with the studies on the q-state clockmodels,

for which the anisotropy is dangerously irrelevant for q ≥ 5. The clock models with the

same Hamiltonian with the isotropic XY model, but the angle of a spin θ is constraint

at angles θn = 2πn
q
, where n = 1 . . . q; the clock model can be regarded as a case of

the XY model with infinite anisotropy. And, the numerical results also support these

predictions[27, 28].

In Ref. 22, while the anisotropy is irrelevant at Tc, for T < Tc, the perturbation

becomes relevant with system size larger than a length scale Λ ∼ ξa, a > 1. It implies

that the length scale Λ diverges faster than the correlation length as T close to Tc, and the

anisotropy becomes irrelevant at Tc. However, as T being further from Tc, Λ decrease

and the anisotropy become relevant. To extract Λ, we observe the distribution of the order

parameter P (mx,my), wheremx andmy are defined in Eq. (1.23). We can also define an

order parameter measuring the angular distribution and corresponding to the anisotropy

⟨mq⟩ =
∫ 1

0

dr

∫ 2π

0

dθr2P (r, θ)cos(q, θ) (4.2)

= ⟨m cos(qθ)⟩ , (4.3)

where θ is the angle of the direction of (mx,my). Shown in Fig. 4.8, we can find that for

L > Λ, the angular distribution occurs and in the case q = 8, the length scale 8 < Λ < 32.

However, in the Z4 case, the angular distributions can be found even for L = 8 while

close to Tc.
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Figure 4.8: P (mx,my) of Z4 and Z8 systems. For Z4 anisotropy, temperature is near Tc,
we there is angular distribution even for L = 8. For Z8 anisotropy, at T = 1.34, which is
much lower than Tc, the length scale is larger than 8 and smaller than 48.

We can explain the result for Zq anisotropy by coarse graining. Considering a single

spin, the configuration must have q-preferred directions. As performing coarse graining,

after combining l3 spins into a block spin, the effect of q-preferred directions is diminishes,

and the angular distribution become more flat. Within Λ, the anisotropy diminished

with increasing size. As shown in Fig. 4.9 and Fig. 4.10, there are crossing points and

mq decreases with size near Tc. However, for L ≳ Λ, the angular distribution become

pronounced.We can write the finite-size scaling form ofmq as

⟨mq⟩ = L−σg(tL1/νq), (4.4)

which is generalized from Eq. (3.12) with σ = β/ν.

In Ref. 22, they analyze the scaling of the order parameter distributions, and finally

get the relation that νq = ∆qν/3 = aqν, where aq > 1 is the exponent in the relation

Λ = ξaq and ∆q > 3 is the scaling dimension of the irrelevant anisotropy. For aq > 1, νq

40



2.1 2.2 2.3 2.4 2.5
T

0.0

0.1

0.2

0.3

0.4

0.5

0.6
m

4
L=8

L=16

L=24

L=32

L=48

Figure 4.9: mq order parameter for q = 4 and h = 2.0

must be larger than ν. The function form of g(X) is given by

g(X) ∝ I1(h̃X
3νq)

I0(h̃X3νq)
, (4.5)

where h̃ is a nonuniversal scale factor and In represents the modified Bessel function of

order n[22, 25].

With the finite size scaling form and the relations, we can extract the length scale Λ

by analyzing the behavior of mq. Fig. 4.11 shows ⟨m⟩ and ⟨mq⟩ for q = 5, 6 and Fig.

4.12 shows the scaling of ⟨m4⟩, ⟨m5⟩ and ⟨m6⟩. We obtain a4 = 1.06(4), a5 = 1.6(1),

a6 = 2.4(1), a6 = 2.4(1), a7 = 3.0(1), a8 = 4.4(3), which are consistent with the results

of Lou et al. and the form aq = a4(q/4)
2.
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44



Chapter 5

Nonlinear Three-dimensional XY

Model with Zq Anisotropy

In this chapter, we generalize the simple XY model into the nonlinear XY model with

different nearest neighbor interaction

H = J
∑
⟨i,j⟩

V (θi − θj)− h
∑
i

cos(qθi), (5.1)

where potential function V (θ) is written as

V (θ) = −2

(
1 + cos(θ)

2

)P

. (5.2)

This model is first studied in two dimensions by Domany et al. [29]. Shown in Fig. 5.1,

the potential function gets narrow as P increase. This implies that the model is getting

close to the Potts model with infinitely many states, which has a first-order transition.

Therefore, in Ref. 29, they try to make the transition change from the Kosterlitz-Thouless

transition to a first-order phase transition, and they indeed found first-order transitions for

P > 50.

We report our results of the critical behaviors of the 3D nonlinear XYmodels with and

without anisotropy term in this chapter.
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Figure 5.1: V (θ) vs. θ and the pink blocks indicates the angles of Z4, Z5, Z6, and Z8

5.1 Nonlinear 3D XY model

First, we study the nonlinear XY model without anisotropy and examine that whether

there exist first-order transitions. There are theoretical proofs and discussions predicting

the existence of the first-order phase transition as P is large enough[30, 31]. For P = 8,

the negative peaks of binder cumulant indicate the transition is first-order, shown in Fig.

5.2. Though the energy histograms do not show clear double peaks at any temperature

in Fig. 5.3, there is a clear energy shift between the temperatures near the critical tem-

perature. From these indicators, the transition should be first-order, and this conclusion

is consistent with the previous micro-canonical Monte Carlo study[32]. We also show

the energy and order parameter in Fig. 5.5 and 5.4. The result of micro-canonical Monte

Carlo study[32] also shown in Fig. 5.6, the van der Waals-like loop is discovered. The

Binder cumulant for P = 7.5, shown in Fig. 5.7, reveals that there is a continuous transi-

tion, and for P > 8, for the width of potential V (θ) getting smaller we predict there must

be a first-order transition. Therefore, there exists a 7.5 < Pc < 8.0 and the transition turns

to first-order for P > Pc.

For 1 < P < Pc, there are continuous transitions. With the finite-size scaling analysis,

we estimate the correlation length exponent ν by themaximum of the derivatives of Binder
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Figure 5.2: Binder cumulants for P = 8

cumulants and logarithmic derivative of ⟨m4⟩. Since our simulation size is just up to

L = 48 and the systematic errors are very large, it is hard to judge whether ν varies with

P . However, we also measure γ by the maximum of susceptibility χ, and it reveals a trend

that γ decrease with increasing P . Our results are shown in Table. 5.1

Table 5.1: Critical exponent ν and γ versus P

P 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.5

ν 0.6709(1) 0.665(2) 0.674(5) 0.660(4) 0.659(2) 0.668(11) 0.658(12) 0.59(4)

γ 1.256(5) 1.277(30) 1.214(20) 1.215(8)) 1.160(4) 1.110(70) 1.081(78)
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Figure 5.3: Energy histogram for P = 8, L = 32
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Figure 5.4: Order parameter for P = 8
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Figure 5.6: Micro-canonical Monte Carlo simulation result for P = 55 2D system(◦)
and 3D system(•). There is a van der Waals-like loop implying that the transition is first
order.[32]
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5.2 Nonlinear 3D XY model with Zq anisotropy

5.2.1 From continuous to first-order

After considering the anisotropy, the situation becomes much more complicated. Un-

like the simple XY model with anisotropy, the anisotropy term may mightily influence

the phase transition and even change the order of the transitions. Since there are many

parameters in the Hamiltonian, to explain the results clearly, we start from the Z4 case.

For q = 4, as h is large than some value hc, the transition become first-order for P ≥ 1.5.

Shown in Fig. 5.8, hc decrease as P increase, and at P = 1, the transition of simple XY

model with Z4 anisotropy is absolutely a continuous phase transition. The relation of hc

and P is also found for q > 4. And, we claim that for q = 4 and P slightly larger than 1,

the first-order transitions exist for h > hc.

As an example of the first-order phase transitions, the energy histogram and the mag-

netization distribution for P = 2.5, h = 2.0 and L = 48 are shown in Fig. 5.9 and Fig.

5.10. From the magnetization distribution, we find that there is no emergent U(1) sym-

metry. The double-peaks of energy and order parameter are evidence for the first-order

transition, and, of course, negative peaks of the Binder cumulant are found.

For q > 4, we perform some simulations for q = 5, 6, 7. We find that for each q > 4,
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Figure 5.9: The energy histogram for P = 2.5, q = 4 and h = 2.0. The double-peak is
very clear at T = 2.46282.

there exists a region of P where the transitions maintain continuous for any h, and when P

is larger than a value Pq for each q, first-order transitions can be found for h large enough.

The results are shown in Fig. 5.11. As an example, for q = 5 and P = 2.0, the transition is

always continuous. We also check this diagram with theZq clock model with the potential

in Eq. (5.2) as an extreme case that the strength of anisotropy goes to infinity. We find

that the exponent Pq increase with q, and for q → ∞, i.e. the case with no anisotropy,

P∞ = Pc is near 8.0.

This result is reasonable under the framework of q-state clock model. Observing Fig.

5.1, we estimate that the width of potential V (θ) is proportional to
√
P . As P increasing,

the width decreases and the internal energy between two spins with the smallest nonzero

angle V (2π/q) goes to zero. Therefore, as P increases, the model becomes more similar

to the q-state Potts model; for smaller q, V (2π/q) decreases faster with P , so Pq is smaller.
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Figure 5.11: Existence of first-order phase transition for different P and q. The red dashes
means that the transitions turn into first-order transitions for h large enough while the blue
circles means that there is no first-order transition no matter what value h is.

5.2.2 From irrelevance to relevance

In this and next subsection, we show some quantitative results of critical exponent

and discuss about the anisotropy relevance and irrelevance. In the simple XY model, for

q ≥ 4, the anisotropy is dangerous irrelevant and the critical exponents do not change. The

exponent νq must be larger than νXY = 0.671, ensuring that the anisotropy is irrelevant at

critical temperature.

However, in the nonlinear XY model, νq changes with h and it may be smaller than

ν for h = 0. In addition, the critical exponents may vary as h varies. Caused by the
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Figure 5.12: Energy versus the reduced temperature T/Tc for 5-state Potts model and
nonlinear XY model for P = 10.0 and h = 40.0. For the nonlinear XY model, the energy
is only the energy of interactions between spins. We can see that the behaviors are similar
and the latent heat is almost the same.

systematic errors, there exists some uncertainty in our results. Nevertheless, for q = 4,

the changes of νq and the critical exponents are obvious. In addition, since there is no

need to consider the region 1 < P < Pq for q = 4, the behaviors are easier to understand.

Therefore, we start from the results for q = 4, again.

By Eq. (4.4), we extract ν4 with data collapse using the program by Kenji Harada[19].

For P = 2.0, we find that the νq(h) depends on h, ν4(0.1) = 0.68(2), ν4(0.5) = 0.63(1),

ν4(0.7) = 0.62(1), ν4(1.0) = 0.56(1), and the correlation length exponent ν is also de-

creasing from 0.671 to 0.56(2), shown in Fig. 5.13. Unlike in simple XY model, νq(h)

and ν vary with h, and for h ≥ 1.0, ν4 is smaller than ν of isotropic nonlinear XY model

with P = 2.0. For the region where ν4 < νP=2.0, by the relation of length scale Λ and

correlation length in chapter 4, we can inference that the anisotropy is relevant and there

is no emergent U(1) symmetry, and the varying ν also give us the same conclusion.

For P = 1.5 and P = 3.0, the behaviors are the same. Therefore, we claim that

for P ≥ 1.5, for h large enough the anisotropy is relevant. There exists a non-universal
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region, where the critical exponents vary with the symmetry-breaking field h, before the

transition become first-order. We also find that before h is larger enough for the transition

to be a first-order transition, ν4(h) should be smaller than ν for h = 0 first.

There exist two open questions here. One is how to describe this system with νq vary-

ing with h; the other is whether the exponents are universal for ν4 > νh=0, i.e. by the

theoretical description of length scale Λ, the anisotropy should be irrelevant for ν4 > νh=0

and the exponents should be the same. Since the systematic errors are not small, the re-

gion of the non-universal behavior is not clear enough to confirm the relation between the

non-universal behavior and νq.

For q > 4, we study q = 5, 6. For P > Pq, the properties of transitions and νq are

nearly the same as the case for q = 4. However, shown in Fig. 5.15, due to the systematic

error, the region and existence of non-universal behavior are uncertain. It is hard to judge

whether the difference of ν is caused by errors and the finite-size correlation terms.

For P < Pq, shown in Fig. 5.14, νq(h) is also decreasing as h increasing, but for any

h, even for the clock model, the extreme case, νq(h) is large than νh=0. The existence or

absence of non-universal behavior is also hard to be confirmed.

For P < Pq, since νq(h) is always larger than νh=0, anisotropy is expected to be

irrelevant. However, the critical exponents change slightly as h increases, and we are not

sure whether there exists the non-universal behavior.
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Figure 5.13: Critical exponent versus h for P = 2 and q = 4. ν4 decreases with h. The
non-universal behaviors are obvious, and ν is near to ν4 for ν4 < νh=0.
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Figure 5.14: Critical exponents versus h for P = 2 and q = 5. ν5 decreases with h but
always larger than νh=0. The change of γmay be caused by the finite-size effect and errors.
We also measure the exponents of the 5-state clock model, ν = 0.668(5), νq = 0.76(3)
and γ = 1.26(1). The extreme case is consistent with the finite-h case.
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Figure 5.15: Critical exponents versus h for P = 3 and q = 5. ν5 is decreasing. However,
the changes of ν and γ are not clear. The non-universal behavior can not be confirmed.
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Figure 5.16: ⟨m⟩ and ⟨m4⟩ versus T for P = 2.0, h = 2.0 and q = 4.
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Chapter 6

Summary

To study phase transitions and critical behaviors, Monte Carlo methods and finite-size

scaling are necessary. Caused by the irrelevant field of finite size, there is some correction

depending on size. To get precise results, large-size simulations should be performed.

To simulate large size system in less time, we implement the Monte Carlo method on

GPUs. According to the checkerboard algorithm, We can parallelize the singe-spin flips

and measurements into threads on hundreds of GPU cores. It does reduce the time for

Monte Carlo simulations.

We study the simple XYmodel. With no anisotropy, we obtain ν = 0.6708(1) and γ =

1.324(4), consistent with previous results. The emergent U(1) symmetry is a characteristic

in the transitions of anisotropic XY model. Following the work of Lou et al., we study

the the length scale Λ of U(1) symmetry with the Monte Carlo method on GPU. For the

dangerous irrelevance, Λ diverge faster than the correlation length, Λ ∼ ξaq , a = νq/ν >

1. For the simple XY model with Zq anisotropy, we find a4 = 1.06(4), a5 = 1.6(1),

a6 = 2.4(1), a6 = 2.4(1), a7 = 3.0(1), a8 = 4.4(3), which are consistent with previous

works.

For the XY model with nonlinear potential, the transitions are first-order for P large

enough. For P > 1, with Zq anisotropy, νq and aq vary with h, the strength of anisotropy.

And, νq may be smaller than ν for h = 0. In the case with Z4 anisotropy, for P ≥ 1.5,
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the transitions turn into first-order transition for h large enough, and as h increasing, the

exponents become non-universal. For q > 4, there are two different cases depending on

P . For P large enough, the critical behaviors and the behavior of Λ are almost the same

as the Z4 case, but the non-universal behaviors can not be confirmed clearly because of

errors caused by finite-size effects. In the case that P is not so large, the transition is

always continuous. Though νq also vary with h, it is always larger than ν for h = 0. The

anisotropy should be irrelevant, but it is not sure that the critical exponents are constant

with different h.

An important question left is the regions of non-universal behavior. To answer this

question, simulations on systems with larger sizes should be carried out.
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