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Abstract

Tumor tracking plays one of the most important roles in liver tumor treatment, like 

radiotherapy and thermotherapy. Due to the fact that liver tumors have 

respiration-induced movements, accurate tracking is the key issue in treatment. Two 

methods for liver tumor tracking are proposed in this dissertation: (1) surrogate-based 

tracking with end-points registration and (2) tracked ultrasound tracking with image 

registration.

A surrogate-based tracking with end-points registration is presented in this 

dissertation. Abdominal wall displacement as external respiratory surrogate is used to 

track liver tumor movement, because liver movement has high correlation to surrogate 

signals. The end-points of tumor movement are determined by CT image registration to 

build correlation model. Unlike previous tumor tracking methods, the proposed method 

is non-invasive and real time. Moreover, it is radiation free so that patients are allowed 

undergoing long-term tracking. An animal experiment has validated the effectiveness of 

external respiratory surrogates for liver motion estimation, and a phantom experiment 

has been validated the performance of image registration. It shows a considerably good 

accuracy for real-time tracking.  

A novel tracked ultrasound tracking method involving image registration is 

proposed in this dissertation, too. In this method, the position of liver tumor is obtained 
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based on liver’s position and the relative position between the tumor and the liver. The 

relative position between the tumor and the liver is obtained by CT scan, and the liver 

position is determined by tracked ultrasound and image registration with CT. An 

alignment method is proposed to reduce the run time of image registration for real-time 

liver tumor tracking. A phantom experiment is conducted, and the results show that the 

proposed approach has good tracking performance for real-time liver tumor tracking.

The proposed methods have capability to track liver tumor in real time. They have 

potential to being guidance in radiotherapy or thermotherapy for liver tumor treatment.

Keyword: liver tumor tracking, respiratory surrogate, tracked ultrasound, image 

registration.
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Chapter 1 Introduction 

Real-time tracking of liver tumors is focused in this dissertation. It is one of the 

most important parts in liver tumor treatments, like radiotherapy and thermotherapy. 

Tracking liver tumor accurately provides correct tumor position to drive treatment 

devices treating the tumor accurately and efficiently and to protect normal tissues 

around the tumor from the destruction. Two tracking methods are proposed in this 

dissertation.

1.1 Motivation and Problem Definition 

In the past four decades, liver tumor treatments have been studied extensively 

because the mortality of liver cancer is almost 10% globally in 2008 (11.3% in male and 

6.5% in female) [1, 2] and the 5-year survival rate is only 50-60% after conventional 

surgical resection [3, 4]. In Taiwan, the mortality of cancer increases by years, and it is 

29% in 2013 (29.9% in male, and 27.7% in female) [5]. Furthermore, hepatic carcinoma 

(liver tumor) is the second among the top ten leading death causes of cancer (18.3% for 

both sexes, 20.3% for male, and 15.2% for female) [6], as shown in Figure 1.1. It means 

that one person dies in every hour caused by liver tumor in Taiwan. Liver tumors are a 

big issue not only in Taiwan, but also in the world. 
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(a) (b)

Figure 1.1 (a) Mortality rate of cancer in Taiwan from 1980 to 2013 [5], and (b) 

Mortality of the top ten leading cancer in Taiwan 2013 [6]. 

Treatment options for liver tumors include surgery, chemotherapy, radiotherapy, 

and thermotherapy. Surgery is unfavorably invasive and with high relapse rate (40% at 5 

years) [7, 8]. Chemotherapy is plagued with undesirable side effects and damages to the 

normal tissues. Radiotherapy and thermotherapy, which are less-invasive, hence have 

become popular for liver tumor treatment options in recent years [9-16]. Most of 

non-surgical treatment options have to overcome the issues of localizing tumors and 

avoiding respiration effect on the liver movement. 

Due to two facts, one is that liver is not easily detectable in the abdomen and,

while the other is that liver has a respiration-induced movement [17-20], accurate 

tracking of liver tumors is one of the most important key issues in treatments. 

Anatomically, the liver is under the diaphragm which is a sheet of muscle separating the 

chest and abdomen. The diaphragm contracts to draw air into the lungs while inhale; the 

diaphragm relaxes to expel air from the lungs while exhale, as shown in Figure 1.2.
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Liver tumors move in the abdomen due to the action of diaphragm. Furthermore, liver 

tumors are affected by respiration (Figure 1.3). Tumor movement has variety of types, 

such as frequency changing, baseline shifting, amplitude changing, etc. [21]. The 

frequency of liver motion induced by respiration is 0.43 Hz (period: 2.3 second), and 

the secondary frequency of liver motion due to heartbeat is 1.11 Hz (period: 0.9 second) 

[22]. The amplitude of liver tumor movement is at the range of 12 and 25 mm [17-21,

23-27], and it leads difficulties of liver tumor treatment. Under inaccurate tracking,

treatment dose might not cumulate efficiently for the goal of cancer cells destruction. 

Moreover, normal tissues around tumors might receive treatment dose and lose their 

normal function. For these reasons, tumor motion tracking becomes one of the most 

important issues while treatment, like radiotherapy and thermotherapy.

Figure 1.2 Illustration of breathing [28]. While inspiration, diaphragm contracts and 

drives abdominal wall to move up. While expiration, diaphragm relaxes and makes 

abdominal wall to move low.
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(a) (b)

(c) (d)

Figure 1.3 A variety of tumor movement. (a) regular breathing, (b) frequency 

changing, (c) heartbeat effect, and (d) amplitude changing [21]. 

1.2 Previous Work 

To track liver tumors, a number of tracking methods are proposed. They can be 

categorized into invasive, mini-invasive, and non-invasive. In invasive tracking, active 

or passive position sensors, like electromagnetic (EM) trackers and radiofrequency 

identification (RFID) devices, are inserted near the target tumors into human body to 

determined tumor position indirectly. Biplane X-ray and computed tomography (CT) 

are mini-invasive tracking methods due to the requirement of markers and radiocontrast 

agents implantation. Magnetic resonance imaging (MRI) and tracked ultrasound are 

non-invasive methods of liver tumor tracking using medical image techniques. However, 

continuous tracking of liver tumor is still not feasible because CT will impose 

hazardous radiation for a long period of exposure, and MRI has sampling rate lower 
4



than 1 Hz, which is not fast enough for real time tracking [29]. Many therapeutic 

measures like gating [30-33] and breath-holding [31-34] are therefore applied to remedy 

this problem. In gating and breath-holding methods, a liver tumor is treated only when it 

moves into the treating area. Their treatment efficiency is low and the treatment time is 

long because of their low treatment duty cycle. Tracking is more efficient than gating 

and breath-holding because a liver tumor could be treated continuously. 

1.3 Proposed Approach 

To tracking liver tumors in real-time, two tracking methods are proposed: 

(1) surrogate-based tracking and (2) tracking ultrasound-CT image registration tracking

Surrogate-Based Tracking  

Surrogate-based tracking is one of the ways to track liver tumors. The concept of 

this method is to estimation tumor movement referring the correlation between tumor 

movement and surrogate signals. Liver tumor motion is known to have high correlation

to the motion of diaphragm [35, 36], respiratory volume [32, 33, 37-39], chest [32, 33,

40-43], and abdominal wall [37, 42, 44]. However, there are two main issues of 

respiratory surrogate-based tracking: effectiveness of the respiratory surrogates and

determination of actual tumor position.  

5
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In this study, a surrogate-based tacking using abdominal wall displacement to track 

liver tumors is proposed, shown in Figure 1.4. Liver tumor movement is determined by 

abdominal wall displacement and the correlation model. The effectiveness of the 

correlation model is verified via an animal experiment, and the actual tumor position is 

determined by an end-points registration method. 

Figure 1.4 Illustration of the proposed approach for liver tumor tracking based on 

external surrogates. Liver tumor motion is determined by abdominal wall displacement 

via estimation.
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Ultrasound-CT Image Registration Tracking

Tracked ultrasound can real-time provide lots of information of liver tumors inside 

human body, including size, contour, and position. However, the information provided 

from tracking ultrasound is only 2D information of tumors. It is difficult to obtain 3D 

information of whole tumor in real time. In this study, an ultrasound-CT image 

registration tracking method is proposed by involved CT with tracked ultrasound to

obtain 3D information of tumors, as shown in Figure 1.5. In this method, liver contour 

is detected by tracked ultrasound, and it is registered with liver contours from CT. After 

registration, the relative position between tumor and the tracked contour is obtained. 

Combining the information of the liver contour position and the relative position of 

tumor, the actual position of tumor could be determined. 
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Figure 1.5 Illustration of tracked ultrasound tracking with CT image registration for 

liver tumor. The concept of this method is to track one of liver’s cross section by 

tracked ultrasound and then to track tumor’s position by inferring the relative position 

between the liver and the tumor from CT information.

1.4 Organization

This dissertation is organized into five chapters. In addition to the background and 

previous work of liver tumor tracking, Chapter 1 presents the motivation and purpose of 

this study. Chapter 2 shows a number of existing technologies of tracking are reviewed 

and summarized. Chapter 3 presents the effectiveness of abdominal wall displacement 

for liver tumor tracking is verified via an animal experiment and proposes a method to 
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track the end-points of liver tumor position preoperatively for liver tumor motion model 

development. Chapter 4 proposes a novel tracking method using tracked ultrasound 

with image registration. Chapter 5 presents the conclusions and contributions of this 

work, and the future work is also presented. 
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Chapter 2 Tumor Tracking Methods

In this chapter, a number of existing methods for tumor tracking are presented. 

They are categorized into invasive, mini-invasive, and non-invasive tracking methods. 

In invasive tracking, patient’s body is implanted one or more than one tracking sensors, 

such as electromagnetic tracking systems (also called EM tracker) and radio-frequency 

identification (RFID) devices, to track target tumors. The sensors are inserted near target 

tumors and they continuously transmit signal actively or passively in the body. 

Mini-invasive tracking is a technique to localization target organs using medical image 

devices, such as X-ray imaging, and X-ray computed tomography (CT), due to the 

visibility of markers in medical images. These methods require inserting tiny metal

markers and radiocontrast agents into patient’s body to increase the visibility of target 

tumors. Unlike invasive and mini-invasive, non-invasive provides tumor tracking

without requirement of body injury by cutting or piercing. Magnetic resonance imaging

(MRI), tracked ultrasound, and surrogate-based estimation are all non-invasive.  

All of the methods presented in this chapter are applied in clinic, and they are 

introduced in the following sections. The architecture of the organ tracking methods is 

shown in Figure 2.1. The invasive tracking including EM tracking system and RFID is 

introduced in Section 2.1. Mini-invasive tracking and non-invasive tracking are 

reviewed in Section 2.2 and 2.3, respectively. 
11
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Figure 2.1 Architecture of tumor tracking methods. 

2.1 Invasive Tracking 

To track moving tumors, spatial tracking sensor insertion is one of the easy and 

straightforward selections. In 2006 Yaniv and Cleary determined liver motion induced 

by respiration by implanting electromagnetic sensors of an EM tracking system in the 

liver [45]. In 2013, Imai et al. implanted a miniature wireless RFID tag near lung 

tumors, which also have movements induced by respiration, for tumor motion 

monitoring [46]. Tracking by EM tracker and RFID is a direct and real-time liver 

motion tracking method. However, sensor insertion is invasive, and the implanted 

sensor should be removed from the body after the treatment. It might lead extension of 

cancer cells and internal hemorrhage.
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2.2 Mini-Invasive Tracking 

Biplane X-ray and CT are common methods to track or detect tumor’s location in 

clinic. However, to track tumors accurately, tiny metal markers and radiocontrast agents

are essential to be inserted into patient’s body due to the low distinguishability of 

tumors in X-ray and CT images, so these techniques are mini-invasive tracking. 

2.2.1 Biplane X-Ray

Biplane X-ray is a technique for diagnosis and tumor tracking. A biplane X-ray 

system can obtain the 3D location of the target through analyzing the images from two 

perpendicular X-ray devices, and it has 1 mm accuracy and 30 Hz sampling rate [22, 24,

25, 45, 47]. If the images of tumors are not clear enough, fiducial markers are implanted 

near the target tumors to increase tracking accuracy. In 2003, Kitamura et al. used 

biplane X-ray to track liver tumors and measured their movements [24]. The tracking 

accuracy of biplane X-ray for moving liver tumors was validated by Yaniv and Cleary 

[45], and the tracking accuracy was 0.7 mm. Biplane X-ray is not only used to track 

liver tumors but also applied in lung tumors tracking. Since 2000, Shirato et al. used 

biplane X-ray to track lung tumors in gated radiotherapy [25, 48, 49]. However, 

radiation dose is an anxious issue for patients, especially under such a high radiation 

exposed rate or during long-term exposure. A high radiation dose over a short amount of 

13
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time causes radiation sickness, while lower doses can give an increased risk of 

radiation-induced cancer.

2.2.2 Computed Tomography

Nowadays, CT is a common medical imaging device for diagnosis because it has 

capability to obtain the 3D anatomic structures of the human body. CT scan is not only 

applied to 3D reconstruction, but also used for tumor localization. Since 2000, CT is 

used to track the location of lung tumors, pancreatic tumors, and liver tumors for 

breathing synchronized radiotherapy as image guidance [33, 50, 51]. A number of 

researchers not only used CT to track organs but also to measure their masses and 

deformation [52-55]. 4D CT, high frame rate CT, has been presented for mobile organ 

monitoring and tracking. The dynamic motion of the internal objects of the body can be 

seen by 4D CT scan [50, 53, 54]. However, CT scan leads radiation dose issue because 

of the high frame rate and the long-term radiation exposure. Radiation free imaging 

devices have been proposed to reduce and avoid the radiation harm for patient. 

2.3 Non-Invasive Tracking 

Non-invasive tracking allocates tumors without any tissue injury. One of the ways 

for non-invasive tracking is to detect tumors’ image by medical imaging, like MRI and 
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tracked ultrasound. The other way to track tumor non-invasively is surrogate-based 

tracking because surrogate signals have certain correlation with liver tumor motion. 

2.3.1 Magnetic Resonance Imaging

In clinic, MRI is applied in organ localization, tumor detection, image-guidance, 

and temperature monitoring. Since 1999, Shimizu et al. measured liver motion using 

MRI for radiotherapy as guidance [56]. Tokuda et al. and Jan et al. used MRI-guidance 

for liver tracking in liver tumor therapy in 2004 and 2007, respectively [57, 58]. A 

number of researchers determined the movement and the deformation of abdominal 

organs, like the liver, the prostate, and the uterine fibroids, by MRI [59-61]. Due to its 

capability of temperature determination, MRI has been used to monitor the temperature 

change and thermal dose during thermotherapy, such as high-intensity focused 

ultrasound treatment [62, 63]. However, long scanning time (3.2 seconds per slice) of 

MRI is one of the limitations for real-time tracking for liver tumors.

2.3.2 Tracked Ultrasound

Tracked ultrasound (also called freehand ultrasound) has been proposed since 

1990s. It is a technique combining ultrasound image and spatial tracking techniques to 

track objects’ 3D position. There are two type of tracked ultrasound: 

electromagnetic-tracked ultrasound [64, 65] and optical-tracked ultrasound [66].
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Nowadays, tracked ultrasound is used with CT or MR images for image guidance, 

called image fusion or image registration, to help surgeons to understand the internal 

structure of the body. Penney et al. tracked liver tumor location using tracked ultrasound 

and MRI registration during a liver tumor ablation surgery [67]. Mercier et al. used 

tracked ultrasound as intraoperative guidance with MRI image in neuro-navigation 

system [68]. Tracked ultrasound has advantages of real time imaging, high frame rate, 

and radiation free. However, tracked ultrasound only provides 2D image information, 

and this information is not rich enough to track liver tumors which have volume. 

2.3.3 Surrogate Signal

Unlike above tracking methods, surrogate-signal-based tracking is a tracking

method inferring from the extra information related to tumor motion. It is an indirect 

tracking method using physiological signals which are related to the tumor motion as 

surrogates to estimate the movement of tumors. The most commonly used surrogates 

can be classified into two categories: (1) measurement of the surface displacement of 

the torso (external surrogates) and (2) measurement of the change of the breathing 

volume (physiological surrogates). There are correlations between these surrogate 

signals and liver tumor movements to a certain degree. Comparing with the direct 

tracking mentioned in the above sections, surrogate-based tracking has a number of 

advantages: radiation free and high sampling rate.  
16
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External Surrogate  

External surrogate signals include the changes of the patient surface, like thoracic 

and abdominal height. The thoracic and abdominal displacements are caused by 

respiration, like liver tumors are. The thoracic and abdominal surface moves up and 

liver tumors move down while inhalation; the thoracic and abdominal surface moves 

down and liver tumors move up while exhalation. There is a certain correlation between 

their movements, so the thoracic and abdominal displacements can be a surrogate signal 

to estimate the movement of liver tumors.  

Tsunashima et al. used a laser displacement sensor to determine the change of the 

abdominal height as an external surrogate signal to monitor the location of the liver in 

2004 [22]. Gierga et al. attached CT visible marker on the abdominal surface and built 

the correlation model between the abdomen and liver movements [26]. A infrared 

camera was used to measure the change of the abdominal height to develop the 

correlation between the liver motion and the external surrogate motion by Beddar et al.

in 2007 [27]. Wu et al. determined the abdominal displacement by attaching an 

electromagnetic tracking device [69]. 

17

rfafafafafacecececec , lilililililikekekekke tttthohohoohorarararararaccciccicic c c c  



(a) (b)

Figure 2.2 (a) An infrared tracking system is used to measure abdominal 

displacement [70]. (b) A Laser displacement sensor is placed above a patient to read the 

displacement of the abdomen [22]. 

Not only liver tumors, researchers also used the external surrogate signals to 

estimate lung, pancreatic, and kidney tumors. For lung tumors, thoracic displacement is 

a useful external surrogate to track or predict their motion because lung tumors are close 

to the thorax [41, 71, 72]. The change of the abdominal height is also used to track lung 

tumors since 2000 [22, 33, 37, 73]. Pancreases and kidneys are abdominal organs, so 

there are certain correlations between their movement and abdominal displacement [26,

33, 74, 75]. In addition, abdominal motion is used to estimate the position of the 

diaphragm [70, 72] , too. 

Physiological Surrogate  

All of heart bits, blood pressure, and breathing flow are physiological signals. 

Because tumor’s movement is caused by respiration, breathing related signals can be 
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surrogates to track mobile tumors. Physiological signals relative to breathing include 

breathing flow and the change of thoracic perimeter. These signals are breathing related 

and measureable, so they are chosen to be surrogates for tumor motion estimation.  

Kubo and Hill proposed a method using a belt attached a strain gauge to 

measurement the change of the thoracic perimeter to monitor respiration for gated 

radiotherapy. The belt was placed around a patient’s torso [32]. Spirometers were used 

to measure respiratory flow to estimate tumor motion by Hoisak et al. [37], Kimura et al.

[39], and Zhang et al. [38], as shown in Figure 2.3.

Figure 2.3 Spirometer-based respiratory motion monitoring system [38]. A patient 

breathes through a mouthpiece with a spirometer, and a nose clip is used to make sure 

whole breathing is measured by the spirometer.
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2.4 Discussions and Summary

In summary, the mentioned methods have capability to track liver tumors in 

clinical due to their won characteristics. EM and RFID sensors provide real-time and 

accurate results of tumor tracking, but they are invasive and plagued with undesirable 

insertion and fearfulness. Biplane X-ray and CT can track tumors accurately by 

inserting tiny metal markers and radiocontrast agents. Unfortunately, radiation dose 

effect and low frame rate are two big issues of direct tracking methods for liver tumors 

which have movements induced by respiration. MRI is radiation free and presents good 

image quality of tumors, but it cannot maintain real-time tracking for liver tumors due 

to its low frame rate. Tracked ultrasound can track tumor position and rebuild tumor 3D 

image. However, it cost long time for 3D reconstruction. Compared with above methods, 

surrogate-based tracking has three main advantages: safe, real time, and non-invasive.  
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Table 2.1 Comparison of tumor tracking methods. 

Method  Pros Cons  

Invasive EM tracker High sampling rate Cable insertion

RFID High sampling rate 

Wire less

Radio interference

Tag insertion  

Mini-invasive Biplane X-ray High frame rate Radiation exposure 

CT 3D image 

Large FOV* 

Radiation exposure 

Low frame rate

Non-invasive MRI 3D image 

Radiation free

Large FOV* 

Low frame rate

Tracked ultrasound Portable 

Radiation free

Small FOV*

2D image 

Surrogates Easy to attach 

Real time

Arrangement 

* FOV: field of view 
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Chapter 3 Surrogate-Based Tracking with End-Points 

Registration 

In this chapter, a surrogate-based tracking for liver tumor is proposed. It consists of 

end-points registration and surrogate-tumor movement correlation model development. 

The proposed approach description is presented in Section 3.1. End-points registration 

method is verified via a phantom experiment in Section 3.2, and the effectiveness of 

surrogate model is analyzed via an animal experiment in Section 3.3. A summary is 

presented in Section 3.4.

3.1 Proposed Approach 

To allocate liver tumors, an efficient and accurate tracking method is essential. The 

causation of liver tumor motion is action of diaphragm. It drives liver and liver tumor to 

move in abdomen, and the motion of liver causes a number of physiologic signals, like 

abdominal wall displacement and respiratory flow change. These physiologic signals 

could be external surrogate signals for liver tumor tracking because they are causal. In 

this study, a method based on external surrogate signals and assisted by end-points 

registration is proposed. Liver tumors position and the displacement of abdominal wall

are measured to determine the relationship of them. Then, the relationship is used to 
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track the tumor motion with surrogate signals. This method is also called estimation.

There are two stages of proposed surrogate-based tracking: correlation building 

(off-line or preoperative) and liver tumor tracking (on-line or intraoperative), as shown 

in Figure 3.1. In the preoperative correlation building stage, the position of the liver 

tumor and the height of the abdominal wall are determined by end-points registration

and EM tracking system, respectively, in certain breathing stages, such as end of 

exhalation and end of inhalation. The displacement data of the liver tumor and 

abdominal wall are used to build the correlation model between of them, as an 

estimation model. In the intraoperative tracking stage, the displacement of the liver 

tumor is estimated by the abdominal displacement mapping via the correlation model. 

The estimated liver tumor displacement will be the spatial information of the target 

tumor for treatment devices. 
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Figure 3.1 Block diagram of surrogate-based tracking with end-points registration for 

liver tumor tracking.  

3.2 End-points Registration

To detect the end-points of tumor movement, an image-to-physical registration 

using external markers is proposed in this section. Moreover, a phantom experiment is 

conducted to verify the proposed approach. 

3.2.1 Image-To-Physical Registration Using External Markers

Medical image, including CT and MRI, is a common method to localize objects in 

human body. In 1990s, researchers had used CT to localize organs directly, and the 
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localization accuracy were around 1 mm for 512 matrix CT images and 2 mm for 256 

matrix CT images[76, 77]. However, these localizations were based on CT coordinate 

system, meaning the localization accuracy is a relative accuracy. If CT image is 

integrated to other devices, like treatment devices, they should be tracked based on CT 

coordinate system. It is difficult to operate. In 2011, Mercier proposed a method to 

integrate MRI image (3D image like CT image) to physical space, called 

image-to-physical registration [68]. To locate the end-pints of tumor movement, an

image-to-physical registration is proposed 

There are two main types in image-to-physical registration: anatomical landmarks 

[68] and artificial markers. In landmark-based registration, anatomical landmarks, 

including bone, nose, and vessels, are used to develop the transformation from the CT to 

the US coordinate. The performance of registration is affected by the identification of 

the markers. Artificial-marker-based registration is to determine the actual tumor 

position using artificial markers attached inside or outside of human body, as shown in

Figure 3.2. In CT images, the position of tumor and markers can be identified, and the 

position of tumor related to the markers can be determined. The relative position of 

tumor can map to the physical coordinate system, and then the actual position of tumor 

can be determined by this spatial information.  
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Figure 3.2 Illustration of image-to-physical registration.

Artificial-marker-based registration can be divided into internal and external 

marker-based. In internal marker-based registration, internal markers are implanted into 

human bodies. The markers can be close to the target tumor, but it is invasive. 

Oppositely, external markers are attached to the surface of human body, like chest, 

abdomen, and the patient’s back. It is a non-invasive method. 

An image-to-physical registration using external artificial markers is proposed to 

determine liver tumor’s actual position. Three EM tracking sensors (trakSTAR) as 

external markers are attached to the patient’s back, which has no respiration effect 

during regular breathing. An EM senor is attached on patient’s abdomen as an external 

surrogate. While a patient undergoes CT scan, he/she is asked to stop breathing in two 

certain breathing stages: end of exhalation (EoE) and end of inhalation (EoI). Tumor 

CT ImagePatient

Registration Physical 

CT
: Liver Tumor

: External Sensor

27

gege



positions in these two breathing stages, which are the end-points of tumor movement, 

are determined via image-to-physical registration, and the position of external surrogate 

is also determined via image-to-physical registration. The end-points information of 

tumor and external surrogate is used to develop the correlation model mentioned in 

Chapter 3 for liver tumor real-time tracking, as shown in Figure 3.3. 

(a) (c)

(b)

Figure 3.3 Illustration of end-points registration applied to surrogate-based liver 

tumor tracking. (a) Tumor and surrogate position in end of exhalation, (b) Tumor and 

surrogate position in end of exhalation, and (c) end-points of tumor and surrogate. 

In order to determine the actual position of tumors in physical coordinate system

(world space), the CT image should be transferred to the world space, which is the EM 

coordinate system in this study. This technique is coordinate transformation, also known 

End of Exhalation (EoE)
Liver Tumor Displacement

Surrogate Displacement

EoE

EoI

End of Inhalation (EoI)
: Liver Tumor

: Registration Sensor

: Surrogate Sensor
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as image-to-physical registration. The transformation from the CT to the world 

coordination can be obtained by calculating the relationship of markers in the two sets 

of coordinates.  

After obtaining the relationship, objects in the CT image can be mapped from CT 

space into the world space by the following formulation: 

= (1) 

where  and are the object coordinate in CT and world space, respectively, and 

registration matrix, , is a 4 × 4 transformation matrix from CT to the world 

space. Registration matrix is determined using the position of sensors (markers) in 

image (CT) and physical (world), called image-to-physical registration. The 

transformation of sensors in CT and sensor space can be written as the following 

formula:

= 1 1 1 1 = 1 1 1 1 = (2) 

where is the sensor coordinate in CT space, and is the sensor coordinate in 

world space read by EM tracker. Three sensor coordinates are identified as , ,

and , which are read from the tracking system. is the vector from cross product 

of , and . The coordinate set of three sensors, , is  square 

full-rank matrix, so it is invertible. The registration matrix, , can be obtained by 
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right multiplying inverse of the coordinate set in CT as (3).  

= (3) 

3.2.2 Experiment Design

In the CT image, liver has different intensity than other tissues in gray scale, and it 

is displayed in gray. Moreover, the fat is displayed in dark shades whereas bones are 

displayed in white (Figure 3.4 (a)). In order to verify the performance of the proposed 

method, an in vitro phantom is made for the experiments. The phantom which consists 

of a pig liver fixed in a tank filled with agar and four tracking sensors that serve as 

references was used in this study, as shown in Figure 3.4 (b). Three external sensors are 

arranged under the phantom, as shown in Figure 3.4 (c). In the CT image, the phantom 

is displayed in varied intensity due to the difference in their X-ray absorption (Figure 

3.4(d)). The pig liver and agar are displayed in different shades of gray. The agar has 

uniform texture and less echo-reflective, so its area appears dark. Tracking sensors have 

highest absorption, so they appear as white in the CT image. The position of the sensors 

is clearly visible. The coordinates of external sensors are used for image-to-physical 

registration, and the coordinates of reference sensors are used to validate the tracking 

performance of CT localization.
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(a) (b)

(c) (d)

Figure 3.4 (a) CT image of human abdomen, (b) Phantom which consists of a pig 

liver fixed by agar with the arrangement of the reference sensors, (c) arrangement of 

external sensors, and (d) the CT image of in vitro phantom including liver, agar, and 

sensors. 

The experiment was conducted with three phantoms to verify the performance of 

proposed registration method. Four sensors were attached into pig livers as targets

(references). The experiment was repeated five times for purpose of data collection. The 

registration is to determine the relationship between the CT image and physical space, 

and then the object coordinates can be transferred using the relationship, as shown in 

Figure 3.5. The spatial information of external sensors in CT and physical are used to 

Liver 

Stomach

FatBone

Agar

Liver

Target Sensor

Sensor 2

Sensor 3

Sensor 1or

Liver 

Target Sensor

Agar

Air

External Sensor

31

TaTaTaTaTargrgrgrgrgetetettetet SeSSSeSeS nsnsnsnsnsnsororrr



determine the registration matrix which is the relationship from CT image to physical 

space. After obtaining the registration matrix, the coordinates of external sensors are 

transferred from CT into physical space. The difference between the external sensors 

before and after registration is the registration error. The coordinates of references in CT 

are also transferred into physical space using the registration matrix, and the differences 

between the references before and after registration is the validation error.

Figure 3.5 Flow chart of CT-to-physical registration.

3.2.3 Experiment Results and Discussions 

The registration error is established as 2.07 ± 0.73 mm (mean ± STD) for = 60
(1.91 ± 0.34 mm in case 1, 1.81 ± 0.70 mm in case 2, and 2.51 ± 0.85 mm in case 3), 
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shown in Figure 3.6. The range of error is from 1.00 to 3.82 mm. The errors are -0.3 ±

1.9 mm along the CC-dir., -0.3 ± 0.9 mm along the AP-dir., and -0.5 ± 1.7 mm along the 

LR-dir., respectively (shown in Figure 3.7).

Figure 3.6 Results of CT-to-physical registration in each case. Registration errors are 

1.91 ± 0.34 mm in case 1, 1.81 ± 0.70 mm in case 2, and 2.51 ± 0.85 mm in case 3.

(a) (b) (c)

Figure 3.7 The CT registration error along three axes: (a) -0.3 ± 1.9 mm along the 

CC-dir., (b) -0.3 ± 0.9 mm along the AP-dir., and (c) -0.5 ± 1.7 mm along the LR-dir.. 
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The image-to-physical registration error is 2.07 ± 0.73 mm. It is supposedly caused

by misalignment and low slice resolution. The reason that the CT registration had large 

STD errors is supposedly that the position of the external sensors may show a degree of 

inaccurate detection due to the large intervals (1 mm) of the CT slices. It can be 

enhanced by decreasing the CT interval and reducing the size of the external sensors to 

advance the accuracy of the CT registration.

In 2011, Mercier et al. proposed an MRI-to-patient method using anatomic 

landmarks [68]. The patient was fixed on a table which was calibrated with an optical 

tracking device, and the selected landmarks were localized by the optical tracking 

device. The registration error was 4.9 ± 1.1 mm. Lang et al. present a registration 

method using biplane X-ray and metal marker, and registration error was 2.9 ± 0.8 mm 

[78]. In our work, the registration error using CT and external marker is 2.07 ± 0.73 mm. 

The comparison is shown in Table 3.1 Comparison of image-to-physical registration 

results.. It shows that artificial markers provide better performance than landmarks due 

to the difficulty of landmark identification. The registration proposed in this study 

provides better performance, and it can use both CT and MRI image information for 

difference situations.  
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Table 3.1 Comparison of image-to-physical registration results. 

Registration Marker type Accuracy

Mercier et al. [68] MRI-to-physical Landmark 4.9 ± 1.1 

Lang et al. [78] X-ray-to-physical Artificial marker 2.9 ± 0.8 

Our work CT-to-physical Artificial marker 2.07 ± 0.73 

Average ± STD (Unit: mm)
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3.3 Liver-Surrogate Movement Correlation Model

The method to discuss the effectiveness of liver motion estimation by external 

respiratory surrogates is proposed in this section, and the correlation model between the 

liver and external respiratory surrogates movement is obtained via animal experiments.

Three main issues are studied: (1) sensor arrangement, (2) multiple sensor fusion, and (3) 

effective time period. In order to investigate these issues, a liver motion estimation 

method based on external respiratory surrogate signals retrieved from animal 

experiment is proposed. In addition to the animal experiments, experimental procedure, 

and the correlation model regression method, the following sections will propose an 

approach using external respiratory surrogates to estimate the liver motion.

3.3.1 Liver Motion Estimation Procedure 

The proposed liver motion tracking consists of two stages, the model-fitting stage 

and the motion estimation stage. In the first stage, the movements of the liver and the 

chest/abdomen are measured separately to establish their correlation model. In the 

second stage, liver motion is estimated by the chest/abdomen motion as the external 

respiratory surrogate signals with the previously derived correlation model. The process 

of liver-motion estimation is shown in Figure 3.8.
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In the model-fitting stage, the input data are the motion trajectories of the 

chest/abdomen and the liver read from an electromagnetic position tracking system. The 

liver motion signals are measured from the movement of the liver in the CC, AP, and 

LR directions. The surrogate signals are measured from the movement of the 

chest/abdomen in their main motion direction (AP-direction). The correlation between 

the surrogate and liver motion is then modeled via linear regression method.  

In the motion estimation stage, the correlation model obtained from the first stage

is incorporated with the external surrogate signals from the chest/abdomen motions to 

obtain the motion estimation of the targeted liver. Estimation error is identified as the 

difference between the measured liver motion and the estimated liver motion. 
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Figure 3.8 Illustration of liver tumor motion estimation using external surrogate 

signals. (a) Measured abdomen motion on the AP-axis. (b) Measured liver motion on 

the CC, AP, and LR-axes. (c) Estimated liver motion on the CC, AP, and LR-axes. (d) 

Flow chart of the liver-motion estimation approach. The first stage is model-fitting; the 

second stage is liver-motion estimation. Estimation error is the difference between the 

measured liver motion and the estimated liver motion.
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3.3.2 Animal Experiment Design

This section proposes the design and procedure of the animal experiments. The 

chest/abdomen motion, which is measured by a position tracking sensor, is used as the 

external respiratory surrogates to estimate liver motion. Other position sensors are 

surgically attached to the liver of pigs so that actual liver motion can be measured 

accurately. The signals from external surrogates and actual liver motion are then 

analyzed. Furthermore, multi-sensor fusion problem is also discussed. 

Animal Experiment Hardware Setup

To estimate liver motion by external respiratory surrogates, correlation model 

between the liver motion and the surrogate signals was required. Animal experiments 

were therefore designed to acquire the necessary liver motion and the surrogate signals. 

Surgeons at National Taiwan University Hospital conducted the animal experiments 

using six female pigs (weight: 30 kg, length: 1 m) and electromagnetic tracking system.

Based on the anatomic landmarks of the liver, three tracking sensors were designed 

to attach to the inferior vena cava (IVC), the lower tip of right medical hepatic lobe 

(TRL), and the lower tip of left lateral hepatic lobe (TLL) respectively (Figure 3.9). 

Surgeons could identify these locations easily. To identify the liver motion, three axes 

were used to represent three main axes in the body: the cranial-caudal direction 

39

eeeeexpxpxpxpx ererererererimimimimimennnntst . ThThThThThThe e e 



(CC-direction), the anterior-posterior direction (AP-direction), and the left-right 

direction (LR-direction) (as shown in Figure 3.9).

To measure the movement of the chest and the abdomen, twelve surrogate 

locations were chosen for sensor arrangement. The layout of the sensor arrangement

was based on a grid on the chest and abdomen in Figure 3.9. The vertical line between 

the xiphoid process and the pubis was drawn firstly and then was divided into four 

quarters. The upper bound of the grid was the horizontal line passing through the 

xiphoid process (C1-C3, represented the movement of lower chest). Two horizontal 

lines between the upper and lower bound fell on the one quarter (A1-A3, represented 

the movement of upper abdomen) and the middle (A4-6, represented the movement of 

middle abdomen).The lower bound was the horizontal line passing through the three

quarters (A7-9, represented the movement of lower abdomen). The right and left bounds

of the grid were the vertical lines passing through the middle of the right-side and the 

left-side clavicles. The twelve intersections on the grid were the surrogate points, 

numbered from right to left and from top to bottom. Due to the anatomical structure of 

chest and abdomen, the points were labeled “C” for the chest group and “A” for the 

abdomen group. Surrogates C1 to C3 were on the lower chest, A1 to A3 were on the 

upper abdomen, A4 to A6 were on the middle abdomen, and A7 to A9 were on the lower 

abdomen. Electromagnetic sensors were attached to the surrogate points to measure the 
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chest and the abdomen motion. The electromagnetic transmitter was located on the 

right-side of pigs near the upper abdomen. 

Figure 3.9 Sensor arrangement for animal experiment. The location of trakSTAR 

sensors on the pig liver (IVC, TRL, and TLL) and the chest/abdomen (C1 to A9). The 

AP-LR-CC coordinates are shown in the lower right corner. 

Animal Experiment Procedure

The experiments were conducted with six pigs under general anesthesia. Three pigs 

were used for the single-surrogate measurement, and the other three pigs were used for 

the multi-surrogate measurement and the long-term measurement. The sensors were 

fixed on the landmarks of the liver by surgeons. To avoid any extraneous effects of the 

operation, the data were acquired on the second, the fifth, and the seventh day after the 
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sensor-implant operation. All of them breathed with a respirator during measurement. 

There were three animal experiments: single-surrogate measurement, 

multi-surrogate measurement, and long-term measurement. The result of the 

single-surrogate measurement was used to analyze the sensor arrangement.

Multi-surrogate measurement was used to analyze the benefits of the multiple 

surrogates. Long-term measurement was used to verify the most effective time period.

In single-surrogate experiment, the goal was to estimate the liver motion by 

analyzing the best location on the chest or abdomen for external respiratory surrogate 

arrangement. After surgically fixing sensors at IVC, TRL, and TLL of the liver, one 

other sensor was attached to the chest or abdomen as the surrogate sensor for motion 

measurement. The motion measurement was performed for one minute for each location 

from C1 to A9 sequentially, which would be used as the external surrogate in liver 

motion estimation later. The measurements of three sensors on the liver were performed 

simultaneously. The derived data include the external surrogate position and the 

movement of the liver at three locations (IVC, TRL, TLL). The first 15 seconds of the 

data was used to model the correlation between the liver motion and the external 

surrogate motion, and the remaining 45 seconds of the data was used to test the 

accuracy of the proposed liver motion estimation. The estimation results were also used 

to determine the best location for external respiratory surrogates.
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In multi-surrogate measurement, three sensors were attached to IVC, TRL, or TLL 

to record the liver movement, and three sensors were attached to the chest and the 

abdomen. Two of the external sensors were fixed on the location of surrogate A2 and C2 

based on the finding of the single-surrogate measurement. Surrogate A2 had the best 

estimation accuracy, while surrogate C2 was at the Xiphoid process and was considered 

to be the pilot point of the sensor arrangement. Therefore, surrogate A2 and C2 were 

selected to combine with other surrogates to test the validity of the multi-surrogate 

model for liver motion estimation. The third sensor was switched from C1 to A9 

sequentially. Each measurement was performed for one minute. Each data set was used 

to determine the correlation model with multi-surrogate and to analyze the benefits of 

multi-surrogate estimation.

In long-term measurement, the sensor arrangement is basically the same as the 

previous ones except the external surrogate is at the C2 point only. The first 15 seconds 

data were also used to estimate the remaining liver motion. The long-term estimation 

liver movement would be produced via an established correlation model. This 

measurement was conducted to test the reliability of the correlation model for long-term 

estimation.
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3.3.3 Liver and Chest/Abdomen Movement Analysis

The movements of liver, chest, and abdomen are measured through 

electromagnetic sensors. The measured data are three-dimensional in the CC, AP, and 

LR directions. This section shows the characteristics of the signals obtained from the 

experiments. It also shows the type of the correlation model between the liver and the 

chest/abdomen movement via a regression method. 

Characteristics of Liver Movement

The liver motion is measured by the electromagnetic position tracking system in 

the animal experiments. The trajectories have similar patterns and are almost periodic. 

Figure 3.10 shows the liver motion signals of IVC, TRL, and TLL in the CC, AP, and 

LR directions measured. The trajectories have frequencies around 0.35Hz with main 

movements in the CC-direction, minor movements in the AP-direction, and the least 

movements in the LR-direction. It shows that IVC has larger displacement than TRL 

and TLL. Table 3.2 shows the average amplitude and standard deviation of the liver 

movement for 6 pigs during 7 days. For IVC, the average amplitude in the CC-direction 

is 11.68 mm, and the amplitudes range from 9.14 mm to 12.85 mm. In the AP-direction, 

the average amplitude is 3.90 mm and the amplitudes are in the range from 2.66 mm to 

5.27 mm. The smallest displacement is observed in the LR-direction, where the average 
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amplitude is 1.39 mm, ranging from 1.03 mm to 1.93 mm. The movements of TRL and 

TLL are similar to IVC, but their amplitudes are smaller than IVC. The average 

amplitude of TRL is 7.12 mm in the CC-direction, 1.92 mm in the AP-direction, and 

0.96 mm in the LR-direction. The average amplitude of TLL is 7.20 mm in the 

CC-direction, 2.70 mm in the AP-direction, and 1.81 mm in the LR-direction. 

Figure 3.10 Liver movement at IVC, TRL, and TLL. Main movement is in the 

CC-direction, and second main movement is in the AP-direction. Movement in the 

LR-direction is less than in the CC and AP directions. Movement at IVC is larger than 

at TRL and TLL.
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Table 3.2 Average amplitude and standard deviation of liver motion in different days 

for 6 pigs, and the breathing frequency of each pig. 

Liver

location

Displacement 

(mm)

Pig 1 Pig 2 Pig 3 Pig 4 Pig 5 Pig 6

IVC

CC 10.6/0.34 12.47/1.68 12.85/0.92 12.81/1.04 9.14/0.74 12.20/0.79

AP 2.66/0.51 4.34/0.49 3.27/0.55 5.27/0.83 3.09/0.16 4.76/0.89

LR 1.91/0.57 1.21/0.69 1.03/0.70 1.18/0.71 1.10/0.96 1.93/1.49

TRL

CC 5.16/0.24 6.28/1.08 9.41/0.68 8.11/1.20 5.71/0.27 8.02/1.59

AP 1.48/0.48 3.04/0.69 2.34/1.00 1.75/1.12 0.56/0.32 2.36/0.42

LR 0.75/0.40 1.74/0.26 0.44/0.06 1.34/0.58 0.72/0.55 0.77/0.26

TLL

CC 5.51/0.23 7.31/1.13 7.55/0.29 9.29/1.60 5.33/1.35 8.21/1.00

AP 3.42/0.85 4.20/0.40 1.06/0.22 2.98/0.38 3.07/0.77 1.46/0.54

LR 1.75/0.50 1.58/0.63 1.41/0.46 2.52/0.18 1.67/1.23 1.91/0.49

Frequency (Hz) 0.39/0.01 0.34/0.06 0.33/0.02 0.34/0.00 0.34/0.00 0.34/0.00

Average/SD
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Characteristics of External Surrogate Signals  

The motion of chest/abdomen is considered to be the external surrogate for the 

liver motion, which is measured at 12 locations by the electromagnetic tracking system. 

Figure 3.11 shows the trajectories of surrogate C3 (on the left chest) and surrogate A2 

(on the middle of upper abdomen). Both trajectories are of frequencies about 0.35Hz. 

Surrogate C3 has small amplitude in all CC, AP, and LR-directions, which is about 1.79 

mm. For surrogate A2, the main movement is in the AP-direction with average 

amplitude 6.47 mm. The second largest movement is in the CC-direction with average 

amplitude 2.23 mm. And the smallest movement is in the LR-direction with average 

amplitude 0.78 mm.

Table 3.3 shows the average amplitudes measured from the different surrogate

locations for 6 pigs. Surrogate A2 has the largest amplitude than all the other surrogates.

The group of surrogates on the upper abdomen (A1 to A3) has the largest average 

amplitude than the others. The group of the second largest average amplitude is on the 

middle abdomen (A4 to A6). The surrogates on the lower abdomen (A7 to A9) have the 

smallest average amplitude, possibly because they are farthest from the liver. For the 

lower chest (C1 to C3), surrogate C2 has large movement in the AP-direction, and 

surrogate C1 and C3 have smaller movement due to the limitation by ribs.
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Figure 3.11 Trajectories of the external respiratory surrogates at C3 and A2. Surrogate 

A2 has larger movement than C3 has. Main movement is in the AP-direction, and 

second main movement is in the CC-direction. Movement in the LR-direction is less 

than in the CC and AP directions. 
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Table 3.3 Average amplitude and standard deviation of chest and abdominal motion

for 6 pigs in the AP-direction, and the breathing frequency of each pig. 

Surrogate 

location (mm)

Pig 1 Pig 2 Pig 3 Pig 4 Pig 5 Pig 6 

C1  0.95/0.08 1.10/0.20 1.63/0.16 1.68/0.17 0.86/0.31 1.61/0.34

C2 2.97/0.18 3.93/0.55 3.56/0.18 4.50/0.44 3.06/0.12 3.58/0.49

C3 0.91/0.33 0.97/0.04 1.42/0.28 1.22/0.00 0.55/0.21 1.03/0.11

A1  4.35/0.57 5.38/1.10 5.42/0.38 5.64/0.50 2.66/0.28 5.11/0.82

A2 5.04/0.77 5.91/0.79 5.98/0.43 6.74/0.61 3.27/0.16 5.19/0.55

A3 2.54/0.68 4.75/0.61 4.96/0.52 5.09/0.61 2.67/0.22 4.37/0.71

A4  3.20/0.24 4.12/0.52 3.55/0.21 4.22/0.58 2.50/0.10 3.60/0.32

A5 3.30/0.34 4.10/0.73 4.01/0.26 4.81/0.63 3.04/0.15 3.87/0.56

A6  2.22/0.24 3.41/0.62 3.24/0.08 3.64/0.69 2.34/0.17 2.96/0.42

A7  2.49/0.17 2.73/0.34 2.21/0.45 2.30/0.71 1.78/0.12 2.57/0.68

A8 2.40/0.11 2.74/0.45 2.24/0.25 2.88/0.81 1.87/0.16 2.55/0.78

A9  2.45/0.27 2.61/0.28 2.34/0.27 3.04/0.86 1.82/0.07 2.63/0.37

Frequency (Hz) 0.39/0.01 0.34/0.06 0.33/0.02 0.34/0.00 0.34/0.00 0.34/0.00

Average/SD
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Liver-Abdomen Movement Correlation Development

Linear regression, a common statistical technique for relating a dependent variable 

to an independent variable, helps finding a model fitting the correlation between the 

liver motion and the chest/abdomen motion. This model assumes that the correlation 

between the dependent variable y and the independent variable is linear. It takes the 

form

= + (4) 

Where  and c are the coefficients of model. The coefficients can be calculated using 

the least square method [79]. The chest/abdomen wall motion and the motion of liver 

are measured and then analyzed. The result shows that they are highly correlated. Figure 

3.12 (a) shows the linear correlation models between the abdomen motion in the 

AP-direction and the liver movement of IVC in the CC, AP, and LR directions, and 

Figure 3.12 (b) shows the distribution of the modeling error in each direction.  
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(a) (b)

Figure 3.12 Results of correction modelling. (a) Correlation models (linear models) 

between the abdomen motion on the AP-axis and the liver movement of IVC on the CC, 

AP, and LR-axes. (b) The bar charts of the modeling errors in three axes. 

3.3.4 Estimation Results and Discussions

This section shows the estimation results using single external surrogate from 

different locations, discusses the benefits of multi-surrogate signals, and shows the 

validity of a 10-minute long-term estimation results.
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Signal Surrogate Modelling Error 

This section discusses the ideal location for surrogate by analyzing the estimation 

accuracy. The liver motion estimation in this study is split model-fitting and motion 

estimation. The first 15 seconds of the surrogate signals and the liver motion signals are 

used to construct a linear-correlation model in the first stage. The model can then be 

used to estimate the liver motion with the external surrogates. The estimation error is 

defined to be the difference between the estimated liver motion and the measured liver 

motion. 

Figure 3.13 shows average estimation errors of IVC, TRL, and TLL using different 

surrogates for 3 pigs. The estimation errors with all the surrogates are less than 1.5 mm. 

Among all the surrogates, surrogate A2 achieves the smallest estimation error, meaning 

that A2 has the best estimation accuracy and shows the best location for a surrogated 

sensor. Moreover, surrogate C2, A1, and, A3 also have quite small estimation errors to 

be good locations for surrogate sensors. Surrogate A7 to A9 have the largest estimation 

errors, possibly because they are far from liver. The area should be avoided in liver 

motion estimation.

Compared with the absolute estimation errors, TRL and TLL have smaller errors 

than IVC. However, the percentage errors of surrogate A2 are similar for TRL, TLL, 

and IVC as well. The average amplitude of IVC is 11.98 mm and its estimation error is 
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0.6 mm, which corresponds to a percentage error of 5.01%. While TRL  has the 

average amplitude 7.36 mm, the estimation error 0.42 mm, and the percentage error 

5.7%. TLL has the average amplitude 7.77 mm, the estimation error 0.4 mm, and the 

percentage error 5.1%. Therefore, estimation performances of IVC, TRL, and TLL are 

similar, although their average amplitudes are different.

To summarize, the middle of upper abdomen (A2) is the best location for surrogate 

signals measurement. Moreover, the upper abdomen (A1 to A3) and the xiphoid process 

(C2) are also good locations for external respiratory surrogates.

Figure 3.13 Estimation errors using different external respiratory surrogates for 3 pigs.

Estimation errors of IVC are larger than TRL and TLL. Surrogate A2 has the best 

estimation accuracy. Surrogate A1, A2, and A3 (the upper abdomen) have better 

estimation accuracy, and surrogate A7, A8, and A9 (the lower abdomen) have worse

estimation accuracy.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

C1 C2 C3 A1 A2 A3 A4 A5 A6 A7 A8 A9

Es
tim

at
io

n 
er

ro
r (

m
m

)

Surrogate location

IVC

TRL

TLL

53

hilililille ee e e TRTRTRTRTRT L L L LL hhhasasasasas tttthehehhhhe 

ee eee pepepep rrcrcrcrcr enenenenentataaaagegegegege eeeeerrrrrrrrorooororo   

r 0 4 mmmmmm ananannddddd the



Multi-Surrogate Modelling Error 

This section compares estimation performances of multi-surrogate models with the 

single-surrogate models. The single-surrogate models use only one surrogate to fit the 

correlation and the estimation results are shown in the previous section. From the results, 

surrogate A2 is shown to have the best estimation accuracy. Surrogate C2 is the 

anatomic landmark with good estimation accuracy as well. Therefore, C2 and A2 are 

selected to combine with other surrogates to test the validity of the multi-surrogate 

model for liver motion estimations. Figure 3.14 shows the estimation results of IVC, 

TRL, and TLL using multi-surrogate and single-surrogate models for 3 pigs. The first 

ten estimation errors are from the results of the multi-surrogate models, while the last 

twelve errors are from the results of the single-surrogate models.  

As we can see, all estimation errors from multi-surrogate models are less than 0.5 

mm. In general, TRL and TLL have better estimation accuracy than IVC. For IVC, all 

multi-surrogate models have better estimation accuracy than the single-surrogate 

models, with the only exception of the result from the C2/A2/A8 model. Similarly for 

TRL, only C2/A2/A6 model has larger estimation error than the single-surrogate model. 

For TLL, only C2/A2/A9 model has larger estimation error than the single-surrogate 

model. According to the results from the single-surrogate models, the models which 

have a surrogate located on the middle or lower abdomen have worse estimation. 
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Although these models produce larger estimation error than the best result produced by 

single-surrogate models, the differences of them are less than 0.05 mm. Therefore, the 

overall multi-surrogate method produces better estimation than the single-surrogate 

method. 

Overall results shows that the chest (C1 to C3) and upper abdomen (A1 to A3) 

have better multi-surrogate estimation accuracies than the single-surrogate models such 

that they are good locations for multiple surrogates. In conclusion, the multi-surrogate 

models can improve the estimation accuracy of liver motions with most errors less than 

0.4 mm. 
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Figure 3.14 Estimation errors of IVC, TRL, and TLL using multi-surrogate and 

single-surrogate for 3 pigs. Excluding the C2/A2/A8 model at IVC, the models with 

multi-surrogate have better estimation accuracy than single-surrogate models. 

Estimation errors from the multi-surrogate are less than 0.4mm. 
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Long-Term Modelling Error

In this section, long-term surrogate signals for the period of ten minutes are used to 

demonstrate the reliability of correlation model for long-term estimation. Signals from 

the first 15 seconds provide a baseline correlation model, and then the model is used to 

estimate liver motion for the remaining period of time. Figure 3.15 shows the long-term 

liver motion estimation errors for 3 pigs (pig 4, 5, and 6). 

For pig 4 and pig 6, the estimation error stably remains within 0.9 mm for the 

entire 10 minutes. For pig 5, the estimation error is stable for the first 6 minutes, and 

then they rise slightly from 0.5 mm to 1.4 mm between 6 and 7 minute. After that, the 

error decreases slowly to under 0.8 mm. In the case of pig 5, the estimation errors have 

variations between 0.5 mm to 1.5 mm during the 10 minutes. According to Figure 9, the 

changes of liver motion boundaries are limited in the range of 1 mm during the 10 

minutes. It means that the liver motion is constrained since the respiration motion. 

Therefore, the estimation error would be stable in a limited boundary for long-term. The 

error variation of extended duration will be studied in the future. 

Overall, the estimation errors are considered to be stable for the period of 10 

minutes with errors less than 1.4 mm. Therefore, the linear-correlation models are

reliable in estimating long-term liver motions.  
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Figure 3.15 Long-term estimation error of IVC, TRL, and TLL using surrogate A2 for 

3 pigs. Correlation model is built using the first 15 seconds of signals, estimating liver 

motion in continuous time. Estimation error is less than1.4 mm in 10 min. 
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Figure 3.16 The raw data of liver (IVC) motion and external surrogate signals in 10 

minutes. The largest movement of liver is on the CC-axis, and the less movement of 

liver is on the LR-axis. The motions of the liver and the surrogate are stable with small 

vibration which is less than 1 mm.

The aim of this chapter is to establish a liver motion estimation method based on 

external respiratory surrogate signals to guide treatment devices. In this study, external 

respiratory surrogates from chest/abdomen motions are used to estimate the liver motion 

accurately. The single-surrogate and multi-surrogate models are constructed to identify 

the best area for surrogate arrangement and to analysis the possible benefit of using 

multiple surrogates. The reliability of models is also verified in 10 minutes experiment. 

The results show that the best location for surrogate arrangement is around the middle 

of upper abdomen (surrogate A2), while multiple surrogates do bring benefit for liver 

motion estimation. The estimation error is reduced from 0.6 mm in single-surrogate 

cases to 0.4 mm in multi-surrogate cases. Moreover, the data also show that the 

estimation model can maintain its accuracy with 1.4 mm, which is quite acceptable in 
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normal treatment, for long-term period of 10 minutes. However, the long-term 

estimation errors increase slightly. It seems there are distributions in external signals 

and established models. To reduce the estimation error induced by the time, a model 

updating mechanism is essential and will be studied in the future. 

For single-surrogate cases, the models established by the surrogates located on the 

upper abdomen (surrogate A1 to A3) have better estimation results than others, and the 

middle of upper abdomen (surrogate A2) has the best estimation result (Figure 6). It is 

possible that they are much closer to the liver than others, so their movements have 

stronger correlation with liver’s movement. Moreover, the amplitudes of these locations 

are larger than others (Table II), so they could provide good related signals for 

estimation model establishment. For the human cases, the candidate location for 

external surrogate arrangement could be selected through these criteria: being close to 

the liver and with larger motion amplitude.

From the results of multi-surrogate cases, all multi-surrogate models produce better 

estimation performance, and estimation errors are less than 0.4 mm. Multiple surrogates 

enhance estimation accuracy for liver motion. Combining the results from 

single-surrogate and multi-surrogate cases, the locations for external surrogate 

arrangement could be selected on the area near the target, such as a liver tumor, and 

multi-surrogates could be used to improve the accuracy. 
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For long-term estimation cases, our preliminary studies show that the estimation 

error is between 0.5 mm to 1.5 mm within 10 minutes (about 150 breathing cycles). Due 

to the fact that the respiration motion is a constrained semi-periodic motion (so is the 

induced liver motion), we do not expect the modeling error to diverge with time. Part of 

the errors may be induced by the disturbances to the external surrogate signals, which 

should also be bounded. Further studies will be performed for time durations from 30 

minutes to 120 minutes. The possibly bounded, but semi-periodic error behavior will be 

studied in the future. Moreover, model updating algorithm will be added if it is 

necessary to keep the error within a reasonably small bound. 

3.4 Summary 

In summary, CT-to-physical registration using external markers provides liver 

tumor positons to build correlation model, and external respiratory surrogate signals 

perform good estimation results to obtain liver movement. This chapter has established 

a liver motion estimation method based on external respiratory surrogate signals 

involving an end-points registration for liver tumor tracking. It has potential to apply 

into clinical liver tumor tracking.
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Chapter 4 Tracked Ultrasound with CT Image 

Registration 

In this chapter, a novel liver tumor tracking by tracked ultrasound involving CT 

image is proposed. The concept of this approach is to track liver tumor position by 

tracking the liver position, and it is shown in Section 4.1. In Section 4.2, a real-time 

tracking phantom experiment is conducted. The experiment results and approach 

performance are shown in Section 4.3. Discussions and a summary are in Section 4.4.

4.1 Proposed Approach 

The overall concept of the proposed method is to locate the liver tumor position by 

determining the tumor position inside the liver and locating the liver position. Since CT 

scan is able to obtain the anatomical structure of the liver, the tumor position inside the 

liver could be determined. In order to locate the liver position, tracked ultrasound is 

used to detect the position of the cross section of the liver. Since liver has various 

cross-sectional views due to its uniform shape, the relationship between the cross 

section and the liver can be obtained by matching the cross section from the ultrasound 

and the liver shape from the CT, called ultrasound/CT image registration. The liver 

position can be acquired by combining the information of the liver cross section 
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position from the tracked ultrasound and the relationship between the cross section and 

the liver. Adding the information of the tumor location in the liver from the CT, the 

tumor location can be estimated by coordinate transformation. 

The proposed method consists of preoperative and intraoperative stages. In the 

preoperative stage, the patient is scanned by CT. The liver is constructed into a 3D 

model, and the tumor location relative to the liver is then determined. In the 

intraoperative stage, the surgeon scans the patient’s abdomen to detect the location of 

the liver by tracked ultrasound. The liver location is acquired via tracked ultrasound and 

image registration. At last, the tumor location is transformed from the liver into the 

world coordinate. To be specific, tumor location can be mapped from the liver 

coordinate into the world coordinate through the following transformation: 

=   (5) 

where stands for the object position relative to the A coordinate. is the 

transformation from the A coordinate to the B coordinate, and it is reversible. Each point 

in the A coordinate, , can be transferred from the A coordinate into the B coordinate; 

its position in the B coordinate is noted as  =  . Figure 4.1 shows the

relationship between each set of coordinates. The tumor location can be translated from 

the liver coordinate into the world coordinate via measuring the relationship between 

64

ee cccccrororororossssssssss sssssecececee titiononononon aaaandndnnnnd 

r fffffrororor mmm mmm thththththe eeee CTCTCTCTCT,, ,  , ththththhhe ee 



coordinates. This is the central concept of the proposed tracking method. 

Figure 4.1 Illustration of tracking of liver tumors by transferring the tumor location 

from liver coordinate into the world coordinate. The tumor location in the liver is 

measured from preoperative CT scan while the liver position is acquired by 

intraoperative tracked ultrasound. 

As is generally known, the liver is not a rigid organ so it might get deformed due to 

the pressure from the diaphragm while breathing [17, 19, 20, 80]. The pressure might 

affect the accuracy of the tracking because the shape and the size of liver may change. 

According to the liver motion data from an in vivo animal experiment in Chapter 3, the 

deformation of the liver induced by respiration is relatively small and it can be ignored 

because all variations of distance between three landmarks of liver (the inferior vena 

cava, the lower tip of right hepatic lobe, and the lower tip of left hepatic lobe) are less 
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than 1.3% [80] (shown in appendix). Therefore, the liver is considered a rigid organ 

while breathing in this study. However, the live deformation can be estimated through 

the relationship between the liver motion and other related respiration signals like the 

movement of diaphragm [35, 70, 74, 81] and abdominal wall [42, 73, 74], so it can be 

compensated for accordingly. 

4.1.1 Computed Tomography

Computed tomography (CT), a preoperative medical image technique, is used to 

provide the information of the liver shape for ultrasound-CT image registration and the 

tumor location inside the liver for position transformation. Once the CT spatial positions 

of the liver and the tumor are obtained, the position of the tumor inside the liver can be 

computed. The used CT scanner, Toshiba Activion 16 (Toshiba Medical Systems 

Corporation, Tokyo, Japan), features 16 detectors with 0.5 mm width and 0.75 sec 

scanning time, so it can scan the area of approximate 10 mm per second. The field of 

view is around 350 mm, and the resolution in scanning plane is 512 × 512 pixels. The 

thickness and interval of the CT slice are 3 mm and 1 mm, respectively. 

In this study, the shape of the liver is used as a feature for image registration. It is 

obtained by watershed segmentation as the liver is very prominent due to the intensity 

in the CT image. It can segment the liver and other tissues based on the texture and the 
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intensity information [82] (as shown in Figure 4.2). The detected liver shape is used as

the database for image registration. The area of the detected liver images is also 

calculated as the minor feature for registration. Tumors are distinguishable in CT, and 

they are also segmented by watershed. 

(a) (b) (c)

Figure 4.2 Liver segmentation from CT image. (a) CT image including the liver, agar, 

sensor, and the air in the vessel. (b) Segmented image of the liver from CT image. (c) 

Contour of the liver from CT image. 

In order to determine the relationship between the CT and the ultrasound, tracked 

ultrasound and the CT image should be transferred to the same coordinate which is the 

tracking system coordinate (referred to as the world coordinate in this study). The 

transformation from the CT to ultrasound scanning plane is 

=  , where the inverse form of ,

which is obtained from reading the position of the sensors attached to the tracked 

ultrasound. is the transformation from the CT to the world coordination and 

it can be obtained by calculating the relationship of the markers or sensors in the two 

sets of coordinates by a transformation method known as CT-to-physical registration. 
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4.1.2 Tracked Ultrasound 

Tracked ultrasound is a technique to locate the object scanned by ultrasound probe 

via attached tracking sensors. The sensors are fixed on the ultrasound probe to measure 

the location of the probe in the tracking system coordinate. The position of the object 

displayed in the ultrasound image is then transferred into the world coordinate as shown 

in Figure 4.1. The object’s position can be obtained via coordinate transformation: 

=   (6) 

where is fixed, measured by calibration, and is variable, 

measured by reading the position of the sensors relative to the tracking system (world 

coordinate) [83, 84]. The transformation from the ultrasound scanning plane to the 

world coordinate is  

=  (7) 

Since 1998, tracked ultrasound has been studied for 3D model reconstruction and spatial 

tracking. There are two methods to track the location of the ultrasound probe: optical 

and electromagnetic tracking. Optical-tracked ultrasound is attached visible markers. 

Carbajal et al. presented an optical-tracked ultrasound with 2.0  1.6 mm tracking error 

using abdominal ultrasound probe [85]. Electromagnetic-tracked ultrasound 

(EM-tracked ultrasound) uses electromagnetic sensor to measure the position and 
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orientation of the ultrasound probe. Zhang et al. proposed a 2.5 0.6 mm tracking 

error EM-tracked ultrasound with [86]. Melver et al. presented an EM-tracked 

ultrasound with 3.4  2.3 mm tracking error at 14 cm depth [87]. 

(a) (b)

Figure 4.3 Illustration of tracked ultrasound [66]. (a) Optical tracked ultrasound 

consists of an ultrasound device and an optical tracking device. (b) Illustration of 

coordinate transformation from ultrasound image to an optical tracking system.

In this study, the tracked ultrasound consisting of a diagnostic ultrasound device 

and a 3D tracking system was used in this study. The ultrasound device, ALOKA 

SSD-500 (Hitachi Aloka Medical, Ltd., Tokyo, Japan), features a 3.5 MHz convex 

probe and displays B-mode images in real time. The scanning plane is a fan shape with

a 60 degree scanning angle and a 17 cm depth. The tracking system is a real-time 

electromagnetic tracking system, 3D Guidance trakSTAR (Ascension Technology 

Corporation, Burlington, VT), that features a magnetic field generator with 46 × 56 ×
60 cm working space and four columnar sensors with 10 mm length and 2 mm 

diameter. The sampling rate of tracking system is 20 Hz and the resolution is 0.1 mm.  
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4.1.3  Ultrasound-CT Image Registration

The organs in the abdomen can be mapped from the CT coordinate into the world 

coordinate via CT registration. With this method, however, the liver location cannot be 

absolutely ascertained as it is moving in the abdomen while breathing. To detect the 

actual liver location, registration is essential. Medical image (ultrasound, CT, and MRI) 

registration has been presented since 2000 [88]. It includes 2D to 3D and 3D to 3D 

image registration. Penney et al. proposed an anatomic-landmark-based registration 

method based on liver vessel information and the registration error was between 2.7 to 

3.5 mm [67]. Leroy et al. reported an intensity-based registration method for kidneys in 

2004. The registration error was 7.7 3.5 mm, and it took around 80 sec (from 11 to 

170 sec) [89, 90]. In 2013, Xu et al. presented an ultrasound effect simulation form CT 

image to register the ultrasound image. The fiducial and target registration errors were 

3.81  1.16 mm and 4,13  1,27 mm with averagely 76 sec acquisition time [91].  

One of the important issues is that the run time of 3D image registration is too long 

(over 60 sec), and it is inadequate for real-time tracking. For real-time tracking, 2D to 

2D image matching is used as it requires less computing time than 3D matching. 

However, it is difficult to choose the candidate plane for image matching. An alignment 

approach is added in front of the registration to make the ultrasound scanning plane 

parallel to the CT slices. After the alignment, the ultrasound image is matched to the CT 
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slices in-plane and along the slice-direction to determine the relationship between the 

ultrasound and the liver (as shown in Figure 4.4). 

Figure 4.4 The relationship between the ultrasound scanning plane and CT slice set 

can be obtained by transformation of the ultrasound and CT that are relative to the same 

coordinate (world coordinate). 

The registration consists of alignment and 2D image matching. In alignment, the 

ultrasound scanning plane is adjusted parallel to the CT slices, so the relative angles 

between them are equal to 0. In other words, the value of the orientation parameters 

(yaw, pitch, and roll) in the transformation equals to 0. Here, we assume that the liver 

and its CT 3D model have the same coordinate, =  . The transformation 

from ultrasound to CT can be then calculated as =  , as 

shown in Figure 4.4. It can be also expressed in the following form indicating 
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translation parameters (x, y, and z) and orientation parameters (yaw, pitch, and roll):  

= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) + ( ) ( )( ) ( ) ( ) ( ) ( ) + ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )0                                  0                                                   0                 1
(8) 

where stands for yaw, stands for pitch, and stands for roll. ( ) is noted as 

( ), and ( ) is noted as ( ). The values of yaw, pitch, and roll can be 

calculated from the transformation. The ultrasound probe is adjusted to make all 

orientation parameters equal to 0. After alignment, the ultrasound probe is fixed to 

detect the liver position continuously by image matching.

In image matching, 2D cross-correlation (2D XCC), a common image matching 

approach to measure the similarity of the two images, is used to find the correlation 

between the liver images from the CT and the ultrasound. It detects the correlation 

coefficient relative to the template (liver image from the ultrasound) in a larger image 

(liver image from the CT). The position with the highest coefficient is the location most 

similar to the template in the whole image [92]. The formula of 2D cross-correlation 

coefficient is written as

( , ) = , , , ,,
, , , ,,, (9) 
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where A stands for the image, and B stands for the template. , = ( + , + )
stands for the local image at location ( , ) with × size, and , stands for the 

mean of the image underneath the temple size at location ( , ). , stands for the 

template with × size, and , stands for the mean of the template. The range of 

the coefficient is from -1 to 1. The image is directly correlated to the template if the 

correlation is positive; the image is inversely correlated (anti-correlated) to the template 

if the correlation is negative. The absolute value of the coefficient that is between 0.7 

and 1 can be considered highly correlated. It is moderately correlated while it is in the 

range from 0.3 to 0.7, and it is considered as low-correlated while it is less than 0.3.  

In image registration, the image of the liver segmented from the CT stands for the 

input image, and the liver image from the ultrasound serves as the template, as shown in 

Figure 4.5 (a) and (b). The magnitude of correlation after correlation calculation is 

shown in Figure 4.5 (c). The position with the highest coefficient is the place that most 

resembles the template. The area which is most similar is obtained (Figure 4.5 (d)). The 

translation parameters on the slice plane (x and y) are obtained. The ultrasound template 

matches with the CT images along the slice direction. The slice which has the highest 

coefficient is the place the ultrasound scanning plane located, and the translation 

parameter along the slice direction, z, is obtained. 
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Figure 4.5 An example of a 2D cross-correlation: (a) the image of the liver segmented 

from the CT, (b) the image of the liver from the ultrasound image used as a template, (c) 

the magnitude of the correlation coefficient, (d) the matched area in the CT. The point 

(x, y)max with the highest value in the coefficient plane is the best matching area.

4.2 Experiment Design

Two experiments including static localization and real-time tracking are conducted

using pig liver phantom to verify the tracking performance of the proposed approach. 

Phantom for Experiment

The shape of the liver is unique, so it can be used as a feature for image registration. 

In the CT image, liver has different intensity than other tissues in gray scale, and it is 

displayed in gray. Moreover, the fat is displayed in dark shades whereas bones are 

displayed in white (Figure 4.6 (a)). In the ultrasound image, the liver has a special 

pattern and intensity because of its property of echo-reflection. The surface of the liver 

is obvious due to the high echo reflectivity at surface, as shown in Figure 4.6 (b). In

(x, y) max (x, y) max

(a)

(b)

2D XCC

(x, y) max

Matched Area
(c)

(d)
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order to verify the performance of the proposed method, a phantom is made for the 

experiments. The image property of the phantom in the CT and the ultrasound should be 

similar to the human liver. 

(a) (b)

(c) (d) (e)

Figure 4.6 (a) The CT image of a human abdomen, (b) the ultrasound image of a

human liver, (c) phantom which consists of a pig liver fixed by agar with the 

arrangement of the reference sensors, (d) the CT image of the liver with agar and the 

sensors, and (e) the ultrasound image of the liver and agar. 

The phantom which consists of a pig liver fixed in a tank filled with agar and four 

tracking sensors that serve as references was used in this study, as shown in Figure 4.6

(c). In the CT image, the phantom is displayed in varied intensity due to the difference

in their x-ray absorption (Figure 4.6 (d)). Tracking sensors have highest absorption, so 
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they appear as white in the CT image. The position of the sensors is clearly visible. The 

pig liver and agar are displayed in different shades of gray. The liver can be segmented 

based on the color intensity. In the ultrasound image, the liver in the phantom can also 

be distinguished due to its high echo-reflectivity, especially at the surface between the 

liver and agar (Figure 4.6 (e)). The agar has uniform texture and less echo-reflective, so 

its area appears dark. The intensity differences between the liver and agar are features 

for liver segmentation. The divided images of liver from CT and ultrasound will be used 

in image registration to develop the relationship of CT and ultrasound images.

Experiment Setting

In the experiments, to establish the liver position using tracked ultrasound and 

preoperative CT, a pig liver is placed in an agar-filled tank, and a tracked ultrasound 

system is fixed above the tank with a three degree-of-freedoms (DOFs) mechanism for 

CT to ultrasound alignment (in Figure 4.7). The tank is put on a base and driven by a 

controlled servo motor to simulate the liver motion. The base is still and attached three 

tracking sensors for CT registration to simulate the external sensors attached to the 

patient’s back. Moreover, four tracking sensors are attached to the liver to stand for the 

tumors and the references. The position of the reference sensors are obtained by reading 

the measurement from the position tracking system and are only used for verification. 
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Figure 4.7 Experiment setting to simulate real-time tracking.

Experiment Procedure

There are two main stages in the experiment: (1) preoperative CT scan to detect the 

tumor location in the liver and to obtain liver image, and (2) the tumor tracking using 

intraoperative tracked ultrasound with CT to ultrasound image registration.

The preoperative stage consists of three steps: 

1. Liver and tumor image acquisition via CT scan 

2. Liver image segmentation 

3. Tumor location computation 

The liver images segmented from the CT are used as the database for image 

registration, and the tumor location relative to the liver is used to transform the tumor

location from the liver into the world coordinate. 
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Servo Motor
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In the intraoperative stage, a six step procedure is followed to estimate the tumor 

location (as shown in Figure 4.8).

1. Tracked ultrasound alignment (initialization)

2. Liver image segmentation from ultrasound images

3. Transformation from the CT to the ultrasound acquisition by CT to ultrasound 

image registration

4. Transformation from the ultrasound to the world coordinate acquisition 

5. Tumor tracking via coordinate transformation 

6. Reference sensors’ position measurement by the tracking system (for 

verification only) 

Figure 4.8 Flow chart of the proposed tracked ultrasound tracking. 
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In order to verify the proposed method, two experiments were conducted: static 

localization and real-time tracking. In the static localization experiment, the phantom 

with reference sensors was static. In the real-time tracking experiment, the phantom and 

the sensors followed a set of trajectory. The motion was a wave with a 30 mm amplitude 

and a 6 sec period, similar to human respiration, while the motion occurred in the 

cranial-caudal direction. 

4.3  Experiment Results

Results of experiment are shown in this section, including static localization and 

real-time tracking.

4.3.1 Static Localization 

Three pig livers were used to verify the proposed approach. Four position sensors 

were attached to each liver for reference. The experiment was repeated five times for 

the purpose of data collection. The static localization error as the difference between the 

located position and the reference position was established as 3.8 ± 1.6 mm (mean ±

STD) for = 60 (4.3 ± 1.6 mm  in case 1, 3.7 ± 1.3 mm in case 2, and 3.6 ± 1.1 mm 

in case 3) with values ranging from 0.69 to 8.5 mm, as shown in Figure 4.9.  
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(a) (b) (c)

Figure 4.9 The results of the static localization experiment. Each center point is the 

mean of five repeated results at each sensor position. The bars show the range of the 

standard deviation at every sensor position. 

Three axes were noted to identify the liver motion: the cranial-caudal direction 

(CC-dir.), the anterior-posterior direction (AP-dir.), and the left-right direction (LR-dir.). 

The localization errors along the three axes in the body were -0.02 ± 2.5 mm along the 

CC-dir., 0.3 ± 1.6 mm along the AP-dir., and 0.01 ± 2.9 mm along the LR-dir., 

respectively (shown in Figure 4.10). The results showed that the method had high 

accuracy for static tumor localization. However, the STD values of error, which was 

probably caused by difficulty of the image processing of the low quality and speckle 

noise affected ultrasound images, could be reduced by improvement of image 

processing.  
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(a) (b) (c)

Figure 4.10 The static localization errors along the three axes of the body: (a)  -0.02 ±

2.5 mm along the CC-dir., (b) 0.3 ± 1.6 mm along the AP-dir., and (c) is 0.01 ± 2.9 mm

along the LR-dir.. 

4.3.2 Real-Time Tracking

In real-time tracking, the motion of the pig liver phantom was a wave with a 30 

mm amplitude and a 6 sec period imitating human respiration, while the motion 

occurred along the CC-dir. as shown in Figure 4.11. The tracking error was 5.1 ± 2.4 

mm in the range from 3.4 to 13.5 mm. The computing time was around 0.2 sec (5 Hz 

sampling rate), which is 10 times faster than the average human respiration period. Both 

the mean and standard deviations of each sensor in the tracking experiment were larger 

than those in the static localization experiment. The errors were 3.8 ± 4.1 mm along the 

CC-dir., -0.6 ± 1.2 mm along the AP-dir., and -0.5 ± 1.2 mm along the LR-dir., 

respectively, as shown in Figure 4.12. It showed high accuracy in the AP-LR plane (the 

CT slices).
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Figure 4.11 The phantom motion, tracking result, and the tracking error along the three 

body axes.

The tracking errors along the CC-dir. (main movement direction) were larger than 

that along the other directions. The errors were supposedly caused by the computing 

time and the image registration. The maximum displacement of the phantom along the 

CC-dir. was about 13 mm in one computing time. This factor called ‘one-step delay’ 

was the probable cause of the error along the CC-dir. The tracking accuracy can be 

enhanced by reducing the computing time and predicting the next position using 
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historical information. Moreover, the speckle noise in the ultrasound image might have 

affected the results from the liver segmentation. Incorrect segmentation reduces the

accuracy of image registration and causes the error in the image plane (AP-LR plane). 

To improve the registration accuracy, contrast enhanced ultrasound should be used to 

reduce the noise effect.

(a) (b) (c)

Figure 4.12 The real-time tracking error: (a) 3.8 ± 4.1 mm along the CC-dir., (b) -0.6 ±

1.3 mm along the AP-dir., and (c) -0.5 ± 1.2 mm along the LR-dir.. 

Table 4.1 Results from the in phantom experiment 

Error CC-dir. AP-dir. LR-dir. Distance

Static Localization -0.02 ± 2.5 0.3 ± 1.6 0.01 ± 2.9 3.8 ± 1.6 

Real-Time Tracking 3.8 ± 4.1 -0.6 ± 1.3 -0.5 ± 1.2 5.1 ± 2.4 

Average ± STD (Unit: mm) 
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4.4  Discussions and Summary

In this study, a new liver tumor tracking approach is proposed. It uses tracked 

ultrasound with CT image registration for real-time liver tumor tracking. In other words, 

the tumor location can be detected without scanning the tumor directly by tracked 

ultrasound. This approach solves two issues: the location of tumor might be lost (1) 

when it is hidden in the rib shadow where is an echo-undetectable area and (2) when it 

leaves the scanning area of the tracked ultrasound. The proposed approach integrates 

preoperative CT scan and intraoperative tracked ultrasound to estimate the tumor 

location. The accuracy of this approach is 3.8 ± 1.6 mm for static localization and 5.1 ± 

2.4 mm for real-time tracking. 

So far, little research has been done to real-time track liver tumors using tracked 

ultrasound with CT/MRI image registration. Mercier et al. presented a navigation 

system using tracked ultrasound and MRI image registration for brain-shift detection 

during neurosurgery. In that study, the MRI image was calibrated with landmarks of 

patients, and vessel-based and mutual-information techniques were used in 

MRI-ultrasound image registration. The error in MRI-ultrasound registration was 6.1 ±

3.4 mm under over 300 sec computation time [68]. In 2011, Lang et al. proposed a 

localization method using CT-ultrasound registration with contour features, and the 

tracking accuracy was 2.6 mm [78]. Gill et al. used CT-ultrasound registration to 
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localize the lumbar spine in 2012. The localization error was 1.7 ± 0.39 mm with 11 sec 

run time [93]. 

According to the above researches, all of them discussed static localization, and 

none of them used image registration to track liver tumors in real-time. In our study, the 

proposed approach has shortest rum time (around 0.2 sec) so that it can track liver 

tumors in near real-time. In the future, the accuracy of the proposed approach will be 

improved and tested on animal models with implanted liver tumors. 

Table 4.2 Comparison of tracking results.

Feature Run time (sec)
Localization 

error (mm)

Tracking error 

(mm)

Mercier et al. [68] Landmark > 300 6.1 ± 3.4 Not analysis

Lang et al. [78] Contour 0.5 2.6 Not analysis

Gill et al. [93] Contour 11 1.7 ± 0.39 Not analysis

Our work Contour 0.2 3.8 ± 1.6 5.1 ± 2.4 

Average ± STD
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Chapter 5 Conclusions and Future Work

Two liver tumor tracking methods are proposed in this dissertation: (1) 

surrogate-based tracking with end-points registration and (2) tracked ultrasound 

tracking with CT-ultrasound image registration.

In the surrogate-based tracking, effectiveness of external surrogates and 

performance image-to-physical registration were verified. The results show that:

(1) Abdominal wall displacement has a high relationship with liver tumor movement.  

(2) Upper abdomen produces good performance for liver motion estimation, and the

best place to obtain external signals is at the middle of upper abdomen.

(3) Multiple surrogates have benefit to provide better performance than singular 

surrogate does.

(4) The estimation model can maintain the accuracy for at least 10 minutes. 

(5) External markers provide actual liver tumor position from CT images. 

A novel tracked ultrasound tracking approach with image registration is first

proposed for real-time liver tumor tracking. This method has not been used to track liver 

tumor in real time. A phantom experiment was conducted to validate the tracking 

performance of the proposed method. The results show that:  
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(1) Tumor position can be tracked by integrating liver positon tracked by ultrasound 

and tumor relative position from CT image.

(2) Ultrasound probe alignment and image registration reduce the run time to achieve 

real-time tracking (around 5 Hz). 

In the future, two issues would be considered: (1) image processing in ultrasound 

images and (2) tumor motion prediction. Ultrasound image processing affects directly 

the performance of image registration. Improvement of image processing can enhance 

the tracking accuracy. Due to the trade-off between the run time and accuracy in 

real-time tracking, prediction is one of methods to enhance the tracking accuracy 

without reducing run time. The proposed methods have potential to serve as guidance in

radiotherapy and thermotherapy for real-time liver tumor treatment. 
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