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Abstract

Eigenvalue problem is one of the most crucial topics in engineering{%’_ﬁ,& (1
& |
science fields nowaday. In practice applications, the target matrix is u$LaH'y | !!

large and sparse, hence solving the eigenvalue problems need huge computa— '

tion amount. The high efficiency is a strong demand in practice, therefore
High Performance Computing, HPC, plays an important role in this topic.
One important approach for getting higher performance is mixed precision
design, which means it will change the operation precision during the com-
putation without dropping the finial accuracy. Since single precision requires
less memory storage and it may cause higher cache hit ratio, which may affect
performance a lot. In addition, in some numerical operation, single precision
is faster than double precision. Hence, if the original algorithm is accuracy
insensitive, which means that it could lost some accuracy during the compu-
tation and keep the same final accuracy, then it is suitable to be redesigned
as a mixed precision type algorithm to enhance the performance. The eigen-
solver we focus on exactly belongs to this type. Shift-Invert Residual Arnoldi,
SIRA, algorithm is an well-known eigenvalue solver, which consists of an in-
ner loop and an outer loop. The inner loop is solving a linear system, which
is for searching the correction direction to help outer loop find the desired
eigen-pair. The efficiency of SIRA relies on the solutions of the inner-loop
linear systems. These systems can be solved in lower accuracy without down-
grading the final accuracy of the target eigenvalues. By taking advantage of
this algorithmic feature and the computational power of GPU, we develop
a mixed precision eigensolver in this research. We develop a method called
pocket method, it adaptively choosing the double or single precision to solve
the linear system. Moreover, in solving the linear system, it automatically
adjust the inner tolerance and timing of exiting inner loop. Pocket method

has the best performance in most of our experiments.

Keyword. Eigenvalue, Jacobi-Davidson, Mixed precision, Shift-Invert

Residual Arnoldi, GPU, HPC



CONTENTS iii
Contents
Abstract (in Chinese) :r i
Abstract (in English) i1
Contents iii
List of Algorithms v
List of Figures vi
List of Tables b'e
1 Introduction 1
1.1 Research Motivation . . . . . .. .. .. .. ... ... ... ... 1
1.2 Research Target . . . . . . . . . . .. . 1
1.3 Literature Review . . . . . . . . . . ... o 3
2 Methods 5
2.1 JDand SIRA . . . . . . .. 5
2.2 Inexact Stopping Criteria in Inner Loops . . . . . . . ... ... ... 10
2.3 Mixed Precision Algorithms . . . . . . ... ... ... ... ..... 14
2.4 Arithmetic Intensity Effects . . . . . ... .. ... 0000 14
2.5 Search Subspace Effects . . . . .. ... .. o oL 15
3 Numerical Results and Discussion 16
3.1 Implementation and Testing Problems . . . . .. ... ... ... .. 17
3.2 SPD Problem Collection . . . . .. .. ... ... ... .. ...... 18
3.3 Photonic Crystal . . . . . . ... ... 20
3.4 Precision Performance Analysis . . . ... ... ... ... ... .. 21
4 Conclusion 38
4.1 Summary of Methods and Results . . . . . . .. ... ... ... ... 38

il



CONTENTS iv

4.2 Advantages of the Pocket Methods
4.3 Limitations . . . .. .. .. ... L.

4.4 Future Directions

5 Acknowledgement

References 41

Appendix A Other graphs. 43

v



LIST OF ALGORITHMS

v

List of Algorithms
2.1 Jacobi-Davidson Method for Single Eigen Pair . . . . . .. % | | :": 6
2.2 Jacobi-Davidson Method for Multiple Eigen Pairs . . . . . 4 ' s
2.3 Shift-Invert Residual Arnoldi for Single Eigen Pair . . . . . . . . . .. 8
2.4 Shift-Invert Residual Arnoldi for Multiple Eigen Pairs . . . . . . . .. 9
2.5 Fixed Stopping Criterion . . . . . . . . . . ... ... 11
2.6 H.N. Stopping Criterion . . . . . . .. .. ... ... ... ... 12
2.7 Constant Scaling . . . . .. .. ... o 12
2.8 Pocket Stopping Criterion . . . . . . . ... .. ... 13



LIST OF FIGURES

vi

List of Figures

vi

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Outer/Inner time ratio of fixed stopping criteria. The inner
!
Outer/Inner time ratio of Pocket Mixed stopping criteria. The inner
ratio become greater as the dimension increasing, but different to
fixed in large size the inner proportion is smaller. And it’s one of the
reason of why mixed could save time, because it need fewer time in
inner loop. . . . . . ..
Speed Up of H.N. and Pocket w.r.t. fixed, Pocket Mixed has the best
speed up in most case. . . . . . ... ...
Residual behavior, H.N. and Pocket has similar behavior. Both of
them capture the trend of oy . . . . . . . . . . L
Matrix: thermomech TC’s counts of linear solver and total computa-
tion time. H.N. double and Pocket double have similar counts, but
Pocket’s performance is better. Since the judge cost in Pocket is
cheaper than H.N. . . . . . .. .. ... ... ... ... .......
Compare if Using Updating Method. Using updating method may
save many time in outer loop iteration, and in fixed case the saving
is more. Because fixed case has higher proportion of outer loop than
the other two. . . . . . . . . . ...
Inner Outer Comparison. H.N. double and H.N. Mixed have the same
iteration number, and We could tell the mixed precision effect by H.N.
Mixed bar and H.N. double; The larger size , the more performance
gain in mixed precision method. The reason is that the speed up of
fft is more significant in large size. . . . . . . ... oo
Parameter Effects. The proportion is more balance in small 7, and
it’s one of the reason to tell why it saving time. Since inner iteration
is relative cheaper in this application, more proportion in inner may

have better performance. . . . . . . . . ... ... L.

become greater as the dimension increasing. . . . . . .. .. &l



LIST OF FIGURES vii

vii

3.9 Performance model results. Our model prediction fits the experimentslr
well. :: 36;.
Hom ||
3.10 Double single model result. The numbers above the points,__arlé_ the ||

relative error of predictions. The model almost fits the experiment =

results. . ... 37
A.1 Computing time of different stopping criteria . . . . . . . . . .. . .. 44
A.2 Computing time of different stopping criteria . . . . . . . . ... ... 45
A.3 Computing time of different stopping criteria . . . . . . . . . .. . .. 46
A.4 Total inner counts of different stopping criteria . . . . . . . . .. ... 47
A.5 Total inner counts of different stopping criteria . . . . . . . . .. . .. 48
A.6 Total inner counts of different stopping criteria . . . . . . . . . . . .. 49
A.7 Total outer counts of different stopping criteria . . . . . .. .. ... 50
A.8 Total outer counts of different stopping criteria . . . . . . . ... .. 51
A.9 Total outer counts of different stopping criteria . . . . . . . .. ... 52
A.10 Using/not using updating method with Fixed-Double . . . . . . . .. 53
A.11 Using/not using updating method with Fixed-Double . . . . . . . .. 54
A.12 Using/not using updating method with HN-Double . . . . . . .. .. 55
A.13 Using/not using updating method with HN-Double . . . . .. .. .. 56
A.14 Using/not using updating method with HN-Mixed . . . . . . . .. .. 57
A.15 Using/not using updating method with HN-Mixed . . . . . . . . . .. 58
A.16 Using/not using updating method with Pocket-Double . . . . . . .. 59
A.17 Using/not using updating method with Pocket-Double . . . . . . .. 60
A.18 Using/not using updating method with Pocket-Mixed . . . . . . . .. 61
A.19 Using/not using updating method with Pocket-Mixed . . . . . . . .. 62
A.20 Different precondition with Fixed-Double . . . . . . . .. ... .. .. 63
A .21 Different precondition with Fixed-Double . . . . . . . . . .. ... .. 64
A.22 Different precondition with HN-Double . . . . . . . . ... ... ... 65
A.23 Different precondition with HN-Double . . . . . . . . ... ... ... 66
A.24 Different precondition with HN-Mixed . . . . . .. ... . ... ... 67



LIST OF FIGURES viii

viil

A.25 Different precondition with HN-Mixed . . . . . . . . .. & .74 . 63
A .26 Different precondition with Pocket-Double . . . . . . . .. .. ; r:, 69”
A .27 Different precondition with Pocket-Double . . . . . . . .. | ; ‘ ,"'q’lﬂ . 70
A .28 Different precondition with Pocket-Mixed . . . . . . . . . .| e ...:71
A .29 Different precondition with Pocket-Mixed . . . . . . . . . .. ... .. 72
A.30 Inner iteration times in different preconditioner with Pocket-Mixed . 73
A.31 Different initial with Fixed-Double . . . . . ... ... ... ... .. 74
A.32 Different initial with Fixed-Double . . . . .. ... ... ... . ... 75
A.33 Different initial with HN-Double . . . . . . . .. .. ... .. ... .. 76
A.34 Different initial with HN-Double . . . . . . . .. .. .. ... ... .. 7
A.35 Different initial with HN-Mixed . . . . . . . .. ... ... ... ... 78
A.36 Different initial with HN-Mixed . . . . . . . . . ... ... ... ... 79
A.37 Different initial with Pocket-Double . . . . . . ... .. .. ... ... 80
A.38 Different initial with Pocket-Double . . . . . . . .. . ... ... ... 81
A.39 Different initial with Pocket-Mixed . . . . . . .. . ... ... ..., 82
A 40 Different initial with Pocket-Mixed . . . . . . . . . ... . ... ... 83
A.41 Outer/Inner time ratio of different stopping criteria . . . . . . . . .. 84
A.42 Outer/Inner time ratio of different stopping criteria . . . . . . . . .. 85
A.43 Outer/Inner time ratio of different stopping criteria . . . . . . . . .. 86
A.44 Matrix inner and outer informations . . . . . ... ... ... ... 87
A.45 Matrix inner and outer informations . . . . . .. ... ... ... 88
A.46 Matrix inner and outer informations . . . . . ... ... ... ... 89
A.47 Matrix inner and outer informations . . . . . ... ... ... ... 90
A .48 Matrix inner and outer informations . . . . .. .. ... .. ... .. 91
A.49 Matrix inner and outer informations . . . . . ... ... .. ... .. 92
A.50 Matrix inner and outer informations . . . . ... ... ... .. ... 93
A.51 Matrix inner and outer informations . . . . .. ... ... ... ... 94
A.52 Matrix inner and outer informations . . . . . ... ... .. ... .. 95
A.53 Matrix inner and outer informations . . . . .. .. ... .. ... .. 96



LIST OF FIGURES ix

X

A.54 Matrix inner and outer informations . . . ... .. ... 4& . @ . w97
A.55 Matrix inner and outer informations . . . .. ... .. .. .. . r:, 98”
A.56 Matrix inner and outer informations . . . .. ... .. .. | ;‘ q . 99
A.57 Matrix inner and outer informations . . . . .. .. ... .. e 100
A .58 Matrix inner and outer informations . . . . .. ... ... ... ... 101
A.59 Matrix inner and outer informations . . . . .. ... ... . ... .. 102
A.60 Matrix inner and outer informations . . . . .. .. ... ... .... 103
A.61 Matrix inner and outer informations . . . . ... ... ... ... .. 104
A.62 Matrix inner and outer informations . . . . .. .. ... ... .... 105



LIST OF TABLES X

List of Tables

3.1 Test Matrix Size between 10K and 100K . . . . .. .. . &% w |
3.2 Test Matrix Size between 100K and 500K . . . .. .. .. o V25
3.3 Test Matrix Size between 500K and 1M . . . . . . . . ... ... ... 25
3.4 Test Matrix Size Greater than 1M . . . . . . . . . ... .. ... ... 25
3.5 CG Inner Time. The higher cache hit ratio of cache hit ratio of double

and cache hit ratio of single, the higher cost ratio between double and

single precision inner loop cost. . . . . . ... ... L. 25
3.6 FFT Time. Even the cache hit ratio are similar between double and

single precision, the computation time is increasing with the dimen-

sion. The reason maybe most of cache hit of the kernels in fft opera-

tion are zero. See Table 3.7 . . . . . . . .. ... 26
3.7 FFT Cache. Most of cache hit of the kernels in fft operation are zero,

especially for the Radix kernel, which is also the large part in fft

operation. Hence we could not tell the single double ratio by cache

hit in thiscase. . . . . . .. .. ... oo 26
3.8 Convergence Count in each Stopping Criteria. All of them have the

similar convergence. . . . . . .. ... Lo 26
3.9 Sum of Total Time in Each Stopping Criteria. Pocket mixed has the

best performance in each size set. . . . . . . . .. .. ... ... ... 26
3.10 1st Place Accumulation of Total Time in Each Stopping Criteria

(sec.). Pocket mixed always gets the first place in our test cases. . . . 27
3.11 Sum of Total Inner Iteration Number in Each Stopping Criteria.

Pocket method have the smallest inner iteration number, and it may

one of the reason to tell why Pocket is the best stopping criteria. . . . 27
3.12 Sum of Total Time of Pocket Mixed with Updating and without Up-

dating (sec.). Using updating method has better performance than

non using, and this results are the same as we expected. . . . . . .. 27



LIST OF TABLES xi

3.13 1st Place Accumulation of Pocket Mixed with Updating and Without
Updating. Using updating method almost gets the first place 1n(§r_l

.I Q- It -
test cases. . . . ... A T %

3.14 Sum of Total Time of Pocket Mixed with Different Precondiﬁoﬁers >
(sec.). FSAI is the best preconditioner in our experiment. . . . . . . . 27
3.15 Sum of Total Inner Iteration Number of Pocket Mixed with Different
Preconditioners. FSAI has the smallest iteration number, and it may
be the reason of why it had the best performance than Jacobi and no
using preconditioner. . . . . .. ... 29

3.16 Sum of Total Time of all K Vectors of Photonic Crystal (sec.). The

H.N. mixed and Pocket mixed have the best performance. . . . . .. 29

x1



1 Introduction

1.1 Research Motivation

Eigenvalue problem is one of the most crucial topics in engineering and sciehce
fields nowaday. In practice applications, the target matrix is usually large and sparse,
hence solving the eigenvalue problems need huge computation amount. The high
efficiency is a strong demand in practice, therefore High Performance Computing,
HPC, plays an important role in this topic, and one important approach for getting
higher performance is mixed precision design.

Jacobi-Davidson, (JD) algorithm is an typical eigenvalue solver[1], which consists of
an inner loop and an outer loop, for solving large and sparse matrix’s eigen pairs.
The inner loop is solving a linear system, called correction equation, which is for
searching the correction direction to help outer loop find the desired eigen pair. The
efficiency of JD rely on the solutions of the inner-loop linear systems. These systems
can be solved in lower accuracy without downgrading the final accuracy of the target
eigenvalues. A similar algorithm, called Shift-Invert Residual Arnoldi, SIRA [2] [3],
consists of an inner loop and an outer loop. The only difference with JD is that
SIAR does not need to do the shift in the inner loop, and JD has to suitably shift
the linear system during the iterations. Due to the property of insensitive tolerance
in the inner loop, we redesign the SIRA algorithm by using the mixed precision

approach. In this paper, our all experiment are focusing on SIRA method.

1.2 Research Target

In this paper, we focus on the standard type eigenvalue problems.
Ar = \x

which A is a sparse, symmetric positive definite(SPD) matrix.

In practice, the target matrix is usually large and sparse, and there are few specific
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desired eigen pairs to be solved. For example, the desired eigen pairs are the five
eigen pairs, whose eigenvalue’s absolute values are smallest. Since thé comgytatlon
amount for finding those desired eigen pairs are huge, the efficiency is. __anil ;Lniqf)’orl:':tant
issue in eigenvalue problems. N
An important property of JD and SIRA is that we have an higher tolerance of the
linear system in the inner loop, which means we only need to solve the linear system
approximately, than other eigensolver such like Lanczos. A straight way to set the
tolerance of inner loop is fixing the tolerance, and we called it the fixed type, and the
tolerance may be set the same as outer loop or higher. There are some researchers
proving the relation between the residuals of inner loop and outer loop[4], and giving
a practice controlling strategy between them. In the theory[4], they gave an stop-
ping criteria for the correction equation. Since the authors are Hochstenbach and
Notay, we denote the stopping criteria as H.N. criteria in this paper. The stopping
criteria use the information of residual of the outer loop and the behavior of the
inner loop to determine when to exist the inner loop. For the early stage of the
outer iterations, the tolerance will be higher than the later stage.

Inspired by the H.N. stopping criteria, I develop other two stopping approaches.
One is the Constant Scaling stopping criteria, which means inner loop’s tolerance is
the current outer’s residual scaled by a constant. The other one is Pocket stopping
criteria, which means during the inner iteration it keeps the best x; in pocket and
keeps iterating until getting better x; or reaching the iteration number constraining.
It will state more detail in the Chapter 3.

Based on those stopping criteria, we apply the mixed precision approach on them.
The single precision not only requires lesser memory storage, which may cause higher
cache hit ratio, but also could be computed faster in some operation. Hence we ex-
pect that redesigning the SIRA algorithm to a mixed precision SIRA algorithm may
get higher performance. Since we already know the accuracy requirement of inner
loop before entering it at each outer iteration , we may determine using the single

or the double precision to solve the linear system. However, in our experiments,
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single precision solver is not necessary faster than double pre(nsmn Faen though
it’s actually faster, the speedup is not a constant. For example, in som¢ gse the.
ratio of double time divided by single time is about 1.5, but in some cas(L the ratlo
is about 1.0, which means the performance of single precision operatmn is s1m11ar
to double precision in that case. To clear the reason, we do some cache hit ratio
test in different scenarios, and build up a predicting model. We also built another
model to predict the performance of mixed precision algorithm compared with full
double one.

Our main test cases are from the Florida Matrix Collection [5], and we only select
those matrix, whose size is greater than 100, 000. Based on those matrix, we com-
pare their performance between the four stopping criteria, fixed type, H.N., constant
scaling, and Pocket in full double and mixed precision. The mixed precision Pocket
method is the best method in most case, and H.N. also has not bad performance.
In addition to those matrix from Florida Matrix Collection, we also do the experi-
ments on a special application, finding the band gap of 3D photonic crystal. [6] In
our experiments, Pocket and H.N. criteria are good strategies in determining when
to exist the inner loop in photonic crystal experiments. Using those two stopping

criteria all may save many inner iteration time without lost the final accuracy.

1.3 Literature Review

Here we review some results by previous researchers in mixed precision method.
The mixed precision method has been applied to solve linear system well. The
work of Baboulin et al.[7, 8, 9] was using mixed precision method on solving dense
and sparse matrices via dicrective and iterative method. Besides they also focused
on mixed precision on refinement on dense matrices in direct method. Hogg et al.
worked on using mixed precision on symmetric sparse matrices and discuss some
performance issue. The mixed precision approach on linear system is developed

well, but there is no discussion of mixed precision on eigenvalue solver. In this pa-
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per we provide some idea about using mixed precision on eigenvalue solver.

"
A

‘%‘% )

which it will state the algorithm and stopping criteria we use in this pépér clearly.

|| 1
[ 'R
The later arrangement of this paper is: there will be the method #dﬁt

Then it’s the numerical results and discussion of our experiments. The last chapter

is the conclusion.
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2.1 JD and SIRA 4 |

In this paper we are focusing on the SPD matrixes only. The Algorithm 2.1 is:the
JD algorithm for finding single eigenvalue. Given a target matrix A, the tolerance
€out and the target value o, the algorithm will find the eigenvalue, whose absolute
value is closest to 0. At the beginning, it will update A to A — ¢ and start with a

initial matrix, Vj, which may consist of the random orthonormal vectors. Then it

will start the outer loop:

Step 1: Compute the dense subspace VfAVj, and find out all the eigen pairs of
VEAVL, and select the (6, i), such that 6y is closest to zero, and sy, is an unit

vector.
Step 2: Compute uy = Visy and residual r, = (A — 01 )uy,.

Step 3: Check the residual is small enough or not. if it is small enough return

A =0, 4+ 0 and x = uy as results. If not, go to next step.
Step 4: Solve the correction equation approximately such that ¢ L uy
Step 5:  Orthogonalize t;, L Vi — vgi1, Vir1 = [V, Ug11], and go to step 1.

The Algorithm 2.2 is the JD algorithm for finding multiple eigenvalues. The only

differences with JD algorithm for finding single eigenvalue are that

e There is a SuccessFlag to tell if it just found a convergent eigenvalue to
determine whether it’s needed to solve the correction equation in the current

outer iteration.

e There is a process to 'lock’ subspace, Vi, with the solved eigenspace, FigSpace

to avoid solving duplicated eigenvectors.

The Algorithm 2.3 is the SIRA algorithm for finding single eigenvalue. It’s almost

similar to the Algorithm 2.1 [2] [3], and the only difference is in Algorithm 2.3 line 9

5
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SIRA algorithm does not need to shift during solve the linear system. Sods Hetween

Algorithm 2.4 and Algorithm 2.2.
i

Algorithm 2.1 Jacobi-Davidson Method for Single Eigen Pair A\

Input: A: The target matrix; €,,: The outer tolerance; o: The target

| ;-_",., ||
mn ||

Output: (0, z): Eigen Pair Solved,;
L A-—oc— A
2: Choose an n-by-m orthonormal matrix Vj
3: for k=0,1,2,--- do
4: Compute all the eigenpairs of VI AVys = As.
5: Select the eigenpair (6, si) with ||| is smallest and ||sg]|2 = 1.
6: Compute uy = Visg and 1y = (A — Op 1 )ug.
7 If (||rell <€), A =06y + o, x = uy, Stop
8: Solve (approximately) a ¢ L wuy from
9: (I —upul) (A — O, 1)(I — upul)t = —ry.

10: Orthogonalize ¢, L Vi, — vgy1, Vi1 = [Vi, Vkt1]
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Algorithm 2.2 Jacobi-Davidson Method for Multiple Eigen Pairs

Input: A: The target matrix; N: How many eigen pairs needed to be sol\f’ d eout
The outer tolerance; o: The target

Output: (01,71)...(0n,zN): Eigen Pair Solved;
L A-—0c— A
2: Choose an n-by-m orthonormal matrix V,
3: FigSpace = [|
45 =1
5. for k=0,1,2,--- do
6: SuccessFlag = False
7: Compute all the eigenpairs of VI AVys = As.
8: Select the eigenpair (6, si) with ||k is smallest and ||sg||2 = 1.
9: Compute

10: Compute uy = Vis, and 1, = (A — Op 1 )uy,

11: if (||rk|| <€) then

12: SuccessFlag = True

13: N =0k +0, 2, =ug j=j+1, EigSpace = [EigSpace, uy]
14: if 7 > N then

15: Stop

16: else

17: Vi L EigSpace

18: end if

19: end if

20: if SuccessFlag == False then

21: Solve (approximately) a ¢ L uy from

22: (I —upul) (A — O, 1)(I — upul)t = —ry.

23: Orthogonalize t;, L V; and t, L EigSpace — vgi1, Vir1 = [Vi, Ugr1]
24: end if




2.1 JD and SIRA

Algorithm 2.3 Shift-Invert Residual Arnoldi for Single FEigen Pair

Input: A: The target matrix; €,,: The outer tolerance; o: The target

Output: (0,z): Eigen Pair Solved

. A—0c— A

2: Choose an n-by-m orthonormal matrix Vj

3: for k=0,1,2,--- do

4:

5:

10:

Compute all the eigenpairs of VI AVys = As.

Select the eigenpair (6, si) with ||0x|| is smallest and ||sg||2 = 1.
Compute uy = Vis, and 1y = (A — O 1 )uy.

If (lrell <€)y, A =0k + o, x = uy, Stop

Solve (approximately) a ¢ L wuy from

(A— 0k D)t = —1y.

Orthogonalize ¢, L Vi, — vgy1, Vi1 = [Vi, Vt1]

eI
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Algorithm 2.4 Shift-Invert Residual Arnoldi for Multiple Eigen Pairs [l ?—4'

Input: A: The target matrix; N: How many eigen pairs needed te be S(blved | Eout;
The outer tolerance; o: The target

Output: (01, x1)...(0n,zN): Eigen Pair Solved
L A-0c— A
2: Choose an n-by-m orthonormal matrix Vj
3: EigSpace = |]
£ j=1
5. for k=0,1,2,--- do
6: SuccessFlag = False
7: Compute all the eigenpairs of V,I AVjs = As.
8: Select the eigenpair (0, si) with [|fk|| is smallest and ||sg||2 = 1.
9: Compute up = Visg and 1y = (A — Ok )ug

10: if (||r|| < ¢) then

11: SuccessFlag = True

12: N =040, 1, =uy, j=j+1, EigSpace = [EigSpace,uy)
13: if 7 > N then

14: Stop

15: else

16: Vi L EigSpace

17: end if

18: end if

19: if SuccessFlag == False then

20: Solve (approximately) a ¢ L uy from

21: (A— 0, D)t = —ry.

292: Orthogonalize ¢, L Vi, and ¢, L FigSpace — vii1, Vir1 = [Vi, Uk11]
23: end if
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2.2 Inexact Stopping Criteria in Inner Loops

10

In this section, we will introduce the four stopping criteria in thisip

o [ixed

The first one is Algorithm 2.5, which is the simplest case, called fixed stopping
criterion. In fixed stopping criterion, given a inner tolerance €;,, if the residual

is smaller than the tolerance, then the loop will stop.

H.N.

The second one is H.N. stopping criterion, Algorithm 2.6 [4], which is devel-
oped by Hochstenbach and Notay. In H.N. stopping criterion, the inputs are
matrix A, current inner iteration result x;, right hand side b, outer tolerance
€out, CUrrent outer iteration result uy, the shift n in the linear system and three
threshold 71, 79, 73. To note that, in SIRA algorithm the 7 is always zero and
the thresholds are tunable. 7, and 7, are the reducing coefficients of to tell
when to calculate required variable 5. Due to the performance issue, the vari-
able 8 will only be calculate at most twice, and the two occasions are when
|7inll < T1||b]] and ||7in]] < 72||b]|. As any one of the conditions is satisfied,
the variable 8 will be calculated, and s, g, and rfig will also be calculated.

Then those conditions can be checked. The more details could be found in

Hochstenbach’s paper [4].

Constant Scaling

Inspired by the H.N. stopping criterion, we develop other two stopping ap-
proaches. One is the Algorithm 2.7, called constant scaling stopping criterion,
which means inner loop’s tolerance is the current outer’s residual scaled by
a constant. The constant is set as ten in default. We observe the residual

of behavior in the H.N. stopping criterion, and we found that the behaviors
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of the last inner residual in each inner iteration followed the pattesn of-outer

residual. Hence we set the inner tolerance to be of higher a_order glan the
S|

current outer residual. i

e Pocket

After doing more experiments, we observe there are some convergence patterns
of inner iterations in our test cases. One is the monotone convergent type,
which means the inner residual decay exponentially and it’s the best type.
The second type is harmonic type, in which case the residuals will oscillation
decay. The last one is the unstable type, in which the residual decays like
random walk, sometimes oscillation, sometimes increase unexpected.

From our observation, H.N. stopping criterion and constant scaling stopping
criterion, we come out the Pocket stopping criterion, in which we set the ¢;, as
V107,,:. Moreover we kept the best iteration result xy.ss = x; and continued

the iteration until the following conditions all happens:

Condition 1: The residual dose not improve significantly, and the default set

is that it must reduce 1/10 from Zpeg.

Condition 2: The iteration times from last getting x5 exceeding the ImproveStep,

and the default set is 31%3761.

Algorithm 2.5 Fixed Stopping Criterion

if ||AZEZ — b”2 < €inner then
Return True
else

Return False
end if

11
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o M

Algorithm 2.6 H.N. Stopping Criterion

gk = llrinll, s = |lzill, =1
2

Tfig - % + (15852)2

0 = uj Auy,

B=10—n+up(A=nl)z]
Above variables are calculated only twice:
i.e. when ||| < 71||b]] and [|7n] < 72|l
(?:—:;)2 > (2 — (%)2)_1, if a norm-minimizing method
Flag = (k > 1) and (GMRES, QMR) is used
gk > Gk—1, otherwise
if g < 77|z then

if +®) < ¢lout) then Return True

eig

else if ﬁ > % then

if g, < Tg\/% then
Return True
else if Flag is True then
Return True
end if
end if

else

Return False
end if

Algorithm 2.7 Constant Scaling

if ||Az; — b|| < “#* then

Return True
else

Return False
end if

12
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4. :"‘.‘n 1

Algorithm 2.8 Pocket Stopping Criterion

Step = Step + 1

if [|Az; — 0[] < ™=t then
Step =0

end if

if ||Az; — b|| < Tpest then
Lpest = T
Tpest = || Azi — b

end if

if [[Az; — b|| < <4 then
Return True

else if Step > ImproveStep then
Return True

else
Return False

end if

13
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2.3 Mixed Precision Algorithms

After constructing the stopping criteria, we consider how to apply mﬁ;ﬁed pré-
|
cision approach on those stopping criteria, that is we need to decide whem, to'uise

single precision to solve the linear system when to use double precision.

In fixed stopping criterion, it’s hard to have a strategy to switch precision. Hence
we all use double precision in fixed stopping criterion. In H.N. stopping criterion,
we found that all the exiting conditions must satisfy ||7i,|| < 71]|7out||, SO we set the
condition to use single precision is : 71||7ou|| > 107. However under this condition, it
does not guarantee that the single precision could solve the linear system successfully.
Hence in our approach it is an experiment concept. And in constant scaling and
Pocket stopping criteria, it’s relative easy to decide when to use single precision.
That is when ¢, is greater than 107, We use the single precision to solve the linear
system. The main idea is similar to H.N. stopping criterion. Note that the upper
bound being smaller than 107 does not guarantee the success of using single precision

to solve the linear system.

2.4 Arithmetic Intensity Effects
o V*AV
Besides using mixed precision, we also enhance the algorithm by using the
updating method of computation of V*AV in the Algorithm 2.3 and Algo-
rithm 2.4. Since the V;* {AV,_; is exactly the on left and upper corner of
V}:Avk, ie.
VIEAVR[L:k—1,1: k=1 =V} AV,

We only need to update the vector V;* AVi[:, k], so that we reduce the BLAS2
operation to BLAS1 operation. However because the matrixes size and num-
ber of nonzero are also affect the preformance, using updating method may

not be the best choice. Which method being the best depends on the matrixes’

14
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2.5

condition. In the Section 3, there are some performance results andediscussion

between updating method and non-updating method. ::
Note that, we use the Modified Gram Schmidt (MGS) as orthogomgatlon ap—
proach. Due to the numerical stable issue, we may need to reorthogomze Vk

sometimes.[10]

Preconditioners

In our experiments, we use three preconditioners. In general cases testing,
we apply Jacobi [11, 12, 13] and FSAI [14] as preconditioner. In our special
application photonic crystal [6], we use fast fourier transform (FFT) as pre-
conditioner. Jacobi is extracting the diagonal of matrix as preconditioner, and
FSAI is to minimize the Frobenius norm of || — GL||; where L is the exact
lower triangular part of A and G = M~! is the preconditioner. FSAI and
FFT are arithmetic intensive operation with respect to Jacobi. Hence those

two preconditioners may have better performance on GPU.

Search Subspace Effects

Search Subspace Restarting

We also did the experiments of remaining different many sub dimension of V
after restarting. That is one of the case is we always remain only one vector
of V}, after restarting, and the other case is we remain five vectors of V}, after
restarting. We try to tell is there any different performance between those two

conditions.

All of the method we mentioned above could be implemented on the environment

of all CPU system. However we implement them on a machine with GPU. We regard

GPU as an accelerator, and some of the operations prefer GPU more than CPU such

like FFT, FSAI preconditioners and BLAS3 operation.

In next chapter, we will show you the numerical result of our experiment, and there

is some discussion later.

15
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3 Numerical Results and Discussion

In this chapter, we will discuss the numerical results of our experlm’em it F st
of all, we will introduce how we implement the algorithm and what Asind of fest
problems we did. Note that we use the absolute error in our experiment.

Some remarks:

e Relative error and absolute error

The definition of the absolute error of inner loop is :
| Az; — b2
and the definition of the relative error of inner loop is :
| Az; — bl[2/1]0]]

Since the right hand side b is the outer residual r.,, the relative error could

be rewritten as :

[ Az = bll2/[[out

For example, in fixed stopping criterion, assume that ||Az; — b||» = 107 and
70wt || = 1075, then the absolute error is 107°, but the relative error is || Az; —
bll2/||7out]] = 107°/107¢ = 10. We could tell that in fixed stopping criterion,
using absolute error will have loosing tolerance than relative error in most
iterations. In this paper, we used absolute error to measure the error in inner

loop.

e [teration number of relative error and absolute error
In our experiments results, the iteration number of each inner loop is almost

constant in using relative error, and using absolute error had the similar results.

More details of experiments results are in Appendix A.

16
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3.1 Implementation and Testing Problems

Our code mainly follows Algorithm 2.4, and most of them aré on | ?P’U side.
Only solving the small subspace’s eigenvalues is on CPU side, and we usé LAPACKE
dgeev and LAPACKE zgeev [15] to do that. All of the BALS and sparsé’opera-
tion are using cuBLAS and cuSparse [16]. We use the PARALUTION library [17]
to solve the linear system part, and in the library we can select the linear solver and
preconditoner we want. In our implementation, we mainly use conjugate gradient
(CG) as our linear solver. We also tried use BiCGStab and GMRES to solve the
linear system, but the CG had the best performance. Note that, since someone
may need to defined they own matrix-vector multiplication of matrix A, we defined
the function pointer to handle this. That is for general case, we use functions in
PARALUTION to do the matrix-vector multiplication, and if users want to define
their own, then they just need to set the function pointer. In our phtonic crystal
application, we defined our own matrix-vector multiplication of matrix A, which

involving FFT operations, and we use cufft [18] to do that.

Table 3.1 are the list of all of the matrixes we run the test, and we separate them
in four sets by size. Our general case are downloaded from the University of Florida
sparse matrix collection [5]. We only select the SPD and whose size is greater than
ten thousand. Note that in Table 3.1, there is a matrix, named nos3, whose size is
smaller than one thousand, and it’s just used for debugging. In each test matrixes,
we solved three eigenvalues in each stopping criteria. After running that, because
the constant scaling stopping criterion’s convergence is not good, we collected the
matrix set in which there are matrix convergent with all of the stopping criteria

except constant scaling.

In photonic crystal application, we run the simple cubic cases, and there are 47

k vectors in each run. For each k vector, we solve one eigenvalue.

17
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3.2 SPD Problem Collection

18

e Timing Comparisons of Stopping Criteria

A

Pocket mixed has the best performance in overall. Table 3.9 shows_the' sum
of computation time in each data set and overall, and Pocket mixed has is
the best in each set. Table 3.10 shows the 1st place counts for each stopping
criteria, and Pocket mixed has the most 1st place counts. Table 3.11 shows the
sum of inner iteration number, we can tell that Pocket mixed and H.N. double
have the similar iteration number, but there are some iteration using single
precision in Pocket mixed. Hence Pocket mixed has the best performance.
Figure 3.3 give the overall results of speedup for H.N. and Pocket w.r.t fixed

stopping criterion.

Tin VETSUS Tyt
Figure 3.4 show the r;, and r,,; record of matrix boneS01, in each stopping
criteria. In those figures, we could tell that H.N. and Pocket has similar
behavior. Both of them capture the trend of r,,;. Moreover, fixed stopping
criterion’s iteration number is smallest, and H.N and Pocket are similar. So
we could tell fixed solved the linear system strictly, such that it only need few

outer iteration number. But the total cost may higher than the other two.

Pocket’s Advantage and Mixed Precision Effects

Figure 3.5 are matrix thermomech _TC’s counts of calling linear solver and the
total inner computation time. H.N. double and Pocket double have similar
counts, but Pocket’s performance is better. Since the judge cost in Pocket is
cheaper than H.N.. From Figure 3.5, we could tell that four of those stopping
criteria has similar counts of calling number, but the performance are different.
There are two reasons to explain: first, Pocket has cheaper cost in judging
whether existing the loop. Second, there are mixed precision effect that is

there are many iterations using single precision to save a lot of time.

e Arithmetic Intensity Effects
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- VAV
Table 3.12 shows the sum of computation time comparison Of_LELr_llg, up—”
dating method and without using it. Table 3.13 shows ,_thd;lei 1;’5 i?ilace'
counts between two of them. We could tell that the resulfs 1S’ as ;ur

expect. Using updating method’s performance is better.

— Preconditioners Effects Table 3.14 shows the sum of the total computa-
tion time in each preconditioners. Table 3.15 shows the sum of iteration
number in each perconditioners. FSAI is the best preconditioner candi-
date in our experiments. There are two reason to explain it first, FSAI has
the smallest iteration number. Second, thought FSAI need higher com-
putation amount, but its high computation intensity favoring GPU such

that the higher computation amount won’t decrease the performance.
e Search Subspace Effects

— Restarting
We original expect the remaining vectors after restarting will affect the
convergence behavior. But after our experiment, the convergence is not
relative to remaining vectors. That is remaining vectors are five or only

one do not affect the matrix is convergent or not.

e Inner and Outer Loop Costs
Figure 3.1 to Figure 3.2 show the percentage of the inner and outer computa-
tion time in fixed and Pocket mixed stopping criteria. The inner ratio become
greater as the dimension increasing, but different to fixed, Pocked mixed the
inner proportion is smaller in large size. And it’s one of the reason of why
mixed could save time, because it need fewer time in inner loop. The inner
ratio become greater as the dimension increasing, because the dimension is

larger the linear system may be harder to solve.
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3.3 Photonic Crystal
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In this section, we show the results of the photonic crystal applicatiqfr f'%}

e Comparison Plan

In this section, we will show the performance results on photonic crystal appli-
cation. The first is total computation time, and then we show mixed precision
effect. We will show the updating method is workable in this application, and
compare the inner and outer loop’s cost, parameters effects and matrix size

effects.

Timing Compare with HN and Fixed
Table 3.16 shows sum of total time in solving 46 k vectors in each stopping

criteria. We could tell the H.N. mixed and Pocket mixed have the best results.

Mixed Precision Effects

To tell the mixed precision effects, we take the H.N. as example. Figure 3.7a
and Figure 3.7b show how mixed precision save the time. H.N. double and H.N
mixed have similar inner iteration times, but H.N. mixed has some iteration in
single precision hence the total time is fewer than H.N. double. Moreover we
can tell that the mixed precision effect is not so significant in photonic crystal
application, because in mixed method there are still many double iteration in

the loop, which let the effect be not so significant.

Arithmetic Intensity Effects

Figure 3.6 shows the updating method is useful in photonic crystal case. Using
updating method may save many time in outer loop iteration, and in fixed case
the saving is more. Because fixed case has higher proportion of outer loop than

the others.

Inner and Outer Loop Costs
Figure 3.8a and Figure 3.8b show the percentage of the inner and outer loop’s

computation time in different parameter of H.N.. In both parameters, the



3.4 Precision Performance Analysis 21

outer time is in major and small 7 has larger percentage of innet time. -I!.'Since
the inner loop is relative cheap in this application, more prop.ortiqgi‘_:@;énner”
more time saving. \ ; ‘ 4 ';I:;!
Parameters Effects

Figure 3.8c and Figure 3.8d show that the outer iteration times in different
parameter. As we said in previous, the small 7 gets the larger percentage of
inner time, and from Figure 3.8c and Figure 3.8d we can tell it’s because of
reducing the outer iteration time. Moreover we can tell that fixed stopping
criterion not only has more inner iteration time, but has more outer iteration
time. And this tell us that the low accuracy of inner loop’s solution does not

imply higher outer iteration time.

Matrix Size Effects
Figure 3.7c and Figure 3.7d show that the total computation time in different
matrix size. The larger size, the more performance gain in mixed precision

method. The reason is that the speed up of fft is more significant in large size

3.4 Precision Performance Analysis

In this section, we show the results of single time and double time experiments.

And we only discuss the subset of our general case and photonic crystal application.

21

e Relations of Cache Hit Ratio and Mixed Precision Computations

In this section, we try to tell cause of the double and single precision cost’s
ratio. Our guess is the cache hit, in Table 3.5 show that the higher cache hit
ratio of cache hit ratio of double and cache hit ratio of single, the higher cost
ratio between double and single precision inner loop cost.

However in photonic crystal it is not the case. In Table 3.6 and Table 3.7
it shows the fft’s computation time and cache hit, where the fft = 1 and
fft = —1 means the fft and inverse fft. We could tell that even the cache hit

ratio are similar between double and single precision, the computation time is
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increasing with the dimension (dimension=2n?). We think the réasen isll'mo'st
of cache hit of the kernels in fft operation are zero, especially for th H_Rachx
kernel, which is also the large part in fft operation. Hence we alSL COIlIS..,ldeI‘.

the flops per unit time as a cause, and built up a model.

Dcos . S acheHitRatio
t :CacheHthlag(acacheM + Bcache)
Scost DCacheHitRatio (1)
S opsRatio
+(1— C’acheHitFlag)(aﬂopSM + Bflops)

DFlopsRatio

where C'acheHitFlag is the flag of whether the cache hit ratio is non zero,
and the ScucheritRatio aNd DeogenemitRatio are the cache hit ratio of single and
double precision operations. The Sgiopsratio a0d Dpiopsratio are the flops in
unit time of single and double precision operations. The parameters o and /3
are calculated by regression.

We may regard the first term as the communication effect and the second term
as computation effect. Figure 3.10 is the results of our model prediction and

experiments. We can tell the our model almost fits the experiment results.

Mixed Precision Effects on Overall Performance

Assume that the mixed precision and double precision stopping criteria have
the same outer computation cost. We may build up a model to tell how the
mixed precision affect the over performance in SIRA. The mixed precision

performance gain is in the following formula:

l)COS
Outer% + Inner%(Double% + Single% 5 )
cost

where Outer% is the percentage of the outer loop computation time in overall
computation time, and Inner% is the percentage of the inner loop computation
time in overall computation time. That is Outer% + Inner% = 1 in double
precision method. And Single% means the single precision computation time

percentage of all inner computation time. So Single% + Double% = 1. The

Dcost
S

cos

means the ratio of double precision computation time and single precision
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computation time. In this model we can tell that

— less Outer% ]

— higher Single%

3 Decos

— higher geost
may have more significant mixed precision performance gain. And in photonic
crystal application, the Outer% is too large, so the performance gain is not

significant. Figure 3.9 is the results of our model predictions and experiments.

We can tell the our model almost fits the experiment results.
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Matrix Name Dim nnz Density
nos3 960 15844 1.719E-02
ted B unscaled 10605 144579  1.286E-03
mscl0848 10848 1229778  1.045E-02
becsstkl? 10974 428650  3.559E-03
bcsstkls 11948 149090  1.044E-03
cbuckle 13681 676515  3.614E-03
crystm02 13965 322905  1.656E-03
Pres Poisson 14822 715804  3.258E-03
bcsstm25 15439 15439 6.477E-05
Dubcoval 16129 253009  9.726E-04
bodyy4 17546 121938  3.961E-04
nd6k 18000 6897316  2.129E-02
Trefethen 20000 20000 554466  1.386E-03
crystm03 24696 583770  9.572E-04
smt 25710 3753184  5.678E-03
wathenl00 30401 471601  5.103E-04
ndl2k 36000 14220946 1.097E-02
pdb1HYS 36417 4344765 3.276E-03
wathenl20 36441 565761  4.260E-04
bcsstm39 46772 46772 2.138E-05
crankseg 1 52804 10614210 3.807E-03
nasasrb 54870 2677324 8.893E-04
Andrews 60000 760154  2.112E-04
crankseg 2 63838 14148858 3.472E-03
Dubcova? 65025 1030225 2.437E-04
ga8fm 66127 1660579  3.798E-04
cfdl 70656 1828364 3.662E-04
nd24k 72000 28715634 5.539E-03
oilpan 73752 3597188  6.613E-04
finan512 74752 596992  1.068E-04
apachel 80800 542184  8.305E-05
thermall 82654 574458  8.409E-05
consph 83334 6010480 8.655E-04

Table 3.1: Test Matrix Size between 10K and 100K

NI
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Matrix Name Dim nnz Density
2cubes sphere 101492 1647264 1.599E-04
thermomech TK 102158 711558  6.818E-05
thermomech TC 102158 711558  6.818E-05

cfd2 123440 3087898  2.027E-04
boneS01 127224 6715152 4.149E-04
shipsecl 140874 7813404 3.937E-04

Dubcova3 146689 3636649 1.690E-04

bmwcra 1 148770 10644002 4.809E-04

G2 circuit 150102 726674  3.225E-05

shipsech 179860 10113096 3.126E-04
thermomech dM 204316 1423116 3.409E-05

hood 220542 10768436 2.214E-04

BenElechil 245874 13150496 2.175E-04

offshore 259789 4242673  6.286E-05

msdoor 415863 20240935 1.170E-04

Table 3.2: Test Matrix Size between 100K and 500K

Matrix Name Dim nnz Density

parabolic fem 525825 3674625 1.329E-05
apache?2 715176 4817870 9.420E-06
tmt sym 726713 5080961  9.621E-06
boneS10 914898 55468422 6.627E-05
ldoor 952203 46522475 5.131E-05
bone010 986703 71666325 7.361E-05
ecology?2 999999 4995991 4.996E-06

Table 3.3: Test Matrix Size between 500K and 1M

Matrix Name

Dim

nnz

Density

thermal?2
StockF-1465
G3 circuit

1228045

1585478

8580313

7660826

5.690E-06
1465137 21005389 9.785E-06
3.048E-06

Table 3.4: Test Matrix Size Greater than 1M

[ M

Matrix Name CG Time cstMv L1 Cache Hit Rate
Single(ms) Double(ms) D/S Single(%) Double(%) S/D
nos3 0.183 0.244 1.33 40.60 43.19 0.94
Pres Poisson 0.396 0.574 1.45 44.27 33.78 1.31
Dubcoval 0.249 0.385 1.55 43.13 31.59 1.35
Dubcova?2 0.524 0.943 1.80 43.87 30.14 1.46

Table 3.5: CG Inner Time. The higher cache hit ratio of cache hit ratio of double and
cache hit ratio of single, the higher cost ratio between double and single precision inner

loop cost.

25
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time(ms)
FFT spRadix spVector dpRadix dpVeqgtor-=
D/S fft=1 fit=-1 fft=1 fit=-1 fft=1 ft=1 Mt=1" ffit==1)
16 1.10 1.00 097 054 0.56 2.43 2.37 1.39° . 1.34,. "
32 1.60 1.62 1.54 0.77  0.79 7.61 6.39 3.53 3.55
64 2.05 9.82 9.85 4.53 448 53.36 5H51.58 24.73 24.71

ny

Table 3.6: FFT Time. Even the cache hit ratio are similar between double and single
precision, the computation time is increasing with the dimension. The reason maybe most
of cache hit of the kernels in fft operation are zero. See Table 3.7

L1 Cache Global Hit Rate(%)
FFT spRadix sp Vector dpRadix dpVector
D/S fit=1 fit=-1 fft=1 fit=1 fit=1 ft=-1 fit=1 {ft=-1
16 1.10 0.00 0.00 0.00 0.00 0.00 0.00 41.96 41.96
32 160 0.00 0.00 42.14 42.14 0.00 0.00 42.32 42.32
64 205 0.00 0.00 59.31 59.30 0.00 0.00 58.62 58.63

ni

Table 3.7: FFT Cache. Most of cache hit of the kernels in fft operation are zero, especially
for the Radix kernel, which is also the large part in fft operation. Hence we could not
tell the single double ratio by cache hit in this case.

Stopping Criteria 10K to 100K 100K to 500K 500K to 1M Above 1M  Overall

Fixed 25 11 6 2 44
H.N. Double 24 10 7 2 43
H.N. Mixed 23 11 7 2 43

Pocket Double 25 10 7 2 44
Pocket Mixed 25 10 7 2 44

Table 3.8: Convergence Count in each Stopping Criteria. All of them have the similar
convergence.

Stopping Criteria 10K to 100K 100K to 500K 500K to 1M Above 1M  Overall

Fixed 148.54 734.08 5498.59 495.26 6876.47
H.N. Double 60.08 307.73 4943.69 174.28 5485.79
H.N. Mixed 02.13 242.08 4811.95 163.34 9269.51

Pocket Double 53.99 302.49 4300.49 170.9 4827.87
Pocket Mixed 48.78 214.07 3347.94 155.39 3766.17

Table 3.9: Sum of Total Time in Each Stopping Criteria. Pocket mixed has the best
performance in each size set.

26
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Stopping Criteria 10K to 100K 100K to 500K 500K to 1M :Above LM, | Overall

Fixed 2 0 0 ql== 2
H.N. Double 2 0 0 dl < || )2
H.N. Mixed 1 3 1 0 5

Pocket Double 2 2 0 0 4
Pocket Mixed 11 5 5 2 23

Table 3.10: 1st Place Accumulation of Total Time in Each Stopping Criteria (sec.).
Pocket mixed always gets the first place in our test cases.

Stopping Criteria 10K to 100K 100K to 500K 500K to 1M Above 1M  Overall

Fixed 51842 173953 293201 64109 583105
H.N. Double 17571 61773 212444 19554 311342
H.N. Mixed 20536 63731 230526 20277 335070

Pocket Double 14949 61084 185313 19556 280902
Pocket Mixed 16776 28577 168556 19773 263682

Table 3.11: Sum of Total Inner Iteration Number in Each Stopping Criteria. Pocket
method have the smallest inner iteration number, and it may one of the reason to tell why
Pocket is the best stopping criteria.

VAV 10K to 100K 100K to 500K 500K to 1M Above 1M  Overall
w/ Updating Method 62.4 214.07 3544.92 155.39 3976.78
w/o Updating Method 86.77 229.46 3670.66 160.53 4147.42

Table 3.12: Sum of Total Time of Pocket Mixed with Updating and without Updating
(sec.). Using updating method has better performance than non using, and this results
are the same as we expected.

VAV 10K to 100K 100K to 500K 500K to 1M Above 1M  Overall
w/ Updating Method 18 6 5 1 30
w/o Updating Method 2 4 2 1 9

Table 3.13: 1st Place Accumulation of Pocket Mixed with Updating and without Up-
dating. Using updating method almost gets the first place in our test cases.

Preconditioner 10K to 100K 100K to 500K 500K to 1M Above 1M  Overall

FSAI 45.2 185.36 3544.92 155.39 3930.87
No Preconditioner 417.92 400.87 7232.59 527.11 8578.48
Jacobi 307.72 353.19 3887.28 181.69 4729.89

Table 3.14: Sum of Total Time of Pocket Mixed with Different Preconditioners (sec.).
FSATI is the best preconditioner in our experiment.

27
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Outer/inner computing time, Stopping Criteria = Fix-Double

~ Inner
— outer|

:
;

(a) Matrix of Dimension 10k to 100k

ble

(b) Matrix of Dimension 100k to 500k

Outer/inner computing time, Stopping Criteria = Fix-Double

H
3

(d) Matrix of Dimension 1000k up

Figure 3.1: Outer/Inner time ratio of fixed stopping criteria. The inner ratio become
greater as the dimension increasing.

28
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Preconditioner 10K to 100K 100K to 500K 500K to 1M Above 1M  Owverall

FSAI 15664 51436 178221 19773 265094
No Preconditioner 220779 213762 816370 141444 1392355
Jacobi 95187 166846 424019 40184 726236

Table 3.15: Sum of Total Inner Iteration Number of Pocket Mixed with Different Pre-
conditioners. FSAI has the smallest iteration number, and it may be the reason of why it
had the best performance than Jacobi and no using preconditioner.

Stopping Criteria Sum of Total Time

Fixed 135.08
H.N. Double 78.29
H.N. Mixed 72.98

Pocket Double 83.93
Pocket Mixed 76.29

Table 3.16: Sum of Total Time of all K Vectors of Photonic Crystal (sec.). The H.N.
mixed and Pocket mixed have the best performance.
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Outer/inner computing time, Stopping Criteria = Pocket-Mix
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Figure 3.2: Outer/Inner time ratio of Pocket Mixed stopping criteria. The inner ratio
become greater as the dimension increasing, but different to fixed in large size the inner
proportion is smaller. And it’s one of the reason of why mixed could save time, because
it need fewer time in inner loop.
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Figure 3.3: Speed Up of H.N. and Pocket w.r.t. fixed, Pocket Mixed has the best speed up in most case.
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Figure 3.4: Residual behavior, H.N. and Pocket has similar behavior. Both of them

capture the trend of 7.+
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Figure 3.5: Matrix: thermomech_ TC’s counts of linear solver and total computation
time. H.N. double and Pocket double have similar counts, but Pocket’s performance is

better. Since the judge cost in Pocket is cheaper than H.N.

Updating Comparison, k = 15
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Fixed
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I w/o Updating Method

Pocket-Double
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Figure 3.6: Compare if Using Updating Method. Using updating method may save
many time in outer loop iteration, and in fixed case the saving is more. Because fixed case
has higher proportion of outer loop than the other two.
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Figure 3.7:
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H.N. double and H.N. Mixed have the same

iteration number, and We could tell the mixed precision effect by H.N. Mixed bar and
H.N. double; The larger size , the more performance gain in mixed precision method. The
reason is that the speed up of fft is more significant in large size.
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Figure 3.8: Parameter Effects. The proportion is more balance in small 7, and it’s one
of the reason to tell why it saving time. Since inner iteration is relative cheaper in this
application, more proportion in inner may have better performance.
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error of predictions. The model almost fits the experiment results.
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4 Conclusion
4.1 Summary of Methods and Results ;!i A |

In this paper we develop some stopping criteria with double precisionwersionsand
mixed precision version. There are fixed, constant scaling, H.N., and Pocket. The
constant scaling is set the inner tolerance as outer residual scaled by a constant. The
H.N. stopping criteria is referred by [4], and we develop the mixed precision version.
The Pocket method is keeping the best solution and keeping iterating until the
residual does not decrease significantly in the steps we set. In the most case Pocket
and H.N. have the best performance, and in some cases pocket method will get

higher performance. Moreover the mixed precision version has higher performance

than double precision version.

4.2 Advantages of the Pocket Methods

For Pocket methods, there are double version and mixed version. In most cases
of our experiments, the mixed precision version may get higher performance than
the double version, and the convergence is the same. Moreover, mixed precision
version’s pocket method has the best performance in most cases. So mixed pocket

method is a good choice for choosing the stopping criteria in STAR algorithm.

4.3 Limitations

In this paper, we only focus on the SPD matrixes and standard eigenvalue prob-
lem, and our mixed precision method only apply on double and single precisions.
Besides, there are many parameters are not tuned in the best, so the parameter
tuning may be an other issue in this project. In mixed precision algorithm, it needs
more about a half memory than double precision, so if the problem strongly demands

the memory resource, it may not use the mixed precision method.
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4.4 Future Directions

Since the different hardware may need different compile optlmlzatlon] ‘oh;é of the
future work is using the different hardware to see the performance gam We Wlll
port our code to PARALUTION project in the future[17], and we could compare the
performance on different platforms, such like Xen Phi. Moreover we need to consider
the ratio of double precision computation time and single precision computation
time as a parameter to determine mixed precision approach and stopping criteria
optimization. And the other future work is that we hope the mixed precision method
may apply on not only double/single precision, but also any arbitrary precision. As
we mentioned, parameter auto tuning may also be an important future work. We
will extend our project to the non-symmetric matrices, and there are some work
needed to be done for locking the searching space to the solved eigenspace. We also

want to applied our method on general and polynomial types’ eigenvalue problems.
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Updating Method Effect: Total Computing TimeSpeed-Up, Stopping Criteria = Fix-Double
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Figure A.10: Using/not using updating method with Fixed-Double
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Updating Method Effect: Total Computing TimeSpeed-Up, Stopping Criteria = HN-Double
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Figure A.12: Using/not using updating method with HN-Double
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Figure A.13: Using/not using updating method with HN-Double
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Figure A.14: Using/not using updating method with HN-Mixed
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Figure A.15: Using/not using updating method with HN-Mixed
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Figure A.16: Using/not using updating method with Pocket-Double
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Figure A.17: Using/not using updating method with Pocket-Double
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Figure A.18: Using/not using updating method with Pocket-Mixed
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Updating Method Effect: Total Computing TimeSpeed-Up, Stopping Criteria = Pocket-Mix
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Figure A.19: Using/not using updating method with Pocket-Mixed
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Figure A.20: Different precondition with Fixed-Double
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Figure A.21: Different precondition with Fixed-Double

64



65

Different Preconditions: Computing Time, Stopping Criteria = HN-Double
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Figure A.22: Different precondition with HN-Double
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Precondition Effect:Total Computing Time Speed-Up, Stopping Criteria = HN-Double
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Figure A.23: Different precondition with HN-Double
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Different Preconditions: Computing Time, Stopping Criteria = HN-Mix
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Figure A.24: Different precondition with HN-Mixed
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Figure A.25: Different precondition with HN-Mixed
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Figure A.26: Different precondition with Pocket-Double
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Figure A.27: Different precondition with Pocket-Double
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Figure A.29: Different precondition with Pocket-Mixed
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Figure A.31: Different initial with Fixed-Double
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Figure A.32: Different initial with Fixed-Double
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Figure A.33: Different initial with HN-Double
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Figure A.34: Different initial with HN-Double
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Figure A.35: Different initial with HN-Mixed
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Initial Guess Effect: Total Computing Time Speed-Up, Stopping Criteria = HN-Mix
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Figure A.36: Different initial with HN-Mixed
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Figure A.37: Different initial with Pocket-Double
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Figure A.38: Different initial with Pocket-Double
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