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Abstract

Device-to-Device (D2D) communications provides a proximity service,
consuming less energy and having higher spectrum reuse. It has become more
and more popular in recent years. In our work, we consider that the devices
in a cell request the same data from a base station (BS). The devices will form
some clusters to receive data. Every cluster will have one device be central
entity. The central entity in a cluster receives the data from the BS, and then
broadcasts the data to all other devices in the same cluster. The central entity
suffers from the cost of transmit power consumption, which discourages the
devices from being the central entity. As the devices are selfish in maximiz-
ing their own utility, game theory serve as a powerful technique for analyzing
the behavior of the devices. We formulate the selfish and non-cooperative
interaction of the devices under the system as a game problem. To solve this
problem, we propose a central-entity-election mechanism that motivates the
devices to report the true transmission costs, and elects the most appropri-
ate devices as the central entities to reach the maximum system utility (social
welfare). On the other way, we prove that the multiple-cluster central entity
election is a NP hard problem. To avoid the NP hard problem, we propose the

distributed central entity election learning (DCEE) algorithm to form clusters.
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We prove the DCEE algorithm can always converge and have many desirable
properties as budget balance and individual rationality. In the simulation part,
we verify the theoretical analysis in a real LTE system setting. With the pro-
posed mechanism and the simulation results, D2D communications is shown

to have the potential to improve the performance of wireless networks.
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Chapter 1

Introduction

Device-to-device (D2D) wireless communication and proximity service is more and more
important and has been well discussed in recent years. Like the machine-to-machine
(M2M) technology, D2D communications also has the direct connections among devices
without a main server. This has the advantages of higher spectrum utilization and power
saving. Different from M2M communications, devices in D2D communications may be
smaller and have a higher mobility. Central entity[1] for D2D communications could be
used to coordinate resource allocation and management. A central entity in a cluster could
be one of the devices or the base station (BS).

Sometimes, the devices may have the same objective. They can form a cluster to re-
quest the common target. Under this circumstance, a central entity plays a leader role in
a cluster. The central entity represents the cluster, communicates with a base station, and
relays the data from the BS to other devices. On the other hand, the devices are usually
selfish and non-cooperative. Each device is selfish in optimizing its own performance and
makes its own decision like joining the cluster and becoming the central entity. The self-

ish and non-cooperative behavior of the devices may lead severe competition and result



in poor system performance. Therefore, game theory is a good mathematical tool for ana-
lyzing the non-cooperative system and helping design an incentive mechanism to achieve
optimal system performance.

In this paper, we investigate some D2D devices where each device requires the same
data from the BS. The devices form clusters and elect central entities. The central entities
receive data from the BS by unicasting and then broadcasting the data to the devices in
the same cluster. The central entities suffer from the cost of transmit power consumption,
which discourages the devices from being the central entity. Although the devices in the
cluster have the same objective, they are selfish in becoming or not becoming the central
entity in order to maximize their own utility. Regarding the above issues, we use the
concept of a mechanism design to design a mechanism for the central entities election for
a centralized control system. In a general central election system, the centralized control
is a NP hard problem. To reduce the complexity, 2e propose a distributed central entity
election (DCEE) learning algorithm for the multiple central entities election scenario. We
also use game theory to analyze the selfish behavior of the devices. Our contributions are

stated as follows:

1. We first investigate in the simple one cluster system. Considering the private in-
formation of the devices on the transmission costs, we propose a truth-revealing
central-entity-election mechanism. The proposed mechanism incites the devices to
truthfully report their private information on the transmission costs in the unique

truth-revealing dominant-strategy Nash equilibrium (strategy-proofness).

2. The election of the central entity maximizes the overall cluster utility (social wel-
fare). In addition, we investigate and propose the condition that each device obtains

non-negative utility when joining the cluster (individual rationality) and the condi-

2



tion that the BS receives non-negative transfer from the devices (budget balance).

. In the multiple-cluster central entities election system, we prove the optimal solution
of a centralized system is a NP hard problem. To reduce the complexity, we propose
a distributed central entity election learning (DCEE) algorithm. Though the DCEE
algorithm updates the strategy of every device with probability, we still prove the
convergence of the DCEE algorithm to ensure that it will always converge to a pure

strategy combination with probability 1.

. We derive many desirable properties of DCEE algorithm. There are some previous
work investigate on similar learning algorithm when step size b — 0 as [2] and [3],

but we derive the different theoretical results with the previous work.

. In the simulation, we verify the theoretical analysis and show the above desirable

properties in a real LTE system setting.



Chapter 2

Related Work

Seppili et al. introduce a reliable multicast concept for D2D communication in [4]. They
investigate the reliable multicast with HARQ in a D2D cluster. Wang et al. propose a novel
joint radio resource and power allocation scheme in a uplink D2D cluster in [5]. Hakola
et al. study how a direct-communication device group can improve the performance in
a conventional cellular in [6]. They also investigate how devices can form clusters with
each other.

Many literatures also study D2D clustering and relay mechanisms. Du et al. investi-
gate the topic that a D2D cluster needs to relay and broadcast data to devices in [7]. They
mention that HARQ feedback may have better performance by using a 2-bit ACK/NACK
feedback. Zhou, et al. consider a cooperative cluster without a central entity which needs
many devices relay data to all other devices in [8]. They give an algorithm to find the
optimal solution.

There are also many work study in clustering in wireless ad hoc networks. Chatterjee
et al. propose a weighted clustering algorithm for multi-hop packet radio networks, which

can dynamically adapt itself with the ever changing topology of ad hoc networks in [9].



Huang et al. design a protocol using split and merge maintain a logical connectivity graph
in ad hoc mobile systems in [10]. Badia et al. survey and review the routing algorithms
in heterogeneous wireless networks in [11].

Game theory [12] is a useful mathematical method to analyze D2D communications
where devices are selfish. The auction and mechanism design is also a useful approach
that can be applied in D2D communications. Xu et al. investigate interference-aware
resource allocation in D2D communications by a sequential second price auction in [13].
They also propose a reverse iterative combinatorial auction for resource allocation in D2D
communications in [14] [15].

Learning algorithm is also a useful tool in a distributed system. Wu et al. investigate a
coalition formation game for the energy-efficient uplink resource sharing scheme in [16].
They propose a distributed coalition formation algorithm with the merge-and-split rule and
the Pareto order to solve the problem. Mastronarde et al. consider a cooperative cellular
D2D network, where devices can use token to exchange some relay data for other users.
They propose a simple learning algorithm to learn its optimal cooperation strategy for each
devicein [17]. Zhou et al. propose a reinforcement learning algorithm for power control in
cognitive radio networks in [18] . They model an incomplete-information repeated game
and the reinforcement algorithm will converge to the Nash equilibrium.

Some work investigate on the cooperative system for cluster head election in wireless
sensor networks. Kang and Thinh propose a distributed cluster head selection algorithm
that optimally balances the energy consumption among the sensors in [19]. Kim et al.
propose another algorithm to maximize energy efficiency by the frequent information ex-
change in wireless sensor network in [20]. In order to prevent the attack or jamming from

others, Buttyan and Holczer propose a private cluster head election method in wireless



sensor networks in [21].

No previous work analyzes how to elect a central entity for a cluster from a game-
theoretical point of view. They only consider cooperative scenarios. On the other hand,
our work models the non-cooperative scenario of a cluster and takes into account the de-
vices’ private information on the transmission costs. In Section 3, we model the frame-
work of the cluster election system.

From Section 4 to Section 6, we consider the simple one cluster problem. We design a
mechanism for the central entity election problem in Section 4, propose an auction game
for solving the problem in Section 5, and analyze the Nash equilibrium and some properties
in Section 6.

Furthermore, we investigate in multiple-cluster central entities in Section 7 to Section
10. In Section 7, we prove the optimal solution of the multiple-cluster central entity elec-
tion should be a NP hard problem for a centralized system, and we propose a distributed
central entity election (DCEE) learning algorithm in Section 8. The proposed DCEE al-
gorithm has more properties such as convergence, budget balance, individual rationality,
which will be discussed in Section 9. When step size b — 0, we also compare our different
theory results with [2] and [3] in Section 10.

In the simulation Section 11, we verify our theoretical part. Finally, we compare some
different central entity election approaches with our proposed approaches and show it

outperforms the other approaches with a better performance.



Chapter 3

D2D System Framework

3.1 System Model

We assume there are n selfish and non-cooperative devices in a cellular network. Each
device is denoted by device D; where i = 1,2, ..., n. The devices request the same data
from the base station (BS). They prefer to form some clusters to receive the data rather than
a direct link connect to the BS for every device. Every cluster elects one of the devices
as the central entity. The BS first unicasts the data to the central entity. Then the central
entity broadcasts the data to the other devices in the same cluster. We can choose H C D
as the set of central entities, every central entity can form a cluster. Every other device
may join the cluster with a highest SINR with central entity in order to receive data, and
the device does not join any cluster that will not receive the data. In any cluster, like the

Equation (3.1), the cluster incurs more cost

Ci = f(dps,;) + 9(dijjjen,) (3.1



The function f(dpg;) represents the cost of the transmit power consumption from the
BS to the central entity, and the BS will transfer this cost to the central entity. The function
f(dps,) is related to the distance between the BS and device D;. It should be an increasing
and convex function. On the other hand, the function g(d; ; ;cn,) represents the cost of
broadcast power consumption from the central entity to the other devices. The function
g(d; jjen,) is related to the distance between devices D; and D, j = 1,2, ..., N;, where NN,
is the cluster members of central entity ¢’s cluster. It should be an increasing and convex
function as well. In a special case, if N; = ¢, g(d; jj;en,) = 0, each device can calculate
its cost of the transmit power consumption. On the other hand, the BS and each device
cannot calculate cost of the transmit power consumption of any other device. Therefore,
the cost g(d; jjjen,) is the private information for device i and j, and the cost f(dps;) is

also the private information for the BS and device «.

3.2 User’s Utility

When receiving the data, each device is assumed to obtain utility 4 which can be consid-
ered as the throughput. Note that the cluster needs to elect a central entity to first receive
the data from the BS and then relay the data to the other devices. If device D; becomes the
central entity Do, the cluster incurs the cost C;. We can formulate the utility function of
each device D; as follows:

/L—CCEZ,U—OZ' ifi=CF

i otherwise

We also define the overall cluster utility, i.e., the social welfare [22], as follows.

Definition 1. [social welfare] The overall cluster utility (social welfare) is the sum of the



utility of all devices minus the cost of the central entity. Mathematically, social welfare is

Z?:l az(k)



Chapter 4

Central-Entity-Election Mechanism For

One Cluster System

In this section, assume that devices are close enough to listen to each other, so they are
able to form a cluster and only need to elect one central entity, denoted by device D¢, as
shown in Fig. 4.1. With the assumption for one cluster system, every device can receive
the data. We can derive the social welfare as > " | @;(k) = nu — Ccp. The cost function

can be rewritten as follows:

Ci = f(dps,i) + 9(di jjvjzi)- 4.1)

The cost g(d; jivj-i) and f(dps,;) are also the private information for themselves.

We design a mechanism to elect the central entity in the cluster. In the mechanism, the
BS first announce a charge parameter A that will be used to define the transfers later. The
BS requires each device D; to report its private transmission cost ;. The reported cost is

denoted by .5;. Note that S; = C; only in truth telling. The BS rearranges the order of the

10



Cellular link

)
./

Figure 4.1: A downlink D2D cluster in a cellular network.

received cost reports such that S5;, < .S;, < ... <S; . The BS elects device D;, with the

lowest reported cost .S;, as the central entity, i.e., Dcp = D;,. To motivate the devices

to become the central entity, the BS gives the central entity the transfer 7ty in (4.2), and

charges any other device the transfer 7y, in (4.3),

AS;
Top = —2 4.2
op = 1% (42)
S.
Typ = —2 4.3
e =125 (43)

where ) is the charge parameter that the BS announces in the beginning of the mechanism.

Our proposed central-entity-election mechanism is summarized in Table 4.1.

Table 4.1: Central-Entity-Election Mechanism

Step 1.
Step 2.

Step 3.

Step 4.

The BS announces a charge parameter \.

Each device D; reports its cost S; to the BS. Note that S; = C; only in truth telling. The
BS rearranges the order of the received cost reports such that S;, < 5;, < ... <5 .
The BS elects device D, with the lowest reported cost S, as the central entity, i.e.,
Dcg = Dj,.

The BS gives transfer Tog to the central entity and charges the transfer 7y, from
any other devices, where T and Ty7 i are given respectively in (4.2) and (4.3).

11



We can rewrite the utility function of each device D; under the proposed mechanism

as follows:

% +TCE - OCE ifi=CFE
U, = (4.4)

w—"Tug otherwise

All of the notations are summarized in Table 4.2.

Table 4.2: Notations

D; Devices in the cluster,i = 1,2, ..., n.

Dcg The central entity of the cluster, where CE € {1,2,....,n}.

C; The incurred cost of transmit power consumption when device D; becomes the central
entity.

1 The utility of receiving the data.

Tce The transfer from the BS to the central entity Dog. Tog is given in (4.2).

Tue The transfer from any other devices to the BS. T/ is given in (4.3).

A The charge parameter set by the BS.

12



Chapter 5

Auction Game in Mechanism

Since all devices are selfish and non-cooperative, they may not report the true transmis-
sion cost to the BS in general. We apply game theory to construct a game model for the
proposed mechanism. We will further analyze the game model in the next section. The
constructed game, denoted by G = (N, C, S, U), has four main components, each of which

is specified as follows.

1. Player set N = {1,2,...,n}: Each device D;, i € {1,2,...,n} in the cluster is a

player in the game.

2. Cost function set C = {C}, Cy, ..., C,, }: When device D, becomes the central entity
D¢ = D;, device D; has an additional transmission cost C; which is the private

information.

3. Strategy space S = {51, S, ..., S, }: Each device D; reports its private transmission
cost S; to the BS. Therefore, the strategy of each device is S;. Note that S; = C;

only in truth telling.

4. Utility function set U = {U, U, ..., U, }: The utility of each device D; under the

13



proposed mechanism is given in (4.4).

With the components above, we can treat the proposed game G as a Auction Game.
Devices D;, where ¢ € N, are the bidders, the costs C are private information, and the
reported costs S are the bid prices, and becoming the central entity is the bid object for
devices. The central entity receives the transfer 7= = (AS;,)/(1+ ), which is related to
the second lowest bid S;,. The other device pays the transfer 7,5 = S}, /(1 + \) related

to the lowest bid S},. The proposed game model is summarized in Table 5.1.

Table 5.1: Auction Game in Mechanism

Game model G = (N, C, S, U)

Player set N = {1,2,...,n}. The devices are players in the game.

Cost function set C = {C1,(Cy,...C,, }. Theincurred transmission cost when the device becomes
the central entity. The cost is private information.

Strategy space S = {51, 53, ..., Sy }. Each device reports its cost to the BS.

Utility functionset U = {U;, Uy, ..., U, }. The utility of each device is given in (4.4).

14



Chapter 6

Analysis — the Equilibrium and the

Desirable Properties

We prove that the proposed mechanism incites each device to truthfully report its cost

since truthfully reporting the cost always brings the highest utility.

Theorem 1. For each device D;, truthfully reporting the cost S; = C; is the unique

dominant strategy that maximizes the utility.

Proof. For any device D;, we know that the utility U; is independent of its strategy .S;.
When device D; plays the truthful strategy S; = C;, we consider the following two situa-

tions:
1. Device D; plays S; = C}; and is elected as the central entity.
2. Device D; plays S; = C; and is not elected as the central entity.

In situation 1, we know that Ccp = C; = 5;,. To show that device D; cannot obtain

higher utility by deviating its strategy to not become the central entity, we need to show

15



that

AS; S
Ui:u—i-TCE—C'iZ,u—T{JE <~ u+1+]2)\—5j12,u—1+i)\ <~ SjZZSjl
6.1)

which is always true.
In situation 2, we know that C; = S, for some £ > 2. To show that device D; cannot
obtain higher utility by deviating its strategy to become the central entity, we need to show

that

S, AS;
Ul:,u—TUEZ,U—f—TéE—Cl <:>M_1+¢>\2M+1+—31)\_Sjk

which is always true.

So we know that it is a dominant strategy for each device D; to play the truthful strategy
S; = C;. Furthermore, when a device plays S; > C; or S; < Cj, it is possible to meet
the situation 1 or situation 2 respectively, as the cost function of other devices are private

information, we say the truthful strategy 5; = C; is the unique dominant strategy. [

In Theorem 1, each device D; plays the unique truthful dominant strategy S; = C;. A

direct result of the dominant-strategy Nash equilibrium [23] is given as follows.

Proposition 1. The cluster reaches the unique truth-telling dominant-strategy Nash equi-

librium, S = C.

Proposition 1 states that the unique dominant-strategy Nash equilibrium that our pro-
posed mechanism reaches has a desirable property of truth telling. In addition to this
truth-telling property, the proposed mechanism achieves more desirable properties at the

16



unique dominant-strategy Nash equilibrium, such as the social welfare maximization, in-
dividual rationality [22], and (weak) budget balance [22]. The definition of the social
welfare is given in Definition 1 in Section 3.2. The definitions of individual rational and

(weak) budget balance are given as follows:

Definition 2. [individual rationality] A mechanism achieves individual rationality if and
only if all devices join the mechanism and obtain the non-negative utility. Mathematically,

U, >0VieN.

Definition 3. [budget balance] 4 mechanism achieves (weak) budget balance if and only
if the total transfer of the BS, i.e., the transfers the BS receiveing from the non-central-
entity devices minus the transfers the BS paying the central entity, is non-negative. Math-

ematically, (n — )Ty — Teg > 0.

We prove the above properties of the social welfare maximization, individual ratio-
nality, and (weak) budget balance as follows. We first show in a lemma that the utility of
the central entity is higher than those of the other devices. This lemma helps prove the

property of individual rationality.

Lemma 1. The utility of the central entity is greater than or equal to that of the other

devices in the unique dominant-strategy Nash equilibrium.

Proof.

AC; C NC AC;

> f - E J2 > o J1 J > J

Uop 2 Ui i #C R s S w e G N S P
— ), 2 Cj (6.3)
which is true. O

17



Theorem 2. The social welfare is maximized in the unique dominant-strategy Nash equi-

librium.

Proof. By Definition 1, the social welfare is maximized when the cost is the lowest. Since
the proposed mechanism elects the device with the lowest cost as the central entity, the

social welfare is maximized. ]

Theorem 3. The proposed mechanism achieves individual rationality when the charge

parameter satisfies X > (Cj, — p)/p

Proof. By Lemma 1, we have Ucp > U; Vi # C'E. We only have to show that U; > 0

Vi # C'E as follows:

C. C. O C. —

U>0 <= p——2->0 = L2 <y = 14+1> “<:>/\z“—u
14+ A 1+ A ] o

(6.4)

which is the condition given. [

Theorem 4. The proposed mechanism achieves (weak) budget balance when the charge

parameter satisfies N < (n — 1)C;, /C},.

Proof. The total transfer of the BS is

Cj1 )\Cj2

= Wlop =Tow = (=773 = 703

(6.5)

18



The total transfer of the BS is non-negative if and only if

G A >0 <= \< o B

— Vil —Top > —1 —
(n=1)Typ —Top 20 <= (n )1+>\ 1+N— o

(6.6)

which is the condition given. [

Combining Theorems 3 and 4, we may also state the condition that the proposed mech-

anism achieves both individual rationality and (weak) budget balance.

Proposition 2. The proposed mechanism achieves both individual rationality and (weak)

budget balance when the charge parameter satisfies (Cj;, — ) /p < A < (n—1)C}, /C},.

Although the BS is not easy to decide a proper charge parameter A before the auction,
if we assume the data utility p is important enough as 1 > C,, then the BS can choose
A = 0 to satisfy both individual rationality and budget balance. In fact, the Vickrey Clarke
Groves (VCQG) auction mechanism [24] can also apply in our system. But in the result of
VCG mechanism, the BS will pay transfer for the central entity. Compare the results of
our mechanism and VCG mechanism, we can know that VCG mechanism is a special case
in our mechanism of A\ — oo, and the VCG mechanism always cannot satisfy the budget

balance.
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Chapter 7

Extension From One-Cluster to

Multiple-Cluster System

7.0.1 System Model

In the previous sections, we proposed a centralized mechanism to achieve the optimal
solution in the one cluster central entity election system. We will extension the scenario
to a general multiple-cluster scenario. In the following research, we do not assume the
devices are close enough to listen to each other, so they may form more than one clusters

to receive the data.

7.1 Centralized System Analysis

In a centralized system, the BS plays an important role to choose the central entities. We

prove an important centralized system theorem as follows:

Theorem 5. In a general centralized system, the optimal solution to elect the central

entities is a NP hard problem.
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Proof. To show that optimal solution is a NP hard problem, we should compare this prob-
lem with a well-known NP hard problem. Consider a special scenario with data utility
p>> f(dpsi) >> g(dijjen;)Viand f(dps;:) = f(dBsi,), 9(dijjjen.) = 9(diyjijen; Vi, i2.
Data utility x4 is a dominating term in the social welfare, so the optimal solution should
let every device receive data. The cost function terms f(dps;) >> ¢(d;j|jen,) means
that the cost from BS to central entity is much more than that of D2D broadcast, so the
optimal solution also needs to minimize the central entity numbers. In a graph theory, the
problem which finds minimum number of nodes such that their neighbors coverage whole
the nodes is called "minimum node cover” problem, which is a well-known NP hard prob-
lem. As a special scenario is a NP hard problem, the general problem that finding optimal

solution of electing the central entities is also a NP hard problem. U

We extend our proposed mechanism design in Section 4 to the multiple-cluster system.

The transfers can be designed as follows:

A /
TCE,j:H—)\ZCi_‘Z ‘Ci (7.1)
ieH' 1EH,i#]
1
Top: = —— 7.2
UE,j 1 + )\ ZEZH ( )

where T ; represents that the device j is a central entity, and 7y, ; represents the
device j is not a central entity. The term ) ., C; means the system cost if the CE;
becomes ULj. 4, ;. Ci is the system cost of the other CEs, and ) _,;,. is the system
cost.

In such transfer mechanism design, the system also possesses the properties of the op-

timal social welfare, truth-telling, individual rationality and budget balance, but we don’t

21



prove them here. Consider the Theorem. 5, the system complexity will be NP hard and
may cause an excessive loading to the BS; therefore, it is better to find a heuristic solution
with regard to the application. For example, if the devices locate in a limited region, they
are assumed to form at most three clusters. By utilizing the brute-force algorithm, the
system complexity is T'(P) = ((3) + (}) + (5) + (3)) = ©(n?), can be effectively re-
duce. Though the mechanism design still works, we consider another approach to reduce

the system complexity. We will investigate in a distributed system to solve the election

problem of the multiple-cluster central entities.

7.2 Distributed System Analysis

In a distributed D2D communication system, any device will make decisions in a dis-
tributed manner. As the devices are selfish and non-cooperative, their decisions may have
system performance unsatisfactorily fail to achieve the Nash equilibrium. We design the

multiple-cluster central entities election distributed system as follows:

7.2.1 User’s Utility

When receiving the data, each device is assumed to obtain utility ;2 which can be consid-
ered as the throughput. Note that the central entity has a cost C;. We assume that the BS
set a price 7' < p as the transfer. The BS charges 7" from every device and pays | NV;| x T
to the central entities, where | N;| is the devices number which connect to the central entity

D;. So we can rewrite the utility function as follows:
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p+|N;| x T — C; ifiis central entity
u;(k) = w—"T if 1 is a cluster member (7.3)

0 otherwise

\

In this distributed system, we assume that every device has two strategies ’yes” and
”no” to choose. The devices choosing ”yes” will become central entities, whereas the
other devices choosing ”no” will connect to the central entity will highest SINR for re-
ceiving data and the central entity cannot reject the connection request. However, if a
device chooses ”no” and it cannot connect to any central entity, it will not receive the
data and thus has utility 0. In the transmission process of the clusters, we can use time
division duplex(TDD) to avoid the interference. We write the action combination as a
= (ay,as,...,a,) € A, which A = {yes, no}", so that a action combination will corre-
spond to an unique communication scenario. We use u;(a) represents the utility of device
¢ in such scenario, and we summarize the game model of the distributed system in table.
7.1.

Table 7.1: Multiple Central-Entity Election Game Model in Distributed System

Game model G = (N, C,a, u)

Player set N ={1,2,...,n}. The devices are players in the game.

Cost function set C = {C1,(Cy,...C,, }. Theincurred transmission cost when the device becomes
the central entity. The cost is private information.

Strategy space a= (a,az,...,ay) € A, which a; € {yes,no} .

Utility function set u = {u;(a), ua(a), ..., u,(a)}. The utility of each device is given in (7.3).

To analyze this problem, we will use game theory to analyze the behavior of the de-

vices, and the Nash equilibrium [23] is defined as follows:
Definition 4. [Nash equilibrium] 4n action combinationa = (ay, as, ..., a,) € Ais Nash
equilibrium (NE) if and only if u;(a) > w;(al, a_;)Vi, whicha_; = (a1, a2, ..., Gi—1, Qit1, ..., Qp).
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In other words, no one can change its strategy unilaterally and has better utility in the Nash

equilibrium.
Then we prove an important theorem for the distributed system as follows:

Theorem 6. A4 distributed D2D communication system may not admitting any pure Nash

equilibrium.

Proof. To show that a distributed D2D communication system may not have an Equilib-
rium, we only need to give an example that does not admit any pure NE. We propose a
rotationally symmetric scenario as Fig. 7.1, where the circles represent the D2D broad-
cast area of Dy, Dy, and D3. Considering the three devices Dy, D, and D3, if D, and
D3 are both central entities but D, is not, then D, will prefer to connect with D; due to
the closer distance and higher SINR, and so do Ds, Dy, and D5 as well as D5, Dg, and
D;. We assume the detailed parameters are data utility i = 5, price 7' = 4, cost function
Cy =C5 =C5 =10,and Cy; = C; = (s = 100 are constants. Recall the utility function

of Equation (7.3), we have

54 |N;| x4—C; ifa; =yes

ui(k) =< 5—4 if a; = no and receives data (7.4)

0 otherwise

We know that Vi a; = no always has a non-negative utility. For Dy, D4, and Dg, they
have too much cost C; and will have negative utility if choosing a; = yes. As a result, we
know that D, Dy, and Dg have dominating strategy a, = a4 = ag = no. For Dy, D3, and
Ds, if none of them or three of them are central entities, all of them would like to deviate
this strategy. If only one of them is the central entity, without loss of generality, assume
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D is the only central entity, then D5 would like to become a central entity to have better
utility. If two of them are both central entities, without loss of generality, assume D; and
D5 are central entities, then D, will have a negative utility and prefer not to be a central
entity to have better utility. After the discussion above, we know that the topology Fig.

7.1 has no pure strategy Nash equilibrium in any condition.

_______

Figure 7.1: An example which does not admit any Nash equilibrium

Although a distributed system may not submit any Nash equilibrium, we still inves-

tigate finding the Nash equilibriums. We propose a Distributed Central Entity Election

Algorithm to help to find Nash equilibriums in Section 8.
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Chapter 8

Distributed Central Entity

Election(DCEE) Algorithm

8.1 Distributed Central Entity Election(DCEE) Algorithm

In this section, we will propose a distributed learning algorithm to give an approach to
form the clusters. Device i will have a probability p;(k) and utility u;(k) in time instant
k, the probability represent whether device ¢ will become central entity, and p;(k + 1) will
update from p;(k) and utility function w;(k) at time instant k. When the probability p; (k)
of all the devices converge to 0 or 1, the algorithm will stop.

We propose the distributed central entity election (DCEE) Algorithm as the table. 8.1

In fact, the stopping criterion Step 5 cannot be met in finite times, we can use (p;(k +
1) € [0,e.]N[1 —e€., 1])Vi as the stopping criterion, where the €. should be a small positive
constant.

0 < b < 1 is the step size of the updating rule and u; is normalized utility function.

We normalize the utility {u;} as
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Table 8.1: Central-Entity-Election Learning Algorithm

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Set the initial probability 0 < p;(0) < 1, Vi.

At every time instant k, each device chooses whether to be central entity according to
its action probability p; (k). Thus, the device i chooses action a; = yes at instant k
with probability p;(k), and chooses action a; = no with probability 1 — p;(k).

Each player can obtain a normalized utility u;(k) based on the set of all actions at
time instant k.

Each player updates its action probability according to the rule

pi(k +1) = pi(k) + bu;(k)(1 — pi(k)) if a;(k) = yes
pi(k+ 1) = pi(k) — bu;(k)pi(k) if a;(k) = no,
i=1,2,....n, (8.1)

Stopping criterion met (p;(k + 1) = p;(k))Vi; else, go to Step 2.

ai(k) if (k) >0
ui(k) = (8.2)
0 ifa(k) <0

u;(k) + €1 X mazi<i<p{|ui(t)], €2}
(1+€1) x mazi<e<pf{|wi(t), €2| }

where (k) = (8.3)

where u;(k) is the original utility of user 7 in time instant k, @; normalize the utility

function to [—1, 1], and w; truncate the minus part let utility region is [0, 1]. The purpose

of adding a small positive real number ¢; is to ensure that when a device choose strategy

a;(k) = no, u;(k) always takes a positive value, which will help the convergence of this

algorithm. The €, ensures the denominator will not become 0, and we can ignore the e,

most times. We show the two main properties of the normalized utility function as follows:

Property 1: Vi, k € N, we have u;(k) € [0, 1], and u;(k) is an increasing function of

u;(k) when maxi<;<x{|u;(t)|} is constant.

Proof. The u;(k) only takes non-negative values, so u;(k) > 0. On the other way, recall

the equation of @;(k), 4; (k) < maxi<i<x{|u;(t)|},sou;(k) < 1, which implies u; (k) < 1.
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The increasing property is also easy to know in the equation of @;(k). ]
Property 2: Vi, k, we will have (u;(k) € [, 1]|a;(k) = no), where ¢y = € /(1 + €1).

Proof. First, we know when a; = no, device 1 will have only two case of receiving or
not receiving data. u;(k) will be 0 or (1 — T') /mazy<;<{|w;(t)|}. Recall the equation of
u;(k), u;(k) = 01is corresponding to the @;(k) = €y, with the increasing property of ;(k),

we can know that ¢y < u;(k) < 1. O

8.2 The Convergence of the DCEE Algorithm

In this section, we prove the DCEE algorithm will converge to a pure strategy combination
with probability 1. Before beginning to prove the convergence, we need some useful

lemmas.

Lemma 2.

V0 <ae<1,3p>0st [J(1—al-eF) >p (8.4)
k=0

Proof. We choose a positive integer ko > In(e/a)/In(1 — €), which implies 1 > (a(1 —

€)k) /e, so
0o ko—1 0o
[[Ta-a-of =] Q-al—ef) =[] @ —alt—e"
k=0 k=0 k=ko
Spr (1= 3 (a1 - 0) = pox (1~ 2290 5
k=ko

where the proof'is derived by using an easy inequality (1 —z)(1 —y) > (1 — 2z —y)V0 <

T,y < 1,and py = 20;01 (1 —a(1 — €)*) is a constant, we can choose constant p =
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po * (1 —a(l — €)™ /¢) to complete the proof. O

Lemma 3. In a markov chain, when a state X has a probability p > O to jump in an ab-
sorbing state, this state X is a transient state(i.e. the markov chain comes back to state

Xy infinite times with probability ().

Proof. Define that markov chain as X (¢), and X (0) = X, we will prove by contradiction.
Assume that markov chain has a probability py > 0 to visit the state X, infinite times, let
T be the number of visits to state X, given X (0) = X. Calculate the expectation of 7',

we have

E[T[X(0) = Xo| = po * 00 = 00 (8.5)

On the other way, we know state X, has a probability p to jump in an absorbing state, we

define

p1 = Prob{3i € N, X (i) = Xo| X (0) = X} (8.6)

which p; means the probability to visit X, again, so we know py + p; < 1, which is
p1 < 1 — po. Then we can have the distribution of 7" with P(T = k) = p¥(1 — py)

Vk > 0,k € Z, which is similar to a geometrically distribution, so the expectation of 7" is

E[T|X(0) = Xo] = > ipi(1—p1) = > _(i+1)pi(1—p1) Zpl (1—p1)
i=0 i=0
- 1
=Y ) 1= (8.7)
— -
Compare E[T|X(0) = Xy| in Equation (8.5) and (8.7), we have a contradiction. O
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To prove the convergence of the DCEE algorithm, we need a corollary first.
Corollary 1: Consider any one of person a;(k) in the learning algorithm, the strategy
of a; (k) will converge to yes or no with probability 1, i.e. p;(k) will also converge to 0 or

converge to 1 with probability 1.

Proof. We will prove this corollary using utility properties 2, Lemma 2, and Lemma 3.
First, we will construct a markov chain of the p,. In fact, p; can take uncountable infinite
values, and transition probability will also affect by a(k) = (ai(k), as(k), ..., a,(k)) so
there are too many states. We will merge all the states with similar properties to some
compound states. Whatever condition a(k) is in, if p;(k) € [0,1 — (beo/2)], they are
compound state 1. On the other way, if p; (k) € (1 — (bey/2), 1], they are compound state
2. And we define a special absorbing compound state 0 when p;(k) € [0, 1 — (bey/2)] and
satisfies Vk; > k, a;(k1) = no. We say that is compound state 0.

Observe the compound state 0, we know p;(k) will converge to 0 because Vk; >
k,a;(k1) = no and Vky,u;(k1) > €y by utility property 2. The compound state 0 will not
have any probability to transit its state to compound state 1 or compound state 2, so we
call the compound state 0 as an absorbing state.

Then we observe the compound state 2, which is a very small region when p;(k) €
(1—(bey/2), 1]. Consider a case of p;(k) € (1 — (bey/2), 1] and a;(k) = no, we know that
u;(k) > €o by utility property 2. Then we can derive p;(k + 1) = p;(k) * (1 — bu;(k)) <
1—bu;(k) < 1—beg, so p;(k+1) will transit into compound state 1(or absorbing compound
state 3).

Then we observe the compound state 1, p;(k) < 1 — (bep/2) implies the probability

a;(k) = nois at least 1 — p;(k) > 1 — (1 — (beg/2)). Therefore, we can derive the
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probability for device i satisfying Vk; > k, a;(k1) = no as

P(Vky > k,ai(ky) =no) > (1 — (1 — ?))(1 —(1— %)(1 —€))---

“TI0-0-"0-a >» (8.8)

where we can choose a positive constant p to satisfy (11) by Lemma 2. This fact implies
that in any state in the compound state 1, there is always a transition probability to transit
it state to absorbing state 0 with probability at least p. We draw a state graph sketch map

as Fig. 8.1.

=1 (a; = yes)
(a; = no) Compoundstate 1 ¥ ) “'/-j c

Compound state 2

Pi U\'-)clJ ¢ r\_-,lr b
|

Absorbing Compound State 0

pi(k) |
0 w 1—bey/2

Figure 8.1: Compound States Sketch Map

Now we will prove corollary 1 by contradiction. Assume the a;(k) will not converge
to yes or no, which implies p;(k) also cannot converge to 0 or 1. So it is clear that the
transition state can not visit absorbing state 0. We consider the three different case as

follows:

1. Assume the transition process visits the absorbing compound state 0. Then we know

that transition process will converge to p; = 0 and a; = no.

2. Assume the transition process never visits compound state 0, and it meets compound
state 1 infinite times. Recall the Lemma 3, we know that compound state 1 has a

probability to transit into absorbing compound state 0, so compound state 1 should
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be a transient state. We also know that transition process will visit a transient state

infinite times with probability 0. In other words, this case is impossible.

3. Assume the transition process never visits compound state 0, and it meets compound
state 1 finite times. Then k; € N such that V& > k; exists, the transition process
meets compound state 2. So Vk > ki, a;(k) = yes. Now we prove this implies p; (k)
will also converge to 1 with probability 1. First, we know Vk > ki, a,(k) = yes,
which implies p;(k) will increase when k > k;. Prove by contradiction, if p;(k)
is increasing Yk > k; and p;(k) does not converge to 1, then ¢ > 0 such that
Vk > ky,pi(k) < 1—¢€ exists. Sowe can derive the probability P(Vk > ky,a;(k) =
yes) < (1 —€')> = 0, which is a contradiction. So we proved that p;(k) will also

converge to 1 with probability 1.

In previous discussion, we prove that a;(k) and p;(k) will always converge in the
DCEE algorithm with probability 1 in all cases. Furthermore, corollary 1 implies the
theorem 7.

]

Theorem 7. Vi, p; in the DCEE algorithm will converge to 0 or 1 with probability 1, and

a; also converges to a pure strategy yes or no with probability 1.

Proof. By corollary 1, we know that every device’s a; and p; will converge will probability

1, so it is obviously that the whole DCEE algorithm will converge with probability 1. [

In previous discussion, we note that normalization of utility u; doesn’t affect the DCEE
algorithm result much, but ¢, plays an important role to assist the convergence. Without
the normalized utility function u; and ¢y, if there are devices always take utility 0, that

devices will always unable to converge to a pure strategy.
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Chapter 9

Properties and Theorems of the DCEE

Algorithm

In the previous section, we know the DCEE algorithm will always converge to pure strate-
gies, but we do not know exactly which strategy will be converged. In this section, we will
derive not only the strategies that is capable of being converged, but some other properties
of this algorithm.

*

Corollary 2: If a strategy combination (af, al, ..., a}) satisfies Vi, u;(aj, a3, ..., af) >
0, then the DCEE algorithm may converge to this strategy combination. Furthermore, the

DCEE algorithm may converge to different strategy combinations with the same initial

state.

Proof. By Lemma 2, we know that Vi, 3p; s.t. P(¥j > 0,a;(j) = af) > pi,
so P(Vj > 0,(ai(j),a2(j),....an(4)) = (a3, a3,...,a%) > [1,_, pn, which means the
DCEE algorithm at least has probability [ [,,_, ps to converge to the strategy combination

(a3, ab,...,ak). O

coy gy
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Corollary 3: If the DCEE algorithm converges to a strategy combination (a7, a3, ..., a’),

coy Wy

then Vi, u;(aj, a3, ...,a%) > 0

ey gy

Proof. Proof by contradiction, we assume there 3i s.t. w;(af,a3,...,a;) = 0. On the

*

other way, the DCEE algorithm converges to (a, a3, ..., a)) means 3kg s.t. Vk > ko, j €

{1,2,..n},a;5(k) = a}. So Ip; < 1s.t. Vk > ko, pi(k) = p;, implies [ [, Plai(k) =

af] = (p;)> = 0, which indicates that the learning algorithm converges to (a}, a3, ..., a})

cey gy

with probability 0, which is a contradiction. [

Definition 5. [Positive Strategy Set] We say a strategy combination a € A is a positive

strategy if a satisfies Vi, u;(a) > 0, and we define set S as a € S ifand only if u;(a) > 0Vi.
Theorem 8. The strategy set the DCEE algorithm can converge to is S

Proof. We can know that Corollary 2 and Corollary 3 are contrary propositions to each

other, and we can combine them to have Theorem 4. ]

In the previous discussion, we know though that the DCEE algorithm always con-
verges, but it may not always converge to a specific strategy combination with the same
initial condition. The converge pattern may form a probability distribution in &, and the
probability distribution mainly depends on the topology and parameters such as u;,p; (0),é;

and step size b.
Theorem 9. The DCEE algorithm always satisfies the budget balance property.

Proof. Consider any cluster, every cluster member pays the transfer 7', and the central
entity receives the transfer |V;| x 7. So it is obvious that the total transfer of all the

devices is 0, which means the budget balance. [

According to the budget balance, we can derive the social welfare > | 4;(k) = nou—
Zie% C;, where the ny < n represents the total device number that can receive data.
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Definition 6. [e— individual rationality:| /ndividual rationality means the player joining
a cluster or becoming a central entity will have a non-negative utility, and we define that
e—individual rationality means the player joining a cluster or becoming a central entity

will have utility > —e.

Theorem 10. For any e > 0, we can choose the parameter €, small enough to ensure the

DCEE algorithm have e—individual rationality for every device in any learning result.

Proof. By, theorem 8, we know that converge strategy provides u; > 0 for every device @
in any learning result. We recall the utility normalized Equation (8.2) and (8.3) to calculate

the truth device utility @;. We will derive the relationship u; and w; as follows:

U; + €1 * max|u;(t)|
(14 €1) * mazy|u;(t)|

u >0 <= ;>0 <~ >0 <= u; > —ep * max|u;(t)]

9.1)

O

we can choose ¢; = €/max; {max|u;(t)|}, then u; > —e; *x max|u;(t)| > —eVi.
So we know that when ¢; is a very small positive number, it almost can not affect the

individual rationality.
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Chapter 10

Further Investigation of the DCEE

Algorithm and Discussion

10.1 Theoretical Analysis in Small Step Size b

In this section, we will discuss the algorithm behavior when step size b used in equation
(8.1) is small enough. By using the ordinary differential equation (ODE) whose solu-
tion approximates the asymptotic behavior of p;(k) as in [3], we can rewrite the learning

algorithm updating process in equation (8.1) as

Pk + 1) = P(k) + bG(P(k), a(k), u(k)) (10.1)

where a(k) = (ai(k), ..., a,(k)), and u(k) = (u1(k),...,u,(k)). G(.) represents the

updating process by equation (8.1). When b — 0, we define a function f by the conditional

36



expectation:

f(P) = EIG(P(k),a(k), u(k))|P(F)] (10.2)

Lemma 4. In the DCEE algorithm, considering one player D, scenario (or assuming
the strategies of other n-1 players are static), two strategies, a;; = Yyes or aja = no,
are to be chosen. Then Play(k) — ay1] — 1 when b — 0 and uy(a11) > ui(a2), or
Plai(k) — a12] — 1 when b — 0 and uy(a11) < uq(ai2). It means the player will have a

higher probability to converge to a better strategy when b is small.

Proof. Without loss of generality, we assume wu;(a11) > u1(ap2), and then

~dpn

fu = T prur(an)(1 —p1) — (1 = pr)w(arz)pr = pa(1 — p1)(wi(arn) — ui(arz)) > 0

(10.3)

p11(t) is a monotonically increasing function of t, which indicates a; (k) — a1, so we
know that Pla;(k) — aj1] — 1. On the other way of w;(a11) < ui(aq2), we can still
obtain similar results.

]

The notation a,; represents the jth strategy for the player ¢, and a property could be

derived as follows:

Theorem 11. In the DCEE algorithm, if a player D; has a dominant strategy a;,, then

Pla;(k) = a;1] — 1 when b — 0.

The proof of theorem. 11 is similar to lemma 4 and we will not prove it here.
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10.2 Discussion and Comparison to Related Work

There are some similar learning algorithms proposed in [2] and [3]. They also adopt ODE
to have the asymptotic solution for the learning algorithm, but we think some theories in
the previous work are wrong. They admit the weak convergence of the learning algorithm

. R
satisfies ¢€ = 0, which is i =

5 o~ = OVi, j. The weak convergence result admits the learning

algorithm to converge to mixed strategies, which are also Nash equilibriums. However, in
the theorem 7 of our DCEE algorithm, we prove the learning algorithm cannot converge to
any mixed strategy even if step size b is very small. In a macro view, the DCEE algorithm
may be close to the mixed Nash equilibriums, but the mixed Nash equilibrium cannot be
a stable point. The learning process may oscillate around the mixed Nash equilibrium for

a long time, but finally converge to a pure strategy even if step size b is very small.
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Chapter 11

Simulation Results

11.1 Simulation Scenario

Our simulation scenario follows 3GPP TR 36.843 V1.0.0, Urban macro(500m ISD) +1
RRH/Indoor Hotzone per cell in [25]. The synchronization reference is derived from the
timing of a cell. The BS that transmits data to the devices is located at the origin. The
devices are uniformly distributed in a bounded square area 200¥200m? to form a cluster.
The cluster is 200m away from the BS. Other 18 BSs that cause interference are located
in the inter-BS distance of 500m. Each device can measure the signal strength of the BS
and the central entity, and calculate the SINR.

In the following, we define the cost function of each device. Recall that the cost func-
tion is derived in (4.1). We assume that a data block can be received correctly if the block
error probability is less than a small number ¢ = 0.001. The BS and the central entity will
adjust their transmit power, denoted by Pgg and P, to guarantee the block error proba-
bility to be less than e. Assuming that the normal transmit power of the BS is 46dBm(40W)

and the normal D2D transmit power is 23dBm(200mW), we define the cost function as
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the normalized transmit power consumption Pgg/40W + Pop/200mW. In addition, we
assume that each device obtains utility 4 = 1 when receiving data. Then we can rewrite

the utility function as follows:

_ Pes _ _Pcgp e
1+ Tee — 0% — momw fi=CE

U, = (11.1)
1—Tyg otherwise

All of the simulation parameters are showed in Table 11.1.

Table 11.1: Simulation Parameters

System bandwidth 10MHz

Carrier frequency 2GHz

Number of BSs 19

Inter-BS distance 500m

BS transmit power(Ppg) 46dBm(40W)
D2D transmit power(T¢c ) 23dBm(200mW)
Cluster region 200*200m?
Minimum distance from the cluster to the BS 200m

Number of D2D devices

uniform 10 drops

Mobility static scenario
Charge parameter \ 7.2

Utility 1

Block error probability e 0.001

11.2 Verification of the Theoretical Analysis in the Auc-

tion Mechanism Design

We verify the theoretical analysis of the auction mechanism design in Section 4 in the

following three performance metrics:
1. Truth telling: Each device maximizes its utility by truthfully reporting its cost.

2. Maximum cluster utility: The proposed mechanism maximizes the overall cluster
utility by choosing the device with lowest cost to be the central entity.

40



——CE
another UE
— — — truth-telling line

Deviation of the reported cost

Figure 11.1: The utility of the devices under different values of the reported costs.

3. Effect of the charge parameter \: We analyze the effect of the charge parameter A

on the properties of the individual rationality and the budget balance.

11.2.1 Truth Telling

In Fig.11.1, we show the utility of the central entity and another device denoted by the
UE. We find that the central entity and the UE have the maximum utility 1.8 and 0.8 when
reporting the true costs. If the central entity reports a higher cost to not become the central
entity, its utility decreases to 0.6. On the other hand, if the other device reports a lower
cost to become the central entity, its utility decreases to -0.3. In other words, both the

central entity and the UE maximize their utility by truthfully reporting their costs.

11.2.2 Maximum Cluster Utility

Fig. 11.2 shows the overall cluster utility and the cost when each device D; becomes the
central entity. Since our proposed mechanism elects the device with the lowest cost, i.e.,

Dy, as the central entity, the overall cluster utility is maximized as depicted in the figure.
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Figure 11.2: The cost and the cluster utility when device D; is the central entity.

transfer

\ — — —zeroline

Total transfer of the BS| |

Figure 11.3: The total transfer of the BS under different values of the charge parameter A

11.2.3 Effect of the charge parameter \

In Fig. 11.3, the proposed mechanism achieves (weak) budget balance when A < 8. When

A increases, the total transfer of the BS defined in Equation (6.5) decreases. In Fig. 11.4,

the proposed mechanism achieves individual rationality when A > 1. The utility of the

central entity and that of the UE increases with A\. Combining the results in Fig. 11.3 and

Fig. 11.4, we know that when 1 < A < 8, the proposed mechanism achieves both the

individual rationality and (weak) budget balance.
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Figure 11.4: The utility of the central entity and the UE under different values of the charge

parameter \

11.3 Verification of the Theoretical Analysis in DCEE al-

gorithm

In this section, we drop devices uniformly distributed in a bounded rectangular area 100*300m?
to form a cluster. The cluster is 300m away from the BS. In the following, we define the

cost function of each device. Recall that the cost function is derived in (7.3). Then we can

rewrite the utility function as follows:

1+ T *|N;| — iBs — Fee ifj= CE

u(k) =9 1-7T if i is a cluster member (11.2)

0 otherwise

We show the different simulation parameters in Table 11.2.

11.4 Observation in Different Parameters

In this section, we will conduct simulation with fixed scenario, and change the setting

of step size b, transfer price 7" and initial condition p;(0). We do 3000 times simulation
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Table 11.2: Simulation Parameters2

Device Region 100*300m?
Number of D2D devices uniform 20 drops
Mobility static scenario
Data utility 1

Step size b 0.1

Transfer price T’ 0.1

Initial condition p;(0), Vi 0.5

Stopping criteria 0.01

Utility normalized parameters (€1, €2) (0.1,0.01)

in each setting and plot the curves of convergence time, converge to NE probability, the
DCEE algorithm efficiency U, /Up, and the average cluster numbers, where Uy, is the

average social welfare of the DCEE algorithm, and Uy is the optimal social welfare.

11.4.1 Change Step Size b

In this simulation part, we change the step size b from 0.02 to 0.5 as in Fig. 11.5 and Fig.
11.6. We can find that when b becomes small, the NE rate and the algorithm efficiency will
increase simultaneously. It represents a better performance but with the trade-off in rapid
increase of the convergence time. We can also find that the appropriate cluster numbers is
about 4 clusters in this scenario. When step size is too large, DCEE algorithm may have
a higher probability to converge to bad results and form more clusters.

5000

T T T T 0.5
T —— Convergence time
\ —6— NE probability

4000

I
~

w
S
S
S

103

Convergence Time

N
=3
S
S
L
o
N}

Nash Equilibrium Probability

1000 10.1

Step size b

Figure 11.5: Change Step Size b
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Figure 11.6: Change Step Size b

11.4.2 Change Transfer Price T’

In this simulation part, we change the transfer price 7" from 0 to 1 as in Fig. 11.7 and Fig.
11.8. In Fig. 11.7, we can find that algorithm will be easier to converge to NE when 7" is
extremely high or extremely low in that the device can be easier to dominant strategy and
easy to decide whether to be central entity. On the other way, when 7" is middle value,
many device may hesitate and wait for others’ decisions. The convergence time does
not have trend with transfer price 7', but when 7' is in some specific values, there has a
peak in convergence time. The reason of the peak is that few devices almost have same
utility whether it becomes a central entity or not. That is a coincidence from the specific
scenario characteristic and transfer price value 7. We can also find that when a peak
for convergence time exists, there is also a hollow of NE probability. In Fig. 11.8, when
transfer price 7' is increasing, every device will prefer to receive data from itself rather than
join other’s cluster, so cluster numbers is also increasing. The DCEE algorithm efficiency
becomes bad when 7' is too low, because low transfer discourage devices from becoming
a central entity, and that may cause some devices can’t receive data. In addition, high
transfer price is also not good for too many central entities will increase more transmission

cost among the BS and central entities.
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Figure 11.7: Change Transfer Price T’
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Figure 11.8: Change Transfer Price T’

11.4.3 Change Initial condition p;(0)

In this simulation part, we change the initial condition p;(0) for all devices from 0.02 to
0.98 as Fig. 11.9 and Fig. 11.10. Four curves in these two figures have the same property
of going down when p;(0) is extremely small because it is too close to the stop criteria.
Exclude this reason, four curves have its own trend when p;(0) changes. When initial
condition p;(0) becomes larger, the cluster number is also increasing, whereas other three
curves are decreasing. For the system doesn’t need too many central entities, we can know

that lower initial condition p;(0) is better in the most cases.
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Figure 11.9: Change Initial condition p;(0)
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Figure 11.10: Change Initial condition p;(0)

11.5 Oscillation Phenomenon

In this section, we will verify the oscillation property addressed in Section 10.2. We plot a
DCEE algorithm process as Fig. 11.11, where the twenty curves represent the respective
probability of the corresponding devices. We can find that the probability of the most
device converge to 0 or 1 rapidly, only that of few devices oscillate in the middle. The
reason for them to hesitate whether to become a central entity may due to the existance of

a mixed strategy Nash equilibrium, so as we discussed.
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Figure 11.11: Oscillation of DCEE Algorithm

11.6 Compare Social Welfare

In this section, we compare the social welfare in some different central entity election
approaches as shown in Fig. 11.12. We use our centralized mechanism design to solve
the optimal solution. Although the result of centralized mechanism design can achieve
the optimal social welfare, it spends too much time, and the optimal solution may not be a
Nash equilibrium making every device satisfied. The random approach represents every
device decides whether to be a central entity with a probability P. = 0.3. The greedy
approach means the devices decide whether to become central entity one by one. And the
all central entity means every device will just connect to the BS by itself. In the simulation
results, the random approach is certainly worst. Our DCEE algorithm is better than the
greedy algorithm. Despite of disadvantage in social welfare, our DCEE algorithm possess
great advantages in convergence and finding Nash equilibriums. On the other way, greedy
algorithm needs to decide a decision order among the devices, but they cannot easy to have
a decision order in a distributed system. By comparing the learning algorithm, greedy, and
all central entity results, we know that system performance will have obvious improvement

by using D2D transmission rather than just unicast.
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Figure 11.12: Compare Social Welfare from different approaches
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Chapter 12

Conclusion

When many devices request the same data, it is more efficient for the devices to form
clusters and to elect central entities to receive the data from the BS and then broadcasts
the data to all the other devices. We first consider a one-cluster simple system. As the
devices are selfish and non-cooperation in nature, we propose a mechanism to elect a
central entity. The interaction among the devices in the proposed mechanism is formulated
into an auction game. In the game-theoretical analysis, the proposed mechanism induces
the true information on the transmission costs from the devices. The cluster reaches the
unique truth-telling dominant-strategy Nash equilibrium, in which the device with the
lowest cost is elected as the central entity. In addition to the property of truth telling,
the proposed mechanism maximizes the social welfare and achieves the properties of the
individual rationality and budget balance.

In a multiple-cluster central entity election system, the centralized mechanism design
is a NP hard problem. We propose the distributed DCEE algorithm to avoid the NP hard
problem. We proved that DCEE algorithm can always converge with many desirable prop-

erties, and we generate different results when step size b — 0 with previous work. We
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observe an oscillation phenomenon of the DCEE algorithm and show the phenomenon in
simulations. The centralized mechanism design and the distributed algorithm have differ-
ent advantages, and the system performance and the complexity is a trade-oft.

Our simulation results verify the theoretical analysis in a real LTE system setting. With
the proposed mechanism and the simulation results, D2D communications is shown to
have the potential in improving the performance of wireless networks.

Actually, the DCEE algorithm can extend to many distributed system, it is useful when

a distributed system satisfies the following conditions:

1. Every member in the system is selfish and non-cooperative.

2. Every member has finite strategies.

3. After every member decides a strategy, everyone can calculate his own utility.

In such a distributed system, for example, a distributed D2D power control game, or
a D2D channel selection system. The distributed systems can also apply the DCEE algo-
rithm. Though the DCEE algorithm only has two strategies yes and no, it can be further
extend to more than two strategies. After the extension, the theorems we proved for the
DCEE algorithm will still remain true. The DCEE algorithm can also have the conver-

gence property and can help many other distributed systems to find the Nash equilibriums.
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