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摘要	 

半乳糖凝集素 (Galectins)	 是一種動物性凝集素，可以專一地辨識β-

半乳糖 (β-galactosides)。	 在免疫系統中，galctin-1	 和 -3已經被報導

可以調控各種不同的免疫細胞的免疫反應，然而galectin-1和 -3對於

漿狀樹突細胞 (plasmacytoid dendritic cell, pDC)	 之生長與功能的影響

尚未釐清。	 pDC在受到病毒感染時，能夠分泌大量的第一型干擾素	 

(type I Interferon, IFN-I)	 並引發各種抗病毒的活性。因此，我們除了

研究galectin-1和 -3對於pDC的生長影響外，也用類鐸受體7/9的配

體，R848或CpG刺激pDC，以研究pDC產生IFN-I的能力是否會受到

galectin-1和 -3的影響。在初步的實驗結果中，我們發現不論是活體

外 (in vitro) 或是活體內 (in vivo) 的試驗，皆發現galectin-1和 -3對於

pDC的生長沒有顯著的影響。此外，半乳糖凝集素-3基因剔除	 

(lgals3-/-) pDC在CpG刺激後，其第一型干擾素IFN-I (ifnα, ifnα4, ifnβ)

和干擾素調控因子7 (Interferon regulatory factor 7, IRF7) 的基因表現

量的增加顯著高於野生型 (wild type, WT) pDC。而且，lgals3-/- pDC

在R848或CpG刺激後所產生的IFN-I也比WT pDC來的高。與lgals3-/- 

pDC相反的是lgals1-/- pDC，在R848或CpG刺激後，其IFN-I 基因表

現量的增加顯著低於WT pDC，另外產生的IFN-I 也較WT pDC來的

低。因此，我們推測galectin-3 在pDC中可能是扮演了負向調控其產

生IFN-I 功能的角色，而galectin-1 則是扮演了正向調控的角色。然

而，galectin-1和 -3是經由何種機轉調控IFN-I 的產生，仍然需要進

一步的研究。	 

關鍵詞：漿狀樹突細胞、半乳糖凝集素-1、半乳糖凝集素-3、︑第一

型干擾素、類鐸受體7/9 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Abstract 

Galectins are animal lectins that can bind to β-galactosides. In the immune system, 

galectin-1 and galectin-3 have been shown to modulate immune responses in various 

types of immune cell. However, the role of galectin-1 and galectin-3 in the 

development and the function of plasmacytoid dendritic cell (pDC) has not yet been 

studied. pDCs produce type-1-interferon (IFN-I) in response to viral infection and 

then enhance antiviral activities. Thus, we examined the effect of galectin-1 and 

galectin-3 on pDC development and IFN-I production by pDCs upon the stimulation 

of R848 or CpG through TLR7/9. In preliminary results, we show that galectin-1 and 

galectin-3 didn’t influence the development of pDC in vitro or in vivo. In addition, we 

found that CpG or R848-induced mRNA levels of IFN-I (ifnα, ifnα4, ifnβ) and 

interferon regulatory factor (IRF7) were significantly higher in gal-3-/- Flt3L-BMDCs 

and in the contrast, significantly lower in gal-1-/- Flt3L-BMDCs when compared to 

that in WT Flt3L-BMDCs. Moreover, at the protein level, the production of IFNα by 

gal-3-/- Flt3L-BMDCs stimulated with CpG or R848 is higher than WT Flt3L-

BMDCs. And,  the production of IFNα by gal-3-/- Flt3L-BMDCs is lower than WT 

Flt3L-BMDCs. Our data suggested that galectin-3 may negatively regulate the 

function of pDCs, on the other hand that galectin-1 may positively regulate the 

function of pDC. However, the mechanism of how galectin-3 and galectin-1 involved 

in IFN-I production need to be further explored. 

Key word: plasmacytoid dendritic cell, galectin-1, galectin-3, type-I-IFN, TLR7/9 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Abbreviations 

!
Allophycocyanin (APC) 

Allophycocyanin-indotricarbocyanine (APC/Cy7) 

Ammonium buffered chloride-potassium solution (ACK) 

Bone marrow (BM) 

Bone marrow stromal cell antigen (Bst2) 

Conventional dendritic cell (cDC) 

Dendritic cell (DC) 

Fluorescein isothiocyanate (FITC) 

Fms-like tyrosine 3 ligand (Flt3L) 

Granulocyte-macrophage colony-stimulating factor (GM-CSF)  

Type I interferon (IFN-I) 

Interferon regulatory factor (IRF) 

Interleukin (IL) 

Interferon-sensitive response element (ISRE) 

Phycoerythrin (PE) 

Phycoerythrin-indotricarbocyanine (PE/Cy7) 

Plasmacytoid dendritic cell (pDC) 

Sialic acid binding immunogolobulin-like lectin H (siglecH) 

Spleen (SP) 

Toll-like receptor (TLR) 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   1.1 The role of galectin-1 and galectin-3 in DC 

Galectins are animal lectins that can bind to β-galctosides through its C-terminal 

carbohydrate-recognition domains (CRD) (Rabinovich & Toscano, 2009). Based on 

the CRD composition of galectins, they can be divided into 3 groups. Prototype with 

one CRD (galectin-1, -2, -5, -7, -10, -11, -13, -14 and -15) and are either monomers or 

noncovalent homodimers.; tandem repeat type consists of two CRDs (galectin-4, -6, 

-8, -9, -12) joined by a linker peptide, and galectin-3 is the only member that belongs 

to chimeric type which has an extended N-terminal region composed of tandem 

repeats of short amino acid segments connoted to carbohydrate recognition domain 

(CRD) (R. Y. Yang, Rabinovich, & Liu, 2008). It has been reported that galectin-1 

and-3 expressed in many immune cells, such as T cells, B cells, neutrophils, 

macrophages and conventional dendritic cells (cDCs) (Cummings & Liu, 2009). 

Galectin-1 induce Th1 and Th17 cells apoptosis via extracellular regulation and 

galectin-1-deficient mice developed greater Th1 and Th17 responses (Toscano et al., 

2007). Recombinant galectin-1 expands the IL-10 secreting regulatory T cell via 

induction of tolerogenic DC (Blois et al., 2007). Also, LPS stimulated BMDCs, which 

differentiate with GM-CSF in the presence of recombinant galectin-1, showed a lower 

IL-12 production and higher IL-10. Consistent with the finding that DC from 

galectin-1-deficient mice after LPS stimulation exhibited an augmented IL-12 

production and impaired IL-10 production (Ilarregui et al., 2009). Together, galectin-1 

may play a negative role in regulating immune response in T cells through  transduce 

a tolerogenic signal by DCs. Galectin-3 plays an important role in diverse immune 

cell processes, such as pathogen recognition, cell migration, adhesion, activation and 
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apoptosis, and regulating the adaptive immune response and the inflammatory 

response(Sundblad, Croci, & Rabinovich, 2011). In cDC, galectin-3 negatively 

regulate the function and capable of interfering the adaptive immune response. The 

splenic CD11c+ cDC  from gal3-/- mice had a higher production of IL-12p40 when 

stimulated with LPS compared to WT cDC. The higher level  of IL-12 produced by 

cDC will lead to the higher Th1 response developed by gal3-/- mice (Bernardes et al., 

2006). Also, upon the simulation of Histoplasma infection, gal3-/- cDC produced 

higher amount of IL-23, TGF-β, and IL1-β than WT cDC. And after Histoplasma 

infection, gal3-/- mice exhibited higher production of IL-17A and higher percentages 

of Th17 cells. Together, galectin-3 negatively regulates the Th17 response via 

modulation the production of IL-23 by cDCs (S. Y. Wu, Yu, Liu, Miaw, & Wu-Hsieh, 

2013). However, the role of galectin-1 and -3 in the development and the function of 

plasmacytoid dendritic cell(pDC) has not yet been determined. 

   1.2 pDC 

DCs are a heterogeneous population that comprises two major types: cDC and pDC. 

pDCs have a round-shape that with a plasma-cell morphology and well developed 

rough endoplasmic reticulum (Soumelis & Liu, 2006). pDC can be distinguished 

from cDC by several markers such as CD11cint CD11b- B220+ Siglec H+BST2+ . 

Siglec H is a novel member of the sialic acid-binding immunoglobulin (Ig)-like lectin 

(Siglec) family that specific expressed on pDC . Siglec H associates with an ITAM-

containing adaptor protein, DNAX adaptor protein 12 (DAP12), which can induce a 

negative signal to modulate the type I IFN response, reducing the production of type I 

IFN by pDC after the stimulation with TLR agonist  (Blasius, Cella, Maldonado, 
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Takai, & Colonna, 2006). Moreover, pDC from DAP12-deficient mice produce 

higher levels of IFNα, IFNβ and IL-12 during viral infection (Sjolin et al., 2006). 

Bone marrow stromal cell antigen 2 (BST2) is predominantly expressed on pDC, and 

can be recognized by the Abs plasmacytoid dendritic cell antigen 1 (PDCA-1) and 

120G8 in the naive mice. BST2 is an interferon stimulated gene (ISG), it will up-

regulate on various cell types upon the stimulation that can trigger type I IFN 

response, including pDC (Blasius, Giurisato, et al., 2006). PDC-TREM, a member of 

the triggering receptor expressed on myeloid cells family (TREM) which expressed 

on activated pDC after TLR-stimulation. PDC-TREM directly associates with DAP12 

and Plexin-A1. When the ligand of Plexin-A1, Sema6D bind to Plexin-A1, pDC will 

produce robust type I IFN which suggest that PDC-TREM/Plexin-A1/DAP12 

complex mediates a positive signal for type I IFN response in pDC (Watarai et al., 

2008).   

   1.3 Development of pDC 

pDC can generated from both myeloid progenitor, or lymphoid progenitor. At the 

steady state, Fms-like tyrosine 3+ (Flt3+) common DC progenitors (CMP) or Flt3+ 

common lymphoid progenitors (CLP) will develop to pDC in the presence of Flt3L 

(L. Wu & Liu, 2007).  Flt3-Flt3L ligation will activates signal transducer and 

activator of transcription 3 (STAT3) and transduce a signal that is critical for the 

development of pDC in humans and mice (Liu, 2005). The pDC numbers are 

dramatically decreased in flt3-/- and flt3l-/-  mice (Waskow et al., 2008)(Brawand et al., 

2002). On the other hand, pDC numbers in Flt3L-transgenic mice are significant 

increased (Brawand et al., 2002). Under the inflammatory condition, granulocyte-
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macrophage colony-stimulating factor (GM-CSF) is produced by some stromal cells, 

activated T and NK cells, and macrophages. GM-CSF activates STAT5, which 

directly or indirectly inhibits the transcription of Flt3, IRF8 and IRF7. Both of these 

transcription factors and the receptor of Flt3L are essential for the development of 

pDCs (Onai & Manz, 2008). Together, Flt3L  activated STAT3 supports pDC 

differentiation,in the contrast, GM-CSF activated STAT5 inhibits pDC differentiation. 

   1.4 The main function of pDC 

The expression of TLRs are different between cDC and pDC. In contrast to cDC, 

pDCs selectively express TLR7 and TLR9 (Kaisho, 2012). pDCs, also named type-1-

interferon producing cells(IPCs), can produced large amounts of type I interferon 

(IFN-I) in response to viral infection through TLR7 or TLR9 (Gilliet, Cao, & Liu, 

2008). TLR7 sense guanosine- or uridine-rich single-stranded RNAs (ssRNA) from 

viruses and synthetic imidazoquinoline compounds imiquimod and R-848 (Diebold, 

Kaisho, Hemmi, Akira, & Reis e Sousa, 2004). TLR9 sense unmethylated CpG motifs 

in ssDNA, respectively, motifs found in the viruses or bacteria (Hemmi et al., 2000). 

Synthetic ODNs containing CpG motif can directly interact with TLR9 through its 

ectodomain and induce downstream signaling, including the induction of the 

transcription of IFN-I and pro-inflammatory cytokine gene (Latz et al., 2007). The 

production of IFN-I can enhance maturation and activation of immature DC, induce 

IFNγ production by TH1 and NK cells, promote plasma cell proliferation and class 

switching, and can induce over 400 ISGs that are antiviral, anti-proliferative, and 

immunomodulatory, to against the viral infection (Decker, Muller, & Stockinger, 

2005). However, pDC can also sense self DNA when necrotic and apoptotic cell death 
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(Pisetsky & Fairhurst, 2007) and cause autoimmune disease, such as SLE (Blanco, 

Palucka, Gill, Pascual, & Banchereau, 2001), psoriasis (Lande et al., 2007), and type I 

diabetes (TID) (Li et al., 2008) when dysregulating the IFN-I response. 

   1.5 TLR7/9 dependent signaling pathway 

After ligand engagement, activated TLR7/9 recruit the myeloid differentiation 

primary response gene 88 (MyD88) through the Toll/IL1 receptor (TIR) domain. 

MyD88, as a key adaptor protein, then recruit the IL-1 receptor associated kinase 4 

(IRAK4) to TLR7/9 (Kaisho & Akira, 2006). In MyD88 or TLR9-deficiency 

mice,pDC completely lose their ability to produce IFNα when stimulated with the 

TLR9 ligand CpG ODNs (Hemmi, Kaisho, Takeda, & Akira, 2003). IRAK4 activates 

TNF receptor-associated factor 6 (TRAF6) and form the  signal-transducing complex 

in the cytoplasm which comprise of IRAK4 (K. Yang et al., 2005), TRAF6 (Hacker et 

al., 2006) and Bruton's tyrosine kinase (BTK) (Pisitkun et al., 2006). The complex 

then activate IRF7 or transforming growth factor-beta-activated kinase-1 (TAK1) or 

IRF5, each leading to different signaling pathway. For type I IFN response, IRF7 is 

activated through the phosphorylation by IRAK4 (Kim et al., 2007) and 

ubiquitylation by TRAF6 (Kawai et al., 2004). Activated IRF7 interacts with TRAF3, 

IRAK1 (Uematsu et al., 2005), IκB kinase α (IKKα) (Hoshino et al., 2006), 

osteopontin (OPN) (Shinohara et al., 2006), phosphoinositide 3-kinase (PI3K) 

(Guiducci et al., 2008), and then translocate to nucleus to initiating type I IFN gene 

transcription. On the other hands, for the induction of transcription of pro-

inflammatory cytokine and co-stimulatory molecules, TRAF6 in the signal-

transducing complex ubiquitylates the TAK1, and activated TAK1 then transduce the 
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signal to activate NF-B and MAPKs (Osawa et al., 2006). IRF5 both involved in the 

signaling pathway of induction of type I IFN and pro-inflammatory cytokine and co-

stimulatory molecules (Takaoka et al., 2005). By contrast, IRF4 inhibits the function 

of IRF5 through competition (Xu, Meyer, Ehlers, Blasnitz, & Zhang, 2011).  

   1.6 Specific aims 

In our preliminary data, we show that galectin-1 and galectin-3 expressed in pDC and 

gal-3-/- Flt3L-BMDC treated with CpG had a greater IFN-I response and IL-12 

production compared to WT Flt3L-BMDCs. Gal-1-/- Flt3L-BMDCs are opposite from 

gal-3-/- Flt3L-BMDC, which produced lower IFN-I in response to TLR7/9 agonists. 

Hence, we hypothesized that galectin-3 may play a negative regulatory role and 

galectin-1 play a positive role in the IFN-I response of pDCs. 

Aim1: Establishing assay systems. 

To study the development and function of pDC, we first establish in vitro pDC culture 

system. And for ex vivo functional assay, we use B16/Flt3L cell line to expand pDC 

percentage and numbers in vivo. Next, to detect the IFN-I production, we use a C4-

ISRE-RFP reporter cell line which is provided by Dr. Chien-Kuo Lee. We also 

confirm the production of IFNα by intracellular staining and use a 293-IFNα cell line 

which overexpressed IFNα as a positive control for intracellular staining. For future 

studies on IFN-I signaling pathway, we will use human pDC cell line which is a gift 

from Dr. Masuhiro Takahashi. Before exploring the signaling pathway of INF-I, we 

will test the production of IFN-I after TLR agonists stimulation. 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Aim2: Examining galectin expression profile. 

After setting up the assay systems, we will first confirm the galectins expression in 

pDC. It has been reported that galectin-1 and galectin-3 is expressed in human pDC 

(Cabezon, Sintes, Llinas, & Benitez-Ribas, 2011), although the mRNA expression 

level of galectin-3 is quite lower than other galectins (Harman et al., 2013). However 

whether the galectin-1 and galectin-3 express in mouse pDC has not yet been 

determined. We also want to know the galectin expression patterns in PMDC05. 

Therefore, we screen the expression of galectins in mouse pDC and PMDC05 first. 

As expected, galectin-1 and galectin-3 are express in pDC. The expression level of 

galectin-3 is lower than cDC which is already known that cDC had a high level 

expression of galectin-3 (S. Y. Wu et al., 2013). 

Aim3: To elucidate whether galectin-3 involve in development of pDC and 

function of producing type I IFN by pDC. 

Next, we want to examine whether galectin-3 involved in the differentiation and 

development of pDC. It has been reported that galectin-3 has been reported that 

galectin-3 in DCs negatively regulates Th17 cell differentiation and development 

(Fermin Lee et al., 2013). However, there is little known about whether galectin-3 

play a role in pDC development. Therefore, we hypothesized that galectin-3 may be 

potential to modulate the differentiation and development of pDC. 

After we explore the influence of galectin-3 on pDC development, we next examined 

whether galectin-3 participate in IFN-I production by pDC after TLR7/9 agonists 

stimulation. Galectin-3 regulates the function of various type immune cells. It has a 

suppressive effect on human eosinophils by inhibiting the IL-5 production (Cortegano 
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et al., 1998). And, galectin-3 deficient mice exhibited a reduced IgE-mediates 

response of mast cells (Rabinovich, Liu, Hirashima, & Anderson, 2007). Also, as 

mentioned before, galectin-3 modulates Th17 responses by regulating dendritic cell 

cytokines (Fermin Lee et al., 2013) and a role in the regulation of Th1/Th2 

differentiation by affecting IL-12 production in DCs (Saegusa et al., 2009), on the 

other hand, galectin-3 promote the Th2 response in a mouse model of atopic asthma 

(Zuberi et al., 2004). Together, galectin-3 deficiency mice revealed a promotion of 

inflammatory responses. Hence, we hypothesized that galectin-3 may be negatively 

regulates the production of IFN-I and pro-inflammatory cytokine by pDC. 

Aim4: To exam the role of galectin-1 in pDC development and type I IFN 

production. 

After we confirm the expression of galectin-1 in pDC. We want to exam the role of 

galectin-1 in pDC differentiation and development. It has been reported that 

exogenously added galectin-1 promotes proliferation of neural stem cells (Sakaguchi 

et al., 2006), and myoblasts from galectin-1 deficient mice exhibited  delayed 

development at the neonatal stage (Georgiadis et al., 2007). Therefore, we 

hypothesized that galectin-1 may get involved in pDC development. Next, we 

interested in the role of  galectin-1 in modulating the IFN-I response in pDC. Galectin-

1 can selectively bind to Th1 and Th17 cells induce apoptosis, in contrast, Th2 cells 

are protected from galectin-1 induced cell death (Toscano et al., 2007). Consistent 

with this finding, galectin-1-deficient mice exhibited an enhanced Th1 and Th17 cell 

responses. Also, recombinant galectin-1 induce an expansion of IL-10-producing T 

cells (Ilarregui et al., 2009) and CD4+CD25+ Treg cells (Juszczynski et al., 2007). 
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Besides, LPS-treated BMDC from galectin-1-deficient mice showed a higher IL-12 

production and lower IL-10 and IL-27 production. Together, galectin-1 may play a 

negative role in regulating Th1 and Th17 cell responses and delivering a tolerogenic 

signal via DC. Hence, we hypothesized that galectin-1 negatively regulating the IFN-I 

responses after TLR7/9 stimulation in pDC. Surprisedly, we found that galectin-1 

positively regulating the IFN-I production by pDC.  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  2.1 Mice 

C57BL/6 wile-type were provided by Dr. Betty A. Wu-Hsieh. Lgals1-/- and lgals3-/- 

mice were provided by Dr. Fu-Tong Liu. All mice are bred at the Laboratory Animal 

Center of National Taiwan University, College of Medicine. All mice were 

maintained in specific pathogen-free conditions, and were reviewed and approved by 

the Institutional Animal Care and Use Committee (IACUC). 

   2.2 In vitro pDC culture and DC subsets analysis 

Bone marrows were isolated from femurs and tibiae and filter the suspension through 

a 70µm filter. After using ammonium buffered chloride-potassium solution (ACK) to 

lyse the red blood cells (RBCs). BM cells were seeded into 12-well coating plate in 

RPMI1640 medium with 10% fetal bovine serum (FBS) and penicillin-streptomycin 

containing 100 ng/ml or indicated concentration of mouse Flt3L (PeproTech Inc.) at a 

density of 4x106 cells/ml or indicated density for 8 days or indicated days. Culture 

medium was replaced at d3 and d6 supplement with 100 ng/ml Flt3L. On day8, Flt3L-

BMDC were harvested. After cell counting, Flt3L-BMDC were reseeded to 24-well 

plate or 96-well plate and stimulated with TLR7/9 agonists. On d8 or d9, DC subsets 

were analyzed by flow cytometry, DCs were stained with allophycocyanin (APC) anti-

CD11c, fluorescein isothiocyanate (FITC) anti-CD11b, phycoerythrin-

indotricarbocyanine (PE/Cy7) 

 anti-Bst2, phycoerythrin (PE) anti-siglecH, biotin-anti B220, streptavidin 

allophycocyanin-indotricarbocyanine (APC/Cy7) for secondary labeling, and 

analyzed by BD FACSCanto II. pDCs are defined as CD11c+ CD11b- Bst2+ siglecH+ 

B220+, respectively, cDCs are defined as CD11c+ CD11b+ Bst2- siglecH- B220-. 
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   2.3 In vivo expansion of pDCs 

To expand the pDCs population, we use B16 melanoma cell line which stably 

transfected with mouse Flt3L. 3-4x106 cells were injected s.c. into back, and animals 

were sacrificed after 10-14 days. The percentage and number of splenic pDCs were 

significant enriched after tumor cell line injection. Enrichment of pDCs were 

confirmed by flow cytometry and cell counting. 

   2.4 Splenic DC isolation and DC subsets analysis 

After spleen isolated from tumor cell line injected mice or control mice, spleen were 

grounded by grinder and lysing the RBCs by ACK. For splenic DC isolation, splenic 

cells were stained by APC-anti CD11c, FITC-anti CD11b and PE/cy7 anti-Bst2, and 

pDC were defined as CD11cint CD11b- Bst2+, respectively, cDC were defined as 

CD11chigh CD11b+ Bst2-. Before sorting, the suspensions need to filter through 40un 

filter. For DC subsets analysis, splenic cells were stained by APC-anti CD11c, FITC-

anti CD11b, PE/cy7 anti-Bst2, PE-anti siglecH, biotin anti-B220 and streptavidin-

APC/cy7.  

   2.5 Functional assays of pDCs 

For in vitro Flt3L-BMDC functional assays, on d 8, Flt3L-BMDC or Flt3L-BMDC 

sorted by BD FACS Aria were seeded into 24-well plate with a density of 1x106 cells/

ml and stimulated with 1000nM CpG1585, 1000nM CpG2336, 1000nM CpG1826, 0.5

µg/ml R-848, or 5µg/ml IMQ for 6, 16 h to perform qCPR. Or, seeded in 96-well 

plate with a density of 2x105 cells/200µl and stimulated with 1000nM CpG1585, 

1000nM CpG2336, 1000nM CpG1826, 0.5µg/ml R-848, or 5µg/ml IMQ for 24 h, 

and added Brefeldin A (BFA) 9 h before harvest to perform intracellular staining 
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(ICS) of IFNα or IL-12. For ex vitro DC functional assay, splenic pDC and cDC were 

sorted by BD FACS Aria and stimulated with 1000nM CpG1585 or 0.5µg/ml R-848 

in 96 well plate for 24 h, and BFA was added 9 h before harvested to perform ICS. 

Expression levels of cytokine and activation marker were analyzed by BD FACS 

Canto II. For all functional assay, supernatant was collected for the detection of IL-12 

by ELISA and IFN-I by bioassay. 

   2.6 qPCR 

qPCR was performed on cDNA samples. cDNA (4 µl) was mixed with 6 µl Fast 

SYBR Green Master Mix (ABI?) contained  0.2 µM forward and reverse primers. 

The reaction was performed on a PikoReal 96 Real-Time PCR system (Thermo 

Scientific), and the result was analyzed by PikoReal software 2.1. Each PCR reaction 

was performed in duplicate. The relative number of each gene is normalized to 

mGAPDH, and the relative fold change was calculated based on the fold induction of 

the non-treated sample. 

   2.7 Bioassay for IFN-I 

IFN-I was detected by a reporter cell line which is a gift from Dr. Chien-Kuo Lee. 

The reporter cell line was stably transfected ISRE-RFP (interferon-sensitive response 

element-red fluorescent protein) a Stat3-/- MEF. The IFN-I conjugate to ISRE and 

drive RFP expression which can analyze by flow cytometry. Reported cells were 

seeded into 96-well flat-plate with a density 1.5x104 at a total volume 50 µl for one 

day. Sample supernatant and IFNα4 standard were added for 24 h. Standard 

concentrations were added in two-fold serial dilution from 300 U/ml to 0.15 U/ml. 

RFP+ cells were analyzed by BD FACS Canto II.  
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   2.8 Assessment of cytokine production by ELISA 

IFNα and IL-12p70 were quantified using an enzyme-linked immunoassay (ELISA:) , 

following the manufacturer’s instruction. 

   2.9 Flow cytometry 

For intracellular staining of IFNα, 293-IFNα cell line which over-express IFNα4 were 

used to as a positive control.  

   2.10 PMDC05 cell line 

PMDC05 cell line is a human pDC cell line with is a gift from Dr. Masuhiro 

Takahashi. The human pDC cell line was cultured in Iscove's modified Dulbecco's 

media (IMDM, Invitrogen, Grand Island, NY, USA) with 10% FBS at first, and then 

switch to compete medium with RPMI 1640 contained 10% FBS. 

   2.11 Statistical analysis 

Statistical analysis of experimental groups was performed by unpaired Student’s t-

tests using GraphPad Prism 6.0 software (GraphPad Software Inc., San Diego, CA). P 

< 0.05 was considered significant. 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   3.1 Establishing in vitro pDC culture system 

First, we need to setup the in vitro pDC culture system to perform the following 

experiment. We have tested several culture conditions, including numbers of BM cell 

at initial seeding, size of culture plate, culture duration (Fig. 1a), medium ,cytokine 

concentration (Fig. 1b). And we find out the optimal culture condition is seeding BM 

cell into 12-well plate at a density 4x106 in a total volume 2 ml medium which 

contain 10%FBS, 100x P/S, and 100 ng/ml Flt3L in RPMI 1640 for 9 d. At d3 and d6, 

1 ml medium was discarded and replaced with 1 ml fresh medium containing 100 ng/

ml Flt3L. At d8, the population of Flt3L-BMDC were harvested and reseeding to 

perform further functional assay. Also, analyzed by flow cytometry, and the Flt3L-

BMDCs are comprised of  about 30-40% pDC and 30-40% cDC and harvested about 

1x106 cells per well. 

   3.2 Expansion of pDC in vivo 

For ex vivo functional test, we need to isolate pDC from spleen. However, the 

percentage and numbers of pDC are little in the spleen. Hence, we use B16 melanoma 

cell line which stably transfected with murine Flt3L to expand the pDC percentages 

and numbers in vivo (Bjorck, Leong, & Engleman, 2011; Mach et al., 2000). 5x106 

B16/Flt3L cells were injected to mouse s.c. and the spleen enlargement can be 

observed after 14 d (Fig. 2a). The percentage of pDC were enriched about 10 times 

and the numbers were enriched about 40 times after B16/Flt3L injection (Fig. 2b). 

   3.3 Positive control of IFNα intracellular staining 

We use 293-IFNα cell line which can over express IFNα as a positive control of IFNα 

intracellular staining and use 293T as negative control (Fig. 3). 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   3.4 Galectins expression in pDC 

After setting up the assay  system, we further analyze the expression profile of 

galectin by qPCR in sorted splenic pDC. The mouse pDC expressed Gal-1, -3, -4, -8, 

-9. Galectin-1 has highest expression level and the second is galectin-3 (Fig. 4a), on 

the other hands, in cDC, galectin-3 has highest expression level, and galectin-1 is the 

second (Fig. 4b). Although the expression levels of galectin in pDC are different from 

human pDC, but the expression profile is similar (Harman et al., 2013). We also use 

flow cytometry to confirm the expression of Gal-3 in splenic pDC (Fig. 4c) and 

splenic cDC (Fig. 4d). The expression level of galectin-3 acquired by flow cytometry 

is consistent as we observed by qPCR. We also confirm the expression level of 

galectin-3 in Flt3L-BMDC (Fig. 5), and find out that Gal-3 are mainly expressed in 

the cytosol.  There are no Gal-3 binding on the surface of mouse pDC. Because of 

Gal-1 and Gal-3 in deed expressed in mouse pDC, we hypothesized that Gal-1 and 

Gal-3 may be involved in the development of pDC. 

   3.5 Galectin expression profile in human pDC cell line, PMDC05 

We also interested in the galectin expression level in human pDC cell line, and 

acquired the expression profile by qPCR. PMDC05 is a gift from Dr. Masuhiro 

Takahashi. The human pDC cell line was created from leukemia cells of pDC 

leukemia which express TLR4, TLR7 and TLR9. PMDC05 can produce IFNα and 

IL-12 after stimulation with CpG-A or LPS (Narita et al., 2009). PMDC05 expressed 

almost every galectin except gal-13 and gal-14 (Fig. 6), which expressed only in the 

placenta (Than et al., 2004). In the future, we can use PMDC05 to investigate the 
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mechanism of how galectin-1 or galectin-3 regulates the IFN-I response by knock 

down or over-expression galectins. 

   3.6 Galectin-3 doesn’t get involved in mouse pDC development 

It has been reported that gal-3 involved in T cell differentiation and development 

(Fermin Lee et al., 2013), however whether gal-3 expression affect the development 

of pDC is still unknown. To investigate the role of galectin-3 in pDC development, 

we first compare the pDC population and numbers of Flt3L-treated BM cell from WT 

and gal-3-/- mice (Fig. 7a and 7b). Second, we compare the population and numbers of 

splenic pDC from WT and gal-3-/- mice (Fig. 8a and 8b). There is no significant 

difference in the pDC population or numbers between WT and gal-3-/-  mice in vitro or 

in vivo. Hence, we conclude that galectin-3 may not get involved in the development 

of mouse pDC. 

   3.7 Gal-3-/- Flt3L-BMDCs exhibit augmented IFN-I and IL-12 

production in response to CpG or R848  

Galectin-3 deficiency mice revealed a promotion of inflammatory responses. To 

investigate whether galectin-3 also play a negative regulatory role in pDC, we first 

use CpG or R848 stimulate Flt3L-BMDC from WT and gal-3-/- mice in vitro. 

Surprisingly, we found that after TLR7 or TLR9 stimulation, the induction of IFN-I 

mRNA,ifnα, ifnα4,and ifnβ  (Fig. 9a and Fig. 11a) were significantly higher than WT 

Flt3L-BMDC. We further use a ISRE-RFP reporter cell line which can detect IFN-I to 

determine the production of IFN-I. At the protein level, the production and induction 

of IFN-I produced by gal-3-/- Flt3L-BMDC were higher than WT Flt3L-BMDC after 

CpG or R848 stimulation (Fig. 9b and Fig.11b). Because the reporter cell can only 
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sense IFN-I but can not distinguish difference expression level of IFNα or IFNβ. 

Hence, we use intracellular staining to confirm the expression of IFNα and found that 

the production of IFNα by gal-3-/- Flt3L-BMDC were higher than WT Flt3L-BMDC 

(Fig. 9c and Fig 11c). It is possible that the augmented production of IFN-I by gal-3-/- 

Flt3L-BMDC is due to the higher TLR7 or TLR9 expression. To clarify this 

possibility, we  acquired the TLR7 or TLR9 expression level after stimulation and 

find out that the expression level of TLR7 or TLR9 are comparable between WT and 

gal-3-/- Flt3L-BMDC after stimulation (Fig. 9a and Fig. 11a). To gain more 

information about the mechanism that how galectin-3 regulate the production of IFN-

I in pDC. We analyze the maturation status of  WT and gal-3-/- Flt3L-BMDC to 

investigate that whether the different ability of IFN-I production is due to different 

maturation status between WT and gal-3-/- Flt3L-BMDC. After CpG stimulation,  

upregulation of CD40, CD80, CD86 can be observed (Fig. 10). However, there are no 

significant difference between WT and gal-3-/- Flt3L-BMDC. We also compare the 

expression of PDC-TREM, which is a specific maturation marker of pDC, and found 

that the expression level of PDC-TREM in WT and gal-3-/- Flt3L-BMDC are 

comparable (Fig. 10). These results suggest that galectin-3 doesn't affect the 

maturation status of Flt3L-BMDC in vitro. And the augmented production of IFN-I 

by gal-3-/- Flt3L-BMDC was not caused by the different maturation status. It has been 

reported that gal-3-/- CD11c+ DCs produce higher IL-12 in response to LPS 

stimulation (Bernardes et al., 2006). Similar to LPS stimulation, gal-3-/- Flt3L-BMDC 

treated with CpG or R848 had a higher induction of IL-12 gene and production of IL-

12 than WT Flt3L-BMDC (Fig. 9d and Fig. 11d). These data suggest that galectin-3 
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may negatively regulate the IFN-I and production in Flt3L-BMDC upon the TLR9/7 

stimulation.  

   3.8 Sorted Flt3L-BMpDC from Gal-3-/- mice had higher IFN-I 

production after stimulation with CpG or R848  

The Flt3L-BMDC are comprised of about 30-40% pDC and 30-40% cDC (Fig. 7a 

and 7b), so we need to sort out the pure pDCs to exclude the possibility that the 

enhanced IFN-I production by gal-3-/- Flt3L-BMDC were actually mainly affected by 

cDC but not pDC or other influenced by cell-cell cross-talked. We sorted out the 

Flt3L-BMpDC and Flt3L-BMcDC as previously described, and define pDC as 

CD11cintCD11b-Bst2+, respectively, cDC as CD11c+CD11b+Bst2-. After CpG or R848 

stimulation, Flt3L-BMpDC from gal-3-/- mice had enhanced IFN-I production 

compared to WT (Fig. 12b and 13b), although the induction of IFN-I gene is 

comparable (Fig. 12a and 13a). We also acquired the TLR7 and TLR9 expression 

level and found that the expression level of TLR7 and TLR9 after stimulation are 

similar between WT and gal-3-/- sorted Flt3L-BMpDC (Fig. 12a and 13a). Although 

the induction of IL-12 gene was comparable between WT and gal-3-/- sorted Flt3L-

BMpDC after TLR9/7 stimulation. Sorted Flt3L-BMcDC from gal-3-/- mice had a 

higher production of IL-12 compare to Flt3L-BMcDC from WT after TLR7 or TLR9 

stimulation (Fig. 12c and 13c). Our data suggest that galectin-3 may play a negative 

regulatory role in BMpDC in vitro. However, it still needs further examination 

whether galectin-3 really play a negative role ex vivo or in vivo.  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   3.9 Sorted splenic pDC from Gal-3-/- mice had higher IFN-I 

production after stimulation with R848  

Beside sorted Flt3L-BMDC, we examine the pDC sorted from spleen to determine 

the role of galectin-3 ex vivo. Because of the pDC percentages and numbers are little 

in the spleen, we expand the pDC in vivo as previously described. After pDC sorted 

from spleen, we use CpG and R848 to stimulate pDC and perform further analysis. 

We found that upon CpG or R848 stimulation, splenic pDC from gal-3-/- mice 

produce more IFNα than splenic pDC form WT (Fig. 14a and 14c). And the IFNα 

production by gal-3-/- splenic pDC stimulated with R848 were higher than WT splenic 

pDC (Fig. 14e). Besides, the gal-3-/- splenic cDC treated with R848 produce more 

IL-12 compared to splenic cDC from WT (Fig. 14b and 14d).  Our data suggest that 

galectin-3 may also play a negative regulatory role in regulating IFN-I responses in 

pDC ex vivo. 

    3.10 Galectin-1 doesn’t get involved in mouse pDC development 

It has been reported that galectin-1 participate in T cell differentiation and 

development (Fermin Lee et al., 2013), however whether gal-3 expression affect the 

development of pDC is still unknown. To investigate the role of galectin-3 in pDC 

development, we first compare the pDC population and numbers of Flt3L-treated BM 

cell from WT and gal-3-/- mice (Fig. 7a and 7b). Second, we compare the population 

and numbers of splenic pDC from WT and gal-3-/- mice (Fig. 8a and 8b). There is no 

significant difference in the pDC population or numbers between WT and gal-3-/-  

mice in vitro or in vivo. Hence, we conclude that galectin-3 may not get involved in 

the development of mouse pDC. 
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   3.11 Gal-1-/- Flt3L-BMDCs exhibit an impaired IFN-I response 

after CpG or R848 stimulation  

Not only galectin-3, we also explored the role of galectin-1 in pDC functions. After 

CpG or R848 stimulation, the induction of IFN-I genes (Fig. 17a and Fig. 19a) and 

the production of IFN-I (Fig. 17b and Fig. 19b) were significantly lower in gal-1-/- 

Flt3L-BMDC compared to WT Flt3L-BMDC. We also use intracellular staining to 

confirm the production of IFNα (Fig. 17c and 19c). Similar results can be seen in 

intracellular staining that gal-1-/-Flt3L-BMDC exhibit an impaired IFN-I response 

after CpG or R848 stimulation. The lower induction and production of IFN-I by gal-1-

/- Flt3L-BMDC are not due to the lower expression of TLR7 and TLR9. The 

expression level of TLR7 and TLR9 of gal-1-/- Flt3L-BMDC are compared to WT 

Flt3L-BMDC (Fig. 17a and Fig. 19a). Either, the lower production of IFN-I doesn’t 

cause by different maturation status of gal-1-/- and WT Flt3L-BMDC (Fig. 18). The 

expression level of CD40, CD80, CD86 and PDC-TREM of gal-1-/- Flt3L-BMDC 

were comparable to WT Flt3L-BMDC. It has been reported that BMDC or Flt3L-DC 

from galectin-1-deficient mice produce higher IL-12 than BMDC or Flt3L-DC from 

WT mice after exposure to LPS (Ilarregui et al., 2009). Upon CpG or R848 

stimulation, gal-1-/-Flt3L-BMDC produce higher amount of IL-12 than WT Flt3L-

BMDC (Fig. 17d and Fig. 19d). Together, our data suggest that galectin-1 may play a 

positive role in regulating IFN-I production in pDC which contract to galectin-3. 

!
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   4.1 Distinct roles of galectin-1 and -3 in regulating the production 

of IFN-I by pDC 

Both gal-1-/- and gal-3-/- Flt3L-BMDC showed an augmented production of IL-12 

after treated with CpG or R848 (Fig. 9d ,11d, 17d and 19d). Our data suggest that 

galectin-1 and -3 play a same role in negatively regulate the production of IL-12 after 

TLR9/7 stimulation which consistent with previously reported that gal-1-/- and gal-3-/-  

BMDC had a higher IL-12 production than WT BMDC (Ilarregui et al., 2009) 

(Saegusa et al., 2009). Surprisingly, we found that the role of galectin-1 and 

galectin-3 are distinct in regulating the production of IFN-I by pDC. Gal-3-/- Flt3L-

BMDC showed an enhanced production of IFN-I (Fig. 9 and 11), in contrast, gal-1-/- 

Flt3L-BMDC exhibited a impaired production of IFN-I (Fig. 17 and 19). These data 

suggest that galectin-3 plays a negative role in IFN-I response, on the other hands, 

galectin-1 plays a positive role in regulating the IFN-I production by pDC. However, 

the mechanism of how galectin-1 and galectin-3 influence the production of IFN-I 

need to be further examined. We first demonstrated  that the different ability to 

produce IFN-I between WT, gal-1-/- and gal-3-/- Flt3L-BMDC are not due to different 

expression of TLR7 or TLR9 (Fig. 9a ,11a, 17a and 19a). Also, it is not because the 

different maturation status between WT, gal-1-/- and gal-3-/- Flt3L-BMDC. All of  WT, 

gal-1-/- and gal-3-/- Flt3L-BMDC had a comparable expression of CD40, CD80, CD86 

and PDC-TREM after CpG or R8484 stimulation (Fig. 10 and 18). This finding 

consistent with previously reported that the expression level of CD80 and CD86 in 

human monocyte deviated DC didn’t affect by galectin-1 or galectin-3 knock down 

(Mobergslien & Sioud, 2012). Interestingly, the pDC specific maturation marker, 
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PDC-TREM can only be induced by CpG but not R848, which means that the 

expression of PDC-TREM is TLR9-dependent. According to previously report, PDC-

TREM could be induce by polyU (Watarai et al., 2008), however, we couldn't 

observed the expression of PDC-TREM after R848. Perhaps the induction of PDC-

TREM is ligand specific.  

When comparing the difference of induction and production of IFN-I by WT and 

gal-1-/- Flt3L-BMDC, we noticed that the magnitude of induction of IFN-I gene were 

more obvious than the production of IFN-I. Suggest that there were post-

transcriptional regulation in modulating IFN-I signaling pathway. 

We also acquired the expression level of IRF7, an important signal molecule that 

could be phosphorylated and translocated to nucleus to initiate the transcription of 

IFN-I gene, and found that the basal level of IRF7 are comparable between WT and 

gal-3-/- Flt3L-BMDC (Fig. 9a). This data suggest that the phosphorylation of IRF7 

could be enhanced in gal-3-/- Flt3L-BMDC which leads to augmented induction and 

production of IFN-I. 

It has been reported that galectin-1-deficient mice had lower survival rates compare to 

WT mice when influenza virus infection (M. L. Yang et al., 2011). IFN-I is an 

important cytokine to induce the antiviral ability against viral infection such as 

influenza virus infection (Pauli et al., 2008). Our data suggest that Flt3L-BMDCs 

from gal-1-/- mice are impaired in producing IFN-I could be an explanation that gal-1-/

- mice had lower survival rates when influenza infection. To address this question, we 

could adoptive transfer pDC from WT, gal-1-/- and gal-3-/- mice to WT mice infected 

with influenza virus or other RNA or DNA virus. And evaluated the survival rate and 

�26



inflammation status to demonstrate the role of galectin-1 and galectin-3 in regulating 

the IFN-I response. 

   4.2 Galectin expression profile of human pDC cell line, PMDC05 

The galectin expression profile in human pDC has been reported. The most higher 

expression level of galectin in pDC is galectin-10 and the second is galectin-4. 

Unexpectedly, the galectin expression profile in PMDC05 is quite different. The most 

higher expression level of galectin in PMDC05 is galectin-1 and the second is 

galectin-9. The expression level of galectin-10 and galectin-4 are lower than other 

galectins. However, we still could knock down or over express the galectins in 

PMDC05 to study the IFN-I signaling pathway.!

   4.3 Autophagosome involved in transferring the nucleic-acid to 

TLR 

Recently, TLRs and autophagy had been thinking that they cooperate in the response 

to PAMPs (Arroyo et al., 2014). It has been reported that autophagy is involved in 

mediating type I IFN production in pDC in responses to RNA viruses. Autophagy 

facilitates the transferring viral RNA in the cytosol to endosome which containing of 

TLR7 (Lee, Lund, Ramanathan, Mizushima, & Iwasaki, 2007). Autophagy also 

enhances the delivering self DNA-containing immune complexes to TLR9 and induce 

augmented IFNα production (Henault et al., 2012). Besides, galectin-8 has been 

reported that involved in mediating autophagy. When Salmonella entrica infection, 

the expression level of galectin-8 up-regulated, and galectin-8 targets damaged 

vesicles for autophagy to defend cells against bacterial invasion (Thurston, Wandel, 

von Muhlinen, Foeglein, & Randow, 2012). Together, there are possibility that 
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galectin-1 or galectin-3 also involved in mediating the autophagy machinery and 

affect the nucleic acid transferring to TLR7 or TLR9 which will lead the different 

amount of IFN-I produce by pDC. 

   4.4 Functionless sorted splenic pDC 

When we try to examine our finding that gal-1-/- and gal-3-/-mice ex vivo, there was a 

strange problem came out. At first we use siglecH as marker to sort out the splenic 

pDC, but the pDC seems to be nonfunctional when stimulate with CpG. And because 

of that ligation of siglecH may induce a negative signal which lead to attenuate 

TLR9-induced type I IFN production (Blasius, Cella, et al., 2006). Probably that the 

Ab we used to recogniz pDC via siglecH inhibit the production of IFN-I, hence we 

use Ab recognize Bst2 instead of siglecH. However, the pDC sorted from the spleen 

still couldn't produce IFN-I when response to CpG. There is a study addressed this 

question at 2011. They consider that pDC can be divide into 2 subset by CD9 

expression. CD9+ pDCs are able to produce large amount of IFN-I, after CD9+ pDCs 

migrate to peripheral tissues, they lose CD9 expression and the ability to produce 

IFNα. They also demonstrate that splenic pDC are mainly CD9- (Bjorck et al., 2011). 

So, this is may be the reason that the pDCs sorted from spleen are always having 

lower ability to produce IFN-I. However, after using TLR7 agonist instead of TLR9 

agonist, we can observed the IFNα production by intracellular staining.!

   4.5 phosphorylation of galectin 

In many signaling pathway, phosphorylation is important to activate signal 

transducing molecules to transduce the signaling. Galectins are able to be 

phosphorylated, such as galectin-3 and galectin-4. Galectin-4 can be tyrosine 
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phosphorylated by members of the Src kinase family (Ideo, Hoshi, Yamashita, & 

Sakamoto, 2013) and galectin-3 could be phosphorylated at N-terminal Ser6(major) 

and Ser12 (minor) (Mazurek, Conklin, Byrd, Raz, & Bresalier, 2000). These study 

indicate that galectins may has the ability to interact with other signal transducing 

molecules. Perhaps, phosphorylation of galectin-3 involved in regulating IFN 

signaling in pDC and lead to augmented IFN-I production. 

In sum, this study provides an evidence that galectin-1 and -3 get doesn't involved in 

pDC development and offers an insight into the distinct role of galectin-1 and galectin-

3 in regulating IFN-I production by pDC. 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Figure   1. Establishing pDC in vitro culture system.    

Different culture conditions such as culture plate and numbers of BM cell at initial 

seeding (a) culture days (b) concentration of Flt3L were tested. Finally, the optimal 

culture condition is seeding BM cell into 12-well plate at a density 4x106 in a total 

volume 2 ml medium which contain 10%FBS, 100x P/S, and 100 ng/ml Flt3L in 

RPMI 1640 for 9 d. At d3 and d6, 1 ml medium was discarded and replaced with 1 ml 

fresh medium containing 100 ng/ml Flt3L. 
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Figure   2. pDC expansion in vivo.    

(a) The size of spleen was enlarged after 5x106 B16/Flt3L cells injected to mouse s.c. 

for 14 d. (b) The percentage and numbers of pDC and cDC are enriched by B16/Flt3L  

injection. The arrow indicates the injection site. 
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Figure   3. Positive control of IFNα intracellular staining     

We use 293-IFNα cell line which can over express IFNα as a positive control of IFNα 

intracellular staining. 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Figure   4. Galectin expression in splenic pDC and cDC.     

Mouse splenic pDC and cDC were sorted by FACS Aria and galectin expression 

profile in mouse splenic (a) pDC and (b) cDC were acquired by qPCR. Relative 

number of galectin mRNA expression levels were normalized to mGAPDH.  

Galectin-3 expression in mouse splenic (c) pDC and (d) cDC were confirmed by 

intracellular staining. Splenic pDC was defined as CD11cint CD11b- siglecH+, 

respectively, cDC was defined as CD11chigh CD11b+ siglecH-. 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Figure   5. Galectin-3 expression in Flt3L-BMDC.     

Galectin-3 expression in Flt3L-BMDC was examined by flow cytometry. pDC and 

cDC were defined as previously mentioned. Galectin-3 expression are not on the 

surface but mainly express in cytosol. 
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Figure   6. Galectin expression profile in PMDC05.     

Galectins expression profile in human pDC cell line was acquired by qPCR. The 

relative number of mRNA expression level of each sample was normalized to human 

actin expression. 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Figure   7. Compare percentage and numbers of Flt3L-BMDC from WT and 

gal-3-/- mice in vitro.     

(a,b) BM cell from WT and gal-3-/-  mice were cultured with 100 ng/ml mFlt3L for 8 

d. The percentage and number of Flt3L-BMDC from WT and gal-3-/-  mice were 

analyzed by flow cytometry. pDC was defined as CD11c+CD11b-siglecH+. The 

percentage and cell numbers of Flt3L-BMDC from WT and gal-3-/- mice are 

comparable. 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Figure   8. Compare percentage and numbers of splenic pDC from WT and 

gal-3-/- mice ex vivo.     

(a,b) The population and number of splenic pDC from WT and gal-3-/-  mice were 

analyzed by flow cytometry. pDC was defined as CD11c+CD11b-siglecH+.  The 

percentage and cell numbers of splenic pDC from WT, gal-1-/- and gal-3-/- mice are 

comparable. 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Figure   9. Examine the role of galectin-3 in Flt3L-BMDC response to CpG in 

vitro.    

The mRNA expression level  of IFN-I, IRF7, TLR9 (a) and IL-12p40 (d) in Flt3L-

BMDC induced by 1000nM CpG-A for 16 h. The relative number of mRNA 

expression level of each sample was normalized to mouse GAPDH expression. The 

fold change was calculated by basing on the fold induction of nontreated samples. To 

analysis the production of IFNα (a) and IL-12p70 (d), the supernatants of Flt3L-

BMDC were harvested after 1000nM CpG-A stimulation for 24 h. (c) Flt3L-BMDC 

were stimulated with 1000nM CpG-A for 24 h, and BFA were added for 9 h before 

harvested. Cells were gated on CD11c+CD11b-Bst2+ and analyzed IFNα production 

by ICS. 
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Figure   10. Examine the maturation status of  WT and gal-3-/- Flt3L-BMDC 

response to CpG in vitro.     

Flt3L-BMDC were stimulated with 1000nM CpG for 16 h and analyzed the 

expression level of maturation markers, CD80, CD86, CD40 and PDC-TREM. Cells 

were gated on CD11c+CD11b-siglecH+ and analyzed various maturation markers. 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Figure   11. Examine the role of galectin-3 in Flt3L-BMDC response to R848 in 

vitro.    

The mRNA expression level  of IFN-I, IRF7, TLR9 (a) and IL-12p40 (d) in Flt3L-

BMDC induced by 0.5 µg/ml R848 for 16 h. The relative number of mRNA 

expression level of each sample was normalized to mouse GAPDH expression. The 

fold change was calculated by basing on the fold induction of nontreated samples. To 

analysis the production of IFNα (a) and IL-12p70 (d), the supernatants of Flt3L-

BMDC were harvested after 0.5 µg/ml R848 stimulation for 24 h. (c) Flt3L-BMDC 

were stimulated with 0.5 µg/ml R848 for 24 h, and BFA were added for 9 h before 

harvested. Cells were gated on CD11c+CD11b-Bst2+ and analyzed IFNα production 

by ICS. 
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Figure   12. Examine the role of galectin-3 in sorted Flt3L-BMDC response to 

CpG in vitro.    

The mRNA expression level of IFN-I, TLR9 in sorted Flt3L-BMpDC (a) and IL12 in 

BMcDC (c) induced by 1000nM CpG-A for 16 h. The relative number of mRNA 

expression level of each sample was normalized to mouse GAPDH expression. The 

fold change was calculated by basing on the fold induction of nontreated samples. 

(b,c) The supernatants of sorted Flt3L-BMpDC and BMcDC were harvested after 

1000nM CpG-A stimulation for 24 h. Supernatants of BMpDC were collected and 

analyzed the IFN-I production, respectively, supernatants of BMcDC were collected 

to perform ELISA for IL-12. 
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Figure   13. Examine the role of galectin-3 in sorted Flt3L-BMDC response to 

R848 in vitro.    

The mRNA expression level of IFN-I, TLR9 in sorted Flt3L-BMpDC (a) and IL12 in 

BMcDC (c) induced by 0.5µg/ml R848 for 16 h. The relative number of mRNA 

expression level of each sample was normalized to mouse GAPDH expression. The 

fold change was calculated by basing on the fold induction of nontreated samples. 

The supernatants of sorted Flt3L-BMpDC (b) and BMcDC (c) were harvested after 

0.5µg/ml R848 stimulation for 24 h. Supernatants of BMpDC were collected and 

analyzed the IFN-I production, respectively, supernatants of BMcDC were collected 

to perform ELISA for IL-12. 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Figure   14. Examine the role of galectin-3 in sorted splenic DC response to CpG 

ex vivo. 

Sorted splenic pDC (a, c) and cDC (b, d) from B16/Flt3L tumor cell injected mice 

were stimulated with 1000 nM CpG (a, b) or 0.5 µg/ml R848 (c, d) for 24 h. The 

supernatant were collect to analysis the production of IFN-I and IL-12. (e) To analysis 

the IFNα production by ICS. Sorted splenic pDC were stimulate with 0.5 µg/ml R848 

for 24 h, BFA were added for 9 h before harvested. Cells were gated on 

CD11c+CD11b-Bst2+ and analyzed IFNα production. 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Figure   15. Compare percentage and numbers of Flt3L-BMDC from WT and 

gal-1-/- mice in vitro.     

(a,b) BM cell from WT and gal-1-/-  mice were cultured with 100 ng/ml mFlt3L for 8 

d. The percentage and number of Flt3L-BMDC from WT and gal-1-/-  mice were 

analyzed by flow cytometry. pDC was defined as CD11c+CD11b-siglecH+. The 

percentage and cell numbers of Flt3L-BMDC from WT and gal-1-/- mice are 

comparable. 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Figure   16. Compare percentage and numbers of splenic pDC from WT and 

gal-1-/- mice ex vivo.     

(a,b) The population and number of splenic pDC from WT and gal-1-/-  mice were 

analyzed by flow cytometry. pDC was defined as CD11c+CD11b-siglecH+.  The 

percentage and cell numbers of splenic pDC from WT and gal-1-/- mice are 

comparable. 
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Figure   17. Examine the role of galectin-1 in Flt3L-BMDC response to CpG in 

vitro.    

The mRNA expression level  of IFN-I, TLR9 (a) and IL-12p40 (d) in Flt3L-BMDC 

induced by 1000nM CpG-A for 16 h. The relative number of mRNA expression level 

of each sample was normalized to mouse GAPDH expression. The fold change was 

calculated by basing on the fold induction of nontreated samples. To analysis the 

production of IFNα (a) and IL-12p70 (d), the supernatants of Flt3L-BMDC were 

harvested after 1000nM CpG-A stimulation for 24 h. (c) Flt3L-BMDC were 

stimulated with 1000nM CpG-A for 24 h, and BFA were added for 9 h before 

harvested. Cells were gated on CD11c+CD11b-Bst2+ and analyzed IFNα production 

by ICS. 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Figure   18. Examine the maturation status of  WT and gal-1-/- Flt3L-BMDC 

response to CpG in vitro.     

Flt3L-BMDC were stimulated with 1000nM CpG for 16 h and analyzed the 

expression level of maturation markers, CD80, CD86, CD40 and PDC-TREM. Cells 

were gated on CD11c+CD11b-siglecH+ and analyzed various maturation markers. 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Figure   19. Examine the role of galectin-3 in Flt3L-BMDC response to R848 in 

vitro.    

The mRNA expression level  of IFN-I, IRF7, TLR9 (a) and IL-12p40 (d) in Flt3L-

BMDC induced by 0.5 µg/ml R848 for 16 h. The relative number of mRNA 

expression level of each sample was normalized to mouse GAPDH expression. The 

fold change was calculated by basing on the fold induction of nontreated samples. To 

analysis the production of IFNα (a) and IL-12p70 (d), the supernatants of Flt3L-

BMDC were harvested after 0.5 µg/ml R848 stimulation for 24 h. (c) Flt3L-BMDC 

were stimulated with 0.5 µg/ml R848 for 24 h, and BFA were added for 9 h before 

harvested. Cells were gated on CD11c+CD11b-Bst2+ and analyzed IFNα production 

by ICS. 

!

Figure   20. A model of the role of galectin-1 and -3 in regulating IFN-I response 

after TLR9/7 stimulation. 

Galectin-3 may play a negative role in regulating IFN-I production by pDC, in 

contrast, galectin-1 may play a positive role to regulate the IFN-I response. 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