
國立台灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

物聯網多元應用之拍賣式衝突解決方案

Auction-Based Actuator Conflict Resolution in IoT

Multi-Applications

梁哲瑋

Che-Wei Liang

指導教授： 許永真 博士

Advisor: Jane Yung-jen Hsu, Ph.D.

中華民國 103 年 7 月
July, 2014

Acknowledgments

首先要感謝指導教授許永真老師，這兩年來教導我做研究的態度，除此之外，從

老師身上更是學到許多做人處世的道理，這些都是我這兩年碩士生活中十分重要

的學習。

感謝 WuKong 的三位指導老師，林桂傑老師、施吉昇老師、王佑中博士，很

感謝林桂傑老師指導我論文的不足之處並且帶領我修改論文，感謝施吉昇老師與

王佑中博士，每次與兩位老師的討論總是能得到許多新的想法。

感謝 WuKong 的成員們，從 Niels 跟博倫兩位強者學到許多，兩位總是能夠回

答並幫助我困擾許久的問題，跟政勳講講鬼話互相確認進度，還有士元，一起在

WuKong 奮鬥的戰友，從一開始的台南 TAAI 一直到遠征美國 CMU ，一起面臨

做研究的低潮以及互相扶持，最後能夠一起畢業。

感謝 iAgent 的朋友們以及 Dynamic 的組員們，自均跟鈞奕兩位聽我說瘋話

以及給我許多建議，季恩幫助我釐清研究問題，Janet 指出許多問題及建議，

iAgent 就像個大家庭一樣，大家互相幫忙互相成長。

感謝彰友會的朋友們，偶爾與你們的小聚總是充滿歡樂。

最後感謝我的家人以及女朋友怡雯，總是在我身後默默支持我，讓我有勇氣繼

續接受挑戰並走完碩士這條路。

i

ii

Abstract

Internet of Things(IoT) technology enables billions of devices to connect to the

Internet, including wearable devices, home appliances, ambient devices and so on.

IoT application developers constantly create new services and applications to control

the actuators to make our lives easier. Since many applications may exist simul-

taneously in a given environment, it is likely that some applications want to use

the same actuator at the same time, which creates actuator conflicts. How to solve

conflicts is important in IoT applications. The conflict resolution should be efficient

and optimal among the users. We propose an auction-based mechanism to coordi-

nate applications and resolve actuator conflicts. The simulation results show that

our methods are efficient and can achieve good performances.

Keywords: Internet of Things, Conflict Resolution, Auction

iii

摘摘摘要要要

物聯網(Internet of Things)將我們生活中數以萬計的裝置都連上網路。隨著物

聯網科技的進步，物聯網的應用也持續的成長，並且適時地提供我們服務，讓我

們的生活過得更輕鬆。然而，當這些不同應用同時存在在我們的身活環境時，這

些不同的應用將可能同時使用同一個控制器(Actuator)導致衝突。如何有效地解

決衝突是一項重要的問題，必須快速且無痕的將衝突化解，並且能夠符合使用者

的喜好。我們提出拍賣式的衝突解決方案來化解衝突，模擬的實驗結果證實我們

所提出的拍賣式解決方案是有效的且解決結果能夠達到滿足多數應用程式的喜

好。

關鍵字：物聯網、拍賣、衝突解決

iv

Contents

Acknowledgments i

Abstract iii

List of Figures viii

List of Tables ix

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Objectives . 3

1.4 Thesis Organization . 4

Chapter 2 Related Work 5

2.1 Conflict Resolution in Home Automation 5

2.2 Coordination in Multi-Agent Systems 7

v

Chapter 3 Actuator Conflicts in IoT Applications 8

3.1 IoT Application . 8

3.2 Resolution Timing . 9

3.3 Problem Formulation . 11

3.4 Problem Definition . 12

Chapter 4 Auction-Based Actuator Conflict Resolution 13

4.1 Existing Resource Allocation Problems 14

4.1.1 Multi-Agent Resource Allocation with Shareable Resources . . 14

4.1.2 Combinatorial Auction . 14

4.1.3 Multi-Round Single-Item Auction 15

4.2 Proposed Auctions with Actions and Rebidding 16

4.2.1 Multi-Round Single-Item Auction considering Actions 17

4.2.2 Multi-Round Single-Item Auction considering Actions and Re-

bidding . 19

Chapter 5 Implementation Design 21

5.1 WuKong Framework . 21

5.1.1 Goal . 21

5.1.2 Flow-Based Programming . 22

5.1.3 Compilation Flow . 23

5.2 Support Multiple Applications . 25

5.3 Arbitrator Component Implementation 30

vi

Chapter 6 Experiment & Results 31

6.1 Simulation Settings . 31

6.1.1 Environmental State . 31

6.1.2 Actuator Simulation . 32

6.1.3 Application Simulation . 32

6.2 Evaluation . 35

6.2.1 Compared Methods . 35

6.2.2 Evaluation Metrics . 35

6.2.3 Evaluation Results . 36

Chapter 7 Conclusion and Future Work 39

Bibliography 41

vii

List of Figures

3.1 IoT applications flow diagram with conflict resolution 10

5.1 A simple application by Flow-Based Programming (FBP) 22

5.2 WuKong Compilation Process . 24

5.3 Original WuKong Mapping Flow . 27

5.4 WuKong Mapping Flow with Supporting Multi-Application 28

5.5 WuKong Mapping Flow with Supporting Multi-Application and Con-

flict Resolution . 28

5.6 Example of Merging FBP and Mapping 29

6.1 Utility functions with different input a 34

viii

List of Tables

6.1 Time complexity . 37

6.2 Experiment result (10, 6, 6) . 37

6.3 Experiment result (10, 6, 13) . 38

ix

Chapter 1

Introduction

1.1 Background

The Internet of Things (IoT) is an emerging technology in recent years [6]. It enables

objects surrounding us with the ability to communicate through Internet. The idea

is to make the interconnected objects harvest information from the environment and

use Internet to provide services for information transfer, analytics, applications.

There are many application domains that IoT technology can provide very useful

services, such as healthcare, transportation, smart city and smart home. In health-

care, sensors and wearable devices are used to detect the health condition of patients

and older people. These information are sent to hospitals and family members so

they can track the health condition and react immediately when an accident hap-

pens. In transportation applications, when people are driving, they become aware

of the road condition and an automobile can give a shortest route that avoids traffic

1

2 CHAPTER 1. INTRODUCTION

jams and car accidents. Moreover, the sensors around the car and the communi-

cation between cars help to warn the driver when there might be a reckless driver

approaching. In smart home environment, sensors are used to detect user’s context.

These context information is further analyzed to predict user intentions and control

actuators accordingly to provide a comfortable environment.

1.2 Motivation

In a smart home environment, family members may deploy different applications

to control their home appliances for different purposes. For example, one wants to

monitor the home security, while another adjusts the environment for entertainment.

These different applications utilize shared sensors and actuators to provide their

functionalities to users. An application keeps monitoring the environment by the

sensor data as inputs to see how the application can help a user by controlling the

actuators as output. There may be an actuator conflict when several applications in

the environment want to control the same actuator with different actions for their

own purposes.

For example, suppose a family of two parents and a 3-year-old child live in a

smart home with sensors and actuators. The house has an application House-elf to

provide them a comfortable entertainment. Another application Guardian Angel is

to help them take care of the child. These two applications are developed separately

by developers.

When these two applications are deployed in the same house, there might be

1.3. OBJECTIVES 3

some conflicts. When parents are watching TV in the living room, House-elf would

turn on the volume to normal and turn on lights to make a comfortable environment

to watch TV. At the same time, the child is too tired and falls asleep on the sofa.

Guardian Angel wants to turn off the lights and TV to let the child sleep well. If the

two applications compete, and one takes control of lights and the other on TV, both

adults and child will be unhappy. A better solution is to let these two applications

coordinate to find an acceptable setting of volume and luminance.

Resolving resource access conflict is an important issue [17, 4, 18]. We are inter-

ested in providing a good and user-friendly solution to the problem in the WuKong

project. WuKong [15, 14, 8] builds a service oriented IoT framework. It eases the

tedious work to build an IoT application. It provides a flow-based programming

tool to create applications and encapsulates the devices setting via service discovery

and mapping.

1.3 Objectives

In this thesis, we give an auction-based mechanism to coordinate applications to

resolve actuator conflicts. Applications are treated as bidders, and IoT devices are

the goods for bidding. Each application can set its preference on each actuator by

submitting their bids to an auctioneer. The auctioneer should take each application’s

bid into account and make a decision on what action an actuator should perform.

The outcome of the resolution should maximize the total utility received by all

applications.

4 CHAPTER 1. INTRODUCTION

Auction is a useful technology for resolving resource access conflicts [1]. Many

types of auction protocols have been designed. Two unique properties in a smart

home application are that actuators can have different settings and several actuators

must be used together to deliver a service. Moreover, an actuator may be set

to a specific action that can be shared and used by multiple applications. For

example, multiple users may want to control the room temperature from their own

applications at the same time. Rather than just allowing one application to control

the AC setting, it may be possible for several to share the AC if they can agree

on the specific AC power level (weak, medium, or strong). Moreover, a user may

need to have the right AC setting and also the room light in order to work on his

chemistry project. We therefore should design our auction protocol for shareable

resources to also meet the bundle requirement.

1.4 Thesis Organization

For the rest of the thesis, we first review related work in Chap. 2. We formally define

the resource access requirement and the auction problem in our system in Chap. 3.

Chapter 4 presents our auction protocols for smart home IoT. The implementation

design in the WuKong framework is shown in Chap. 5. We then present the simu-

lation results in Chap. 6 to compare our protocols with other auction protocols in

terms of resource utilities and execution time. The paper is concluded in Chap. 7.

Chapter 2

Related Work

In this chapter, we first show existing work that resolve conflicts in home automation

systems. Then we show some multi-agent systems that utilize auction to coordinate

agents in different domains.

2.1 Conflict Resolution in Home Automation

Some researchers have studied in resolving conflict in home automation. A common

way to resolve the conflict is based on users’ preferences. The resolution should take

the users’ preferences into account and decide what to do. The action to resolve the

conflicts are taken according to the weighted users’ preferences. Different approaches

have been studied on how to calculate the weights of the users. Some work chooses

the action of the first priority while some considers all weighted preferences of users.

Shin et al.[16] propose a history-based approach to resolve conflicts. The system

5

6 CHAPTER 2. RELATED WORK

keeps the historical data and utilizes Bayesian theory to decide the priority of users.

User can use a tangible remote controller to send the feedback so the change of user

preference is captured.

Park et al. [9] use a semantic ontology to represent the relationship between the

environment context and the applications. The links between the context and the

applications represent how the action will affect the context attribute, e.g., turn on

the light will increase the lightness. The system calculates the weight by predefined

users preference and decide which application get executed accordingly.

Thyagaraju et al.[19] resolves the conflicts when multiple users want to watch

different TV channels. Users are required to provide their preferences on each chan-

nel and their roles in the family to construct the user profile. The system uses these

user profiles to calculate a weighted score for each channel when conflict arises. The

channel with the highest score is selected as the output.

Petrushevski et al.[10] resolves conflicts in a lighting control system among mul-

tiple users. Several lighting sources are located in different locations of a room

sharing by users. When users have different preferences on the light sources, the

system needs to decide how should the light sources perform. The system calculates

the weighted average of preferred outputs of a light source. The distance between

the user and the light source is considered as the weight of the user to control the

light sources. The closer a user is to the light, the higher weight the user has.

2.2. COORDINATION IN MULTI-AGENT SYSTEMS 7

2.2 Coordination in Multi-Agent Systems

Auction has been used to coordinate multi-agent systems in different domains, in-

cluding task allocation, exploration task.

Koenig et al. [7] use the auction mechanism on the robot exploration problem.

There are many targets separately in the environment that need to be visit at least

once by robot agents. The robot agents are also separately around the environment.

The problem is to efficiently allocate the targets for each robot that minimize the

total visited distances. They use sequential auction mechanism to coordinate agents.

Capra et al. [2] focus on the preference conflict on mobile application between

several users. The users can use the same mobile application to communicate with

each other. However, the application provides different communicate protocol. Each

protocol has different quality of services and requirement. Each user has different

preferences on each protocol. They use the auction mechanism to coordinate mobile

agents to decide the protocol.

Chapter 3

Actuator Conflicts in IoT

Applications

In this chapter, we first give a formal definition of our problem definition. Then we

give our proposed methods in the next section. Finally, we give a example to see

how our methods solve the problem.

3.1 IoT Application

In the future IoT environment, there will be lots of sensors monitoring the environ-

ment and actuators controlling the environment. An IoT application takes sensor

data as input and produces operations to control the actuators. Sensors provide

environment data and the application evaluates the environment state by its utility

function. The utility function reports a score on the desirable degree of the current

8

3.2. RESOLUTION TIMING 9

environment. An application should always try to maximize its utility to satisfy

users. When the environment is not what the application wants, the utility value

will be less. Thus, the application will send out an operation for actuators to change

the environment to maximize its utility.

When there exist multiple applications in the environment, these applications

may send different operations to control the actuator for their different goals. There-

fore, an actuator may receive more than one commands to perform. To serve ac-

ceptable services to users, the actuator conflict resolution component is employed

to resolve actuator conflicts. It takes all applications into account and make a final

decision on what the operation should be. The whole process of IoT applications is

shown in Fig. 3.1.

3.2 Resolution Timing

The conflict happens when the two applications want to perform two different actions

in an actuator. An action is to keep a state in an environment. For example, the

action turn on, is to keep the environment light. On the other hand, turn off, is to

keep the environment dark. The application sends the action only when it wants to

change the state. Therefore, we can detect the conflict when two applications want

two different states.

When the environment changes, the application evaluates the utility of the en-

vironment. The application might send a new action to the actuator. The conflict

might happen again and the resolution process starts again to resolve the process.

10 CHAPTER 3. ACTUATOR CONFLICTS IN IOT APPLICATIONS

Figure 3.1: IoT applications flow diagram with conflict resolution

3.3. PROBLEM FORMULATION 11

3.3 Problem Formulation

An actuator conflict resolution problem is defined as a tuple (s,M, (Ai)i∈M, δ,N , (ui)i∈N , (xi)i∈N)

• s denotes the environmental state. The environmental state is represented by

a vector of context attributes values. s =< β1, β2, . . . , βt >. Each element in

s represents the value of a context attribute. S denotes the set of all states.

• M = {1, 2, . . . ,m} denotes a finite set of actuators.

• Ai denotes the set of actions that actuator i can perform. A denotes the set

join action space or set of all operation, i.e., A = ∏
i∈RAi. We call α ∈ A an

operation, i.e., α =< α1, α2, . . . , αm > where ∀i ∈M, αi ∈ Ai

• δ : S × A → S is the state transition function that defines the transition

between states by performing an operation. For a current state s and the

operation α, it outputs the next state s′ that results from doing α in state s.

• N = {1, 2, . . . , n} denotes a finite set of applications.

• ui : S → R is the utility function for application i. The application uses the

utility function to evaluate the utility for each state s ∈ S. The utility value

stands how much the application likes the state. An application should always

try to maximize its utility.

• xi : S → A is the decision function for application i. For any current environ-

mental state s, an application would try to maximize its utility by finding an

operation to control the environment, i.e., xi(s) = argmaxα∈Aui(δ(s, α))

12 CHAPTER 3. ACTUATOR CONFLICTS IN IOT APPLICATIONS

• Actuator conflict: the actuator conflict happens when two applications have

different operations trying to control the same actuator with different actions in

the same state, i.e., ∃i, j ∈ N , xi(s) 6= xj(s). In particular, ∃t ∈M, αt,i 6= αt,j,

the actuator t is in conflict by application i and j.

3.4 Problem Definition

To resolve the conflict, we coordinate the applications to decide on an operation

α∗ that maximizes the utilities of all applications, which we call the total utility

function. The total utility function considers all utilities ui of applications into

account and gives one utility value for all applications.

α∗ = argmax
α∈A

U(u1, u2, . . . , un, s)

where U is the total utility function. How to derive the best total utility function is

out of scope for this paper. In multi-objective optimization, a well-known method

is called linear scalarization, i.e., the total utility is the sum of utilities of all appli-

cations. Therefore, the problem is to find an operation α∗ to resolve the actuator

conflict that maximizes the sum of utilities of all applications:

α∗ = argmax
α∈A

∑
i∈N

ui(s)

To summarize, the problem we aim to solve is an actuator conflict resolution prob-

lem. The output is the operation α∗. We make two assumptions. First, the number

of actions are discrete and finite. Second, the environmental state transitions are

deterministic

Chapter 4

Auction-Based Actuator Conflict

Resolution

In this chapter, we first briefly review three resources allocation problems, includ-

ing multi-agent resource allocation with shareable resources, multi-round single-

item auction, and combinatorial auction. We compare the differences between their

problems and ours. Then, we adopt some of their ideas and propose our auction

algorithms.

13

14 CHAPTER 4. AUCTION-BASED ACTUATOR CONFLICT RESOLUTION

4.1 Existing Resource Allocation Problems

4.1.1 Multi-Agent Resource Allocation with Shareable Re-

sources

[1] has studied the resource allocation with shareable resources. They model the

multi-agent resource allocation with shareable resources with congestion games. The

more agents share a resource, the higher cost these agents will receive. Therefore,

the agent should be reluctant to share the resource with others by nature.

There are a few different issues between their work and ours. In their case, agents

are less willing to share resources with others. Because if it shares the resource,

the cost will be higher. An agent has no incentive to share resources. In our case,

although an actuator is a shareable resource, an actuator has different actions which

are mutually exclusive. Some actions, however, may unite the applications with the

same preference. The applications with the same preference can cooperate together

to maximize their utilities. Applications are more willing to share an actuator with

other applications that have the same preferences on the actuator.

4.1.2 Combinatorial Auction

Combinatorial auction is a powerful auction mechanism [3, 11]. The application

bids on bundles. A bundle is a subset of the actuators. The application bids on the

maximum utility that the bundle of actuators can bring to it. The auctioneer receives

bids from all applications and determines the operation which maximizes the sum

4.1. EXISTING RESOURCE ALLOCATION PROBLEMS 15

of utilities of all applications. The total utility is optimal because a combinatorial

auction considers the synergizes between actuators.

However, there are two issues which make it difficult to apply combinatorial

auction to resolve actuator conflicts. First, for applications, it is hard to calculate

the bids for all possible bundles because the number of the bundles is extremely large

(exponential in the number of actuators and actions). Second, for auctioneer, it is

hard to determine the result of the auction in a short time since the winner determine

problem is NP-hard. Although some research focuses on finding an approximated

result in an efficient way, we focus on the simple auction mechanism that prevents

the system from being overly complex.

4.1.3 Multi-Round Single-Item Auction

In multi-round single-item auction, each application bids on each actuator and sub-

mit bids to the auctioneer. Every application bids the actuator based on the how

many utility the actuator can bring to the application. Only one actuator is sold in

a round. The application with the highest bid wins the actuator and the actuator

performs the action from the winner application. The auction continues the next

round for the remaining actuators until all actuators are sold. Applications can

change their bids between rounds. A winner application can control the actuator

to affect the environment. As the environment changes, it affects applications and

applications might change their minds to ask the remaining actuators to perform

different action. When applications change their minds, they can also change their

bids in the next round.

16 CHAPTER 4. AUCTION-BASED ACTUATOR CONFLICT RESOLUTION

Multi-round auction has been applied in other domain and has good results

[7]. However, the mechanism can not be directly applied. The reason is that the

auctioneer can’t correctly optimize the total utility due to the lack of information.

The bids only provide the information about the preference to the actuator, but

not what action the application would like to perform. Each actuator has several

actions, and each action has different effects on the environment. Therefore, the

applications has different preferences on each action. We should investigate the

preferences on actions to maximize the utilities of all applications.

4.2 Proposed Auctions with Actions and Rebid-

ding

Combinatorial auction synergizes between goods but suffering exponential time com-

plexity while multi-round auction has better time complexity and also synergizes

between actuators. Multi-Agent Resource Allocation with Shareable Resources syn-

ergizes between bidders. An action, which is shareable among applications, but

exclusive in an actuator, makes the applications with similar preferences to work

together to maximize their utilities.

We propose two auction algorithms considering the above issues. The first one

is multi-round auction considering actions. The other is multi-round auction con-

sidering actions and rebidding. The latter one is to consider rebid on actuators.

The rebidding makes it possible for applications to change previous results. As the

auction process goes, not all applications can always get what they want. They may

4.2. PROPOSED AUCTIONS WITH ACTIONS AND REBIDDING 17

win in the first few rounds. However, they may lose some actuators and the envi-

ronment may change to what they don’t like. In this situation, application might

regret their previous decisions and want to change the actions. Rebidding provides

the opportunity for the applications to change their previous bids.

In our study, we assume that each application doesn’t know other’s utility func-

tion. Each application bids truthfully based on their utility function.

4.2.1 Multi-Round Single-Item Auction considering Actions

Multi-round auction synergizes between actuators by letting applications bid differ-

ently in the next round. When an action is determined in one round, applications

take the fact and recalculate the operation to control the remaining actuators to

maximize their utility. Therefore, the new operation will reflect on the new bids.

The auction works as follows: Each actuator is unallocated at first. Every ap-

plication bids on each action of each unallocated actuator. The application bids the

action based on evaluation of next state resulting from the action. The bids are

summed up for each action. The actuator whose action is the highest bid is allo-

cated. Then, each application bids the remaining unallocated actuators and repeat

the process until all actuators are allocated. These actions are the final decision as

the result. The algorithm is shown in Algorithm 1.

18 CHAPTER 4. AUCTION-BASED ACTUATOR CONFLICT RESOLUTION

Algorithm 1: Multi-round auction considering actions
Input: A set of application N
Input: A set of actuators M
Input: Current environmental state s
Output: An operation α∗

α∗ ← Array()
foreach i ∈M do

foreach j ∈ Ai do
bids(i, j)← 0

end
end
whileM 6= ∅ do

foreach i ∈M do
foreach j ∈ Ai do

s′ ← δ(s, j)
foreach k ∈ N do

bids(i, j)← bids(i, j) + uk(s′)
end

end
end
i∗, j∗ ← argmaxi∈M,j∈Ai

bids(i, j)
α∗[i∗]← j∗

M←M\ {i∗}
s← δ(s, j∗)

end
return α∗

4.2. PROPOSED AUCTIONS WITH ACTIONS AND REBIDDING 19

4.2.2 Multi-Round Single-Item Auction considering Actions

and Rebidding

This auction is like the previous one. The main difference is that actuators will

keep in the list after sold in the previous rounds. When applications regret their

previous bids based on the latest bidding result, they can bid on sold actuators

again to indicate their preference changes. For some applications that require atomic

operation, it is important for them to withdraw the operation instead of executing

partial operation. Rebidding provides them a mechanism to change their bids when

their atomic operations can not be executed. The auction continues until the total

utility can not be further maximized. The result is the final decision of the operation.

The algorithm is shown in Algorithm 2.

20 CHAPTER 4. AUCTION-BASED ACTUATOR CONFLICT RESOLUTION

Algorithm 2: Multi-round auction considering actions and rebidding
Input: A set of applications N
Input: A set of actuators M
Input: Current environmental state s
Output: An operation α∗

α∗ ← Array()
foreach i ∈M do

foreach j ∈ Ai do
bids(i, j)← 0

end
end
while True do

foreach i ∈M do
foreach j ∈ Ai do

s′ ← δ(s, j)
foreach k ∈ N do

bids(i, j)← bids(i, j) + uk(s′)
end

end
end
i∗, j∗ ← argmaxi∈M,j∈Ai

bids(i, j)
if α∗[i∗] = j∗ then

break
end
α∗[i∗]← j∗

s← δ(s, j∗)
end
return α∗

Chapter 5

Implementation Design

In this chapter, we show the implementation design of conflict resolution in the

WuKong framework. We will first introduce the WuKong framework and original

development flow. Then we will introduce how to support multiple applications and

conflict resolution in WuKong framework. Then the detail of the conflict resolution

component is presented.

5.1 WuKong Framework

5.1.1 Goal

WuKong aims to provide a simple application development and deployment flow for

developers and users to easily create IoT applications. The framework should intel-

ligently perform development details, including sensor identification, device configu-

ration, service deployment, user personalization, network management, and system

21

22 CHAPTER 5. IMPLEMENTATION DESIGN

Figure 5.1: A simple application by Flow-Based Programming (FBP)

sustainment. Also, the system can adapt to environment changes. The framework

reduces the cost and human efforts to deploy and manage applications and auto-

matically perform the optimization and proactive support for users.

5.1.2 Flow-Based Programming

IoT applications are distributed by nature. An application consists of several com-

ponents. IoT applications are usually event-driven. The events are detected and the

data are sent to the next component. Flow-based programming (FBP) focuses on

the information flow between components instead of focusing on data processing in

typical applications. Therefore, FBP is good for developing IoT applications.

Figure 5.1 shows an example using FBP to program an application. The ap-

plication is to turn on the heater if the temperature is too cold. There are two

conditions that the heater will be turned on. Either condition is met will turn on

5.1. WUKONG FRAMEWORK 23

the heater. The first condition is when the indoor temperature is below 18 degrees

Celsius. The second condition is when the indoor temperature is below 20 degrees

Celsius and the outdoor temperature is below 10 degrees Celsius. The application

consists of 8 components. The sensors parts consists of two temperatures compo-

nents. The actuator parts consists of one heater component. And five computing

logic components in the processing parts.

WuKong provides a FBP developing tool for application developers to use. The

interface provides components available to compose an application. Application

developers only need to focus the abstract data flow. The communication and

implementation detail are encapsulated by the component block. If predefined com-

ponents in the WuKong framework can not fulfill the requirement of developers,

developers can create custom components to satisfy specific task. WuKong takes

care of the physical implementation details and eases the effort of managing devices.

5.1.3 Compilation Flow

Figure 5.2 shows the flow of WuKong compilation process. The left part is the

process of generating components libraries and device installation. The top-right

part is the FBP IDE that introduced in the previous section to develop applications.

Then, the bottom-right part is the build process of generating application Java

bytecode from application drawn by the FBP.

The application.xml file is passed to the mapping compiler (mapper) in the

Master. The Master will perform the discovery process to discover the information

from physical devices in the environment. The mapper will match the requirement

24 CHAPTER 5. IMPLEMENTATION DESIGN

Figure 5.2: WuKong Compilation Process

5.2. SUPPORT MULTIPLE APPLICATIONS 25

from the application.xml file with the physical devices. The mapper will generate

the Application.java to store the mapping result. It contains the links between

components and the physical device of the component. Finally, the application.java

will be sent to the Java compiler to generate the Java bytecodes which contains

is the application code. Then the Master uploads the application to the devices

wirelessly.

5.2 Support Multiple Applications

The original WuKong framework doesn’t support running multiple applications. In

fig. 5.2, the application bytecode is uploaded to devices. Each device runs only one

application. Whenever a new application is uploaded to a device, the old application

will be erased.

An naive way to enable running multiple applications is to let devices store

multiple application bytecodes and each devices will switch from one application to

another. It’s like the context switch in common operation system. However, this

will increase the overhead of devices. The devices may have very low computing

capability. Managing context switch consumes the computing support.

Another way is to keep the device only run one application bytecode and let the

Master merge multiple applications into one. This keeps the complexity of devices

low and let the Master do the most heavy work which is reasonable since the Master

should be a powerful machine.

Figure. 5.3 shows the original mapping process. The mapper takes applica-

26 CHAPTER 5. IMPLEMENTATION DESIGN

tion.xml which is created by developer using FBP and discovery result as input to

map the abstract components to physical devices. The output is the mapping result

stored by another xml file named WKDeploy.xml. Then the mapping result is sent

to the code generator to generate application bytecode. Finally, the bytecode is

uploaded to the physical devices.

The Master has two options to merge applications during the mapping process.

• Merge the application FBP xml files before mapping.

• Merge the WKDeploy.xml files after mapping.

Master choose the first way. Master merges the application FBP files. Once

Master merges the FBP files, Master can put the merged FBP file into the mapper,

then the mapper will map. The flow is shown in Fig. 5.4

However, we need to further add the conflict resolution component before shared

actuators. When merging the application FBPs, Master should try to avoid merging

actuators if possible. But the mapping might fail because there might be insufficient

physical devices to map the new components. Therefore, if the mapping fails at the

first round, Master can merge the unmappable components with other components.

And we add an arbitrator component before the actuator to resolve conflict resolu-

tion. Then, try the second round mapping with merged components. The flow is

shown in Fig. 5.5.

• Stage I: concatenate the xml without any merge and run the mapper.

• Stage II: merge unmappable components and run the mapper again.

5.2. SUPPORT MULTIPLE APPLICATIONS 27

Figure 5.3: Original WuKong Mapping Flow

An example is shown in Fig. 5.6. There is an application running in the envi-

ronment. The application is to use a touch pad to control the light. The touch

pad is mapped to the first physical device and the light is mapped to the second

physical device. Now we want to add a new application that uses the light sensor

to turn on the light if the room is too dark. Master first merges the application into

one FBP file. In first stage, the new application is added at the end of the existing

application. These are two isolated connected components and no component has

been merged yet. Next Master sends the merge result to the mapper to see if Master

can map the merge FBP to the physical devices. Assume there is only one light in

the environment now so the mapping is failed because Master requires two light in

the FBP. Then, Master goes to the second stage to merge the light component and

Master adds an arbitrator before the light component to coordinate applications.

28 CHAPTER 5. IMPLEMENTATION DESIGN

Figure 5.4: WuKong Mapping Flow with Supporting Multi-Application

Figure 5.5: WuKong Mapping Flow with Supporting Multi-Application and Conflict

Resolution

5.2. SUPPORT MULTIPLE APPLICATIONS 29

(a) Add an new application in a existing

application

(b) Stage I: Concatenate the existing

application and the new application

(c) Map the merged FBP
(d) Merge the failed actuator and add

an arbitrator component

(e) Map the merged FBP again

Figure 5.6: Example of Merging FBP and Mapping

30 CHAPTER 5. IMPLEMENTATION DESIGN

5.3 Arbitrator Component Implementation

The arbitrator component is used to coordinate applications to control an actuator.

The arbitrator takes the actions of applications as input and check if they are the

same. If two applications ask the same action, there’s no conflict. However, if two

applications want to perform different actions, the arbitrator component needs to

resolve the conflict. The arbitrator evaluates the utility of each application according

to the action of the actuator and chooses the action that can maximize the sum of

utilities.

The arbitrator component resolves the conflict when applications want the actu-

ator to perform different actuators. The conflict resolution algorithm is introduced

in Chap. 4. The arbitrator component needs several information to resolve the con-

flict. It needs parameters of the utility function of each applications. The utility

function will be introduced in more detail Chap. 6. It needs to know the effect on

the environment of the each action of the actuator which we call the actuator pro-

file. The actuator profile is generated and updated by the progression framework in

WuKong. It also needs the current environmental state from the sensors. With these

information, the arbitrator component can run the auction-based conflict resolution

algorithm when applications sends different actions to control the same actuator.

The arbitrator component is a logical computing component. It doesn’t evolves

physical sensors or actuators. It just computes and implemented in Java in WuKong

framework. Using Java, the master can dynamically upload the new implementation

easily when the actuator profile or utility function is updated.

Chapter 6

Experiment & Results

We use the simulation to examine our auction algorithms. We first describe how we

simulate the environment.

6.1 Simulation Settings

6.1.1 Environmental State

In indoor human comfort index domain, four basic indexes are considered. They

are thermal comfort, visual comfort, indoor air quality (IAQ), and acoustic comfort

[5, 13]. We use four context attributes to represent an environment state to capture

these four comfort indexes. They are temperature, lightness, CO2 concentration,

sound level. C denotes the set of all considered context attributes. In current case,

C = {temperature, lightness,CO2, sound}, To simplify the experiment, we normalize

the values of each context attributes to 0 and 1.

31

32 CHAPTER 6. EXPERIMENT & RESULTS

s =< βtemperature, βlightness, βCO2 , βsound >

C = {temperature, lightness,CO2, sound}

∀c ∈ C, βc ∈ [0, 1]

6.1.2 Actuator Simulation

An actuator has several actions to perform. Each action has different effects on each

context attribute. We use an uniform random generator to generate the effect of

each action. These effects are the transition function of the environmental state,

i.e., the δ function. Applications can evaluate the utility value of each action based

on the transition function, .

6.1.3 Application Simulation

The application uses a utility function to evaluate the preference of the environ-

mental state. It is concerned about some kinds of context attributes, and ignore

some context attributes depending on its goal. The application has a target value

of context attribute value. The application would want to keep the environmental

state to stay in the target value. When the environmental state is closer to the

target range, the utility value would be higher. For example, for the application

which wants to keep the environment warm, the main context attributes it will con-

sider are thermal and other kinds of context attributes can be ignored. When the

6.1. SIMULATION SETTINGS 33

environment is warm, the utility will be the high since it achieves the main goal.

When the environment is cold or hot, the utility should be low.

Next, we describe how we simulate the utility function. The application calcu-

lates a score for each context attribute separately and the utility of the environmental

state is the weighted sum of context attributes scores. For context attributes that

the application cares, we use a linear scoring function to calculate the score between

the environmental state and the target value.

The utility function of application i is denoted by ui. ui,c denotes the scoring

function of context attribute c, and wc is the weight for context attribute c. The

number a ∈ [0, 1] denotes the parameter that represents the target value, e.g.,

c = lightness, a = 0 indicates that the application wants to minimize the lightness

in the environment. Fig. 6.1 shows different shapes with different target values a.

ui(s) =
∑
c∈C

wcui,c(βc)

ui,c(βc) =

0 if don’t care

−|βc − a|+ 1 else

∑
c∈C

wc = 1, ∀c ∈ C, wc ∈ [0, 1]

In our simulation, for any context attribute, the probability for an application to

ignore the particular context attribute is 50%, and the target value, a, is generated by

an uniform random generator. The weights for each context attributes, wtemperature,

wlightness, wCO2 , wsound, are 0.5, 0.3, 0.1, and 0.1 respectively. The thermal comfort

gets the highest weight because it influences the human body the most [12].

34 CHAPTER 6. EXPERIMENT & RESULTS

Figure 6.1: Utility functions with different input a

6.2. EVALUATION 35

6.2 Evaluation

6.2.1 Compared Methods

We choose two methods to compare with our auction methods. The first one is

the random method. It randomly selects an action from each actuator to form the

output operation. The second one is the brute force method. Random method

is to randomly select an action for each actuator as the output of the resolution.

Brute force method iterates all possible operations to find the operation o∗ which

maximizes the total utilities. It is a global optimal solution.

6.2.2 Evaluation Metrics

For the conflict resolution, it is important to resolve the conflict in a short time

while satisfy applications preferences. If the resolution guarantees to find the global

optimal to maximize total utility but takes too long, users will be annoyed by the

late response. On the other hand, if the resolution resolves conflict very quickly but

does not meet applications goals, users will be confused about the resolution result.

Either factor is important.

Therefore, we examine our algorithm with these two factors by two metrics. The

first one is the time. We calculate time of conflict resolution process. The second

one is the utility ratio. The utility ratio is to compare the result from our auction

algorithms and the result from the brute force method which gives optimal results.

36 CHAPTER 6. EXPERIMENT & RESULTS

The formulation is bellowed:

uratio = ua

ub

where ua is the utility that auction method achieves, ub is the utility that brute

force method achieves.

6.2.3 Evaluation Results

First, we investigate the time complexity of these different algorithms. n denotes the

number of applications. m denotes the number of actuators. k denotes the number of

actions of each actuator. The time complexity of brute force is exponential. Auction

algorithms are polynomial time. The time complexity of multi-round auction is

O(nm2). If we consider action into account, the time complexity will be increased

by k. The time complexity table is summarized in 6.1.

We use the tuple (n, m, k) to denote the setting of the simulation. We run 500

times to get the average result for each setting. The first setting (10, 6, 6) contains

10 applications and 6 actuators. Each actuator has 6 actions. The performance

of random is about 44%. The performance of multi-round is about 84%. By using

auction, the performance increases to 96.7% which is two times higher than random.

We can see that considering action indeed synergizes applications and gets a more

satisfying result. If we enable rebidding, the performance further increases to almost

97%. Rebidding let applications change their mind and modify the previous result

which leads to a better outcome. The performance is shown in Table 6.2.

The second setting (10, 6, 13) contains the same number of applications and

6.2. EVALUATION 37

Table 6.1: Time complexity

Algorithm Time Complexity

Brute Force O(nkm)

Multi-Round O(nm2)

Multi-Round with Action O(nkm2)

Table 6.2: Experiment result (10, 6, 6)

(10, 6, 6) avg uratio std uratio

Random 43.96% 0.228

Multi-Round 84.20% 0.104

Multi-Round with actions 96.72% 0.028

Multi-Round with actions & rebidding 96.97% 0.027

actuators as the previous setting, 10 and 6 respectively. We increase the number of

action to 13. The result is almost the same as the previous setting. Multi-round

still achieves high performance. The result in shown in Table 6.3.

38 CHAPTER 6. EXPERIMENT & RESULTS

Table 6.3: Experiment result (10, 6, 13)

(10, 6, 13) avg uratio std uratio

Random 44.05% 0.221

Multi-Round 84.80% 0.090

Multi-Round with actions 97.60% 0.021

Multi-Round with actions & rebidding 97.77% 0.019

Chapter 7

Conclusion and Future Work

IoT is a fast growing area. It enables objects around us to communicate with each

other, as well as to connect to servers and human users. Many developers are creating

new applications to access these objects to provide next generation services to make

our lives better. However, multiple applications may need to control smart things

at the same time for different purposes. The resource conflict must be resolved to

provide adequate services to all users.

In this work, we propose to resolve conflicts by leveraging auction mechanisms.

We use the auction mechanism to coordinate applications to share actuators. We

examine different auction algorithms and compare the performance with the brute

force method and the randomly generated method in both time efficiency and utility

ratio aspect. From the result we can see the auction protocols are quite effective

to achieve a good system utility. We also give the design on how to implement

the resource conflict resolution protocols in the actual IoT middleware that we are

39

40 CHAPTER 7. CONCLUSION AND FUTURE WORK

developing.

For future work, we can consider the environmental state transition to become

non-deterministic. When an actuator performs an action, it might lead to different

states with a probability. The problem will become more complicated. Applications

need to consider the probability and evaluate the expected utility of performing

an action. However, it will also be interesting to model the probability into the

problem. Another direction is to implement the design in the real IoT middleware

to evaluate the performance of the conflict resolution in real world.

Bibliography

[1] S. Airiau and U. Endriss. Multiagent Resource Allocation with Sharable Items: Sim-

ple Protocols and Nash Equilibria. In Proceedings of the 9th International Conference

on Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10,

pages 167–174, Richland, SC, 2010. International Foundation for Autonomous Agents

and Multiagent Systems.

[2] L. Capra, W. Emmerich, and I. C. Society. CARISMA : Context-Aware Reflective

mIddleware System for Mobile Applications. 29(10):929–944, 2003.

[3] P. Cramton, Y. Shoham, and R. Steinberg. Combinatorial Auctions. MIT press,

2006.

[4] F. C. Delicato, P. F. Pires, T. Batista, E. Cavalcante, B. Costa, and T. Barros. To-

wards an IoT ecosystem. Proceedings of the First International Workshop on Software

Engineering for Systems-of-Systems - SESoS ’13, pages 25–28, 2013.

[5] A. Dounis and C. Caraiscos. Advanced control systems engineering for energy and

comfort management in a building environment—A review. Renewable and Sustain-

able Energy Reviews, 13(6-7):1246–1261, Aug. 2009.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things (IoT): A

vision, architectural elements, and future directions. Future Generation Computer

Systems, 29(7):1645–1660, Sept. 2013.

41

42 BIBLIOGRAPHY

[7] S. Koenig, C. Tovey, M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak, A. Kley-

wegt, A. Meyerson, and S. Jain. The Power of Sequential Single-item Auctions for

Agent Coordination. In Proceedings of the 21st National Conference on Artificial

Intelligence - Volume 2, AAAI’06, pages 1625–1629. AAAI Press, 2006.

[8] K.-J. Lin, N. Reijers, Y.-C. Wang, C.-S. Shih, and J. Y. Hsu. Building Smart M2M

Applications Using the WuKong Profile Framework. 2013 IEEE International Con-

ference on Green Computing and Communications and IEEE Internet of Things and

IEEE Cyber, Physical and Social Computing, pages 1175–1180, Aug. 2013.

[9] I. Park, D. Lee, and S. J. Hyun. A Dynamic Context-Conflict Management Scheme

for Group-aware Ubiquitous Computing Environments. In 29th Annual International

Computer Software and Applications Conference (COMPSAC’05), volume 1, pages

359–364. IEEE, 2005.

[10] F. Petrushevski, M. Sipetic, and G. Suter. Conflict management in a personalized,

space model based lighting control system. 2013.

[11] S. J. Rassenti, V. L. Smith, and R. L. Bulfin. A Combinatorial Auction Mechanism

for Airport Time Slot Allocation. Bell Journal of Economics, 13(2):402–417, 1982.

[12] M. I. M. Rawi and A. Al-Anbuky. Wireless sensor networks and human comfort

index. Personal and Ubiquitous Computing, 17(5):999–1011, May 2012.

[13] R. Reffat and E. Harkness. Environmental comfort criteria: weighting and integra-

tion. Journal of Performance of Constructed Facilities, (August):104–108, 2001.

[14] N. Reijers, K.-J. Lin, Y.-C. Wang, C.-S. Shih, and J. Y. Hsu. Design of an Intelli-

gent Middleware for Flexible Sensor Configuration in M2M Systems. In SENSOR-

NETS’13, pages 41–46, 2013.

[15] N. Reijers, Y.-C. Wang, C.-S. Shih, J. Y. Hsu, and K.-J. Lin. Building intelligent

middleware for large scale CPS systems. In Service-Oriented Computing and Appli-

cations (SOCA), 2011 IEEE International Conference on, pages 1–4, 2011.

[16] C. Shin, Y. Oh, and W. Woo. History-based Conflict Management for Multi-users

and Multi-services. In Context2005 Workshop (Proc. of the Workshop on Context

Modeling and Decision Support), 2005.

[17] J. Song, A. Kunz, M. Schmidt, and P. Szczytowski. Connecting and Managing M2M

Devices in the Future Internet. Mobile Networks and Applications, 19(1):4–17, Nov.

2013.

[18] T. Teixeira, S. Hachem, and N. Georgantas. Service Oriented Middleware for the

Internet of Things : (Invited Paper). 257178(257178):220–229, 2013.

[19] G. S. Thyagaraju, S. M. Joshi, U. P. Kulkarni, and S. K. N. a. R. Yardi. Conflict

Resolution in Multiuser Context-Aware Environments. 2008 International Conference

on Computational Intelligence for Modelling Control & Automation, pages 332–338,

2008.

43

