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摘要

本文透過 「優勢策略可解賽局」、「同時選擇」 與 「先後選擇」 的 「空間版選美結果預測賽

局」 來探索人們的策略性思考能力。 利用主成分分析法, 我們從實驗資料中歸納出五個策

略性思考能力, 用以解釋人們在這些賽局中對戰所有人之期望報酬 56% 的變異: (一)、

人們的逆推思考能力 (最能解釋人們在這些賽局中表現的主成分); (二)、 人們的在高維空

間下的逆推思考能力; (三)、 人們的風險偏好; (四)、 人們對於他人社會偏好的認知信念;

(五)、 人們對於他人認知雙方行為的高層次信念。

關鍵詞: 因素分析、 優勢可解賽局、 選美預測賽局、 策略性思考能力、 多層次思考模型
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Abstract

We employ principal component analysis to identify components of sub-
ject’s strategic IQ in the following three classes of games: The two-stage
dominance-solvable game, Chen, Huang and Wang (2013)’s simultaneous spa-
tial beauty contest game, and the first-mover spatial beauty contest game.
Parallel analysis retains the first five principal components (PCs), which ac-
count for 56% of the total variance of subject’s normalized expected payoffs
for each of the 33 games. We interpret these PCs as five strategic IQs: The
first SIQ indicates subjects’ abilities to perform backward induction and it
is also the common g-factor that can predict subjects’ performances in most
games. The second SIQ could be interpreted as subjects’ abilities to perform
high dimensional backward induction. The third SIQ controls for subjects’
attitudes toward risk. The fourth SIQ reflects subjects’ beliefs about social
preferences. The fifth SIQ measures subjects’ accuracy of higher order beliefs
about others.
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1 Introduction

Since Stahl and Wilson (1995) and Nagel (1995), researchers have explored human

limits of strategic thinking and the existence of heterogeneous levels of beliefs about

such cognitive limitations. In the “level-k” model pioneered by these authors, sub-

jects anchor their beliefs in a strategically näıve initial assessment of others’ likely

responses to the game called “level-0” (L0), and then adjust them via “thought-

experiments” with iterated best responses: level-1 (L1) best responds to L0, level-2

(L2) to L1, and so on. Players’ levels (types) of strategic thinking are heteroge-

nous, but each player’s level (type) is usually assumed to be drawn from a common

distribution. Camerer, Ho and Chong (2004) developed a closely related model,

known as the “cognitive hierarchy” (CH) model, that assumes Lk types best re-

spond to a mixture of lower types, which distribution is a Poisson distribution, but

“truncated” at L(k-1). Recently, such level-k models have been widely developed to

explain strategic behavior in various classes of games, including two-player guess-

ing games, initial responses in hide-and-seek games, auctions, coordination games,

cheap talk games, field settings such as Swedish LUPI lotteries, movie reviews, and

even lookup patterns captured by various techniques of eyetracking (See Crawford,

Costa-Gomes and Iriberri, 2013, for a review.).

Strategic IQ, first proposed by Camerer and Ho (2004),1 measures “the degree in

individual’s ability to think strategically by analyzing and anticipating what others

might know or do, and subsequently choosing rational responses that will outwit

the opponents.” For example, Bhatt and Camerer (2005) defined strategic IQ as the

normalized expected payoffs one earns in eight 2-player matrix games from making

decisions and predicting accurately other’s choices (and predictions). They found

that strategic IQ is negatively correlated with activity in the insula, suggesting that

low strategic IQ subjects are too self-focused. In contrast, strategic IQ is positively

correlated with caudate activity, suggesting that high strategic IQ subjects spend

more mental energy predicting the opponent’s behavior. Interestingly, they find

no correlation between the “theory of mind” regions and strategic IQ, indicating

that a simple average of normalized expected payoffs alone cannot account for one’s

strategic abilities.

In this study, we conduct a battery of games that induces heterogeneous re-

sponses, including two-stage dominance-solvable games, Chen, Huang and Wang

(2013)’s simultaneous spatial beauty contest (SBC) games, and first-mover spatial

beauty contest (1st-mover SBC) games. First, the two-stage dominance-solvable

1The strategic IQ site: http://128.32.75.8/siq/default2.asp
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game is a simple extensive form game which involves two players acting sequen-

tially. The first player (Player 1) chooses between action left, which enforces an

“outside option” payoffs on the two players, and action right. If right is chosen, the

responder (Player 2) determines the allocation of payoffs by choosing between up

and down. Although the structure of this game is simple, it is sufficient to reproduce

the main deviations from rational choice considered by previous studies. We adopt

games from Beard and Beil (1994), Goeree and Holt (2001), and Ert, Erev and

Roth (2011), which show heterogeneity in subjects’ decisions in their studies. Sec-

ondly, Chen, Huang and Wang (2013)’s simultaneous SBC game is a spatial variant

of Costa-Gomes and Crawford (2006)’s asymmetric two-person guessing game. In

this game, two players are asked to choose locations simultaneously on a given two-

dimensional grid map with different targets. One’s target is defined as a relative

location to the opponent’s choice of location and is common knowledge for both

players. The closer a player’s choice is away from his target, the higher payoffs he

earns. We adopt 6 games from Chen, Huang and Wang (2013) to identify subjects’

levels of reasoning. Lastly, the 1st-mover SBC game is a sequential variant of the

simultaneous SBC games, in which subjects choose first, playing against a com-

puterized profit-maximizing player. Unlike the first two classes of games, solving

the 1st-mover SBC game does not involve subject’s belief about what others might

know or do. Hence, it can be considered as a working memory task which reflects

subject’s ability to play best response and perform backward induction.

We define five ad hoc indicators on subjects’ performance representing various

strategic abilities in each class of games.In particular, CS-DSG and EV-DSG sum-

marize subject’s performance in the two-stage dominance-solvable games. CS-DSG

counts the times subjects violate comparative static predictions and reflects sub-

ject’s inability to respond to changes in game payoffs. EV-DSG represents subject’s

ability to perform backward induction and the accuracy of his belief about Player

2 subjects. In addition, EV-1st1D and EV-1st2D summarize subject’s performance

in the 1st-mover SBC games, reflecting the ability to perform backward induction

against the preprogrammed second mover. Lastly, EV-SBC summarizes subject’s

performance in the simultaneous SBC games, reflecting subject’s ability to perform

backward induction and the accuracy of his belief (and higher order belief) about

the opponents’ choices of locations. Note that except for CS-DSG, the remaining

four indicators are all defined by subjects’ average expected payoffs across certain

games that belong to the same predefined class. The results of these indicators

show the heterogeneity in subject’s strategic abilities.

Since the above indicators are ad hoc and the classification of games could be
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rather arbitrary, we employ principal component analysis to form several linear com-

binations of the normalized expected payoffs of the 33 games used in the experiment.

The first five principal components are selected based on Horn (1965)’s parallel anal-

ysis and can be interpreted as the following strategic IQs, which represent different

strategic abilities: SIQ1 reflects the ability to perform backward induction. SIQ2

indicates the ability to perform multi-dimensional backward induction. SIQ3 could

be interpreted as (and controls for) subjects’ attitudes toward risk. SIQ4 measures

subjects’ beliefs about others’ social preferences. SIQ5 captures subjects’ accuracy

of higher order beliefs about the opponents in the simultaneous SBC games. These

strategic IQs are correlated with some of our ad hoc indicators, meaning that these

indicators are not as arbitrary as one may think.

The rest of the paper is organized as follow. The next section describes the

game structure and the theoretical predictions of each game. Section 3 describes the

design of our experiment. Section 4 reports the aggregate results of the experiments.

Section 5 explores subjects’ strategic abilities in the experiment by establishing

various indicators that reflect subjects’ performance and the underlying strategic

abilities in the experiment. Strategic IQs, which are formed by principal component

analysis, are provided to summarize subjects’ performance in all games used in the

experiment. Section 6 concludes and sketches future research.

2 Game Structure and Theoretical Predictions

2.1 Two-Stage Dominance-Solvable Games

The two-stage dominance-solvable game is a simple extensive form game which

involves two players acting sequentially. The game is presented in Figure 1. The

first player (Player 1) decides to choose either “left” (L) to obtain an assured payoff

π1(L), giving the second player (Player 2) π2(L), or “right” (R) to put Player 2 on

the move. Under the latter, if Player 2 chooses “down” (D), the two players would

earn π1(R,D) and π2(R,D), respectively; if Player 2 chooses “up” (U), they would

earn π1(R,U) and π2(R,U), instead. To make this game interesting, we assume

π1(R,D) > π1(L) > π1(R,U).

Assuming that Player 1 is self-interest and believes that Player 2 is also self-

interest, subgame perfect equilibrium (SPE) makes specific predictions in this game.

When π2(R,D) > π2(R,U), SPE predicts that Player 2 would choose D (giving

Player 1 π1(R,D)), and Player 1 hence chooses R (since π1(R,D) > π1(L)). In

contrast, when π2(R,U) > π2(R,D), Player 2 would respond to Player 1’s R choice

by choosing U (giving Player 1 π1(R,U)), and Player 1 hence chooses L (since

3



Figure 1: Two-Stage Dominance-Solvable Game

π1(R,U) < π1(L)).

When Player 1 does not think that all Player 2 subjects are self-interest and obey

dominance, his belief about his opponent’s rationality would affect his decision.

In particular, a risk neutral Player 1 first forms the belief of the probability (or

frequency) that a randomly selected Player 2 would choose D following R, p(D|R),

and uses it to calculate the expected payoff of choosing R, E[π1(R)] = p(D|R) ·
π1(R,D) + (1 − p(D|R)) · π1(R,U). Then, he compares this expected payoff with

the assured payoff, π1(L), and chooses R if E[π1(R)] > π1(L). Similarly, a risk

averse Player 1 compares the assured payoff with the expected utility of choosing

R, u(π1(R)) = p(D|R) · u(π1(R,D)) + (1 − p(D|R)) · u(π1(R,U)), and demand a

risk premium to compensate for the risk of choosing R. The threshold probability,

p̂(D|R), represents Player 1’s belief about Player 2’s rationality required to justify

choosing R. For a risk neutral (risk averse) Player 1, this threshold is the belief of

the frequency of D choices that makes the expected payoff (utility) of choosing R

equal to the assured payoff (utility) by choosing L:

p̂(D|R) =
π1(L)− π1(R,U)

π1(R,D)− π1(R,U)
(

p̂(D|R) =
u(π1(L))−u(π1(R,U))

u(π1(R,D))− u(π1(R,U))

)

Table 1 presents the payoffs and the SPE prediction of each game used in the

experiment.2 The payoffs selected for these games are motivated by a desire to

induce various influences on Player 1 subjects’ decisions. Game D1, D2, D3 and

their variants have different threshold probabilities but the same SPE prediction,

(R,D). Game RP and RP-VLR are rational punishment games in which Player

2Game D1 and its variants are adopted from Beard and Beil (1994). Game D2, D3 and their
variants are similar to Goeree and Holt (2001). The remaining games (rational punishment games
and trust games) are inspired by Ert, Erev and Roth (2011).
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Table 1: Two-Stage Dominance-Solvable Games and Their Theoretical Predictions

Risk Neutral
Game Payoffs: (Player 1,Player 2) SPE Threshold

L (R,U) (R,D) p̂(D|R)†

Beard and Beil

D1 (baseline 1) (9.75, 3) (3, 4.75) (10, 5) (R,D) 0.96
D1-LR (less risk) (7, ·) (·, ·) (·, ·) (R,D) 0.57
D1-MRs (more resentment) (·, 6) (·, ·) (·, ·) (R,D) 0.96
D1-MRc (more reciprocity) (·, 5) (5, 9.75) (·, 10) (R,D) 0.95
D1-MA (more assurance) (·, ·) (·, 3) (·, ·) (R,D) 0.96

Goeree and Holt

D2 (baseline 2) (7, 6) (6, 1) (9, 5) (R,D) 0.33
D2-LA (lower assurance) (·, ·) (·, 4.75) (·, ·) (R,D) 0.33

D3 (baseline 3) (8, 5) (2, 1) (9, 7) (R,D) 0.86
D3-LA (lower assurance) (·, ·) (·, 6.75) (·, ·) (R,D) 0.86
D3-VLA (very low assurance) (40, 25) (10, 34.75) (45, 35) (R,D) 0.86

Ert, Erev and Roth

RP (rational punishment) (6, 4) (0, 3) (14, 0) (L,U) 0.43
RP-VLR (very low risk) (1, 13) (0, 4) (14, 0) (L,U) 0.07

TG (trust game) (4, 1) (0, 10) (9, 9) (L,U) 0.44
TG-LRc (less reciprocity) (2, 0) (0, 3) (9, 2) (L,U) 0.22
TG-CR (costly repay) (3, 0) (0, 10) (8, 1) (L,U) 0.38

Note: (·, ·) indicates the payoffs are the same as those in the baseline game.
†: Individual threshold probability depends on subject’s attitude toward risk. Here, we
provide the threshold probability for a risk neutral Player 1 as a benchmark.

2’s U choice not only maximizes his own payoff but also “punishes” Player 1’s R

choice that makes him earn less. Game TG, TG-LRc, and TR-CR are trust games

designed to incorporate Player 1’s belief about Player 2’s social preference. In these

games, Player 1 could choose the SPE prediction L to obtain the assured payoff,

or choose R to increase Player 2’s potential payoffs and expect a reciprocal, but

dominated choice from Player 2.

The predictions for various influences on the probability (or frequency) that a

randomly selected Player 1 would choose the secure option L (p(L)) of 15 games

are as follows:

The first baseline game, Game D1, has a high threshold probability.In particular,

the difference between π1(L) and π1(R,D) is only $0.25 and the the difference

between them and π1(R,U) are around $7. Therefore, the risk neutral Player 1’s

threshold probability, p̂(D|R), of this game is high (0.96). Hence, some Player 1

subjects might choose L to earn $9.75 for sure, violating the SPE prediction.

Game D1-LR, D1-MRc, D1-MRs, and D1-MA vary the payoffs of Game D1

to induce a change in Player 1’s behavior. In particular, Game D1-LR lowers

5



Player 1’s L payoff from $9.75 to $7. This lowers p̂(D|R) (the risk neutral p̂(D|R)

decreases to 0.57) and makes it “less risky” to choose R. As a result, Player 1 is

less likely to select L. In addition, Game D1-MRs raises π2(L) from $3 to $6, so

that π2(L) becomes greater than π2(R,U) ($4.75) and π2(R,D) ($5). This induces

“resentment” in Player 2 and likely makes him “retaliate” by choosing U . Hence,

Player 1 is more likely to select L. Thirdly, Game D1-MRc raises Player 2’s potential

payoffs from $5 (π2(L)) to around $10 (π2(R,U) and π2(R,D)), making it more

likely that Player 2 would “reciprocate” by choosing R. This added motivation

would let Player 1 be less likely to select L. Finally, Game D1-MA lowers π2(R,U)

from $4.75 to $3, which increases the cost of Player 2 mistakenly choose U instead

of D. This increases Player 1’s “assurance” that Player 2 would choose D, so he is

less inclined to choose the secure option L. To sum up, we have:

Hypothesis 1. Compared with Game D1, Player 1 is

a. less likely to select L in Game D1-LR since choosing R now involves “less

risk” for himself.

b. more likely to select L in Game D1-MRs since choosing R now induces “more

resentment” for Player 2.

c. less likely to select L in Game D1-MRc since choosing R now creates “more

reciprocity” for Player 2.

d. less likely to select L in Game D1-MA since he now has “more assurance”

that Player 2 would obey dominance.

Goeree and Holt (1999) introduce Game D2, D3 and their variants to test similar

hypotheses regarding assurance. In particular, Game D2 is the second baseline game

with low threshold probability, in which most Player 1 subjects would choose R.3

Compared with Game D2, Game D2-LA raises π2(R,U) from $1 to $4.75, lowering

the assurance that Player 2 would choose D. Hence, we predict that:

Hypothesis 2. Player 1 is more likely to select L in Game D2-LA than in Game

D2 since he now has “lower assurance” that Player 2 would obey dominance.

Similarly, Game D3 is the third baseline game with intermediate threshold prob-

ability, so the fraction of L choices by Player 1 subjects is expected to be lower than

that in Game D1 but higher than that in Game D2. Starting from Game D3, Game

D3-LA lowers the assurance that Player 2 would choose D by raising π2(R,D) from

3In addition, Game D2 and D2-LA also induce resentment for Player 2 since π2(L) is greater
than π2(R,D) and π2(R,U) in both games.
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$1 to $6.75. Game D3-VLA further lowers this assurance by multiplying all payoffs

of Game D3-LA by approximately 5, making the difference between π2(R,D) and

π2(R,U) only 0.7%, though still $0.25 in absolute terms. As a result, we have:

Hypothesis 3. Since the assurance that Player 2 would obey dominance is decreas-

ing, the likelihood that Player 1 selects L increases across Game D3, D3-LA, and

D3-VLA.

Game RP is a rational punishment game, in which Player 2 has little incentive

to violate dominance. In this game, if Player 1 chooses L, Player 2 can earn $4. In

contrast, if Player 1 chooses R, Player 2 can only earn $3 by choosing U (giving

Player 1 $0) and $0 by choosing D (giving Player 1 $14). Thus, the choice U by

Player 2 is not only a rational response but also a punishment for Player 1’s R

choice. As a result, Player 2 has little incentive to deviate from the SPE prediction,

U , and most Player 1 subjects might respond it by choosing L to earn $6 for sure.

Game RP-VLR involves very low risk of choosing R, so some Player 1 subjects

would choose R. Compared with Game RP, Game RP-VLR considerably decreases

the risk of choosing R by lowering π1(L) from $6 to $1. Actually, the threshold

probability for a risk neutral Player 1 is only 0.08. Therefore, some Player 1 subjects

would choose R, hoping to meet the irrational choice D by Player 2.

Player 1’s choice in Game TG reflects his belief about the reciprocal behavior

by Player 2 subjects. In this game, SPE predicts the outcome (L, U), letting Player

1 and 2 earn $4 and $1, respectively. However, Player 1 can express his trust on

Player 2 by choosing R, which increases Player 2’s potential payoffs (π2(R,U) = $10

and π2(R,D) = $9), expecting to receive the reciprocal choice D by Player 2. Since

the payoff augmentation from Player 1’s R choice is high (increases from $1 to at

least $9) and the costs of choosing the reciprocal choice D is low (the difference

between π2(R,D) and π2(R,U) is only $1), some Player 1 subjects would believe

that Player 2 would reciprocate his trust, and hence choose R.

Game TG-LRc lowers both Player 2’s potential payoffs and Player 1’s threshold

probability, making it unclear which direction would Player 1’s choice move. On

the one hand, Player 2’s potential payoffs decrease from $9-10 to $2-3. This would

deter Player 2’s willingness to reciprocate Player 1. On the other hand, the threshold

probability for a risk neutral Player 1 is only 0.22, so some Player 1 subjects might

still select the risky option R.

Game TG-CR substantially increases the cost of repayment for Player 2, so most

Player 1 subjects would choose L. Compared with Game TG and TG-LRc, the costs

of choosing D by Player 2 extensively increases from $1 to $9. This astronomical

7



cost decreases the likelihood of reciprocal behavior from Player 2. Consequently,

we expect most Player 1 subjects would follow the SPE prediction by choosing L.

2.2 Simultaneous Spatial Beauty Contest Games

Chen, Huang and Wang (2013)’s simultaneous SBC game is a spatial variant of

Costa-Gomes and Crawford (2006)’s asymmetric two-person guessing game. In the

original asymmetric two-person guessing game, one player would like to choose a

number which equals to α times his opponent’s choice and his opponent would like

to choose a number which equals to β times his choice. In the simultaneous SBC

game, two players are asked to choose locations instead of numbers simultaneously

on a two-dimensional grid map to hit their target locations. One’s target location

is defined as a relative location to the opponent’s choice of location by a pair of

coordinates (a, b) in the standard Euclidean coordinate. For instance, (0, 2) means

a player’s target location is “two squares above the opponent’s choice of location,”

and (−4, 0) means a player’s target location is “four squares to the left of the

opponent’s choice of location.” Targets of both players are common knowledge.

Payoffs are determined by how “far” a player’s choice of location is away from

his target location. Specifically, suppose player i chooses (xi, yi) with the target

(ai, bi), and his opponent −i chooses (x−i, y−i). The payoff to player i is determined

by the following equation:

pi(xi, yi; x−i, y−i; ai, bi) = s̄− λ(|xi − (x−i + ai)|+ |yi − (y−i + bi)|)

where s̄ and λ are constants,4 and (x−i + ai, y−i + bi) is the target location for

player i. Note that the target location may not be available. For example, consider

a player who is assigned to choose a location on a 7×7 grid map with the target

(4, 0). For the purpose of illustration, suppose the player’s opponent has chosen

the center location ((0, 0)). Then, to hit his target, the ideal choice/response is

(4, 0). However, location (4, 0) is not available since it is outside the map. Among

all 49 feasible choices of locations on the map, location (3, 0) is the optimal choice

of location since it is the only feasible location that is one square from the ideal

response (target location) (4, 0).

Table 2 lists the 6 simultaneous SBC games used in the experiment. In these

games, both players have one-dimensional targets, one horizontal, one vertical. To

report Player 2 subjects’ behavior, we also define the sister game, Game SBC-mR,

to be the same as Game SBC-m (where m = 1, 2, . . . , 6) but with reversed roles for

4In our experiment, s̄ is 10 and λ is 0.5.

8



Table 2: Simultaneous Spatial Beauty Contest Games and Their Theoretical Pre-
dictions

Map Player 1 Player 2 Player 1 Choice of

Game Size Target Target L0 L1 L2 L3 NE Soph k̄

SBC-1 9×9 -2, 0 0,-4 0, 0 -2, 0 -2,-4 -4,-4 -4,-4 -4,-3 3
SBC-2 7×7 2, 0 0,-2 0, 0 2, 0 2,-2 3,-2 3,-3 3,-2 4
SBC-3 11×5 2, 0 0, 2 0, 0 2, 0 2, 2 4, 2 5, 2 4, 2 5
SBC-4 9×7 -2, 0 0,-2 0, 0 -2, 0 -2,-2 -4,-2 -4,-3 -3,-3 4
SBC-5 7×9 -4, 0 0, 2 0, 0 -3, 0 -3, 2 -3, 2 -3, 4 -3, 2 4
SBC-6 7×9 2, 0 0, 2 0, 0 2, 0 2, 2 3, 2 3, 4 3, 3 5

SBC-1Ra 9×9 0,-4 -2, 0 0, 0 0,-4 -2,-4 -2,-4 -4,-4 -4,-4 4
SBC-2R 7×7 0,-2 2, 0 0, 0 0,-2 2,-2 2,-3 3,-3 2,-3 4
SBC-3R 11×5 0, 2 2, 0 0, 0 0, 2 2, 2 2, 2 5, 2 4, 2 6
SBC-4Rb 9×7 0,-2 -2, 0 0, 0 0,-2 -2,-2 -2,-3 -4,-3 -4,-3 4
SBC-5R 7×9 0, 2 -4, 0 0, 0 0, 2 -3, 2 -3, 4 -3, 4 -3, 4 3
SBC-6R 7×9 0, 2 2, 0 0, 0 0, 2 2, 2 2, 4 3, 4 2, 4 5

* Non-separating types are underlined.
a In Game SBC-1R, L2 and L3 make identical predictions, and so does NE and Soph.
b Besides (−4,−3), (−3,−3) is also a Soph prediction in Game SBC-4R.

the two players.5 For example, Game SBC-1R is identical to Game SBC-1, Game

SBC-2R is identical to Game SBC-2, and so on.

Chen, Huang and Wang (2013) adopt the level-k model to explain the results

of simultaneous SBC games. In particular, they assume that a L0 player would

randomly choose any location on the map, which is on average the center (0, 0). To

best respond to a L0 player, a L1 player with the target (a, b) would choose the

location (a, b), or the nearest feasible location if (a, b) is outside the map. Similarly, a

L2 player with the target (c, d) plays best response to a L1 player who chooses (a, b),

by choosing (closest to) (a + c, b + d).6 A L3 player best responds to a L2 player,

and so on. Chen, Huang and Wang (2013) show that there exists a smallest positive

integer k such that for all k ≥ k, the level-k predictions are all the same, making

them mutual best responses, or the Nash equilibrium (NE). For example, Figure 2

shows the various level-k predictions of Game SBC-2. Specifically, the predictions

for Player 1 with target (2, 0) are L11, L21, L31, and E1; the predictions for Player 2

with target (0,−2) are L12, L22, L32, and E2. O represent the prediction of L0 for

both players. Notice that Lk1 (Lk2) are the best responses to L(k−1)2 (L(k−1)1),

and so on. For example, L21’s choice (2,−2) is the best response to L12, since

(0,−2)+(2, 0) = (2,−2). For k ≥ 4, the level-k predictions of both players coincide

with the NE predictions.

5These games are adopted from Game 1 to 12 of Chen, Huang and Wang (2013).
6To ensure uniqueness, in all our games, we have a+ c 6= 0 and b+ d 6= 0.
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Figure 2: Level-k and NE Predictions of a 7×7 Simultaneous SBC Game with
Targets (2, 0) (Player 1) and (0,−2) (Player 2) (Game SBC-2).

In addition to the Lk and NE types, we also define the Sophisticated (Soph)

type to capture the possibility that some subjects have a prior understanding of

others’ decisions. A Soph player has a precise belief about others’ decisions, and

best responds to the empirical distribution of the opponents’ decisions. The Soph

prediction of each game is presented in the next-to-last column of Table 2. Note

that the Soph prediction coincides with NE when (most) players play NE.7

2.3 First-Mover Spatial Beauty Contest Games

The 1st-mover SBC game is a sequential variant of the simultaneous SBC game.

In the simultaneous SBC game, two subjects play against each other and choose

simultaneously. Notwithstanding, in the 1st-mover SBC game, each subject chooses

individually, then a computerized player who is preprogrammed to maximize its own

profit reacts and plays best response. This design controls for subjects’ beliefs about

the opponent’s level of reasoning, and their decisions hence only reflect the ability

to play best response and perform backward induction.

Given the same targets and map size, the equilibrium prediction of a 1st-mover

SBC game may differ from the simultaneous one. For instance, consider a SBC

7In our study, only Soph predictions of Game SBC-1R, SBC-4R, and SBC-5R are identical to
the NE predictions. However, the Soph predictions of the remaining games are also close, being
at most two squares away.
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Figure 3: Optimal Choices of a 11×5 1st-Mover SBC Games with Targets (0, 2)
(First Mover) and (2, 0) (Second Mover) (Game 1st-3R).

game with targets (0, 2) and (2, 0) for both players on a 11 × 5 grid map. If

both players choose simultaneously (Game SBC-3/3R), there is an unique NE,

((5, 2), (5, 2)). However, as shown in Figure 3, the sequential variant of this game

(Game 1st-3R) with targets (0, 2) for the first mover (subject) and (2, 0) for the

second mover (computer) has 4 other SPE (all labeled with ∗). In fact, if the first

mover chooses (l, m), the computerized second mover would play best response by

choosing (min(5, l + 2), m), which is (l + 2, m) provided that it is on the map and

(5, m) otherwise. Hence, the first mover’s ideal choice would be (min(5, l+2), m+2).

By backward induction, the first mover would choose (5, m) to minimize the dis-

tance between his/her choice (l, m) and ideal choice (min(5, l+2), m+2). In other

words, among all feasible 55 choices of locations, locations (5,−2), (5,−1), (5, 0),

(5, 1), and (5, 2) are optimal for the first mover.

We derive the SPE predictions for the general case as follows. Consider a 1st-

mover SBC game with target (a1, b1) for the first mover and (a2, b2) for the second

mover. Suppose the first mover chooses location (x1, y1) on a map G ≡ {−X,−X+

1, . . . , 0, . . . , X}×{−Y,−Y +1, . . . , 0, . . . , Y }, where X and Y are positive integers

and (0, 0) is the center of the map.8 Then, the choice (x2, y2) of the computerized

profit-maximizing second mover can be characterized by the following “boundary-

adjusted” best-response function:

(x2, y2) = BR(X, Y ; x1, y1; a2, b2)

= (min{X,max{−X, x1 + a2}},min{Y,max{−Y, y1 + b2}})
8For example, (x1, y1) = (X,Y ) means the first mover chooses the Top-Right corner of the

map.
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Like simultaneous SBC games, there is no interaction between the choices of xi

and yi in 1st-mover SBC games. Hence, first mover’s maximization can be obtained

by choosing xi and yi separately. We thus focus on the case for xi. The case for yi is

analogous. Without loss of generality, we assume that a2 ≥ 0. If a1 > −a2, the first

mover can maximize his payoff by inducing the second mover to choose the upper

bound, X . Hence, the SPE (xe

1, x
e

2) is x
e

1 = X +min(a1, 0) and xe

2 = X . Note that

when a1 ≥ 0, (xe

1, x
e

2) = (X,X).9 In contrast, if a1 ≤ −a2, the first mover can only

lower the distance between his choice and the second mover’s choice to a2 instead

of |a1|. Hence, (−X,−X + a2), (−X +1,−X +1+ a2), . . . , and (X − a2, X) are all

SPE. Note that if a2 = 0, the second mover chooses the same location as the first

mover, making (−X,−X), (−X + 1,−X + 1), . . . , (X,X)) all SPE. To sum up, we

obtain:

Proposition 1. Consider a 1st-mover spatial beauty contest game with target

(a1, b1) for the first mover and (a2, b2) for the second mover. Without loss of gener-

ality, we assume a2, b2 ≥ 0. Suppose the first mover and the second mover choose

locations (x1, y1) and (x2, y2) on the map G ≡ {−X,−X + 1, . . . , 0, . . . , X} ×
{−Y,−Y + 1, . . . , 0, . . . , Y }, −2X ≤ a1, a2 ≤ 2X and −2Y ≤ b1, b2 ≤ 2Y . The

SPE
(

(xe

1, y
e

1), (x
e

2, y
e

2)
)

of this game can be characterized by:

(xe

1, x
e

2) ∈
{

{(X +min(a1, 0), X)} (unique) if a1 > −a2

{(−X,−X + a2), . . . , (X − a2, X)} if a1 ≤ −a2

(ye1, y
e

2) ∈
{

{(Y +min(b1, 0), Y )} (unique) if b1 > −b2

{(−Y,−Y + b2), . . . , (Y − b2, Y )} if b1 ≤ −b2

Table 3 presents the 12 1st-mover SBC games used in the experiment and the

first mover’s optimal choices for these games. Game 1st-3R to 1st-6R are 6 games

with one-dimensional targets (1st-1D SBC games). Game 1st-7 to 1st-12 are 6

games with two-dimensional targets (1st-2D SBC games). The 6 1st-1D games are

sequential variants of the original simultaneous SBC games in Table 2. Game 1st-3R

is the sequential variant of Game SBC-3R, Game 1st-4 is the sequential variant of

Game SBC-4, and so on. Game 1st-7 to 1st-11 are sequential variants of Game 13,

16, 19, 22, and 24 in Chen, Huang and Wang (2013). Game 1st-12 is a spacial game

in which the uniqueness condition of Proposition 1 are satisfied on both dimensions

(a1 > −a2, b1 > −b2), so the number of optimal choices reduces to one.

9If −a2 < a1 ≤ 0, the first mover can exactly hit his target by choosing the ideal location
X + a1. However, if a1 > 0, the first mover can only choose the upper bound, X , which is a1
squares from his ideal location, X + a1.
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Table 3: First-Mover Spatial Beauty Contest Games and Their Theoretical Predic-
tions

Map 1st Mover 2nd Mover 1st Mover
Game Size Target Target Optimal Choice(s)
1D Targets
1st-3R 11×5 0, 2 2, 0 ( 5,m), m = −2,−1, . . . , 2
1st-4 9×7 -2, 0 0,-2 ( l , -3), l = −4,−3, . . . , 4
1st-5 7×9 -4, 0 0, 2 ( l , 4), l = −3,−2, . . . , 3
1st-5R 7×9 0, 2 -4, 0 (-3,m), m = −4,−3, . . . , 4
1st-6 7×9 2, 0 0, 2 ( l , 4), l = −3,−2, . . . , 3
1st-6R 7×9 0, 2 2, 0 ( 3,m), m = −4,−3, . . . , 4
2D Targets
1st-7 9×9 -2,-6 4, 4 ( 2,m), m = −4,−3, . . . , 0
1st-8 7×7 4,-2 -2, 4 ( l , 1), l = −1, 0, . . . , 3
1st-9 9×7 -6,-2 4, 4 ( l , 1), l = −4,−3, . . . , 0
1st-10 7×9 4, 2 -2,-4 ( l , -2), l = −1, 0, . . . , 3
1st-11 7×9 4,-4 -2, 6 ( l , 0), l = −1, 0, . . . , 3
1st-12 11×5 -2, 4 6, 2 ( 3, 2)

3 Experimental Design

The experiments were conducted with graphic user interfaces using version 3.3.11 of

Zurich Toolbox for Readymade Economic Experiments (z-Tree, Fischbacher, 2007)

at the California Social Science Experimental Laboratory (CASSEL) in University

of California, Los Angeles (UCLA). Students were recruited via CASSEL’s online

recruiting website. A total of 6 sessions were run between April 17, 2012 and April

19, 2012, in which 144 UCLA undergraduate students participated.

Each session consisted of four classes of games. Upon arrival at the laboratory,

subjects were instructed to sit at separate computer terminals. Subjects were not

given any paper instructions. All instructions were projected on the screen and

read aloud by the experimenter. Graphical user interfaces and practice-rounds

were provided to ensure that all subjects had understood the rules of each class of

games. Subjects played (in order) 15 dominance-solvable games (with one practice-

round as Player 1 against a computerized Player 2 who chooses D), 10 third-party

punishment games,10 6 simultaneous SBC games (either playing the same role twice

or switching to play both roles once)11 with 10 second-mover (2nd-mover) SBC

10In this paper, we do not discuss the results of third-party punishment games.
1154 of the 72 Player 1 subjects (in dominance-solvable games) played Game SBC-1 to SBC-6

twice as Player 1, and 54 of the 72 Player 2 subjects played each game twice as Player 2 (or
Game SBC-1R to SBC-6R as Player 1). For these subjects, we adopt their first-time choices. The
remaining 36 subjects, 18 Player 1s and 18 Player 2s, switched and played both roles in the 6 SBC
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games as practice,12 and 12 1st-mover SBC games. Subjects formed groups of three

in the third party punishment games, and groups of two in the dominance-solvable

games and the simultaneous SBC games. They played individually in the 1st-mover

SBC games. Subjects remained the same role in the third party punishment games,

and dominance-solvable games.13 To avoid possible order and learning effects, games

(within each class) were presented randomly to each subject and no feedback was

provided.14

At the end of the session, one game of each class of games was randomly se-

lected and played out against randomly matched opponents to determine subjects’

earnings. When announcing the results, we first show subjects’ own decisions in

the selected game. Then, subjects were informed about the other player’s choice

and consequently their payoffs. Subjects’ total earnings were the sum of payoffs in

one randomly selected game in each of the four classes plus a $5 show-up fee. The

average subject earned US$33.4, ranging from US$20 to US$72.5.

4 Basic Results

4.1 Results of Dominance-Solvable Games

The experimental results for all 15 dominance-solvable games are summarized in

Table 4. We first note that 43.3% of the Player 1 subjects violate the SPE prediction

by choosing L (R) in the first 10 (last 5) games. The frequency of SPE violation

varies from 15% (Game RP) to 78% (Game D1-MRs). On the other hand, the

average frequency of choices violating dominance by Player 2 subjects is 15.8%,

varying from 1% (Game D2 and D3) to 46% (Game TG). These results show that

the SPE predictions do not fare particularly well for Player 1 (though Player 2

subjects obey dominance most of the time), and subject decisions indeed vary a lot

across games.

Next, we turn to test the predictions discussed in Section 2.1. In our study, we

have within-subject results for all games. Accordingly, we can compare changes in

games.
12Since the rules of simultaneous SBC games are complicated, we employed 10 2nd-mover SBC

games as practice rounds, in which subjects chose after seeing a “pre-programmed” computer
agent’s decision. The computer agent was programmed to always choose the Top-Left corner on
the map. The target location (which may be outside the map) and the optimal location were
shown in the end of each practice round. Table 6 presents the game structure, the optimal choice
of location, and the result of each 2nd-mover SBC game. Subjects played these games in the same
order.

13Instructions for the simultaneous SBC games were symmetric with labeling either subject as
Player 1 or 2. In fact, players were simply referred to as “You” and “Other.”

14To make sure subjects understood the rules of the game, results of the practice rounds were
shown after the decision, and they were all presented in the same order to the subjects.
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subjects’ behavior across the 12 pairs of games presented in Table 4. We employ the

exact McNemar’s test to see if Player 1 subjects’ decisions are significantly different

for any pair of games.15 The two-sided McNemar’s exact p-values for 12 pairs of

games are reported in the next-to-last column of Table 4.

All 4 hypotheses regarding Game D1 and its variants are confirmed, though

only two of them are statistically significant. First, Game D1-LR lowers the risk of

choosing R, so the frequency of L choices by Player 1 subjects significantly decreases

from 58% to 38% (two-sided McNemar’s exact p = 0.0015), confirming Hypothesis

1a. Second, Game D1-MRs creates more resentment for Player 2, inducing 78% of

Player 1 subjects to choose L (significantly higher than 58%, two-sided McNemar’s

exact p = 0.0043), even though the frequency of D choices by Player 2 subjects

only slightly decreases from 79% to 75%. This confirms Hypothesis 1b. Thirdly,

the frequency of the reciprocal choice D by Player 2 subjects increases to 92% in

Game D1-MRc, but the frequency of L choices by Player 1 subjects insignificantly

decreases from 58% to 50% (two-sided McNemar’s exact p = 0.2379). Lastly, the

frequency of D choices by Player 2 subjects increases to 85% in Game D1-MA. How-

ever, the frequency of L choices by Player 1 subjects (56%) is not significantly lower

than the 58% in Game D1 (two-sided McNemar’s exact p = 0.8145). Consequently,

we find weak evidence to support Hypothesis 1c and 1d.

Consistent with Goeree and Holt (2001), Game D2, D3, and their variants pro-

vide more evidence to support the hypotheses regarding assurance. To begin with,

Game D2-LA lowers the assurance that Player 2 would obey dominance, increasing

the frequency of L choices by Player 1 subjects from 25% (Game D2) to 28%. This

difference is not statistically significant (two-sided McNemar’s exact p = 0.8145),

but the direction is right. In fact, 14% of Player 1 subjects are sensitive to the

change of payoffs, they choose R in Game D2, but move to L in Game D2-LA.

Similarly, the frequency of L choices by Player 1 subjects increase across Game D3

(33%), D3-LA (47%), and D3-VLA (57%), confirming Hypothesis 3, although only

the difference between Game D3 and D3-VLA is statistically significant (two-sided

McNemar’s exact p = 0.0033). Thus, we conclude that in general, Player 1 subjects

do respond to the change of assurance that Player 2 would select D.

15McNemar’s test is like a paired χ2 test for differences between two correlated proportions. Its
test statistics follow a χ2 distribution with df = 1 asymptotically. However, since the number of
LR/RL observations in our study is small, the McNemar’s statistics may not be well-approximated
by the chi-squared distribution. In this case, the exact version of McNemar’s test (using a binomial
distribution) is employed instead. Notwithstanding, we still report the McNemar’s statistics in
the third-last column of Table 4. Note that unlike our study, Beard and Beil (1994) conducted
their experiment using a between-subject design, so they employed the proportion Z test instead.
As shown in the last column of Table 4, the proportion Z test yields similar results to that of the
exact McNemar’s test in our data, but has less power.
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Most Player 1 subjects follow the SPE prediction by choosing L in Game RP,

while some of them alter their choices from L to R in Game RP-VLR. In Game RP,

only 6% of Player 2 subjects choose D, which is much lower than the threshold prob-

ability justifying a risk neutral Player 1 to choose R (43%). Hence, 85% of Player 1

subjects respond by choosing L, which is also the SPE prediction. Compared with

Game RP, Game RP-VLR considerably lowers the risk of choosing R, inducing 35%

of Player 1 subjects to alter their choices from L to R. In fact, the frequency of D

choices by Player 2 subjects (8%) is slightly higher than the risk neutral Player 1’s

threshold probability (7%). This makes choosing R also the empirical best response

for a risk neutral Player 1.

Player 1 subjects’ frequencies of the entrusting choice R in Game TG, TG-

LRc, and TG-CR change according to our predictions. In particular, in Game

TG, 44% of Player 1 subjects choose R, and 46% of Player 2 subjects choose the

reciprocal choice D. In addition, Game TG-LRc lowers Player 2’s potential payoffs

when receiving the entrusting choice R, so the frequency of reciprocal behavior D

decreases from 46% to 28%. Notwithstanding, since this frequency is still higher

than the risk neutral Player 1’s threshold probability (22%), the frequency of R by

Player 1 subjects increases to 57%, though insignificantly (two-sided McNemar’s

exact p = 0.784). Lastly, in Game TG-CR, since the costs of reciprocation is high

($9), only 7% of Player 2 subjects choose the reciprocal response D. The frequency

of R choices by Player 1 subjects drops to 19%, significantly lower than the 44%

(57%) in Game TG (TG-LRc) (two-sided McNemar’s exact p < 0.001).

4.2 Results of Simultaneous/1st-Mover Spatial Beauty Contest Games

Table 5 presents the frequency of Player 1 subjects’ choices in the simultaneous

SBC games used in our experiment. We use the difference measure (Selten, 1991),

which is the choice frequency minus the fraction of choices predicted, to account for

the size of the prediction.16 We have 90 observations in each game, since we have

36 subjects who played both roles and 54 subject who played Player 1 twice (and

we only adapt their first-time choices),17 The average frequency of all Lk choices

(column 3) is 39.5%, ranging from 31.1% (Game SBC-3) to 56.7% (Game SBC-

5). All of them are statistically significant under a binomial test. This may seem

disappointing economically, but if we consider the locations within one location of

16For example, the level-k model predicts several cells, while NE predicts only one.
17Individual second-time choices are fairly consistent with their first-time choices, though they

do not exactly coincide. In fact, 36.7% of them are exactly the same as the first-time choice, and
52.9% (70.5%) of them are one (two) step(s) away. The average difference between the two choices
is 1.855 steps.
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Table 5: Player 1 Subjects’ Choices in the Simultaneous SBC Games

Frequency of Difference Measure

Game Obs. Lk Lk ± 1 NE Lk \NE Soph Lk Lk ± 1 NE Lk \NE Soph

SBC-1 90 41.1 58.9 30.0 11.1 6.7 36.2∗∗ 40.4∗∗ 28.8∗∗ 7.4∗∗ 5.4∗∗

SBC-2 90 45.6 66.7 31.1 14.4 2.2 35.4∗∗ 36.1∗∗ 29.1∗∗ 6.3∗∗ 0.2
SBC-3 90 31.1 46.7 20.0 11.1 2.2 22.0∗∗ 17.6∗∗ 18.2∗∗ 3.8 0.4
SBC-4 90 38.9 62.2 23.3 15.6 1.1 31.0∗∗ 35.2∗∗ 21.7∗∗ 9.2∗∗ −0.5
SBC-5 90 56.7 75.6 38.9 17.8 11.1 50.3∗∗ 53.3∗∗ 37.3∗∗ 13.0∗∗ 9.5∗∗

SBC-6 90 34.4 48.9 21.1 13.3 1.1 26.5∗∗ 21.9∗∗ 19.5∗∗ 7.0∗∗ −0.5
SBC-1R† 90 40.0 55.6 25.6 14.4 25.6 35.1∗∗ 38.3∗∗ 24.3∗∗ 10.7∗∗ 24.3∗∗

SBC-2R 90 42.2 64.4 18.9 23.3 3.3 32.0∗∗ 33.8∗∗ 16.8∗∗ 15.2∗∗ 1.3
SBC-3R 90 36.7 62.2 17.8 18.9 2.2 27.6∗∗ 34.9∗∗ 16.0∗∗ 11.6∗∗ 0.4
SBC-4R† 90 35.6 58.9 15.6 20.0 20.0 27.6∗∗ 31.9∗∗ 14.0∗∗ 13.7∗∗ 18.4∗∗

SBC-5R† 90 38.9 66.7 22.2 16.7 22.2 32.5∗∗ 42.9∗∗ 20.6∗∗ 11.9∗∗ 19.0∗∗

SBC-6R 90 33.3 65.6 12.2 21.1 6.7 25.4∗∗ 38.6∗∗ 10.6∗∗ 14.8∗∗ 5.1∗∗

Mean 39.5 61.0 23.1 16.5 8.7 31.8∗∗ 35.4∗∗ 21.4∗∗ 10.4∗∗ 6.9∗∗

Note: All results are presented in percentage (%).
* two-sided p < 0.05, ** two-sided p < 0.01.
† Games in which Soph coincide with NE.

the Lk predictions, the frequency of “Lk with noises” (Lk±1) choices is on average

61.0%, varying from 46.7% (Game SBC-3) to 75.6% (Game SBC-5). Again, all are

statistically significant, as shown in the ninth column of Table 5. Note that there

is an unusual concentration of NE choices, accounting for 58.5% of the Lk choices

(23.1%/39.5%). In fact, all NE choices occur significantly above chance (two-sided

binomial test p < 0.01). This is very different from most previous studies on the

beauty contest game (aka guessing game), and is likely due to the simplicity of the

graphic interface and the training through practice rounds. Nonetheless, binomial

test results still show that the remaining Lk choices are chosen significantly above

random (p < 0.03) for all but Game SBC-3, which has p = 0.124. In fact, as

shown in the sixth column of Table 6, the frequency of best-responses by subjects

increases from 32.6% (Game 2nd-I) to 95.8% (Game 2nd-X), indicating that most

subjects had understood the rules and learn to play best reponse after 10 rounds

of practice. In contrast, as shown in the seventh column of Table 5, the frequency

of Soph choices is on average 8.7%, with only 3 of 12 games having frequencies

above 12%, all of which the Soph predictions coincide with NE. In fact, in the

remaining 9 games in which Soph predictions differ from the NE predictions, only

three of them have difference measures significantly greater than zero (one of them

above 7%). Hence, we conclude that even though the frequency of NE choices is

around 25%, few subjects play best response against the empirical distributions of

the opponent choices.

Table 7 shows the frequency of subjects’ optimal choices in the 1st-mover SBC
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Table 6: Results of 2nd-Mover SBC Games (Practice Rounds)

Map 1st Mover 2nd Mover 2nd Mover Frequency of Diff.
Game Size Choice Target BR BR (%) Measure

2nd-I 3×3 -1, 1 0, 1 -1, 1 32.6 21.5∗∗

2nd-II 7×7 -3, 3 -1, 2 -3, 3 40.3 38.2∗∗

2nd-III 7×9 -3, 4 -1,-4 -3, 0 83.3 81.7∗∗

2nd-IV 9×7 -4, 3 4, 2 0, 3 88.9 87.3∗∗

2nd-V 7×9 -3, 4 -2, 1 -3, 4 61.1 59.5∗∗

2nd-VI 7×7 -3, 3 0,-1 -3, 2 94.4 92.4∗∗

2nd-VII 11×5 -5, 2 3, 0 -2, 2 95.1 93.3∗∗

2nd-VIII 9×9 -4, 4 -1, 0 -4, 4 65.3 64.0∗∗

2nd-IX 11×5 -5, 2 4,-2 -1, 0 84.7 82.9∗∗

2nd-X 9×9 -4, 4 2, 1 -2, 4 95.8 94.6∗∗

Mean 74.2 71.6∗∗

Note: Number of observations is 144.
* two-sided p < 0.05, ** two-sided p < 0.01.

games, with games with one-dimensional targets (1D games) on the left panel and

games with two-dimensional targets (2D games) on the right. We have 144 ob-

servations for all games since these are individual decisions made against a payoff-

maximizing computer. As shown in the left panel of Table 7, 79.2% of subjects’

choices are optimal in the 6 1D games, ranging from 74.3% (Game 1st-6R) to 84%

(Game 1st-6). However, when targets become two-dimensional in the 6 2D games,

the average frequency of subjects’ optimal choices decreases to 41.1% , ranging

from 36.8% (Game 1st-9) to 46.5% (Game 1st-8) (right panel of Table 7). These

results show that most subjects could solve 1D 1st-mover SBC games, but only

some subjects could also solve the 2D games.

Table 7: Subjects’ Choices in the 1st-Mover SBC Games

1D Optimal Diff. Difference 2D Optimal Diff.
Game (SPE)(%) Measure in Deviations Game (SPE)(%) Measure

1st-3R 75.7 66.6∗∗ -2.23 1st-7 43.8 37.6∗∗

1st-4 78.5 64.2∗∗ -1.22 1st-8 46.5 36.3∗∗

1st-5 80.6 69.5∗∗ -1.21 1st-9 36.8 28.9∗∗

1st-5R 81.9 67.6∗∗ -0.64 1st-10 40.3 32.4∗∗

1st-6 84.0 72.9∗∗ -1.40 1st-11 39.6 31.7∗∗

1st-6R 74.3 60.0∗∗ -1.33 1st-12 39.6 37.8∗∗

Mean 79.2 66.8∗∗ -1.34 Mean 41.1 34.1∗∗

Note: Number of observations is 144.
* two-sided p < 0.05, ** two-sided p < 0.01; the binomial test.
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We now compare the subjects’ choices in the 6 1D 1st-mover SBC games to that

of the simultaneous SBC games which have the same map sizes and targets. We

are interested in deviations from the EQ prediction in each class of games. Since

all horizontal choices are optimal in Game 1st-4, 1st-5, and 1st-6, we consider the

vertical distance between subjects’ choices and EQ predictions in the corresponding

simultaneous SBC games (Game SBC-4, SBC-5, and SBC-6). Similarly, we consider

only the horizontal distance between subjects’ choices and EQ predictions in the

simultaneous games which two players’ roles are reversed (Game SBC-3R, SBC-5R,

and SBC-6R) since all vertical choices are optimal. As shown in the last column

of the left panel of Table 7, the average difference in deviations between 1st-mover

and simultaneous SBC games is -1.34. This indicates that subjects’ choices are on

average 1.34 squares closer to EQ predictions in the 1st-mover SBC games than

in the simultaneous ones. In fact, 45% of the subjects do not play EQ in the

simultaneous SBC games, but choose optimally in the 1st-mover SBC games. This

indicates that subjects choose closer to equilibrium when their beliefs about the

opponent are controlled.

5 Subjects’ Strategic IQ

Given the basic results reported in section 4 are mostly consistent with the litera-

ture, we now attempt to identify individual’s strategic abilities using their choice

sequences. Section 5.1 describes several subject performance indicators, and inves-

tigates the correlations between them. Section 5.2 employs principal component

analysis to identify components of strategic IQs (SIQs) which explain the variation

across subjects’ standardized expected payoffs for each game, and interprets them

as various strategic abilities.

5.1 Subject Performance Indicators

We define six different performance indicators that reflect the following strategic

abilities: the ability to play best response, perform backward induction, form beliefs

about others, and perform complicated backward induction on multi-dimensional

action space. Table 8 reports the basic statistics of each indicator, and compare

them to various benchmarks: The expected scores of L0, L1, EQ, and Soph sub-

jects.18 To make within-subject comparisons, we report results only from 72 subjects

who were Player 1 in dominance-solvable games. Table 9 list the corresponding

18A L0 subject chooses randomly; a L1 subject best responds to the L0 opponent who chooses
randomly; an EQ subject plays according to the equilibrium; a Soph subject knows the exact
choice distribution of the opponents in each game and best responds to that distribution.
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Table 8: Statistics and Predicted Scores for Each Performance Indicator

L0 Soph
Measure Obs. Mean Std. Min Max (Rand.) L1 EQ (Opti.)

CS-DSG 72 0.78 1.08 0 4 2.00 0 0 0
EV-DSG 72 8.86 0.25 8.21 9.23 8.56 8.58 8.78 9.24
EV-2ndSBC 72 9.14 0.32 7.85 9.40 6.67 − − 9.40
EV-1st1D 72 8.63 0.36 7.67 8.83 7.93 − 8.83 8.83
EV-1st2D 72 7.92 0.67 6.50 8.83 7.57 − 8.83 8.83
EV-SBC† 72 7.59 0.59 5.95 8.36 6.41 7.65 8.24 8.37

* Non-separating types are underlined.
† A L0 subject who randomly chooses in the maps would obtain 6.41 scores; how-
ever, a L0 subject who always chooses the the center of the maps would obtain
6.83 scores. In this case, two definitions lead to different predictions.

strategic abilities each indicator represents. Figure 4 to 9 show the distribution of

each indicator. We discuss them one by one:

Table 9: Corresponding Strategic Abilities Represented by Each Indicator

Strategic Abilities

BR BI Belief Higher Order Belief 2D-BI†
CS-DSG

√

EV-DSG
√ √ √

EV-2ndSBC
√

EV-1st1D
√ √

EV-1st2D
√ √ √

EV-SBC
√ √ √ √

† The ability to perform complicated backward induction in
1st-mover SBC games with high dimensional targets.

CS-DSG is each subject’s total number of choice pairs which violate the com-

parative statics predictions of the dominance-solvable games discussed in section

2.1. According to Hypothesis 1, 2, and 3, we have 8 comparative statics predictions

and failure to follow these predictions indicates inability to respond to changes in

game payoffs. We underline the frequency of Player 1 subjects’ choices in each of

the 8 choice pairs violating these predictions in Table 4. For instance, Hypothesis

1d predicts that Player 1 is less likely to select L in Game D1-MA than in Game

D1. However, 11% of Player 1 subjects choose R in Game D1 but choose L in Game

1D-MA, violating the comparative statics prediction in Hypothesis 1d. In this case,

we deem that these subjects do not correctly respond to the change in payoffs, and

this choice pair would count toward their CS-DSG scores. Hence, CS-DSG is a
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Figure 4: Histogram of CS-DSG (Sample Size = 72)

“counter-indicator.”

As shown in the first row of Table 8, the average of CS-DSG is 0.78. This shows

that on average less than 1 out of 8 comparative statics predictions are violated,

indicating that most subjects are sensitive to the changes in game payoffs and

respond to those changes rationally. The distribution of CS-DSG is skewed to right

(Figure 4). In particular, more than 58% of subjects do not violate any comparative

statics prediction, and none violate more than 4 comparative statics predictions.

Only 8.3% (6 out of 72 subjects) violate 3 comparative statics predictions, and only

one subject (out of 72) violates 4.19 Note that since these eight comparative static

predictions concern binary decisions that are not independent (especially those of

Hypothesis 3), the maximum possible number of violations is 6.

The second indicator is Player 1 subjects’ expected earnings averaged across 15

dominance-solvable games (EV-DSG) against the empirical distribution of Player 2

subjects. This measures subject’s ability to perform backward induction by forming

accurate beliefs about Player 2 subjects’ choices and correctly reacting to them. For

instance, in Game D1, only 79% of Player 2 subjects choose D. Hence, if Player

1 simply follows the SPE prediction by choosing R, his expected earnings would

be $8.54, lower than the assured payoff by choosing L ($9.75). So, a risk neutral

Player 1, who has the right belief about the frequency of Player 2 choices, would

choose L.20

19It seems that subjects are less sensitive to changes in assurance that Player 2 would obey
dominance. In the 5 comparative statics predictions regarding assurance, the frequency of subjects’
choices violating the predictions are all greater than 10% in Table 4.

20Risk aversion does not play a role in this particular game because the assumed payoff yields
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Figure 5: Histogram of EV-DSG (Sample Size = 72)

Figure 5 shows the distribution of EV-DSG. The average is 8.86, ranging from

8.21 to 9.23. Only 12.5% of subjects have EV-DSG scores lower than that of a

L1 subject (8.58). In contrast, two thirds of the subjects have EV-DSG scores

greater than that of an EQ subject (8.78). Moreover, 4 subjects have EV-DSG

scores around 9.2–9.23, which is close to the maximum possible, or the expected

score of a Soph subject (9.24). Thus, we conclude that subjects do not simply

choose according to the SPE predictions. Instead, most subjects consider possible

deviations of Player 2 subjects.

The remaining four performance indicators in Table 9 reflect various strate-

gic abilities in the three types of SBC games. First, EV-2ndSBC is the average

of subject’s (hypothetical) earnings in 10 2nd-mover SBC games (practice rounds

of simultaneous SBC games), which reflects subject’s ability to best respond to

a computerized player who always chooses the Top-Left corner on the map. In

addition, EV-1st1D is subject’s average earnings of 6 1st-mover SBC games with

one-dimensional targets against a payoff-maximizing computerized player, reflect-

ing subject’s ability to perform backward induction. Thirdly, EV-1st2D represents

subject’s average earnings of 6 1st-mover SBC games with two-dimensional targets,

reflecting subject’s ability to perform high dimensional backward induction. Lastly,

EV-SBC is subject’s average expected earnings of 6 SBC games as Player 1 against

the empirical distribution of Player 2 subjects, reflecting their level of reasoning

and the accuracy of their belief about the opponent’s level of reasoning.

The third row of Table 8 shows the basic statistics of EV-2ndSBC. The average

higher expected value. In other games, risk attitude may affect subject behavior.
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Figure 6: Histogram of EV-2ndSBC (Sample Size = 72)

is 9.14, which is close to the maximum possible (9.4). In fact, as shown in Figure

6, 86% of subjects have EV-2ndSBC scores greater than 9. Moreover, only 4.2% (3

out of 72) of subjects’ EV-2ndSBC scores are lower than 8 (the minimum is 7.85),

but still much higher than that of a L0 subject (6.67). These results indicate that

most subjects understand the rules and play best response even without monetary

incentives.
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Figure 7: Histogram of EV-1st1D (Sample Size = 72)

Subjects’ average EV-1st1D (8.63) is close to that of an optimal subject, indicat-

ing that most subjects can perform backward induction and earn the most payoffs.

Like EV-2ndSBC, the distribution of EV-1st1D is skewed to left (Figure 7). In
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particular, 81% of subjects have EV-1st1D scores above or equal to 8.5, which is

close to 8.83 (the maximum possible). However, the remaining subjects’ average

EV-1st1D (7.95) is close to that of a L0 subject (7.93), being as low as 7.67.21

Figure 8: Histogram of EV-1st2D (Sample Size = 72)

The basic statistics of EV-1st2D show the diversity of subjects’ ability to perform

high dimensional backward induction. In particular, the average of EV-1st2D is

7.92, which is higher than that of a L0 subject (7.57) but much lower than that of

an EQ subject (8.83). As shown in Figure 8, only 31% of subjects have EV-1st2D

scores is close to that of an EQ subject (above or equal to 8.5). The remaining

subjects’ average EV-1st2D scores (7.58) is close to that of a L0 subject (7.57), being

as low as 6.5.22 Moreover, compared with EV-1st1D, EV-1st2D has lower average

(7.92 vs. 8.63), higher range (1.16 vs. 2.33), and higher standard deviations (0.67

vs. 0.36). These results show that most subjects can perform backward induction

on one-dimensional targets, but some of them fail to do it when there are two-

dimensional targets. In particular, 50% of subjects have EV-1st1D scores ≥ 8.5 but

EV-1st2D scores < 8.5. Therefore, the frequency of subjects’ scores close to that of

an optimal subject decreases from 81% (EV-1st1D) to 31% (EV-1st2D).

The average of EV-SBC is 7.59, which is close to L1 (7.65) and much higher

than that of a L0 subject (6.41). Figure 9 shows that the distribution of EV-SBC

is skewed to left. In particular, 12.5% of subjects have EV-SBC scores greater than

an that of EQ subject (8.24),23 and only 5.6% (4 out of 72 subjects) score lower

21Eight subjects have EV-1st1D scores even lower than that of a L0 subject.
22In particular, 12.5% of subjects’ EV-1st2D scores are even lower than that of a L0 subject.
23The remaining subjects’ average EV-SBC scores is 7.49, still much higher than that of a L0

subject (6.41).
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Figure 9: Histogram of EV-SBC (Sample Size = 72)

than that of a L0 subject (6.41). This indicates that most subjects do not choose

randomly but attempt to earn more payoffs through some process of reasoning.

In fact, EV-SBC has lower average and higher standard deviation than EV-1st1D.

Specifically, the average of EV-SBC (7.59) is much lower than that of EV-1st1D

(8.63), and the standard deviations and range of EV-SBC are 0.59 and 2.41, respec-

tively, which is much higher than those of EV-1st1D (0.36 and 1.16, respectively).

These results indicate that subjects’ performance become better when we control

for their beliefs about the opponents.

Table 10: Correlations Between Indicators

CS-DSG EV-DSG EV-2ndSBC EV-1st1D EV-1st2D

CS-DSG 1
EV-DSG −0.463∗∗ 1
EV-2ndSBC −0.054 0.003 1
EV-1st1D −0.008 −0.041 0.439∗ 1
EV-1st2D −0.071 0.098 0.157 0.157 1
EV-SBC 0.046 0.040 0.189 0.402∗ 0.186

* p < 0.05, ** p < 0.01

We now investigate the correlations between these performance indicators. Re-

sults from the Pearson correlation test with the Bonferroni correction (Table 10)

show that most indicators are uncorrelated, indicating that the strategic abilities

that affect subjects’ performance differ across different classes of games. The only

exceptions are as follows: First, we find that CS-DSG, a counter indicator of subject

performance in dominance-solvable games, is negatively correlated with EV-DSG as
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predicted (r = −0.463, p < 0.01). In addition, EV-2ndSBC is positively correlated

with EV-1st1D (r = 0.439, p < 0.05), indicating that to perform backward induction

requires the ability to play best response. Lastly, EV-SBC is positively correlated

with EV-1st1D (r = 0.402, p < 0.01), indicating that to perform higher levels of

reasoning requires the ability to perform backward induction in 1D 1st-mover SBC

games.

5.2 Principal Component Analysis

We employ principal component analysis to explain variation in the normalized

expected payoffs of all 33 games in the experiment using a handful of linear com-

binations, also known as principal components (PC).24 We normalize the data so

that the mean of each variable is always 0 and variance equals to 1, because the

relative size of the variances positively affects the weights in principal component

analysis. We use 72 observations of Player 1 subjects in 15 dominance-solvable

games, 6 simultaneous SBC games, 6 1D 1st-SBC games, and 6 2D 1st-SBC games.

Table 11 presents the entire set of PCs obtained and the corresponding percent-

age of the total variance of the data explained. The first PC (PC1) accounts for

21.46% of the total variance of the data, the second PC (PC2) accounts for 10.77%,

and so on. Horn (1965)’s parallel analysis suggests that one should retain all PCs

with corresponding variance explained significantly greater than 1 since this means

they explain variation of more than one game.25 This means retaining the first five

PCs (PC1 to PC5), which account for 56% of the total variance in the data.26

The first five PCs could be identified as components of subjects’ strategic IQs

(SIQs) according to their loadings. The loading of a variable (normalized EV) on a

PC is the correlation between this variable and the PC. The higher the loading, the

more influential it is in forming the PC, and vice versa. Traditionally, researchers

use a threshold of 0.5 to determine whether a given variable is influential in the

formation of a PC. We present the loadings of the 5 SIQs in Table 12, and interpret

the meanings of each SIQ as follows:

24Principal component analysis is a statistical technique of dimension reduction. As linear
combinations of the original variables, the first PC accounts for the maximum variance in the
data. The second PC accounts for the maximum remaining variance that has not been accounted
for by the first PC, and so on. Hence, the PCs are uncorrelated among themselves. Ideally, only
a few PCs would be needed to account for most of the variance in the data. The mathematic
procedure of principal component analysis is provided in the Appendix.

25Since there are 33 PCs in total, some PCs would explain variance more than 1, the average
variance of one game (out of 33). Hence, in parallel analysis, we simulate 33 iid uncorrelated
random variables with mean equal to 0 and variance equal to 1 (each variable has 72 observations),
and calculate the corresponding PCs. Using the distribution of these simulated PCs, we can
determine whether each PC explains variance significantly above 1.

26The result of the parallel analysis is reported in the Appendix (Figure A.35).
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Table 12: Weights and Loadings of the Five Strategic IQs

SIQ1 SIQ2 SIQ3 SIQ4 SIQ5

EV (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

D1 −0.15 −0.41 −0.09 −0.16 0.31∗ 0.56∗ 0.09 0.15 −0.07 −0.10
D1-LR 0.14 0.37 0.17 0.33 −0.32∗−0.57∗−0.02 −0.03 −0.01 −0.01
D1-MRs −0.14 −0.37 0.06 0.11 0.27 0.48 −0.06 −0.10 −0.12 −0.17
D1-MRc −0.21∗−0.56∗ 0.13 0.24 0.28∗ 0.50∗ 0.14 0.22 −0.08 −0.12
D1-MA −0.19∗−0.51∗−0.04 −0.08 0.32∗ 0.56∗−0.05 −0.09 −0.12 −0.17
D2 0.06 0.15 0.04 0.07 0.06 0.10 0.34∗ 0.54∗ 0.10 0.14
D2-LA −0.02 −0.05 0.18 0.34 0.08 0.14 0.26 0.42 0.18 0.26
D3 0.17 0.45 0.03 0.05 −0.19 −0.33 0.20 0.31 0.23 0.34
D3-LA −0.19∗−0.52∗ 0.03 0.05 0.18 0.31 0.02 0.02 −0.02 −0.04
D3-VLA −0.14 −0.37 0.04 0.07 0.31∗ 0.55∗ 0.13 0.20 0.02 0.04
RP 0.06 0.16 −0.06 −0.12 0.15 0.27 0.29 0.46 0.18 0.26
RP-VLR −0.18 −0.49 0.00 0.01 0.16 0.28 −0.21 −0.34 −0.20 −0.29
TG −0.05 −0.13 0.05 0.10 −0.09 −0.16 −0.37∗−0.59∗ 0.06 0.08
TG-LRc −0.09 −0.24 0.18 0.35 0.01 0.01 −0.29 −0.46 −0.11 −0.16
TG-CR 0.08 0.21 −0.08 −0.15 0.13 0.23 0.33∗ 0.53∗ 0.19 0.28

1st-3R 0.29∗ 0.77∗−0.07 −0.14 0.19 0.33 −0.03 −0.05 −0.15 −0.23
1st-4 0.32∗ 0.85∗−0.10 −0.18 0.12 0.21 −0.05 −0.08 −0.20 −0.29
1st-5 0.24∗ 0.64∗−0.10 −0.19 0.11 0.20 0.03 0.04 −0.17 −0.25
1st-5R 0.25∗ 0.67∗−0.10 −0.20 −0.01 −0.02 0.00 0.01 −0.25 −0.37
1st-6 0.26∗ 0.69∗−0.11 −0.20 0.02 0.04 0.03 0.05 −0.32 −0.46
1st-6R 0.30∗ 0.79∗−0.07 −0.14 0.12 0.20 −0.03 −0.04 −0.18 −0.26

1st-7 0.09 0.24 0.43∗ 0.82∗ 0.02 0.03 0.05 0.08 −0.03 −0.05
1st-8 0.10 0.26 0.37∗ 0.70∗ 0.07 0.13 0.03 0.05 −0.10 −0.15
1st-9 0.00 −0.01 0.42∗ 0.79∗−0.06 −0.10 0.07 0.11 −0.01 −0.02
1st-10 0.15 0.39 0.30∗ 0.57∗ 0.06 0.10 0.07 0.11 −0.05 −0.07
1st-11 0.01 0.04 0.41∗ 0.78∗ 0.01 0.01 −0.02 −0.03 −0.11 −0.17
1st-12 0.22∗ 0.58∗ 0.11 0.21 0.18 0.32 0.15 0.23 −0.17 −0.25

SBC-1 0.24∗ 0.64∗ 0.01 0.02 0.10 0.17 −0.08 −0.12 0.24 0.35
SBC-2 0.15 0.39 0.05 0.10 0.22 0.38 −0.29 −0.45 0.22 0.32
SBC-3 0.12 0.32 0.10 0.18 0.17 0.30 −0.27 −0.43 0.25 0.37
SBC-4 0.18 0.48 −0.04 −0.08 0.19 0.34 −0.18 −0.29 0.38∗ 0.56∗

SBC-5 0.09 0.23 −0.02 −0.04 0.20 0.36 −0.10 −0.16 0.27 0.39
SBC-6 0.17 0.46 0.10 0.19 0.14 0.24 −0.16 −0.25 0.10 0.15

Variance(%) 21.46 10.77 9.53 7.69 6.46

Note: Column (1) are the weights of each SIQ, and Column (2) are the loadings of
each SIQ.
* Absolute value of loadings greater than the threshold of 0.5.
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The first SIQ (SIQ1) is the component that explains the maximum variance

(possible by one single dimension). This would be the data-identified common “g-

factor” that predicts subject performance, and we interpret it as subjects’ abilities

to perform backward induction. This SIQ has loadings of 1st-mover SBC games

with 1D targets all greater than 0.5, and the corresponding weights of these games

are all between 0.24 to 0.32. In fact, its correlation with performance indicator

EV-1st1D is 0.88. Thus, this SIQ is the (weighted) average EV of 6 easy 1st-mover

SBC games, which corresponds to subjects’ ability to perform backward induction.27

Moreover, the loadings of dominance-solvable games have signs corresponding to the

consistency of SPE and empirical best response. In particular, SIQ1 has positive

loadings on games where the SPE and empirical best response coincide (Games D1-

LR, D2, D3, RP and TG-CR), and has negative loadings on games where the SPE

and empirical best response differ (Games D1, D1-MRs, D1-MRc, D1-MA, D3-LA,

D3-VLA, RP-VLR, TG and TG-LRc). This implies that those who are capable of

performing backward induction in the 1st-mover SBC games with 1D targets are

also more likely to play SPE in the dominance-solvable games, which is bad for

their expected earnings when the empirical best response does not coincide with

SPE.28 This effect is so strong Games D1-MRc, D1-MA, and D3-LA have loadings

greater than 0.5. SIQ1 is also closely related to performance in SBC games, though

only Game SBC-1 has loading greater than 0.5. Interestingly, Game 1st-12 has

loading equal to 0.58, likely because it is the only game where both players have

the same vertical target (of being above the opponent), effectively reducing it to a

single dimension game.

The second SIQ (SIQ2) could be interpreted as subjects’ abilities to perform

high dimensional backward induction. For all but one 1st-mover SBC games with

two-dimensional targets, this SIQ has loadings greater than 0.5. The corresponding

weights of these games are mostly between 0.30 to 0.42, so we could interpret this

SIQ as subjects’ ability to perform high dimensional backward induction. This

ability is also reflected in EV-1st2D, which has a correlation of 0.90 with SIQ2.

This shows that our ad hoc performance indicators in Section 5.1 may not be as

arbitrary as one may think, although not all games in the same class (with the same

format) reflect the same abilities.

The third SIQ (SIQ3) controls for subjects’ attitudes toward risk. This SIQ has

high loadings for Games D1, D3 and their variants, which have high risk neutral

27Subjects also need to know how to play best response, but the results of 2nd-mover SBC
games show that most subjects have the ability to play best response.

28The only exception is Game D2-LA, which has a loading of -0.05 (close to zero), but both
SPE and empirical B.R. are R for Player 1.
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Table 13: Percentiles (%) of each SIQ for the 72 Subjects

Subject ID SIQ1 SIQ2 SIQ3 SIQ4 SIQ5 Subject ID SIQ1 SIQ2 SIQ3 SIQ4 SIQ5

101 37.5 1.4 41.7 56.9 36.1 413 68.1 56.9 34.7 18.1 41.7
102 22.2 34.7 84.7 12.5 8.3 414 80.6 38.9 36.1 45.8 54.2
103 18.1 59.7 29.2 65.3 100.0 415 62.5 45.8 87.5 34.7 59.7
104 26.4 20.8 20.8 58.3 4.2 416 44.4 86.1 33.3 1.4 9.7
105 100.0 83.3 37.5 66.7 86.1 417 77.8 73.6 83.3 70.8 55.6
106 65.3 22.2 68.1 29.2 88.9 418 50.0 54.2 8.3 15.3 80.6
113 45.8 62.5 88.9 23.6 11.1 501 76.4 50.0 47.2 4.2 51.4
114 8.3 66.7 76.4 27.8 98.6 502 84.7 95.8 55.6 19.4 61.1
115 27.8 5.6 62.5 54.2 47.2 503 40.3 12.5 97.2 69.4 63.9
201 51.4 29.2 5.6 22.2 40.3 504 54.2 41.7 4.2 94.4 44.4
202 59.7 11.1 52.8 9.7 45.8 505 56.9 91.7 86.1 86.1 34.7
203 69.4 23.6 50.0 13.9 77.8 506 43.1 75.0 100.0 55.6 23.6
204 12.5 76.4 22.2 47.2 97.2 513 52.8 27.8 80.6 36.1 84.7
205 61.1 55.6 54.2 62.5 38.9 514 72.2 94.4 11.1 75.0 6.9
206 20.8 6.9 1.4 100.0 72.2 515 98.6 77.8 23.6 83.3 62.5
213 2.8 72.2 65.3 51.4 93.1 516 31.9 36.1 81.9 5.6 31.9
214 6.9 84.7 30.6 97.2 87.5 517 13.9 52.8 43.1 6.9 94.4
215 93.1 33.3 12.5 61.1 65.3 518 70.8 43.1 51.4 43.1 68.1
301 47.2 87.5 63.9 95.8 16.7 601 38.9 25.0 98.6 44.4 43.1
302 83.3 100.0 56.9 41.7 66.7 602 94.4 88.9 70.8 76.4 69.4
303 58.3 47.2 79.2 73.6 26.4 603 16.7 37.5 73.6 77.8 91.7
304 15.3 79.2 31.9 90.3 5.6 604 4.2 80.6 18.1 8.3 73.6
305 5.6 51.4 75.0 68.1 95.8 605 1.4 81.9 19.4 37.5 2.8
306 33.3 15.3 93.1 33.3 20.8 606 95.8 48.6 25.0 80.6 83.3
313 81.9 40.3 6.9 2.8 56.9 613 73.6 44.4 94.4 50.0 52.8
314 36.1 65.3 77.8 98.6 30.6 614 55.6 63.9 95.8 63.9 50.0
315 19.4 61.1 38.9 38.9 1.4 615 91.7 93.1 48.6 30.6 76.4
316 86.1 30.6 44.4 59.7 90.3 616 29.2 26.4 58.3 81.9 27.8
317 97.2 31.9 26.4 40.3 75.0 617 75.0 4.2 45.8 16.7 79.2
318 9.7 70.8 16.7 26.4 18.1 618 88.9 16.7 27.8 48.6 70.8
401 63.9 13.9 2.8 93.1 19.4 625 34.7 2.8 61.1 84.7 13.9
402 25.0 8.3 91.7 31.9 25.0 626 30.6 19.4 15.3 52.8 81.9
403 48.6 68.1 90.3 91.7 48.6 627 90.3 90.3 9.7 72.2 33.3
404 23.6 18.1 40.3 11.1 29.2 628 66.7 97.2 72.2 20.8 22.2
405 87.5 69.4 59.7 87.5 58.3 629 11.1 58.3 66.7 88.9 12.5
406 79.2 98.6 13.9 25.0 15.3 630 41.7 9.7 69.4 79.2 37.5
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thresholds. It also has coefficients with a negative sign when choosing R lowers

one’s payoffs in these games, implying that Player 1 subjects who choose the assured

choice L would obtain higher SIQ3 scores. Assuming that subjects could perform

backward induction in dominance-solvable games (controlled for by SIQ1), subjects

who choose L in these games due to their attitudes toward risk. Therefore, we could

interpret this SIQ as a variable to explain subjects’ risk aversion.29

The fourth SIQ (SIQ4) reflects subjects’ beliefs about others’ social preferences.

In particular, the loadings for Game TG and TG-CR for this SIQ are -0.59 and 0.53,

respectively, and the loading of the remaining trust game, Game TG-LRc, is -0.46.

Since the empirical best response of these three games are choosing R, R, and

L, respectively, these loadings imply that subjects who obtain higher SIQ4 scores

are more likely to choose L in the trust games. Therefore, Player 1 subjects who

underestimate their opponent’s reciprocity (so they always choose L in trust games)

would obtain higher SIQ4. In fact, the loadings of Game D2 are D2-LA are also

high (0.54 and 0.42), while the SPE and empirical best response are both R. This

means that subjects who obtain a higher SIQ4 are more likely to choose R in this

game, ignoring the possible resentment (negative reciprocity) caused by this action.

Thus, SIQ4 indicates beliefs regarding the likelihood of others (not) reciprocating.

The fifth SIQ (SIQ5) measures subjects’ accuracy of the higher order beliefs

about the opponents in the SBC games. This SIQ only has a loading (Game SBC-

7) which is greater than 0.5. Nevertheless, the loadings of simultaneous SBC games

are all positive. Given SIQ1 and SIQ2 already account for subjects’ abilities to play

best response and perform backward induction in these games, we interpret this SIQ

as a measure on subjects’ accuracy of higher order belief about their opponents.

The percentiles of each SIQ for the 72 subjects are listed in Table 13.

6 Conclusion

In this paper, we employ dominance-solvable games, simultaneous and 1st-mover

spatial beauty contest games to uncover different strategic abilities. The basic

response confirm most comparative statics in the literature. We define six indicators

on subjects’ performance and each represents various strategic abilities. The results

of these indicators show the heterogeneity in subject’s strategic abilities. First, in

the dominance-solvable games, two-thirds of subjects’ performance (EV-DSG) are

29Alternatively, SIQ3 could be viewed as reflecting people’s belief regarding the likelihood of
their opponent’s lack of rationality, which is what drives risk averse subjects to choose the assured
payoff in DSG games. This interpretation is partially supported by the positive loadings of SBC
games, but none of them cross the 0.5 threshold.
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even better than that of an EQ subject but there are still subjects who perform even

worse than a L0 subject. Second, the distributions of EV-2ndSBC and EV-1st1D

show that more than 80% of subjects can play best response and perform backward

induction. However, with multi-dimensional targets, the frequency of subjects who

can perform backward induction reduces to 31% in the 2D 1st-mover SBC games.

Moreover, the remaining subjects have an average EV-1st2D close to that of a L0

subject. Lastly, when higher-order beliefs are required, there are more variations

among subjects’ expected payoffs. In fact, the range and standard deviation of

EV-SBC are all greater than those of EV-2ndSBC, EV-1st1D, and EV-1st2D.

Since our indicators are somewhat ad hoc and the classification of games is rather

arbitrary, we employ principal component analysis to form several linear combina-

tions of the standardized expected payoffs of the 33 games used in the experiment.

We interpret the first five PCs as subject’s strategic IQs: The first SIQ (SIQ1) in-

dicates subjects’ abilities to perform backward induction. The second SIQ (SIQ2)

could be interpreted as subjects’ abilities to perform multi-dimensional backward

induction. The third SIQ (SIQ3) controls for subjects’ attitudes toward risk. The

fourth SIQ (SIQ4) reflects subjects’ beliefs about others’ social preferences. The

fifth SIQ (SIQ5) measures subjects’ accuracy of the higher order beliefs about the

opponents in the SBC games.
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Appendix

A Procedure for Principal Component Analysis

This mathematical appendix summarizes Chapter 4 of Sharma (1995) and Chapter 2

of Jolliffe (2002), which describe the mathematical procedure of principal component

analysis we adopt.

Let X be a 33-component vector which contains 72 subjects’ normalized EV

of the 33 games used in our experiment. The covariance matrix, Σ, is given by

E(XX′). Let ω′ = (w1 w2 · · ·w33) be a vector of weights such that the new variable,

ξ = ω′X, is a linear combination of the subjects’ original normalized EV of the 33

games. The variance of the new variable is given by the E(ξξ′), which equals to

ω′Σω. The purpose of PCA is finding the weight vector, ω, such that the variance,

ω′Σω, of the new variable is maximum over the class of linear combinations that

can be formed subject to the constraint ω′ω = 1.

The solution to the maximization problem can be obtained as follows:

Let

Z = ω′Σω − λ(ω′ω − 1), (A.1)

where λ is the Lagrange multiplier. The 33-component vector of the partial deriva-

tive is given by

∂Z

∂ω
= 2Σω − 2λω. (A.2)

The first order condition of this problem is setting the above vector of partial

derivatives to zero. That is,

(Σ− λI)ω = 0. (A.3)

For the above system of homogeneous equations to have a nontrivial solution the

determinant of (Σ− λI) should be zero. That is,

|Σ− λI| = 0. (A.4)

Equation A.4 is a polynomial in λ of order 33, and therefore has 33 roots. Let

λ1 ≥ λ2 ≥, . . . , λ33 be the 33 roots. That is, Equation A.4 results in 33 values for

λ, and each value is called the root or eigenvalue of the Σ matrix. Each value of

λ results in a set of weights given by the 33-component vector ω by solving the
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following equations:

(Σ− λI)ω = 0 (A.5)

ω′ω = 1. (A.6)

As a result, the first eigenvector, ω1, corresponding to the first eigenvalue, λ1, is

obtained by solving equations

(Σ− λ1I)ω1 = 0 (A.7)

ω′
1
ω1 = 1. (A.8)

Premultiplying Equation A.7 by ω′
1
gives

ω′
1
(Σ− λ1I)ω1 = 0

ω′
1
Σω1 = λ1ω

′
1
ω1

ω′
1
Σω1 = λ1 (A.9)

as ω′
1
ω1 = 1. The left-hand side of Equation A.9 is the variance of the new variable,

ξ1, and is equal to the eigenvalue, λ1. The first PC is hence given by the eigenvector,

ω1, corresponding to the largest eigenvalue, λ1.

Let ω2 be the second 33-component vector of the weights to form the next

linear combination. ω2 can be found such that the variance of ω′
2
X is the maximum

subject to the constraints ω′
1
ω2 = 0 and ω′

2
ω2 = 1 (The first constraint ensures that

ξ1 and ξ2 are orthogonal). It can be shown that ω′
2
is the eigenvector of λ2, and the

second largest eigenvalue ofΣ. Similarly, it can be shown that the remaining vectors

of weights to form PCs, ω′
3
,ω′

4
, . . . ,ω′

33
, are also the eigenvectors corresponding

to the eigenvalues, λ3, λ4, . . . , λ33, of the covariance matrix, Σ. Consequently, the

problem of finding the weights reduces to finding the eigenstructure of the covariance

matrix. The eigenvectors give the vectors of weights and the eigenvalues represent

the variances of the PCs.

37



B Additional Figures

B.1 Data from Practice 2nd-Mover SBC Games

Figure A.1: Choice Distribution of Game 2nd-I with Targets (0, 1) (own) and (−1, 0)
(computer) on a 3× 3 map

Figure A.2: Choice Distribution of Game 2nd-II with Targets (−1, 2) (own) and
(4, 2) (computer) on a 7× 7 map
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Figure A.3: Choice Distribution of Game 2nd-III with Targets (−1,−4) (own) and
(4, 2) (computer) on a 7× 9 map

Figure A.4: Choice Distribution of Game 2nd-IV with Targets (4, 2) (own) and
(−6,−3) (computer) on a 9× 7 map
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Figure A.5: Choice Distribution of Game 2nd-V with Targets (−2, 1) (own) and
(4,−4) (computer) on a 7× 9 map

Figure A.6: Choice Distribution of Game 2nd-VI with Targets (0,−1) (own) and
(1, 0) (computer) on a 7× 7 map
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Figure A.7: Choice Distribution of Game 2nd-VII with Targets (3, 0) (own) and
(0, 3) (computer) on a 11× 5 map

Figure A.8: Choice Distribution of Game 2nd-VIII with Targets (−1, 0) (own) and
(0,−4) (computer) on a 9× 9 map
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Figure A.9: Choice Distribution of Game 2nd-IX with Targets (4,−2) (own) and
(−2,−4) (computer) on a 11× 5 map

Figure A.10: Choice Distribution of Game 2nd-X with Targets (2, 1) (own) and
(−2,−6) (computer) on a 9× 9 map
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B.2 Data from Simultaneously SBC Games

Figure A.11: Choice Distribution of Game SBC-1 with Targets (−2, 0) (own) and
(0,−4) (opponent) on a 9× 9 map

Figure A.12: Choice Distribution of Game SBC-2 with Targets (2, 0) (own) and
(0,−2) (opponent) on a 7× 7 map
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Figure A.13: Choice Distribution of Game SBC-3 with Targets (2, 0) (own) and
(0, 2) (opponent) on a 11× 5 map

Figure A.14: Choice Distribution of Game SBC-4 with Targets (−2, 0) (own) and
(0,−2) (opponent) on a 9× 7 map
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Figure A.15: Choice Distribution of Game SBC-5 with Targets (−4, 0) (own) and
(0, 2) (opponent) on a 7× 9 map

Figure A.16: Choice Distribution of Game SBC-6 with Targets (2, 0) (own) and
(0, 2) (opponent) on a 7× 9 map

45



Figure A.17: Choice Distribution of Game SBC-1R with Targets (0,−4) (own) and
(−2, 0) (opponent) on a 9× 9 map

Figure A.18: Choice Distribution of Game SBC-2R with Targets (0,−2) (own) and
(2, 0) (opponent) on a 7× 7 map
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Figure A.19: Choice Distribution of Game SBC-3R with Targets (0, 2) (own) and
(2, 0) (opponent) on a 11× 5 map

Figure A.20: Choice Distribution of Game SBC-4R with Targets (0,−2) (own) and
(−2, 0) (opponent) on a 9× 7 map
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Figure A.21: Choice Distribution of Game SBC-5R with Targets (0, 2) (own) and
(−4, 0) (opponent) on a 7× 9 map

Figure A.22: Choice Distribution of Game SBC-6R with Targets (0, 2) (own) and
(2, 0) (opponent) on a 7× 9 map
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B.3 Data from 1st-Mover SBC Games

Figure A.23: Choice Distribution of Game 1st-3R with Targets (0, 2) (own) and
(2, 0) (computer) on a 11× 5 map

Figure A.24: Choice Distribution of Game 1st-4 with Targets (−2, 0) (own) and
(0,−2) (computer) on a 9× 7 map
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Figure A.25: Choice Distribution of Game 1st-5 with Targets (−4, 0) (own) and
(0, 2) (computer) on a 7× 9 map

Figure A.26: Choice Distribution of Game 1st-5R with Targets (0, 2) (own) and
(−4, 0) (computer) on a 7× 9 map
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Figure A.27: Choice Distribution of Game 1st-6 with Targets (2, 0) (own) and (0, 2)
(computer) on a 7× 9 map

Figure A.28: Choice Distribution of Game 1st-6R with Targets (0, 2) (own) and
(2, 0) (computer) on a 7× 9 map
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Figure A.29: Choice Distribution of Game 1st-7 with Targets (−2,−6) (own) and
(4, 4) (computer) on a 9× 9 map

Figure A.30: Choice Distribution of Game 1st-8 with Targets (4,−2) (own) and
(−2, 4) (computer) on a 7× 7 map
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Figure A.31: Choice Distribution of Game 1st-9 with Targets (−6,−2) (own) and
(4, 4) (computer) on a 9× 7 map

Figure A.32: Choice Distribution of Game 1st-10 with Targets (4, 2) (own) and
(−2,−4) (computer) on a 7× 9 map
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Figure A.33: Choice Distribution of Game 1st-11 with Targets (4,−4) (own) and
(−2, 6) (computer) on a 7× 9 map

Figure A.34: Choice Distribution of Game 1st-12 with Targets (−2, 4) (own) and
(6, 2) (computer) on a 11× 5 map
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B.4 Parallel Analysis
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Figure A.35: Plot of Eigenvalues of the Actual Data and Plot of Eigenvalues from
Parallel Analysis
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C Instructions (Slides Used in the Experiment)

Experimental Instructions 

Experiment 1 (Practice) - 1 

• Each round you pair with another person 

• For Practice, the other person is Computerized 

– Programmed to act in a pre-set way 

 

• You choose the option LEFT or RIGHT; the 

other person will choose UP or DOWN 

– The other person’s choice matters ONLY if you 

choose RIGHT 
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Experiment 1 (Practice) 

• Your earnings will then be determined by the 

BLUE numbers next to each box 

– Numbers (how much you earn) vary across rounds 

– The other person’s earnings are in GREY 

 

• Results WILL NOT count toward final earnings 

– This is just practice to make sure you understand 

Experiment 1 (Real) - 1 

• Same as Practice: 

– Each round you pair with another person 

• The other person is a fellow UCLA Student 

 

• You choose the option LEFT or RIGHT; the 

other person will choose UP or DOWN 

– The other person’s choice matters ONLY if you 

choose RIGHT 
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Experiment 1 (Real) 

• Your earnings will then be determined by the 

BLUE numbers next to each box 

– Numbers (how much you earn) vary across rounds 

– The other person’s earnings are in GREY 

• You will not see the other person’s decisions 

 

• Results WILL count toward your final earnings 

– Earnings from one round will be randomly drawn 

Experiment 2 – Participant 1 

• Each round you pair with another person 

• The other person is a fellow UCLA Student 

• You are given 10 CHIPS to be allocated 

between you and the other person 

• Each CHIP assigned to you gives you $1  

• Each CHIP assigned to the other person gives 

him/her $0.50, $1 or $2 (differs across rounds) 
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Experiment 2 – Participant 1 

• The other person can only accept your 

allocation 

 

• Results WILL count toward your final earnings 

– Earnings from one round will be randomly drawn 

 

 

Experiment 2 – Participant 1 

• Some rounds have a third person: Participant 3 

– Allocate 0-5 deduction POINTS depending on your 

allocation of CHIPS for you and Participant 2 

• Each deduction POINT assigned to you  

– Reduces $1 from You  

– Reduces $0.25, $0.50 or $1 from him/her (differs) 

• No feedback on rounds with Participant 3 

– Don’t know allocation of deduction POINTS 
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Experiment 3 (Practice) 

• Each round you pair with another person 

• For Practice, the other person is Computerized 

– Programmed to act in a pre-set way 

• Both of you will place markers on a grid 

– Markers may overlap 

• The other person will go first 

– You will see other’s marker before you decide 

• Results WILL NOT count toward final earnings 

– This is just practice to make sure you understand 

Experiment 3 (Practice) 

• Each round you have a goal where you want 

your marker to be located, compared to the 

other person’s marker.  

– Ideal location is not fixed, but relative to where 

the other person puts their marker 

Example: “1 ABOVE” means your goal is for your 

marker to be one square above the other’s 

Example: Other’s goal “2 LEFT” means their goal 

is to place a marker 2 squares to the left of yours 
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-10 

Experiment 3 (Practice) 

• Both of you will see both of your goals.  

• Start with $10; lose $0.50 for each square 

between your marker and the ideal one  

– Want to be as close to your goal as possible 

 

 

• Any questions about the rules? 

-10 -10 

-10 

Your 

Goal 

Your 

Choice 

Experiment 3 (Practice) 

• Now you will go through some Practice Rounds 

• For Practice, the other person is Computerized 

– Programmed to act in a pre-set way 

• Please ask questions as you go, and let us know 

if there is anything that is confusing 

• Results WILL NOT count toward final earnings 

– This is just practice to make sure you understand 
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Experiment 3 (Part A) 

• Now you will go though Part A 

– You and the other person choose simultaneously 

– Nobody will see other’s marker 

– You need to think about (and guess) where the 

other person might place the marker 

• The other person is a fellow UCLA Student 

 

• Results WILL count toward final earnings 

– Earnings from one round will be randomly drawn 

Experiment 3 (Part B) 

• Now you will go though Part B 

– You go first 

– The other person will see your marker  

• The other person is a Computerized Person 

– Programmed to earn the most for himself 

 

• Results WILL count toward final earnings 

– Earnings from one round will be randomly drawn 

62


	Introduction
	Game Structure and Theoretical Predictions
	Two-Stage Dominance-Solvable Games
	Simultaneous Spatial Beauty Contest Games
	First-Mover Spatial Beauty Contest Games

	Experimental Design
	Basic Results
	Results of Dominance-Solvable Games
	Results of Simultaneous/1st-Mover Spatial Beauty Contest Games

	Subjects' Strategic IQ
	Subject Performance Indicators
	Principal Component Analysis

	Conclusion
	Appendix
	Procedure for Principal Component Analysis
	Additional Figures
	Data from Practice 2nd-Mover SBC Games
	Data from Simultaneously SBC Games
	Data from 1st-Mover SBC Games
	Parallel Analysis

	Instructions (Slides Used in the Experiment)

