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中文 要

近年來奈米技術發展迅速，可被應用於生醫、軍事、工業等領域。

由於單一個奈米機器的運算能力有限，要達成規模較大的任務需仰賴

於多個奈米機器間的溝通。如果要採用傳統的電磁波作為通訊方式，

則必須要在每一個奈米機器上裝載天線，然而考慮到奈米機器的尺寸

較小，此方案的可行性較低。因此，聲波、奈米碳管和分子通訊等新

的奈米通訊技術陸續被提出以解決奈米機器溝通的問題。其中，分子

通訊因其生物相容性高，是近年來發展迅速、並被認為是最有可能被

實現的奈米通訊技術。我們採用的擴散型分子通訊是一種利用分子在

液態溶液中自由運動傳遞訊息的分子通訊方式。由於擴散型分子的

自由運動性質，分子從傳送端抵達接收端的時間是隨機的，此性質

會造成訊息的傳遞錯誤。因此，我們使用通道編解碼以增加擴散型

分子通訊的可靠度。在傳統電磁通訊上，我們常用極大化最小的碼字

(codeword)間的漢明距離 (Hamming distance)來設計通道編碼及解碼。

但由於分子通訊的傳遞方式與傳統的電磁波通訊在本質上有很大的差

異，傳統通訊上常用的距離將不再適用。因此我們建立了兩種適合擴

散型分子通訊的編碼距離函式：「機率型距離函式」與「位元型距離函

式」。數據顯示，以提出的這兩種編碼距離函式進行最小距離解碼，其

符元錯誤率 (symbol error rate)近乎最佳解碼方式。本論文的貢獻為在

擴散型分子通訊中提出更進一步的通道編碼方式。
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Abstract

Molecular communication is an emerging and promising approach to com-

munications between nanoscale devices due to its biocompatibility nature. In

diffusion-based molecular communications, molecules as information carri-

ers diffuse randomly in the fluid medium. Due to the random movements,

molecules may arrive at the receiver at random times, resulting in detection

errors. Applying channel coding is thus crucial for enhancing the transmis-

sion reliability. The paradigm of maximizing the minimum Hamming dis-

tance among the codewords has long been used in electromagnetic communi-

cation. However, for molecular communication environments, existing dis-

tances may be unsuitable because the nature of molecular communication

differs from electromagnetic communication. We propose two categories of

distance functions - the probability-based distance function and the pattern-

based distance function - tailored for diffusion-based molecular communica-

tions. We apply minimum distance decoding rules with the proposed distance

functions to diffusion-based molecular communication systems. The numer-

ical results show that these decoding rules are near-optimal. The channel

coding application in diffusion-based molecular communication is advanced

through this thesis.
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Chapter 1

Introduction

Nanotechnology promises new solutions in biomedical, industrial, environmental and

military fields [1–6]. Nanomachines are devices in nanoscale which are able to sense,

compute, and actuate [7]. Nevertheless, their limited sizes and capabilities force them to

cooperate with others in order to perform more complicated tasks. Nanonetwork - inter-

connecting and exchanging information between several nanomachines - can expand the

capability of a single nanomachine [1, 8]. However, communicating between nanoma-

chines is a challenging task. In communication technology, existing forms of transmitting

information are mostly based on electromagnetic propagation. However, the antenna sizes

are too large and the computational requirements are too high for nanomachines.

Different communication approaches come out for nanonetworks, including acoustic,

nano-electromagnetic, nano-mechanical, and molecular communication. Acoustic com-

munication uses acoustic energy (i.e. pressure variations) to encode. In nano-electromagnetic

communication, the transmission is based on electromagnetic waves resonating carbon

nanotube or using graphene-based nanoantennas as radiators [9, 10]. Nano-mechanical

communication transmits information through mechanical contact between the transmit-

ter and the receiver. Molecular communication uses molecules as the carrier between

transmitters and receivers. Among the existing approaches to communicating between

nanomachines, molecular communication is considered to be the most promising solution

due to its biocompatibility nature [1, 11].
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1.1 Molecular Communication

Molecular communication uses molecules as information carrier, and the molecules

can either follow specific path or propagate within fluidic medium to reach the destina-

tion [1]. Molecular communication is highly compatible with biological systems [12]. In

biology, molecular communication can be employed over short-range (nm scale) com-

munication, mid-range (µm to cm scale) communication, or long-range (cm to m scale)

communication [13, 14]. For example, neurotransmitters transmit calcium ions to dif-

fuse freely in fluidic medium to communicate over short-range communication; inside

cell motor proteins can actively transport vesicles along the rail molecules over mid-range

communication; and hormones are transported by blood flow over long-range with active

transport with drift (blood flow from the heart) [7, 15].

Molecular communication differs from the well-known traditional electromagnetic

communication in many aspects. In molecular communication, the information carriers

are molecules which have to be physically transported from the transmitter to the receiver.

Besides, the diffusion processes of the molecules are stochastic and depend on the envi-

ronmental conditions, such as the type of medium and the temperature. The propagation

speed is much slower than the electromagnetic communication, where the electromagnetic

waves are propagated with light speed. The noise in traditional communication is gen-

erated by undesired electrical disturbance of the information signal. While in molecular

communication, noise can be originated from the overlap with molecular signals, affecting

the molecule concentration level sensed by the receiver, or from undesired chemical re-

action occurring between information molecules and other molecules in the environment,

making the molecule carriers unable to react with or bond to the receiver [1].

Nevertheless, the energy consumption is lower inmolecular communication than tradi-

tional communication because most of the processes are chemically driven. In traditional

communication, the communication processes consume electrical power that is obtained

from batteries or from external sources such as electromagnetic induction. The main dif-

ferences between traditional communication and molecular communication are shown in

Table 1.1 [1,12]. Due to the significant difference between the molecular communication

2



and the traditional electromagnetic communication, we have to consider new paradigm

for applying conventional communication methodologies to molecular communication.

Table 1.1: Main differences between traditional communication and molecular communi-
cation [1, 12]

Communication Traditional Molecular
Communication carrier Electromagnetic wave Molecule
Signal type Electronic and optical Chemical

(Electromagnetic)
Propagation speed Light speed Extremely low
Medium conditions Wired: Almost immune Affect communication

Wireless: Affect communication
Noise Electromagnetic fields Particles and molecules

and signals in medium
Encoded information Voice, text and video Phenomena, chemical

states or processes
Other features High energy consumption Low energy consumption

Accurate communication Stochastic communication
High biocompatibility

1.2 Diffusion-based Molecular Communication

Molecular communication can be implemented by transmitting molecules through dif-

fusion, molecular motor, or gap junction [1]. In this thesis, we focus on diffusion-based

molecular communication, where molecules rely on the laws of particle diffusion rather

than specific path to reach the destination [16]. Each molecule released by the transmitter

follows the random-walk diffusion mechanism [17–19] and reaches the receiver according

to certain probability laws [20]. The calcium signaling, which plays an important role in

many critical biological functions such as the brain-nerve system or the heart functioning

in human bodies, is an example of diffusion-based molecular communication [21, 22].

Recent researches on evaluating and bounding the achievable information rate (i.e.,

channel capacity) for diffusion-based molecular communication under different scenarios

have been conducted [18,19,23,24]. In modern wireless communication, to approach the

channel capacity, advanced channel coding schemes, e.g., turbo codes and low-density

parity-check (LDPC) codes, are often applied. Nevertheless, due to the limited size and
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limited computational power of a nanomachine, such complex coding schemes are im-

practical to be implemented in molecular communication. In addition, those codes are not

guaranteed to perform well under the diffusion channel. Therefore, developing new chan-

nel codes for molecular communication becomes an important task. In [25,26], a family of

channel codes for diffusion-based molecular communication, called intersymbol interfer-

ence (ISI)-free codes, are explored. These codes effectively improve the communication

reliability while keeping the decoding complexity low. However, a general principle of

designing a reliable channel code for diffusion-based molecular communication is still an

open question.

1.3 Distance Function

An approach to tackling this problem is through exploring distance functions for de-

coding under minimum distance (MD.) A well-known example of a distance function is

the Hamming distance. Due to the inherent discrepancy between diffusion channels and

wireless communication channels, proper distance functions for molecular communica-

tion are expected to be different from that for wireless communication. Therefore, new

distance functions need to be proposed. In this thesis, we propose two distance functions -

the probability-based distance function and the pattern-based distance function - that are

suitable for diffusion channels in molecular communication. With the proposed distance

functions, we then investigate the MD decoding. Simulations are conducted to evaluate

the effectiveness of the proposed distance functions.

The rest of this thesis is organized as follows. In Chapter 2, we describe the end-to-end

system model, the modulation schemes, and the channel coding scenarios. In Chapter 3,

we introduce the distance functions for diffusion-based molecular communication. The

channel code design and the numerical results for on-off keying and synchronous type-

based modulation are presented in Chapter 4 and 5, respectively. Finally the conclusion

is made in Chapter 6.
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Chapter 2

Diffusion-based Molecular

Communication

In this chapter, we first describe the end-to-end system and the channel model for both

diffusion-based active transport and passive transport. The modulation techniques for the

diffusion-basedmolecular communication are introduced. The channel characteristics and

the channel coding schemes considered in this thesis are then presented.

2.1 System Model

Fig. 2.1 shows the end-to-end model of the diffusion-based molecular communication

system considered in this thesis. Since the environment is assumed to be isotropic [27],

we consider a one-dimensional (1-D) diffusion channel to simplify the analysis, and some

assumptions are listed as follows. The transmitter and the receiver are separated by a

distance d with fixed locations, and they are assumed to be zero volume. The molecules,

used as information carriers, have the same radius r, and diffuse from the transmitter to

the receiver in fluidic environment with diffusion coefficient D. The molecules will be

perfectly absorbed and removed from the fluid media when they reach the receiver. From

fluid mechanics, the diffusion coefficient D is given by [28]

D = kBTa

6πrη
, (2.1)

5



where kB is the Boltzmann constant, Ta is the absolute temperature, r is the molecule

radius, and η is the viscosity coefficient whose value depends on the liquid type and its

temperature.

Figure 2.1: End-to-end model for diffusion-based molecular communications.

Considering the channel for diffusing particles, we can divide the diffusion-based

molecular communication into two main propagation schemes: active transport, and pas-

sive transport [29]. In active transport, the particles, which carry information, propagate

from the transmitter to the receiver with external drift generated from molecular motors

or external devices such as a syringe pump or a heart which generates the blood flow. In

passive transport, the particles propagate to the receiver by diffusing in the fluidic medium

without external energy. The active transport achieves higher information rates compared

to the passive transport with simple Brownian motions, but introducing drift would re-

quire the existence of an external device [15]. Therefore, we consider both the active and

passive transport in this thesis to cover the whole scenario of diffusion-based molecular

communication.

2.1.1 Active Transport via Brownian Motion with Drift

The molecule movements of active transport are modeled as independent Brownian

motions with a positive drift velocity v [18, 19]. The traveling time Ts (> 0) from the

transmitter to the receiver of each released molecule, i.e., the first hitting time, follows the

inverse Gaussian (IG) distribution [30]. The probability density function (PDF) of an IG

distribution is [31]

fIG(ts) =
√

λ

2πt3
s

exp
(
−λ(ts − µ)2

2µ2ts

)
, (2.2)
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where µ = d
v
is the mean first hitting time and λ = 2d2

D
is the shape parameter. The

cumulative distribution function (CDF) is

FIG(ts) = Φ

√ λ

ts

(ts

µ
− 1)

+ exp
(

2λ

µ

)
Φ

−
√

λ

ts

(ts

µ
+ 1)

 , (2.3)

where Φ(·) is the standard normal distribution CDF defined as Φ(x) = 1√
2π

∫ x
−∞ e−y2/2dy.

The peak probability density of Ts for active transport happens at

t̂s = µ

(1 + 9µ2

4λ2

) 1
2

− 3µ

2λ

 . (2.4)

The variance of Ts is µ3

λ
.

In Fig 2.2, we show a PDF example of an IG distribution with parameters based on the

calcium signaling [32] by setting the diffusion coefficient D = 10−6 cm2/s, the distance

between the transmitter and the receiver d = 20 µm, and we set the drift velocity to be

v = 2 µm/s to have average first hitting time 10 s. We can see from Fig 2.2 that the

maximum probability density (0.2806) occurs at Ts = 0.6637 s, which is in accordance

with (2.4).
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Figure 2.2: The PDF of the first hitting time for active transport defined in (2.2) with
D = 10−6 cm2/s, d = 20 µm and v = 2 µm/s.
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2.1.2 Passive Transport via Brownian Motion

The passive transport movements of the released molecules are modeled as indepen-

dent Brownian motions. Passive transport can be considered as a special case of active

transport with zero drift velocity. In this case, the mean first hitting time µ = d
v
approaches

infinity, and the distribution becomes a Lévy distribution. The PDF of the first hitting time

Ts (> 0) is [33]

fL(ts) = d

2
√

Dπt3
s

· exp
(
− d2

4Dts

)
, (2.5)

and the CDF of Ts is [34]

FL(ts) = 2√
2π

∫ ∞

d√
2Dts

e−y2/2dy = 2Q

(
d√

2Dts

)
, (2.6)

where Q(·) is the standard Q-function defined as Q(x) = 1√
2π

∫∞
x e−y2/2dy = 1 − Φ(x).

The peak probability density of Ts for passive transport happens at

t̂s = d2

6D
. (2.7)

The mean and the variance of Ts are both infinite in the case of passive transport.

Again, we show a PDF example for passive transport in Fig 2.3 with parameters

D = 10−6 cm2/s and d = 20 µm according to the calcium signaling [32]. The maxi-

mum probability density (0.2313) occurs at Ts = 0.6667 s, which fits the peak probability

density equation (2.7).

In order to have a deeper look into the active and the passive transport, we plot the

PDFs with log scale for both the active and passive transport in Fig. 2.4 with parameters

mentioned as above: D = 10−6 cm2/s and d = 20 µm for both transport, and v = 2 µm/s

for active transport. We can see from Fig. 2.4 that the probability density function of the

first hitting time for the passive transport has heavier tail behavior than the active transport.

Due to the positive drift of the active transport, molecules will eventually arrive at the

receiver. However, in the case of passive transport, molecules diffuse freely as Brownian

motion, and some molecules might diffuse away and will not arrive at the receiver. The
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Figure 2.3: The PDF of the first hitting time for passive transport defined in (2.5) with
D = 10−6 cm2/s and d = 20 µm.

randomness (variance) of the first hitting time of the passive transport is much higher than

the active transport.

2.2 Modulation of Diffusion-based Molecular Communi-

cation

In diffusion-based molecular communication, nanomachines can communicate with

each other by modulating the information molecules in different ways, e.g., by concentra-

tion intensity, type of molecules, or by transmission time interval. Most of the molecular

communication systems are assumed to be time-slotted, or synchronous, where the inter-

transmission durations are fixed [35]. The information of synchronous systems is carried

on either the level (amount or concentration intensity) [18, 32, 36] or the type [37, 38]

of molecules. For example, in [39] isomers are used as messenger molecules to imple-

ment the synchronous type-based systems. In [40], concentration shift keying (CSK)

and molecule shift keying (MoSK) are proposed, where CSK modulates the information

through the variation in the concentration of the messenger molecules, and MoSK uses

different types of messenger molecules to represent the information.
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Figure 2.4: The PDF comparison of the first hitting time for active and passive transport
defined in (2.2) and (2.5).

In asynchronous systems, where the inter-transmission durations are not restricted to

be fixed, the information can be carried on the transmission time interval or the type of

molecules as well. In [35], modulation factors are combined to embed additional infor-

mation. The mixed type – time system utilizes the randomness of the inter-transmission

times on the synchronous type-based system. These techniques can be used to increase

the channel capacity and communication efficiency.

We consider the more commonly used synchronous communication systems in this

thesis with the on-off keying (OOK) and the synchronous type-based modulation (TM)

scenario. The OOK scenario is one of the synchronous level-based systems. The infor-

mation bit ‘0’ is represented by remaining silent, while ‘1’ is represented by transmitting

one molecule at the starting of each time-slot. In the case of TM, a transmitter encodes in-

formation by defining different types of molecules as different information, and it releases

one molecule or remain silent at the starting of each time-slot as an information symbol.

The details of how we implement the OOK and TM system are showed in Chapter 4 and

5, respectively.
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2.3 Channel Characteristics

In diffusion-based molecular communication, since the molecules are drifting ran-

domly, the arrival times of the molecules are hard to predict. The randomness effect

causes the major obstacle for signal detection. Take the OOK system for example, when

a 4-bit message (1, 0, 0, 0) is transmitted, one molecule is emitted at the beginning of

the first symbol period, and then the transmitter remains silent for three symbol peri-

ods. If the molecule arrives in time during the first symbol period for detection, the

receiver would detect the message correctly as (1, 0, 0, 0). However, it is also possi-

ble that the molecule arrives late, which results in one of the four wrong decisions as:

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), or (0, 0, 0, 0). We can see that the symbol ‘1’ crosses

over with other symbol ‘0’s due to its late arrival. Depending on how late the molecule

arrives, we can define different levels of crossover. We call it a level-j crossover if the

i-th transmitted molecule becomes the (i + j)-th to arrive [41].

In addition to the “crossover effect”, it is also possible for the receiver to pick up

some molecules from the background environment and mistaken them as molecules sent

by the transmitter. Consider the case of transmitting (0, 0, 0, 0) via OOK. No molecules

are actually emitted, yet the receiver might still pick up some irrelevant molecules and

claim to have received (0, 1, 0, 0). This effect is the counterpart of the additive noise in

traditional communications.

In a short summary, the physical channel in diffusion-based molecular communica-

tions is dominated by these two effects, the crossover and the additive noise. Depending

on the environment, one behavior can be more dominant than the other. In conventional

communication, noise is mainly considered as additional. It is the crossover effect that

makes it hard to use the traditional channel coding concepts directly. Therefore, new

channel coding distance functions need to be proposed for the molecular communication.

11



2.4 Channel Coding for Diffusion-basedMolecular Com-

munication

The randomness of diffusion-based molecular communication consists in the stochas-

tic arrival times of the molecules [12]. In order to enhance reliability, we borrow the

wisdom from the channel coding theory. The channel codes we consider in this thesis are

fixed-length block codeswith lengthm rather than other advanced channel coding schemes

in order to fit the complexity constraint of the nanomachines. The notation [m, n] for block

code is used to represent that each n-bit information is mapped to an m-bit codeword.

For illustration purpose, an example OOK system with [4, 2] block code applied is

shown in Fig. 2.5(a), where the codebook is chosen to be

{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1)}.

That is, the transmission pattern are (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 1, 1), and (1, 0, 1, 1)when

the data to be transmitted are ‘00’, ‘01’, ‘10’, and ‘11’, respectively. For example, if the

data to be transmitted is ‘00011011’, then the coded data is ‘0001001001111011’.

In a TM system, a joint coding-modulation scheme is applied. The same coding rule

described in the above example is first applied to the information data, and then different

types of molecules are released according to the coded data. Molecule types A, B, and

C represent coded bits ‘01’, ‘10’, and ‘11’, respectively, and a silence represents ‘00’.

For example, in Fig. 2.5(b), the transmission pattern for the data sequence ‘00011011’ is

‘0A0BACBC’, where ‘0’ means a silence at that time slot.

12



(a)

(b)

Figure 2.5: Coding scheme illustration for OOK and TM systems. A [4, 2] block code with
codebook {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1)} is used. In the OOK system, a
molecule is released when the coded data bit is ‘1’. In the type-based modulation system,
molecule types A, B, and C represent data bits ‘01’, ‘10’, and ‘11’, respectively, and a
silence represents ‘00’.
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Chapter 3

Coding Distance Functions for

Diffusion-based Molecular

Communication

In most cases, the optimal decoding rule for a channel code is equivalent to the mini-

mum distance (MD) rule with a proper definition of the distance between any two code-

words. However, for molecular communication environments, existing distances may be

unsuitable because the nature of molecular communication differs from the electromag-

netic communication. In this chapter, we propose and discuss different categories of dis-

tance functions, which can help us measure the difference between codewords and further

advance the channel coding application in diffusion-based molecular communication.

We first introduce the well-known Hamming distance, which has long been used in

electromagnetic communication. We then define the notations and preliminaries for the

following proposed distances, and give the optimal decoding distance function for a code-

word pair. However, in practical molecular communication systems, codewords are trans-

mitted one after another, i.e., serial transmission is employed. To obtain the optimal de-

coding distance function in the serial transmission scenario, we have to consider every

combination of two transmitted sequences, and thus the complexity is extremely high. To

tackle this problem, we propose two versions of distance functions that are applicable for
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practical use.

The first one, called the probability-based distance, is a modified version of the op-

timal decoding distance by introducing a correcting term. The second distance function

is the pattern-based distance, which calculates the distance by considering the codeword

patterns only. The pattern-based distance has the advantage of lower computational com-

plexity compared to the probability-based distance. Different from the distance functions

in modern communication theory, distance functions we proposed for diffusion channels

do not satisfy the symmetric property. Strictly speaking, a distance function (or a metric)

in mathematics should satisfy the symmetric property. Nevertheless, in this thesis we still

use the term distance function to comply with the tradition.

3.1 Hamming Distance

Hamming distance is defined as the number of bit differences between two codewords,

and it is the most commonly used distance function in the study of conventional channel

coding. In a binary symmetric channel, the MD decoding using Hamming distance is

optimal if the codewords are transmitted with equal probability. The performance of a

channel code is often indicated by the minimum Hamming distance among any codeword

pairs in its codebook. Consequently, constructing a channel code with maximized mini-

mum Hamming distance has long been considered as the channel coding design paradigm

in traditional communications.

Nevertheless, in diffusion-based molecular communication, such paradigm may not

work as well as in traditional communication due to the inherent properties of the Brow-

nian motion channel. It is worth mentioning that the distance is no longer a symmetric

function due to the crossover effect. In conventional communications, the channel is of-

ten assumed to be symmetric: the probability of sending 0 yet receiving 1 is the same as

sending ‘1/ yet receiving ‘0’. Take the two codewords (0, 0, 0, 0) and (1, 0, 0, 0) for exam-

ple. The symmetric channel results in Pr{(0, 0, 0, 0) → (1, 0, 0, 0)} = Pr{(1, 0, 0, 0) →

(0, 0, 0, 0)}, and which leads to the symmetric nature of the Hamming distance, i.e.,

d(H)
(
(0, 0, 0, 0), (1, 0, 0, 0)

)
= d(H)

(
(1, 0, 0, 0), (0, 0, 0, 0)

)
, where the notation (0, 0, 0, 0)
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→ (1, 0, 0, 0) refers to the event when (0, 0, 0, 0) is sent yet detected as (1, 0, 0, 0).

However, in diffusion-based molecular communications, the symmetric channel prop-

erty can no longer be assumed. When (0, 0, 0, 0) is transmitted, it can only be detected

as (1, 0, 0, 0) if the receiver picks up molecule(s) from the background during the first

symbol period. On the other hand, when (1, 0, 0, 0) is transmitted, the receiver would

detect (0, 0, 0, 0) if the molecule emitted in the first symbol period arrives so late that it

fails to arrive within four detection periods. In the scenario of molecular communication,

the probabilities of these two events are assumed to be different, i.e. Pr{(0, 0, 0, 0) →

(1, 0, 0, 0)} ̸= Pr{(1, 0, 0, 0) → (0, 0, 0, 0)}. Thus, the commutative Hamming distance

is no longer an optimal distance function for molecular communications. As a result,

new distance functions should be proposed to achieve the optimal channel decoding for

molecular communications.

3.2 Notations and Preliminaries

With the CDF given in (2.3) or (2.6), we can calculate the probability that a molecule

does not arrive during the corresponding time slot, which is called the crossover proba-

bility. The probability that a molecule arrives during the corresponding time slot is

p0 = F (Tc), (3.1)

and the probability of arriving j ∈ N time slot(s) late is

pj = F ((j + 1)Tc)− FIG (jTc) , (3.2)

where F (t) =
∫ t

0 f(x)dx can be the cumulative distribution function of the inverse Gaus-

sian distribution for active transport or the Lévy distribution for the passive transport, and

Tc represents the duration of sending a coded bit. The term level-j crossover is used to

describe that a molecule is released by the transmitter in the i-th time slot but arrives at

the receiver in the (i + j)-th time slot. The probability of having a level-j crossover is
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denoted by pj .

Now consider the signal space of [m, n] block codes, which is denoted by

S =
{
s = (s1, s2, . . . , sm) | si ∈ {0, 1}, i ∈ {1, 2, . . . , m}

}
. (3.3)

We define the addition and the scalar multiplication respectively as

x + y =
(
x1 ⊕ y1, x2 ⊕ y2, . . . , xm ⊕ ym

)
, ∀x, y ∈ S, (3.4)

and

βx = (βx1, βx2, . . . , βxm) , ∀x ∈ S, β ∈ {0, 1}, (3.5)

where the notation ⊕ is defined as: 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, and 1⊕ 1 = 1.

In the signal space S, all the codewords can be written as a linear combination of the

standard basis, which comprises

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . ,

em−1 = (0, . . . , 0, 1, 0), em = (0, . . . , 0, 0, 1). (3.6)

Thus, given a codeword c ∈ S, it can be represented as

c = (c1, c2, . . . , cm) = c1e1 + c2e2 + . . . + cmem. (3.7)

Note that for notational simplicity, we define ej = (0, 0, . . . , 0) for j > m. Due to the

crossover effect of the diffusion channel, every element in S may be right-shifted. The

right-shift operator Rk : S→ S is defined by

Rk(ei) = ei+k for k ∈ N ∪ {0}, (3.8)

and the shift pattern k is introduced to describe the crossover effect experienced by the

codeword, where k = (k1, k2, . . . , km) is a vector and ki ∈ N ∪ {0} for 1 ≤ i ≤ m. If
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some codeword c is shifted by k, we denote the shifted codeword by Rk(c), which means

that

Rk(c) = c1Rk1(e1) + c2Rk2(e2) + . . . + cmRkm(em). (3.9)

Assuming that each bit in the codeword can be treated independently, i.e., each molecule

diffuses independently, we can calculate the probability that c experiences the shift pattern

k:

P (c,k) = p̃1p̃2 . . . p̃m, (3.10)

where

p̃i =


pki

, if ci = 1,

1, if ci = 0,

i ∈ {1, 2, . . . , m}. (3.11)

Note that when ci = 0, it means that no molecules are released in the i-th time slot, and

thus that probability needs not to be considered.

3.3 Optimal Distance Function for One-shot Transmis-

sion

By defining the distance function between two codewords x and y as

d(x, y) = − log(Pr{x→ y}), (3.12)

where the notation x → y represents the event that x changes to y, the optimal decoding

distance function can be written as

dop(x, y) = − log


∑

k∈{N∪{0}}m,
ki=0 if xi=0: Rk(x)=y

P (x,k)

 , (3.13)

for all x, y ∈ S. This distance calculates the summation of probabilities of all the possible

transitions.
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3.4 Probability-based Distance Function

For the case of serial transmission, the complexity is too high if we consider all the

possibilities of transition patterns. Therefore, for practical reasons, we consider the dis-

tance function dN(x, y), where the subscript N means that only crossover levels less than

or equal to N are considered in calculating the crossover probabilities. This approxima-

tion is valid since high-level crossovers are less likely to happen. Given x, y ∈ S, the

level-N distance is defined to be

dN(x, y) = − log


∑

k∈{N∪{0}}m, ki=0 if xi=0,
||k||∞≤N : Rk(x)=y

P (x,k)

 . (3.14)

where ||k||∞ = max1≤i≤m |ki|. This distance calculates the summation of probabilities of

the possible transitions with the crossover level smaller than or equal to N .

Now we consider the distance with the ISI correcting term. The notation E(y, k) is

used to denote the codeword obtained by replacing the 1’s with 0’s in the codeword y

according to the pattern k: if the i-th element of k is ‘1’, the ‘1’ at the corresponding

position in y should be replaced by a ‘0’. For example, if m = 4, y = (0, 1, 1, 1), and k =

(0, 1, 0, 1), then E(y,k) = (0, 0, 1, 0). For any two x, y ∈ S, we define the probability-

based distance dprob(x, y) as

dprob(x, y) = − log

 ∑
k∈{1,0}m

pkISI(1− pISI)(1−k)

× exp [−dN(x, E(y, k))]

, (3.15)

where 1 denotes the all-ones vector, exp [−dN(x, E(y,k))] is the approximated probability

of x changing into E(y, k) due to crossovers with level less than or equal to N , and the

vector pISI, called the ISI correcting term, is a constant vector that we can assign suitable

values according to the diffusion environment. Here we use the multi-index to simplify the

notation. For instance, if pISI = (0.2, 0.1, 0.05, 0) and k = (1, 1, 0, 0), then pkISI = 0.21 ×

0.11. The probability-based distance (3.15) calculates the summation of probabilities of
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the possible transitions with the crossover level smaller than or equal toN , considering the

inter-symbol crossover effect and the background noise with the help of the ISI correcting

term.

In this thesis, we set the pISI to be (pnoise + 1
2p1, pnoise + 1

2p2, pnoise + 1
2p3, pnoise + 1

2p4),

where pnoise is the probability of having an background noise in each time slot, and pj is the

probability of having a level-j crossover. We assume that the ISI noise molecule is from

the last bit of the previous symbol. The reason whywe simplify the ISI noise as originating

from the last bit of the previous symbol is because the probability of having lower level

crossover is much higher. Therefore, if we have an ISI noise in the first time slot in the

current symbol, we regard the ISI noise molecule as the last bit of the previous symbol

having a level-1 crossover with probability p1. Similarly, the ISI noise molecule arriving

at the second, third and fourth time slot in the current symbol is considered as the last bit

of the previous symbol having level-2, level-3 and level-4 crossover with probability p2,

p3, and p4, respectively. The ‘1
2 ’ term comes from assuming the probability of the last bit

of the previous symbol equals 1 is 1
2 .

3.5 Pattern-based Distance Function

In this section we propose the pattern-based decoding distance, in which the distance

value depends only on the bit pattern transitions. The concept of the pattern-based distance

is about simplifying the calculation frommultiplying probabilities as the probability-based

distance to the summation of crossover levels in the transmission of a symbol. To obtain

the pattern-based distance value dpatt(x, y) from codeword x to codeword y, we first sub-

tract y from x, and call the subtraction result diff. Since the codewords x and y both belong

to S and the bits of x and y belong to {0, 1}, each entry of diff only has three possible val-

ues: ‘0’, ‘1’ and ‘−1’. If an entry of diff is ‘0’, it means that the corresponding entries

of x and y are both zero or both one; if ‘1’ appears in an entry of diff, it means that the

molecule expected to arrive in that corresponding time slot arrives in a later time slot; if

a ‘−1’ appears in an entry of diff, it means that the receiver captures irrelevant molecules

in this time slot.
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With the help of diff, we can compute the distance by the following process. For each

‘1’ in diff, we find the first ‘1’ in y appearing after this entry and calculate the delay in

terms of the number of entries; meanwhile, we eliminate the ‘−1’ in diff in the same entry

as the ‘1’ in y that we just found. If there is no ‘1’ in y after this entry, we simply assume

the corresponding molecule to arrive in the first time slot of the next symbol duration. For

those−1’s that are not eliminated, we assume that the redundant molecules come from the

last bit of the previous symbol. Those delays are also calculated in terms of the number of

entries. Then, the total delay is defined to be the pattern-based distance from x to y, and

is denoted by dpatt(x, y). This value represents an approximate total number of time slot

delays in the transmission of a symbol, and thus is suitable for a distance measure between

codewords.

Transmitted pattern 

Received pattern 

Difference 

x 

y 

diff 

1  0  0  1 

0  1  1  0 

1 -1 -1  1 

delay from the 

previous symbol 

delay to the  

next symbol 

intra-symbol delay 

Figure 3.1: Example of calculating the pattern-based distance.

Fig. 3.1 is an example for calculating the pattern-based distance with x = (1, 0, 0, 1)

and y = (0, 1, 1, 0). The subtraction result diff in the example is (1,−1,−1, 1). The ‘1’ in

the first entry of diff corresponds to the ‘1’ in the second entry of y, showing one time slot

delay. The ‘-1’ in the second entry of diff is then eliminated. The ‘1’ in the fourth entry of

diff has no corresponding ‘1’ in y, and thus we assume it to arrive in the first time slot of

the next symbol duration, having a single time slot delay. Since the ‘−1’ at the third entry

of diff is not eliminated, we regard this as having an interfering molecule from the last bit

of the previous symbol with a delay of three time slots. From the above discussions, we

can calculate dpatt(x, y) as 1 + 1 + 3 = 5. Algorithm 1 summarizes the calculation of the

pattern-based decoding distance dpatt(x, y).
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Algorithm 1 Calculation of the pattern-based distance from codeword x to codeword y
for an (m, n) block code.
Initialization: dpatt(x, y)← 0
Output: dpatt(x, y)
1: for i = 1 to m do
2: diff[i]← x[i]− y[i]
3: end for
4: for i = 1 to m do
5: if diff[i] = 1 then
6: if there is any 1 in y after index i then
7: j ← the index of the nearest 1
8: dpatt(x, y)← dpatt(x, y) + (j − i)
9: diff[j]← 0
10: else
11: dpatt(x, y)← dpatt(x, y) + (m + 1− i)
12: end if
13: end if
14: end for
15: for i = 1 to m do
16: if diff[i] = −1 then
17: dpatt(x, y)← dpatt(x, y) + i
18: end if
19: end for
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Chapter 4

Channel Coding Design for On-off

Keying Modulation

In this chapter, we propose the channel coding design for on-off keying (OOK) mod-

ulation. We first introduce the OOK modulation, and then use minimum distance (MD)

decoding rule to implement decoding. We compare the symbol error rate (SER) perfor-

mance using MD decoding with distance functions: probability-based distance, pattern-

based distance and Hamming distance. The numerical results show that our proposed

distances decoding rules are near-optimal, and Hamming distance may not be suitable

especially for the cases of active transport.

4.1 On-off Keying Modulation

As shown in Fig. 4.1, OOK is a modulation scheme in which the transmitter conveys

a single molecule to represent information bit ‘1’ while the transmitter remains silent to

represent information bit ‘0’. We adopt the hard-decision decoding for the OOK system.

That is, if nomolecule arrives in the corresponding time slot, the information bit is detected

as ’0’; when there are greater than or equal to one molecule, the information bit is detected

as ’1’.
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Figure 4.1: Illustration of the on-off keying (OOK) modulation scheme.

4.2 MinimumDistanceDecoding forOn-offKeyingMod-

ulation

The minimum distance (MD) decoding rule for OOK systems works as follows. First

the signal space S is partitioned into 2n decoding regions D(1), D(2), . . . , D(2n), and S =∪
k∈{1,...,2n} D(k). The distance from a signal pattern to each codeword is calculated. If this

signal pattern has minimum distance to codeword k, where 1 ≤ k ≤ 2n, then this signal

pattern belongs to decoding region k. That is, whenever the receiver acquires a signal that

belongs to region k, this signal is decoded as codeword k.

4.3 Numerical Results

In this section we numerically compare the symbol error rate (SER) results of the

coded and uncoded scenarios under different decoding criteria for OOK scenario of both

active and passive transport systems. The simulation environment is based on the calcium

signaling [32] by setting the diffusion coefficient D = 10−6 cm2/s, the distance between

the transmitter and the receiver d = 20 µm, and the drift velocity v = 2 µm/s in active

transport. The channel codes used for simulations are [4, 2] block codes, which means that

there are
(

24

4

)
= 1820 possible codebook selections and there are 416 decoding rules for

each codebook selection. When calculating the probability-based distance, we useN = 4.

In order to compare the uncoded and coded scenario fairly, we use the same average bit

duration T , which is the average period to send one information bit.
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4.3.1 Active Transport via Brownian Motion with Drift

In Fig. 4.2, we show the SER distribution over all codebooks under different decoding

rules for OOK systems when T = 100 s. We show the results using the decoding rules

by Hamming distance, probability-based distance, pattern-based distance, and the optimal

decoding rule. The decoding rule that results in the lowest SER through exhaustive search

are chosen to generate the curves of optimal decoding rule, which serves as the lower

bound for the SER. The codebooks are indexed by the order of descending SER using the

optimal decoding rule for figure clarity. We can see that most of the codebooks do not lead

to better performance than the uncoded system, and in fact, there are only 29 codebooks

that result in better performance than the uncoded system when using the optimal decod-

ing. None of the cases decoding with the Hamming distance has SER performance better

than the uncoded scenario. There are 28 and 18 codebooks perform better than the un-

coded scenario when using the MD decoding with the probability-based distance and the

pattern-based distance, respectively. As a result, choosing a suitable codebook is critical

designing the channel coding of diffusion-based molecular communication system.

The SER of the uncoded scenario is 1.57%. The best SERs are 1.04% using the op-

timal decoding rule, 1.04% using the MD decoding with the probability-based distance,

1.05% using the MD decoding with the pattern-based distance, and 2.44% using the MD

decoding with the Hamming distance, respectively. It is worth noting that we can see from

Fig. 4.2 the SERs decoding with the probability-based distance approaches the case using

the optimal decoding rule that the SER curve is almost overlapped.

We show the best performance codebook with the optimal decoding rule and the cor-

responding decoding regions under different decoding criteria for T = 100 s. The best

performance codebook is:

{(0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), (1, 1, 1, 0)}.

We observed that the last bit of the above four code words are all zero, which can re-

duce crossovers between symbols, and thus lowers the inter-symbol interference (ISI) and
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Figure 4.2: SER distribution under different decoding rules for OOK systems with T =
100 s. The codebooks are indexed by the order of descending SER using the optimal
decoding rule.

SER. The decoding rule using the probability-based distance is exactly the same as the

optimal one, and the rule is shown in Table 4.1. There is only one codeword decoding

with the pattern-based distance being decoded differently from the optimal decoding rule:

(1, 0, 0, 1) decoded into c(2) rather than c(3) as the optimal decoding rule. The decoding

region using the Hamming distance has three codewords being decoded differently from

the optimal decoding rule: (0, 0, 0, 1) decoded into c(1) rather than c(2), (0, 1, 0, 0) decoded

into c(1) rather than c(3), and (0, 1, 0, 1) decoded into c(1) rather than c(4).

Fig. 4.3 shows the SERs under various T using different decoding criteria. For each

decoding rule, the best codebook, which is the codebook with the lowest SER, for that

average bit duration T is adopted. It is shown that channel coding effectively lowers the

SER for OOK systems, as long as a proper decoding method is adopted. The Hamming

distance decoding is apparently non-applicable, especially when T is large. It can be seen

that the performance of the MD decoding using either the probability-based distance or

the pattern-based distance is very close to that using the optimal decoding rule, showing
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Table 4.1: The best performance codebook and the corresponding decoding regions under
the optimal decoding rule and the probability-based distance.

Codeword c(1) = (0, 0, 0, 0) c(2) = (0, 0, 1, 0)
Decoding (0, 0, 0, 0) (0, 0, 0, 1)
Region (0, 0, 1, 0)

(0, 0, 1, 1)
Codeword c(3) = (1, 0, 0, 0) c(4) = (1, 1, 1, 0)

(0, 1, 0, 0) (0, 1, 0, 1)
(1, 0, 0, 0) (0, 1, 1, 0)
(1, 0, 0, 1) (0, 1, 1, 1)

Decoding (1, 0, 1, 0)
Region (1, 0, 1, 1)

(1, 1, 0, 0)
(1, 1, 0, 1)
(1, 1, 1, 0)
(1, 1, 1, 1)

the effectiveness of the proposed distances.

To discuss thoroughly about the probability-based distance, the pattern-based distance,

and the Hamming distance, we compare their performances with the optimal decoding

rule under different T . In Fig. 4.4, we show the amount of codebooks decoding by MD

with the probability-based, the pattern-based, and the Hamming distance having the same

performance as the optimal decoding rule. We can see that much more codebooks have

the same performance as the optimal decoding in the case of decoding by probability-

based distance. There are more than 1000 codebooks decoding with the probability-based

distance having the same performance as the optimal decoding rule, except the case with

T = 20 s, where the SER is higher than 25% and the time slot is not long enough for

good communication. The cases of decoding with the Hamming distance are much worse

and not suitable for decoding in active transport, and there are only about 30 codebooks

performing exactly as the optimal decoding rule.

As shown in Fig. 4.5, we compare the performance between the probability-based,

the pattern-based, and the Hamming distance, and show the amount of codebook for each

distance having the best SER performance among the three distances. We can see that

the probability-based distance outperforms other distances with having more than 1400

codebooks performing the best among all cases of T . The pattern-based distance has the
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Figure 4.3: Comparison of SER performances for the uncoded OOK system and the coded
OOK systems employing optimal decoding rule, MD decoding with probability-based
distance, MD decoding with pattern-based distance, and MD decoding with Hamming
distance.

best SER performance for 400 to 1200 codebooks under different T . Except the case

with T = 20 s, the performance of the pattern-based distance is better when T is larger.

The Hamming distance has only about 60 codebooks having the lowest SER. Combin-

ing with the observation results in Fig. 4.2, Fig. 4.3, and Fig. 4.4, we can conclude that

the Hamming distance is unsuitable for the active transport for diffusion-based molecular

communication. Another conclusion is that the probability-based distance leads to better

results in most practical cases. However, the pattern-based distance has the advantage

of lower computational complexity; therefore, choosing the probability-based distance or

the pattern-based distance can be considered a tradeoff between SER performance and

computational complexity.
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Figure 4.4: The amount of codebooks decoding by MD with the probability-based, the
pattern-based, and the Hamming distance having the same performance as the optimal
decoding rule under different T for OOK systems.

4.3.2 Passive Transport via Brownian Motion

We give parallel numerical results for the passive transport as the active transport. In

Fig. 4.6, we show the SER distribution over all codebooks under the Hamming distance,

probability-based distance, pattern-based distance, and the optimal decoding rule for OOK

systems when T = 100 s. The optimal decoding rule is generated through searching

the lowest SER exhaustively. The codebooks are indexed by the order of descending

SER using the optimal decoding rule for figure clarity. We see that adopting channel

coding can indeed improve the SER result than the uncoded system, and there are 418

codebooks that result in better performance than the uncoded system using the optimal

decoding rule, which is much more than the case of with drift (29 codebooks.) For the

cases of decoding with the Hamming distance, the probability-based distance, and the

pattern-based distance, there are 225, 340, and 157 codebooks performing better than the

uncoded scenario respectively.

The best SERs are 10.94% using the optimal decoding rule, 10.94% using the MD de-

31



20 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

T (s)

A
m

ou
nt

 o
f C

od
eb

oo
k

 

 

Probability−based distance
Pattern−based distance
Hamming distance

Figure 4.5: The amount of codebook performing the best among MD decoding with the
probability-based, the pattern-based, and the Hamming distance under different T for
OOK systems.

coding with the Hamming distance, 11.44% using the MD decoding with the probability-

based distance, and 11.83% using the MD decoding with the pattern-based distance, re-

spectively; while the SER is 14.72% for the uncoded scenario. The performance of the

results decoding with the Hamming distance in active transport is much worse than the

uncoded scenario and both the probability-based distance and the pattern-based distance.

However, in passive transport, the Hamming distance performs better than the uncoded

scenario in some (225) codebooks.

We show the best performance codebook with the optimal decoding rule in Table 4.2

for T = 100 s. The best performance codebook codebook is:

{(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 0), (1, 1, 1, 0)}.

The decoding rule using the Hamming distance has one codebook being decoded differ-

ently from the optimal decoding rule: (0, 1, 1, 1) decoded into c(2) rather than c(4). The
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Figure 4.6: SER distribution under different decoding rules for OOK systems with T =
100 s. The codebooks are indexed by the order of descending SER using the optimal
decoding rule.

decoding rule using the probability-based distance has two codebooks being decoded dif-

ferently from the optimal decoding rule: (0, 1, 1, 1) and (1, 0, 1, 1) are decoded into c(4)

rather than c(2). The decoding rule using the pattern-based distance has five codebooks

being decoded differently from the optimal decoding rule: (0, 0, 1, 0) decoded into c(3)

rather than c(2), (0, 1, 0, 1) decoded into c(4) rather than c(3), (1, 0, 0, 1) decoded into c(1)

rather than c(4), (1, 1, 0, 0) decoded into c(3) rather than c(4), and (1, 1, 1, 1) decoded into

c(2) rather than c(4).

We can see that the pattern-based distance might not be suitable for the passive trans-

port, because the concept of the pattern-based distance is to focus on the bit pattern transi-

tions caused by the asymmetric crossover effect. However, in the scenario of the passive

transport, the molecules diffuse freely as Brownian random walk, which is more like a

symmetric process. On the contrary, the symmetry of the Hamming distance happens to

make the Hamming distance a suitable distance for the passive transport. Although the

probability-based distance is also asymmetric, but the probability-based distance calcu-
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lates the probability approximation of one codeword sent yet detected as another code-

word. Thus, the probability-based distance still performs well and is also suitable for the

passive transport.

Table 4.2: The best performance codebook and the corresponding decoding regions under
the optimal decoding rule.

Codeword c(1) = (0, 0, 0, 0) c(2) = (0, 0, 1, 1)
(0, 0, 0, 0) (0, 0, 0, 1)

Decoding (1, 0, 0, 0) (0, 0, 1, 0)
Region (0, 0, 1, 1)

(0, 1, 1, 1)
(1, 0, 1, 1)

Codeword c(3) = (0, 1, 0, 0) c(4) = (1, 1, 1, 0)
(0, 1, 0, 0) (0, 1, 1, 0)
(0, 1, 0, 1) (1, 0, 0, 1)

Decoding (1, 0, 1, 0)
Region (1, 1, 0, 0)

(1, 1, 0, 1)
(1, 1, 1, 0)
(1, 1, 1, 1)

Fig. 4.7 shows the SERs under various T using different decoding criteria. For each

decoding rule, the best codebook for that bit duration T is adopted. We can see that channel

coding indeed effectively lowers the SER for OOK systems in passive transport as well.

The performance of the MD decoding using the Hamming distance and the probability-

based distance is similar to the optimal decoding rule, and the performance of the cased

of pattern-based distance is slightly higher but is still better than the uncoded scenario.

Again, to discuss thoroughly about the probability-based distance, the pattern-based

distance, and the Hamming distance, we compare their performances with the optimal

decoding rule under different bit durationT . In Fig. 4.8, we show the number of codebooks

decoding byMDwith the probability-based, the pattern-based, and the Hamming distance

performing the same as the optimal decoding rule. We can see that much more codebooks

have the same performance as the optimal decoding in the case of decoding by probability-

based distance, there are about 400 codebooks except the case with T = 20 s, where the

SER is higher than 25%, and the time slot is not long enough for good communication.

Although Fig. 4.7 shows that the SER of the best codebook with MD decoded by the
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Figure 4.7: Comparison of SER performances for the uncoded OOK system and the coded
OOK systems employing optimal decoding rule, MD decoding with probability-based
distance, MD decoding with pattern-based distance, and MD decoding with Hamming
distance.

Hamming distance is better than the case of the probability-based distance, in Fig. 4.8 we

can see that more codebooks decoded by the probability-based distance have the same

SER performance as the optimal decoding rule than the Hamming distance.

As shown in Fig. 4.9, we compare the performance between the probability-based,

the pattern-based, and the Hamming distance, and show the amount of codebook for each

distance having the best SER performance among the three distances. We can see that

the probability-based distance outperforms other distances with having more than 1200

codebooks performing the best among all cases of T . The pattern-based distance and

the Hamming distance have similar performance, both performing the best for about 400

codebooks. We conclude that the probability-based distance leads to better results in most

practical cases. Note that, however, the pattern-based distance and the Hamming distance

have the advantage of low computational complexity. Therefore, choosing the probability-

based distance, the pattern-based distance, or the Hamming distance can be considered a

tradeoff between SER performance and computational complexity.
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Figure 4.8: The amount of codebooks decoding by MD with the probability-based, the
pattern-based, and the Hamming distance having the same performance as the optimal
decoding rule under different T for OOK systems.
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OOK systems.
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Chapter 5

Channel Coding Design for

Synchronous Type-based Modulation

In this chapter, we demonstrate how the channel coding concept can be applied for

type-based modulation (TM) system. After introducing the TM system, the minimum

distance (MD) decoding rule to implement decoding for TM is proposed. The numerical

results are presented with the uncoded and coded scenarios under different MD decoding

functions. Similar to the results in OOK system, the symbol error rate (SER) performance

of our proposed distances decoding rules are near-optimal, and Hamming distance may

not be suitable especially for the cases of active transport.

5.1 Synchronous Type-Based Modulation

In a synchronous type-based modulation (TM) system, the transmitter sends messages

by releasing a sequence of molecules of different types. Each molecule belongs to a type

of molecules in the type set Q and each type represents a certain information [42]. Take

Q = {A, B, C} for instance, there are three types of molecules: type-A, type-B, and

type-C. If the information bits are grouped two by two, information can be delivered in

the following way: if the data bits are ‘00’, the transmitter remains silent, while if the

data bits are ‘01’, ‘10’, and ‘11’, the transmitter releases molecules of type A, B, and C,

respectively. Note that we assume that the receiver can perfectly recognize the molecule
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type once the molecule is caught.

5.2 Minimum Distance Decoding for Synchronous Type-

based Modulation

Other than OOK systems, the MD decoding using the proposed distance functions is

also applicable to TM systems with minor modifications. Under the assumption that the

receiver can distinguish different types of molecules perfectly once they are caught, a TM

system can be regarded as a superposition of multiple OOK sub-systems that operate in-

dependently with each sub-system consisting of only a single type of molecules. With

this, we propose to calculate the distance values of this “compound system” based on the

distance values of the OOK sub-systems. Suppose that there are M types of molecules

in a type-based modulation system, and we want to define the distance value between the

codeword x and the received pattern ŷ (Notice that ŷ is a compound pattern, not a code-

word.) By transforming the codeword x into x1, . . . , xM , with xi being the transmission

pattern corresponding to type-i molecules, and decomposing ŷ into y1, . . . , yM with yi be-

ing a codeword in the OOK sub-system corresponding to type-i molecules, the distance

between x and ŷ for the compound system is given by

dcomp(x, ŷ) =
M∑

i=1
cid(xi, yi), (5.1)

where d is the distance function (either Hamming, probability-based or pattern-based) of

the sub-system and ci is the weighting for type-i molecules and
∑M

i=1 ci = 1. The weight-

ing ci can be chosen according to the diffusion properties of each molecule due to, for ex-

ample, different radius and different diffusion coefficients. In case that the molecules have

similar diffusion behaviors, we can assign equal coefficients ci = 1/M , i = 1, 2, . . . , M

for simplicity.

We use Fig. 5.1 to demonstrate the minimum distance decoding process for the type-

based modulation systems. Assume that there are three different types of molecules A, B,
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Figure 5.1: Demonstration of the minimum distance decoding process for the type-
based modulation systems. The TM system is decomposed into three OOK sub-
systems. Molecule types A, B, and C represent data bits ‘01’, ‘10’, and ‘11’, re-
spectively, and a silence represents ‘00’. We use the [4, 2] block code with codebook
{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1)} for example.

and C. We use the [4, 2] block code with codebook {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 1, 1),

(1, 0, 1, 1)}. If the data bits are ‘00’, for instance, the coded pattern is ‘(0, 0, 0, 1)’, the

transmitting pattern will be ‘01’ for type-Amolecules and ‘00’ for both type-B and type-C

molecules. Equal coefficients ci = 1
3 are chosen, and the pattern-based distance is used for

demonstration. During decoding, if the receiver detects ‘01’ for type-A, ‘00’ for type-B,

and ‘10’ for type-C molecules, the distance between the codeword (0, 0, 0, 1) and the de-

tected results is calculated as 1
3{dpatt((0, 1), (0, 1))+dpatt((0, 0), (0, 0))+dpatt((0, 0), (1, 0))} =

1
3(0 + 0 + 1) = 1

3 . Similarly, the distance is 1
3(2 + 1 + 1) = 4

3 between the codeword

(0, 0, 1, 0) and the detected results, 1
3(1 + 0 + 2) = 1 between the codeword (0, 1, 1, 1)

and the detected results, and 1
3(2 + 2 + 2) = 2 between the codeword (1, 0, 1, 1) and the

detected results. It can be seen that the distance is minimized by decoding the codeword
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as (0, 0, 0, 1), which represents data bits ‘00’.

5.3 Numerical Results

In this section we numerically compare the SERs of the coded and uncoded scenar-

ios under different decoding criteria for TM scenario of both active and passive trans-

port systems. The simulation parameters are set to be the same as the OOK systems for

molecules type A, B, and C: the diffusion coefficient D = 10−6 cm2/s, the distance be-

tween the transmitter and the receiver d = 20 µm, and the drift velocity v = 2 µm/s

in active transport. The channel codes used for simulations are also [4, 2] block codes,

which means that there are
(

24

4

)
= 1820 possible codebook selections. The joint coding-

modulation we mentioned in Section 2.4 is applied, and the actual coded transmission

pattern for each symbol has 2 bits rather than 4 bits as the OOK system because each

molecule of type A, B, and C represents two coded bits. There are 464 decoding rules

for each codebook selection, where the 4 means 4 codewords for a codebook, and the 64

means (22)3 for 3 types of molecule and the 22 for 4 possible decomposed codeword pat-

terns {(0, 0), (0, 1), (1, 0), (1, 1)}. When calculating the probability-based distance, we

use N = 2. In order to compare the uncoded and coded scenario fairly, we use the same

average bit duration T , which is the average period to send one information bit.

5.3.1 Active Transport via Brownian Motion with Drift

In Fig. 5.2, we show the SER distribution over all codebooks under different decoding

rules for TM systems when T = 100 s. We compare the minimum distance decoding

rules of using the probability-based distance, the pattern-based distance, and the Hamming

distance, along with using the optimal decoding rule. The codebooks are then indexed

by the order of descending SER using the optimal decoding rule. Similar to the case

of OOK systems, we see that most of the codebooks do not lead to better performance

than the uncoded system, and there are only 60, 38 and 37 codebooks that result in better

performance than the uncoded systemwhen using the optimal decoding rule, MDdecoding
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with the probability-based distance and the pattern-based distance, respectively. The SER

of the uncoded scenario is 0.24%. The SERs of the best codebook are 0.11% using the

optimal decoding rule, 0.11% using the MD decoding with the probability-based distance,

0.11% using the MD decoding with the pattern-based distance, and 0.25% using the MD

decoding with the Hamming distance, respectively. When the Hamming distance is used

as the MD decoding rule, all codebooks result in worse performance than the uncoded

system.
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Figure 5.2: SER distribution under different decoding rules for TM systems with T =
100 s. The codebooks are indexed by the order of descending SER using the optimal
decoding rule.

The SER performances of the TM system under various T using the optimal decod-

ing rule, the MD decoding with the probability-based distance, the pattern-based distance,

and the Hamming distance are shown in Fig. 5.3. The results of the uncoded scenario are

also plotted for reference. We can see that the joint coding-modulation scheme can effec-

tively lower the SER. Both the probability-based distance and the pattern-based distance

is overlapped with the optimal decoding rule, showing the effectiveness of the proposed

distances. Compared to the OOK system (Fig. 4.3), the SERs for the TM system are at
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least an order lower, meaning that using multiple types of molecules (if they are available)

can greatly improve the system performance.
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Figure 5.3: Comparison of SER performances for the uncoded TM system and the coded
TM systems employing optimal decoding rule, MD decoding with probability-based dis-
tance, MD decoding with pattern-based distance, and MD decoding with Hamming dis-
tance.

To understandmore about the proposed distances, and the Hamming distance, we com-

pare their performances with the optimal decoding rule under different T . In Fig. 5.4, we

show the amount of codebooks decoding by MD with the three distances performing ex-

actly as the optimal decoding rule. We can see that the amount of codebooks grow from

about 100 to 700 when T grows from 20 s to 400 s for both the probability-based distance

and the pattern-based distance. When T is larger than 300 s, the pattern-based distance

even has slightly more codebooks with the same performance as the optimal decoding rule

than the probability-based distance, showing that in the case of the TM active transport

system, the method of summing crossover levels used in the pattern-based distance for

approximating the actual channel coding distance between codewords is more optimal.

The cases of decoding with the Hamming distance are much worse and thus not suitable

for decoding in active transport, and there are only about 50 codebooks performing as the
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optimal decoding rule.
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Figure 5.4: The amount of codebooks decoding by MD with the probability-based, the
pattern-based, and the Hamming distance having the same performance as the optimal
decoding rule under different T for TM systems.

As shown in Fig. 5.5, we compare the performance between the probability-based,

the pattern-based, and the Hamming distance, and shows the amount of codebook about

decoding by which distance would have the best SER performance among the three dis-

tances. We can see that the probability-based distance outperforms other distances with

having approximately 1400 codebooks performing the best among all cases of T . The

pattern-based distance catches up with growing from 700 codebooks, and reaching to 1500

codebooks when T = 400 s. The Hamming distance has only about 100 codebooks hav-

ing the lowest SER. We conclude that the probability-based distance leads to better results

in most practical cases, and when T is larger than 300 s, the pattern-based distance per-

forms as good. Therefore, we suggest decoding with the probability-based distance when

T ≤ 300 s, and switch to the pattern-based distance when T is larger.
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Figure 5.5: The amount of codebook performing the best among MD decoding with the
probability-based, the pattern-based, and the Hamming distance under different T for TM
systems.

5.3.2 Passive Transport via Brownian Motion

In Fig. 5.6, we show the SER distribution over all codebooks under different decoding

rules for TM systems when T = 100 s. We compare the minimum distance decoding

rules of using the probability-based distance, the pattern-based distance, and the Ham-

ming distance, along with using the optimal decoding rule. The codebooks are indexed by

the order of descending SER using the optimal decoding rule. There are 951 codebooks

decoding with the optimal decoding rule performing better than the uncoded system. The

best SERs are 4.25% using the optimal decoding rule, 4.68% using the MD decoding

with the Hamming distance, 4.33% using the MD decoding with the probability-based

distance, and 4.64% using the MD decoding with the pattern-based distance, respectively;

while the SER is 8.96% for the uncoded scenario. We can see from Fig. 5.6 that the per-

formance of the SER decoding with Hamming distance is worse than the case with the

probability-based for passive transport. The comparison between the Hamming distance

and the pattern-based distance can’t be clearly observed in Fig. 5.6, and we will further
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discuss the comparison between them later in this subsection.
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Figure 5.6: SER distribution under different decoding rules for TM systems with T = 100
s. The codebooks are indexed by the order of descending SER using the optimal decoding
rule.

The SER performances of the type-basedmodulation system under various T using the

MD decoding with the probability-based distance, the pattern-based distance, the Ham-

ming distance are shown in Fig. 5.7. The results of the uncoded scenario and the results

of using the optimal decoding rule are also plotted for reference. We can see that the

joint coding-modulation scheme can effectively lower the SER. The SER results of the

Hamming distance is slightly worse than the probability-based distance and the pattern-

based distance. However, the Hamming distance has the advantage of low computational

complexity; therefore, choosing the Hamming distance or the probability-based and the

pattern-based distance can be considered a tradeoff between SER performance and com-

putational complexity. Compared to the OOK system (Fig. 4.7), the SERs for the TM

system are lower for about half an order, meaning that using multiple types of molecules

(if they are available) can greatly improve the system performance.

Parallel to the OOK system, we compare the performances of the probability-based
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Figure 5.7: Comparison of SER performances for the uncoded TM system and the coded
TM systems employing optimal decoding rule, MD decoding with probability-based dis-
tance, MD decoding with pattern-based distance, and MD decoding with Hamming dis-
tance.

distance, the pattern-based distance, and the Hamming distance with the optimal decod-

ing rule under different bit duration T to understand more about the performance compar-

ison between the distances. In Fig. 5.8, we show the number of codebooks decoding by

MD with the probability-based, the pattern-based, and the Hamming distance performing

having the same performance as the optimal decoding rule.

There are about 70, 50 and 15 codebooks having the same performance as the opti-

mal decoding in the case of decoding by the probability-based distance, the pattern-based

distance and the Hamming distance, respectively. We can see that more codebooks have

the same performance as the optimal decoding in the case of decoding by the probability-

based distance. Although the codebook amount of having the same performance as the

optimal decoding rule is lower than the OOK system, we can see from Fig. 5.7 that the

SER results of the distances are still close to the SER of the optimal decoding rule.

Similarly, we compare the performance between the probability-based, the pattern-

based, and the Hamming distance, and shows the amount of codebook about decoding
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Figure 5.8: The amount of codebooks decoding by MD with the probability-based, the
pattern-based, and the Hamming distance performing having the same performance as the
optimal decoding rule under different T for TM systems.

by which distance would have the best SER performance among the three distances in

Fig. 5.9. We can see that the probability-based distance as well outperforms other dis-

tances with having more than 1200 codebooks performing the best among all cases of

T . About 450 codebooks perform better with decoding by the pattern-based distance

than the Hamming distance (about 300 codebooks.) Like the scenario of OOK system,

the probability-based distance leads to better results in most practical cases. Note that,

however, the pattern-based distance and the Hamming distance have the advantage of

low computational complexity. Therefore, choosing the probability-based distance, the

pattern-based distance, or the Hamming distance can be considered a tradeoff between

SER performance and computational complexity.
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Figure 5.9: The amount of codebook performing the best among MD decoding with the
probability-based, the pattern-based, and the Hamming distance under different T for TM
systems.
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Chapter 6

Conclusions and Future Research

In this thesis, we have examined the idea of adopting channel coding for diffusion-

basedmolecular communications. We have proposed two categories of distance functions,

the probability-based distance and the pattern-based distance, for diffusion-based molec-

ular communication systems. Numerical results have shown that the proposed distance

functions are more suitable as channel code design metrics for diffusion channels and the

proposed distance functions lead to much better SER performance when used as minimum

distance decoding rule than the traditionally used Hamming distance.

In both on-off keying (OOK) and synchronous type-based modulation (TM) for active

transport, the SER results decoding with our proposed distances for minimum distance

decoding is nearly identical to using the optimal decoding rule, and significantly outper-

forms the Hamming distance for channel decoding. None of the cases decoding with the

Hamming distance performs better than the uncoded scenario, showing that the traditional

Hamming distance is no longer a good distance function. Since the probability-based dis-

tance results in better performance than the pattern-based distance in most practical cases

while the pattern-based distance has the advantage of lower computational complexity,

choosing the probability-based distance or the pattern-based distance can be considered a

tradeoff between SER performance and computational complexity.

Channel coding in passive transport can improve the SER performance more than in

the case of active transport. In OOK systems of the passive transport, the SERs of the best

performance codebook for the probability-based, the pattern-based and the Hamming dis-
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tance is similar, and there are more codebooks decoding by the probability-based distance

perform as well as the optimal decoding. The SER results decoding with the Hamming

distance performs slightly worse than than the cases with the proposed distances in TM

systems for passive transport. Channel coding can indeed improve the symbol error rate

(SER) results when encoding with proper codebooks and decoding with suitable distance

functions.

The effort in our work serves as a beginning study of a brand new channel coding con-

cept for diffusion-based molecular communications. The concept mentioned in this thesis

can be applied to any diffusion-based channel if the delay distribution is known. The work

can also be extended for other cases of level-based and type-based modulation schemes

in diffusion-based molecular communications. More scenarios can be considered, such as

applying different channel coding methods or taking the constraint of molecular amount

into consideration. Using the two proposed distance functions to design suitable code-

books will also be discussed as a future work.
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