
 

 

 

Department of Civil Engineering 

College of Engineering 

National Taiwan University 

Doctoral Dissertation 

Numerical Models for  

Shallow Water Equations and Richards Equation 

Hsiang, Chien-Chang 

Major Professor: Young, Der-Liang 

103 7

July, 2014 



 

 

 



 

I 

 

(RBF)

Richards



 

II 

 

Abstract 

In this dissertation, the multi-dimensional shallow water equations (also called the de  

Saint Venant equations in its one-dimensional form) and the Richards equation are 

considered. The motivation is to develop a convenient, efficient and accurate numerical 

scheme for engineering problems. The numerical modeling are used to verify the 

accuracy, efficiency and applicability of the numerical solutions for the above governing 

equations. The mainly used numerical methods include the radial basis functions (RBFs) 

meshless method and the mixed Lagrangian-Eulerian method with finite element 

method (MLE-FEM). The advantage of the RBF meshless method is to avoid the mesh 

generation and numerical integration in complicate domain problems. However, the full 

matrix system in the computing spends a lot of computational resource and time. The 

localized meshless method is applied in this study to avoid the full matrix solver. By 

considering only the important reference points, the computational cost can be reduced 

without losing much accuracy. By using the concept of particle tracking along the 

characteristic lines, the problems with discontinued field values can be solved. However, 

this method is not accurate in directly solving the highly non-linear problems, such as 

the saturated-unsaturated ground water flow problems. The computational efficiency 

will reduce if we increase the computational nodes blindly. In this study, the governing 
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equations are derived into advection forms, and are solved by the MLE-FEM scheme.

The simulative results are efficient and accurate by adapting computational nodes while 

tracking the particles. By combining the meshless methods and the particle tracking 

technique, the numerical methods have high applicability with high efficiency and 

accuracy in complicate boundary problems, such as shallow water and Richards 

equations. 

Keywords:  

Radial basis function, meshless, particle tracking, shallow water equations, Richards 

equation 
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Chapter 1. Introduction 

In this chapter, the motivation and objectives of this dissertation is expressed first, then 

the governing equations and the numerical methods will be introduced briefly, and the 

organization of this dissertation will be represented finally. 

1.1 Motivation and objectives 

Numerical analysis has become more and more popular with the rapid development of 

the computer science. In the computational fluid dynamics (CFD) field, the mesh-

dependent numerical methods, such as the finite difference method (FDM), the finite 

volume method (FVM) and the finite element method (FEM), have been well developed 

as several commercial codes. The requirements of the numerical integration and the 

mesh generation in complex computational domains for the mesh-dependent methods 

reduce the applying convenience. The meshless methods are developed to avoid the 

numerical integration and the mesh generation procedures. However, the conventional 

meshless methods does not have sufficient stability and efficiency, some meshless 

methods even have the necessary to adjust uncertain parameters. To obtain an efficient, 

accurate, stable and convenient numerical method, several numerical methods will be 

studied in the dissertation. 

1.2 Numerical methods 
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The meshless numerical methods with the radial basis function (RBF) have been 

broadly studied in recent years. The RBF collocation method was first proposed by 

Kansa (1990) [1.R1][1.R2]. To improve the computational efficiency and the parameter 

stability, the localized technique is applied separately by different authors with different 

names: Shu et al. (2003) [1.R3] have proposed the localized RBF differential quadrature 

(LRBFDQ); Tolstykh et al. (2003) [1.R4] have proposed the RBF in a “finite difference 

mode”; Wright (2003) [1.R5] have proposed the RBF finite difference method. The 

meshless method proposed in this dissertation are the LRBFDQ method and the 

LRBFDQ with Newton-Raphson (LRBFDQNR) method. By considering multiquadric 

(MQ) as the RBF, the method can be renamed as the localized multiquadric differential 

quadrature (LMQDQ) method and the LMQDQ with Newton-Raphson (LMQDQNR) 

method. 

For introducing the particle tracking technique, the mesh dependent method, the mixed 

Lagrangian-Eulerian with finite element method (MLE-FEM) is considered in this 

dissertation. These numerical methods will be illustrated in detail within Chapter 2 to 

Chapter 5. 

1.3 Governing equations 
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For the numerical simulations, the water circulation considered in the watershed mainly 

include the following phenomenon: evaporation, precipitation, stream flow, overland 

flow, infiltration and groundwater flow. 

In the stream flow problems, the 1D shallow water equations (also called the de Saint 

Venant equations) can be considered to describe this problem. For the overland flow 

cases with lakes or reservoirs, the 2D shallow water equations can be considered. For 

the groundwater flow problems, the 3D modified Richards equation can be introduced 

to simulate the infiltration in porous media.  

1.4 Organization of the dissertation 

In this dissertation, several numerical methods will be introduced to solve the shallow 

water equations and the groundwater flow equation. In Chapter 2, the LRBFDQ method 

and the LRBFDQNR method are applied to solve the shallow water equations. In 

Chapter 3, the MLE-FEM model is used to solve the shallow water equations with 

shock wave problems. In Chapter 4, the LRBFDQNR method is introduced to solve the 

groundwater flow equation. In Chapter 5, the MLE-FEM model is applied to solve the 

groundwater flow equation with sharp front problems. Important conclusions and scope 

for future works will be represented in Chapter 6. 

1.5 References 
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Chapter 2. Shallow Water Equations by Localized Meshless Methods 

In this chapter, several localized meshless numerical methods are applied to solve the 

one and two dimensional shallow water equations. In general, meshless (meshfree) 

methods can easily be applied to complex boundaries, such as in the hydraulic 

engineering problems. Considering the accuracy and computational efficiency, the 

localized procedures are applied in the dissertation. Several localized meshless methods 

based on the radial basis functions (RBFs) are considered, such as the localized radial 

basis functions differential quadrature (LRBFDQ) method and the localized radial basis 

function collocation method (LRBFCM). With different characteristics, the adopted 

radial basis functions (RBFs) can be chosen from several types such as multiquadric 

(MQ), integral multiquadric (MQ), Gaussian, or polyharmonic spline (PS). On temporal 

discretization, the Houbolt method, an implicit three-step recurrence scheme that based 

on the third-order Lagrange interpolation function, is introduced for higher accuracy. To 

improve the convergence of non-linear terms, the governing equations can be expressed 

as polynomial forms, and solved iteratively by the Newton-Raphson method in 

LRBFCM. The performance of our models are discussed by the numerical analysis of 

several numerical experiments. Based on the success of these numerical results, good 

performance and flexibility of these meshless numerical methods are demonstrated.
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2.1 Introduction 

The shallow water equations (SWEs) are derived from the depth-integrating Navier-

Stokes equations, and can be used in the cases where the horizontal length scale is much 

larger than the vertical length scale. The SWEs have been applied widely in ocean and 

hydraulic engineering problems, such as tidal fluctuations, open channel problems and 

tsunamis. For realistic engineering problems with complex boundaries, meshless 

schemes represent their excellent applicability and flexibility. In recent years, many 

mesh-dependent and meshless (mesh-free) numerical schemes have been developed to 

solve the SWEs. Burguete et al. [2.R1] have used the total variation diminishing (TVD) 

schemes to solve the 1D shallow water flows with source terms. Castro et al. [2.R2] 

developed a finite volume scheme with reconstruction of states to solve the 1D shallow 

water systems. Noelle et al. [2.R3] built a well-balanced finite volume weighted 

essential non oscillation (WENO) schemes to solve the 2D shallow water equations.  

Discharge collection for the boundary conditions in realistic engineering problems is

sometimes a difficult work. In this dissertation, since the 2D shallow water equations 

are solved by the coupling formula, the treatment for the boundary conditions can be 

easier. Several numerical simulations with different combination of boundary conditions 

will be shown in detail. To obtain higher accuracy, the Houbolt method [2.R4] [2.R5], 
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an implicit three-step recurrence scheme that based on the third order Lagrange 

interpolation function, is introduced on temporal discretization in the research. Gu [2.R6]

have applied the Houbolt method to solve the wave equations. 

The radial basis function collocation method (RBFCM), also called the Kansa method 

[2.R7] [2.R8], is the simplest meshless method based on the RBFs. However, the 

RBFCM need to spends a number of resources in solving the full matrix system. At 

each computational node, we can consider only the nearby nodes (local nodes) to build 

sparse matrices, therefore the localized procedure can be applied to reduce the 

computational resource requirement. Taking the advantage of the computing efficiency 

and the convenience of dealing with irregular domains, we first apply the localized 

radial basis function differential quadrature (LRBFDQ) method to solve the shallow 

water equations. The LRBFDQ method is one of the most popular localized meshless 

methods. The idea of the LRBFDQ method was first proposed by Shu [2.R9] and has 

successfully been applied to many engineering problems [2.R10][2.R11][2.R12]. The 

main idea of the present method is to combine the radial basis functions (RBFs) and the 

localized differential quadrature (LDQ) method [2.R13]. Another method, the localized 

radial basis function collocation method, is then used for solving some nonlinear cases. 

The LRBFCM has been proposed to have high accuracy on diffusion problems by 
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Sarler et al [2.R14].  Kosec et al. [2.R15] have applied the LRBFCM successfully to 

Darcy flow as well. For nonlinear problems, the Newton-Raphson method can be 

introduced to improve the stability of convergence. Leffe et al. [2.R16] have proposed a 

Smoothed Particle Hydrodynamics (SPH) modeling of shallow water coastal flows with 

the Newton-Raphson method. Darbani et al. [2.R17] have used the natural element 

method to simulate a 2D shallow water flows with the Newton-Raphson method. Liu et 

al. [2.R18] have applied the Newton-Raphson method with the RBFCM to analyze the 

micro-electromechanical systems. Miguel et al. [2.R19] have presented a corrected SPH 

formulation of the SWEs with the Newton-Raphson method as well. In this dissertation, 

the Newton-Raphson method is also combined with the LMQDQ to solve the nonlinear 

SWEs. In general, localized methods sacrifice a little bit accuracy but improve the 

stability and computing resource requirement in comparison with the corresponding 

global methods. To obtain the best performance, several common RBFs are chosen as 

the test functions for calculating the weighting coefficients. The used RBFs include: 

Multiquadric (MQ) [2.R10][2.R7][2.R8], Integral Multiquadric (IMQ) [2.R20], 

Gaussian [2.R21], and polyharmonic spline [2.R22]. The LIMQDQ method which is 

also the so called, localized method of approximate particular solution (LMAPS) [2.R23]

method, has been recently developed to solve various types of PDEs. The mathematical 
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derivations of the shallow water equations are shown in section 2.2. Section 2.3 

delineates the localized meshless methods and the numerical skills for boundary 

conditions and nonlinear terms. The numerical experiments are displayed in section 2.4, 

and then section 2.5 concludes the methods in this chapter. 

2.2 Governing equations 

2.2.1 Shallow water equations 

The shallow water equations are derived from the depth-integrating Navier-Stokes 

equations, and can be used in the case where the horizontal length scale is much greater 

than the vertical length scale. Only the problems with no breaking waves can be solved 

by the shallow water equations. The continuity equation and momentum equation of 1D 

shallow water problems are shown as follows: 

(2.2-1)

(2.2-2)

where the unknowns  and  denotes the cross section area and discharge,  is time, 

 is the side flow discharge per unit length, g denotes the gravity coefficient,  is the 

water depth,  is the side flow velocity at x-direction,  is the slope of the riverbed, 

and  is the fricative slope which can be determined by the following equation: 



 

2-6 

 

(2.2-3)

where  is the Gauckler-Manning coefficient, u is the average velocity along the x-

direction and  is the hydraulic radius. The parameter setting is  under the 

metric system, and  under the imperial system. 

Under the assumption of constant channel width and neglect the side flow effects, Eq. 

(2.2-1) and Eq. (2.2-2) can be derived as: 

(2.2-4)

(2.2-5)

By substituting Eq. (2.2-4) to Eq. (2.2-5), the governing equations can be derived as: 

(2.2-6)

(2.2-7)

thus the unknowns change to the water depth  and velocity .

For flat bottom cases and neglect the energy slope effect, the shallow water equations 

can be derived as: 

(2.2-8)

(2.2-9)

By substituting Eq. (2.2-8) into Eq. (2.2-9), the governing equations can be written as: 

(2.2-10)
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(2.2-11)

For linear wave problems, the non-linear effects are small and can be neglected, then the 

problems can be described by the linear shallow water equations: 

(2.2-12)

(2.2-13)

where  denotes the mean water depth. 

For 2D shallow water wave problems, the governing equations in conservative form can 

be written as: 

(2.2-14)

(2.2-15)

(2.2-16)

where the unknowns  are respectively the water depth, the velocity along the x-

direction, and the velocity along the y-direction,  is time and  is the gravity 

coefficient,  and  are the water fluxes due to eddy viscosity along the x-

direction,  and  are the water fluxes due to eddy viscosity along the y-direction, 

 and  are the surface and bottom shear stress along the x-direction,  and 
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are the surface and bottom shear stress along the y-direction.  is the source,  and 

 denote respectively the x-component and y-component source momentum-impulse. 

For cases that neglect the source, stress and eddy viscosity effects, the 2D shallow water 

equations can be written as:

(2.2-17)

(2.2-18)

(2.2-19)

For flat bottom cases, the 2D shallow water equations can be derived as: 

(2.2-20)

(2.2-21)

(2.2-22)

By substituting Eq. (2.2-20) into Eq. (2.2-21) and Eq. (2.2-22), the governing equations 

can be derived as: 

(2.2-23)

(2.2-24)

(2.2-25)

For linear wave cases, the 2D linear shallow water equations are derived as follows: 

(2.2-26)
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(2.2-27)

(2.2-28)

where  denotes the mean water depth. 

2.2.2 Initial conditions: 

The considering problems include some dam break problems, channel flows and real 

field river problems. For the dam break problems, the initial velocities are usually set to 

zero, and the water elevations are set as the situation before dam breaking. For the

simple channel problems, such as the laboratory experimental cases, the initial 

conditions are set by steady state data. For the real river problems, we can use the 

realistic measuring data. In case of lacking of data, we can fix an initial discharge and 

compute until steady state, then set the result as the initial conditions. 

2.2.3 Boundary conditions: 

For the problems without inflows, such as dam break cases, the computational domains 

are usually set as closed basins. We will not face the dry bed problems by this way. The 

boundary conditions for basin problems are set as no penetration and no slip condition, 

but in large scale problems, slip condition is acceptable and easier for the computation. 

In the channel or river cases, the boundary condition settings depend on the flowing 

situation: 
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For the supercritical cases, the boundary conditions of both water elevation and velocity 

are given at the upstream. If we do not have the complete data at the upstream, the h-Q

rating curve is useful for the boundary condition settings. 

For the subcritical cases, one boundary condition is set at the upstream, and another is 

set at the downstream. We can also use the h-Q rating curve for the boundary condition 

settings, and compute the unknowns by the iterating procedure. 

In the mixed flow cases, we need to check the Froude number at the downstream 

boundary point in every time step to determine the necessity of downstream boundary 

conditions during the computation. 

2.3 Numerical methods 

2.3.1 Discretization of time: 

Take the 2D shallow water equations as an example, the discretization of the shallow 

water equations is shown in the following: 

2.3.1.1 Euler discretization:

By the following relationship: 

(2.3-1)

Eq. (2.2-23) to (2.2-25) can be discretized as follows: 
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(2.3-2)

(2.3-3)

(2.3-4)

where the superscript denotes unknown time step,  denotes the known time 

steps,  is the time interval, and parameter  is between 0 (explicit) and 1 (implicit).

 is the Crank-Nicolson method. By moving all the known terms to the right 

hand side, Eqs. (2.3-2) to (2.3-4) can be derived as:

(2.3-5)

(2.3-6)

and

(2.3-7)

2.3.1.2 Discretization by the Houbolt method: 
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The Houbolt method is proposed to have three order accuracy in the discretization for 

time, the definition is shown in Eq. (2.3-8). 

(2.3-8)

The parameter  is equal to 1 in the Houbolt method, then Eq. (2.2-23) to (2.2-25) can 

be discretized as follows: 

(2.3-9)

(2.3-10)

and

(2.3-11)

2.3.2 LRBFDQ with Newton-Raphson method 

Take the 1D shallow water equations as example, the governing equations are Eq. (2.2-6) 

and Eq. (2.2-7). 

(2.2-6)

(2.2-7)
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By introducing the Multiquadric (MQ) RBF  to the spatial discretization, the 

unknown variables  and  can be described locally as follows: 

(2.3-12)

where ,  is the global node number, and  is the local 

nodes number. Appropriate parameter  leads to good accuracy of  and .

From Eq. (2.3-12), the weighting coefficient  and  for every set of local nodes can 

be obtained from Eq. (2.3-13), and the derivative terms are shown as Eq. (2.3-14) 

(2.3-13)

(2.3-14)

where the derivative product of MQ RBF is 

,

and 

On temporal discretization, the Houbolt method is applied as Eq. (2.3-15),
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(2.3-15)

where the superscript  denotes the unknown time step; , ,  are the 

known time steps. 

For  with Eq. (2.3-14) and (2.3-15), the governing equations (2.2-6) and (2.2-7) 

can be discretized at point  as follows: 

(2.3-16)
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Applying the Newton-Raphson method, we can write the global matrix system as Eq. 

(2.3-17).

(2.3-17)

where matrix , ,  and  are shown in Eqs. (2.3-18)-(2.3-21).

(2.3-18)

(2.3-19)



 

2-16 

 

(2.3-20)

(2.3-21)

The differential value in Eq. (2.3-18) to Eq. (2.3-21) can be simply obtained 

numerically from the definition of  

The Dirichlet boundary conditions can be given by setting the corresponding  or 

to 0, and then set  or  on the boundary points to the boundary values. We can get 
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the values of  and , then the unknowns read  and  can be obtained 

from Eq. (2.3-22).  

(2.3-22)

The governing equations can be solved by the iteration of Eq. (2.3-17) and Eq. (2.3-22) 

2.3.3 The LRBFDQ method

The LRBFDQ method is one kind of the meshless methods. Which is extended from the 

differential quadrature (DQ) method. The differential quadrature is the approximation of 

derivatives by using weighted sums of the function values. 

Considered the concept of DQ, the  derivative at a point  can be described as a 

weighted linear sum of all the functional values,  

(2.3-23)

where N is the number of global nodes,  is the real function value at node , and 

 is an N by N weighting matrix.  

If we select NL closest nodes relative to the considering point as the local nodes, then 

the method can be localized and only local nodes need to be considered in the 

calculation. To connect global nodes and local nodes, we set an index , for 

each global point , where , and  is the corresponding global nodes. 

The localized relationship can be expressed as
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(2.3-24)

where  is the unknown weighting coefficient at point . The RBF  is 

introduced to determine , then for the local nodes of every point , we have the 

relation as 

(2.3-25)

Since the RBF value  and its derivatives are known, and the matrix is non-

singular, hence we can get  by solving Eq. (2.3-25). Consider the following equation 

as an example: 

(2.3-26)

where  is unknown and  is the known source term. By introducing the DQ 

method, Eq. (2.3-26) can be written as 

(2.3-27)

We can set a coefficient  so that 
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(2.3-28)

The weighting matrix  can be obtained by

(2.3-29)

The Dirichlet boundary condition at  can be set as 

(2.3-30)

Then the unknown  in Eq. (2.3-26) can be found by solving Eq. (2.3-30). This is the 

so called, LRBFDQ method. Several different kinds of RBFs can be chosen here, and 

will be discussed in the next section. 

2.3.4 Radial basis functions: 

To observe the performance of the LRBFDQ method in numerical experiments, the 

following RBFs are chosen as test functions for calculating the weighting coefficients: 

the multiquadric (MQ), the integral multiquadric (IMQ), the Gaussian, and the 

polyharmonic spline (PS). These RBFs are introduced briefly as follows: 

For 2D cases, let , where ,

. The values of RBFs  and their derivational products are represented in 

the following: 
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Multiquadric (MQ): 

(2.3-31)

(2.3-32)

(2.3-33)

Integral multiquadric (IMQ): 

(2.3-34)

(2.3-35)

(2.3-36)

Gaussian: 

(2.3-37)

(2.3-38)

(2.3-39)

Polyharmonic spline (PS): 

(2.3-40)

(2.3-41)

(2.3-42)

To observe the accuracy of each RBFs in 2D domains, we consider the following 

governing equation 
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(2.3-43)

The boundary conditions are set by Eq. (2.3-44) along the edges of the computational 

domain, which is a square with  and  from 0 to 1.

(2.3-44)

Eq. (2.3-44) can be considered as the designed analytical solution as well. We distribute 

400 uniform nodes in the domain. Fig. 2.3-1 shows the error with different  of the 

MQ, the IMQ and the Gaussian RBFs, where  is the maximum error in the 

computational domain. The selection of local nodes is described in section 2.7. The 

results show that the accuracy for NL = 5 are much better than the one for NL = 9. For 

this reason, we will set NL = 5 in the following tests. 

The error for the PS are represented in Fig. 2.3-2, which shows that the polyharmonic 

spline is not suitable in this case. There is no need to adjust c for the PS-RBF, and the 

parameter c is highly dependent on the number of local points. However, the result 

shows that the first-derivation by PS-RBF is not accurate in this case. Since the shallow 

water equations contain many first-derivation terms, the PS-RBF will not be considered 

in the following tests.  

The errors for different number of global nodes are shown in Fig. 2.3-3. An interesting 

phenomenon is observed: the accuracy for highly concentrated nodes case is not really 
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better than the cases with sparse nodes. However, for the Gaussian RBF, the stability of 

parameter c is better with dense nodes. 

2.3.5 Coupling formula 

By introducing the LRBFDQ method, the weighting matrices  and  can 

be gotten. The relationship between weighting matrices and function values is shown in 

Eq. (2.3-45). 

∂
∂x

∂
∂y

(2.3-45)

By coupling all the unknowns together, Eqs. (2.3-5) to (2.3-7) or Eqs. (2.3-9) to (2.3-11)

can be written as a large matrix relationship (2.3-46):

(2.3-46)

,

2.3.6 Boundary conditions for LRBFDQ method: 
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For the Dirichlet boundary conditions, we need to set the corresponding position to 1, 

otherwise set to 0 in the weighting matrix. The right hand side is set by the boundary 

value. For the Neumann boundary conditions, we can set the corresponding position to 

the weighting coefficient values, otherwise set to 0. The right hand side is set by the 

boundary flux value. The top row of Eq. (2.3-47) shows the Dirichlet boundary 

condition settlement, and the bottom row of Eq. (2.3-47) shows the Neumann boundary 

condition settings.

(2.3-47)

After finish setting of BCs, the unknowns  can be found by solving the 

matrix system (2.3-47). The iterating procedure should be introduced to deal with the 

nonlinear terms. 

3.6 Iterating procedure: 

For an non-linear problem, the iterating procedure is necessary to make the variables 

converge. Take the following equation as an example: 
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(2.3-48)

Introduce the Euler discretization and take , Eq. (2.3-48) can be derived as a 

matrix form: 

(2.3-49)

where the superscript  denotes the unknown time step,  denotes the known 

time step, and * denotes the quasi-linear term. 

During every time step, the value of  and  are set to  and  first, then 

Eq. (2.3-49) need to be solved repeatedly until  and . This is the 

process of the iterating procedure. 

2.4 Numerical results and discussions 

2.4.1 Special case of 1D linear shallow water equations by LMQDQ: 

The governing linear shallow water equations are the Eq. (2.2-12) and Eq. (2.2-13). The 

numerical method is the LRBFDQ method with MQ RBF, we can call it the LMQDQ 

method. The parameter , time interval  and local nodes .

For the verification of the numerical model, we can add a source term as follows: 
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(2.4-1)

where , . The computational domain is between  and 

 The initial conditions are: 

. (2.4-2)

For the characteristic velocity is , the flow regime is subcritical flow. 

We can choose the boundary conditions from (2.4-3): 

, and (2.4-3)

Then we have the analytical solutions for this case: 

(2.4-4)

The results that with different combination of boundary conditions are shown in Fig. 

2.4-1 to Fig. 2.4-16, where the results in Fig. 2.4-1 to Fig. 2.4-8 are computed by Euler 

discretization, and Fig. 2.4-9 to Fig. 2.4-16 are computed by Houbolt discretization. The 

results show that, the two boundary conditions for the subcritical flow can be given 

arbitrary by velocity or water depth, the accuracy is acceptable. 

2.4.2 1D dam break by LMQDQ: 

The governing non-linear shallow water equations are the Eq. (2.2-10) and Eq. (2.2-11). 

The numerical scheme is the LMQDQ method, and the parameter settlements are the 
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same as in section 2.4.1. The analytical solutions of the 1D dam break problem have 

been proposed by Galland et al [2.R24], and can be written as follows:

(2.4-5)

The computational domain is between  m and  m. The computational 

time is from  s to  s. The initial conditions are given by Eq. (2.4-6), 

and the boundary conditions are given by Eq. (2.4-7). 

(2.4-6)

(2.4-7)

The flow is trans-critical with a Froude number equals to 1 at , where 

 By distributing 121 global nodes, and setting , the computational 

results of water depth and velocity with  m are shown in Fig. 2.4-17. The results 

in Fig. 2.4-17 can be used to describe the dropping-off segment in the dam break 

problem with a 4 m depth reservoir, as shown in Fig. 2.4-18. The computational 
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solutions are compared with the analytical solutions, and the error distribution at 

 is shown in Fig. 2.4-19. 

According to this numerical experiment, the behavior of the 1D non-linear shallow 

water model is acceptable. 

2.4.3 1D wave-maker in 2D domain by LRBFDQ methods: 

This case is governed by the 2D linear shallow water equations with analytical solutions 

proposed by Wong et al [2.R25]. The governing equations are given by Eq. (2.2-26) to 

(2.2-28). The numerical schemes are LRBFDQ method with MQ, IMQ and Gaussian 

RBFs. The average water depth H = 20 m. The computational domain is a rectangular 

channel with length and width The boundary conditions 

are:

(2.4-8)

(2.4-9)

and

(2.4-10)

where  is a wave height, and  in this case. 

The initial conditions are given as 
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(2.4-11)

(2.4-12)

The analytical solutions are

(2.4-13)

(2.4-14)

and

(2.4-15)

There are 205 uniform nodes in this computational domain with 41 nodes in the x

direction and 5 nodes in the y direction. We set the local node , time-interval

, and the total time step is 1440 steps, that is, 43200 seconds. The maximum 

errors in the whole domain at each time step for different RBFs are shown in Figs. 2.4-

20 to 2.4-22. 

We take the most accurate cases for each RBF and compare those cases each other. The 

errors are shown in Fig. 2.4-23. We can see that the errors increase with the time, from 

which we know that the error accumulation is a problem need to be solved. The 

accuracy between the MQ, the IMQ and the Gaussian RBFs is similar in this case. 

2.4.4 2D circular dam-break problem by LIMQDQ 
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This case is a circular dam break problem with the nonlinear shallow water equations. 

The computational domain is a square basin with four edges length L = 50. The 

numerical scheme is the LIMQDQ method with . The governing equations are 

Eqs. (2.2-23) – (2.2-25), and the boundary conditions are: 

(2.4-16)

(2.4-17)

We have no data for the water depth at boundary, but due to the variables coupling 

formula, the boundary conditions can be given by velocities only. The initial conditions 

are: 

(2.4-18)

(2.4-19)

It is easy to diverge at the discontinuous parts near the edge of the circular dam. Thus 

we need to introduce the error function to make the discontinuous parts smoother, and it 

will make results convergent more easily. The smoothing initial condition for h is

(2.4-20)

The smoothly initialized result is shown in Fig. 2.4-24, and the computational results 

are represented in Fig. 2.4-25.
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The behavior of the dam break is similar with the results by Anastasiou and Chan 

[2.R26]. We can see that the results with 2500 nodes are similar to the results with 900 

nodes. We can conclude that the accuracy is not sensitive with the increase of global 

node number. 

2.4.5 1D SWEs with source terms by LMQDQ with Newton-Raphson method 

Consider the flat-bottom SWEs with the designed source terms as Eq. (2.4-21).

(2.4-21)

where 

where  is the length of domain, and  is the characteristic time scale.  
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The Froude number is always less than 1 in this case, so the flow regime is the 

subcritical flow. That is, we need one boundary condition at the upstream and one at the 

downstream. The two boundary conditions can be chosen from Eq. (2.4-22). 

(2.4-22)

The initial conditions are given as 

(2.4-23)

By these definitions we can get the analytical solutions of this special case as follows: 

(2.4-24)

Several numerical tests can be done by these analytical solutions. For the verification of 

the sensitivity of , the first case is set as , , and  is 

100 (s). The boundary conditions are given by the analytical solutions of u at both 

upstream and downstream in this case. The computational results with different  for 

 are shown in Fig. 2.4-26. 

It is evidence that the results with NL=5 and NL=7 have higher accuracy than NL=3, but 

they are much more sensitive to the parameter c. The results with NL=3 are stable with 

sufficient large c, and the accuracy is still acceptable. The computational time with only 
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three local nodes is much less than other cases. For these reasons, we set NL=3 in the 

following cases. 

The second testing case is the time step size test. The history of the root-mean-square 

errors (RMSE), defined as Eq. (2.4-25), are shown in Fig. 2.4-27 and Fig. 2.4-28, where 

the parameters are set as N=15, NL=3, L=10000 (m), and T=1 (s). 

(2.4-25)

We can find that the time independency is reached for , and the RMSE 

behaves very stably with the time marching. The same case with 310t  is computed 

for 1,000,000 time steps, and the results are shown in Fig. 2.4-29. The RMSE keeps less 

than 610  from the beginning to the end. We can see the amazing stability of this 

method by this testing case.

The Fig. 2.4-30 and Fig. 2.4-31 finally represent the accuracy with different N. The 

results of this case show that the accuracy tends to mesh independent with N=121. 

2.4.6 Open channel problem by LMQDQ with Newton-Raphson method 

The following numerical case is a 20-ft-wide rectangular channel of 2 mile long. There 

is a uniform flow of 6-ft depth at the upstream, and is subjected to an increase in flow to 

2000 cfs in a period of 20 min. This flow then decreases uniformly to the initial flow 

depth in an additional period of 40 min. The channel has a bottom slope of 0.0015 ft/ft 
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and an estimated Manning’s n of 0.02. The boundary conditions are given as Eq. (2.4-

26).

(2.4-26)

where  is the discharge,  is the bottom slope,  is the channel width and is the 

channel length. The computational results of characteristic method by Viessman et al. 

[2.R27] are listed out for comparison. Table 2.4-1 shows the water depth and velocity at 

upstream and downstream points. The boundary conditions are given by the velocities at 

both upstream and downstream. The results shows that we can get good solutions 

without much computational nodes. 

In the following, we will compute this problem again with different BC settings. The 

computational results with different combination of velocity or water depth BCs are 

shown in Table 2.4-2 to Table 2.4-4. The computational results of velocity and water 

depth are good with every set of BCs. These results demonstrate that it is possible to use 

the water depth for BCs only. This statement can be very useful in the realistic field 

problems. 

2.5 Conclusions 
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According to the results of 1D linear shallow water equations tests in section 2.4.1 and 

section 2.4.6, we can conclude that the boundary conditions can be chosen arbitrarily 

from the velocity or the water depth with the coupling formula. In general, the water 

depths in realistic engineering problems are much easier to be obtained than the 

velocities. This conclusion can be useful in the numerical experiments that are lacking 

of boundary data. According to the results in sections 2.4.2 to 2.4.5, we can see that the 

accuracy is not sensitive with the variety of global node number and RBF types. It is 

concluded that the selection of local nodes is very important through the results in Fig. 

2.3-1. The LMQDQ with Newton-Raphson method is accurate in cases with only 

Dirichlet boundaries. It is worthy to develop this method in the future. 
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Table 2.4-1 Boundary water depth and velocity 
with u BCs at both upstream and downstream: 

Upstream Downstream

Depth Velocity Depth Velocity

t=30(min)

Viessman 10.2613 8.3243 9.8681 8.3769

Current

N=15 10.2604 8.3228 9.8741 8.3776

N=31 10.2532 8.3285 9.8662 8.3753

N=61 10.2500 8.3311 9.8650 8.3750

N=121 10.2492 8.3317 9.8655 8.3751

N=241 10.2492 8.3317 9.8648 8.3749

t=60(min)

Viessman 6.4221 6.4892 8.2354 7.8622

Current

N=15 6.4263 6.4800 8.2304 7.8619

N=31 6.3951 6.5116 8.2302 7.8618

N=61 6.3880 6.5188 8.2301 7.8618

N=121 6.3864 6.5204 8.2303 7.8618

N=241 6.3864 6.5204 8.2301 7.8617
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Table 2.4-2 Boundary water depth and velocity 
with u BC at upstream and h BC at downstream: 

Upstream Downstream

Depth Velocity Depth Velocity

t=30(min)

Viessman 10.2613 8.3243 9.8681 8.3769

Current

N=15 10.4701 8.3340 9.8610 8.4469

N=31 10.2880 8.3340 9.8610 8.3911

N=61 10.2575 8.3340 9.8610 8.3770

N=121 10.2529 8.3340 9.8610 8.3743

N=241 10.2523 8.3340 9.8610 8.3739

t=60(min)

Viessman 6.4221 6.4892 8.2354 7.8622

Current

N=15 6.4168 6.5229 8.2339 7.9546

N=31 6.3988 6.5229 8.2339 7.8792

N=61 6.3923 6.5229 8.2339 7.8654

N=121 6.3914 6.5229 8.2339 7.8634

N=241 6.3913 6.5229 8.2339 7.8631
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Table 2.4-3 Boundary water depth and velocity 
with h BC at upstream and u BC at downstream: 

Upstream Downstream

Depth Velocity Depth Velocity

t=30(min)

Viessman 10.2613 8.3243 9.8681 8.3769

Current

N=15 10.2522 8.3483 9.8733 8.3738

N=31 10.2522 8.3377 9.8630 8.3738

N=61 10.2522 8.3345 9.8614 8.3738

N=121 10.2522 8.3341 9.8611 8.3738

N=241 10.2522 8.3340 9.8610 8.3738

t=60(min)

Viessman 6.4221 6.4892 8.2354 7.8622

Current

N=15 6.3914 6.5249 8.2360 7.8631

N=31 6.3914 6.5233 8.2344 7.8631

N=61 6.3914 6.5230 8.2341 7.8631

N=121 6.3914 6.5229 8.2340 7.8631

N=241 6.3914 6.5229 8.2340 7.8631



 

2-43 

 

Table 2.4-4 Boundary water depth and velocity 
with h BCs at both upstream and downstream: 

Upstream Downstream

Depth Velocity Depth Velocity

t=30(min)

Viessman 10.2613 8.3243 9.8681 8.3769

Current

N=15 10.2522 8.3472 9.8610 8.3721

N=31 10.2522 8.3339 9.8610 8.3746

N=61 10.2522 8.3337 9.8610 8.3741

N=121 10.2522 8.3340 9.8610 8.3739

N=241 10.2522 8.3340 9.8610 8.3738

t=60(min)

Viessman 6.4221 6.4892 8.2354 7.8622

Current

N=15 6.3914 6.5150 8.2339 7.8512

N=31 6.3914 6.5214 8.2339 7.8612

N=61 6.3914 6.5226 8.2339 7.8628

N=121 6.3914 6.5229 8.2339 7.8631

N=241 6.3914 6.5229 8.2339 7.8631
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(a) NL = 5 (b) NL = 9

Fig. 2.3-1: Error distribution against for different RBFs.

Fig. 2.3-2: Error distribution of polyharmonic spline RBF.
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(a)MQ RBF                        (b)IMQ RBF

(c)Gaussian RBF

Fig. 2.3-3: Error distributions under different nodes number, NL=5.
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Fig. 2.4-1:M
ax error of h

history w
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Fig. 2.4-2:M
ax error of u

history w
ith different node num
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Fig. 2.4-3:M
ax error of h

history w
ith different node num
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Fig. 2.4-4:M
ax error of u

history w
ith different node num
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Fig. 2.4-5:M
ax error of h

history w
ith different node num
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Fig. 2.4-6:M
ax error of u

history w
ith different node num
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Fig. 2.4-7:M
ax error of h

history w
ith different node num

ber (Euler).
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Fig. 2.4-8:M
ax error of u

history w
ith different node num

ber (Euler).
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Fig. 2.4-9:M
ax error of h

history w
ith different node num
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Fig. 2.4-10:M
ax error of u

history w
ith different node num
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Fig. 2.4-11:M
ax error of h

history w
ith different node num
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Fig. 2.4-12:M
ax error of u

history w
ith different node num
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Fig. 2.4-13:M
ax error of h

history w
ith different node num
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Fig. 2.4-14:M
ax error of u

history w
ith different node num

ber (H
oubolt).

, and

t

MaxErru

2
4

6
8

10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

N
=120

N
=10

N
=30

N
=15

N
=50

N
=80

N
=100

 



 

2-60 

 

Fig. 2.4-15:M
ax error of h

history w
ith different node num
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Fig. 2.4-16:M
ax error of u

history w
ith different node num
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Fig. 2.4-17: Water depth and velocity at different time with m.

Fig. 2.4-18: Water depth distribution for the dam break problem. 
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Fig. 2.4-19: Error distribution at  s for 1D dam break problem. 

(a) Maximum error for h (b) Maximum error for u

Fig. 2.4-20: Errors of MQ RBF.
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(a) Maximum error for h (b) Maximum error for u

Fig. 2.4-21: Errors of IMQ RBF.

(a) Maximum error for h (b) Maximum error for u

Fig. 2.4-22: Errors of Gaussian RBF.
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(a) Maximum error for h (b) Maximum error for u

Fig. 2.4-23: Errors of different RBFs.

Figure 2.4-24: The initial condition of the smoothing circular dam.
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(a) 7490 cells by Anastasiou and Chan (b) 2500 nodes by the LIMQDQ

(c) 900 nodes by the LIMQDQ (d) 1600 nodes by the LIMQDQ

Figure 2.4-25: Contour of water elevation at t = 0.69s.
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Fig. 2.4-26: RMSE of h and u at t = 1000 for different NL. 

Fig. 2.4-27: History of the RMSE for h.
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Fig. 2.4-28: History of the RMSE for u.

Fig. 2.4-29: The RMSE for 1,000,000 time steps. 
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Fig. 2.4-30: RMSE of h at t = 1000 for different N.
The accuracy of N = 121 is close to that of N = 241. 

Fig. 2.4-31: RMSE of u at t = 1000 for different N.
The accuracy of N = 241 starts to be unstable. 
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2.7 Appendix 

Local node selection: 

The local node selection in this dissertation is by considering a specific number of 

nodes closest to the target computational node. Take the local node number  as 

example, the local node selections at corners, edges and inner points are shown in Fig. 

2.7-1.

Fig. 2.7-1 The local node selection with .
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Chapter 3. Shallow Water Equations by the Advanced Mixed Lagrangian-
Eulerian with Finite Element Method 

In this chapter, the mixed Lagrangian-Eulerian with finite element method (MLE-FEM)

method is applied to solved the shallow water equations. The governing equations will 

first be derived as the characteristic forms, and then be solved by the Lagrangian-

Eulerian tracking method with the given initial conditions and boundary conditions. 

3.1 Introduction 

The shallow water equations for problems with sharp fronts are difficult to solve by the 

conventional numerical methods. For dealing with the sharp fronts, the particle tracking 

technique needs to be applied. A finite-difference numerical model with particle 

tracking skill was proposed by Garabedian et al. (1983) [3.R1] to simulate the 

convective transport of water or tracer particles through porous media. Another semi-

analytical particle tracking method, which was developed for path lines generation by 

Pollock (1988) [3.R2], was applied to solve the ground-water flow with finite-difference 

method. Cheng et al. (1996) [3.R3] have proposed the Lagrangian-Eulerian finite 

element method to solve transport equations by the particle tracking technique. In the 

‘in-element’ particle tracking technique, the element can be divided into desired number 

of sub-elements for higher accurate nonlinear tracking. Suk et al. (2009) [3.R4] have 

improved the particle tracking technique by accounting the changes in velocity during a 
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time step. By introducing the bilinear interpolation method, it is possible to use a 

significantly larger time step size than other existing particle tracking methods without 

any significant loss of accuracy.  

By introducing the particle tracking technique in the MLE-FEM scheme, the sharp 

fronts in shallow water problems can be computed accurately and efficiently. The 

shallow water equations need to be derived into advection form for the particle tracking 

procedure in the Lagrangian step, and the source terms and the Neumann boundary 

conditions can be computed in the Eulerian step by the finite-element method (FEM). 

The derivation of the shallow water equations will be presented in this chapter, and two 

numerical examples will be presented in the dissertation. 

3.2 Governing equation 

For 1D river/stream/canal problems, the river flow can be described by the conservation 

of mass and momentum as Eq. (2.2-1) and Eq. (2.2-2). For constant channel width, the 

governing equations can be further derived as Eq. (3.2-1). 

(3.2-1)
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where the unknowns  and  denote respectively the water depth and the velocity 

along the x-direction,  is time,  is gravity constant,  and  are the source 

terms.  

For 2D overland flow, the shallow water equations are Eq. (2.2-14) to Eq. (2.2-16), and 

can be further expressed as 

(3.2-2)

where the unknowns  are respectively the water depth, velocities along the x-

direction and y-direction;  are source terms. 

3.3 Numerical method 

The mixed Lagrangian-Eulerian and finite element method proposed by Yeh et al. [3.R5] 

consists of two steps: the Lagrangian (particle tracking) step and the Eulerian (finite 

element) step. The governing equations need to be derived to advection forms, and the 

advection terms are solved by the backward particle tracking technique (Yeh et al.

[3.R5]) in the Lagrangian step, while the Dirichlet boundary nodes are considered in 

this step. The other boundary conditions and the remaining terms will be solved in the 

following finite element step. The derivation of advection forms is shown as follows. 
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For 1D cases, the river flow can be described by the conservation of mass and 

momentum as Eq. (3.2-1). The governing equations can be written into matrix form as 

follows: 

(3.3-1)

where 

(3.3-2)

(3.3-3)

(3.3-4)

To diagonalize the matrix , we first calculate the eigenvalues and eigenvectors as 

follows: 

(3.3-5)

or 

(3.3-6)

then we can get the eigenvalues as 

(3.3-7)

and the corresponding eigenvectors as 
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(3.3-8)

Define a matrix  consists of the eigenvectors: 

(3.3-9)

then we can obtain 

(3.3-10)

Multiplying  to Eq. (3.3-1) yields 

(3.3-11)

then we get 

(3.3-12)

By the definition 

(3.3-13)

Eq. (3.3-12) can be decoupled as 

(3.3-14)

in which 

(3.3-15)

where  is the transformed wave speed. From Eq. (3.3-13) and Eq. (3.3-15) we have 
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(3.3-16)

Thus, the governing equations can be written as the following advection forms: 

(3.3-17)

The positive gravity wave  is advected by the speed , and the negative 

gravity wave  is advected by the speed .

Eq. (3.3-17) can be written as Eq. (3.3-18) by introducing the mixed Lagrangian-

Eulerian method. 

(3.3-18)

where the superscript “ ” denotes the new time step, and the superscript “ ” 

denotes to the target point where the particle stops in the backward particle tracking. 

is the temporal fractional factor.  is the time which is consumed by the backward 

particle tracking.  

For 2D overland flow problems, the shallow water equations can be expressed as Eq. 

(3.2-2). Similar to the 1D case, the governing equations can be written in the matrix 

forms as follows: 
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(3.3-19)

in which 

(3.3-20)

, we have 

(3.3-21)

The eigenvalues and eigenvectors of  can be determined as 

(3.3-22)

Then the matrix  and its inverse can be obtained as 

(3.3-23)

Thus Eq. (3.3-19) can be derived as 

(3.3-24)

Let 
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(3.3-25)

Eq. (3.3-24) can be written as 

(3.3-26)

or 

(3.3-27)

Eq. (3.3-27) can be further written as 

(3.3-28)

From Eq. (3.3-25) we have 

(3.3-29)
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thus we get

(3.3-30)

or 

(3.3-31)

Since Eq. (3.3-31) can be written for any spatial direction , suitable selection of 

can eliminate the coupling term in Eq. (3.3-31). 

If the unit vector  satisfies 

(3.3-32)

then the first row of Eq. (3.3-31) will describe one purely convective vorticity wave. 

If the unit vector  satisfies 

(3.3-33)
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then the second and third rows of Eq. (3.3-31) can be diagonalized simultaneously. 

By the definition of 

(3.3-34)

we can set 

(3.3-35)

and 

(3.3-36)

we can get 

(3.3-37)



 

3-11 

 

Eq. (3.3-26) can be further derived as 

(3.3-38)

or 

(3.3-39)

Thus we can obtain the corresponding  and  to make Eq. (3.3-39) diagonalize. 

The source terms can be derived as 
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(3.3-40)

Thus Eq. (3.3-39) can be written in Lagrangian form as 

(3.3-41)

in which the vorticity wave  is transported by the velocity ; the positive gravity 

wave  is transported by ; the negative gravity wave  is transported by 

.

By introducing the mixed Lagrangian-Eulerian method, we can obtain Eq. (3.3-42) . 

(3.3-42)

Eq. (3.3-42) can be solved with the Neumann boundary conditions by the finite element 

method. 

At the upstream boundary segment, the vorticity wave is always transported into the 

domain. For supercritical flow, the both gravity waves are transported into the domain 

as well. Three boundary conditions are needed in this case, and can be shown as 
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(3.3-43)

where  is the outward unit vector of the boundary segment;  is the 

normal flow rate at the upstream boundary;  and  are the momentum/impulse 

from the upstream boundary in x and y direction respectively.  

In subcritical cases, one of the two gravity waves is transported outside the domain, and 

the other is transported inside the domain. Based on the continuity of mass between the 

boundary and the upstream, and on the flow dynamics in the region, the boundary 

conditions can be set up as 

(3.3-44)

where  is the incoming water stage at the upstream;  is the unit vector parallel to 

the boundary segment;  is the flow rate parallel to the boundary;  and  are 

the positive and negative wave boundary equations, respectively. 

At the downstream boundary segment, the vorticity wave is always transported out of 

the region into downstream. For supercritical case, both the two gravity waves are 

transported out of the region, thus no boundary condition need to be specified, and the 

governing equations can be given by 
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(3.3-45)

where  denotes the vorticity wave boundary function. 

For subcritical cases, one of the two gravity waves is transported into the region, and the 

other is transported out of the region. The water depth and the velocity can be 

determined by the internal flow dynamics. The boundary equations can be expressed as 

(3.3-46)

where  is the water depth of the downstream boundary;  is the rating curve of 

the downstream boundary. 

3.4 Numerical results and discussions 

3.4.1 2D partial dam break problem: 

This 2D frictionless partial dam break problem has been widely applied for the 

numerical model testing in the hydraulic literature [3.R5][3.R6]. The initial conditions 

of this problem is set as follows: a specific water depth of  is assumed at the 

upstream of the dam, and the downstream water depth is set to . The 

computational domain is a rectangular channel with the length and width of 

. The breach of the sluice gates is  wide, locates at 
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. The domain is divided into  rectangular 

elements, and the elements distribution is shown in Fig. 3.4-1. 

The 2D shallow water equations are considered and solved by the MLE-FEM model.

The time step size is set as . The computational results of water stages at 

various time  are depicted in Fig. 3.4-2 to Fig. 3.4-4, respectively.

These results demonstrate that the MLE-FEM model can successfully solve this kind of 

sharp front problem. 

3.4.2 2D Circular dam break problem 

The 2D circular dam break problem is governed by the 2D shallow water equations. 

This problem is similar to one example proposed by Yeh et al [3.R5], and is applied to 

test the performance of the MLE-FEM numerical scheme. The computational domain is 

a frictionless flat bottom of , and an idealized circular dam is located at 

the center of the domain with a radius of . The initial condition is set as follows:

the water depth in the dam is , and the water depth of  is set elsewhere. This 

case is the same as the case in section 2.4.4, however, the smoothing skill is not 

necessary now. The computational domain is divided by 2500 rectangular elements with 

2601 nodes as shown in Fig. 3.4-5. 
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The direction of the advection velocity in this case is outward pointed along the radial 

direction, thus the boundary condition is not necessary. The time step size is set as 

 and the total simulation time is 2 seconds. The computational results of the 

water depth distribution in various time is shown in the Fig. 3.4-6 to Fig. 3.4-8, 

respectively. The results of water depth contour with global node number 

and  at  are shown in Fig. 3.4-9. In comparison with Fig. 2.4-25, 

the results once again demonstrate that the MLE-FEM scheme have the capability to 

solve the shallow water problems with sharp fronts. 

3.5 Conclusions and recommendations 

According to the numerical results in 3.4.1 and 3.4.2, the applicability of the MLE-FEM

numerical scheme for shock wave problems is demonstrated. By this method, we can 

get reasonable accuracy with large time step size. However, the input boundary 

conditions will not be used in the computation at the outgoing boundary points. That is, 

we may face different problems if we need to set the wall-type boundary conditions in 

the present model. This is recommended for future studies. 
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Fig. 3.4-1: node and element distributions for the 2D partial dam break problem.

Fig. 3.4-2: Water stage distribution of 2D partial dam break problem at .
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Fig. 3.4-3: Water stage distribution of 2D partial dam break problem at .

Fig. 3.4-4: Water stage distribution of 2D partial dam break problem at .
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Fig. 3.4-5: Node and element distribution for the 2D circular dam break problem.

Fig. 3.4-6: Water depth distribution for 2D circular dam break problem at .
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Fig. 3.4-7: Water depth distribution for 2D circular dam break problem at .

Fig. 3.4-8: Water depth distribution for 2D circular dam break problem at .

x

0
10

20
30

40
50

y

0
10

20
30

40
50

h

0

2

4

6

8

10

X Y

Z

h
9.5
9
8.5
8
7.5
7
6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5

x

0
10

20
30

40
50

y

0
10

20
30

40
50

h

0

2

4

6

8

10

X Y

Z

h
9.5
9
8.5
8
7.5
7
6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5



 

3-23 

 

(a) (b)
Fig. 3.4-9: Water depth contour for 2D circular dam break problem at .
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Chapter 4. Groundwater Flow Equation by Localized Meshless Methods 

The three-dimensional, transient, saturated-unsaturated groundwater flow problem is 

considered. A newly developed meshless numerical method, the localized radial basis 

function differential quadrature (LRBFDQ) method, is applied with the Newton-

Raphson method to solve the modified Richards equation. The accuracy of the 

numerical results depends on the shape parameter selection of the radial basis function

(RBF). In general, the parameter of RBF is sensitive in global numerical scheme. By 

introducing the localized procedure, the parameter is no longer sensitive in the

LRBFDQ method, and a suitable parameter settlement is proposed in this study.

According to the numerical experiments, it is concluded that the present numerical 

method is convenient and accurate for the highly non-linear groundwater flow problems.

4.1 Introduction 

To compute the water flow in the subsurface porous media, the Richards equation is 

considered to describe the ground water flow behavior. The numerical method applied 

in this study is the LRBFDQ method with the Newton-Raphson (LRBFDQNR) method. 

This method is implemented by first applying the LRBFDQ method to calculate the 

derivative terms of the unknowns, then build the Jacobian matrix system for the 
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Newton-Raphson iterating procedure. The multiquadric (MQ) RBF is mainly used in 

this chapter. Because of the localizing procedure, the parameter  in the localized MQ 

(LMQ) is not sensitive in comparison with the global scheme, and proper selection of 

will yield accurate results. Fornberg et al. (2004) [4.R1] have proposed a polynomial 

method to obtain optimal small parameter for accurate interpolation results by MQ. 

However the behavior of the interpolation is not significantly affected by such 

variations. Bayona et al. (2011) [4.R2] have proposed a procedure to predict the solution 

error by using the RBF-FD method with a constant shape parameter. It is implemented 

by first computing the standard finite difference solution, then use this solution to 

estimate the optimal shape parameter  , and finally use this value to compute the 

optimal RBF-FD solution. It spends a lot of resource to obtain the optimal shape 

parameter. However, for the engineering applications, we prefer a stable and acceptable 

fast method rather than a slow optimal method. By considering the condition number, 

we can easily obtain some acceptable parameters. 

For temporal discretization, the LRBF method is introduced to the time space. Li et al. 

(2010) [4.R3] have proposed the global space-time MQ method for inverse heat 

conduction problems. The consideration of the global time space will spend plenty of 

computational resource. In this study, the LRBF procedure is provided to the time 
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domain to avoid great amount resource spending, and obtain high accurate temporal 

derivative terms. For simplification, the discretization in the temporal and the spatial 

domains will be computed separately.  

In general, the accuracy is insufficient for the RBF derivatives near the boundary. The 

same problem occurs in the temporal derivations as well. A numerical correction 

algorithm is proposed to reduce the error due to the RBF derivatives. The accuracy and 

applicability of the proposed numerical method will be studied and discussed in the 

dissertation. 

4.2 Governing equations 

For the problems of three-dimensional subsurface density-dependent flow through 

saturated-unsaturated porous media, the governing equations can be derived from the 

law of mass balance conservation ( as Eq. (4.2-1). 

(4.2-1)

where  is the unknown pressure head;  is the density of water;  is the reference 

density of water;  is time;  is the elevation head;  is the density of the source 

water;  is the source/sink per unit volume per unit time. The water capacity  can be 

obtained by 

(4.2-2)
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and the hydraulic conductivity tensor  is defined as 

(4.2-3)

where is the modified compressibility of porous medium;  is the effective 

moisture content;  is the effective porosity;  is the compressibility of water; 

is the degree of saturation;  is the fluid dynamic viscosity at zero biogeochemical 

concentration;  is the fluid dynamic viscosity with dissolved biogeochemical 

concentrations;  is the saturated permeability tensor;  is the relative permeability 

or relative hydraulic conductivity;  is the referenced saturated hydraulic 

conductivity tensor. 

By considering only pure water as the fluid and isotherm , Eq. (4.2-1) can be 

written as Eq. (4.2-4). 

(4.2-4)

The hydraulic conductivity tensor  can be expressed as 

(4.2-5)

Therefore the governing equation can be written as Eq. (4.2-6).
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(4.2-6)

where the subscript denotes the partial differentiations as Eq. (4.2-7). 

(4.2-7)

4.3 Numerical method 

4.3.1 LRBFDQNR method 

Take the 1D Richards equations as example, the governing equation in conservation 

form is shown in Eq. (4.3-1). 

(4.3-1)

Eq. (4.3-1) can be further written as 

(4.3-2)

By introducing the Multiquadric (MQ) RBF  to the spatial discretization at a specific 

time step, the unknown variable  can be described locally as follows: 
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(4.3-3)

where ,  is the global node number,  is the local nodes 

number, and  is the shape parameter.

From Eq. (4.3-3), the weighting coefficient  for every set of local nodes can be 

obtained from Eq. (4.3-4), and the derivative terms are shown as Eq. (4.3-5). 

(4.3-4)

(4.3-5)

where , and the derivative products of MQ RBF 

can be derived as 

(4.3-6)

We can select the corresponding row in Eq. (4.3-5), thus at each point , we can get the 

derivatives by 

(4.3-7)

On temporal discretization, the time space is introduced to compute the weighting 
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coefficient of time derivatives. The time space can be expressed as 

(4.3-8)

where the superscript  denotes the unknown time step; , , , and so 

on are the known time steps.

Similar to the spatial discretization, we can apply the multiquadric radial basis function 

(MQRBF) to describe the temporal derivatives at each specific spatial node as 

(4.3-9)

in which 

, (4.3-10)

, (4.3-11)

the parameter  can be obtained as in section 4.3.2, and the temporal derivative is 

(4.3-12)

Similarly to Eq. (4.3-7), we can get 

(4.3-13)

According to Eq. (4.3-7) and Eq. (4.3-13), the governing equation in Eq. (4.3-1) can be 

expressed as the Jacobian matrix system as 
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(4.3-14)

If we introduce the localizing technique, the matrix in Eq. (4.3-14) will become a sparse 

matrix. For any boundary equation at node  denotes , the boundary 

condition can be given by simply replacing the corresponding  with  in Eq. (4.3-

14).  

Applying the Newton-Raphson method, we can obtain  by solving Eq. (4.3-14) at 

each time step, and the unknown  can be obtained by Eq. (4.3-15). 

(4.3-15)

Thus the unknown  at each time step can be solved by iterating Eq. (4.3-14) and Eq.

(4.3-15) with the updating step  until all the  are smaller than the 

tolerant error, thus the convergent  are obtained. This is the so called, localized 

radial basis function differential quadrature with Newton-Raphson (LRBFDQNR) 

method. The operating procedures to obtain the differential derivatives in spatial and 

temporal spaces by the LRBFDQ method are shown in section 4.7 (Appendix). 

4.3.2 Shape parameter selection 

The parameter  of the MQRBF has significantly influence over the numerical 
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accuracy. The influence trend is: while  is small, the matrix is well conditioned, and 

the yielding results are with low accuracy; the accuracy will improve when  increases, 

but the matrix tends to be ill-conditioned simultaneously. From the above statement, it is 

easily concluded that we can increase the parameter  to as large as possible, but need 

to avoid the matrix to become too ill-conditioned and to lead to the accuracy reducing. 

According to some numerical tests, we find that the accuracy will increase until the 

condition number of the matrix reaches to , and the accuracy keeps stable while 

the condition number rises to , then the accuracy decreases when the condition 

number grows larger than . Thus we can adjust the parameter  to control the 

condition number locating between  and . It is noted that the shape 

parameters are different in every set of local reference nodes, include the temporal and 

spatial domains. If the domain does not vary too much during the computation, then the 

shape parameters need to be computed only once. The parameter testing with the 

condition number will be presented in detail in section 4.7 (Appendix). 

4.3.3 Numerical correction 

In general, the derivatives obtained from the RBF coefficients do not have sufficient 

accuracy at boundary nodes due to the extrapolation, similar problem occurs at the 

temporal derivatives. We know that for a constant field, the differential derivatives of 
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the field values should be zero. Thus we can define a parameter as

(4.3-16)

In Eq. (4.3-16), the value of  is theoretical equal to zero, thus  can be 

considered as the error weighting due to this numerical method. A numerical correction 

at each node  can be implemented to decline the error due to this problem by 

introducing Eq. (4.3-17) and Eq. (4.3-18). 

(4.3-17)

(4.3-18)

4.4 Numerical results and discussions 

4.4.1 Time space verification 

For the verification of the temporal derivation with time space, we design an example 

with the governing equation as Eq. (4.4-1), 

(4.4-1)

The designed analytical solution with the initial condition  can be 

expressed as 
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(4.4-2)

The simulation time domain is , and the results with different time interval 

 and temporal reference nodes  are shown in the following. 

Fig. 4.4-1 shows that the error history is very stable with the time marching. The best 

number of temporal reference nodes is  with the time interval . Fig. 

4.4-2 shows the error history with the time interval . The best number of 

temporal reference nodes is . Fig. 4.4-3 shows the error history with the time 

interval . The best number of temporal reference nodes is .  

To display the effect of the numerical correctness, Fig. 4.4-4 to Fig. 4.4-6 show the error 

history with different time intervals. The red results are computed with Eq. (4.3-13), and 

the corrected green results are computed with Eq. (4.3-18). Which show that the 

correction procedure improve the results to be stable and high accurate. 

4.4.2 1D Richards equation with source terms 

The 1D governing equation is as Eq. (4.4-3). 

(4.4-3)

For saturated problem, the parameters are set as Eq. (4.4-4) to build a linear equation in 

this case. 

. (4.4-4)
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The boundary conditions are given by .

Therefore we have the analytical solutions with the initial condition 

as

(4.4-5)

The computational domain is set as ; the global node number is ;

the local node number is ; the temporal reference node number is ; the 

time interval is  The root mean square error (RMSE) of this linear problem is 

shown in Fig. 4.4-7.

For 1D nonlinear problem verification, the parameters are set as Eq. (4.4-6). 

. (4.4-6)

The analytical solution is also given by Eq. (4.4-5), and the RMSE of this nonlinear 

problem is shown in Fig. 4.4-8.

4.4.3 3D Richards equation with source terms

For 3D linear problem, the governing equation is Eq. (4.2-6), and the parameter 

settlements are as Eq. (4.4-7). 

. (4.4-7)

The analytical solution is 

(4.4-8)
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The computational domain is set as ; the 

global node number is ; the local node number is ; the temporal 

reference node number is ; the time interval is  The initial values and 

boundary conditions are given by the analytical solutions. Fig. 4.4-9 shows the RMSE 

history of this linear problem. 

For 3D nonlinear case, the governing equation is Eq. (4.2-6), and the parameter 

settlements are as Eq. (4.4-9). 

.

(4.4-9)

The analytical solution is as Eq. (4.4-8), and the RMSE history is shown in Fig. 4.4-10.

3.4.4 1D Column problem in 3D domain 

(4.4-10)
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(4.4-11)

(4.4-12)
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4.5 Conclusions 

According to the results of time space tests in Fig. 4.4-1 to Fig. 4.4-3, we can obtain the 

best accuracy by setting the corresponding  with different . Fig. 4.4-4 to Fig. 4.4-

6 show that the correction procedure will improve the accuracy of the computational 

results largely, and the error accumulation phenomenon is resolved. The availability of 

the LRBF methods applying to the time space is verified. This method can be 

implemented to problems with variable to obtain high accuracy temporal 

derivatives.  

From the 1D linear results in Fig. 4.4-7, and the 1D nonlinear results in Fig. 4.4-8, the 

accuracy of the LRBFDQNR method is verified. The 3D linear and nonlinear in Fig. 

4.4-9 and Fig. 4.4-10 further support the availability. According to the column case, the 

results by LRBFDQNR consist with the results by FEM as well, thus the applicability of 

this numerical method is demonstrated. 
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4.7 Appendix 

Spatial and temporal discretization procedure: 

By taking a 1D example with local reference node number , the operating detail 

of the LRBFDQNR method is shown as follows. The spatial differential coefficients 

used in the Newton-Raphson procedure can be obtained by the LRBFDQ method. Fig. 
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4.7-1 and Fig. 4.7-2 show the procedure to obtain the spatial differential coefficients at a 

specific time step. 

Fig. 4.7-3 shows the idea of time space. By the same steps as in the spatial differential 

derivatives, the temporal differential products can be obtained with  temporal 

reference nodes at each specific spatial node. Once the spatial and temporal differential 

coefficients are obtained, the governing function values can be determined, and then the 

Jacobian matrix for the Newton-Raphson method can be further obtained.

Fig. 4.7-1: Spatial differential operating procedure by the LRBFDQ method.



 

4-18 

 

Fig. 4.7-2: Differential coefficients by the LRBFDQ method.

Fig. 4.7-3: Differential coefficient in the time space by the LRBFDQ method.

Parameter testing with condition number: 

Consider a 1D computational domain , give a testing function as 

, we can compute the differential derivatives in x-direction by LRBFDQ method. 

In this case we consider the MQ RBF and test the sensitivity of parameter  with 
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different conditions. The root mean square error (RMSE) is computed with different 

node number and domain length , and the results are shown in Fig. 4.7-4.

Fig. 4.7-4: RMSE with different and different geometry conditions.

According to Fig. 4.7-4 we can see that the parameter  varies largely with different 

geometry conditions, therefore it is not easy to define a proper  directly. In the 

following, we plot the relation between the condition number  and RMSE in Fig. 

4.7-5. Which shows that the best accurate results are distributed around .

The behavior is much more regular than the former case, thus we desire to adjust the 

parameter  by considering the condition number. The whole procedure is summarized 

in Fig. 4.7-6, we conclude that the best  will yield the condition number between 

 and .
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Fig. 4.7-5: RMSE with different and different geometry conditions.

Fig. 4.7-6: Summary of the MQ parameter selecting procedure.
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Table 4.4-1. Parameters used in the saturated/unsaturated column problem 

Parameters Input Value

Study domain 200 cm 50 cm 50 cm

Saturated hydraulic conductivity 1 cm/day, 1 cm/day, 10 cm/day

Porosity of the medium 0.45

Residual water content 0.10

Parameter 0, -1 m

Time step size 0.1 day

Total simulation time 20 days
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Fig. 4.4-1: Absolute error history with 
by LMQDQNR with numerical correction.

Fig. 4.4-2: Absolute error history with 
by LMQDQNR with numerical correction.
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Fig. 4.4-3: Absolute error history with 
by LMQDQNR with numerical correction.

Fig. 4.4-4: Absolute error history with , by LMQDQNR.
Green line is the result with numerical correction.
Red line is the result without numerical correction.
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Fig. 4.4-5: Absolute error history with , by LMQDQNR.
Green line is the result with numerical correction.
Red line is the result without numerical correction.

Fig. 4.4-6: Absolute error history with , by LMQDQNR.
Green line is the result with numerical correction.
Red line is the result without numerical correction.
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Fig. 4.4-7: RMSE history of 1D Richards equation by LMQDQNR
with ; ;

Fig. 4.4-8: RMSE history of 1D Richards equation by LMQDQNR
with ; ;
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Fig. 4.4-9: RMSE history of 3D linear Richards equation by LMQDQNR
with ; ;

Fig. 4.4-10: RMSE history of 3D non-linear Richards equation by LMQDQNR
with ; ;
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Fig. 4.4-11 The computational domain for the saturated/unsaturated column problem.

Fig. 4.4-12 The pressure head distribution by FEM and LMQDQNR method.
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Fig. 4.4-13 The water content distribution by FEM and LMQDQNR method.
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Chapter 5. 3D Subsurface Variably Saturated Flows by the Advanced Mixed 

Lagrangian-Eulerian and Finite Element Method 

In this chapter, a robust, efficient numerical scheme that involves the use of the mixed 

Lagrangian-Eulerian (LE) method and the finite element method (FEM) is proposed. 

The 3D variably saturated subsurface flow problems which are described by the 

Richard’s equation are considered. In the past, the penetration problems with a sharp 

front through flux boundaries during the infiltration process are difficult to solve. By the 

LE approach with its particle tracking algorithm, and the finite element method for the 

boundary conditions, the highly nonlinear sharp front problems can be resolved. In this 

newly proposed scheme, the particle tracking method (Lagrangian) is applied to the 

interior nodes, and the FEM (Eulerian) is applied to the incoming-flux-boundary nodes. 

For the analysis of flow behaviors in the saturated/unsaturated porous media, the 

proposed numerical scheme is implemented by deriving the equations to advection 

forms, and then consider the necessity of boundary conditions to determine the proper 

matrix equations for the boundary nodes. For the verification of numerical scheme, 

three examples are presented: a three-dimensional column problem, a three-dimensional 

drainage problem and a three-dimensional pumping well problem. In comparison with 

the conventional FEM, the mixed LE and FE method uses relatively large time steps, 
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and obtains superior results in terms of the accuracy and computational efficiency in 

these three examples. Thus, the proposed scheme can be used to obtain a great volume 

of efficient numerical results with critical boundary conditions for controlling 

groundwater in realistic watersheds. 

5.1 Introduction 

For describing water flow in the subsurface porous media, the conventional numerical 

models typically generate local regions with large gradients of water head and small 

values of hydraulic conductivity. It requires large gradients to move even a small 

amount of water in critical cases, such as the evaporation near the soil surface, and the 

infiltration into initially dry soil (Pan and Wierenga, 1995)[5.R7]. The moisture content 

closely behind the wetting front will largely increase due to small head gradient with 

high conductivity. Insufficient local nodes for such cases may generate numerical 

oscillation and instability. Herein, within the region with a sharp front, the FEM 

approach for flux boundaries in an unsteady flow requires a refined mesh to improve the 

accuracy of the solutions. However, problems resulting from the penetration of sharp 

fronts during the infiltration process may yield solutions with poor efficiency and 

accuracy. Because in the computation of subsurface transient flow problems, it is 

numerically difficult to reflect the sharpness of the front region unless a fine mesh is 
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used. The usage of fine mesh requires small time-step sizes to satisfy the linear stability 

conditions when the FEM is applied, which makes the computation extremely 

inefficient.  

Under the above restrictions, the particle tracking algorithm of the Lagrangian-Eulerian 

(LE) approach can be applied to solve problems with nonlinear sharp fronts and flux 

boundaries. For a flow problem which is discretized by fine mesh in vadose zones, to 

enable the usage of large time-step sizes, the LE approach is often employed because of 

its accurate particle tracking algorithm. The advective component accuracy of the LE 

approach is dependent upon the information of generating path line and tracking time in 

the particle tracking algorithm. In the past, most of the particle tracking algorithms was 

limited to either the steady state flow conditions, or the stepwise change of velocity 

during the simulation time steps. The research based on the steady state conditions was 

performed by Pollock (1988)[5.R8], Schafer-Perini and Wilson (1991)[5.R9]. Based on 

these previous studies, Lu et al. (1994)[5.R6] developed the semi analytical particle 

tracking method to obtain the velocity change during time steps under a transient state 

condition. Another approach to the pathline tracking under an unsteady state condition,

which is so called, the pathline-based particle tracking approach, was developed by 

Bensabat et al. (2000)[5.R1]. This approach is characterized by inter-element refinement, 
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in-element tracking path refinement, bilinear spatial-temporal interpolation of particle 

velocity, and a predictor-corrector scheme for the numerical integration during the 

particle tracking process. In the simulation of one-dimensional subsurface flow in 

variably saturated porous media, the LE approach is performed by combining a single-

step reverse particle tracking (SRPT) scheme with a conventional finite element 

approach in the convection and diffusion terms of flow equation (Huang et al., 

1994)[5.R3]. This method is especially efficient and robust for simulating highly 

nonlinear flow problems under extreme, initially dry soil conditions with ponded 

infiltration. The method has been further improved by Lin et al. (1997)[5.R5], who 

developed a 3D finite element computer model (FEMWATER) with a hybrid LE 

approach. After this, Li et al. (2000)[5.R4] obtained an effective solution by applying an 

adaptive multi-grid approach to the problems. In addition, Yeh et al. (2003)[5.R11] 

developed the BEST3D model by using a backward particle tracking algorithm to 

simulate hydrodynamics and sediment-salinity-reactive chemical transport in bays and 

coastal areas. Based on the BEST3D algorithm, the overland/subsurface transport 

module in WASH123D model (Yeh et al. 2004)[5.R10] was applied to simulate the 

contaminant and sediment transport in a watershed system.  
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In this study, an algorithm is proposed to improve the numerical implementation of the 

mixed LE (MLE) and FEM approach. To develop a more robust model for subsurface 

flow governed by Richard’s equation, Cheng et al. (1996) [5.R2] have developed a 

procedure to avoid the stepwise velocity calculation as in the previous models based on 

the in-element particle tracking. This procedure considers the velocity change over each 

time step with the bilinear interpolations in space and time. This approach applies the 

FEM to the incoming flux-boundaries nodes, and the LE approach to the interior nodes 

for resolving the numerical difficulties due to a sharp front.  

The objective of this study is to develop a 3D groundwater model with a mixed LE and 

FEM approach for analyzing the flow behavior in the saturated/unsaturated porous 

media. The flux boundary nodes used for solving the Richard’s equation usually 

generate highly nonlinear and sharp front problems. On the incoming-flux boundary, 

there is conceptual difficulty in calculating the Lagrangian value, because the particle 

tracking cannot be performed. To circumvent this problem, the matrix equations for 

interior nodes and Dirichlet boundary nodes were first obtained by using the LE 

approach in this study, and then the FEM method was used for the flux conditions to

obtain matrix equations at flux boundary nodes. The proposed numerical scheme will 

provide reasonable accuracy by applying relatively large time step sizes in subsurface 
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flow with significantly reduced computational cost by using the particle tracking 

algorithm. The analysis of subsurface flow transient problems can also help the resource 

managers to control the groundwater in watersheds during the flooding or drought 

seasons.  

5.2 Governing equations: 

For the problems of the three-dimensional subsurface density dependent flow through 

saturated-unsaturated porous media, the governing equations can be derived from the 

law of mass balance conservation (Yeh et al. (2004) [5.R13]) as Eq. (5.2-1). 

(5.2-1)

where  is the unknown, denotes the pressure head;  is the density of water;  is 

the reference density of water;  is time;  is the elevation head;  is the density of 

the source water;  is the source/sink per unit volume per unit time. The water capacity 

 can be obtained by 

(5.2-2)

and the hydraulic conductivity tensor  is defined as 

(5.2-3)

where is the modified compressibility of medium;  is the effective moisture 

content;  is the effective porosity;  is the compressibility of water;  is the 
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degree of saturation;  is the fluid dynamic viscosity at zero biogeochemical 

concentration;  is the fluid dynamic viscosity with dissolved biogeochemical 

concentrations;  is the saturated permeability tensor;  is the relative permeability 

or relative hydraulic conductivity;  is the referenced saturated hydraulic 

conductivity tensor. 

In Cartesian coordinate system, Eq. (5.2-1) can be written in advection form as Eq. (5.2-

4).

(5.2-4)

in which 

(5.2-5)

and 

(5.2-6)

Eq. (5.2-4) can be further written as the following advection form: 

(5.2-7)

Eq. (5.2-7) can be written in the Lagrangian form as 

(5.2-8)

Boundary conditions: 

Dirichlet boundary conditions 
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The Dirichlet boundary condition for subsurface water flow can be expressed as 

(5.2-9)

where  is the boundary where the Dirichlet boundary condition is set, and  is 

the pressure head at the Dirichlet boundary node.

Neumann boundary conditions 

The Neumann boundary condition of subsurface water flow can be expressed as 

(5.2-10)

where is an outward-pointing unit normal vector of the boundary,  is the 

boundary where the Neumann boundary condition is specified, and  denotes the 

flux due to the gradient of hydraulic head. 

Cauchy boundary conditions 

The Cauchy boundary condition for subsurface water flow can be expressed as 

(5.2-11)

where is the boundary where the Cauchy boundary condition is set, and 

denotes the flux due to the total head gradient. 

Variable boundary conditions 

The variable boundary conditions for subsurface flow are usually applied at the 

interface between the atmosphere and fluid, which depends on the weather conditions, 
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such as precipitation and dryness. For precipitation condition, the pressure head or the 

flux is specified at the boundary, which is determined by the excess precipitation rate 

 and the allowed ponding depth . If the flux, which is allowed by the 

subsurface pressure head distribution, is less than the excess precipitation rate, i.e. 

(5.2-12)

then the ground surface ponding will reach its maximum depth, thus the variable 

boundary condition can be written in the form of 

. (5.2-13)

If the flux, which is allowed by the subsurface pressure head distribution, is greater than 

the excess precipitation rate, i.e. 

(5.2-14)

then the ponding is not allowed to be greater than , no ponding is built up on the 

ground surface, and the variable boundary conditions becomes 

(5.2-15)

For dryness condition, each of the following boundary conditions can be used: 

1. The pressure head is set equal to the minimum pressure head : 

(5.2-16)
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2. The flux through the boundary is set equal to evaportranspiration rate : 

(5.2-17)

5.3 Numerical method: 

Mixed Lagrangian-Eulerian and finite element method 

Eq. (5.2-8) can be written as Eq. (5.3-1) by introducing the mixed Lagrangian-Eulerian 

method.  

(5.3-1)

where the superscript “ ” denotes the new time step, and the superscript “ ” 

denotes to the target point where the particle stops in the backward particle tracking. 

is the temporal fractional factor.  is the time which is consumed by the backward 

particle tracking.  

Implementation of boundary conditions in the Lagrangian step 

Since the particle tracking can only be done within the domain, the necessity of 

boundary conditions depends upon the direction of the ‘virtual’ flow  at the 

boundary. We may face two cases on the boundary nodes:
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Case 1. If the ‘virtual’ flow is zero or outgoing  , we can find the target 

point during the backward tracking. Then this node will be computed in the Lagrangian 

step as the inner nodes. 

Case 2. If the ‘virtual’ flow is incoming , the backward tracking will fail 

on the boundary nodes. Then this boundary node will not be computed in the 

Lagrangian step, and the boundary condition at this boundary node is necessary. 

Dirichlet boundary conditions 

At an incoming flow boundary with the Dirichlet boundary node , the value of 

pressure head at the boundary node is set directly equal to the Dirichlet boundary value 

at the current time step. In the Lagrangian step, we can set the boundary condition as  

(5.3-2)

where  is the Dirichlet value of pressure head. 

Neumann boundary conditions 

For an incoming flow boundary with the Neumann boundary node, the value of pressure 

head at boundary node can be computed by Eq. (5.2-10), where  is the given real 

flux of flow due to the diffusion terms. By introducing the FEM procedure, Eq. (5.2-10)

can be written as 

(5.3-3)
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where  is the shape function;  is the length of boundary segment .

Cauchy boundary conditions 

For the Cauchy boundary condition at the incoming boundary node, by the procedure 

similar to the Neumann boundary condition, Eq. (5.2-11) can be derived as Eq. (5.3-4),

and can be solved by the FEM procedure. 

(5.3-4)

Variable boundary conditions

The variable boundary conditions in the Lagrangian step are similar to the Dirichlet, and 

Cauchy boundary conditions.  

During the periods of precipitation, the Dirichlet type and the Cauchy type condition 

can be implemented as

(5.3-5)

or 

(5.3-6)

During dry periods, the Dirichlet type and the Cauchy type condition can also be 

implemented in a similar way to the above equations as

(5.3-7)

or 
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(5.3-8)

The governing equation need to be computed at most twice to determine the proper 

equations for the variable boundary conditions. 

Numerical formulation

Once the target point is determined by considering the boundary conditions, we can 

apply the Ritz-Galerkin FEM to Eq. (5.3-1), and obtain the following FEM formulation. 

(5.3-9)

The global assembling of the above equation will produce a global matrix system in 

form of  

(5.3-10)

where

(5.3-11)
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Description of the MLE model   

To improve the numerical accuracy and efficiency in the 3D subsurface flow computing, 

the Lagrangian step and the Eulerian step are applied to obtain the  and  in the 

MLE numerical scheme as follows: 

Lagrangian step: the backward particle tracking method is applied to calculate  at all 

the inner nodes, outgoing-flux nodes, and impermeable boundary nodes by considering 

the incoming flow boundary conditions.  

Eulerian step: the FEM scheme is introduced to obtain  at all nodes by solving Eq. 

(5.3-1) with all the boundary conditions. 

The computational procedure of the MLE model in transient simulation is described in 

Fig. 5.3-1. During the global nonlinear loop in the suggested MLE model, the solutions 

of the nonlinear equations can be obtained by the Newton-Raphson iteration or the 

Picard iteration. After checking the convergency, the convergent solutions are updated 

by the computed pressure head  for the current time step, and then the updated values 

 will be used as the initial values for the next time step during the global time step 

loop. 

5.4 Numerical results and discussions 
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To verify the developed MLE algorithm, three example cases are conducted: a three-

dimensional column subsurface flow problem, a three-dimensional subsurface flow 

problem and a three-dimensional pumping well problem. 

Example 1 is a transient response of a column due to a specific pressure head on the top 

surface. Example 2 shows the transient behavior of flow due to drainage, rainfall and 

evaporation in the subsurface media. Example 3 is designed to simulate the response of 

the subsurface media with an injective source such as a single well. 

Example 1: Column infiltrating problem 

The column problem is modified from one example presented in 3DFEMWATER report 

(Yeh et al., 1992)[5.R12]. The dimension of the column is ,

and the domain is discretized by  elements with 

nodes, as shown in Fig. 5.4-1. The column is assumed to contain the soil with the 

saturated hydraulic conductivity as 

. The porosity of the soil is 0.45 

and the field capacity is 0.1. The unsaturated characteristic hydraulic properties of the 

soil are given as. 

(5.4-1)

(5.4-2)
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where  is the water content,  is the saturated water content,  is the residual 

water content or field capacity,  is the pressure head,  and  are the parameters 

used to compute the water content and the relative hydraulic conductivity, and  is 

the relative hydraulic conductivity.   

The initial conditions are assumed as a pressure head of distributing in the 

whole domain. The boundary conditions are as follows: the Dirichlet boundary 

condition is specified by a pressure head of at the bottom, and a pressure head of 

on the top surface.

The time step size is set equal to . The transient solution by the particle tracking 

algorithm is performed with the tolerant absolute error of pressure head ,

and the relaxation factors of for nonlinear iterations. The input parameters used in 

this simulation are summarized in Table 5.4-1.

The pressure head distribution in the vertical direction along the column center 

 at different time computed by the MLE (particle tracking) model and 

the FEM model are plotted in Fig. 5.4-2.  

As shown in Fig. 5.4-2, the pressure head increases with the time marching. The water 

content varies from the beginning unsaturated state to the saturated state at .

We also calculate the pressure head by the meshless method, as describing in Chapter 4. 
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All the FEM, MLE-FEM and LMQDQNR show encouraging results except at .

Fig. 5.4-3 shows the moisture content distribution at various times. We can see that after 

, the moisture content in the whole domain reaches to the saturated 

moisture content value of 0.45, and the steady state is achieved. 

Example 2: Three-dimensional drainage problem 

The three-dimensional drainage problem is selected to investigate a varied saturated 

flow due to rainfall or a recharge rate in the subsurface porous media. This example is 

modified from one of the examples proposed by Yeh et al. (2004) [5.R13]. To perform 

the transient simulation, different variable boundary conditions are used to simulate the 

recharge and the evaporation effects in the three-dimensional subsurface system. The 

region of interest is , which is discretized by 

 elements with the element size of , resulting in 

 nodes, as shown in Fig. 5.4-4. The number of the sub-elements 

in the x-, y-, and z-direction for the 3D backward particle tracking are 4, 4, and 4, 

respectively. 

The interest region is assumed to contain the same material with the saturated hydraulic 

conductivity  setting by  and 
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 dm/day. The unsaturated characteristic hydraulic properties of the medium are 

described by 

(5.4-3)

(5.4-4)

where , , , , and  are the 

parameters used to compute the moisture content, and  is the parameter to 

compute the relative hydraulic conductivity.  

The boundary conditions are given as: no flux is imposed on the left , on the 

back , and at the bottom  side of the region; on the right 

 and front  sides, the pressure head is assumed to vary from 

 at  to  at the bottom ; the variable boundary 

conditions are used on all other boundaries of the flow region. The ponding depth is 

assumed equal to zero for all variable boundary surfaces. The incoming fluxes of the 

variable boundary are assumed equal to  as a rainfall rate on the top surface 

(variable B.C.-I in Fig. 5.4-5) for the first 25 days, and a potential evaporation rate of 

 for the second 25 days. In addition, the variable boundary conditions for 

the front and right sides above the water surface are imposed to zero flux rate (variable 

B.C. –II in Fig. 5.4-5). The initial condition is set as the pressure head 
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, which means the water table is initially located at  over the whole 

domain. 

In the transient simulation with the particle tracking algorithm, the time step size is set 

equal to 0.5 day, the time derivative weighting factor  is set equal to 1.0 as the 

backward difference, and the relaxation factor for nonlinear iteration  is set equal to 

0.5 as under relaxation to improve the numerical solutions. The absolute error tolerance 

of the pressure head is for nonlinear iterations. The input parameters 

used in the 3D drainage simulation are summarized in Table 5.4-2.

The pressure head contours computed by the MLE approach are presented in Fig. 5.4-6 

and Fig. 5.4-7, and the Darcy velocity distributions are shown in Fig. 5.4-8 and Fig. 5.4-

9. From Fig. 5.4-6, the pressure head within the unsaturated zone during the rainfall 

recharge period is gradually increased. In the subsequent potential evaporation period, 

the pressure head within the unsaturated zone keeps increased due to the infiltration 

from the upper zone, finally the subsurface system arrives at steady state as shown in 

Fig. 5.4-7. Fig. 5.4-8 shows that the Darcy velocity within the unsaturated zone is 

increased downward during the rainfall recharge period. In the subsequent evaporation 

period, the Darcy velocity is decreased downward as shown in Fig. 5.4-9.  

Example 3: Three-dimensional source drainage problem 
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The third example is selected to verify the simulation of a three-dimensional source 

drainage problem. The computational domain and the parameters are the same as 

example 2. To simulate the behavior of subsurface transient flow with the source effect, 

different boundary conditions are applied in this study. The boundary conditions are set 

as: on the right  and front  sides, the pressure head is assumed 

to vary from  at  to at the bottom ; no flux is 

imposed on the other boundaries. An injection of  is imposed as the 

source in the center of the region at .  

In the transient simulation, the time step size is set equal to . The convergence 

tolerance of pressure head is set equal to dm for nonlinear iterations. The 

time derivative weighting factor is set equal to 1.0 for backward difference, and the 

relaxation factor for nonlinear iteration is set equal to 0.5 for exact relaxation to 

improve the numerical solution.   

The initial conditions are the same as example 2. Fig. 5.4-10 and Fig. 5.4-11 show the 

pressure head distribution with the injection source at  along the cross 

section at  and , respectively. The Darcy velocity field is 

shown in Fig. 5.4-12. These figures show the behavior of the injection inflow and the 

drainage outflow in the porous media.  
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The water table rises slightly due to the injection until the balance with the drainage is 

reached. 

5.5 Conclusions 

This study proposed the development of a 3D mixed Lagrangian-Eulerian (MLE) 

approach model. For the subsurface modeling, the backward particle tracking algorithm 

is used to overcome the numerical difficulties and instability in the vicinity of a sharp 

front in initially dry soil. 

The numerical model is available for the subsurface density dependent flow through 

saturated/unsaturated porous media in the anisotropic aquifer system. The problem is 

highly nonlinear, and the sharp front requires the grid refinement, which need small 

time-step sizes in FEM approach. Even fine grids are used, it is possible to use large 

time-step sizes if we apply particle tracking to deal with the advection term. But it is 

difficult to deal with the flux boundary nodes in the particle tracking method. 

To improve the numerical performance of either the LE or the FEM approach, the LE 

method using the backward particle tracking algorithm is applied to all the interior 

nodes and the FEM method is employed directly to the incoming-flux boundary nodes 

to obtain the finite element equations for the boundary conditions. By using the MLE 
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numerical model, the responses of the subsurface system with hydrologic conditions are 

simulated and verified by three simplified cases. 

In the first application, the transient numerical simulation is performed to obtain the 

spatial and temporal distributions of the pressure head and the moisture content, with a 

specific pressure head on the unsaturated column soil. These numerical simulation 

results show good agreement by comparing with the results due to the conventional 

FEM. 

In the second application, the transient numerical simulation by the MLE numerical 

model is performed to obtain the spatial distribution of the pressure heads and the Darcy 

velocities. By considering the effects from the rainfall and the evaporation on the top 

boundary, and the drainage effects on the side boundary, the MLE model gives 

reasonable results. The applicability of this model for solving problems with 

discontinuous boundary conditions is demonstrated. 

In the third application, an injective source at a singular inner point is considered as the 

inflow in the three-dimensional drainage systems. The computational results by the 

MLE numerical model show reasonable behaviors. Thus the ability to deal with the 

singular source points by this method is verified. 
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Table 5.4-1. Parameters Used in the Three Dimensional Column Problem 

Parameters Input Value

Study domain

Saturated hydraulic conductivity 

Saturated water content 0.45

Residual water content 0.10

Parameter 

Time step size 0.1 day

Total simulation time 20 days

Table 5.4-2. Parameters Used in the Three Dimensional Drainage Problem. 

Parameters Input Value

Study domain

Saturated hydraulic conductivity 

Porosity of the medium 0.25

Residual water content 0.05

Parameters 0, 2.0, 2, 

Time step size 0.5 day

Total simulation time 50 days
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Fig. 5.3-1: The computational flow chart of the MLE model.

Fig. 5.4-1: The discretization for the three-dimensional soil column.
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global time 

step 

 H=H* 

HP=H 
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Fig. 5.4-2: Distribution of pressure head in the z-direction at various times
by MLE-FEM, FEM and LRBFDQNR.

Fig. 5.4-3: Distribution of moisture content in z-direction along the column center at 
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various times by MLE-FEM, FEM and LRBFDQNR.

Fig. 5.4-4: Discretization of the computational domain for the recharge problem.

Fig. 5.4-5: Boundary conditions and initial conditions for the three-dimensional 
drainage problem.
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Fig. 5.4-6 Distribution of the pressure head for recharge period ( days).

Fig. 5.4-7 Distribution of the pressure head for evaporation period ( days).
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Fig. 5.4-8 Distribution of the Darcy velocity for recharge period ( days).

Fig. 5.4-9 Distribution of the Darcy velocity for evaporation period ( days).
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Fig. 5.4-10 Distribution of the pressure head with source
along (t=50 days).

Fig. 5.4-11 Distribution of the pressure head with source
along (t=50 days).
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Fig. 5.4-12 Distribution of the Darcy velocity at t=50 days.
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Chapter 6. Conclusions and scope for future works 

According to the results of 1D linear shallow water equations tests in section 2.4.1 and 

section 2.4.6, we can conclude that the boundary conditions can be chosen arbitrarily 

from the velocity or the water depth with the coupling formula. In general, the water 

depths in realistic engineering problems are much easier to be obtained than the 

velocities. This conclusion can be useful in the numerical experiments that are lacking 

of boundary data. According to the results in sections 2.4.2 to 2.4.5, we can see that the 

accuracy is not sensitive with the variety of global node number and RBF types. It is 

concluded that the selection of local nodes is very important through the results in Fig. 

2.3-1. The LMQDQ with Newton-Raphson method is accurate in cases with only 

Dirichlet boundaries. It is worthy to develop this method in the future. 

According to the numerical results in 3.4.1 and 3.4.2, the applicability of the MLE-FEM

numerical scheme is demonstrated. However, the input boundary conditions will not be 

used in the computation at the outgoing boundary points. That is, we may face different 

problems if we need to set the wall-type boundary conditions in the present model. This 

is recommended for future studies. 

According to the results of time space tests in Fig. 4.4-1 to Fig. 4.4-3, we can obtain the 

best accuracy by setting the corresponding  with different . Fig. 4.4-4 to Fig. 4.4-
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6 show that the correction procedure will improve the accuracy of the computational 

results largely, and the error accumulation phenomenon is resolved. The availability of 

the LRBF methods applying to the time space is verified. This method can be 

implemented to problems with variable to obtain high accuracy temporal 

derivatives.  

From the 1D linear results in Fig. 4.4-7, and the 1D nonlinear results in Fig. 4.4-8, the 

accuracy of the LMQDQNR method is verified. The 3D linear and nonlinear in Fig. 4.4-

9 and Fig. 4.4-10 further support the availability. According to the column case, the 

results by LMQDQNR consist with the results by FEM as well, thus the applicability of 

this numerical method is demonstrated. 

From Fig. 4.7-6 we can see that the accuracy of MQ method is obviously related to the 

condition number, and we can conclude that the best accurate results are distributed 

around . Thus we can adjust the parameter  by simply considering 

the condition number.

This study proposed the development of a 3D mixed Lagrangian-Eulerian (MLE) 

approach model. For the subsurface modeling, the backward particle tracking algorithm 

is used to overcome the numerical difficulties and instability in the vicinity of a sharp 

front in initially dry soil. 
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The numerical model is available for the subsurface density dependent flow through 

saturated/unsaturated porous media in the anisotropic aquifer system. The problem is 

highly nonlinear, and the sharp front requires the grid refinement, which need small 

time-step sizes in FEM approach. Even fine grids are used, it is possible to use large 

time-step sizes if we apply particle tracking to deal with the advection term. But it is 

difficult to deal with the flux boundary nodes in the particle tracking method. 

To improve the numerical performance of either the LE or the FEM approach, the LE 

method using the backward particle tracking algorithm is applied to all the interior 

nodes and the FEM method is employed directly to the incoming-flux boundary nodes 

to obtain the finite element equations for the boundary conditions. By using the MLE 

numerical model, the responses of the subsurface system with hydrologic conditions are 

simulated and verified by three simplified cases. 

In the first application, the transient numerical simulation is performed to obtain the 

spatial and temporal distributions of the pressure head and the moisture content, with a 

specific pressure head on the unsaturated column soil. These numerical simulation

results show good agreement by comparing with the results due to the conventional 

FEM. 
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In the second application, the transient numerical simulation by the MLE numerical 

model is performed to obtain the spatial distribution of the pressure heads and the Darcy 

velocities. By considering the effects from the rainfall and the evaporation on the top 

boundary, and the drainage effects on the side boundary, the MLE model gives 

reasonable results. The applicability of this model for solving problems with 

discontinuous boundary conditions is demonstrated. 

In the third application, an injective source at a singular inner point is considered as the 

inflow in the three-dimensional drainage systems. The computational results by the 

MLE numerical model show reasonable behaviors. Thus the ability to deal with the 

singular source points by this method is verified. 

According to the results in Chapter 2 and Chapter 4, the LMQDQNR method has good 

performances in problems with the shock waves or sharp fronts not too strong. From the 

results in Chapter 3 and Chapter 5, we can conclude that the particle tracking technique 

can be used to solve problems with strong sharp fronts or shock waves. It should be 

possible to introduce the particle tracking technique first to solve the advection terms in 

Lagrangian step, then solve the Eulerian step by the LMQDQNR method. This 

combination can be useful to make up the shortage of the LMQDQNR method in 

solving problems with strong sharp fronts problems. 
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