
國立臺灣大學電機資訊學院資訊工程學系

博士論文

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Doctoral Dissertation

多核心系統中動態隨機存取記憶體之低功率設計及溫度控制

A Low-Power DRAM System with Thermal Control for
Multi-Core Systems

林仲祥

Chung-Hsiang Lin

指導教授：楊佳玲博士

Advisor: Chia-Lin Yang, Ph.D.

中華民國 103年 7月
July, 2014

中文 要

在現今的電腦系統中，動態隨機存取記憶體 (DRAM)常被用作主

記憶體，但其效能已漸漸跟不上處理器，此一問題在多核系統中將因

多個處理核心同時存取記憶體而日益嚴重。為了要滿足多核系統的

需求，記憶體容量與頻寬都需隨之增加。現今的研究亦發現記憶體的

功耗與溫度也越來越高，因此在多核系統中，記憶體系統設計的挑戰

是在降低其功耗的同時，滿足效能與工作溫度的限制。由於背景功

耗 (background power)佔記憶體功耗的一半以上，在此論文中，我將

專注於減少記憶體的背景功耗，並避免降低效能且同時滿足工作溫度

的限制。記憶體背景功耗由週邊電路漏電流 (peripheral leakage)及刷

新功耗 (refresh power)組成。為減少週邊電路漏電流，我提出效能/功

耗/溫度共同管理架構 (joint Performance, Power and Thermal management

framework，PPT framework)，透過工作排程與分頁配置，在不同的系

統頻寬需求下，滿足效能與工作溫度的限制並降低記憶體功耗。為

減少刷新功耗，我提出刷新節能選擇性錯誤更正架構 (Selective Error

Correction for Refresh Energy reducTion framework, SECRET framework)，

透過延長刷新間隔 (refresh interval)來減少刷新功耗，並將延長刷新間

隔時產生的記憶錯誤 (retention error)視為硬體錯誤 (hard error)，只為這

些少數會發生錯誤的記憶體單元配置錯誤更正資訊，以減少錯誤更正

機制的額外成本。由於上述兩個架構的設計並無衝突，且用完全獨立

的方式減少不同種類的功耗，因此兩者可以同時使用，以進一步達到

節能省電的效果。

-動態隨機存取記憶體、功率、溫度、週邊電路、刷新

i

Abstract

DRAMs are used as the main memory in most computing systems today.

However, memory system performance has been historically lagged behind

CPU performance, and this problem exacerbates in a multi-core system since

memory resources are shared by multiple cores on a chip. To sustain concur-

rent memory requests from multiple cores, the speed, bandwidth, and capac-

ity of DRAMmemories continue to increase. Studies show that DRAMs now

consume a significant part of the overall system power, and the temperature

of DRAMs is also approaching its limit. Therefore, the challenge that we are

facing today from DRAM memory management is how to achieve desired

DRAM power reduction, and meet the performance and thermal constraints

at the same time. Since the background power of DRAMs usually consumes

more than 50% of the total DRAM power, I focus on reducing DRAM back-

ground power with negligible performance overhead, andmeeting the DRAM

thermal constraint in this dissertation.

The background power of DRAMs is composed of power consumption

of peripheral leakage which depends on DRAM power states and refresh

power. To reduce the DRAM peripheral leakage, I propose a joint perfor-

mance, power and thermal management framework (PPT) through orchestrat-

ing task execution and page allocation to exploit DRAM low-power modes

efficiently. The PPT framework adapts to system loading to maximize pe-

ripheral leakage power savings and avoidmemory thermal hotspot at the same

time whiling sustaining the system bandwidth demand. For refresh power re-

duction, I propose SECRET (Selective Error Correction for Refresh Energy

reducTion) that is designed to reduce the inevitable refresh processes by pro-

longing the refresh interval and correcting the retention errors by ECC (Error

Correcting Code). The key observation I make is that retention errors can be

ii

treated as hard errors rather than soft errors, and only few DRAM cells have
large leakage to cause retention errors. Therefore, instead of equipping error
correction capability in all memory cells as existing ECC schemes, I only al-
locate error correction information to leaky cells under a refresh interval to
minimize the overheads of ECC.

The architectural supports for these two techniques do not conflict, so
they can be used at the same time. Since both techniques incur negligible per-
formance degradation, adopting them together would only hurt performance
slightly as well. The effectiveness for power reduction and thermal control
of these two techniques used simultaneously is as good as that of these two
techniques used separately, because they reduce different parts of the DRAM
background power and there is no interference between these two methods.
So, utilizing the PPT and SECRET frameworks can reduce both the periph-
eral leakage power and refresh power of DRAM systems and alleviate the op-
erating temperature with negligible overheads in performance and hardware
modifications.

keywords - DRAM, Power, Thermal, Peripheral Leakage, Refresh

iii

Table of Contents

中文 要 i

Abstract ii

List of Figures vii

List of Tables ix

Chapter 1. Introduction 1

Chapter 2. Related Work 5
2.1 Peripheral Leakage Reduction . 5

2.1.1 Idle Period Prolongation . 5
2.1.1.1 Power-Aware Data Allocation 6
2.1.1.2 Temporal Alignment of Memory Requests 8
2.1.1.3 Data Re-computation . 10
2.1.1.4 Thermal Drawback of Request Clustering 10

2.1.2 Power Mode Decision . 10
2.2 Refresh Power Reduction . 13

2.2.1 Refresh Reduction by Sensing Leakage Current 14
2.2.2 Refresh Reduction by Considering Access Pattern 15
2.2.3 Refresh Reduction by Considering Data Property 16
2.2.4 Multi-Period Refresh . 19
2.2.5 ECC for Refresh Reduction . 20
2.2.6 Adaptive Refresh Interval . 22

2.3 Dynamic Thermal Management for DRAMs 24
2.4 Reliable Low-Voltage Operation for SRAM Cache 26
2.5 Related Work Using Ideas Similar to the PPT Framework 29

iv

Chapter 3. Introduction to DDRx-SDRAM 31

3.1 DRAM Organization . 31

3.2 Power States of DDRx-SDRAM . 32

3.3 DRAM Refresh Operation . 32

Chapter 4. PPTFramework: DRAMPeripheral LeakageReductionwithTher-
mal Control 35

4.1 Introduction . 35

4.2 The PPT Framework . 36

4.2.1 Adaptive Grouping Mechanism . 37

4.2.1.1 PPT Configuration Selection 38

4.2.1.1.1 Static Bandwidth (BW) Estimation Method 38

4.2.1.1.2 Dynamic Bandwidth (BW) Estimation Method . . 40

4.2.1.2 New PPT Configuration Adoption 42

4.2.1.3 Architectural Support . 44

4.2.2 Thermal Control Policy . 45

4.3 Evaluation to PPT Framework . 46

4.3.1 Experimental Setup . 46

4.3.2 Experimental Results . 49

4.3.2.1 Power/Performance Evaluation of Adaptive Grouping 49

4.3.2.2 Deferred Page Migration Analysis 56

4.3.2.3 Power State Analysis . 58

4.3.2.4 Thermal Evaluation . 59

4.3.2.5 Summaries of Performance, Power and Temperature of PPT . 61

Chapter 5. SECRET Framework: DRAM Refresh Power Reduction 63

5.1 Introduction . 63

5.2 The SECRET Framework . 64

5.2.1 Main Idea . 64

5.2.2 Candidates of the Error Correcting Scheme in SECRET 65

5.2.2.1 Hamming Code ECC . 65

v

5.2.2.2 Bose-Chaudhuri-Hocquenghem (BCH) Code ECC 65
5.2.2.3 Error Correcting Pointer . 66

5.2.3 Selective Error Correction (SEC) . 66
5.2.4 Off-line Phase: ECP Directory/ECPs Construction 70
5.2.5 Refresh Interval Adaptation . 71

5.2.5.1 Profiling Memory Cells for Refresh Interval Adaptation . . . 72
5.2.5.2 Deduction of the Worst Case Leakage Ratio 73
5.2.5.3 Proof of the Correctness of Refresh Interval Adaptation 74

5.2.6 Discussion on Overheads of SEC . 76
5.3 Evaluation to SECRET Framework . 77

5.3.1 Experimental Setup . 77
5.3.2 Experimental Results . 79

5.3.2.1 Design Space Exploration: Deciding Target Error Rate and
SEC Cache Configuration 80

5.3.2.2 Energy Analysis . 82
5.3.2.3 Performance Analysis . 84
5.3.2.4 Evaluating SECRET with Reduced Last-level Cache Size . . 85
5.3.2.5 Evaluation of Distributing Leaky Cells with Spatial Locality . 87
5.3.2.6 Comparison with Traditional ECC Approaches 89

Chapter 6. Conclusion 91

Bibliography 95

vi

List of Figures

3.1 The structure of a DRAM cell and a 2D DRAM array. 32

3.2 The power state transition of DDRx-SDRAM. 33

3.3 Data retention time distribution of DRAM cells. 33

4.1 4-group PPT configuration. 36

4.2 Group scheduling of the PPT framework. 37

4.3 Static BW estimation method for Adaptive Grouping in the PPT framework. 39

4.4 Dynamic BWestimationmethod for AdaptiveGrouping in the PPT frame-
work. 41

4.5 1-group PPT configuration. 46

4.6 Memory throughput breakdown of threads in SPEC2000-1with the performance-
driven policy for PPT evaluation. 50

4.7 Throughput and power of DRAM system with SPEC2000-1 for PPT eval-
uation. 51

4.8 The throughput of the performance-driven policy, the number of ranks per
group for the static and dynamic BW estimation methods, and the number
of concurrently accessed ranks for the power-driven policy in SPEC2000-
1 for PPT evaluation. 52

4.9 Memory throughput breakdown of threads in SPEC2000-2with the performance-
driven policy for PPT evaluation. 53

4.10 Throughput and power of DRAM system with SPEC2000-2 for PPT eval-
uation. 54

4.11 Memory throughput breakdown of threads in SPECjbbwith the performance-
driven policy for PPT evaluation. 55

4.12 Throughput and power of DRAM system with SPECjbb for PPT evaluation. 56

4.13 Rank Miss Rate, Hot/Cold Access Rate, New Page Rate and the num-
ber of page migrations for SPEC2000-1 with the dynamic BW estimation
method in 0.5s∼1.0s and 4.6s∼5.1s for evaluations to Deferred Page Mi-
gration. 57

vii

4.14 Power state breakdown of DRAM systemwith SPEC2000-1 for PPT eval-
uation. 59

4.15 Temperature of DRAM system for PPT evaluation. 60

5.1 SECRET framework. 65
5.2 (a) Error correcting pointer. (b) Hardware implementation for ECP1 de-

coder [1]. 67
5.3 Error correcting information for the SEC mechanism. 68
5.4 Architecture of the SEC cache. 68
5.5 System architecture of the SEC mechanism. 70
5.6 Data retention time distribution of DRAM cells and bits in Set 1 and Set 2. 73
5.7 Retention error rates of utilizing various refresh intervals. 79
5.8 Refresh power reduction achieved by utilizing refresh intervals of various

target retention error rates. 81
5.9 Average cache miss rate of SEC cache with varied number of ways and sets. 81
5.10 SEC cache line size vs. DRAM power reduction under various retention

error rates. 82
5.11 Power consumption of the DRAM system with SECRET normalized to

the baseline. 83
5.12 Power breakdown ofDRAMperipheral leakage, dynamic and refresh power

of the baseline (left) and SECRET (right). 84
5.13 Additional memory accesses of the SECRET framework normalized to

the number of data accesses issued by the workloads. 85
5.14 DRAM system power breakdown normalized to the DRAM power con-

sumption with 8MB L2 cache. 86
5.15 Average additional memory accesses of the SECRET framework normal-

ized to the number of data accesses issued by the workloads with 8MB,
4MB and 2MB L2 cache. 87

5.16 DRAM power reduction of various distributions, and the maximum num-
ber of retention errors in a region with the target error rate set to 10−6. . . 89

5.17 Mean time to failure vs. retention error rate in the DRAM system with
Hamming Code ECC. 89

viii

List of Tables

4.1 Processor and memory configurations for PPT evaluation. 47
4.2 Workloads for PPT evaluation. 48
4.3 Normalized throughput, power and peak temperature of the performance-

driven policy, the power-driven policy and the PPT mechanisms. 61

5.1 Number of bits/bytes of each ECP directory/ECP field in the SECRET
framework. 76

5.2 System configurations for SECRET evaluation. 78
5.3 Workloads for SECRET evaluation. 78

ix

x

Chapter 1

Introduction

Optimizing power consumption has become a critical design issue not just for battery-

operated mobile devices, but also for high end systems due to the reliability issue and

cooling/packaging cost. To achieve an energy-efficient design, all system components

need to be considered. DRAMs are used as the main memory in most computing systems

today. Studies show that DRAMs consume over 30% system power in handheld comput-

ers [2], up to 40% system power in commercial servers [3], and about 20% system power in

mobile phones [4, 5]. The memory system is obviously one of the main contributors to the

overall system power consumption. Recently, multi-core processors are widely adopted

from smart phones to servers. To sustain the increasing bandwidth demand in multi-core

systems, the capacity and speed of DRAM memories are also expected to grow signifi-

cantly. This will lead to increasing power consumption in the memory system. Therefore,

it is ever increasingly important to design a power-aware memory system.

The DRAMpower consumption falls into three different components: background

power, activation power and read/write burst power. A previous study shows that the

background power usually consumes more than 50% of the total DRAM power [6]. So, I

focus on reducing the background power of DRAMs in this dissertation. The background

power includes peripheral leakage power and refresh power which are both consumed due

to leakage currents in DRAMs. The peripheral leakage power comes from the leakage

power of DRAM peripheral circuits that include row/column decoders, sense amplifiers,

row buffers, etc. When the peripheral circuits are turned on, the peripheral leakage power

is a main contributor of the DRAM power consumption, but the peripheral leakage power

can be reduced by turning the peripheral circuits off. The refresh power is generated by

refresh operations that are required to recharge the capacitors in DRAMs to avoid data loss

1

due to leakage currents of DRAM cells. A recent study shows that the refresh power may
become the dominant component of DRAMpowerwhenDRAMs scale in density, because
other components of DRAM power increase slowly with the DRAM density scaling, but
the refresh power increases linearly [7]. Therefore, to design a power-aware DRAM sys-
tem, I focus on reducing the peripheral leakage power and refresh power. Now, I introduce
the proposed techniques.

For reducing theDRAMperipheral leakage power, I propose amanagement frame-
work that takes performance, power and thermal all into accounts. The most common ap-
proach to reduce the DRAM peripheral leakage power is to utilize the inactive low-power
modes that turn some components of peripheral circuits off when the DRAMmodules are
idle. Since the DRAMmodules can not serve memory requests in the inactive low-power
modes, to improve the efficiency of the inactive low-power modes, there are two kinds of
mechanisms proposed to prolong the idle periods of DRAM modules. The power-aware
data allocations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] clus-
ter data accesses in a small number of memory modules and put the remainings into a
low-power mode to reduce peripheral leakage. Although popularity data layout is good
for power, it is not able to expose memory parallelism thereby impairing memory sys-
tem performance. On the other hand, the mechanisms of memory request alignment
[26, 27, 28, 29, 30, 31, 23] cluster memory requests in a burst to prolong the idle peri-
ods of DRAM modules. In the long idle periods, the inactive low-power modes can be
used efficiently, but memory request alignment may incur performance degradation due
to delaying the requests. In contrast to power reduction, to improve the performance of
DRAM systems, some purely performance-driven memory systems use data striping to
explore maximum parallelism among memory accesses to gain performance [32, 33, 34,
35, 36, 37, 38, 39, 40]. However, activating all memory modules at the same time re-
duces the opportunities of utilizing inactive low-power modes, so data striping usually
gains performance at the expense of high power consumption. Besides the tradeoff be-
tween performance and power, due to the high power consumption of the memory system,
memory thermal management is becoming a critical issue recently [41, 42]. To protect the
memory system from thermal emergency, several dynamic thermal management (DTM)
techniques have been proposed [42, 43, 44, 45, 46, 47, 48, 49, 25]. Although reducing
peripheral leakage power by aforementioned low-power techniques in general can lower

2

average temperature, it may cause adverse effect on peak temperature since clustering
memory requests in few modules in a burst causing high power density and rapid temper-
ature rise in active modules. This may consequently incur more frequent DTM invocation
with performance degradation. The thermal drawback of clustering memory requests to
reduce peripheral leakage is discussed in detail in Section 2.1.1.4. Because there are com-
plex interactions between performance, power and thermal factors, these three factors all
need to be taken into account in designing a power-aware memory subsystem for reduc-
ing peripheral leakage. However, most of previous works look at one or two factors only.
Due to the interplay among performance, power and thermal, a technique optimized for
one factor only often causes uncontrollable degradation at other design metrics. To tackle
this issue, in this dissertation, I propose the first joint performance, power and thermal
(PPT) management framework for DRAM memory in multi-core systems. The details of
the PPT framework are described in Chapter 4.

For DRAM refresh power reduction, I propose a novel error correction framework
for retention errors in DRAMs. Due to process variation, memory cells exhibit reten-
tion time variations. However, current DRAMs use a single worst-case refresh period.
Since prolonging refresh intervals introduces retention errors, previous works adopt con-
ventional ECC (Error Correcting Code) to correct retention errors. These approaches in-
troduce significant area and energy overheads. For example, in a conventional (72, 64)
Hamming code, eight DRAM chips are paired with an extra chip, which requires 12.5%
area overhead and additional power consumption. In this dissertation, I propose a novel
error correction framework for retention errors in DRAMs, called SECRET (Selective
Error Correction for Refresh Energy reducTion). The key observation I make is that re-
tention errors can be treated as hard errors rather than soft errors, and only few DRAM
cells have large leakage. Therefore, instead of equipping error correction capability in
all memory cells as existing ECC schemes, I only allocate error correction information
to leaky cells under a refresh interval. My SECRET framework contains two parts, an
off-line phase to identify memory cells with retention errors given a target error rate, and
a low-overhead error correction mechanism. The experimental results show that the pro-
posed SECRET framework can reduce significant DRAM refresh power with negligible
area and performance overheads. The details of the SECRET framework are described in
Chapter 5.

3

The rest of this dissertation is organized as follows. The discussion of the related
works is presented in Chapter 2. Chapter 3 shows the basics of DDRx-SDRAM. Chapter 4
explains the proposed joint performance, power, thermal management (PPT) that reduces
DRAM peripheral leakage with thermal control. Chapter 5 shows the proposed SECRET
framework that reduces DRAM refresh power. Conclusions are given in Chapter 6.

4

Chapter 2

Related Work

In this chapter, I first introduce the related works about reducing DRAM background
power. The studies that focus on reducing peripheral leakage power of DRAMs are dis-
cussed in Section 2.1, and the mechanisms which reduce refresh power are mentioned in
Section 2.2. Then, the dynamic thermal management policies for DRAMs are presented
in Section 2.3. Since the design issues for building a reliable SRAM cache under low
supply voltage are similar to that for reducing DRAM refresh power, I also introduce the
studies that develop reliable low-voltage operations for SRAM caches in Section 2.4. In
the end, I show some works that present some techniques similar to the PPT framework
in Section 2.5.

2.1 Peripheral Leakage Reduction

Traditionally, architects usually use inactive low-power modes of DRAMmodules
to reduce the peripheral leakage. However, DRAMmodules can not serve requests in these
low-power modes. So, to maximize the efficiency of the low-power modes and minimize
performance degradation due to the latency of re-activation for serving requests, it is quite
important to create long idle periods and select appropriate low-power modes for DRAM
modules in the idle periods. In this section, I introduce previous studies that prolong the
idle periods of DRAM modules in Section 2.1.1, and present the works that discuss how
to select the appropriate low-power mode in Section 2.1.2.

2.1.1 Idle Period Prolongation

The most promising approach to reduce the peripheral leakage power of DRAMs
is to utilize the low-power modes of DRAM modules. In the low-power modes, to re-

5

duce the peripheral leakage power, some components of the DRAM peripheral circuits
are turned off. However, conventional DRAM low-power modes have several shortcom-
ings. First, the DRAM modules can not serve memory requests when they are in the low-
power modes. When there are read requests sent to the memory modules, the modules
must be transited back to the active mode to serve the requests. Therefore, most policies
only transit the DRAM modules into low-power modes when they are idle to minimize
the performance degradation due to high latency for bringing the DRAM modules back
to the active mode. Second, transiting the DRAM modules between the active mode and
the low-power modes may incur power overheads. So, frequent transitions between the
active mode and low-power modes due to short idle periods may cause adverse effect for
power reduction. To overcome these two limitations, many works focus on prolonging
the idle periods of memory modules to minimize performance and power overheads of
power state transitions and maximize the power savings from using low-power modes for
the memory subsystems.

2.1.1.1 Power-Aware Data Allocation

The policies of power-aware data allocation for prolonging the idle periods of
memory modules mainly focus on clustering the data with similar access patterns into
a subset of memory modules, and transiting the other memory modules into low-power
modes when these data are being accessed.

Delaluz et al. [9, 8, 11, 12] introduce a compiler-based optimization framework to
cluster the arrays that have similar patterns of lifetime into the same set of memory mod-
ules and transit these modules into low-power modes when the lifetime of these arrays
ends. Lebeck et al. [10] propose the sequential first-touch page allocation policy that is
implemented in the operating system. This policy allocates pages in the order they are
accessed and fills an entire DRAM module before moving onto the next. So, this policy
minimizes the number of DRAM modules utilized for applications, and places other un-
used DRAM modules in the low-power modes to reduce energy consumption. Athavale
et al. [13] use data layout transformations to change the storage order, improve spatial
locality of arrays and their cache behavior, and confine the memory requests to a partic-
ular DRAM module for a period of time. The data layout transformations can increase
the average inter-access times between two memory requests to the same DRAM module

6

to provide an opportunity for transiting the DRAM module into low-power modes for a
longer time. Delaluz et al. [14] describe an automatic data migration strategy that tries
to increase the number of banks which can be transited into low-power modes and al-
low the use of more aggressive low-power modes by dynamically placing the arrays with
temporal affinity into the same set of DRAM banks. Delaluz et al. [15] then propose an
array interleaving mechanism which minimizes the number of DRAM modules that need
to be active at a given time to put other DRAM modules into low-power modes by clus-
tering the data elements of multiple arrays that are accessed simultaneously into a single
common data space. Tuck et al. [16] introduce a frequency-based dynamic page place-
ment policy which is implemented in the operating system. This policy tries to allocate
the most frequently accessed pages in the same DRAM modules to provide opportuni-
ties to transit other DRAM modules into low-power modes. Huang et al. [17] propose
another page allocation policy that minimizes the total number of active DRAM mod-
ules used per process. Then, the low-power mechanism activates the DRAM modules
used by a process when that process is scheduled, and leaves other DRAM modules in
the low-power modes to save energy. Wang et al. [18, 19] introduce a novel memory
access graph model to capture potential energy savings and potential performance im-
provement simultaneously by variable partitioning and memory operation scheduling in
the multi-bank memory system with multiple memory operating modes. Huang et al. [20]
perform page migration to allocate frequently-accessed pages on hot memory ranks, and
infrequently-used and unmapped pages on cold ranks to elongate the average inter-arrival
time of memory requests by almost 2 orders of magnitude on cold ranks, where the ultra-
low power self-refresh mode can be more utilized. Ozturk et al. [21] combine data mi-
gration and data compression to reduce memory power consumption. Data migration puts
the data blocks with similar access patterns/lifetimes into the same set of DRAMmodules
to increase the chances for utilizing low-power modes, and data compression squeezes the
data blocks and makes it possible to increase the number of inactive DRAMmodules that
can be transited into low-power modes. Ozturk et al. [22] then discuss the effectiveness
of employing nonuniform bank sizes for reducing memory energy consumption. They
propose an integer linear programming based approach that provides the optimal nonuni-
form bank sizes with data-to-bank mapping, and study a data migration scheme to further
improve power savings over nonuniform banking. Pandey et al. [23] cluster frequently

7

accessed pages in a small subset of DRAM modules to exploit the skew of access pattern
in workloads. The data layout can increase the energy savings by temporally aligning
the memory requests directed towards the hot DRAM modules and reducing the memory
requests to cold DRAM modules that would stay in low-power modes for a long period
of time. Ozturk et al. [50] propose a novel data allocation strategy with data replication
for multi-bank memory systems. This strategy puts the data blocks with similar access
pattern in the same DRAM modules, and replicates the data blocks when necessary to
prevent re-activating idle DRAM modules that are in the low-power modes. Kumar et al.
[24] restrict the amount of DRAM modules that are available to applications to tradeoff
performance and power. Only the DRAM modules available to applications need to be
active, and other DRAM modules can be transited into low-power modes. Levy et al.
[51] propose a compiler-directed optimization that performs analysis and energy-aware
data allocation on dynamic variables instead of static global variables.

2.1.1.2 Temporal Alignment of Memory Requests

Because theDRAMmodules can not be accessedwhen they are in the non-operational
low-power modes and there are power overheads when transiting between the active mode
and the low-power modes, transiting the DRAM modules into a low-power mode makes
sense only when these DRAM modules can be idle and stay in the low-power mode long
enough to save energy that compensates the energy overheads of transiting the DRAM
modules into the low-power mode and reactivating the DRAM modules [52]. Instead of
altering the data placement to change the access patterns of memory requests spatially to
prolong the idle periods of a subset of DRAM modules, another approach is to batch the
memory requests into a burst, such that the short idle periods can be clustered into a long
idle period.

Pisharath et al. [53] introduce a new kind of on-chip memory module buffers,
called Energy-Saver Buffers (ESB), that reside in-between the L2 cache and DRAMmod-
ules of the main memory to hold the write requests when the corresponding DRAMmod-
ules are in low-power modes, and then flush the write requests to the DRAM modules in
burst when the modules are activated for serving read requests, to prolong the idle periods
of these DRAMmodules. Delaluz et al. [27] present a compiler-based optimization strat-
egy for array-dominated applications. This strategy modifies the execution order of loop

8

iterations to prolong the idle period of DRAM modules. Wang et al. [18, 19] not only

exploit variable partitioning and memory request scheduling for power-aware data alloca-

tion, but also use the scheduling policy to achieve temporal alignment of memory requests

to capture potential energy savings. Ozturk et al. [31] present the bank-aware cache miss

clustering mechanism that is a compiler optimization for clustering cache misses and hits,

and increasing bank idleness. Pandey et al. [23] temporally align DMA-memory requests

from different I/O buses to the same DRAM module by delaying DMA-memory requests

directed to a low-powered DRAM module and gathering enough DMA-memory requests

that can fully utilize the active cycles of the DRAMmodule before activating this DRAM

module. Hur et al. [28] propose Power-Aware Adaptive History-Based (PA-AHB) sched-

uler that groups the memory commands sent to the same DRAM module in the memory

queue as close as possible to cluster the memory commands, and they also introduce an

adaptive memory throttling mechanism that blocks memory commands inside the mem-

ory controller for some fixed periods to allow DRAM modules to remain in low-power

modes for long periods of time. Amin et al. [26] introduce a cache replacement policy,

called Rank-Aware REplacement (RARE), that tries to avoid replacing the data blocks

which map to the prioritized DRAMmodules, so that prioritized DRAMmodules receive

less traffic and could be transited into deeper low-power modes for longer periods of time.

They also propose Rank-AwareWrite Buffer (RAWB) that buffers the write requires going

to a DRAMmodule and then issues these requests as a batch to prolong the idle time. Kant

[29] proposes to batch the memory requests by periodically making the DRAM modules

inactive directly, so that newly arriving requests queue up and the DRAM modules can

be put into low-power modes to improve energy efficiency. Kim et al. [30] implement a

DRAM power-aware rank scheduling policy that changes the behaviors of the last-level

cache and the memory controller. The last-level cache then prefers replacing dirty blocks

that map to active ranks, and avoid replacing dirty blocks that map to ranks in deep low-

power modes, so that the overheads of bringing the corresponding ranks back to the active

mode for serving the write requests can be minimized. The memory controller tries to

buffer write requests that map to ranks in low-power modes, and issues these requests in

a batch when the corresponding rank is transited to another power mode to minimize the

overheads of state transitions.

9

2.1.1.3 Data Re-computation

Besides the aforementioned works, Koc et al. [54] introduce a new idea called

data re-computation that tries to avoid reactivating a low-powered DRAM module for

accessing the required data by performing extra computation to calculate the required data

according to the data in already active DRAM modules to improve energy efficiency.

2.1.1.4 Thermal Drawback of Request Clustering

The aforementioned methods try to cluster the memory requests issued to DRAM

modules in spatial or in temporal, so that the memory requests are served by a subset of

DRAM modules in a period of time in burst to prolong the idle periods of DRAM mod-

ules. However, during the burst of memory requests, the DRAMmodules that serve these

requests have high power density due to high dynamic power consumption, and raise their

own operating temperature. This may cause thermal emergency on active DRAMmodules

and dynamic thermal management would be required to prevent overheating. In this case,

the thermal issue and the following invocations of dynamic thermal management may

further degrade the performance of the memory system. But, these methods do not take

the adverse thermal effect into consideration. Therefore, these methods are not suitable

to modern high performance and high throughput memory systems that already approach

their thermal limitation without these memory request clustering policies, because the

performance degradation due to dynamic thermal management may hurt the system per-

formance too much. In contrast, the PPT framework in this dissertation not only focuses

on the tradeoff between performance and power, but also takes the thermal effect into con-

sideration to avoid DRAM overheating and performance degradation from invocations of

aggressive dynamic thermal management.

2.1.2 Power Mode Decision

In addition to how to prolong the idle periods of the DRAM modules, another

important issue of utilizing DRAM low-power modes to save energy is when we should

transit the idle DRAM modules into which low-power mode, and when we should reac-

tivate the low-powered DRAM modules back to the active mode. The timing to transit

idle DRAMmodules into low-power modes is critical. If we transit the idle DRAMmod-

10

ules into low-power modes when there are only short idle periods, the power overheads
of power state transitions may compensate the energy savings from low-power modes,
and the low-power mechanisms fail to save energy. On the contrary, if we do not transit
the idle DRAM modules into low-power modes, then we may waste the opportunities to
save energy. The timing to activate low-powered DRAM modules is also critical. If the
DRAMmodules are not activated when the memory requests arrive, the memory requests
queue up and the system performance degrades due to long memory latency. On the con-
trary, if the DRAM modules are activated when they are still idle, the memory system
just spends unnecessary energy consumption. Therefore, the decision to perform power
state transitions for DRAM modules is quite important for the energy efficiency. Another
important decision is which low-power mode we should transit the idle DRAM modules
into. A deeper low-power mode that consumes less power usually has more power and
latency overheads of state transitions, and needs to stay in the low-power mode longer to
compensate the overheads. So transiting the idle DRAMmodules that have long idle peri-
ods into a shallow low-power mode does not maximize the energy savings, and transiting
the idle DRAM modules that have short idle periods into a deep low-power mode may
cause adverse effect on performance and power due to its high overheads. Therefore, we
should select the target low-power mode carefully. The followings are some works that
study these issues.

Delaluz et al. [9, 11, 12] propose several compilation techniques and hardware-
assisted approaches to perform power state transitions according to program behavior anal-
ysis and prediction of inter-access times of DRAM modules. Fan et al. [55] investigate
several memory controller policies that manipulate DRAM power states for cache-based
systems by developing an analytic model that approximates the idle time of DRAMmod-
ules. They find that the simple policy which immediately transits the DRAM modules
into low-power modes when they become idle is superior to more sophisticated policies
that make decision according to the prediction of the idle times of DRAM modules. De-
laluz et al. [56] modify the scheduler in the operating system to direct the power mode
transitions by keeping track of the accesses that map to different DRAM banks in a Bank
Usage Table for each process in the system. When a process is scheduled, the DRAM
banks that do not be accessed by the process are transited into low-power modes. Huang
et al. [17] propose a power-aware virtual memory that promotes the DRAM modules

11

which have some pages mapped into the address space of a process to the active mode
when the process is executing, and demotes other DRAM modules to low-power modes
to save energy. This approach uses the context switch time to hide the latencies of re-
synchronization for minimizing performance degradation. Pisharath et al. [57] present
a hardware-based dynamic threshold scheme and a query-directed software scheme for
database systems. The hardware-based scheme decides the power states of DRAM mod-
ules according to the length of their idle periods, and makes the system adapt to the access
patterns of queries. The software-based scheme utilizes the information about the query
access patterns from query optimizer that generates the execution plan of queries to tran-
sit DRAM modules to desired power states proactively. Lyuh et al. [58, 59] propose a
compiler-directed integrated approach to maximally utilize the low-power modes of mul-
tiple DRAM modules by solving assignment of variables to DRAM modules, scheduling
of DRAM access operations and determinations of DRAM module power modes. Huang
et al. [60, 61] present a cooperative software-hardware power management that exploits
hardware-controlled power management approach to implement fine-grained and highly-
adaptive control mechanism, and uses OS-controlled approach to track system and process
state information to predict the memory access patterns that constantly change due to in-
terleaved execution of different processes. Li et al. [62] improve the commonly used
control algorithms that dynamically transit DRAM modules into low-power modes after
the modules are idle for a certain threshold period of time, by adjusting the thresholds pe-
riodically according to available slack and recent workload characteristics. The proposed
algorithm has a performance guarantee and is better than previous hand-tuned algorithms.
Zheng et al. [63] investigate the combinations of row-buffer management policies and
memory low-power modes for different workloads. For memory-intensive workloads,
the open-page policy is preferable, but the close-page policy using slow precharge power-
down mode provides a better tradeoff in terms of performance and power efficiency than
the open-page policy for memory-moderate and compute-intensive workloads. Bi et al.
[64] manipulate the power states of the DRAM modules that are dedicated to the buffer
cache for file I/O. The DRAM modules are transited into low-power modes when the I/
O operations are done, and re-activated when they are predicted to be accessed by the
on-going file I/O system calls before the actual data in the buffer cache are read from
the DRAM modules to hide the delay of re-synchronization. Zatt et al. [65] introduce a

12

low-power architecture for the on-chip multi-banked video memory used by motion and
disparity estimation in multiview video coding. The architecture considers the knowl-
edge of motion and disparity estimation algorithm and the video properties to predict the
memory access patterns of each macroblock. Then, they propose a cost function that con-
siders the wake-up overheads to determine the appropriate low-power modes for the idle
DRAM modules. Shafique et al. [66] improve Zatt’s work by considering texture, mo-
tion and disparity properties of objects and their correlations in the 3D-neighborhood, and
propose a scheme that groups different macroblocks and predicts the highly-probable mo-
tion/disparity search direction to decide which DRAM module should be transited into
low-power modes. Mukundan et al. [67] design a self-optimizing scheduling policy that
can decide how to schedule DRAM actions including transiting DRAMmodules into low-
power modes and re-activating DRAM modules to achieve a desirable tradeoff between
performance and power efficiency. Chandrasekar et al. [68] propose memory power-
down strategies for real-time systems to reduce memory energy consumption and guaran-
tee real-time memory performance at the same time. They also present an algorithm that
can select the most energy-efficient low-power mode dynamically.

The PPT framework only manipulates the access patterns of the workloads to pro-
long the idle periods of DRAM modules and balance power density across DRAM mod-
ules to avoid overheating, so it basically can cooperate with every policy that decides
the power modes of DRAM modules. In this dissertation, the PPT framework utilizes
the open-page row-buffer management policy for DDRx-SDRAM and adopts the simple
policy that transits the idle DRAM modules into the low-power mode as deep as possible
when the DRAMmodules are idle immediately. However, the PPT framework is also able
to adopt a more sophisticate policy that provides a better tradeoff between performance
and power, but this is out of the scope of this dissertation.

2.2 Refresh Power Reduction

Because the charges in the capacitors in DRAMs leak away gradually and the data
in DRAMs may loss due to the leakage, refresh operations are required to recharge the
capacitors to guarantee the data correctness. Therefore, the mechanisms that reduce the
refresh operations all need to meet the same requirement that the results of program ex-

13

ecutions can not be significantly changed due to the leakage. I show several works that

propose to refresh DRAM cells according to the leakage currents sensed by control cir-

cuits instead of utilizing a fixed worst case refresh interval in Section 2.2.1, and introduce

studies that skip the refresh operations to the DRAM cells which are recently recharged

by memory accesses in Section 2.2.2. In Section 2.2.3, I discuss some works that allow

charges of DRAM cells to leak away to reduce refresh operations when the data in these

DRAM cells have some special properties that make the data loss insignificant or recover-

able. Papers presented in Section 2.2.4 apply different refresh intervals to DRAM regions

according to their own worst case refresh intervals instead of setting the refresh interval

according to the worst case of the whole DRAM system. I introduce the works that re-

duce refresh operations by prolonging the refresh interval and correcting retention errors

by ECCs to guarantee data correctness in Section 2.2.5. Then, the studies which adjust

the refresh interval dynamically to adapt to system perturbations that change the leakage

rates of DRAM cells are discussed in Section 2.2.6.

2.2.1 Refresh Reduction by Sensing Leakage Current

Since the refresh operations of DRAMs are designed to recharge the DRAM cells

for preventing data loss due to leakage of DRAM cells, the most straightforward approach

to reduce refresh operations is to refresh the DRAM cells right before the retention errors

occur.

Nyathi et al. [69] present a CMOS circuitry that senses the integrity of stored data

by using differential amplifiers that provide the difference between a degrading stored

voltage and a reference voltage. The difference is converted to an output that is used as

the refresh trigger. Cho et al. [70] monitor the leakage of memory cell data and perform

refresh operations according to the results of monitoring when the DRAMmodules are in

the self-refresh mode. Hsu et al. [71] use a monitor cell that represents the average cell

or worst cell leakage condition in the real array, and adjust the refresh interval according

to the leakage condition of this monitor cell to minimize the refresh power. Burgan et al.

[72] control the refresh rate by utilizing a set of test cells. One approach is to use test

cells with the same capacity but refresh them at different rates, and the other approach

is to use test cells with different capacities but refresh them at the same rate. Then, the

14

refresh rate is adjusted according to the states of the test cells. Tsai et al. [73] design an

adaptive refreshing circuitry for DRAMs to automatically adjust the refresh rate for saving

standby power. In this design, the temperature variations are compensated by monitoring

the voltage drop of memory cells with a voltage comparator to adjust the refresh rate,

and the process drifting problem is compensated by utilizing a process variation monitor.

Tran et al. [74] connect many dummy cells on boundaries together to form a leakage

current sensor that emulates the leakage currents in memory cells to provide information

for adjusting the supply voltages and the refresh rate.

All aforementioned techniques change the design of conventional DRAMs such as

DDRx-SDRAM. Since the manufacturing procedure of the modern conventional DDRx-

SDRAM is highly optimized, every change to the DDRx-SDRAM may increase a lot of

cost of DRAMs. Therefore, these techniques are not suitable for current DRAM systems

due to their cost to change the DRAM architecture. On the contrary, the SECRET frame-

work does not change the DRAM architecture and only alters the operating system and

the memory controller with negligible overheads. So, the SECRET framework is more

preferable than these techniques that reduce refresh operations by sensing leakage cur-

rents.

2.2.2 Refresh Reduction by Considering Access Pattern

DRAM cells store data by keeping charges in their capacitors, and the data can be

read by sensing the charges. However, when the sense amplifiers sense the charges, the

charges go away and there is no valid data in the DRAM cells after the read operations.

Therefore, the valid data need to be written back to the DRAM cells after read operations.

Since a refresh operation is only the combination of reading the data from the DRAM

cells and then writing the data back to the DRAM cells, every read or write request to

the DRAM cells can recharge the DRAM cells as the refresh operation. Therefore, the

DRAM cells that are recently read or written do not need to be refreshed because they are

just recharged. Based on this observation, there are several works which skip the refresh

operations for the DRAM cells that are recently recharged to reduce refresh operations.

Emma et al. [75] propose to only refresh the DRAM cells that are not read from

or written to within an allotted data retention time for reducing refresh operations of a

15

DRAM cache by using a restore tracking system that records and updates the refresh sta-

tus of the data entries, and invalidates data entries that are expired. Ghosh et al. [76, 77]

present the Smart Refresh mechanism that eliminates the unnecessary periodic refresh op-

erations. This mechanism divides the normal refresh interval into multiple sub-intervals,

and employs a time-out counter for each memory row to indicate if the row should be

refreshed in the next sub-interval. The counter is reset when the row is read or written, so

periodic refresh operations that follow the read or write requests are eliminated to reduce

power consumption. Emma et al. [78] reduce the refresh operations of DRAM caches by

utilizing a time stamp in each directory entry to indicate if the corresponding line is read

or written in its current retention window. When a line is read or written in the retention

window, the refresh engine would skip the next refresh operation to the line. Agrawal et

al. [79] focus on on-chip eDRAM caches and propose Polyphase that is quite similar to

Smart Refresh. Polyphase partitions the retention time into a fixed number of equal inter-

vals called Phases and records the last access phase of each cache line. With Polyphase, a

line is refreshed only when the same phase arrives in the next retention period.

Basically, all these mechanisms use the same idea to reduce refresh operations, but

different implementations. This idea is quite effective for reducing the refresh operations

of DRAM cells that store hot data, because the DRAM cells are read or written frequently

and a lot of refresh operations can be eliminated. However, on the contrary, the DRAM

cells that store cold but valid data should be refreshed as frequent as normal with these

mechanisms, because there are few read or write requests to these DRAM cells. So, these

mechanisms only bring limited refresh reduction and power savings when the memory

system has large capacity and contains a lot of cold data. However, the SECRET frame-

work can achieve the same refresh reduction for both DRAM systems containing hot data

and DRAM systems containing cold data.

2.2.3 Refresh Reduction by Considering Data Property

The main objective of refresh operations is to recharge the DRAM cells period-

ically to prevent data loss due to the leakage currents of DRAM cells. Therefore, the

DRAM cells that do not store valid data actually require no refresh operations. The re-

fresh operations to the cached clean data or non-critical data can also be eliminated since

16

the accesses to incorrect cached clean data can be treated as cache misses, and the reten-
tion errors in non-critical data only incur little impact to the final outcome. Besides, the
DRAMs storing values which do not change due to leakage currents also require no refresh
operations. Based on these observations, there are several works which try to identify the
memory segments that can tolerate the effect of leakage currents according to their data
properties, and disable the refresh operations for these memory segments to reduce refresh
operations of the DRAM systems.

Ohsawa et al. [80] propose Selective Refresh Architecture (SRA) that allows
DRAM rows to be refreshed selectively. When the data in a DRAM row is out of the
lifetime, the data is no more required. In this case, the corresponding refresh flag of the
row in the memory controller is reset and the row will not be refreshed any more. In SRA,
the refresh flag can be set or reset by the operating system, the memory management unit
or the compiler according to the data lifetime analysis. Vargas [5] presents the partial-array
self-refresh (PASR) mechanism that reduces the number of refresh operations by refresh-
ing only a part of the memory array when the part contains valid data and other parts do not
contain any data. Venkatesan et al. [81] propose Retention-Aware Placement in DRAM
(RAPID) that reduces refresh operations by concentrating data into physical pages with
long retention times and applying a long refresh interval according to the shortest reten-
tion time of used physical pages. Moshnyaga et al. [82] present an OS-controlled policy
that stops refreshing for the DRAM banks allocated for the DRAM-based swap-caches if
the data in the caches are clean and not accessed for a long time. This approach reduces
refresh operations at the expense of retrieving the required data from the next level of
memory hierarchy when the data in the swap-caches vanish due to stopping refreshing.
Emma et al. [78] reduce the refresh operations of the DRAM write-through caches by
stoping refreshing and protecting the data by using Berger code. This scheme lets the
useful data be refreshed by the innate reference pattern and lets the stale data decay. If
the decayed data are read, the Berger code would show errors and the read request for the
decayed data is treated as a cache miss. Isen et al. [83] stop refreshing the DRAM regions
that are not allocated or only store invalid data to reduce refresh operations, because the
data in these regions are inconsequential to the correct execution of the program. Kim
et al. [84] present an operating system-directed scheme to reduce DRAM refresh opera-
tions. This scheme analyzes the page structures that maintain the status of physical pages

17

in the operating system to indicate whether a DRAM row keeps valid data, and shuts down

the refresh operations for the rows that do not store valid data through SRA [80]. Liu et

al. [85] introduce an application-level technique called Flikker that enables developers

to specify critical and non-critical data, allocates critical and non-critical data to different

physical DRAM modules separately, and applies a long refresh interval for the DRAM

modules containing non-critical data to reduce the refresh operations at the expense of a

modest data corruption in the non-critical data with little or no impact on the final outcome

of the application. Agrawal et al. [79] propose a refresh reduction scheme for eDRAM

caches to not only eliminate the refresh operations for invalid cache lines, but also stop

refreshing the cold valid cache lines that are not accessed for a while.

There is a special mechanism that is designed based on the observation that the

leakage currents of DRAM cells are always unidirectional. So, the voltages of capacitors

of DRAM cells always change from high to low due to the leakage currents. Assum-

ing the high voltage represents the one value, and the low voltage represents the zero

value, the capacitors storing zero values do not need to be refreshed because their val-

ues would not change due to leakage. According to this observation, Patel et al. [86]

propose a low-overhead refresh reduction mechanism based on selectively skipping the

refresh operations for the DRAM cells that store zero bits. They add a limited amount of

redundant storage and logic to indicate the DRAM regions that only contain zero values,

and eliminate refresh operations to these regions to reduce refresh power consumption.

This mechanism can cooperate with other refresh reduction mechanisms if there are some

DRAM regions containing only zero values.

These mechanisms reduce refresh operations on the DRAMs containing invalid

data, all zero values, non-critical data, or clean data that are duplicated somewhere else.

Their effectiveness highly depends on the properties of the data in DRAMs. If the DRAMs

are fully utilized, all data in these DRAMs are critical, no DRAM regions contain all zero

values and no retention errors are allowed, these mechanisms can not reduce any refresh

operations. However, the SECRET framework can reduce the refresh operations without

data decay, so it works for fully utilized DRAMs storing critical data as well.

18

2.2.4 Multi-Period Refresh

There are variations in the retention times of DRAM cells, and the refresh interval

of a DRAM system is usually bound by the shortest retention time of DRAM cells to avoid

data loss. However, most DRAM cells in a DRAM system have long retention times and

only a few DRAM cells have very short retention times. For the DRAM cells that have

long retention times, frequent refresh operations based on the worst-case refresh interval

are over-provisioned and unnecessary. So, a promising approach to avoid unnecessary

frequent refresh operations for DRAMcells that have long retention times is to partition the

DRAM system into multiple regions and apply a refresh interval to each region according

to the shortest retention time of DRAM cells in that region instead of in the whole system.

Ohsawa et al. [80] propose Variable Refresh Period Architecture (VRA), that al-

lows multiple refresh periods in the DRAM system. Architects can apply the most ap-

propriate refresh period to each row to reduce refresh count. Takase et al. [87] present

the Additional Refresh scheme that applies the refresh interval eight times longer than

the normal refresh interval to reduce refresh operations, and adds additional refresh op-

erations selectively to the rows containing weak retention DRAM cells to avoid retention

errors. Kim et al. [88] also utilize a similar approach that uses a collection of discrete

refresh periods to selectively refresh DRAM regions. DRAM regions comprising DRAM

cells with short retention times are still refreshed with the minimum refresh interval, but

other regions can be refreshed with long refresh intervals. They also develop an algorithm

to maximize the refresh power reduction by selecting appropriate refresh periods accord-

ing to the number of refresh regions, the number of refresh periods and the number of

cells in the refresh regions. Kim et al. [89, 90] improve previous multiple refresh period

schemes by applying the most appropriate refresh intervals to small refresh blocks instead

of DRAM rows to increase the worst case data retention times, extending the retention

time of each refresh block by adding a swap cell, and developing a polynomial-time al-

gorithm to compute an optimal set of refresh intervals for the block-based multi-period

refresh. Liu et al. [7] propose RAIDR (Retention-Aware Intelligent DRAMRefresh), that

is a low-overhead mechanism to identify and skip unnecessary refresh operations accord-

ing to the knowledge of cell retention times. RAIDR utilizes Bloom filters to minimize the

overhead of recording the rows having weak retention cells and efficiently group DRAM

19

rows into retention time bins, and applies a different refresh rate to each retention time

bin. So, the rows having weak retention cells are refreshed as frequent as normal, and

other rows are refreshed less frequently. RAIDR requires no modification to DRAMs and

a little modification to the memory controller.

These multiple refresh period mechanisms can cooperate with the SECRET frame-

work. After applying different refresh rates to DRAM regions, the refresh interval of a

DRAM region is still bound by the shortest retention time of DRAM cells in the region.

So, further prolonging the refresh interval of the region would incur data loss due to reten-

tion errors on the weak retention cells. In this case, utilizing the SECRET framework can

allow the region to use a long refresh interval to further reduce refresh power and avoid

data loss by correcting the retention errors on the weak retention cells in the region.

2.2.5 ECC for Refresh Reduction

The main drawbacks of prolonging the refresh interval to reduce refresh power

are retention errors on the weak retention cells that are not refreshed in time. So, this

problem can be overcome by using ECC that corrects retention errors, and prolonging the

refresh interval can save power without data loss in this case. This approach is one kind

of Better Than Worst-Case designs to system implementation [91]. Better Than Worst-

Case designs relax design constraints to reduce the physical design challenges and create

opportunities to improve performance or energy efficiency. In refresh power reduction,

the ECC approaches relax the constraints to allow retention errors in the DRAM systems,

and create the opportunities to prolong the refresh interval for refresh power savings.

Katayama et al. [92] apply a powerful one-shot Reed-Solomon ECC to protect

the data stored in DRAMs, so that they can prolong the refresh interval to greatly reduce

the refresh power while still maintaining data integrity. The Reed-Solomon code pro-

vides up to double-symbol error correction capability and reasonable triple-symbol error

detection capability. However, decoding Reed-Solomon code is quite slow and would

incur noticeable performance degradation. The SECRET framework is more preferable

than this approach, because the SECRET framework only suffers negligible performance

degradation. Katayama et al. [93] then analyze various configurations of error correction

codes for DRAM data retention. They find that combining long and short error correction

20

codes can reduce the parity area to 1% of the total memory size, and offer comparable re-
liability and adaptability as the aforementioned Reed-Solomon code that requires 12.5%
parity area. However, the hybrid approach still uses Reed-Solomon code that may incur
performance degradation. Kim et al. [88] not only utilize multiple refresh periods to re-
duce refresh power, but also use error correction codes to recovery corrupted data due to
retention errors to further extend the refresh interval. Klein et al. [94] propose a reduced
power refresh mode. The ECC syndromes are generated and stored before transiting the
DRAMmodules into the reduced power refresh mode. In the reduced power refresh mode,
DRAM cells are refreshed at a relatively slow rate. When transiting DRAMs from the re-
duced power refresh mode to the active mode, stored data and syndromes are both read
and retention errors are corrected according to the syndromes. Then, the corrected data
are written back. Kim et al. [95] design a 512Mb mobile SDRAM with on-chip ECC
that increases the self refresh period at standby state by about 6 times and reduces the self
refresh current to be less than 100µA at 85◦C. Emma et al. [78] propose to use SECDED
(single error correction, double error detection) ECC for eDRAM caches to reduce the
refresh power. When reading cache lines, the lines with only one error can be corrected
directly by the ECCs, and the requests to the lines with two or more errors are treated
as cache misses. They also derive a statistical expression to calculate the desired refresh
interval with ECC. Cha et al. [96] reduce the size of check bits by using a codeword
which has a length that is not a power of two. Compared to the use of 2n data bits in
1Gb DRAMs, the proposed codeword can respectively achieve 3.4% and 4.7% reduction
in check bit and register overheads for self-refresh schemes with ECCs. Wilkerson et al.
[97] use BCH code to provide multi-bit correction for eDRAM caches to reduce refresh
power. They reduce performance overheads by using a low-complexity decoding method
for cache lines with no more than one error, and minimize the area overheads for stor-
ing ECCs by increasing the data size protected by BCH. However, this approach requires
large bandwidth to retrieve the whole data for error detection and correction, and the op-
timization that reduces the required bandwidth is only suitable for on-chip caches, not for
off-chip memory systems.

Most of these mechanisms utilize ECC to protect all data in the DRAM systems
from retention errors for refresh power reduction. So, the area overheads for storing the
ECCs are quite large, and decoding all read data incurs noticeable performance degra-

21

dation. Although some of them [93, 97] reduce the area overheads for storing ECCs by

combining long and short ECCs or increasing the data size protected by ECCs, and mini-

mize the performance overheads of decoding by using a low-complexity decoding method

for most cases where there is no more than one error, these approaches can not be used

on conventional off-chip DRAM systems with negligible area and performance overheads

due to the bandwidth limitation. However, for the target off-chip DRAM systems, the SE-

CRET framework can achieve comparable refresh power reduction as these approaches

with negligible area and performance overheads by selectively protecting the data blocks

that may have retention errors only.

2.2.6 Adaptive Refresh Interval

The leakage currents of DRAM cells may change due to various system pertur-

bations, such as temperature variations. So, the refresh interval should also be adjusted

to adapt to the system perturbations. For example, the leakage currents of DRAM cells

increase as the operating temperature of DRAMs rises, and the data retention times of

DRAM cells decrease as well. Therefore, the worst case refresh interval is limited by the

shortest data retention time at the highest operating temperature in the DRAM specifica-

tions. However, in most cases, the operating temperature of DRAMs is much lower than

the highest operating temperature in the worst case, and it is possible to utilize a long re-

fresh interval by detecting the operating temperature of DRAMs. There are several works

that focus on how to adjust the refresh interval against temperature variations.

Murotani et al. [98] use a memory circuit that comprises an oscillator circuit hav-

ing a frequency characteristic with a positive temperature coefficient. The oscillator cir-

cuit generates refresh signals based on its oscillation period to achieve a temperature-

compensated refresh function. Kagenishi et al. [99] introduce a self-refresh controller

with a temperature detecting circuit composed by a CMOS type differential amplifier and

voltage dividers of resistors that generate the input signals to the amplifier. The resis-

tances of resistors vary with the operating temperature, and the output signals of the de-

tecting circuit are used to select a suitable refresh interval corresponding to the operating

temperature. Ruckerbauer et al. [100] use temperature sensors for DRAM arrays to indi-

cate the operating temperature of the DRAM arrays, and adjust the refresh rate according

22

to the operating temperature of the DRAM arrays. Elpida Memroy, Inc. [101] proposes
Auto Temperature Compensated Self Refresh (ATCSR) for Mobile RAMs. The ATCSR
function utilizes a built-in temperature sensor to detect the ambient temperature and re-
duces DRAM refresh power consumption by adjusting self-refresh interval automatically
according to the ambient temperature variations. Kim et al. [102] improve the temper-
ature sensor for controlling the self-refresh interval of mobile DRAMs by presenting a
low-cost CMOS temperature sensor that is highly area-efficient, simple and easy for IC
implementation as compared to traditional temperature sensors based on bandgap refer-
ence. Besides adjusting the refresh interval according to the operating temperature, they
also adjust the refresh interval by detecting the retention errors in DRAM arrays according
to ECCs. When retention errors occur, it means that the refresh interval is not short enough
to maintain the correctness of data stored in DRAM cells. In this case, the refresh interval
should be reduced. On the other hand, when there are no retention errors, it is possible
to prolong the refresh interval for power reduction. Katayama et al. [92] find that system
perturbations affect the number of retention errors in DRAM systems. So, they propose
to adjust the refresh interval according to the number of retention errors by attempting to
keep the number of retention errors constant. They identify some indicator bits that have
data retention times a little longer or shorter than the default refresh interval in the pro-
filing phase. When the retention errors in these indicator bits are more than the expected
retention errors, the refresh interval is decreased to reduce retention errors. When the re-
tention errors in these indicator bits are less than the expected retention errors, the refresh
interval is increased to achieve refresh power reduction. Emma et al. [78, 103] propose a
regressive process to find the appropriate refresh interval for each row in DRAM caches
by utilizing ECCs. In this process, the refresh interval for each row is set to a nominal
value such as the worst case initially. The refresh interval of each row is regressed by one
time step after every program execution interval if there are no retention errors found in
that row. When any errors are found in a row, the retention errors are corrected by ECCs,
the refresh interval of the row is set to the previous one that incurs no retention error, and
the regressive process for this row stops. This regressive process can be performed pe-
riodically to adjust the refresh interval to adapt to the system perturbations. Since each
row can have its own refresh interval after the regressive process, this method is also a
multiple period refresh mechanism.

23

These refresh interval adjustment mechanisms which consider the system pertur-
bations can cooperate with other aforementioned refresh reduction schemes that only focus
on reducing the refresh operations under a given runtime environment to compensate the
effect of system perturbations. Since the refresh interval adaptation mechanism to com-
pensate the temperature variations is also required for the SECRET framework to guaran-
tee the correctness, I integrate a refresh interval adjustment mechanism similar to the one
proposed by Katayama et al. [92] into the SECRET framework.

2.3 Dynamic Thermal Management for DRAMs

In the past, the dynamic thermalmanagement policies often focus on the processors
that usually have the highest power density in the computer systems. However, in the
recent years, because the speeds and capacities of DRAM modules increase significantly,
the power density of DRAMmodules also rises. So, the operating temperature of DRAM
modules is approaching the thermal constraints of DRAM cells. To protect the memory
system from thermal emergency, several dynamic thermal management techniques for the
memory subsystems have been proposed.

Iyer et al. [42] find that the memory operating temperature is starting to exceed
the cooling capabilities of DRAM modules in mobile systems. So, they propose to moni-
tor the operating temperature of DRAMmodules and perform memory access throttling if
the DRAMmodules overheat. They implement memory throttling techniques in platforms
built on Intel Centrino Duo mobile technology to maximize performance while keeping
the memory subsystem within its thermal limits. Lin et al. [44] propose adaptive core
gating and coordinated DVFS that throttle the processors which are the source of memory
activities to reduce the memory requests and control the operating temperature of DRAM
modules. When the DRAM modules are overheated, adaptive core gating activates clock
gating on selected processor cores, and coordinated DVFS scales down the frequency and
voltage levels of processor cores. These approaches result in smoother program execution,
higher system performance and better power efficiency than throttling the memory system
directly. Lin et al. [45] then implement the dynamic thermal management policies on real
server systems to evaluate their effectiveness. They find that the operating temperature
of DRAM modules is also affected by the heat dissipation of CPU, and this significant

24

factor was ignored. Liu et al. [46] propose Page Hit Aware Write Buffer (PHA-WB) that
improves DRAM page hit rate by buffering write requests which may incur page misses to
reduce the power consumption and alleviate the operating temperature of DRAMmodules
without performance penalty. Liu et al. [47] then develop Throughput-Aware PHA-WB
(TAP) that configures the write buffer for different workloads dynamically to achieve the
best tradeoff between the DRAM power savings and the power overheads of the write
buffer. Ayoub et al. [48] develop a proactive thermal management policy that cooper-
ates with commonly used power-aware page allocation which allocates pages to a subset
of DRAM modules and transits other DRAM modules into low-power modes. When the
operating temperature of the DRAMmodules that contain the pages of working sets is pre-
dicted to approach the thermal limitation, the proposed policy migrates the pages to colder
DRAM modules and transits the hotter ones into the self-refresh low-power mode. Liu et
al. [49] find that the operating temperatures of DRAM chips in the same DIMM can vary
by over 10◦C according to their physical positions. So, they try to minimize this variation
to reduce the peak temperature of DRAM chips by alternating the DIMM organization
to enable independent DRAM traffic to hot and cool DRAM chips on the same DIMM.
They also develop a cache line replacement policy that evicts lines to cool DRAM chips
first, a memory write buffer that improves the access efficiency of the overheated DRAM
chips, and a page allocation policy that allocates pages to cool DRAM chips first to further
reduce peak temperature of the memory system. Meng et al. [104] propose an optimiza-
tion technique to maximize throughput while maintaining the power and temperature con-
straints for 3Dmulticore systemswith on-chip DRAMs bymonitoring workload behaviors
through performance counters and adjusting the voltage-frequency settings dynamically
to adapt to varying program phases. Meng et al. [105] then develop a thermal-aware page
allocation policy for 3D systems with stacked DRAM banks by allocating frequently ac-
cessed pages to DRAM banks with low temperature and rarely accessed pages to DRAM
banks with high temperature according to static analysis or dynamic adjustment.

The PPT framework uses Group Switching that is a quite different way to control
the operating temperature of the memory system by changing the active DRAM modules
periodically to reduce power consumption and balance the temperature of DRAM mod-
ules. This approach does not need additional hardware resources such as an extra write
buffer, and only incurs negligible performance penalties with no throttling for CPUs or

25

the memory system. However, the DRAM modules may still exceed the thermal thresh-
old when they are active. In this case, the PPT framework uses Activity Migration that
is similar to the mechanism proposed by Ayoub et al. [48] to move the activities from
the overheated DRAM modules to other cool modules. To further control the operating
temperature of the memory system, the PPT framework can also cooperate with the tech-
niques proposed by Liu et al. [49], and Meng et al. [104, 105]. But that is out of the scope
of this dissertation.

2.4 Reliable Low-Voltage Operation for SRAM Cache

Besides the aforementioned approaches that reduce refresh power of DRAMs in
Section 2.2, one kind of related mechanisms that solve a problem similar to the refresh
reduction is to reduce the power consumption of processors by reducing the supply volt-
age. Due to manufacturing-induced parameter variations, reducing supply voltages of
processors may cause memory circuits to fail. Therefore, to avoid the failures in memo-
ries, supply voltage scaling for power reduction is limited by a minimum voltage, called
Vccmin. The Vccmin is a lower bound supply voltage for memory circuits in processors
similar to the upper bound of the refresh interval for DRAMs. The Vccmin is usually
bound by large memory structures, such as caches in processors. If the supply voltage
is lower than the Vccmin, there will be memory cell failures in caches. That is similar
to prolonging the refresh interval beyond the shortest retention time of DRAM cells with
the drawback of retention errors. A low Vcc for the processors or a long refresh inter-
val for the DRAMs both save energy at the expense of some errors in the memories. So,
reducing the Vcc and prolonging the refresh interval have quite similar tradeoff between
power savings and error handling. Now, I introduce some techniques that provide reliable
low-voltage operations to processors for power reduction.

Wilkerson et al. [106, 107] propose two techniques to handle the faulty bits in the
caches under low supply voltages. The Word-disable scheme combines two consecutive
cache lines to form a single line where only error-free words are utilized, and the Bit-fix
scheme uses a quarter of the ways of each set to store locations and correction information
for faulty bits in other ways of the set. The Word-disable scheme and the Bit-fix scheme
require 50% and 25% area overhead, respectively. These schemes are not good enough

26

for refresh power reduction due to very high area overheads. Sasan et al. [108] modify
the peripheral circuitry of the SRAM to selectively overdrive the wordlines which have
weak cells to allow reducing the power by decreasing the supply voltage on the entire
array but maintain the correctness when rows with weak cells are accessed. This solution
for reliable low-voltage operations on caches is similar to the multiple period refreshing
for refresh reduction. Abella et al. [109] disable faulty sub-blocks to tolerate high faulty
bit rates in caches under the low supply voltage. With this scheme, the fault-free blocks
can be used with parity protection or the blocks having up to one error can be used with
SECDED ECC protection. They consider four different granularities of disabling faulty
blocks as cache section, cache line, sub-block and sub-subblock. This approach still has
noticeable area overheads. Ansari et al. [110] reconfigure the internal organization of the
cache architecture to tolerate SRAM failures in the ultra low voltage region. The cache
lines are divided into multiple data chucks, and a chuck having faulty bits is labeled faulty.
The cache lines are partitioned into groups carefully tomake sure that every two lines in the
same group do not have faulty chucks at the same position. Then, one of the lines in a group
is used as the redundant line for the other lines in the same group. Each cache read or write
needs to access the target cache line and the corresponding redundant line, and composes a
fault-free block by selecting the non-fault chucks appropriately. This approach may cause
significant area overheads due to the redundant line in each group. Chishti et al. [111, 112]
proposemulti-bit segmented ECC (MS-ECC) to tolerate both persistent and non-persistent
failures at low voltages. Furthermore, the design of MS-ECC also allows the operating
system to adaptively adjust the cache size and ECC capability to adapt to the condition
of the system. This idea is similar to using ECC to correct retention errors for refresh
reduction. Miller et al. [113] design Parichute that is a powerful error correction technique
based on turbo product codes to handle the failures in caches under low supply voltages.
Parichute can selectively protect the cache sections that exhibit errors with the strong error
correction capability. Parichute is flexible to be disabled to avoid area and performance
overheads in high supply voltage operations. However, in near-threshold, there is still
only 50% capacity available in the caches with Parichute, and the other capacity is used to
store error correction information. Zhou et al. [114] try to minimize the total SRAM area
of LLC by orchestrating the size of SRAM cells, the number of redundant cells, and ECC
strength while meeting the target yields and Vddmin. The redundant cells and ECC can

27

tolerate the failures that occur in small SRAM cells, and the area overheads of redundant
cells and ECC can be compensated by the area reduction from utilizing small SRAM cells.
This is an optimization for the approaches that use redundant cells and ECC to provide
reliable low-voltage operations. Mahmood et al. [115] use fault buffers to dynamically
replace the actively used faulty words in L1 caches under low-voltage operations. The
fault buffers are organized as multiple banks to reduce the cost of implementation and
can be reconfigured dynamically to adapt to different performance requirement. Choi
et al. [116] find that most cache misses in sub-block disable-based methods for reliable
low-voltage operations in processors are caused by accessing faulty words under the low
supply voltage. So, they try to reduce these cache misses by the proposed word-level sub-
block disable-based method that maps the frequently accessed data to non-faulty words.
This approach exploits both access and error patterns, and can give the performance of
the error-free cache even at a low Vcc if these two patterns are always matched in the
best scenario. BanaiyanMofrad et al. [117] propose Flexible Fault-Tolerant Cache (FFT-
Cache) that utilizes aggressive voltage scaling to reduce power and uses a portion of faulty
blocks as redundancy to tolerate other faulty blocks. FFT-Cache tries to sacrifice aminimal
number of cache lines to tolerate the maximum amount of defects and avoid performance
degradation. Alameldeen et al. [118] use variable-strength error-correcting codes (VS-
ECC) to correct the errors in caches under the low supply voltage. In the common case,
cache lines with zero or one failure are protected by a simple and fast ECC with little area
and latency overheads, and a small number of lines with multi-bit failures use a strong
multi-bit ECC with large area and latency overheads. Since only a small number of cache
lines require the strongmulti-bit ECC, compared to prior multi-bit correctingmechanisms,
VS-ECC reduces power without causing large area, latency and bandwidth overheads.
However, they still apply ECC to all cache lines. Yang et al. [119] introduce unequal-
error-protection error correcting codes (UEPECCs) to improve the reliability of caches
under low supply voltages for mobile multimedia applications. Since different bits in the
same word are usually not equally significant for mobile multimedia applications, these
bits deserve different protection levels. They develop a metric to measure the reliability of
a word when different bits are not equally significant and design an optimization algorithm
to construct UEPECC that applies different protection levels to these bits according to their
significance. UEPECC still protects all cache lines even when some cache lines are totally

28

error-free.

2.5 Related Work Using Ideas Similar to the PPT Framework

In this section, I will introduce several works that present some techniques similar
to the mechanisms in the PPT framework and they cite PPT. Ayoub et al. [48] propose a
dynamic thermal management technique that moves frequently accessed pages from hot
DIMMs to cold DIMMs when the hot DIMMs approach their thermal threshold, and then
transits the hot DIMMs into low-power modes to save energy and alleviate their operating
temperature. This mechanism is very similar to the Activity Migration mechanism in the
thermal control policy of the PPT framework, but performs page migrations proactively
according to the thermal prediction. Ayoub et al. [25] then present a memory actuator
that reduces the power consumption of the memory system by clustering active memory
pages into a subset of DRAM modules, and controls the power dissipation of specific
DIMMs by performing page migration. This idea is similar to the power reduction mech-
anism and the Activity Migration mechanism of the PPT framework. But, when some
active DIMMs are overheated and no other active DIMMs can accept additional pages,
Ayoub’s memory actuator provides another alternative that is to spin up the fan to cool
the overheated DIMMs in addition to activating a new DIMM. Jia et al. [120] propose the
memory affinity aware scheduling (MAS) that is very like the PPT framework but has two
improvements. First, MAS considers the shared memory address space between threads,
and partitions the threads with shared memory address space into the same group. Second,
MAS takes the fairness into account during scheduling. Jantz et al. [121] use a technique
similar to Adaptive Grouping of the PPT framework to manipulate system performance
and power consumption by concentrating or distributing the pages of the executing ap-
plications across DRAM modules. But, they perform the hot/cold separation and focus
on the hot pages to utilize the active memory space more efficiently. However, this work
does not consider the thermal issue of the memory systems.

To the best of my knowledge, the PPT framework is the first work that focuses
on the performance, power and thermal issues at the same time for the memory subsys-
tems. Although these aforementioned works have some improvements compared to the
PPT framework, their main ideas are still similar to the PPT framework that manages per-

29

formance, power and temperature of the memory subsystems by threads scheduling and
page allocation.

30

Chapter 3

Introduction to DDRx-SDRAM

In this dissertation, I focus on the memory systems composed of Double-Data Rate 2

(DDR2) or Double-Data Rate 3 (DDR3) SDRAMmemories. DDRx doubles the available

bandwidth by transferring data at both edges of the clock. DDRx internal transfers from

and to theDRAMarray read andwrite twice the number of bits as single data rate SDRAM.

DDRx is often packaged as DIMMs, each of which commonly contains 1 or 2 ranks. A

memory system can contain multiple channels, and each channel is associated with 1 or 2

DIMMs. A rank is the smallest physical unit for power management.

3.1 DRAM Organization

The DDRx-SDRAM is composed of conventional 2D DRAM arrays, which are

rectangular grids of DRAM cells shown in Figure 3.1. By specifying a row address and

a column address, the memory controller can read or write a specific DRAM cell inside

a DRAM chip. As shown in Figure 3.1(a), each DRAM cell is composed of a transistor

and a capacitor connected to the wordline and the bitline. When the wordline is charged,

the transistor of the DRAM cell is opened and the cell can be read or written through the

bitline. To write the DRAM cell, the capacitor is charged or discharged to high voltage

or low voltage through the bitline connected to the write driver. To read the DRAM cell,

the charge in the capacitor is passed to the sense amplifier through the bitline. In a 2D

DRAM array shown in Figure 3.1(b), once the row decoder selects a row and the wordline

is charged, all transistors of the row are activated, and the charges in the capacitors of the

DRAM cells are passed to sense amplifiers through the bitlines. Therefore, DRAMs are

read-destructive, and all data are only stored in the row buffer when a row is opened.

31

Figure 3.1: The structure of a DRAM cell and a 2D DRAM array.

3.2 Power States of DDRx-SDRAM

A DDRx memory device can be in four power states – active standby, precharge

standby, active power-down and precharge power-down – listed in a decreasing order of

power dissipation. Figure 3.2 shows the state transitions among these four power states.

A rank can only be accessed when it is in the active standby state, where data are stored in

row buffers and the clock enable signal is set to HIGH. In this case, all subcomponents of a

rank are active. DDRx has a built-in power control policy. When there is no immediately

following request, the memory controller may set the clock enable signal to LOW and a

rank transits from active standby to active power-down. In the active power-down state,

the row/column decoders and bus drivers are turned off for power reduction. A rank is

transferred to the precharge standby state after precharge or refresh operations occur. In

this case, there is no data stored in row buffers, and row buffers are disabled to save energy.

When a rank is in the precharge standby state without immediately following request, the

rank can transit to the precharge power-down state by setting clock enable signal to LOW.

The row/column decoders, sense amplifiers, row buffers and bus drivers are all turned off

to achieve maximal power reduction in the precharge power-down state.

3.3 DRAM Refresh Operation

Due to the limitation of materials, the charges stored in capacitors of DRAMs leak

gradually over time. Over the span of the data retention times of DRAM cells, the voltages

of the capacitors are lower than the threshold voltage and the stored data can not be read

32

Figure 3.2: The power state transition of DDRx-SDRAM.

Figure 3.3: Data retention time distribution of DRAM cells.

anymore. Therefore, a periodic refresh of DRAM cells is necessary to guarantee data

correctness. The refresh operation reads a row into the row buffer and write it back to

recharge all DRAM cells of the row. Therefore, any data access to the bank that is in the

refresh operation must be postponed until the refresh operation completes.

The refresh rate is typically set to be higher than the leakage rate of the fastest-

leaking DRAM cells [78]. For example, with the distribution of data retention times of

DRAM cells shown in Figure 3.3, the refresh interval is set as Tref_min indicated by the

dotted line, which is the shortest data retention time of all DRAM cells. In a conventional

DRAM module, the refresh interval is usually set to 64ms. However, frequent refresh

operations may cause high energy and performance overheads since all rows of a DRAM

bank are read into the row buffer and then written back to recharge all the DRAM cells of

the rows when the refresh operation is triggered for the bank. Setting the refresh interval

33

according to the worst case cell is over-provisioned for most DRAM cells. Kim et al.
[122] show that only 10−6% of the cells have data retention times shorter than 128ms,
and 10−4% of the cells have data retention times shorter than 500ms. Therefore, if I can
correct the retention errors of DRAM cells with high leakage rate, I can utilize a refresh
interval that is longer than their data retention times to reduce refresh power while data
correctness is guaranteed.

34

Chapter 4

PPT Framework: DRAM Peripheral Leakage Reduction
with Thermal Control

4.1 Introduction

As mentioned in Chapter 1, due to the interplay among performance, power and
thermal, a technique optimized for one factor only often causes uncontrollable degradation
at other design metrics. To tackle this issue, in this dissertation, I propose the first joint
performance, power and thermal (PPT) management framework for DRAM memory in
multi-core systems. PPT orchestrates task execution and page allocation to achieve desir-
able tradeoff between performance, power and temperature. In the PPT framework, both
threads and memory resources are partitioned into groups. Threads of the same group are
scheduled concurrently and only one group is active at each scheduling interval. Memory
modules allocated to nonactive groups are put into the low-power mode to save energy.
From thermal aspect, alternating active groups periodically allows memory modules to
cool down in their idle periods. The main challenge in the proposed PPT framework is
to determine how much memory resources should be allocated to a group to sustain the
bandwidth demand of current workloads. To this end, I propose an Adaptive Grouping

mechanism which dynamically adjusts PPT configuration (i.e., number of groups, and
resources per group) to satisfy the bandwidth demand while minimizing power consump-
tion.

To evaluate the proposed PPT framework, I compare the PPT framework with
two task scheduling/page allocation policies, performance-driven and power-driven poli-
cies. Both policies schedule threads in round-robin fashion. The performance-driven
policy distributes pages to all memory modules, and the power-driven policy allocates
pages in the order they are accessed. The experimental results show that compared to

35

the performance-driven policy, PPT with the proposed dynamic bandwidth estimation

method reduces power consumption by 23.8% and delivers comparable throughput; while

the power-driven policy achieves 25.9% power reduction at the cost of peak throughput
reduction of over 50% (9% on the average). From the thermal aspect, PPT has the lowest

peak temperature. The peak temperature of the DRAM subsystem with the power-driven
policy is 10.5◦C higher than that with PPT.

In this chapter, Section 4.2 describes the details of the proposed PPT framework,

and Section 4.3 shows the evaluations for the PPT framework.

4.2 The PPT Framework

The main idea of the proposed PPT framework for reducing DRAM peripheral

leakage power and managing DRAM operating temperature is to orchestrate task execu-

tion and page allocation to achieve desirable tradeoff between performance, power and
temperature. I use throughput as the measurement of memory system performance. Fig-

ure 4.1 shows one PPT configuration for a 4-channel memory system where each channel
contains two ranks. In this example, threads and ranks are partitioned into 4 groups. Each

group uses two ranks associated with two different channels. Threads of the same group

are scheduled simultaneously. Threads in different groups are scheduled in round-robin
fashion. Figure 4.2 illustrates the effect of group scheduling on power and thermal be-

havior. Only one group is active at each scheduling interval. The memory ranks of non-
active groups could be turned into the low-power mode to save energy. Alternating active

groups periodically allows memory ranks to cool down in their idle periods as shown in

Figure 4.2(b).

Different PPT configurations affect the power and performance of the memory

Figure 4.1: 4-group PPT configuration.

36

Figure 4.2: Group scheduling of the PPT framework.

system. When the memory system is partitioned into more groups, ranks and channels
allocated to each group are fewer; that means more memory ranks could be shut down
to achieve more power savings, which in turn reduces available bandwidth. To achieve
desirable tradeoff between performance and power, I would like to partition threads into
as many groups as possible provided that the allocated channels are enough to sustain
the bandwidth demand of running threads. To adapt to dynamic system loading, the pro-
posed PPT framework implements anAdaptiveGroupingmechanism thatmonitors system
loading to decide the appropriate PPT configuration to achieve power savings and meet
the performance demand at the same time. Next, I describe the details of the Adaptive
Grouping mechanism, and how thermal control is performed in PPT.

4.2.1 Adaptive Grouping Mechanism

APPT configuration is represented as {G,C,R}, whereG is the number of groups,
C is the number of channels allocated to a group, and R is the number of ranks per group.
For a memory system withm channels, and n ranks per channel, the possible group num-
bers are the factors ofm·n. For example, whenm = 4 and n = 2, the possible group num-
bers are 1, 2, 4 and 8. I represent the possible group numbers as a set S = {g1, g2, ..., gk},
where gi < gi+1 (i ∈ {1...k− 1}). For a PPT configuration {g, c, r}, the available threads

37

in system (t) are partitioned into g groups, and ranks of a group are distributed among c

channels.

The objective ofAdaptive Grouping is to adjust the PPT configuration dynamically

to adapt to the variation of system loading such that the memory resources allocated to a

group are sufficient for the bandwidth demand of the group and the number of ranks per

group is minimized. Adaptive Grouping includes two steps. First, I select the new PPT

configuration according to the system loading. Second, I apply the new PPT configuration

and perform page migrations, if necessary.

4.2.1.1 PPT Configuration Selection

The major challenge to decide the new PPT configuration is to accurately estimate

the bandwidth demand of concurrently running threads. In this dissertation, I propose two

approaches: the static and dynamic bandwidth (BW) estimation methods. The static BW

estimation method relies on off-line profiling to obtain the average bandwidth demand

for a thread, while the dynamic BW estimation method monitors the usage of the request

buffer in the memory controller to adjust the PPT configuration accordingly.

4.2.1.1.1 Static Bandwidth (BW)EstimationMethod To estimate system bandwidth

demand (BD), I assume that the average bandwidth requirement of a thread is obtained

through off-line profiling1. In order not to underestimate the system bandwidth demand,

the maximal total bandwidth requirement of threads that could be scheduled concurrently

is used for system bandwidth estimation. Therefore, the bandwidth demand BD(g) in a

system is obtained with the following formula:

BD(g) = MAXg
i=1(

core∑
j=1

ti,j), (4.1)

where g is the number of groups and ti,j is the bandwidth demand of the jth high bandwidth

thread in ith group, and core is the number of cores in the system. Therefore, to minimize

BD(g), threads are partitioned to achieve balanced bandwidth demand among groups.

1The bandwidth demand of a thread is the summation of page fault traffic and L2 miss traffic divided by
the execution time.

38

Figure 4.3: Static BW estimation method for Adaptive Grouping in the PPT framework.

In addition to bandwidth consideration, the number of threads in the system should

also be taken into account when choosing the PPT configuration. Since only threads of

the same group can be scheduled simultaneously, in order to fully utilize available cores

in the presence of long latency operations, such as page faults, the number of threads in

each group should be at least 2 · core, where core is the number of cores in the system.

In the static BW estimation method, Adaptive Grouping is triggered when a thread

enters or exits the system. Figure 4.3 shows the steps of the proposed static BW estimation

method. In the first step, I select the largest g that satisfies both the bandwidth and thread

number constraints. Due to the thread number constraint, I may be forced to select a

smaller g than required; that is the bandwidth support of the channels allocated to a group

is more than the bandwidth demand. In this case, the second step is invoked to reduce

the number of channels and ranks allocated to each group. Below I detail these two steps

assuming the PPT configuration is {gi, c, r} before Adaptive Grouping is triggered.

Step1: Examine all possible g and find the largest g that satisfies the following

equation.

BW (c(g)) ≥ BD(g) AND t ≥ 2 · g · core, (4.2)

where c(g) is the number of channels which can be allocated to a group when threads are

partitioned into g groups, and BW (c(g)) is the bandwidth of c(g) channels.

39

If Adaptive Grouping is triggered with a new thread, I need to examine {g1 ∼
gi+1}, i.e., all the group numbers smaller than gi due to higher system bandwidth, and one
level higher than gi because I may be able to partition threads into finer granularity due
to more threads in the system now. Similarly, if Adaptive Grouping is triggered because
a thread exits the system, the possible g is {gi−1 ∼ gk}. Given g, the number of channels
which can be allocated to a group (c(g)) is given by the following formula:

c(g) =

{
m·n
g

(g ≥ n)

m (g < n)
(4.3)

For a memory system with m channels and n ranks per channel, when I partition
the memory system into g groups, each group has at most m·n

g
ranks. To maximize the

number of channels allocated to a group, the m·n
g

ranks of a group are distributed to as
many channels as possible. For example, in a 4-channel, 2-rank per channel system, if
g is 2, each group can access 4 ranks (4·2

2
), and these ranks are distributed to 4 different

channels. Therefore, c(2) = 4. In this case, when g < n, then each group is allocatedmore
thanm ranks; that means each group could access all channels, therefore, c(g) = m. Since
I want to minimize the number of ranks per group while providing sufficient bandwidth,
the number of ranks per group is set as c(g). Now, I have a new PPT configuration,
{gj, c(gj), r(gj)}, where r(gj) = c(gj).

Step2: In this step, I examine if I could reduce the channels and ranks allocated
to a group. For example, in a 4-core system with only 7 threads, I am not able to partition
these threads into multiple groups. Therefore, in the first step, gj is equal to 1, and c(gj) is
the total number of channels in the system. If BD(gj) < BW (c(gj)), then I could reduce
the channels and ranks allocated to this group. Therefore, in the second step, I decide the
minimal amount of channels c′ to satisfyBD(gj) ≤ BW (c′). Therefore, in this step, I get
a new PPT configuration {g′, c′, r′}, where g′ = gj and r′ = c′.

4.2.1.1.2 Dynamic Bandwidth (BW) Estimation Method In the dynamic BW esti-
mation method, the usage of the request buffer in the memory controller is treated as an in-
dicationwhether the currentmemory resources are under-provisioned or over-provisioned.
In the memory controller, the request buffer is used to store pending memory requests. So
if the request buffer is usually full, it means memory requests arrive more frequently than

40

Figure 4.4: Dynamic BW estimation method for Adaptive Grouping in the PPT frame-
work.

the current DRAM resources can service (i.e., request arrival rate > service rate). In con-

trast, if the request arrival rate is lower than the service rate, the request buffer is usually

empty. Therefore, in the dynamic BW estimation method, I monitor the usage of the

request buffer in the memory controller and adjust the PPT configuration accordingly.

Figure 4.4 illustrates the dynamic BW estimation method. I monitor the usage

of the request buffer periodically with two metrics: full-ratio and empty-ratio. Full-ratio

is the percentage of time when the request buffer is full, while empty-ratio indicates the

percentage of time when the request buffer is empty. If full-ratio/empty-ratio reaches a

predefined threshold, α, I increase/decrease the number of ranks allocated to each group

by one. The α value needs to be carefully selected. If α is too small, the system will be

too sensitive to system variation thereby incurring frequent PPT configuration change. On

the other hand, if α is too large, the system will be slow to respond to variations of system

loading. Note that the value of α should be larger than 50%, such that only one of the

under-provision and over-provision conditions can hold.

With the new rank configuration, I now describe how to decide the number of

channels (c) and groups (g) in the new PPT configuration. Recall that ranks are distributed

to all channels. Therefore, if r′ is not greater than the total number of channels in the

system, then c′ = r′, otherwise, c′ = m in an m-channel memory system. With new c′

and r′, I then decide the appropriate group number. For a memory systemwithm channels

and n ranks per channel, the total number of ranks in the system ism ·n. Since each group
contains r′ ranks in the new PPT configuration, there should be xm·n

r′
y groups at most.

41

In addition to the resource consideration, as mentioned previously in Section 4.2.1.1.1,
I need to consider the thread number constraint. That is, each group must have at least
2 · core threads, where core is the number of cores in the system. Therefore, to decide the
new group number, I select the largest g′ that satisfies the following condition:

g′ ≤ m · n
r′

AND g′ ≤ t

2 · core
. (4.4)

Note that, due to the thread number constraint, the group configuration (i.e., g′) needs to
be re-examined every period regardless if the rank value changes or not.

The dynamic BW estimationmethod overcomes three weaknesses of the static BW
estimation approach. First, the static BW estimation method only considers the average
bandwidth demand of each thread, while the dynamic BW estimation method can cap-
ture bandwidth variation within each thread execution. Second, the static BW estimation
method calculates the system bandwidth demand by considering the maximal total band-
width requirement of threads which could be scheduled concurrently. Therefore, the static
BW estimation method tends to overestimate the bandwidth demand of workloads. Third,
the static BW estimation method is not able to estimate the bandwidth demand of threads
that are swapped out due to some long latency operations, e.g. page faults. I call these
memory activities as the background memory activities that are issued by DMA engines
or other I/O operations but not the scheduled threads on processors. So if the workloads
are triggering excessive background memory activities, the static BW estimation method
may underestimate the system loading.

4.2.1.2 New PPT Configuration Adoption

To apply the new PPT configuration {g′, c′, r′} to the system, I first re-partition
threads into g′ groups. If g′ < g, I perform Merge which merges threads in two different
groups into one group. Let M(X) represent the memory ranks which can be used by
groupX ,∼ M(X) represent the memory ranks which should not be used by groupX , and
T (X) represent the threads assigned to group X . After Merge (X,Y) → (Z), T (X) and
T (Y) could allocate pages on both M(X) and M(Y). Merge operations are performed
repeatedly until g′ = g. If g′ > g, a Split operation is performed. After Split (Z) →
(X, Y), T (Z) is partitioned intoT (X) andT (Y)with balanced bandwidth between groups
inmind. After a Split operation, T (X)(T (Y)) could only allocate pages onM(X)(M(Y)).

42

Split operations are also performed repeatedly until g′ = g. Note that theMerge and Split

operations are performed on all groups. AfterMerge or Split operations, I then adjust the

resources allocated to each group according to c′ and r′. If r′ < r, I de-select some ranks

from M(X) to reduce the number of M(X). If r′ > r, I add some unutilized ranks into

M(X) to increase the number ofM(X). After that, the number of ranks per group should

be r′.

Pagemigrationmay be required tomake the access pattern conform to the new PPT

configuration. For example, after Split (Z) → (X,Y), T (X) may still access M(Y). If

most of the memory accesses of T (X) do not map toM(X), the new PPT configuration

does not take any effect. Page migration should be managed carefully since it incurs both

performance and energy overheads. I propose a Deferred Page Migration approach to

exploit the temporal locality of memory accesses. That is, after the PPT configuration

changes, I do not move pages immediately, because running threads might bring in new

pages, which are very likely to be hot data due to temporal locality. Therefore, to decide

whether to perform a page migration, I monitor how the accesses are distributed among

ranks in the new configuration. If many memory accesses of T (X) are not mapped to

M(X), I will try to move the pages of T (X) from ∼ M(X) toM(X), and the operation

is called Page Concentration. On the other hand, if the memory accesses in M(X) are

not distributed evenly, I will try to balance the loading among M(X), and the operation

is called Page Distribution.

Page Concentration may be triggered due to Split operations. As I mentioned in

the previous paragraph, after Split (Z) → (X,Y), if most of the memory accesses of

T (X) do not map to M(X), the Split operation does not take any effect. In this case,

Page Concentration should be triggered to make the access pattern conform to the new

PPT configuration. Since I want to map all memory accesses of T (X) to M(X), I mon-

itor the access distribution between M(X) and ∼ M(X), and Page Concentration is

triggered when the ratio of accesses mapped to ∼ M(X) reaches a predefined Concen-

tration Threshold. For each Page Concentration, I move n recently accessed MRU pages

of T (X) toM(X) from∼ M(X), where n is a small number to limit the migration over-

head. Besides Split operations, reducing the number of ranks per group may also trigger

Page Concentration to move MRU pages of T (X) from ∼ M(X) toM(X) in the same

43

way, because the memory accesses of T (X) may be mapped to some ranks of ∼ M(X),
which belonged to M(X) before the PPT configuration changes. In contrast to Page
Concentration, Page Distributionmay be triggered due toMerge operations. AfterMerge
(X, Y) → (Z), if there are no new pages of T (X) allocated toM(Y),M(Y) will contain
no pages belonging to T (X), and no accesses of T (X)will be mapped toM(Y). To make
the access pattern conform to the new PPT configuration and fully utilize the bandwidth
ofM(Y) to sustain the system bandwidth demand, I want to map all memory accesses of
T (X) to the ranks in bothM(X) andM(Y) evenly. So, I check if the memory accesses
of T (Z) (including T (X) and T (Y)) are evenly distributed to all ranks of M(Z). When
accesses are evenly distributed, the numbers of accesses mapped to the hottest rank (i.e.,
the most frequently accessed rank) and the coldest rank (i.e., the least frequently accessed
rank) should be the same. Therefore, Page Distribution is triggered when the access ratio
between the hottest rank and the coldest rank reaches a predefinedDistribution Threshold.
For each Page Distribution, I move n MRU pages of T (Z) from the hottest rank to the
coldest rank. In addition to Merge operations, increasing the number of available ranks
for T (X) may also trigger Page Distribution to move some MRU pages of T (X) to the
newly allocated ranks inM(X), because the newly allocated ranks may contain no pages
belonging to T (X) and no accesses of T (X) are mapped to these ranks. Please note that,
I perform page migrations for all groups in the same way.

4.2.1.3 Architectural Support

The PPT framework requires two architectural supports. For the dynamic BW
estimation method, since it is a reactive approach to decide PPT configurations according
to the usage of the request buffer in the memory controller, I need two hardware counters:
full-counter and empty-counter in the memory controller. The full-counter is increased
by 1 when the request buffer is full at this cycle, and the empty-counter is increased by
1 when the request buffer is empty. I also need a memory mapping interface to read and
reset the hardware counters periodically. Based on the readings of the hardware counters,
the operating system can perform the dynamic BW estimation method accordingly.

Note that, the static BW estimation method does not require special architectural
support, since all required information can be obtained from the operating system and con-
ventional performance monitor units. In the static BW estimation method, to obtain the

44

average bandwidth requirement of a thread, the execution time, the page fault traffic and
the L2 miss traffic of a thread are required. The execution time and the number of page
faults of a thread can be easily obtained from the operating system, since the operating
system is aware of thread execution and virtual memory management. The number of L2
misses can be read from conventional performance monitor units. The remaining calcu-
lation of average bandwidth requirement of a thread can be done in the operating system,
which records all necessary information.

For Deferred Page Migration, one hardware counter for each rank is required to
record the number of accesses in the rank. If the page migrations are required, DMA-like
operations are performed to move the pages and the operating system is interrupted to
update the page table.

4.2.2 Thermal Control Policy

Thermal control in the PPT framework is achieved through Group Switching and
Activity Migration. When the system has enough threads for partitioning into groups, bal-
anced temperature among ranks could be achieved through periodically scheduling threads
in different groups as illustrated in Figure 4.2. The question remains to be answered is how
long the group switch interval should be. To achieve power saving and prevent memory
ranks from overheating, the group switch interval needs to be long enough to transit idle
ranks into a low-power mode, and short enough to balance the temperature among mem-
ory ranks. When a rank is idle, according to the power management policy of DDRx, it
takes several microseconds to perform a refresh operation and enter the precharge power-
down state, which is the state that consumes the least power. Therefore, the group switch
interval should be longer than several microseconds to transit the rank into the precharge
power-down state. As for thermal control, I stressed the memory system to see how fast
temperature rises. I found that with the heaviest loading, the operating temperature of a
DDR2-SDRAM chip only increases at most 1◦C in about 40 milliseconds2. Therefore, I
know that if group switch interval is shorter than 40 milliseconds, temperature could be
kept balanced among ranks to avoid hotspot. In modern operating systems, the context
switch interval is usually set to 1 ∼ 10 ms, which is much longer than several microsec-

2I use the simulation setup described in Section 4.3.1 to perform this experiment.

45

Figure 4.5: 1-group PPT configuration.

onds, and shorter than 40 milliseconds. Therefore, setting group switch interval equal to

context switch interval could achieve power savings while maintaining balanced temper-

ature at the same time without causing extra OS scheduling overheads.

When there are not enough threads for partitioning into groups, I use Activity Mi-

gration to control temperature. In this case, threads in a group may use only one rank per

channel, and there may exist ranks which are not utilized at all. For example, for a {1, 4, 4}
configuration as illustrated in Figure 4.5, rank1 of all channels are not allocated to any

group. These unutilized ranks could be used for thermal control. When the temperature of

rank0 in channel0 exceeds the thermal threshold, rank0 in channel0 is de-selected, and

rank1 in channel0 is selected to replace rank0. I call this Activity Migration. Since old

pages of the group are still allocated in rank0 in channel0, page migration may be neces-

sary to achieve desired temperature behavior. Here, I adopt the Deferred Page Migration

approach described in Section 4.2.1.2. Please note that Activity Migration could be also

used together with Group Switching for thermal control as long as there are unutilized

ranks.

4.3 Evaluation to PPT Framework
4.3.1 Experimental Setup

I evaluate the proposed PPT framework with trace-driven simulation. The virtual

memory address traces are obtained by Cachegrind, which is the cache simulation compo-

nent of Valgrind [123] profiling tool. I use the cycle-accurate DRAM simulator, DRAM-

sim [124], to model the DRAM system. The traces from different programs are combined

together to formmulti-core workloads. I annotate the memory traces with correct physical

addresses and timestamps according to the page allocation and thread scheduling policies.

46

Table 4.1: Processor and memory configurations for PPT evaluation.
Parameters Value
Processor 4-core, 2GHz, 1 hardware context per core

L1 caches (per core) 64KB Inst/64KB Data, 2-way, 64B line
L2 caches (per core) 1MB, 8-way, 64B line

Memory 4 channels, 2 DIMMs/channel, 1 rank/DIMM
Memory controller 32-entry request buffer
Memory rank 1GB, 800MHz DDR2-SDRAM, 32 banks/rank
Memory bank 8192 rows/bank, 512 columns/bank

Channel bandwidth 8-byte/channel, 6.4GB/s

I alsomodel page faults and their associatedmemory accesses, and reflect the delay caused
by memory contention, thread scheduling, and page faults by adjusting the timestamps in
traces. To evaluate DRAM temperature, I adopt HotSpot 3.0 [125], which calculates tem-
perature by modeling DRAM device physical properties.

Table 4.1 shows the processor and memory configurations. The detailed timing
and power configurations of DRAM chips are obtained from Micron’s DDR2-SDRAM
MT47H64M8CF-25E [126]. I assume the open-page row buffer management policy. The
refresh interval of each row is set to 64 milliseconds. I adopt single rank DDR2-SDRAM
DIMMs, which are commonly used. Therefore, for thermal simulation, there is no thermal
interaction between any two ranks, because the ranks are far from each other. The thermal
resistance is set to 5K/W and the ambient temperature is set to 45◦C.

For the proposed PPT method, both the static and dynamic BW estimation meth-
ods are evaluated. In the dynamic BW estimation method, the α threshold value is set
to 70%. In Deferred Page Migration, Concentration Threshold is set to 0.1 and Distri-

bution Threshold is set to 2. The monitoring interval of Deferred Page Migration is 1
millisecond. For each page migration, I move 25 pages. The temperature threshold for
triggering the Activity Migration mechanism described in Section 4.2.2 is 84◦C to make
the peak temperature of memory under 85◦C. The group switch interval is equal to the con-
text switch interval, which is 1 millisecond in these experiments. Besides the proposed
PPT methods, I also implement two other page allocation policies, performance-driven
and power-driven policies. The performance-driven policy distributes pages to all ranks.
To avoid contention, the performance-driven policy balances the loading between ranks
based on the number of page faults of ranks. The power-driven policy allocates pages in
the order they accessed, and an entire rank is filled up before moving to the next, such
that the accessed ranks are minimized. It is the Sequential First-Touch policy in [10].

47

Table 4.2: Workloads for PPT evaluation.
Workload Benchmarks Length (Cycles)
SPEC2000-1 {177.mesa, 181.mcf, 164.gzip, 255.vortex, 197.parser, 173.applu, 800 million

176.gcc, 256.bzip2, 301.apsi, 179.art, 171.swim, 183.equake} × 8
SPEC2000-2 171.swim, 173.applu, 176.gcc, 183.equake, 256.bzip2, 301.apsi 20 billion
SPECjbb light-loading SPECjbb × 64, heavy-loading SPECjbb × 64 800 million

Both policies adopt LRU as the replacement policy, and work with the round-robin thread

scheduling policy.

Theworkloads tested for the PPT framework are fromSPECCPU2000 and SPECjbb2005

[127]. The detailed information of workloads are listed in Table 4.2. SPEC2000-1 and

SPEC2000-2 are composed of SPEC CPU2000 benchmarks. SPEC2000-1 simulates a

system with thread number ranging from 1 to 88 over time. In this workload, I have

enough threads to partition threads into groups. I vary the system loading by creating new

threads periodically (8 new threads are created every 0.5 second), and terminating a thread

after it executes 800 million cycles. SPEC2000-2 is created to test how PPT performs

when the system does not have enough threads for grouping. Therefore, SPEC2000-2 in-

cludes only 6 threads. In SPEC2000-2, applications run longer than SPEC2000-1 so the

peak temperature could be higher than the threshold temperature (84◦C) to trigger Activity

Migration. I create the SPECjbb workload to test how PPT performs for transaction-

based server workloads. SPECjbb consists of threads from the SPECjbb2005 benchmark,

which has much more page faults as I/O operations than the SPEC CPU2000 benchmark.

A thread in the SPECjbb2005 benchmark represents an active user posting transaction

requests within a warehouse. There is a one-to-one mapping between warehouses and

threads. The SPECjbb2005 benchmark is inspired by the TPC-C benchmark and loosely

follows the TPC-C specification, and the TPC-C benchmark usually includes thousands

of warehouses in a database [128, 129]. Therefore, the SPECjbb workload could include

thousands of threads to stress the memory system. However, due to the limitation of sim-

ulation time, I include 128 threads in SPECjbb. I vary the system loading of SPECjbb by

creating light-loading threads and heavy-loading threads. In a computer with Xeon E5320

(1.86GHz), the throughput of a full speed heavy-loading thread is about 18000 bops, and

that of a light-loading thread is about 500 bops. I first schedule the light-loading threads,

and then schedule the heavy-loading ones, such that the system loading is light at the

beginning and becomes heavy later.

48

4.3.2 Experimental Results

In this section, I first examine if the proposed Adaptive Grouping mechanisms

achieve comparable throughput to the performance-driven policy at all time while con-

suming less power. I also compare the static BW estimation method and the dynamic

BW estimation method in terms of throughput and power consumption. I then show how

the PPT scheme controls memory temperature through Group Switching and Activity Mi-

gration. Finally, I summarize performance, power and thermal of the PPT, performance-

driven and power-driven schemes.

4.3.2.1 Power/Performance Evaluation of Adaptive Grouping

Figure 4.6 shows thememory throughput breakdown of various threads in SPEC2000-

1 with the performance-driven policy. To evaluate the PPT framework under system load-

ing variation, I schedule 8 new copies of a benchmark into the system in SPEC2000-1 ev-

ery 0.5 second. The total throughput of the 8 copies of a benchmark is plotted together in

Figure 4.6. Due to workload variation of SPEC2000-1, we can observe that the delivered

throughput of the performance-driven policy varies. The peak throughput is 9.4GB/s at

1.25s, while the lowest throughput is 0.06GB/s at 0.5s. Since I schedule different bench-

marks into the system at different times, the major contributors of the memory throughput

vary. At 1.25s and 3.75s, the threads of 164.gzip and the threads of 256.bzip2 are re-

spectively the major contributors of the memory throughput, because they are scheduled

at 1s and 3.5s and bring a lot of compulsory page faults into the system. From 1.75s to

3.5s, the threads of 181.mcf are the major contributors of the memory throughput, and the

threads of 301.apsi are the major contributors from 4s to 5.75s. The threads of 179.art

show significant contribution in memory throughput from 5s to 10s, and the threads of

171.swim also incur a lot of memory throughput from 6.5s to 10s. We can observe that

the system loading changes due to the change of executed threads and the change of the

program behaviors of the benchmarks.

Figure 4.7 compares the memory throughput and power consumption of four poli-

cies for SPEC2000-1. The delivered throughput of both Adaptive Grouping mechanisms

is close to that of the performance-driven policy at all time, while the power-driven pol-

icy suffers the most throughput degradation among four schemes. At the time when the

49

Figure 4.6: Memory throughput breakdown of threads in SPEC2000-1 with the
performance-driven policy for PPT evaluation.

performance-driven and Adaptive Groupingmechanisms show peak throughput of 9.4GB/

s, the power-driven scheme could only deliver 4.6GB/s. The performance-driven and

Adaptive Grouping schemes finish serving all the requests in about 10 seconds, while the

power-driven policy takes one more second. Note that the throughput of the power-driven

policy is sometimes higher than other three policies. This is because in the power-driven

policy, more requests are queued due to insufficient bandwidth and these requests are han-

dled later when the system loading is light. From the power aspect, we can observe that

the power consumptions of both Adaptive Groupingmechanisms are lower than that of the

performance-driven policy most of the time. When the system loading is light, between

6s∼ 9s, both Adaptive Groupingmechanisms consume similar power to the power-driven

policy. Because the dynamic BW estimation method can estimate the system bandwidth

demand accurately, but the static BW estimation method tends to overestimate the band-

width demand, PPT with the dynamic BW estimation method can reduce more power

consumption (7% in average) than PPT with the static BW estimation method. In 6s ∼

8s, the PPT with the dynamic BW estimation method even saves more power than the

power-driven policy.

I now discuss the relationship between resource allocation and system loading, and

50

Figure 4.7: Throughput and power of DRAM system with SPEC2000-1 for PPT evalua-
tion.

explain why the dynamic BW estimation method is better than the static BW estimation

method and the power-driven policy. Figure 4.8 shows how the PPT scheme adjusts the

resources allocated to each group (i.e., the number of ranks per group) to adapt to the work-

load variation, which is indicated as the memory system throughput of the performance-

driven policy. I also show the average number of concurrently accessed ranks for the

power-driven policy for comparison. We can observe that the number of ranks per group

for the dynamic BW estimation method matches the throughput variation closely. For ex-

ample, at 1.25s and 3.75s, the system shows peak throughput, and therefore the dynamic

method allocates about 6 ranks and 4 ranks for a group, respectively. During 4.75s ∼ 6s

and 9.5s ∼ 10s, the system loading is relatively heavy, so the dynamic method allocates

about 2 ranks for a group. In the remaining durations, the system loading is light, and

thus the dynamic method only allocates one rank for a group. As for the static BW es-

51

Figure 4.8: The throughput of the performance-driven policy, the number of ranks per
group for the static and dynamic BW estimation methods, and the number of concurrently
accessed ranks for the power-driven policy in SPEC2000-1 for PPT evaluation.

timation method, it often allocates more ranks per group than the dynamic method. The
reason is that the static method takes the maximal total bandwidth demand of threads that
could be scheduled concurrently as the system loading, so it often overestimates the system
bandwidth demand. This is why the dynamic BW estimation method can achieve more
power savings than the static one. In 6s ∼ 8s, as shown in Figure 4.7(b), the dynamic
BW estimation method saves more power than the power-driven policy. That is because,
in 6s ∼ 8s, the system loading is light, and the dynamic BW estimation method allocates
one rank to sustain the bandwidth demand, but due to large footprint of SPEC2000-1, the
power-driven policy allocates pages in five ranks. Since the scheduler in the power-driven
policy is not aware of the page allocation, it schedules the threads accessing these ranks
simultaneously as shown in Figure 4.8, and loses the opportunities to turn these ranks off.

Figure 4.9 shows thememory throughput breakdown of various threads in SPEC2000-
2 with the performance-driven policy. Recall that SPEC2000-2 contains only 6 threads,
so the system loading is very light, and all threads are all created at the beginning, so it
incurs a peak bandwidth demand at the beginning due to compulsory page faults. From
0.5s to 3.5s, the threads are in a phase that has relatively low throughput, and then they
are in another phase that has relatively high throughput from 3.5s to 15.5s. However, the
system loading is still very light from 3.5s to 15.5s.

In Figure 4.10, I show the memory throughput and power consumption of the

52

Figure 4.9: Memory throughput breakdown of threads in SPEC2000-2 with the
performance-driven policy for PPT evaluation.

performance-driven, power-driven and Adaptive Grouping mechanisms for SPEC2000-
2. We can observe that all policies deliver similar throughput except that the static BW
estimation method and the power-driven policy show relatively low throughput at the be-
ginning compared to other two policies. This is because they both allocate only one rank
for the running threads. The static BW estimation method only considers the average
bandwidth demand of each thread during entire program execution, so it underestimates
the peak bandwidth demand at the beginning. Except for the beginning stage, the static
BW estimation method and the power-driven policy also achieve the same level of per-
formance as the performance-driven policy in the steady state, since the system loading
is very light. As for the power consumption, the dynamic method consumes more power
than the static one in the initial phase, but it gradually approaches to the static one. After
the initial phase, most of the pages are brought in, therefore, the system bandwidth demand
drops as shown in Figure 4.10(a). The dynamic scheme successfully detects the change
and allocates only one rank to the group afterwards. However, even though there is only
one rank per group for the PPT schemes, the results show that they still have higher power
consumption than the power-driven policy. It is because Activity Migration is triggered
for thermal control and associated page migrations incur power overheads. I will discuss
the overheads for thermal control in Section 4.3.2.4.

53

Figure 4.10: Throughput and power of DRAM system with SPEC2000-2 for PPT evalu-
ation.

In Figure 4.11, I show thememory throughput breakdown of the threads in SPECjbb

with the performance-driven policy. The total memory throughput of all 64 light-loading

threads is plotted together as SPECjbb-Light, and the memory throughput of other 64

heavy-loading threads is plotted together as SPECjbb-heavy. We can see that both light-

loading threads and heavy-loading threads incur massive compulsory page faults at the

beginning of the thread execution. The light-loading threads contribute about 0.44GB/s

at the steady state and the heavy-loading threads contribute about 2.78GB/s at the steady

state.

Figure 4.12 compares the memory throughput and power consumption of four

policies for SPECjbb. The most different workload behavior of SPECjbb to SPEC2000-

1 and SPEC2000-2 is that SPECjbb has many I/O operations incurred by page faults.

These I/O operations are served by DMA in background. Since, in the static BW esti-

54

Figure 4.11: Memory throughput breakdown of threads in SPECjbb with the performance-
driven policy for PPT evaluation.

mation method, the system bandwidth demand is obtained by considering the maximal

total bandwidth requirement of running threads, the static method does not consider the

memory accesses from I/O operations of idle threads which are swapped out due to page

faults. In this case, the static method often underestimates the system bandwidth demand

in the SPECjbb workload, since many I/O operations in SPECjbb are not taken into ac-

count. Therefore, from Figure 4.12(a), we can see that the static method is not able to

achieve similar throughput as the performance-driven scheme after 6s, because there is a

peak bandwidth demand due to many compulsory page faults from newly scheduled heavy

threads. While for the dynamic method, we can see that it still achieves throughput close

to the performance-driven policy, and its power savings is similar to the power-driven

policy. Since the static method underestimates the bandwidth demand and only allocates

one rank for a group, it delivers even lower throughput than the power-driven policy that

uses more than one rank due to large footprint. The static method achieves the most power

savings among all policies at the expense of noticeable performance degradation.

55

Figure 4.12: Throughput and power of DRAM system with SPECjbb for PPT evaluation.

4.3.2.2 Deferred Page Migration Analysis

An important feature of Adaptive Grouping that requires further examination is the
effectiveness ofDeferred Page Migration triggered by new PPT configurations. Deferred
Page Migration is designed assuming memory accesses presenting temporal locality. For
SPEC2000-1, Adaptive Grouping with the dynamic BW estimation method changes the
PPT configuration several times. Here, I show how access patterns conform to the new
PPT configurations after the Split operation at 0.5s and the Merge operations at 4.6s and
4.9s in Figure 4.13(a) and (b), respectively. The sample time is 0.1s. I use the percentage
of memory requests that do not hit the ranks of a group (Rank Miss Rate) as the metric for
Page Concentration. The higher Rank Miss Rate means that memory behavior deviates
more from the desired pattern of the new PPT configuration. The Rank Miss Rate is com-
pared to Concentration Threshold (i.e., 0.1), and page migrations are triggered for Page
Concentration when the Rank Miss Rate is higher than Concentration Threshold. On the

56

Figure 4.13: Rank Miss Rate, Hot/Cold Access Rate, New Page Rate and the number of
page migrations for SPEC2000-1 with the dynamic BW estimation method in 0.5s∼1.0s
and 4.6s∼5.1s for evaluations to Deferred Page Migration.

other hand, for Page Distribution, I use the ratio between the numbers of accesses of the

hottest rank and that of the coldest rank (Hot/Cold Access Rate), to quantify if the mem-

ory accesses distribute to the designated ranks evenly. The ideal Hot/cold Access Rate is

1 (i.e., the numbers of accesses are equal among all designated ranks), and the higherHot/

Cold Access Rate indicates more deviated memory behavior from the new PPT configura-

tion. When the Hot/Cold Access Rate is higher than Distribution Threshold (i.e., 2), page

migrations are triggered for Page Distribution. I also show the New Page Rate (i.e., the

ratio of new pages to total accessed pages in a sample period), and the number of page

migrations.

In Figure 4.13(a), the Rank Miss Rate does not increase right after the Split op-

57

eration, because a lot of new pages are brought in during the time interval 0.5s ∼ 0.6s.
Due to temporal locality, the new pages are very likely to be hot data and contribute a lot
of memory accesses which conform to the new PPT configuration. Therefore, Rank Miss
Rate is low and only a few page migrations are triggered. However, in the time interval
0.8s ∼ 0.9s, threads scheduled at that time access more old pages, therefore, Rank Miss
Rate is higher and more page migrations are triggered. After 0.9s, Rank Miss Rate drops
below 10%, and maintains stable thereafter. Figure 4.13(b) shows the similar behavior to
Figure 4.13(a) except that page migrations are triggered for Page Distribution afterMerge
operations. As shown in Figure 4.13(b), during the time interval 4.6s∼ 4.7s, theHot/Cold
Access Rate does not increase right after the Merge operation at 4.6s, because there are
many new pages. However, the New Page Rate decreases and the Hot/Cold Access Rate
increases in 4.7s∼ 4.9s. The behavior after theMerge operation at 4.6s is quite similar to
that after the Split operation at 0.5s. The other example in Figure 4.13(b) is theMerge op-
eration at 4.9s, where the Hot/Cold Access Rate increases right after the Merge operation
and it triggers more page migrations since fewer new pages are brought in.

The experiments show the efficiency of Deferred Page Migration which only
moves the recently accessed MRU pages when the memory behavior does not conform
to the new PPT configuration. I find that the moved pages are only 3% of total pages
in the experiments. Moving a few pages is enough to make the access pattern conform
to the new PPT configuration, because the MRU pages are very likely to be hot pages
which contribute many memory accesses due to temporal locality. The access pattern
always conforms to the new PPT configuration very quickly. After Split operations or
the number of ranks per group decreases, the Rank Miss Rate always drops below 10%
in 1s, and after Merge operations or the number of ranks per group increases, the Hot/
Cold Access Rate always drops below 1.3 in 1s. The experimental results show that the
number of memory requests incurred by page migrations is no more than 3% in the overall
memory requests after PPT configuration changes. Therefore, the performance and power
overhead are negligible.

4.3.2.3 Power State Analysis

The power reduction of the PPT framework comes from clustering memory re-
quests into a subset of memory ranks and putting the remainings into low-power modes

58

Figure 4.14: Power state breakdown of DRAM system with SPEC2000-1 for PPT evalu-
ation.

to save energy. Therefore, it is important to know how much time the memory ranks
are transferred into low-power modes, especially precharge power-down state, which is
the state that consumes the least power. Figure 4.14 shows the power state breakdown
of DRAM ranks with the performance-driven policy, the power-driven policy and the
dynamic BW estimation method of Adaptive Grouping for SPEC2000-1. As shown in
Figure 4.14, during the program execution, the memory system spends 31% of the time
in the precharge power-down state with the performance-driven policy, but the memory
system spends more than 57% of the time in the precharge power-down state with the
power-driven policy and the dynamic BW estimation method to achieve significant power
savings. This is because the memory requests are clustered into a subset of memory ranks.
The idle ranks do not receive anymemory request and do not perform row accesses. There-
fore, there is no data in the row buffers of idle ranks after refresh operations and the row
buffers can be turned off to save power.

4.3.2.4 Thermal Evaluation

The proposed PPT scheme controls memory temperature throughGroup Switching
and Activity Migration. I first present the temperature profile of SPEC2000-1 to show how
Group Switching performs. I then demonstrate the thermal effect of Activity Migration

using SPEC2000-2. Please note that the temperature in the following discussion is the
highest temperature among ranks at a time instance.

Figure 4.15(a) shows the temperature of the performance-driven, power-driven,
and PPT mechanisms for SPEC2000-1. We could see that PPT maintains the lowest tem-
perature among all schemes most of the time. The power-driven policy results in signifi-

59

Figure 4.15: Temperature of DRAM system for PPT evaluation.

cantly higher temperature than PPT. For example, the power-driven policy achieves about
6.2◦C higher peak temperature than the static BW estimation method at 2.75s and achieves
about 6.9◦C higher peak temperature than the dynamic BW estimation method at 9.25s.
The peak temperature of the power-driven policy even exceeds 85◦C. The performance-
driven policy has pretty good thermal profile but it is still slightly higher than PPT. The
temperature advantage of PPT over the performance-driven policy comes from lower
power consumption of PPT as discussed in Section 4.3.2.1. Since the dynamic BW es-
timation method shows more power savings than the static BW estimation method, the
temperature of the dynamic BW estimation method is also slightly lower than that of the
static BW estimation method.

Figure 4.15(b) shows the temperature of the performance-driven, power-driven
and PPTmechanisms for SPEC2000-2. Since the system has only one group for SPEC2000-
2, memory temperature cannot be kept balanced through Group Switching. So both PPT
mechanisms have higher temperature than the performance-driven policy, which distributes

60

Table 4.3: Normalized throughput, power and peak temperature of the performance-driven
policy, the power-driven policy and the PPT mechanisms.

Performance- Power- PPT- PPT-
driven driven Static Dynamic

SPEC2000-1

Normalized Average Throughput 1.00 0.91 1.00 0.99
Normalized Peak Throughput 1.00 0.49 1.00 1.00

Normalized Power 1.00 0.74 0.83 0.76
Peak Temperature 79.1◦C 87.7◦C 78.0◦C 77.2◦C

SPEC2000-2

Normalized Average Throughput 1.00 0.99 0.99 1.00
Normalized Peak Throughput 1.00 0.95 0.95 1.00

Normalized Power 1.00 0.58 0.67 0.70
Peak Temperature 78.5◦C 87.5◦C 84.4◦C 84.4◦C

SPECjbb

Normalized Average Throughput 1.00 0.95 0.93 1.00
Normalized Peak Throughput 1.00 0.45 0.43 1.00

Normalized Power 1.00 0.85 0.68 0.84
Peak Temperature 79.8◦C 84.2◦C 76.1◦C 77.9◦C

pages to all ranks. But with Activity Migration, I could control the temperature under a
pre-defined threshold (i.e., 85◦C in this case). In contrast, the power-driven policy has
no way to control temperature, therefore, its peak temperature exceeds 85◦C. The exper-
imental results show that Activity Migration incurs about 7% more memory requests due
to Deferred Page Migration. Therefore, the overheads of page migration is negligible.
However, since the running threads may access two different ranks3, two ranks are active
during Activity Migration. In this case, the power consumption of PPT is higher than that
of the power-driven policy, which accesses only one rank, by about 10%.

4.3.2.5 Summaries of Performance, Power and Temperature of PPT

Table 4.3 shows the average throughput, peak throughput, power and peak temper-
ature of the performance-driven policy, the power-driven policy, the static BW estimation
method and the dynamic BW estimation method of Adaptive Grouping for SPEC2000-
1, SPEC2000-2 and SPECjbb. Throughput and power are normalized to those of the
performance-driven scheme.

We can see that both Adaptive Grouping ones can achieve comparable peak and
average throughput to the performance-driven policy by utilizing sufficient channels and
ranks to sustain bandwidth demand for SPEC2000-1 and SPEC2000-2. But the static
BW estimation method suffers noticeable throughput degradation for SPECjbb, because
it is not aware of the background I/O operations and underestimates the bandwidth de-

3The rank whose temperature exceeds the thermal threshold and the newly selected rank.

61

mand. For SPEC2000-1 and SPECjbb, the power-driven policy only achieves about half
of the peak throughput of the dynamic BW estimation method and the performance-driven
policy. For the power aspect, Adaptive Grouping mechanisms achieve 15.7% ∼ 33.2%
power savings, while the power-driven policy achieving 15.3% ∼ 42.0% power saving
compared to the performance-driven policy. The dynamic BW estimation method can
achieve more power saving than the static BW estimation method for SPEC2000-1, be-
cause it can estimate the bandwidth demand more accurately to transit more ranks into the
low-power mode for power reduction. But the static BW estimation method can achieve
more power saving than the dynamic BW estimation method for SPEC2000-2 at the ex-
pense of performance degradation due to bandwidth underestimation in the initial phase.
For temperature, both Adaptive Grouping mechanisms have the lowest peak temperature
for SPEC2000-1 and SPECjbb, which have a lot of threads to partition threads into groups.
For SPEC2000-2, the peak temperature of the power-driven policy exceeds 85◦C, while
both PPT mechanisms can keep memory devices from overheating. The peak tempera-
ture of the power-driven policy is 3 ∼ 10◦C higher than that of PPT. We can observe that,
the dynamic BW estimation method is good in all cases among all policies to tradeoff
performance, power and temperature.

62

Chapter 5

SECRET Framework: DRAM Refresh Power Reduction

5.1 Introduction

As discussed in Chapter 1, one of the main challenges in low-power DRAM de-

sign is the inevitable refresh process. Researchers have proposed several approaches to

reduce DRAM refresh power, such as disabling the refresh operations for memory blocks

that have no data [83], or are recently recharged by memory accesses [77]. Liu et al. ap-

ply different refresh intervals to memory blocks independently according to their retention

times [7]. Another approach is to prolong the refresh interval and adopt conventional Error

Correcting Code (ECC) methods, e.g., Hamming code or Bose-Chaudhuri- Hocquenghem

(BCH), to correct retention errors [97]. In these approaches, error correcting codes are ap-

plied to all DRAM cells. Therefore, it does not only come with significant area overheads,

but also incur performance and energy penalties since decoding and encoding ECCs are

required for every memory read/write. For example, in a conventional (72, 64) Hamming

code, eight DRAM chips are paired with an extra chip, which requires 12.5% area over-

head and additional power consumption. Wilkerson et al. [97] adopt the BCH code to

reduce refresh power consumption of eDRAMs that are used as the last-level caches. In

[97], all cache lines are protected by BCH, and a low-complexity decoding method can

be adopted when there is no more than one error in a cache line. The area overhead of

the method can be reduced by increasing the data size protected by BCH, but this incurs

other overheads, such as bandwidth requirement. Although an optimization is proposed

to solve this issue, the optimization is only suitable for caches, not for off-chip memories.

In this dissertation, I propose a novel error correction mechanism for retention

errors in DRAMs, called SECRET (Selective Error Correction for Refresh Energy reduc-

Tion). SECRET is developed based on the concept called Selective Error Correction.

63

Retention errors can be treated as hard errors, and are sparsely distributed over DRAM
chips. According to Kim et al. [122], only 10−6% of the cells have data retention times
shorter than 128ms, and 10−4% of the cells have data retention times shorter than 500ms.
Therefore, if I have a priori knowledge of cells with high leakage rates, instead of equip-
ping error correction capability in all memory cells as existing ECC schemes, I can allocate
error-correcting bits for those leaky cells only and utilize a refresh interval that is longer
than their data retention times to reduce refresh power. This observation leads to a very
different error correction design for retention faults from prior works.

In this chapter, I describe the proposed SECRET framework in Section 5.2, and
Section 5.3 shows the experiments for the SECRET framework.

5.2 The SECRET Framework
5.2.1 Main Idea

The SECRET framework is designed to prolong the refresh interval for reducing
DRAM refresh power with a cost-effective error correction method that corrects the re-
tention errors. Figure 5.1 shows the overview of the proposed SECRET framework. As
mentioned in Chapter 1, the main design concept of SECRET is that with a priori knowl-
edge of leaky cells under a refresh interval, I could construct a resource-efficient error cor-
rection scheme. Therefore, the center of SECRET is a Selective Error Correction (SEC)
mechanism that equips the error correction capability only to identified leaky cells. To
achieve more refresh power reduction (i.e., longer refresh interval), SEC must be able to
tolerate more retention errors, which in turns require more resource overheads. Therefore,
an architect must carefully evaluate the power savings versus overheads tradeoff to decide
the target error rate that SEC is built for. A one-time profiling process to collect actual
retention times of memory chips is performed before a machine is first used. Off-line
profiling can be performed by system providers, or users if the profiling utility is built in
the system. The addresses of leaky cells are stored in a file along with required error cor-
recting bits. During system booting, the addresses of leaky cells and their correcting bits
are then loaded into the main memory. To maintain the robustness against variations in
data retention times due to the change in operating temperature, the SECRET framework
adjusts the refresh interval at runtime to adapt to temperature variation. Below I describe

64

Figure 5.1: SECRET framework.

the details of the major building blocks of the proposed SECRET framework.

5.2.2 Candidates of the Error Correcting Scheme in SECRET

As discussed earlier, the retention errors must be corrected when increasing the

refresh interval to reduce refresh power. In this section, I introduce three error correcting

schemes that have been proved to be able to correct errors in main memories.

5.2.2.1 Hamming Code ECC

The Hamming code ECC is widely used to correct soft errors in DRAM modules.

The Hamming code can correct one error in d data bits by p parity bits, where d is smaller

than 2p − p (d < 2p − p). For example, for 64 data bits, at least 7 parity bits are required

to correct 1 error. The Hamming code that is typically used in DRAMs has 8 parity bits

to provide single error correction and double error detection capabilities for 64 data bits.

This is also known as the conventional (72, 64) Hamming code, which is widely used in

main memories due to its simple encoding/decoding process and short decoding time. To

reduce refresh energy consumption, Emma et al. [78] proposed to increase the refresh

interval and correct retention errors by the Hamming code. However, the disadvantage of

the Hamming code is that it can only correct one error.

5.2.2.2 Bose-Chaudhuri-Hocquenghem (BCH) Code ECC

The BCH ECC is a polynomial ECC based on a finite field, and can correct more

than one error. The BCH code can correct k errors in d data bits by using p parity bits,

65

where d is smaller than 2p/k − p− 1 (d < 2p/k − p− 1). Although the BCH code can cor-

rect multiple errors and provide variable-strength error-correcting capability, the decoding

and encoding processes of the BCH code are quite complex, and make it not suitable for

time-critical main memories. Currently, the BCH code is widely used in secondary stor-

age systems, such as NAND Flash. Zhang et al. [130] propose to use the BCH code to

correct multiple wear-out errors in the phase change memory that is utilized as a part of the

main memory system. Targeting at platforms utilizing eDRAMs as the last-level caches,

Wilkerson et al. [97] use BCH code to reduce the refresh power consumption of eDRAMs.

5.2.2.3 Error Correcting Pointer

Error Correcting Pointer (ECP) [1] is proposed for correcting wear-out errors in

phase change memories. Since wear-out errors can be known in advance, only faulty cells

are equipped with ECPs. The structure of an ECP is shown in Figure 5.2(a). An ECP entry

is composed of p-bit correction pointer and a replacement cell. Among the 2p data bits,

the correction pointer indicates which bit has a hard error. The replacement cell stores the

correct data. For example, in Figure 5.2(a), the 510-th bit is known to be a faulty cell. Its

ECP has the pointer set to 510, and the replacement cell stores the correct data. A p-to-2p

row decoder is required to align the replacement cell with the error to perform decoding.

Figure 5.2(b) shows the logic of ECP1 decoder [1] that corrects one error in 512 data

bits. The ECP scheme is optimized for wear-out errors that are stuck at a fixed value by

using a differential encoding where the replacement bit conditionally inverts the failed

bit. ECP is very flexible to correct multiple errors since each identified error is protected

by a specific ECP. In the meantime, the ECP scheme keeps its decoding simplicity for

correcting multiple errors by correcting errors one-by-one. However, the ECP scheme

can only handle hard errors that are known in advance, but not soft errors since ECPs

have no ability of detecting errors.

5.2.3 Selective Error Correction (SEC)

To design the SEC mechanism, there are two main design issues. First, what kind

of error correction method should be used to correct retention errors? Second, how do I

locate memory cells with retention errors at runtime?

66

Figure 5.2: (a) Error correcting pointer. (b) Hardware implementation for ECP1 decoder
[1].

A good error correction method for SEC should support variable-strength error-

correcting capability. The distribution of retention errors is random within a DRAM chip.

That is, the number of retention errors of a memory block protected by error-correcting

bits varies. Since retention errors can be treated as hard errors, all the leaky memory cells

that are identified at off-line need to associate with error-correcting bits. Therefore, the

most cost-effective error correction method for SEC is to allow memory blocks with more

retention errors to have stronger error correction capability, and vice versa. To achieve

this, the ECP scheme mentioned in Section 5.2.2.3 is a perfect candidate for retention

errors1. The number of ECPs of a protected memory block is equal to the number of faulty

cells. Although BCH is also able to provide variable-strength error-correcting capability,

its decoding and encoding are much more complex than that of ECP.

To locate memory cells with retention errors at runtime, I partition memory space

into equal-sized regions. As shown in Figure 5.3, ECPs of the same memory region are

placed contiguously in the memory, and the ECP directory is used to index the ECPs. The

ECP directory is indexed by the region number. Each entry of the ECP directory records

the number of ECPs in the corresponding memory region and the physical address of the

first ECP of the region. For each memory request, the ECP directory is checked to see

1Bit-fix [106] also provides the same capability. I choose the ECP scheme, but bit-fix can also be adopted
in SECRET.

67

Figure 5.3: Error correcting information for the SEC mechanism.

Figure 5.4: Architecture of the SEC cache.

if the corresponding memory region contains faulty cells (i.e., a non-zero number in the
field of the number of ECPs). If there are faulty cells, all ECPs of the memory region are

fetched from the memory, and the memory controller compares the pointers of ECPs and
the address of the requested data. The ECPs that match the address are decoded to perform
error correction.

From the above discussion, we can see that the SEC mechanism introduces extra
memory requests for fetching the ECP directory and ECPs. To minimize the performance

overhead of additional memory accesses, I propose an optimization to cache the ECP
directory and ECPs in the memory controller. When the ECP directory entry and ECPs
of a region are fetched from memory to the memory controller, they are kept in the SEC

cache in the memory controller. Figure 5.4 shows the architecture of the SEC cache. Each
SEC cache line stores the information of one ECP directory entry and all the ECPs in that

region. To have an ECP directory entry and ECPs of a memory region cached in the same
set, the SEC cache is indexed by region numbers instead of the physical addresses of the

ECP directory or ECPs. The dirty bit is used to indicate if the replacement cells of ECPs
are updated. If a replacement is required, a write-back operation of ECPs is triggered if

the corresponding dirty bit is set. Please note that the ECP directory part in the SEC cache
is read-only and does not have to be written back to memory.

68

The decision of the SEC cache configuration is crucial for system performance.

The cache configuration includes the number of sets, the number of ways and the cache

line size. The numbers of sets and ways of the SEC cache affect the hit rate of the SEC

cache. Since a design that achieves acceptable cache hit rate is decided by the access

pattern of the memory regions, the numbers of ways and sets of the SEC cache can be

decided along with the configuration of the micro-architecture during system design time,

which performs design space exploration with the target workloads.

For the SEC cache line size, it decides the number of ECPs in a region that can

be cached. So, to decide the appropriate cache line size, an architect needs to estimate

the number of retention errors in a region given an error rate. Here I assume the geo-

metric distribution of retention times is uniformly random distribution. Since the leakage

currents that cause retention errors are from several different sources, e.g., band-to-band

tunneling current, body effect, etc. [131], which may have different geometric distribution

properties. So, it is reasonable to assume that retention errors are uniformly randomly dis-

tributed among DRAM chips. Moreover, memory cells in a region do not usually locate

in the same chip. In a typical DRAM system design, the requested data are interleaved

in all DRAM chips in a rank. For example, in an 8-chip DRAM rank, a contiguous 64-

byte data block is partitioned into eight 8-byte data blocks, which are distributed across

eight DRAM chips in this rank. Therefore, I believe that strong locality among retention

errors are not common cases. Extreme cases only happen when excursions occur dur-

ing DRAM manufacturing. However, to be able to accommodate variations among real

DRAM chips, I could set the line size larger than what is estimated with data generated

based on uniformly random distribution.

Figure 5.5 shows the system architecture of the SEC mechanism. The memory

controller contains the SEC cache and the Error Correcting Unit. The Error Correcting

Unit is similar to the ECP1 decoder described in [1] that decodes one ECP at one time.

However, unlike phase change memories, the data values of faulty DRAM cells with re-

tention errors are not stuck at 0 or 1, and the differential encoding is not applicable. I

explicitly store the replacement value in the replacement cell and slightly modify the de-

coder accordingly. When the memory controller receives a memory request, the memory

controller issues requests to both the memory arrays and the SEC cache. If the requested

69

Figure 5.5: System architecture of the SEC mechanism.

ECPs are found in the SEC cache, the error correction information is provided to the Error
Correcting Unit from the SEC cache directly. In this case, no extra memory requests are
issued. If it is an SEC cache miss, the memory controller first issues a memory access
to fetch the ECP directory entry from memory. One or more memory accesses for the
ECPs are needed only when the ECP directory entry indicates that there are errors in the
requested region.

5.2.4 Off-line Phase: ECP Directory/ECPs Construction

During the off-line phase, I first identify memory cells with retention errors given
a target error rate and then build the ECP directory and ECPs accordingly.

I characterize data retention times of DRAM cells in a method similar to the testing
process proposed in [81] and [92]. The process prolongs the refresh interval incremen-
tally and checks if the DRAM cells can retain data. To test the DRAM chips, all refresh
operations are disabled and the row buffers are managed by the close-page policy. The
testing process writes all 1’s to the chips, waits for a refresh interval, and reads the data
back to see if they are intact. The process is executed until the number of retention errors
meets the target number, or I find that the number of errors in a region meets the number
of ECPs that an SEC cache line can keep.

The off-line profiling process is performed once before a machine is first used,
and the time required for retention time testing is quite small. As mentioned above, the
profiling process includes (1) writing data into the DRAM, (2) waiting for the target re-
tention time, and (3) reading the data out. Assume that I perform the profiling process on

70

a 4GB DRAM, which has 512K rows, and the tested refresh intervals range from 50ms

to 1s. According to [132], writing and reading a row needs 3.4us and 2.8us, respectively.

Since Step (2) can be overlapped with reads/writes of other rows, one-pass profiling time

can be estimated as reading/writing 512K rows, which is equal to 3.3 seconds. So with 20

refresh threshold steps, the overall profiling process takes about 66 seconds. If the DRAM

system has multiple memory controllers and/or multiple memory channels that allow the

DRAM rows to be read or written simultaneously, the testing of retention times can be

performed in parallel to reduce the time required for the off-line profiling process.

With the knowledge of the physical positions of leaky cells, I then construct the

ECP directory and ECPs. Both the ECP directory and ECPs need to be placed in non-leaky

cells. Since the whole ECP directory needs to be placed in contiguous memory cells, it is

possible that I am not able to find a big enough memory segment without any retention

errors. In this case, I adopt the Triple-Modular Redundancy (3-MR) ECC that duplicates

the original data twice to protect the ECP directory. To avoid three separate accesses to

read an ECP directory entry that is protected by 3-MR, I place the three copies of an ECP

directory entry (108 bits = 14 bytes) consecutively in the same 64B data block so that all

three copies can be accessed in one memory access. A majority vote is performed at the

memory controller when these three copies of the ECP directory are different. The logic

for the majority vote for each bit only requires 3 AND gates and 2 OR gates, so the logic

is quite simple and very fast. The only situation of having uncorrectable errors with 3-MR

is that the same bit positions of two copies of an ECP directory entry have retention errors.

The probability for this to happen is extremely low. For example, in a 4GBDRAM system

with region size of 128KB and 10−6 retention error rate, the probability is 3.5×10−6. The

placement of ECPs is more flexible than that of the ECP directory. Only the ECPs of

the same region need to be stored contiguously in memory not the whole ECPs. The

constructed ECP directory (along with its starting address) and ECPs are stored in a file.

During system booting, these error correction information are then loaded into memory.

5.2.5 Refresh Interval Adaptation

The data retention capability of memory cells are subjected to various system per-

turbations, like temperature. Higher temperature leads to larger leakage current. There-

71

fore, to ensure the robustness of the proposed SECRET framework, the refresh interval
needs to be adjusted dynamically to adapt to temperature variation. My approach is similar
to the runtime refresh interval adaptation method in the prototype proposed by Katayama
et al. [92]. The basic idea of the refresh interval adaptation is to adjust the refresh interval
so that the number of retention errors are kept constant. That is, when unexpected reten-
tion errors are detected, the refresh interval should be scaled down. On the other hand,
when expected retention errors are not detected, the refresh interval should be scaled up.
To support this, in addition to identifying the memory cells with retention errors given a
target error rate, I also need to identify the memory cells that may cause retention errors
when fluctuations of temperature occur, and monitor these bits periodically. So, in Sec-
tion 5.2.5.1, the process of identifying the memory cells for refresh interval adaptation is
described. Moreover, I also need to identify the maximum leakage variation during the
monitoring period so that I can guarantee that all memory cells that may cause retention
errors due to temperature change are identified. The calculation of the maximum leakage
variation ratio is described in Section 5.2.5.2. Then, I show the proof of the correctness
of the refresh interval adaptation in Section 5.2.5.3.

5.2.5.1 Profiling Memory Cells for Refresh Interval Adaptation

As shown in Figure 5.6, refn indicates the refresh interval value that reaches the
target error rate. The set of bits with retention times between refn and refn+1 are the
DRAM cells that have the shortest data retention times among the DRAM cells that are
not expected to have retention errors if system temperature is close to the setting of the
off-line profiling. This set of bits are indicated as Set 2 in Figure 5.6. Memory cells in
Set 2 should also be protected by ECPs to prevent retention errors when the leaky current
increases. On the other hand, as shown in Figure 5.6, Set 1 is the set of DRAM cells that
have the longest data retention times among those DRAM cells that may have retention
errors. So, in the SECRET framework, bits in Set 1 and Set 2 are periodically checked
and corrected. When there are no retention errors in Set 1, this indicates that the length
of the refresh interval can be increased to further reduce refresh power since the number
of retention errors is lower than expected. When there are retention errors in Set 2, the
length of the refresh interval should be reduced to guarantee the correctness of the DRAM
system.

72

Figure 5.6: Data retention time distribution of DRAM cells and bits in Set 1 and Set 2.

5.2.5.2 Deduction of the Worst Case Leakage Ratio

To guarantee that all retention errors are protected by ECPs, I need to ensure that
Set 2 covers all the bits that may cause retention errors due to temperature change under the
worst case during the monitoring period. To achieve this, I need to find out the maximum
leakage variation ratio, i.e., maximum/minimum leakage current, during the monitoring
period under the extreme temperature change condition. Since retention time variation is
proportional to that of leakage current, the maximum leakage variation ratio is also the
maximum retention time variation ratio during the monitoring period. Let t denotes the
monitoring period, and R denotes the maximum retention time variation (leakage varia-
tion) when chip temperature is T in monitoring period t. I can deduce that, to guarantee
Set 2 (Set 1) to cover all the bits that should be checked periodically with the maximum
leakage variations within the monitoring period, refn+1 (refn−1) in Figure 5.6 should be
set as refn ×R (refn/R).

As mentioned earlier, the maximum retention time variation R is proportional to
the maximum variation of leakage current during the monitoring period t. According
to [133], when the chip temperature is T , the amount of leakage current I0(T) is modeled
by the following equation.

I0(T) = I0(25
oC)× (T/300)1.8. (5.1)

Therefore, when the chip temperature is T , and the maximum temperature increase in t is
∆T , the maximum leakage variation ratio R(T, t), which is also the maximum retention

73

time variation ratio of the period t, can be calculated by the following equation.

R(T, t) =
I0(25

oC)× ((T +∆T)/300)1.8

I0(25
oC)× (T/300)1.8

= ((T +∆T)/T)1.8.

(5.2)

According to [44], given the chip temperature T and monitoring period t, ∆T can be
modeled by

∆T = ((TR× P + Tamb)− T)× (1− e−t/τ), (5.3)

where TR is the thermal resistance, P is the peak power consumption of the chip, Tamb is
the ambient temperature, and τ is the time for the temperature difference between T and
(TR× P + Tamb) to be reduced by 1/e.

So, assuming the chip has maximum and minimum working temperature of Tmax

and Tmin, the maximum to minimum retention time ratio R in the extreme case is

R = max(R(T, t)), Tmin ≤ T ≤ Tmax. (5.4)

Therefore, as mentioned earlier, Set 2 (Set 1) should cover all the bits with retention times
between refn and refn × R (refn and refn/R). Equipping ECPs for bits in Set 2 can
guarantee that there are no uncorrectable retention errors even with extreme temperature
change during the monitoring period. I will give the proof of the correctness for the refresh
interval adaptation process in the next subsection.

5.2.5.3 Proof of the Correctness of Refresh Interval Adaptation

According to Section 5.2.5.2, the bits without any error correcting capabilities are
those with retention times that are longer than refn × R. I can prove that, there are no
uncorrectable errors during the period t when refresh interval adaptation process is per-
formed. That is, no uncorrectable retention errors occur no matter the refresh interval is
prolonged or shortened.

Now, I show that bits with retention times longer than that of the bits in Set 2 are
guaranteed not to have retention errors in any cases. The proofs of all cases are as follows:

Maintaining the refresh interval : Assume the current refresh interval is ref . If I find
errors in Set 1, but not in Set 2, this indicates that there is no obvious change in

74

chip temperature, and the refresh interval should be still ref . Even if temperature

changes after adaptation, since I can guarantee that the retention time variation dur-

ing time interval t in the worst case isR, at most the bits in Set 2 may cause retention

errors due to temperature change under the worst case during the monitoring period

t. Therefore, non-protected bits are guaranteed to not having retention errors be-

cause these bits have retention times longer than those bits in Set 2 in the worst

case.

Prolonging the refresh interval : Assume the current refresh interval is ref . If I find no

errors in Set 1, this indicates that the chip temperature drops, and the refresh interval

can be prolonged from ref to ref ×R. If temperature does not change, at most the

bits in Set 1 may cause retention errors due to refresh interval adaptation. Even if

temperature changes after adaptation, since I can guarantee that the retention time

variation ratio during time interval t in the worst case is R, at most the bits in Set 2

may cause retention errors due to temperature change under the worst case during

the monitoring period t. Therefore, non-protected bits are guaranteed to not having

retention errors because these bits have retention times longer than those bits in Set 2

in the worst case.

Shortening the refresh interval : Assume the current refresh interval is ref . If I find

errors in Set 2, this indicates that the chip temperature raises, and the refresh interval

should be shortened from ref to ref/R. Even if temperature raises again after

adaptation, since I can guarantee that the retention times are also shortened by R

times in the worst case during time interval t, at most the bits in Set 2 may still

cause retention errors due to temperature change under the worst case during the

monitoring period t. Therefore, non-protected bits are guaranteed to not having

retention errors because these bits have retention times longer than those bits in

Set 2 in the worst case.

Therefore, non-protected bits are guaranteed to not have retention errors because

these bits have retention times longer than those bits in Set 2. As a result, the correctness

of the adaptation process can be guaranteed in all cases.

75

Table 5.1: Number of bits/bytes of each ECP directory/ECP field in the SECRET frame-
work.

An ECP Directory Entry
Num. of ECPs 4 bits ×3 = 12 bits
ECP address 32 bits ×3 = 96 bits

Total 14 bytes
ECP

Correction pointer 20 bits
Replacement cell 1 bit

Total 3 bytes

5.2.6 Discussion on Overheads of SEC

ECP Directory/ECPs: The number of bits/bytes required by each field in the ECP

directory and ECPs are listed in Table 5.1. As mentioned in Section 5.2.4, I use the 3-MR

technique to protect the ECP directory. So, I have three copies of each ECP directory

entry which needs 108 bits (14 bytes) in total. The memory space allocated to the ECP

directory is related to the number of regions only and independent of the number of tolera-

ble retention errors. For ECPs, because one ECP is used to correct one retention error, the

amount of memory space occupied by ECPs is related to the number of retention errors.

Assume I have a 4GB DRAM system, which is partitioned into 32K regions where each

of the region is 128KB, each ECP needs 20 bits for recoding the position of the error in

the region, and 1 bit for the replacement cell. With 10−7 retention error rate, the ECP di-

rectory and ECPs occupy only 0.01% of the memory space. Even with the retention error

rate up to 10−4, the memory space required for the ECP directory and ECPs is still very

small, only 0.24%.

Error Correcting Unit: My Error Correcting Unit adopts the ECP1 decoder sim-

ilar to the one shown in Figure 5.2(b). The ECP1 decoder has a 9-to-512 row-decoder

to align the replacement cell with the leaky cell [1]. The ECP1 decoder has a reasonably

small latency which is no more than one processor cycle [1], but only one ECP can be

decoded at a time. The data block size of a memory access is processed in the Error Cor-

recting Unit at a time. In a DDR3 memory, the block size is 64 bytes. The possibility of

having multiple errors in such a small unit is quite low. In my experiments, 0.05% of data

blocks have one error, and only 1.04 × 10−5% of data blocks have two errors. No data

blocks have three or more errors. Therefore, one or two ECPs are decoded only in very

few cases. For the area overhead, my synthesis results show that the Error Correcting

76

Unit needs only 0.014mm2 area with 45nm technology, which is negligible compared to
the memory controller.

SEC Cache: The SEC cache size is determined by three configuration parameters,
associativity, the number of sets, and cache line size. The cache line size affects how
many retention errors SEC can tolerate in a region, while the associativity and number
of sets decide the hit rate of an SEC cache, which is workload dependent, not DRAM
size dependent. A larger SEC cache can reduce extra memory accesses and tolerate more
errors at the expense of higher overheads of accessing the SEC cache itself. As mentioned
in Section 5.2.3, the design of SEC cache is workload related and should be performed
along with the micro-architecture during the system design time. In Section 5.3.2.1, I will
present a systematic way to make a right design decision for the SEC cache.

Refresh Interval Adaptation: The monitoring overheads of the refresh interval
adaptation process mainly come from the extra memory accesses for reading the bits in
Set 1 and Set 2 along with their ECP directory and ECPs. Assuming the monitoring per-
formed for every second and the operating temperature between 25◦C and 85◦C, I can
infer that the maximum leakage variation R is equal to 1.003607 according to the method
discussed in Section 5.2.5. So if I have a 4GB DDR3-1333 SDRAM system partitioned
into 32K regions, with the retention time distribution taken from [122] and 10−6 target
error rate, Set 1 and Set 2 contain 694 and 719 bits, respectively. Therefore, reading Set 1
and Set 2 incurs about 91KB/s bandwidth overheads, and accessing the ECP directory
and ECPs incurs about 4MB/s bandwidth overheads. Since the channel bandwidth of a
DDR3-1333 SDRAM is 10.66GB/s, the bandwidth overheads incurred by the adaptation
process take no more than 0.1% of DRAM channel bandwidth.

5.3 Evaluation to SECRET Framework
5.3.1 Experimental Setup

The simulation framework used in this chapter is composed of three components:
Wind River SIMICs [134], Ruby of Gems [135] and DRAMsim [124]. SIMICs is a
full system simulator that can execute target benchmarks on unmodified operating sys-
tems. To simulate memory and cache in details, Ruby that is integrated with DRAMsim
is loaded into SIMICs. I simulate a Sun virtual machine called Abisko that runs a version

77

Table 5.2: System configurations for SECRET evaluation.
Parameters Value
Processor 4-core, 2GHz, 1 hardware context per core

L1 caches (per core) 64KB Inst/64KB Data, 2-way, 64B line
L2 cache (shared) 8MB, 16-way, 64B line

DRAM 4GB, 2 channels, 2 DIMMs/channel, 1 rank/DIMM
Memory controller 32-entry request buffer
Memory rank 1GB, 1333MHz DDR3-SDRAM, 8 banks/rank
Memory bank 16384 rows/bank, 1024 columns/bank

Channel bandwidth 8-byte/channel, 10.66GB/s
Row buffer management open-page policy
Refresh configuration 64ms, one-channel, one-rank, all-bank policy

The SECRET framework region size of 128KB, 32K regions in a 4GB DRAM
ECP directory 32K entries

Table 5.3: Workloads for SECRET evaluation.
Workload suit Details
SpecJBB 4 warehouses
Spec2006
Mix1 401.bzip2, 464.h264ref, 453.povray and 447.dealII
Mix2 410.bwaves, 456.hmmer, 400.perlbench and 471.omnetpp
Mix3 454.calculix, 416.gamess, 435.gromacs and 450.soplex
Mix4 482.sphinx3, 444.namd, 434.zeusmp and 437.leslie3d
Mix5 470.lbm, 445.gobmk, 473.astar and 403.gcc
Mix6 462.libquantum, 429.mcf, 433.milc and 458.sjeng

PARSEC blackscholes, bodytrack, ferret, fluidanimate
streamcluster, swaptions, vips, x264, canneal

of Solaris 10. All benchmarks are executed on a 4-core CMP system sharing an 8MB
L2 cache with 4GB DDR3-SDRAM, whose power parameters are set according to Mi-
cron MT41J128M8JP 1Gb DDR3-SDRAM [132]. I implement the power management
policies of DDR3 systems, which have fast-exit and slow-exit modes when entering the
idle state. The detailed system configurations are listed in Table 5.2. Besides the base-
line 4-core system with an 8MB L2 cache, I also evaluate the SECRET framework with
a 4MB L2 cache and a 2MB L2 cache that may be used in a relatively low-end system to
see the effectiveness of SECRET with a small cache and relatively high memory band-
width demand. For SECRET, the size of a region is set to 128KB, and the DRAM is
partitioned into 32K regions. In the SECRET framework, the row buffer is closed as fre-
quently as the baseline configuration, which is the DRAM system without the SECRET
framework and uses 64ms refresh interval. I evaluate SECRET on three categories of
workloads: SPECjbb for on-line transaction processing, PARSEC for multi-threaded ap-
plications, and mixtures of SPEC CPU2006 for multi-programming workloads. Table 5.3
lists the details of each workload. Each set of benchmarks is simulated for 1 billion cycles
after fast-forwarding the first 0.5 billion cycles.

78

Figure 5.7: Retention error rates of utilizing various refresh intervals.

For the experiments presented in this chapter, the retention time distribution is

taken from [122], which presents measurements from real DRAM chips. Figure 5.7 shows

the relation between error rates and refresh intervals deduced from the relation between

cumulative failure probability and retention time shown in [122]. As mentioned in Sec-

tion 5.2.3, I assume the leaky cells of a DRAM chip are uniformly and randomly dis-

tributed in the chip. According to this assumption, I generate five different geometric

distributions of leaky cells for evaluation. In the five distributions, with 10−6 retention

error rate, the average number of retention errors of a region with 128KB size for all five

distributions is one error. The maximum number of retention errors in a region of the five

distributions are seven, seven, eight, eight and nine, respectively. However, I also have

interest in how the SECRET framework works when the distributions of the leaky cells

in DRAM chips have some spatial locality. So, I also generate other 60 distributions that

have several different degrees in spatial locality of leaky cells. In these 60 distributions,

with 10−6 retention error rate, the average number of retention errors of a region with

128KB size is still one error, but the maximum numbers of retention errors in a region are

ranging from seven to thirteen. I will introduce these 60 distributions in Section 5.3.2.5

in detail.

5.3.2 Experimental Results

In this section, I first demonstrate how to decide the target error rate and the SEC

cache configuration. For this set of experiments, I use only one of the leaky cell distribu-

79

tions for demonstration, which has a maximum of eight retention errors in a region with

10−6 retention error rate. I then discuss the energy and performance behavior of SECRET

on the five generated distributions. After that, I discuss the effectiveness of the SECRET

framework with reduced last-level caches and leaky cell distributions with spatial locality,

and then compare the SECRET framework with the conventional Hamming Code ECC

for refresh power reduction.

5.3.2.1 Design Space Exploration: Deciding Target Error Rate and SEC Cache Config-
uration

The target error rate affects both refresh power reduction and error correction over-

heads. With higher target error rates, I can increase the refresh interval, which is inversely

proportional to refresh power consumption. Therefore, the refresh power reduction can

be correlated with refresh intervals using the following formula:

RPTref
= 1− (Tref_min/Tref), (5.5)

where RPTref
represents the percentage of refresh power reduction achieved by the oper-

ating refresh interval Tref , and Tref_min represents the worst-case refresh interval. There-

fore, based on Figure 5.7, I can derive the relation between refresh power reduction and

error rates as shown in Figure 5.8. Since refresh power reduction saturates when the re-

tention error rate is larger than 10−4, I only have to consider the retention error rate that is

smaller than 10−4. Target error rates also affect SEC overheads since an SEC cache line

needs to store all the ECPs in a region as discussed in Section 5.2.6.

To estimate the SEC cache overheads of various cache line sizes, I first need to

determine its associativity and number of sets, which affect the hit rate of the SEC cache.

With higher hit rates, I can minimize extra memory accesses to fetch ECPs/ECP directo-

ries. My experiments indicate that the effect of 1% SEC cache miss rate on the overall

performance is negligible. The average SEC cache miss rates of all tested workloads with

different number of sets and ways are shown in Figure 5.9. I observe that only the 256-

set/4-way, 512-set/4-way, 1024-set/2-way, and 1024-set/4-way cache configurations can

achieve miss rate that is below 1%. Therefore, I select 256-set/4-way as my SEC cache

configuration.

80

Figure 5.8: Refresh power reduction achieved by utilizing refresh intervals of various
target retention error rates.

Figure 5.9: Average cache miss rate of SEC cache with varied number of ways and sets.

With the associativity and set numbers decided, I now examine how target error

rates affect the SEC cache line size. Figure 5.10 shows the DRAM power reductions

when various cache line sizes of the 256-set/4-way SEC cache are utilized. The results

are normalized to the power consumption of the baseline DRAM, and each of the point

is the average of all tested workloads. Refresh power reduction for a given error rate is

derived from Figure 5.8. I can observe that going beyond 10−6 error rate, it only brings

little improvement in refresh power reduction while the SEC cache line size increases

steadily. Therefore, I choose 10−6 as the target retention error rate, which has 500ms

81

Figure 5.10: SEC cache line size vs. DRAM power reduction under various retention
error rates.

refresh interval according to Figure 5.7. Recall that I leave margins to tolerate distribution

variation among DRAM chips by setting the line size larger than what is estimated as

discussed in Section 5.2.3. Here I set the cache line size to 1.5 times of the estimated size.

Since the maximum number of retention errors of a region in the leaky cell distribution

studied in the design space exploration is eight with 10−6 error rate, the SEC cache line

size is set to 36 bytes, which is able to store twelve ECPs and the ECP directory entry of

a region. In my system setup, when the target error rate is set to 10−6, the probability of

having more than twelve errors in a region is 1.43× 10−10, which indicates that the SEC

cache configuration is adequate.

With 256-set/4-way set-associative SEC cache and the target retention error rate

set to 10−6, the total SEC cache size is 36KB. According to CACTI 5.3 [136], assuming

45nm technology, the area of the SEC cache is 0.327mm2, the access latency is 0.683ns

that is about 2 processor cycles when the clock rate is 2GHz, the leakage power is 25mW,

and the energy consumption per access is 0.054nJ.

5.3.2.2 Energy Analysis

I first discuss the energy results of SECRET on DRAMs executing the workloads

mentioned in Section 5.3.1. All the results reported here take all energy overheads dis-

82

Figure 5.11: Power consumption of the DRAM system with SECRET normalized to the
baseline.

cussed in Section 5.2.6 into consideration. Figure 5.11 shows the power consumption of

the DRAM system with SECRET normalized to the baseline. The breakdown shows the

power consumption of the SEC cache and the DRAM system, respectively. Even with an

average of 2.6% more power overheads of the SEC cache, SECRET still achieves up to

18.57% DRAM power reduction on the average.

To see how SECRET affects the major parts of the DRAM power consumption, I

breakdown the DRAM power consumption into DRAM peripheral leakage, dynamic and

refresh power as shown in Figure 5.12. This set of results are normalized to the baseline.

For each workload, the bar on the left and right are the results of baseline and SECRET,

respectively. TheDRAM refresh power is reduced by 87.2% for all workloads since the re-

fresh interval is increased from 64ms to 500ms. In my experiments, when the power over-

heads are not considered, the refresh power reduction achieved by SECRET contributes

20.10% of total DRAM power reduction on the average. SECRET also achieves an av-

erage of 1.48% DRAM power reduction by reducing DRAM peripheral leakage power

since infrequent refresh operations lead to long idle times. The dynamic power increases

slightly, about 0.43% on the average, due to additional memory accesses for fetching the

ECP directory and ECPs.

83

Figure 5.12: Power breakdown of DRAM peripheral leakage, dynamic and refresh power
of the baseline (left) and SECRET (right).

5.3.2.3 Performance Analysis

As mentioned in Section 5.2.6, the performance overheads come from additional

memory accesses caused by SEC cache misses. Figure 5.13 shows the breakdown of the

three types of additional memory accesses, and the results are normalized to the number of

data accesses issued by the workloads. We can see that SECRET introduces at most 2.87%

and an average of 1.62% more data accesses in my tested cases. On the average, fetching

the ECP directory introduces 0.84% more memory accesses, while fetching ECPs incurs

0.55% additional memory accesses. On an SEC cache miss, fetching the ECP directory

is necessary, but fetching ECPs only happens when the requested region has retention er-

rors. Therefore, the number of memory accesses for ECP directory is slightly more than

that for ECPs. Writing ECPs back introduces only an average of 0.23% more memory

accesses. The additional memory accesses do not incur noticeable penalty on overall per-

formance. The average IPC values of the baseline and SECRET are 13.472 and 13.475,

respectively. Among all test cases, x.264 has the most performance degradation when

SECRET is applied. However, even in this case, x.264 only has 1.3% performance degra-

dation compared to the baseline. For the workload Mix6, SECRET even achieves 1.4%

performance improvement since DRAMmodules are less likely to be occupied by refresh

operations that are executed infrequently.

84

Figure 5.13: Additional memory accesses of the SECRET framework normalized to the
number of data accesses issued by the workloads.

5.3.2.4 Evaluating SECRET with Reduced Last-level Cache Size

To see the performance of SECRET with DRAMs that have high access density
and low percentage of refresh power consumption, I perform a set of experiments that have
L2 cache sizes reduced from 8MB to 4MB and 2MB to generate more DRAM accesses.
My experimental results show that, compared to the 8MB L2 cache, the 4MB and 2MB
L2 caches respectively have 56.5% and 192.6%more DRAM accesses on the average. As
mentioned in Section 5.2.3, the design of the SEC cache is decided during system design
time along with the configuration of the micro-architecture. So, for the 4MB and 2MB
L2 cache configurations, I respectively perform the process of design space exploration
for the SEC cache as described in Section 5.3.2.1. The results show that the settings of
256-set/4-way SEC cache and 10−6 retention error rate are also adequate for systems with
4MB L2 cache. For the 2MB L2 cache configuration, since more DRAM accesses are
introduced and the spatial locality of these accesses increases, the settings of 128-set/4-
way SEC cache and 10−6 retention error rate are adequate.

Figure 5.14 shows the power breakdown of the DRAM systems that utilizing 8MB,
4MB and 2MB L2 caches. I show the average DRAM system power consumption of the
16 workloads both with and without SECRET. The results are normalized to the power
consumption of the DRAM system with 8MB L2 cache without SECRET. Since the re-

85

Figure 5.14: DRAM system power breakdown normalized to the DRAM power consump-
tion with 8MB L2 cache.

fresh interval is increased from 64ms to 500ms, the DRAM refresh power is reduced by

87.2% for all the cases. However, with the decreasing L2 cache size and the increas-

ing number of DRAM accesses, the percentage of dynamic power and peripheral leakage

power also increase. Therefore, the percentage of DRAM power reduction by SECRET

also diminishes with the L2 cache size. For the 8MB L2 cache configuration, SECRET

achieves 18.57% DRAM power reduction. With the 4MB L2 cache configuration, the

DRAM power reduction achieved by SECRET is reduced to 16.71%. However, even

with the 2MB L2 cache that has 0.6% more percentage of peripheral leakage power and

5.1% more percentage of dynamic power than the 8MB L2 cache size, the SECRET can

still achieve 13.5% DRAM power reduction on the average with 1.4% power overheads

of the SEC cache.

Figure 5.15 shows the additional memory accesses introduced by SECRET when

utilizing the three L2 cache sizes. As mentioned earlier, 256-set/4-way SEC cache size is

utilized for both the 8MB and 4MB L2 caches. 128-set/4-way SEC cache size is utilized

by the 2MB L2 cache. Although smaller L2 caches introduce more accesses to DRAMs

and the SEC cache, the spatial locality of the accesses actually increases. Therefore, for

the 4MB L2 cache configuration, it has lower SEC cache miss rate and less additional

DRAM accesses than the 8MB L2 cache configuration even if systems with 4MB and

86

Figure 5.15: Average additional memory accesses of the SECRET framework normalized
to the number of data accesses issued by the workloads with 8MB, 4MB and 2MB L2
cache.

8MB L2 caches both utilize the same SEC cache configuration. My experimental results

show that, SECRET introduces very negligible performance degradation (less than 1%)

for all L2 cache sizes.

5.3.2.5 Evaluation of Distributing Leaky Cells with Spatial Locality

As mentioned in Section 5.2.3, I assume the retention times of DRAM cells are

uniformly and randomly distributed. Based on this assumption, the SEC cache line size is

decided. However, when the clustering of leaky cells happens, the SECRET framework

would choose a shorter refresh interval so that the maximum number of retention errors

in a region can be fit in the selected SEC cache line size. In the end, the amount of refresh

power reduction may be reduced. So, in this set of experiments, I create a set of retention

time distributions with various degrees of spatial locality to evaluate SECRET. Distribu-

tions with high spatial locality indicate that leaky cells are more likely to be clustered in

the neighboring area.

According to [137], the retention time of a DRAM cell, denoted by Tretention, can

be decided by two kinds of effects, random effects and the systematic effects, where the

systematic effects refer to the layout-dependent variation through which nearby devices

87

share similar parameters. Therefore, Tretention is modeled by

Tretention = (1−W) · Trand +W · Tsys, (5.6)

where Trand denotes the retention time decided by random effects, and Tsys denotes the
retention time decided by systematic effects. W is the weight value to adjust the proportion
between random and systematic effects. WhenW is set to zero, this indicates I consider the
random effect only and no spatial locality among leaky cells when generating the retention
time distribution. For this set of experiments, I randomly generate Trand. For generating
Tsys, I adopt the multiple-level quad tree approach [138] to model the correlated within-
die variation effect among retention times of DRAM cells. The smallest quadrant in the
multiple-level quad tree is set to 16K DRAM cells [137].

In this set of experiments, I setW to 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 to model the dis-
tributions with various degrees of spatial locality. For eachW value, I utilize Equation 5.6
to generate ten sets of retention time distributions. Therefore, there are sixty different re-
tention time distributions generated for this set of experiments. The L2 cache size is set
to 8MB. The settings of SEC cache and the target retention error rate are the same as the
ones obtained in Section 5.3.2.1. That is, the SEC cache line size is set to 36 bytes, which
is able to store at most twelve ECPs of a region, and the target error rate is set to 10−6.

For the retention time distributions with variousW values, in Figure 5.16, I show
the DRAM power reduction of various distributions. Moreover, it also shows the maxi-
mum number of retention errors in a region when the target error rate is set to 10−6. We
can observe that, with the value ofW increases, the spatial locality among retention times
slightly increases and the maximum number of errors in a region also increases. How-
ever, for the sixty retention time distributions, only four distributions have the maximum
number of retention errors larger than twelve when the target error rate is set to 10−6 in
my test cases. To accommodate the selected SEC cache design, instead of utilizing the
500ms refresh interval, the refresh intervals of the four cases need to be shortened so that
the maximum number of retention errors in a region is no more than twelve. The refresh
interval that meets the requirement of each of the four cases is also marked in Figure 5.16,
and the shortest refresh interval is 450ms. Although shorter refresh interval indicates less
refresh power reduction, the 450ms refresh interval achieves only 0.8% less power reduc-
tion than the best case. This shows the proposed SECRET framework can still achieve

88

Figure 5.16: DRAM power reduction of various distributions, and the maximum number
of retention errors in a region with the target error rate set to 10−6.

Figure 5.17: Mean time to failure vs. retention error rate in the DRAM system with
Hamming Code ECC.

significant DRAM power reduction when extreme cases of the retention time distribution

happens.

5.3.2.6 Comparison with Traditional ECC Approaches

For systems with a reliability requirement, DRAMs are commonly protected by

the Hamming Code ECC to meet the target MTTF. Here, I evaluate the effect of SECRET

in such a DRAM system. With the same ECC capability, to tolerate retention errors caused

by prolonging the refresh interval, theMTTF of the protectedmemory system is shortened.

89

Figure 5.17 shows the relation between retention error rates and the MTTF. In this set of
experiments, I assume a 64GB DRAM, where the Failure in Time (FIT) of soft errors is
2000/Mb [139]. To meet the 10-year MTTF requirement [140], the retention error rate
should not exceed 10−8, which corresponds to a 128ms refresh interval as indicated in
Figure 5.7. That is, under theMTTF constraint, DRAMswith Hamming Code can achieve
50% refresh power reduction compared to the baseline with a 64ms refresh interval. As
shown in Section 5.3.2.2, SECRET can increase the refresh interval to 500ms and achieve
up to 87.2% refresh power reduction. Therefore, the benefit of SECRET is still quite
substantial in a DRAM system protected with Hamming Code.

90

Chapter 6

Conclusion

In this dissertation, I develop the PPT framework and the SECRET framework to reduce

DRAM background power. The PPT framework is the first joint performance, power and

thermal (PPT) management framework to orchestrate task execution and page allocation

among tasks to achieve desirable tradeoff between performance, power and temperature.

Previous power-aware DRAM system designs cluster memory accesses to prolong the idle

periods, so they can utilize low-power modes to reduce DRAM peripheral leakage effi-

ciently. However, these mechanisms may increase the power density of the active DRAM

modules and cause thermal emergency. The PPT framework also reduces the DRAM pe-

ripheral leakage by clustering memory accesses, but controls the operating temperature

by alternating active DRAM modules periodically. With accurate bandwidth demand es-

timation, the PPT framework can allocate sufficient memory resources for the running

threads to avoid performance degradation due to clustering memory accesses into a sub-

set of DRAM modules. The experimental results show that PPT with the dynamic BW

estimation method achieves comparable performance to the performance-driven policy at

all time, but much lower power consumption, while the power-driven policy could only

deliver half of the peak throughput of PPT. Furthermore, PPT has the lowest temperature

compared to the performance-driven and power-driven policies.

The SECRET framework is a novel error correction framework for retention errors

in DRAMs to prolong the refresh interval and achieve refresh power reduction based on the

new observations that the retention errors are hard errors rather than soft errors and only

few DRAM cells have large leakage. Therefore, SECRET only allocates error-correcting

bits to leaky cells that occur retention errors under a refresh interval. So, the SECRET

framework is much more area and energy efficient than conventional ECC schemes for

91

refresh power reduction. Moreover, the SECRET framework also includes an customized
cache for the selective error correction scheme to minimize the performance overheads
from the additional memory accesses for fetching error-correcting bits. A design space
exploration process is also proposed to select a target number of retention errors that can
achieve the best balance between the correction overheads and the refresh power reduction.
SECRET does not require anymodification in the interface between thememory controller
and the DRAM, and all additional hardware components are in the memory controller.
The experimental results show that SECRET can reduce refresh power by 87.2%, and an
average of 18.57% of DRAM power consumption with negligible area and performance
overheads. The results also show that, for DRAM systems that suffer spatial locality of
retention time distribution or for DRAM systems protected by Hamming Code, the benefit
of SECRET is still quite substantial.

The PPT framework reduces the peripheral leakage power consumption of DRAM
systems by utilizing the low-power modes with power-aware page allocation and thread
scheduling, and the mechanism is mainly implemented in the system software such as
the operating system. So, the PPT framework is a software approach with hardware sup-
ports to achieve power reduction. On the other hand, the SECRET framework reduces
the refresh power consumption of DRAM systems by prolonging the refresh interval and
correcting retention errors, and the SEC mechanism is a hardware approach that is imple-
mented in the memory controller and transparent to the system software and applications.
So, the SECRET framework is a hardware approach with few software supports to achieve
power savings. Since they both incur negligible performance impact for the DRAM sys-
tems and reduce different parts of the DRAM background power consumption with dif-
ferent approaches, they can be used on a DRAM system at the same time to achieve power
reduction on both peripheral leakage and refresh power of the DRAM system.

I choose to use a software approach to reduce peripheral leakage power, because
the PPT framework needs to manipulate the memory access behaviors, and the hardware
approaches are usually not able to collect enough information to perform an efficient
coarse-grained reshaping of memory accesses. For example, the hardware approaches
may not be able to perform power-aware data allocation or power-aware memory access
scheduling as efficiently as the mechanisms implemented in the operating system by uti-
lizing power-aware page allocation and power-aware thread scheduling, because the page

92

allocation and thread scheduling are already done by the operating system in conventional
computer systems. On the other hand, I choose to use a hardware approach to reduce the re-
fresh power by prolonging the refresh interval and correcting the retention errors, because
the refresh operations are basically controlled by the memory controller and transparent
to the system software and applications. Since this approach does not use any information
from the operating system or the executed applications, there is no need to implement this
mechanism in software by increasing the design complexity of the operating system or
changing the applications.

However, to reduce the peripheral leakage power, the power-aware page alloca-
tion or thread scheduling policies may be able to get some advantages from utilizing hard-
ware supports. For example, the dynamic bandwidth estimation method of the Adaptive
Grouping mechanism in the PPT framework uses the usage of the memory request buffer
to direct the Adaptive Groupingmechanism and shows more power savings than the static
bandwidth estimation method that is a software approach. On the other hand, to reduce
the refresh power, the hardware approaches such as the SECRET framework can cooper-
ate with the software approaches such as previous works aforementioned in Section 2.2.3
to further reduce refresh operations. Sometimes, the software approaches are better, be-
cause the operating system and applications can provide a high-level overall picture about
the system behaviors and pure software approaches can avoid the overheads of modifica-
tions in hardware. But, the hardware approaches are sometimes better, because hardware
components can perform fine-grained and instant response for specific system behaviors
and pure hardware approaches can avoid the overheads of re-design or re-compilation of
the operating system and applications. However, in general, the software-hardware co-
operative approaches can get more information than the software-only or hardware-only
approaches and provide more opportunities to save energy at the expense of more design
complexity. When we design the low-power policies, we need to know the complexity
of retrieving the required information and the overheads of implementing the low-power
mechanism, and try to figure out how to change the system can minimize the design com-
plexity and overheads by utilizing software approaches, hardware approaches or software-
hardware cooperative approaches. To minimize the DRAM background power composed
of the peripheral leakage power and the refresh power, I believe that putting the PPT and
SECRET frameworks together is a good approach to build a software-hardware cooper-

93

ative mechanism that efficiently reduces the DRAM background power with acceptable
implementation overheads.

94

Bibliography

[1] Stuart Schechter, Gabriel H. Loh, Karin Straus, and Doug Burger. Use ecp, not
ecc, for hard failures in resistive memories. In Proceedings of the 37th Annual

International Symposium on Computer Architecture, ISCA ’10, pages 141–152,
New York, NY, USA, 2010. ACM.

[2] Marc A. Viredaz and Deborah A. Wallach. Power evaluation of a handheld com-
puter: A case study. Technical report, Compaq Western Research Laboratory,
2001.

[3] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael
Kistler, and Tom W. Keller. Energy management for commercial servers. Com-

puter, 36(12):39–48, December 2003.

[4] Odilio Vargas. Minimum power consumption in mobile-phone memory subsys-
tems. Portable Design Magazine, 26:31–38, 2005.

[5] Odilio Vargas. Achieve minimum power consumption in mobile memory subsys-
tems. EE Times Asia, 2006.

[6] Elliott Cooper-Balis and Bruce Jacob. Fine-grained activation for power reduction
in dram. IEEE Micro, 30(3):34–47, May 2010.

[7] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. Raidr: Retention-aware in-
telligent dram refresh. In Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12, pages 1–12, Washington, DC, USA, 2012.
IEEE Computer Society.

[8] V. Delaluz, M. Kandemir, N. Vijaykrishnan, andM. J. Irwin. Energy-oriented com-
piler optimizations for partitioned memory architectures. In Proceedings of the

95

2000 International Conference on Compilers, Architecture, and Synthesis for Em-
bedded Systems, CASES ’00, pages 138–147, New York, NY, USA, 2000. ACM.

[9] V. Delaluz, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin. Memory en-
ergymanagement using software and hardware directed power mode control. Tech-
nical report, 2000.

[10] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis. Power aware page
allocation. In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’00, pages
105–116, New York, NY, USA, 2000. ACM.

[11] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M.J. Irwin.
Dram energy management using software and hardware directed power mode con-
trol. In Proceedings of the Seventh International Symposium on High-Performance
Computer Architecture, HPCA ’01, pages 159–169, 2001.

[12] V. Delaluz, M. Kandemir, N. Vijaykrishnan, Anand Sivasubramaniam, and M.J.
Irwin. Hardware and software techniques for controlling dram power modes. IEEE
Transactions on Computers, 50(11):1154–1173, 2001.

[13] R. Athavale, Narayanan Vijaykrishnan, Mahmut T. Kandemir, and Mary Jane Ir-
win. Influence of array allocation mechanisms on memory system energy. In Pro-
ceedings of the 15th International Parallel & Distributed Processing Symposium,
IPDPS ’01, pages 3–, Washington, DC, USA, 2001. IEEE Computer Society.

[14] V. De La Luz, M. Kandemir, and I. Kolcu. Automatic data migration for reducing
energy consumption in multi-bank memory systems. In Proceedings of the 39th
Annual Design Automation Conference, DAC ’02, pages 213–218, New York, NY,
USA, 2002. ACM.

[15] V. Delaluz, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, A. Sivasubramaniam, and
I. Kolcu. Compiler-directed array interleaving for reducing energy in multi-bank
memories. In Proceedings of the 2002 Asia and South Pacific Design Automa-
tion Conference, ASP-DAC ’02, pages 288–, Washington, DC, USA, 2002. IEEE
Computer Society.

96

[16] N. Tuck and S. Reda. Os energy conservation policies for low power systems, 2002.

[17] Hai Huang, Padmanabhan Pillai, and Kang G. Shin. Design and implementation of

power-aware virtual memory. InProceedings of the Annual Conference onUSENIX

Annual Technical Conference, ATEC ’03, pages 5–5, Berkeley, CA, USA, 2003.

USENIX Association.

[18] Zhong Wang and Xiaobo Sharon Hu. Power aware variable partitioning and in-

struction scheduling for multiple memory banks. In Proceedings of the Conference

on Design, Automation and Test in Europe, DATE ’04, pages 10312–, Washington,

DC, USA, 2004. IEEE Computer Society.

[19] Zhong Wang and Xiaobo Sharon Hu. Energy-aware variable partitioning and in-

struction scheduling for multibank memory architectures. ACM Transactions on

Design Automation of Electronic Systems, 10(2):369–388, April 2005.

[20] Hai Huang, Kang G. Shin, Charles Lefurgy, and Tom Keller. Improving energy

efficiency by making dram less randomly accessed. In Proceedings of the 2005 In-

ternational Symposium on Low Power Electronics and Design, ISLPED ’05, pages

393–398, New York, NY, USA, 2005. ACM.

[21] Ozcan Ozturk and Mahmut Kandemir. Integer linear programming based energy

optimization for banked drams. In Proceedings of the 15th ACM Great Lakes Sym-

posium on VLSI, GLSVLSI ’05, pages 92–95, New York, NY, USA, 2005. ACM.

[22] Ozcan Ozturk and Mahmut Kandemir. Nonuniform banking for reducing memory

energy consumption. In Proceedings of the Conference on Design, Automation and

Test in Europe, DATE ’05, pages 814–819, Washington, DC, USA, 2005. IEEE

Computer Society.

[23] Vivek Pandey, W. Jiang, Yuanyuan Zhou, and R. Bianchini. Dma-aware memory

energy management. In Proceedings of the Twelfth International Symposium on

High-Performance Computer Architecture, HPCA ’06, pages 133–144, 2006.

97

[24] K. Kumar, K. Doshi, M. Dimitrov, and Yung-Hsiang Lu. Memory energy man-
agement for an enterprise decision support system. In Proceedings of the 2011 In-
ternational Symposium on Low Power Electronics and Design, ISLPED ’11, pages
277–282, 2011.

[25] R. Ayoub, R. Nath, and T. Rosing. Jetc: Joint energy thermal and cooling man-
agement for memory and cpu subsystems in servers. In Proceedings of the 2012
18th IEEE International Symposium on High Performance Computer Architecture,
HPCA ’12, pages 1–12, 2012.

[26] Ahmed M. Amin and Zeshan A. Chishti. Rank-aware cache replacement and write
buffering to improve dram energy efficiency. In Proceedings of the 16th ACM/
IEEE International Symposium on Low Power Electronics and Design, ISLPED
’10, pages 383–388, New York, NY, USA, 2010. ACM.

[27] Victor De La Luz, Ismail Kadayif, Mahmut Kandemir, and Uger Sezer. Access
pattern restructuring for memory energy. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(4):289–303, April 2004.

[28] I. Hur and C. Lin. A comprehensive approach to dram power management. In Pro-
ceedings of the 14th IEEE International Symposium on High Performance Com-
puter Architecture, HPCA ’08, pages 305–316, 2008.

[29] Krishna Kant. A control scheme for batching dram requests to improve power
efficiency. Proceedings of the ACM SIGMETRICS Joint International Conference
on Measurement and Modeling of Computer Systems, 39(1):331–332, June 2011.

[30] Sukki Kim, Soontae Kim, and Yebin Lee. Dram power-aware rank scheduling.
In Proceedings of the 2012 ACM/IEEE International Symposium on Low Power
Electronics and Design, ISLPED ’12, pages 397–402, New York, NY, USA, 2012.
ACM.

[31] O. Ozturk, G. Chen, M. Kandemir, and M. Karakoy. Cache miss clustering for
banked memory systems. In Proceedings of the 2006 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD ’06, pages 244–250, New York,
NY, USA, 2006. ACM.

98

[32] David T. Harper and J. Robert Jump. Vector access performance in parallel memo-

ries using a skewed storage scheme. IEEE Transactions on Computers, C-36(12):

1440–1449, 1987.

[33] André Seznec and Jacques Lenfant. Interleaved parallel schemes: improving mem-

ory throughput on supercomputers. InProceedings of the 19th Annual International

Symposium on Computer Architecture, ISCA ’92, pages 246–255, New York, NY,

USA, 1992. ACM.

[34] Scott Rixner. Memory controller optimizations for web servers. In Proceedings of

the 37th Annual IEEE/ACM International Symposium on Microarchitecture, MI-

CRO ’04, pages 355–366, Washington, DC, USA, 2004. IEEE Computer Society.

[35] Jungeun Kim and Taewhan Kim. Memory access optimization through combined

code scheduling, memory allocation, and array binding in embedded system design.

InProceedings of the 42nd Annual Design Automation Conference, DAC ’05, pages

105–110, New York, NY, USA, 2005. ACM.

[36] I-Jui Sung, John A. Stratton, and Wen-Mei W. Hwu. Data layout transformation

exploiting memory-level parallelism in structured grid many-core applications. In

Proceedings of the 19th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’10, pages 513–522, New York, NY, USA, 2010.

ACM.

[37] Y. Ben Asher and N. Rotem. Automatic memory partitioning: Increasing mem-

ory parallelism via data structure partitioning. In Proceedings of the 2010 IEEE/

ACM/IFIP International Conference on Hardware/Software Codesign and System

Synthesis, CODES+ISSS ’10, pages 155–161, 2010.

[38] Ciprian Seiculescu, Luca Benini, and Giovanni De Micheli. A distributed inter-

leaving scheme for efficient access to wideio dram memory. In Proceedings of the

Eighth IEEE/ACM/IFIP International Conference onHardware/Software Codesign

and System Synthesis, CODES+ISSS ’12, pages 103–112, New York, NY, USA,

2012. ACM.

99

[39] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and Chengyong
Wu. A software memory partition approach for eliminating bank-level interference
in multicore systems. In Proceedings of the 21st International Conference on Par-
allel Architectures and Compilation Techniques, PACT ’12, pages 367–376, New
York, NY, USA, 2012. ACM.

[40] Heekwon Park, Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh.
Regularities considered harmful: forcing randomness to memory accesses to re-
duce row buffer conflicts for multi-core, multi-bank systems. In Proceedings of

the Eighteenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’13, pages 181–192, New York,
NY, USA, 2013. ACM.

[41] Joonghyun Baek, Byungse So, Taekoo Lee, Yunhyeok Im, and Seyong Oh. Ther-
mal characterization of high speed ddr devices in system environments. In Pro-

ceedings of the Nineteenth Annual IEEE Semiconductor Thermal Measurement and

Management Symposium, SEMI-THERM ’03, pages 138–143, 2003.

[42] J Iyer, CL Hall, J Shi, and Y Huang. System memory power and thermal manage-
ment in platforms built on intel centrino duo mobile technology. Intel Technology
Journal, 10(2):123–132, 2006.

[43] H. Ran and I. Mohammed. Thermal management of high density very low profile
memory module. In Proceedings of the Twenty Third Annual IEEE Semiconductor

Thermal Measurement and Management Symposium, SEMI-THERM ’07, pages
118–124, 2007.

[44] Jiang Lin, Hongzhong Zheng, Zhichun Zhu, Howard David, and Zhao Zhang.
Thermal modeling and management of dram memory systems. In Proceedings

of the 34th Annual International Symposium on Computer Architecture, ISCA ’07,
pages 312–322, New York, NY, USA, 2007. ACM.

[45] Jiang Lin, Hongzhong Zheng, Zhichun Zhu, Eugene Gorbatov, Howard David, and
Zhao Zhang. Software thermal management of dram memory for multicore sys-
tems. In Proceedings of the 2008 ACM SIGMETRICS International Conference on

100

Measurement and Modeling of Computer Systems, SIGMETRICS ’08, pages 337–

348, New York, NY, USA, 2008. ACM.

[46] Song Liu, Seda Ogrenci Memik, Yu Zhang, and Gokhan Memik. A power and

temperature aware dram architecture. In Proceedings of the 45th Annual Design

Automation Conference, DAC ’08, pages 878–883, New York, NY, USA, 2008.

ACM.

[47] Song Liu, Seda Ogrenci Memik, Yu Zhang, and Gokhan Memik. An approach for

adaptive dram temperature and power management. In Proceedings of the 22nd

Annual International Conference on Supercomputing, ICS ’08, pages 63–72, New

York, NY, USA, 2008. ACM.

[48] Raid Zuhair Ayoub, Krishnam Raju Indukuri, and Tajana Simunic Rosing. Energy

efficient proactive thermal management in memory subsystem. In Proceedings

of the 16th ACM/IEEE International Symposium on Low Power Electronics and

Design, ISLPED ’10, pages 195–200, New York, NY, USA, 2010. ACM.

[49] Song Liu, B. Leung, A. Neckar, S.O.Memik, G.Memik, and N. Hardavellas. Hard-

ware/software techniques for dram thermal management. In Proceedings of the

17th IEEE International Symposium on High Performance Computer Architecture,

HPCA ’11, pages 515–525, 2011.

[50] Ozcan Ozturk and Mahmut Kandemir. Data replication in banked drams for re-

ducing energy consumption. In Proceedings of the 7th International Symposium

on Quality Electronic Design, ISQED ’06, pages 551–556, Washington, DC, USA,

2006. IEEE Computer Society.

[51] Renato Levy, Bhagirath Narahari, and Rahul Simha. Energy-aware allocation of

dynamic variables in partitioned memory architectures.

[52] A.E. Papathanasiou and M.L. Scott. Energy efficiency through burstiness. In Pro-

ceedings of the Fifth IEEE Workshop on Mobile Computing Systems and Applica-

tions, HotMobile ’03, pages 44–53, 2003.

101

[53] Jayaprakash Pisharath and Alok Choudhary. An integrated approach to reducing

power dissipation in memory hierarchies. In Proceedings of the 2002 Interna-

tional Conference on Compilers, Architecture, and Synthesis for Embedded Sys-

tems, CASES ’02, pages 88–97, New York, NY, USA, 2002. ACM.

[54] H. Koc, O. Ozturk, M. Kandemir, S. H. K. Narayanan, and E. Ercanli. Minimizing

energy consumption of banked memories using data recomputation. In Proceed-

ings of the 2006 International Symposium on Low Power Electronics and Design,

ISLPED ’06, pages 358–362, New York, NY, USA, 2006. ACM.

[55] Xiaobo Fan, Carla Ellis, and Alvin Lebeck. Memory controller policies for dram

power management. In Proceedings of the 2001 International Symposium on Low

Power Electronics and Design, ISLPED ’01, pages 129–134, New York, NY, USA,

2001. ACM.

[56] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.

Scheduler-based dram energy management. In Proceedings of the 39th Annual

Design Automation Conference, DAC ’02, pages 697–702, New York, NY, USA,

2002. ACM.

[57] Jayaprakash Pisharath, Alok Choudhary, and Mahmut Kandemir. Reducing energy

consumption of queries in memory-resident database systems. In Proceedings of

the 2004 International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, CASES ’04, pages 35–45, New York, NY, USA, 2004. ACM.

[58] Chun-Gi Lyuh and Taewhan Kim. Memory access scheduling and binding consid-

ering energy minimization in multi-bank memory systems. In Proceedings of the

41st Annual Design Automation Conference, DAC ’04, pages 81–86, New York,

NY, USA, 2004. ACM.

[59] C. G Lyuh and T. Kim. Memory access scheduling and binding considering energy

minimisation in multi-bank memory systems: integrated approach. IEE Proceed-

ings - Computers and Digital Techniques, 153(1):59–68, 2006.

102

[60] Hai Huang and KangG. Shin. Co-operative software-hardware power management
for main memory. In Proceedings of the Workshop on Power-Aware Computer
Systems, PACS ’04, 2004.

[61] H. Huang, K. G. Shin, C. Lefurgy, K. Rajamani, T. Keller, E. Hensbergen, and
F. Rawson. Software-hardware cooperative power management for main memory.
In Proceedings of the 4th International Conference on Power-Aware Computer Sys-
tems, PACS ’04, pages 61–77, Berlin, Heidelberg, 2005. Springer-Verlag.

[62] Xiaodong Li, Zhenmin Li, Yuanyuan Zhou, and Sarita Adve. Performance directed
energy management for main memory and disks. ACM Transactions on Storage,
1(3):346–380, August 2005.

[63] Hongzhong Zheng and Zhichun Zhu. Power and performance trade-offs in con-
temporary dram system designs for multicore processors. IEEE Transactions on
Computers, 59(8):1033–1046, August 2010.

[64] Mingsong Bi, R. Duan, and C. Gniady. Delay-hiding energy management mecha-
nisms for dram. In Proceedings of the 16th IEEE International Symposium on High
Performance Computer Architecture, HPCA ’10, pages 1–10, 2010.

[65] Bruno Zatt, Muhammad Shafique, Sergio Bampi, and Jörg Henkel. A low-power
memory architecture with application-aware power management for motion & dis-
parity estimation in multiview video coding. In Proceedings of the International
Conference on Computer-Aided Design, ICCAD ’11, pages 40–47, Piscataway, NJ,
USA, 2011. IEEE Press.

[66] Muhammad Shafique, Bruno Zatt, Fabio Leandro Walter, Sergio Bampi, and Jörg
Henkel. Adaptive power management of on-chip video memory for multiview
video coding. In Proceedings of the 49th Annual Design Automation Conference,
DAC ’12, pages 866–875, New York, NY, USA, 2012. ACM.

[67] J. Mukundan and J.F. Martinez. Morse: Multi-objective reconfigurable self-
optimizing memory scheduler. In Proceedings of the 18th IEEE International
Symposium on High Performance Computer Architecture, HPCA ’12, pages 1–
12, 2012.

103

[68] Karthik Chandrasekar, Benny Akesson, and Kees Goossens. Run-time power-
down strategies for real-time sdrammemory controllers. In Proceedings of the 49th
Annual Design Automation Conference, DAC ’12, pages 988–993, New York, NY,
USA, 2012. ACM.

[69] Jabulani Nyathi and J.G. Delgado-Frias. Self-timed refreshing approach for dy-
namic memories. In Proceedings of the Eleventh Annual IEEE International ASIC

Conference, pages 169–173, 1998.

[70] H.Y. Cho and J.K. Oh. Us patent 6229747 b1: Self-refresh apparatus for a semi-
conductor memory device, May 2001.

[71] L.L.C. Hsu, G. Frankowsky, and O. Weinfurtner. Us patent 6483764 b2: Dynamic
dram refresh rate adjustment based on cell leakage monitoring, November 2002.

[72] M.J. Burgan. Wo patent 2004075256 a2: Variable refresh control for a memory,
September 2004.

[73] Tung-Han Tsai, Chin-Lin Chen, Ching-Li Lee, and Chua-Chin Wang. Power-
saving nano-scale drams with an adaptive refreshing clock generator. In Proceed-
ings of the IEEE International Symposium on Circuits and Systems, ISCAS ’08,
pages 612–615, 2008.

[74] Le-Nguyen Tran, F.J. Kurdahi, A.M. Eltawil, and A. Aljumah. Adjustable supply
voltages and refresh cycle for process variations, temperature changes, and device
degradation adaptation in 1t1c embedded dram. In Proceedings of the 6th IEEE

International Design and Test Workshop, IDT ’11, pages 124–129, 2011.

[75] P.G. Emma, W.R. Reohr, and L.-K. Wang. Us patent 6389505 b1: Restore tracking
system for dram, May 2002.

[76] Mrinmoy Ghosh and Hsien hsin S. Lee. Dram decay: Using decay counters to
reduce energy consumption in drams.

[77] Mrinmoy Ghosh and Hsien-Hsin S. Lee. Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3d die-stacked drams.

104

In Proceedings of the 40th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO ’07, pages 134–145, Washington, DC, USA, 2007. IEEE

Computer Society.

[78] P.G. Emma, W.R. Reohr, and M. Meterelliyoz. Rethinking refresh: Increasing

availability and reducing power in dram for cache applications. IEEEMicro, 28(6):

47–56, 2008.

[79] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas. Refrint: Intelligent refresh to

minimize power in on-chip multiprocessor cache hierarchies. In Proceedings of

the 19th International Symposium on High-Performance Computer Architecture,

HPCA ’13, 2013.

[80] T. Ohsawa, K. Kai, and K. Murakami. Optimizing the dram refresh count for

merged dram/logic lsis. In Proceedings of the 1998 International Symposium on

Low Power Electronics and Design, ISLPED ’98, pages 82–87, 1998.

[81] R.K. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware placement in dram

(rapid): software methods for quasi-non-volatile dram. In Proceedings of the

Twelfth International Symposium on High-Performance Computer Architecture,

HPCA ’06, pages 155–165, 2006.

[82] V.G. Moshnyaga, Hua Vo, G. Reinman, and M. Potkonjak. Reducing energy of

dram/flash memory system by os-controlled data refresh. In Proceedings of the

IEEE International Symposium on Circuits and Systems, ISCAS ’07, pages 2108–

2111, 2007.

[83] Ciji Isen and Lizy John. Eskimo: Energy savings using semantic knowledge of

inconsequential memory occupancy for dram subsystem. In Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

’09, pages 337–346, New York, NY, USA, 2009. ACM.

[84] S. Kim and S. Kim. Operating system-directed dram refresh energy reduction. In

Proceedings of the 6th Triangle Symposium on Advanced ICT, TRISAI ’11, 2011.

105

[85] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn.

Flikker: saving dram refresh-power through critical data partitioning. In Proceed-

ings of the Sixteenth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’11, pages 213–224, New

York, NY, USA, 2011. ACM.

[86] K. Patel, L. Benini, Enrico Macii, and Massimo Poncino. Energy-efficient value-

based selective refresh for embedded drams. In Proceedings of the 15th Inter-

national Conference on Integrated Circuit and System Design: Power and Tim-

ing Modeling, Optimization and Simulation, PATMOS ’05, pages 466–476, Berlin,

Heidelberg, 2005. Springer-Verlag.

[87] S. Takase and N. Kushiyama. A 1.6-gbyte/s dram with flexible mapping redun-

dancy technique and additional refresh scheme. IEEE Journal of Solid-State Cir-

cuits, 34(11):1600–1606, 1999.

[88] Joohee Kim and Marios C. Papaefthymiou. Dynamic memory design for low data-

retention power. In Proceedings of the 10th International Workshop on Integrated

Circuit Design, Power and Timing Modeling, Optimization and Simulation, PAT-

MOS ’00, pages 207–216, London, UK, UK, 2000. Springer-Verlag.

[89] Joohee Kim andM.C. Papaefthymiou. Block-based multi-period refresh for energy

efficient dynamic memory. In Proceedings of the 14th Annual IEEE International

ASIC/SOC Conference, pages 193–197, 2001.

[90] Joohee Kim and M.C. Papaefthymiou. Block-based multiperiod dynamic mem-

ory design for low data-retention power. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 11(6):1006–1018, 2003.

[91] Todd Austin, Valeria Bertacco, David Blaauw, and Trevor Mudge. Opportunities

and challenges for better than worst-case design. In Proceedings of the 2005 Asia

and South Pacific Design Automation Conference, ASP-DAC ’05, pages 2–7, New

York, NY, USA, 2005. ACM.

106

[92] Y. Katayama, E.J. Stuckey, S. Morioka, and Z. Wu. Fault-tolerant refresh power
reduction of drams for quasi-nonvolatile data retention. In Proceedings of the In-
ternational Symposium on Defect and Fault Tolerance in VLSI Systems, DFT ’99,
pages 311–318, 1999.

[93] Yasunao Katayama, Yasushi Negishi, and Sumio Morioka. Efficient error correc-
tion code configurations for quasi-nonvolatile data retention by drams. In Proceed-
ings of the 15th IEEE International Symposium on Defect and Fault-Tolerance in
VLSI Systems, DFT ’00, pages 201–, Washington, DC, USA, 2000. IEEE Computer
Society.

[94] D.A. Klein and J. Schreck. Us patent 6965537 b1: Memory system and method
using ecc to achieve low power refresh, November 2005.

[95] Saeng-Hwan Kim, Won-Oh Lee, Jung-Ho Kim, Seong-Seop Lee, Sun-Young
Hwang, Chang-Il Kim, Tae-Woo Kwon, Bong-Seok Han, Sung-Kwon Cho, Dae-
Hui Kim, Jae-Keun Hong, Min-Yung Lee, Sung-Wook Yin, Hyeon-Gon Kim, Jin-
Hong Ahn, Yong-Tark Kim, Yo-Hwan Koh, and Joong-Sik Kih. A low power and
highly reliable 400mbps mobile ddr sdram with on-chip distributed ecc. In Pro-
ceedings of the IEEE Asian Solid-State Circuits Conference, ASSCC ’07, pages
34–37, 2007.

[96] S. Cha and H. Yoon. Check-bit-reduced codewords using non-2n data bits for ecc-
based self-refresh enhancement techniques in drams. Electronics Letters, 46(22):
1488–1490, 2010.

[97] Chris Wilkerson, Alaa R. Alameldeen, Zeshan Chishti, Wei Wu, Dinesh So-
masekhar, and Shih-lien Lu. Reducing cache power with low-cost, multi-bit error-
correcting codes. In Proceedings of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10, pages 83–93, NewYork, NY, USA, 2010. ACM.

[98] T. Murotani. Us patent 4393477 a: Temperature responsive refresh control circuit,
July 1983.

[99] Y. Kagenishi, H. Hirano, A. Shibayama, H. Kotani, N. Moriwaki, M. Kojima, and
T. Sumi. Low power self refresh mode dram with temperature detecting circuit. In

107

Proceedings of the IEEE Symposium on VLSI Circuits, VLSIC ’93, pages 43–44,
1993.

[100] H. Ruckerbauer. Us patent 6438057 b1: Dram refresh timing adjustment device,
system and method, August 2002.

[101] Elpida Memory, Inc. Auto temperature compensated self refresh (atcsr). 2005.

[102] Chan-Kyung Kim, Jae-Goo Lee, Young-Hyun Jun, Chil-Gee Lee, and Bai-Sun
Kong. Cmos temperature sensor with ring oscillator for mobile dram self-refresh
control. Microelectronics Journal, 38(10-11):1042–1049, October 2007.

[103] P.G. Emma and W. Roehr. Us patent 7483325 b2: Retention-time control and error
management in a cache system comprising dynamic storage, January 2009.

[104] Jie Meng, Katsutoshi Kawakami, and Ayse K. Coskun. Optimizing energy effi-
ciency of 3-d multicore systems with stacked dram under power and thermal con-
straints. In Proceedings of the 49th Annual Design Automation Conference, DAC
’12, pages 648–655, New York, NY, USA, 2012. ACM.

[105] Jie Meng and A.K. Coskun. Analysis and runtime management of 3d systems with
stacked dram for boosting energy efficiency. In Proceedings of the Design, Au-

tomation Test in Europe Conference Exhibition, DATE ’12, pages 611–616, 2012.

[106] Chris Wilkerson, Hongliang Gao, Alaa R. Alameldeen, Zeshan Chishti, Muham-
mad Khellah, and Shih-Lien Lu. Trading off cache capacity for reliability to enable
low voltage operation. In Proceedings of the 35th Annual International Sympo-
sium on Computer Architecture, ISCA ’08, pages 203–214, Washington, DC, USA,
2008. IEEE Computer Society.

[107] C. Wilkerson, Hongliang Gao, A.R. Alameldeen, Z. Chishti, M. Khellah, and Shih-
Lien Lu. Trading off cache capacity for low-voltage operation. IEEEMicro, 29(1):
96–103, 2009.

[108] Avesta Sasan (Mohammad A Makhzan), Houman Homayoun, Ahmed Eltawil,
and Fadi Kurdahi. Process variation aware sram/cache for aggressive voltage-
frequency scaling. In Proceedings of the Conference on Design, Automation and

108

Test in Europe, DATE ’09, pages 911–916, 3001 Leuven, Belgium, Belgium, 2009.
European Design and Automation Association.

[109] Jaume Abella, Javier Carretero, Pedro Chaparro, Xavier Vera, and Antonio
González. Low vccmin fault-tolerant cache with highly predictable performance.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’09, pages 111–121, New York, NY, USA, 2009. ACM.

[110] Amin Ansari, Shuguang Feng, Shantanu Gupta, and Scott Mahlke. Enabling ultra
low voltage system operation by tolerating on-chip cache failures. In Proceedings
of the 14th ACM/IEEE International Symposium on Low Power Electronics and
Design, ISLPED ’09, pages 307–310, New York, NY, USA, 2009. ACM.

[111] Zeshan Chishti, Alaa R. Alameldeen, Chris Wilkerson, Wei Wu, and Shih-Lien Lu.
Improving cache lifetime reliability at ultra-low voltages. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
’09, pages 89–99, New York, NY, USA, 2009. ACM.

[112] A.R. Alameldeen, Z. Chishti, C. Wilkerson, Wei Wu, and Shih-Lien Lu. Adap-
tive cache design to enable reliable low-voltage operation. IEEE Transactions on
Computers, 60(1):50–63, 2011.

[113] T.N. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodorescu. Parichute: Gen-
eralized turbocode-based error correction for near-threshold caches. In Proceed-
ings of the 43rd Annual IEEE/ACM International Symposium onMicroarchitecture,
MICRO ’10, pages 351–362, 2010.

[114] Shi-Ting Zhou, S. Katariya, H. Ghasemi, S. Draper, and Nam Sung Kim. Mini-
mizing total area of low-voltage sram arrays through joint optimization of cell size,
redundancy, and ecc. In Proceedings of the 2010 IEEE International Conference
on Computer Design, ICCD ’10, pages 112–117, 2010.

[115] Tayyeb Mahmood and Soontae Kim. Realizing near-true voltage scaling in
variation-sensitive l1 caches via fault buffers. In Proceedings of the 14th Inter-
national Conference on Compilers, Architectures and Synthesis for Embedded Sys-
tems, CASES ’11, pages 85–94, New York, NY, USA, 2011. ACM.

109

[116] Young Geun Choi, Sungjoo Yoo, Sunggu Lee, and Jung Ho Ahn. Matching cache

access behavior and bit error pattern for high performance low vcc l1 cache. In

Proceedings of the 48th Design Automation Conference, DAC ’11, pages 978–983,

New York, NY, USA, 2011. ACM.

[117] Abbas BanaiyanMofrad, Houman Homayoun, and Nikil Dutt. Fft-cache: a flexible

fault-tolerant cache architecture for ultra low voltage operation. In Proceedings of

the 14th International Conference on Compilers, Architectures and Synthesis for

Embedded Systems, CASES ’11, pages 95–104, New York, NY, USA, 2011. ACM.

[118] Alaa R. Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilkerson,

and Shih-Lien Lu. Energy-efficient cache design using variable-strength error-

correcting codes. In Proceedings of the 38th Annual International Symposium on

Computer Architecture, ISCA ’11, pages 461–472, New York, NY, USA, 2011.

ACM.

[119] Xuebei Yang and Kartik Mohanram. Unequal-error-protection codes in srams for

mobile multimedia applications. In Proceedings of the International Conference

on Computer-Aided Design, ICCAD ’11, pages 21–27, Piscataway, NJ, USA, 2011.

IEEE Press.

[120] Gangyong Jia, Xi Li, Chao Wang, Xuehai Zhou, and Zongwei Zhu. Memory affin-

ity: Balancing performance, power, thermal and fairness for multi-core systems.

In Proceedings of the 2012 IEEE International Conference on Cluster Computing,

CLUSTER ’12, pages 605–609, 2012.

[121] Michael R. Jantz, Carl Strickland, Karthik Kumar, Martin Dimitrov, and Kshitij A.

Doshi. A framework for application guidance in virtual memory systems. In Pro-

ceedings of the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE ’13, pages 155–166, New York, NY, USA, 2013.

ACM.

[122] Kinam Kim and Jooyoung Lee. A new investigation of data retention time in truly

nanoscaled drams. IEEE Electron Device Letters, 30(8):846–848, 2009.

110

[123] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’07, pages
89–100, New York, NY, USA, 2007. ACM.

[124] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Kathleen Baynes, Aamer
Jaleel, and Bruce Jacob. Dramsim: a memory system simulator. ACM SIGARCH
Computer Architecture News, 33(4):100–107, November 2005.

[125] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan,Wei Huang, Sivakumar
Velusamy, and David Tarjan. Temperature-aware microarchitecture: Modeling and
implementation. ACM Transactions on Architecture and Code Optimization, 1(1):
94–125, March 2004.

[126] Micron Technology, Inc. 512mb: x4, x8, x16 ddr2 sdram features.
http://www.micron.com/~/media/Documents/Products/Data%

20Sheet/DRAM/512MbDDR2.pdf, 2004.

[127] Standard Performance Evaluation Corporation. Spec cpu2000 and specjbb2005.
http://www.spec.org, 2005.

[128] John D. Davis, James Laudon, and Kunle Olukotun. Maximizing cmp throughput
with mediocre cores. In Proceedings of the 14th International Conference on Par-
allel Architectures and Compilation Techniques, PACT ’05, pages 51–62, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[129] Jichuan Chang and Gurindar S. Sohi. Cooperative caching for chip multiproces-
sors. In Proceedings of the 33rd Annual International Symposium on Computer
Architecture, ISCA ’06, pages 264–276, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[130] Wangyuan Zhang and Tao Li. Exploring phase change memory and 3d die-stacking
for power/thermal friendly, fast and durable memory architectures. In Proceedings
of the 2009 18th International Conference on Parallel Architectures and Compi-
lation Techniques, PACT ’09, pages 101–112, Washington, DC, USA, 2009. IEEE
Computer Society.

111

[131] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mecha-

nisms and leakage reduction techniques in deep-submicrometer cmos circuits. Pro-

ceedings of the IEEE, 91(2):305–327, 2003.

[132] Micron Technology, Inc. 1gb: x4, x8, x16 ddr3 sdram features. http:

//www.micron.com/~/Documents/Products/Data%20Sheet/

DRAM/1Gb_DDR3_SDRAM.pdf, 2006.

[133] BarryW.Williams. Principles and elements of power electronics: Devices, drivers,

applications, and passive components. University of Strathclyde - Glasgow, 2006.

[134] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gus-

tav Hållberg, Johan Högberg, Fredrik Larsson, Andreas Moestedt, and Bengt

Werner. Simics: A full system simulation platform. Computer, 35(2):50–58,

February 2002.

[135] MiloM. K.Martin, Daniel J. Sorin, BradfordM. Beckmann, Michael R.Marty, Min

Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A.Wood. Mul-

tifacet’s general execution-driven multiprocessor simulator (gems) toolset. ACM

SIGARCH Computer Architecture News, 33(4):92–99, November 2005.

[136] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P

Jouppi. Cacti 5.1. HP Laboratories, 2, 2008.

[137] Wangyuan Zhang and Tao Li. Characterizing and mitigating the impact of process

variations on phase change based memory systems. In Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’09,

pages 2–13, New York, NY, USA, 2009. ACM.

[138] Aseem Agarwal, David Blaauw, Vladimir Zolotov, Savithiri Sundareswaran, Min

Zhao, Kaushik Gala, and Rajendran Panda. Path-based statistical timing analysis

considering inter-and intra-die correlations. In Proceedings of the International

Workshop on Timing Issues in the Specifications and Synthesis of Digital Systems,

TAU ’02, pages 16–21, 2002.

112

[139] Tezzaron Semiconductor. Soft errors in electronic memory - a white paper. http:
//www.tezzaron.com/media/soft_errors_1_1_secure.pdf,
2004.

[140] S.S. Mukherjee, J. Emer, and S.K. Reinhardt. The soft error problem: an archi-
tectural perspective. In Proceedings of the 11th International Symposium on High-

Performance Computer Architecture, HPCA ’05, pages 243–247, 2005.

113

