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ABSTRACT

Pharmacovigilance (PhV) is a serious issue worldwide, because adverse drug effects

are serious problems that cause harms to patients or even death. Traditionally, PhV

research focuses on detecting adverse drug effects from spontaneous reports systems

(SRS), which contains reports voluntarily reported by medical professionals, patients, and

pharmaceutical companies. However, the volunteer nature of SRS databases causes some

limitations (e.g., overreporting, data incompleteness). Thus, the PhV research starts to

investigate the use of electronic health records (EHR) databases for drug safety signal

detection in recent years. In this study, we propose a novel EHR-based drug safety signal

detection method on the basis of the learning to rank approach. In addition to multiple

disproportional analysis measures, our proposed method also incorporates as additional

ranking variables that capture implicit relations between drugs and diseases for

decreasing the importance of non-drug-outcome signals. We use Taiwan’s national health

insurance research database for drug safety signal detection. Our evaluation results

suggest that our proposed method significantly outperforms existing disproportional

analysis methods (each of which uses a single disproportional analysis measures).

Keywords: Pharmacovigilance, Data mining, NHIRD
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Chapter 1 Introduction
1.1 Background

In theory, the efficacy and safety of a drug must be demonstrated during the three
phases of clinical trials before approval. However, these clinical trials involve only a
very limited number of participants, who may not always be representative of the
population of all potential users of the drug, and cover a relatively short observation
period, making it difficult to detect adverse drug reactions (ADRS) that are rare or with
a long latency (Coloma, Trifiro, Patadia, & Sturkenboom, 2013; R Harpaz et al., 2012).
As aresult, the complete safety profile of a new drug cannot be fully established through
clinical trials.

Postapproval adverse drug events (ADES) are a global public health problem and,
as Table 1 shows, many drugs were withdrawn from the market after many years of
approval with harming lots of people’s health. In US, there are more than 100,000 ADR-
related deaths annually and cost over $136 billion annually (lyer, Lependu, Harpaz,
Bauer-Mehren, & Shah, 2013). Similarly, it is estimated that at least 80,000 medication-
related hospitalizations occur in Australia each year and more than 12,000

hospitalizations (i.e., 1.83% of all acute hospital admissions) in 2001 were related to
1



adverse drug reactions (ADRs) in the Netherlands (Roughead, 1999; van der Hooft,

Sturkenboom, van Grootheest, Kingma, & Stricker, 2006). In the United Kingdom,

ADRs account for 6.5% hospital admissions and 4% of the hospital bed capacity.

Besides, over 2% of patients admitted with an ADR died, suggesting that adverse

effects may be responsible for the death of 0.15% of all patients admitted (van der Hooft

et al., 2006). Therefore, to ensure the safety of public health, it is important to continue

monitoring and evaluating the safety of a drug once it is on the market.

Pharmacovigilance (PhV) is defined as “the science and activities relating to the

detection, assessment, understanding and prevention of adverse effects or any other

possible drug-related problems” (Health, 2006) with the goals of detecting novel

adverse drug events earlier, reducing harms to patients, and saving social costs.



Table 1: Postapproval drug withdrawals in US (Balakin, 2009; Coloma et al., 2013)

Drug Name

Adverse Risk (Reason for Withdrawal)

Year Approved Year

Withdrawn

Cerivastatin Phabdomyolysis 1997 2001
Rapaccuronium Bronchospasm 1999 2001
Alosetron [schemic colitis 2000 2000
Cisapride Arrhythmia 1993 1993
Phenylpropanolamine Stroke Pre-1962 2000
Troglitazone Liver toxicity 1997 2000
Astemizole Arrhythmia 1988 1999
Grepafloxcin Arrhythmia 1997 1999
Mibefradil Arrhythmia 1997 1998
Bromfenac Liver toxicity 1997 1998
Terfenadine Arrhythmia 1985 1998
Fenfluramine Valve disease 1973 1997
Dexfenfluramine Valve disease 1996 1997
Etretinate Birth defects 1986 2002
Levomethadyl Fatal arrhythmia 1993 2003
Rofecoxib Cardiovascular events (including myocardial infaretion and 1999 2004
stroke
Valdecoxib Serious skin reactions (TENS, 8IS, EM) 2001 2005
Natalizumab Progressive multifocal leukoencephalopathy 2004 2005
Technetium fanolesomab Cardiopulmonary failure (respiratory distress, sudden 2004 2005
hypotension)
Pemoline Liver failure 1975 2005
Pergolide Cardiac valve damage 1998 2007
Tegaserod Cardiovascular events (including myocardial infarction and 2002 2007
stroke)
Aprotinin Renal and cardiac complications, death 1993 2008
Efalizumab Progressive multifocal leukoencephalopathy 2003 2009
Sibutramine Cardiovascular events (including heart attack and stroke) 1997 2010
Gemtuzumab ozogamicin Increased risk of death (due to liver toxicity/veno-occlusive 2000 2010
disease)
Propoxyphene Cardiac arrhythmia 1957 2010

Recently, there are two major sources for detecting ADEs, including spontaneous

reports system (SRS) databases and electronic health records (EHR) databases. Some

useful disproportional analysis measures have developed on SRS databases, such as RR

(relative reporting), PRR (proportional reporting rate ratio), and ROR (reporting odds

ratio), for ranking drug-event pairs (lyer et al., 2013). However, the effectiveness of

these analyses would be influenced by the intrinsic nature of the potential biases by

reporters in volunteer and the incompleteness in spontaneous reporting.

EHR databases have provided complements for the SRS databases, because EHRS

contain observational records in real world. The EHR data have potential strengths,

including sufficient sample size, population basis, relative inexpensiveness, and no

3



possibility of recall or interviewer bias (Park et al., 2011). In Taiwan, the National
Health Insurance Research Database (NHIRD) is a national-based insurance claim
database, which contains claim records since March 1, 1995. This large amount and
structured database contains rich information for ADR analysis, so this study focuses

on developing an effective method for detecting ADRs from the NHIRD database.

1.2 Research Motivation and Objective

Pharmacovigilance has been done for a long time, and there are several SRS
systems that can be used for ADE detection. It has been successful that many adverse
effects were found and some drugs with serious adverse effects were withdrawn from
the market.

However, some studies show that the SRS databases cause some misleads by
reporter’s viewpoint and incompleteness of data (Balakin, 2009; R Harpaz et al., 2012),
so we move these analyses to EHR database, NHIRD in Taiwan, for its large sample
amount, quality and completeness.

Because EHRs are not collected for PhV purposes, drug-outcome pairs generated
according to the time frame likely contain a vast amount of pairs that are non-drug-

event pairs (e.g., drugs’ indications). The existence of non-drug-event pairs undermines

4



detection effectiveness. However, existing EHR-based methods do not address this

challenge. A novel method that attempts to identify and then removes non-drug-event

pairs or decreases their importance would be desirable.

Existing EHR-based methods rely on single disproportionality analysis measures.

Nevertheless, each disproportional analysis measure behaves differently to each other

and may be more suitable to some situations than others. Thus, the appropriate use of

multiple disproportional analysis measures may improve detection effectiveness.

Furthermore, as with the SRS-based methods, all of the existing EHR-based methods

are ranking-based and do not involve a supervised learning process. They simply rank

drug-outcome pairs on the basis of a selected disproportional analysis measure. The use

of a supervised learning method for drug safety signal detection (or surveillance) may

further improve detection effectiveness.

In this study, we propose a novel EHR-based drug safety signal detection (or

surveillance) method on the basis of the learning to rank approach. In addition to

multiple disproportional analysis measures, the proposed method will also incorporate

as candidate ranking variables 1) additional measures pertaining to the association rule

research and 2) implicit relations between drugs and diseases for reducing non-drug-



event signals or decreasing their importance. We will use Taiwan’s national health

insurance research database covering the time-span of 2000-2009 as the data source for

drug safety signal detection.

The remainder of this thesis is organized as follows. Chapter 2 reviews existing

techniques related to this study, and discusses their limitations to justify our research

motivation. Chapter 3 describes the data collection and our proposed method. We then

present some evaluation results in Chapter 4. Chapter 5 concludes this study.



Chapter 2 Literature Review

In this chapter, we review the existing databases used for pharmacovigilance and
the drug safety signal detection methods pertaining to each type of the databases. In
general, there are two types of the databases for pharmacovigilance: Spontaneous
reporting systems (SRSs) and electronic health records (EHRs). SRSs are database
resources encompassing reports of suspected post-marketed ADEs and currently
represent the major data courses for pharmacovigilance (Rave Harpaz, Chase, &
Friedman, 2010). In contrast to spontaneous reporting databases, EHRs databases could
provide more useful information on real-world unrecognized or underappreciated drug
adverse effects (AEs) (Choi, Chang, Kim, Choi, & Park, 2011). We briefly summarize
these two databases, the corresponding drug safety signal detection methods, and their

strengths and limitations as follows.

2.1Spontaneous Reports Systems (SRSs)

2.1.1 Definition and famous examples of SRSs
SRSs are databases to report and save the spontaneous reports. Spontaneous
reporting is dependent on potential reporters being educated and motivated to record

and submit her/his observations of suspicious adverse events in voluntary. Clinicians,
7



pharmacists and community members should be trained on how, when and what to

report (Drug, n.d.). Each report contains patient demographics, drugs (suspected drugs

and concomitant drugs) that are considered responsible for the adverse events being

reported, and coded adverse events (Rave Harpaz et al., 2010).

There are two famous projects relating to SRSs for post-marketing surveillance.

One is Adverse Event Reporting System (AERS) hold by The US Food and Drug

Administration (FDA) and the other is World Health Organization’s VigiBase. Many

studies have used these two sources for detecting ADEs (Evans, Waller, & Davis, 2001;

Rave Harpaz et al., 2010; Szarfman, Machado, & O’Neill, 2002).

2.1.2 Signal detection methods used on SRSs

Existing methods for detecting ADEs from SRSs generally rely on disproportional

analysis measures, which detect drug-event pairs occurring at higher than expected

frequencies (estimated by using information on all drugs and all events in the database)

(Almenoff etal., 2007; Colomacetal., 2013; R Harpaz et al., 2012; Lependu, lyer, Fairon,

& Shah, 2012). Common disproportional analysis measures (i.e., measures of

association) include the relative reporting ratio (RRR), proportional reporting ratio

(PRR), reporting odds ratio (ROR), and information component (IC) calculated by the



Bayesian confidence propagation neural network (BCPNN) method. These methods

use the 2x2 contingency table (see Table 2) to describe the relations between drugs and

events. It summarizes the number of reports that have the focal drug i and the event j

of interest as “a”, the focal drug and other events as “b”, other drugs and the target event

jas “c”, and other drugs and other events as “d”. A similar table is constructed for every

possible drug-event combination (Hauben & Bate, 2009).

Table 2: 2x2 Contingency Table for the relations between drug and event

Event j Other Events Total
Drug i a b atb
Other Drugs c d c+d
Total at+c b+d a+b+c+d

By using the information in the contingency table, the disproportional analysis

measures mentioned above compare the observed counts of drug—event relations with

the expected counts based on the relative frequency of events occurring for the drug

alone and the event alone (Choi et al., 2011). Detailed formulas are listed in Table 3.

The more the number of the observed reports exceeds the number of expected reports

by chance, the more interesting, possibly and worthy for further investigation (Hauben

& Bate, 2009).



Table 3: Commonly used disproportional analysis measures

Disproportional Formula Probabilistic interpretation
analysis measure
RRR a(a+b+c+d) Pr(ae|drug)
(a+c)(a+b) Pr(ae)

a(c+d P d
PRR (c ) r(ae|drug)

c(a+b) Pr(ae|~drug)
ROR ad Pr(aeldrug)Pr(~ae|~drug)

cb Pr(~ae|drug)Pr(ae|~drug)

a(a+b+c+d) log, Pr(aeldrug)
IC log,
(a+c)(a+d) Pr(ae)

2.1.3 Traits of SRSs

The voluntary nature of spontaneous reports makes SRS-based drug safety

surveillance system reactive or even passive. In addition, there are some inherent

limitations existing in SRS databases such as underreporting, overreporting, duplicate

reporting, misattribution of causality in drug—event combinations, missing or

incomplete data and not enough data for denominator (Balakin, 2009; R Harpaz et al.,

2012).

Underreporting is the major problem of SRS data for only about 10% of serious

adverse events are reported by Hazell & Shakir’s study (2006). The reasons for not

reporting include a lack of time, different care priorities, uncertainty about the drug

causing an ADR, difficulty in accessing reporting forms, lack of awareness of the

requirements of the purpose of SRSs, less likely to report well-known and trivial ADRs,
10




and physicians’ attitudes towards reporting ADRs (Hazell & Shakir, 2006). In opposite,
some serious ADRs are overreporting by media attention and dramatically worried
about the ADRs, causing many spurious data. Besides, if one case happened on a patient,
this case may be alerted to the SRS by the patient and his attending doctor and nurses.
When all of them did reporting, the duplicate reporting happened. Also, because of the
SRSs are reported by human beings, they must have some personal view in the reports
that may cause the misattribution of causality in drug—event combinations. The data in
SRS database may be incomplete or missing some attributes because the reporters could
be the patients which do not have enough knowledge. Last, the SRSs are lack of enough
denominator cases needed in disproportional analysis measures, so the significant
relations picked up may not really significant in real world (Choi et al., 2011). To
address the limitations of SRS-based drug safety surveillance systems, several research
initiatives have been carried out to explore the use of EHRs for developing active

surveillance systems.

2.2 Electronic Health Records (EHR) databases

2.2.1 Definition and famous examples of EHR databases

EHR, especially nation-wide health insurance claims databases, are population-

11



based. It includes data that is not only particularly relevant to a subject’s medical
treatment but also to a subject’s health in general (Hoerbst & Ammenwerth, 2010).
EHR includes either medical records databases or administrative/claims databases.
Medical records databases, which include records maintained for the management of
patients’ clinical care; whereas administrative/claims databases, which include
transactions primarily to achieve administrative purposes, such as claims for
reimbursement from insurance companies (Strom, 2012).

Initiatives like the Observational Medical Outcomes Partnership (OMOP) in the
US and the Exploring and Understanding Adverse Drug Reactions (EU-ADR) project
in Europe focus on building EHR-based drug safety surveillance systems. These
projects mainly utilize electronic medical records or administrative/claims databases
for identifying drug adverse reactions (lyer et al., 2013). In Taiwan, the national
insurance claims database covers almost all of Taiwanese. Therefore, it is believed that
the large amount and structured data would provide a lot of information for post-
marketing drug safety surveillance.
2.2.2 Signal detection methods used on EHR databases

In EHR databases, there are no direct drug and ADE connections. Existing EHR-

12



based methods generally use the temporal information to identify time frames (known

as surveillance windows or hazard periods) in which drug-outcome (rather than drug-

event) pairs are identified and analyzed, e.g., outcomes or diagnoses recorded 30 days

after drug exposure (R Harpaz et al., 2012). Then, a prevalent approach for EHR-based

drug safety surveillance adopts and extends the disproportional analysis measure

commonly employed by existing SRS-based methods which use a specific

disproportional analysis measure for signal detection (i.e., ranking drug-outcome pairs

using a selected disproportional analysis measure). In this way, these measures may

enable the identification of real signals that were missed from the SRS databases due

to incorrect records and underreporting (Reps, Feyereisl, & Garibaldi, 2011).

2.2.3 Traits of EHR databases

In EHRs, the data are real cases and real time records by professional physicians,

so it avoids the problems associated with SRSs. EHR-based drug safety surveillance

systems rely on data collected from routine clinical care rather than voluntary. Thus,

their signal detection endeavors can proceed actively rather than passively or reactively.

In addition, the large quantity of the patients’ records in EHRs provide more precise

denominator fitted in real world; the longitudinal nature of routinely-collected EHR

13



may allow the identification of adverse events that have a long delay between exposure
and clinical manifestations (Coloma et al., 2013). As a consequence, this study will
employ the NHIRD, the national insurance claims database in Taiwan, for drug safety

signal detection.

2.3 Research Gap

The surveillance ability of SRS-based measures is restricted due to the nature of
unveiling reports spontaneously. Thus, this leads to the use of electronic health records,
which is routinely-collected by healthcare institutes, for pharmacovigilance.

Existing EHR-based surveillance systems are also based on a specific
disproportional analysis measure for signal detection, and rank drug-outcome pairs by
this specific measure. However, as we mentioned previously, different measures may
be suited to different situations. Thus, we tend to combine the traits of multiple
measures by the learning to rank approach, and we believe that this could improve the
effectiveness of signal detection.

As Figure 2 illustrates, learning to rank methods often separate into two processes,
which together deal with the ranking problem. The first process is learning. In the

learning system, a number of queries (qg») are provided, where each query is associated

14



with a perfect ranking list (y™) of documents; a ranking model is then created using the

training data, such that the model can predict the ranking lists in the training data. The

other part is the ranking system, which assigns a relevance score to each document

pertaining to a given query and ranks the documents in the descending order (Z. Cao,

Qin, Liu, Tsai, & Li, 2007).
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Figure 1: Overview of learning to rank methods (Liu, 2007)

Besides, there are two major approaches for learning to rank: pair-wise and list-

wise. As Figure 2 shows, in pair-wise methods, the query-based document groups will

be broken into lots of document pairs with higher or lower ranks, so one query’s relating

document group would become a lot of document ranking pairs as training data. In

opposite, the list-wise methods use the whole query-based document list groups as

training data, so the group structure of ranking is maintained.
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Figure 2: Difference of training data between pair-wise and list-wise approaches

In our study, there are two kinds of queries that can be used in training and testing.

One is drug-anchored drug-outcome pairs and the other is disease-anchored drug-

outcome pairs. The definition of drug-anchored drug-outcome pairs is, given one drug

as the detection target (query), the relations between this drug and diseases possibly

caused by this drug form as drug-anchored drug-outcome pairs (documents). The

disease-anchored drug-outcome pairs behave similarly. Given one or a group of

diseases as the detection target (query), all the drugs possibly causing this disease or

disease group constitute disease-anchored drug-outcome pairs (documents). To prepare

a training data set for either drug-anchored or disease-anchored drug-outcome pairs, the

ranking of drug-outcome pairs within a query has to be labeled by professional

pharmacists. This labeling process costs lots of effort and time. Thus, the number of

16



queries that can be collected will be very limited, making the use of the list-wise

approach infeasible. Consequently, we will adopt the pair-wise learning to rank

approach in this study.
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Chapter 3 Design of Our Proposed Ranking Method

As mentioned previously, we attempt to detect candidate adverse drug effects from
the NHIRD and rank these candidate adverse drug effects by our proposed ranking
method. As Figure 3 illustrates, our proposed ranking method consists of three main
modules, including data preparation, learning system, and detection system. In the first
module (i.e., data preparation), we extract useful data from the NHIRD database and
perform the data preprocessing for every patient’s records according to a prespecified
sizes of control window and surveillance window. Second, in the learning system, we
construct a signal ranking model from one or some lists of labeled signals (i.e., training
data set) corresponding to a specific detection target (drug-anchored or disease-
anchored). Finally, given a detection target, the detection system generates all candidate
drug-outcome pairs and ranks these signals on the basis of the single ranking model
built by the learning system. In the following, we first describe the data collection (i.e.,
NHIRD database) used in this study. Subsequently, we depict the detailed design of

each module in our proposed ranking method.
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Figure 3: Overall process of our proposed ranking method

3.1 Data Collection

The NHIRD, a large-scale computerized database, collected by the Bureau of NHI

19

The following is the descriptions of these six files of claim data:

and maintained by the National Health Research Institutes (NHRI), is provided to

scientists in Taiwan for research purposes (Lin et al., 2014). In NHIRD, there are

registration files correspond to medical records and original claim data. NHRI

randomly selects one million patients and their whole relating records in registration

files and original claims data. In this research, we only use the claims data including

the files of DD, CD, GD, GO, OO, and DO. DD, CD and GD files contain the patient’s

visit data and diagnoses; GO, OO, and DO contain the prescription, including drugs.



1. DD: Inpatient expenditures by admissions.

2. CD: Ambulatory care expenditures by visits.

3. GD: Expenditures for prescriptions dispensed at contracted pharmacies.
4. DO: Details of inpatient orders.

5. OOQ: Details of ambulatory care orders.

6. GO: Details of prescriptions dispensed at contracted pharmacies.

3.2 Data Preparation

In the data preparation module, as demonstrated in Figure 4, there are two steps to
transform the original data into the patient visits and drug-appearing diagnoses (DADS)

that will be used for calculating the measurements.
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Figure 4: Detailed design of the data preparation module

3.2.1 Data Preprocessing

As we mentioned above, patient’s diagnosis and drugs are saved separately in two

different types of files. As Figure 5 shows, we combine GD and GO, CD and OO, and

DD and DO by the same foreign keys and store the information about each patient visit

such as patient id, visit time, diagnoses, drugs prescribed and so on into one file which

we called “Patient visits.” Thus, we can get every patient visit data completely.
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Figure 5: Detailed process of file linking

called National Health Insurance Scheme (NHIS) Medicines List, which classify the

drugs by the generic name, the amount of dosage and the ways to take medicines for

easy pricing. However, one generic name drug may contain not only one component,

and different dosage and taking medicine way would be named as different codes. This

makes us difficult to learn the associations between drugs and diseases. Thus, we

recruited graduate students of School of Pharmacy at National Taiwan University and

pharmacists in National Taiwan University Hospital to establish the mapping between

the drugs in the NHIS Medicines List and their Anatomical Therapeutic Chemical (ATC)

codes, which is used worldwide for classifying medical substances and serves as a tool
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for drug utilization research. This classification system divides drugs into different
groups according to the organ or system on which they act and/or their therapeutic and
chemical characteristics (Chen, Zeng, Cai, Feng, & Chou, 2012). The WHO
recommends the ATC system for international comparisons, and it is also used for
reporting of adverse drug reactions®. Figure 6 illustrates the detail of drug-ATC
mapping. Accordingly, the drug-ATC mapping contains 19,686 NHIS drugs with 1,168
ATC codes. Hence, the NHIS codes in the patient-visit file are substituted by their ATC
codes. Regarding diseases, the NHIRD uses International Classification of Diseases
(ICD-9-CM), the official system of assigning codes to diagnoses and procedures
associated with hospital utilization ((US), 1980), for recording diseases, so there is no

need for transforming.

Download the drug list from
the BNHI website

4

Map individual drugs with Independent search
corresponding ATC » WHO ATC website
@ BNHI: Bureau of National Health Insurance
Expert Validation

: : ATC: Anatomical-Therapeutic-Chemical Health Insurance
« Discussion and consensus

Figure 6: Drug-ATC mapping process

1 This information is retrieved from: http://sydney.edu.au/medicine/fmrc/atc/index.php.
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3.2.2 Drug-Appearing Diagnosis (DAD) Generation

From patient-visit data, we place every visit of one patient on a timeline by time
order, and then extract the DAD relations by the following steps. First, as Figure 7
illustrates, for patient visit Vi, we extract the current diagnoses (i.e., ICD-1 and ICD-2),
the post diagnoses in the surveillance window Ts (i.e., ICD-2, ICD-3, and ICD-4), and
the preexisting conditions in the control window T¢ (i.e., ICD-1 and ICD-3). Please note
that we exclude ICD codes related to physical examinations. Second, to avoid those
events before the drug event (i.e., ATC-1, ATC-2) such as chronic diseases, we obtain
the appearing diagnoses (i.e., ICD-4) by removing the diagnoses in the preexisting
conditions and the current diagnoses from the post diagnoses. Then, the drug-appearing
diagnosis (DAD) of V; (i.e., {ATC-1, ATC-2; ICD-4}) contains the drugs prescribed in
the Vi (i.e., ATC-1 and ATC-2) and the appearing diagnoses (i.e., ICD-4) obtained from
the previous steps. Finally, we construct drug-appearing diagnoses (DAD) for each
patient visit in the duration between year 2000 to 2009 across all patients, and then

calculate the following measures on these visit-based DADs.
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Figure 7: Example of drug-appearing diagnosis (DAD) generation

3.3 Learning System

In the learning system, we use Ranking SVM, a pair-wise learning to rank method,
to build our signal ranking model. Before building model, the ATC or ICD code in
DADs are mapped to drug or disease group, and then we combine DADs and patient
visits with labeled signals (drug-outcome pairs) to calculate measures for the training
data. Notice that, the labeled signals could be a small proportion of one/a group of
drug(s) with related diseases (drug-anchored) or one/a group of disease(s) with related

drugs (disease-anchored). The process of the learning system is presented in Figure 8.
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Figure 8: Detailed process of the learning system

3.3.1 Drug or Disease Group Mapping

In this step, we map ATC or ICD codes in the DADs to the predefined drug or
disease group of interest. If we use a drug group as our detection target, then the training
and testing data are drug-anchored DADs. The disease group behaves in the same way,
and we call such DADs as disease-anchored DADs. For example, the acute renal
toxicity is a disease group consisting of ICD codes of 584 and 586, so we map the ICD
codes of 584 and 586 in the DADs to acute renal toxicity.
3.3.2 Labeling Signals

Experts follow the rules in Table 4 to label the drug-disease pairs relative to disease

or drug group as the training data. Each label type corresponds to a level of likelihood.
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Our study ranks these pairs by the likelihood from high (4) to none (1), and these labeled

data will be used for training and testing purposes.

Table 4: Label types and their detailed descriptions

Label Type Description Likelihood

Known ADEs | This event has information of package inserts from | High
manufacturers (Product information) or
epidemiological study, ex. population-based cohort
study, case-control study, hospital-based study.

Suspected This event has some series case reports or animal- Medium
ADEs case study, in vivo and in vitro experimental study.
Unknown This event doesn’t appear in the known ADEs, Low

associations possible ADEs or Indication associations, but it may
or may not be detected as an ADE in the future.

Indication An “indication” for a drug refers to the use of that None
associations drug for treating a particular disease, so this event is
not a drug-ADE pair.

3.3.3 Measure Calculation for Training Data

There are three types of measures in our study, which are traditional

disproportional analysis measures, other association rule measures and drug-disease

association measure. Traditional disproportional analysis measures and other

association rule measures are based on the contingency table shown in Table 2. Here,

we show an example of constructing the contingency table. If there are three DADs

which are {ATC-1, ATC-2; ICD-4}, {ATC-1, ATC-3; ICD-4} and {ATC-4; ICD-3},
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and the contingency tables of the drug-outcome relations of {ATC-1—1CD-4} are

shown in Table 5 by calculating the number of DADs. Differently, drug-disease

association measures use patient-visit data illustrated in Chapter 3.2.1 to calculate this

measure.

Table 5: Contingency tables of the drug-outcome relation of {ATC-1—ICD-4}

ICD-4 No ICD-4
ATC-1 2 0
No ATC-1 0 1

1. Traditional disproportional analysis measures

Existing EHR-based drug safety surveillance methods adopt and extend the

disproportional analysis measures commonly employed by SRS-based methods, such

as RRR, PRR, ROR and BCPNN. RRR, PRR and ROR are illustrated elaborately in

Chapter 2, so we only explain how we calculate BCPNN here.

According to Lindquist & Olsson (1998), the BCPNN estimates the information

component (IC), which is based on the definition of RRR. The information component

(IC) is the strength of the association between two variables and is the logarithmic form

of the symmetrical factor relating to the prior and posterior probability.

P(drug i, ADR j)
P(drug i) P(ADR j)

IC = log,
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Because we do not know the “real” probabilities of P(drug i), P(ADR j), and
P(drug i, ADR j), we assert a beta distribution for each probability. From these
distributions we calculate the “expectation values” of the beta distribution of each
variable as BCPNN. Therefore, the BCPNN is calculated by:

Nij + 711
ERY N )
E(PYE®) 87 Notay N +B
N+a N+p

E(ICU) = lng

where i, j corresponding to drug i and ADR j, N is the total number, a; and ag are
the factors in the beta distribution of P(drug i) and P(ADR j), and y11 and vy are the
corresponding factors for the joint probability P(drug i, ADR j). The priori probability
of P(drug i) and P(ADR j) are assumed equal, because any probability is the same as
any other without further information; in a beta distribution this corresponds to the
constants a1 and oo (Where o = a1 + ap) and a1 = ap = 1. y1 and y define the joint beta

distribution P(drug i, ADR j). We set y11 = 1 and define vy as:

_ V11
P(drug i) P(ADR j)

14

2. Other association rule measures

In this section, we describe the association rule measures used in our study in the

following table.
29



Table 6: Association rule measures used in this study, where ae means adverse effect
(Azevedo & Jorge, 2007)

Measure

Formula

Probabilistic interpretation

Description

Confidence

a
a+b

Pr(drug n ae)
Pr(drug)

Confidence is an estimate of
P(aeldrug) and ranges from 0

to 1.

Conviction

(a+b)(b+4d)
b(a+b+c+ad)

1 —Pr(ae)
1 — confidence

Conviction is sensitive to rule
direction (conv(drug—ae) #
conv(drug—ae). It could
capture the notion of
implication rules and ranges

from0.5to oo,

Leverage

ad — bc
(@a+b+c+d)?

Pr(drug n ae) — Pr(drug) Pr(ae)

Leverage is to measure how
much more counting is
obtained from the co-
occurrence of the drug and ae
from expected. It ranges from

-0.25 to 0.25.

N x

Xe(a+b,c+d)
YE(a+c,b+d)

XY

@ nr) -5y

@ ny)-E
N X — 7

Xe(drug,~drug)
Y€(ae,~ae)

x 2 is the definite way for
measuring the statistical
independence between drug
and ae, and the value doesn’t
related to the correlation

strength. It ranges from 0 to

o,

Jaccard

a+b+c

Pr(drug n ae)

Pr(drug) + Pr(ae) — Pr(drug n ae)

Jaccard coefficient assesses
the distance between drug and
ae. Higher value indicates that
the overlap between drug and
ae is more. It ranges from 0 to

1.

Cosine

a

J(@+b)(a+c)

Pr(drug n ae)

/Pr(drug) Pr(ae)

Cosine is another way to
measure distance drug and ae

on vector space. It ranges from
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O0to 1.

@ -coefficient ad — be

leve

\/(a +b)(a+c)(c+d)(b+d) \/Pr(drug) Pr(ae) Pr(—drug) Pr(—ae)

@ -coefficient measures the
association between drug and
ae by Pearson correlation
coefficient. It ranges from -1

to 1.

3. Drug-disease association measures

In drug-disease association extraction, we want to find the implicit relations

between drugs and diseases. Latent Dirichlet allocation (LDA) (Blei, Ng, & Jordan,

2003) is a generative probabilistic model of a corpus. This method could figure out the

possible relations of drugs and diseases by the probability of distributions of each drug

and disease over topics. The basic idea of LDA is that documents are represented as

random mixtures over latent topics, where each topic is characterized by a distribution

over words. Relating to our study, the drugs and diseases that often occur together (in

this case, the diseases are often the indications of the drugs) would have large

probability to be distributed in the same topics. LDA assumes the following generative

process for each document w in a corpus D:

1. Choose N ~Poisson(§).

2. Choose 0~Dir(a).

3. For each of the N words wh:
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(@) Choose a topic zn ~Multinomial(0).

(b) Choose a word wy from p(wn |zn,), a multinomial probability conditioned

on the topic zn.

(o)
OanOm Oy

Figure 9: Graphical model representation of LDA (Blei et al., 2003)

M

The probability of a sequence of words and topics are calculated by following
formula, and a brief structure of this formula is showed in Figure 9. The word
probabilities are parameterized by a k x V matrix  where Bij = p(wj = 1| zi = 1), and k

is the number of topics we choose and V is the number of words in the whole corpus.

N
pew.7) = [ p(©) (ﬂp(zn|e)p(wn|zn)> a8

In this study, we believe that some possible implicit relations exist between drugs
and diseases. For example, one patient go to hospital three times in sequence in a time
window, and the diagnosis and relating drugs are visiti: diagnosisi, drug, Visit:

diagnosisz, drugz and visits: diagnosisz, drugs. We use the patient-visit file which
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contains every visit (time window = 0 day) of each patient to derive the LDA model,

and then we may extract out some relations such as drug indications (drug: treats

diagnosisy) if there are many visits contained drug: and diagnosis:. However, using time

window = 0 day may be too specific to capture the drug-disease implicit relations, so

we also extend the time window to 30 days. We hope that this method could have the

ability to capture additional relations such as drug progression that disease; progressed

to disease, and diseases within 30 days. In this case, if disease: is an indication of drugs,

then both the disease, and diseases are unlikely to be the adverse effects of drug:.

Specifically, we use Gibbs sampling LDA package? to capture the implicit

relations between drugs and diseases. The number of topics we choose are 50 and 75,

and the hyperparameters o and 3 were set to 0.5 and 0.1.

Table 7: The result table of LDA method in our study

Words Topic 1 Topic2 | ... Topic k

ATC-1 | P(ATC-1,Topic 1) P(ATC-1,Topic2) |  ...... P(ATC-1,Topic k)
ATC-2 | P(ATC-2,Topic 1) P(ATC-2,Topic2) |  ...... P(ATC-2,Topic k)
ICD-1 | P(ICD-1,Topic 1) P(ICD-1,Topic2) | ...... P(ICD-1,Topic k)
ICD-2 | P(ICD-2,Topic 1) P(ICD-2,Topic2) | ...... P(ICD-2,Topic k)

2 GibbsLDA++: http://gibbslda.sourceforge.net
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To utilize the probability of the disease and the drug over all topics in Table 7, for
every drug-outcome pair, we use the cosine similarity to calculate how much the drug

and the disease is related. The cosine similarity’s formula is:

A'B _ ?=1 Ai X Bi
AT
(Ea? [zi, B2

where A is the drug’s probability vector over n topics and B is the disease’s

cosine similarity =

probability vector over n topics. Besides, for drug-anchored or disease-anchored drug-

outcome pairs, there would be many cosine similarity values related to this drug or

disease group. Thus, as Figure 10 shows, we choose the maximum of these cosine

similarities as the overall similarity between one drug and many diseases.

e Y 1CD-1

ATC-1 sim(ATC-2/CD-1)= 06 ¥ ICD-2

Simya
rc*i’.s’u:‘c._ 1)

b2 X ICD-3

Disease group

Figure 10: Example of similarity between one drug and multiple diseases

3.3.4 Summery of All Measures

The following table is the summery of our measures used in our proposed
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ranking method.

Table 8: Summery of all measures used in our proposed ranking method

Traditional disproportional analysis measures

Other association rule measures

Disease-drug association measures

3.3.5 Ranking Model Building

As mentioned in Figure 8, we combine the signals (drug-outcome pairs) labeled

by experts with all the measures illustrated above as the training data and then use a

pair-wise learning to rank method to construct a signal ranking model. In our study, the

queries mapped to the disease or drug group, and the documents mapped to disease-

RRR

PRR

ROR

BCPNN

Confidence

Conviction

Leverage

¥ 2

Jaccard

Cosine

O-coefficient

Disease-drug association: window=0, topic=50
Disease-drug association: window=0, topic=75
Disease-drug association: window=30, topic=50

Disease-drug association: window=30, topic=75

anchored or drug-anchored drug-outcome pairs (see Figure 11).
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Figure 11: Example of training data in the learning to rank method

Ranking SVM? proposed by Herbrich et al (1999) is a popular pair-wise learning
to rank method (Y. Cao et al., 2006). This method forms a ranking model by minimizing
a regularized margin-based pair-wise loss. The queries shown in Figure 2 are the input
data and the objective function is:

1 c
min> lwll* + C¢;

subject to: Zy{w, x;¥ —x,@P) > 1 - ¢

where xY and xi® denote the first and second feature vectors in a pair of feature
vectors, and N is the number of training instances. The constant C > 0 is the trade-off

parameter between the margin size and the amount of errors. The slack variables ¢&;

3 SVM light: http://www.cs.cornell.edu/people/tj/svm_light/index.html
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measure the degree of misclassification. The objective function is to optimize a solution

vector w for ranking model (Yu & Kim, 2012). Figure 12 shows a brief graphical view

of this pair-wise method. The pair of X;—X3= +1 means that X1 ranks higher than X,

and the opposite situation of X3—X;= —1 means that Xz ranks lower than Xi. Ranking

SVM tries to find a solution vector w that can classify these pairs correctly. In our study,

we use the RankSVM in SVMLight (Chapelle & Keerthi, 2009) to build a signal

ranking model.

= X=X Flxow)
]
Y Positive Instances
\\\ m [ ]
\\\ By, —x,
\\\
o =) AN BY, — X,
= >
) ’ . . \\\ -
=X o ol
o P TN m+1
Megative Instances \\\ . o -1
P .
O ~ .

Figure 12: Graphical view of pair-wise classification (Li, 2011)

3.4 Detection System

In the detection system, we prepare the drug-anchored or disease-anchored drug-
outcome pairs as testing data by the signal generation process and subsequently perform

the measure calculation for candidate signals. We then put them into the signal ranking
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model for rank prediction. Figure 13 illustrates the detailed process of the detection

system.

-
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DADs after Grouping
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----- > Candidate Signals || "atentVisis
A
----- > Rank Prediction

Detection System

Figure 13: Detailed process of the detection system

3.4.1 Drug or Disease Grouping and Signal Generation

In this step, we map the ATC and ICD codes to the drug or disease group as

indicated in the detection target, and then generate the drug-anchored or disease-

anchored drug-outcome pairs as candidate signals. We generate the drug-anchored

drug-outcome pairs by forming all the diseases relating to the drugs in DADs. Similar

process can also be employed to generate disease-anchored drug-outcome pairs.
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3.4.2 Measure Calculation for Candidate Signals

This step is similar to measure calculation for training data in the learning system.

Notice that the contingency table here is built by the same way of visit-based counting

illustrated in Table 5. We then calculate all the measures mentioned in Chapter 3.3.3 for

each drug-outcome pair on the basis of DADs as the testing data. We can also set some

thresholds to prune insignificant pairs (e.g., the minimum number of drug-disease

incidences is 10 and the ROR index is larger than 1.5). After these steps, the drug-

outcome pairs are generated as candidate signals and used for rank prediction.

3.4.3 Rank Prediction

This step is the last part of our method, and we use the signal detection model to

predict and rank all the candidate signals generated previously. The following is the

function of how Ranking SVM determines the ranks of signals by the model constructed

by training data set.

fGx; w) = (w, x)

The function f(x; W) gives every pair a score. By ordering these pairs by their scores,

we can get the rank of all candidate signals.
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Chapter 4 Evaluation and Results

In this chapter, we describe the experimental data, the design of our evaluation,

and discuss our evaluation results.

4.1 Experimental Data

In this study, we used the Taiwan’s National Health Insurance Research Database
(NHIRD) covering the time-span of 2000-2009, and 1999 was also used for control
window. The control window and the surveillance window we used were both 12
months.

Due to the high cost of query collection, we only choose four types of diseases as
our disease-anchored detection targets. The reasons are listed as follows and Table 9
shows the detailed ICD codes for each disease type that we select.

1. Recently, many ADEs between new approval drugs and cardiovascular events are
detected.

2. Cancer is a specific and serious side effect, and it is the disease that human beings
want to prevent.

3. Humans metabolize drugs through liver or renal, which leaves some

hepatotoxicity or acute renal toxicity on liver or renal affecting their functional act.
40



Table 9: Disease types and their corresponding ICD-9-CM codes
Corresponding ICD-9-CM
402, 404, 410, 411, 413, 414,
424, 426, 427, 428, 7943
Hepatotoxicity 2774, 570, 573, 576, 7824
Cancer 140-208

Acute renal toxicity 584, 586

Disease Type

Cardiovascular events

Several graduate students of School of Pharmacy at National Taiwan University

and pharmacists in National Taiwan University Hospital were separated into two groups

to label all disease-anchored drug-outcome pairs which were based on a210 and ROR2

1.5 in all types of diseases. Took acute renal toxicity as an example. We recruited eight

labelers separated into two groups, and each group had four labelers. Every subset of

disease-anchored drug-outcome pairs were labeled by two different pharmacists. Figure

14 shows the detailed information about labeling arrangement.

Acute Renal Toxicity Expert Experience Workin
Drug-ADR pair list ;
A 5 years and 4 months  Pharmacist of NTUH |
Subset 1 @ @ B 5years and 10 months Pharmacist of NTUH
e C 4 years and 4 months Pharmacist of NTUH
Subset 2 g D 9 months Pharmacist of NTUH
E 1years and 9 months  Pharmacist of NTUH |
Subset 3 g g F 4 years and 5 months Pharmacist of NTUH
g g G 3 years and 8 months Pharmacist of NTUH
Subset 4
H 1years and 5 months  Pharmacist of NTUH

Group 1 Group 2

Figure 14: Labeler’s arrangement and their work experiences
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There is a system called Micromedex, which includes the relations between drugs

and diseases. The labelers input the keyword of a drug and a disease, and the system

will give this drug-outcome pair a definition. Then, labelers can label this pair according

to the definition in Micromedex and their expert knowledge. For example, if they input

Warfarin & Arrhythmia, and the system will return the answer “Atrial fibrillation -

Thromboembolic disorder; Prophylaxis and FDA Labeled Indication.” Hence, this pair

will be labeled as “Indication associations”.

The relation of “Indication association” could be clearly defined by this system.

However, other relations might not be such definite and clear, so the labeler needs to

make professional judgment when labeling. Take Rosiglitazone & Myocardial

Infarction as another example. The Micromedex system gives the information as follow:

“A meta-analysis of 52 double-blind, randomized, controlled clinical trials (mean

duration, 6 months) showed a significantly increased incidence of myocardial infarction

in patients who received rosiglitazone-containing therapy (n=10,039) compared with

those who received alternative therapy, including placebo (n=6956; 0.4% vs 0.3%; odds

ratio, 1.8; 95% CI, 1.03 to 3.25)....” According to the keywords of meta-analysis and

significantly increased incidence, the labeler should attribute this pair to Known ADEs.

42



We believe that the experience of our labelers is well enough to judge and label. If there

were pairs with inconsistent labels from two labelers, we used the following rules

suggested by several professors of School of Pharmacy at National Taiwan University.

1. The “indication associations” need to be agreed by both two labelers. If

labelers both label this pair as indication associations, this pair belongs to this

label type. If they have inconsistent opinions, this pair will be removed from

our dataset. If this pair is not labeled by both of the pharmacists as “indication

associations,” go through the following steps.

2. Ifadrug-outcome pair is labeled by one or more of labeler as “Known ADEs,”

it will be classified to this type. If not, go through the following steps.

3. If a drug-outcome pair is not classified as “Known ADES” in the previous

step and there is at least one pharmacist labeling it as “Suspected ADEs,” it

will be classified to this type. If not, go through the following step.

4. A drug-outcome pair not included in the “Known ADEs” and “Suspected

ADESs” will be labeled as “Unknown associations.”

The following table shows the number of all label types in the four disease (query)

types we collected.
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Table 10: Summary of our query and label collection

Known Suspected | Unknown Indication
ADRs ADRs Associations | Associations
Cardiovascular 376 43 1883 57
events
Cancer 24 5 300 43
Hepatotoxicity 346 176 585 44
Acute renal toxicity | 230 87 768 21

4.2 Evaluation Design

As we mentioned in the literature review, the majority of EHR-based methods use
single disproportional analysis measures. Thus, we employ RRR, PRR, ROR and
BCPNN, four traditional and popular measures, to rank signals as benchmark of our
study.

4.2.1 Evaluation Criteria

Evaluations on the performance of a ranking model are carried out by comparison
between the ranking lists output by the model and the ranking lists given as ground
truth. Several evaluation measures such as normalized discounted cumulative gain
(NDCG), mean average precision (MAP), and winner take all (WTA) are widely used
in information retrieval (IR) or other fields (Li, 2011).

There are two advantages of NDCG compared to many other measures. First,

NDCG allows degrees of relevancy in each signal while most traditional ranking
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measures only allow binary relevance. Second, NDCG involves a discount function
over the rank while many other measures uniformly weight all positions (Wang, He, &
Chen, 2013). Therefore, we take this measure as our evaluation criteria.

NDCG represents the normalized cumulative gain of accessing the information
from position one to position k with discount on the positions. It is defined as

NDCG(K) = DCGrax (k) X jrr,(jy=ic G (DD (m; (7)),
where DCG,,q, (k) isthe normalizing factor and is chosen such that a perfect ranking
m;’s NDCG score at position k is 1. The gain function is normally defined as an
exponential function of grade.
G() = 2% -1

where y; ; is the label of d;; in ranking list 7;. The discount function is normally

defined as a logarithmic function of position.

1
log, (1 + m; ()

D(m;(j)) =
where m;(j) is the position of d;; in ranking list m;. The DCG at position k for g;

becomes

B 2Yij—1
DCG(k) = Zj:ﬂi(]')ﬁk log, (1+m;(j))’

NDCG values are further average over queries (i =1, ..., m) (Li, 2011).
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Perfect ranking
3,3,2,2,1,1,1)

(7’ 73 3’ 33 13 l’ 1)
(1,0.63,0.5,---)
(7,11.41,12.91, ---)
(1/7,1/11.41, 1/12.91,- - -)
1,1,1,--)

Imperfect ranking
2,3,2,3,1,1,1)
3,7,3,7,1,1,1)
(1,0.63,0.5,---)
(3,7.41,891,---)
(1/7,1/11.41, 1/12.91,- - -)
(0.43,0.65, 0.69, - - - )

Formula

Wij —1

1/log(m; (j) + 1)

> i _q
Fmi(f)=<k log(m: (j)+1)

DCG,L, (k)

NDCG(k)

Formula

i — 1

1/log(m;(j) + 1)

¥ j _q
2 jimi (i) <k TopGm VD
DCG;L (k)
NDCGK)

Explanation
grades: 3,2,1

gains

position discounts
DCG scores

normalizing factors
NDCG scores

Explanation
grades: 3,2,1

gains

position discounts
DCG scores

normalizing factors

NDCG scores

Figure 15: Example of NDCG (Li, 2011)

4.2.2 Evaluation Procedure

For each disease-anchored query, we randomly extracted 20% from each

likelihood level of each disease query (the way we sampled called stratified sampling)

as the training set, and the rest 80% of signals were used as the testing set. To improve

the reliability of our evaluation, we performed thirty times of 20%-80% stratified

random sampling for training and testing data. Thus, the evaluations of NDCG were the

average of thirty random samples of four disease queries. The average training and

testing sizes of four types of disease query are shown in Table 11.

Table 11: Average of training and testing set in each disease query

Training set Testing set
Cardiovascular events 472 1887
Cancer 75 297
Hepatotoxicity 231 920

46




Acute renal toxicity

223

883

4.3 Comparative Evaluation

In this study, we try to figure out whether using multiple measures to rank the

drug-outcome pairs would have better performance than single measure or not.

Table 12: Comparative evaluation results (NDCG@5 to NDCG@50)

NDCG@5 | NDCG@10 | NDCG@15 | NDCG@20 | NDCG@25 | NDCG@30 | NDCG@35 | NDCG@40 | NDCG@45 | NDCG@50
PRR 0.229601 | 0.292851 | 0.300054 | 0.313593 | 0.337741 | 0.351985 | 0.360424 | 0.36322 0.374212 | 0.383233
ROR 0.224791 0.29325 0.29829 0.311864 0.3372 0.351699 0.361749 0.369087 0.37582 0.382447
RRR 0.227669 | 0.293766 | 0.302943 | 0.313998 | 0.339622 | 0.354806 | 0.361625 0.36503 0.374308 | 0.382599
BCPNN 0.256174 0.290166 0.306456 0.323195 0.335955 0.346342 0.354974 0.364896 0.378762 0.386311
Ranking SVM

0.375349 0.367747 0.375066 0.383424 0.387503 0.393022 0.400416 0.404632 0.405939 0.410429
(All Measures)

Figure 16: Comparative evaluation results (NDCG@5 to NDCG@50)

0.15

0.1

0.05

NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25 NDCG@30 NDCG@35 NDCG@40 NDCG@45 NDCG@50

e==Qmm PRR ~ e=m@mm= ROR

RRR ~ esssgumm BCPNN

e RankingSVM

As Table 12 and Figure 16 show, our proposed ranking method (using the learning

to rank approach with all measures) outperforms all benchmarks (i.e., single measure,
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such as PRR, ROR, RRR, and BCPNN).

4.4 Additional Evaluations

In this section, we design four additional experiments. First, we want to know the

effect of variables selection. Second, we examine the effect of training size on the

detection effectiveness of our proposed ranking method. Third, we investigate whether

different control and surveillance window sizes will affect the effectiveness of our

proposed ranking system. Fourth, we attempt to evaluate the appropriateness of non-

mono-domain training.

4.4.1 Experiment 1: Effects of Variables Selection

In this experiment, we want to know whether different types of measures influence

the effectiveness in Ranking SVM. Thus, we design four types of datasets with different

subsets of measures for ranking.

1. Type 1: Four traditional disproportional analysis measures, including RRR, PRR,

ROR and BCPNN.

2. Type 2: Traditional measures plus other association rule measures introduced in

Table 4.

3. Type 3: Traditional measures plus LDA measures.
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4.

Type 4: Traditional measures plus other association rule measures and LDA

measures.

Table 13: NDCG evaluation for using type 1, type 2, type 3 and type 4 measures
(using Ranking SVM)

NDCG@5

NDCG@10

NDCG@15

NDCG@20

NDCG@25

NDCG@30

NDCG@35

NDCG@40

NDCG@45

NDCG@50

Type 1

0.35014

0.368536

0.373013

0.378923

0.382973

0.389782

0.395184

0.404674

0.415084

0.422082

Type 2

0.333855

0.338281

0.356462

0.365808

0.369546

0.379703

0.388721

0.394187

0.3962

0.401202

Type 3

0.380331

0.414653

0.423439

0.434017

0.444889

0.451511

0.45446

0.459503

0.463696

0.466767

Type 4

0.375349

0.367747

0.375066

0.383424

0.387503

0.393022

0.400416

0.404632

0.405939

0.410429
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0.4

0.35

0.05

0

NDCG@5 NDCG@10NDCG@15NDCG@20NDCG@25NDCG@30NDCG@35NDCG@40NDCG@45NDCG@50

@=Om== PRR ==@==ROR

RRR === BCPNN e==== RankingSVM

Figure 17: NDCG evaluation on type 1
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Figure 18: NDCG evaluation on type 2
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Figure 19: NDCG evaluation on type 3
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Figure 20: NDCG evaluation on type 4
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Figure 21: NDCG evaluation across four types of measures

From Table 13 and Figures 17-20, we can observe that the performance of our

proposed ranking method using different types of measures are higher than that of the

benchmarks in NDCG evaluation. Moreover, we can also observe that the incorporation
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of other association rule measures deteriorate the detection effectiveness. For type 1,

the learning to rank method learns the ranking ability of these traditional

disproportional analysis measures and outperforms every single measure. For type 2,

we add other association rule measures, and the performance rushes down to the poorest,

among all types of measures examined. We surmise that other association rule measures

provide less useful information for ranking than traditional disproportional analysis

measures. For type 3, it seems that the LDA method can extract some implicit relations

between drugs and diseases, and the effectiveness achieved by this type noticeably

outperforms that of type 1 or type 2. For type 4, because the benefits of incorporating

LDA measures are offset by the involvement of other association rule measures, its

effectiveness (of type 4) is worse than that of type 3, but better than that of type 2.

4.4.2 Experiment 2: Effects of Training Sizes

In this experiment, we want to know whether we can decrease training size and

how much we can decrease without sacrificing too much effectiveness. Thus, we

decrease the training size from 20% to 5% (in decrements of 5%) by stratified random

sampling. We use the same testing size of 80%, because different testing sizes will cause

the evaluation of NDCG unfair. The smaller the testing size, the larger the NDCG value.
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Tables 14 and 15 demonstrate how different testing sizes will influence the

corresponding NDCG values. Table 15 is the 50% stratified sampling of Table 14, and

the NDCG of Table 15 is higher than Table 14 at top 5.

Table 14: Example explaining the effect of testing size on NDCG (all ranks)

Perfect rank 4 4 4 4 3 3 2 1
Gains 15 15 15 15 7 7 3 1
Position discount 1 0.630929754 0.5 0.430676558 0.386852807 0.356207187 0.333333333 0.315464877
DCG 15 24.4639463 31.9639463 38.42409467 41.13206433 43.62551464 | 44.62551464 44.94097951
NDCG 0.066666667 0.04087648 0.031285248 0.026025337 0.024311933 0.022922366 0.022408705 0.022251406
Real rank 3 4 2 4 1 4 4 3
Gains 7 15 3 15 1 15 15 7
Position discount 1 0.630929754 | 0.5 0.430676558 | 0.386852807 | 0.356207187 | 0.333333333 | 0.315464877
DCG 7 16.4639463 17.9639463 24.42409467 24.81094748 30.15405529 35.15405529 37.36230943
NDCG 0.066666667 | 0.04087648 0.031285248 | 0.026025337 | 0.024311933 | 0.022922366 | 0.022408705 | 0.022251406

Table 15: Example explaining the effect of testing size on NDCG (50% stratified
sampling of all ranks)

Perfect rank 4 4 3 2 1

Gains 15 15 7 3 1

Position 1 0.630929754 0.5 0.430676558 0.386852807
discount

DCG 15 24.4639463 27.9639463 29.25597598 29.64282879
NDCG 0.066666667 0.04087648 0.035760332 0.034181051 0.033734972
Real rank 3 4 2 4 1

Gains 7 15 3 15 1

Position 1 0.630929754 0.5 0.430676558 0.386852807
discount

DCG 7 16.4639463 17.9639463 24.42409467 24.81094748
NDCG 0.066666667 0.04087648 0.035760332 0.034181051 0.033734972
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From Table 16 and Figures 22 to 26, we can figure out the decrease of training size

drop down the performance a little, but all different training sizes outperform the

benchmarks. That is, small training size (e.g., 5%) still has the ability to predict signal

ranks. Therefore, from the practical consideration, labeling 5% of signals as the training

set may not be a difficult job and our proposed ranking method (using the learning to

rank approach) is practically viable and appealing.

Table 16: NDCG evaluation for different training sizes

NDCG@5 NDCG@10 NDCG@15 | NDCG@20 | NDCG@25 | NDCG@30 | NDCG@35 | NDCG@40 | NDCG@45 | NDCG@50

PRR 0.240932 0.364139 0.33922 0.355694 0.390862 0.41761 0.428886 0.424895 0.444472 0.455363
ROR 0.238208 0.367709 0.337822 0.353746 0.391924 0.415405 0.430418 0.435565 0.44777 0.454743
RRR 0.240932 0.364139 0.33922 0.355732 0.39192 0.421651 0.429799 0.426309 0.445616 0.457734
BCPNN 0.240932 0.364139 0.33922 0.355732 0.39192 0.421651 0.429799 0.426309 0.445616 0.457734
Train-20% 0.375349 0.367747 0.375066 0.383424 0.387503 0.393022 0.400416 0.404632 0.405939 0.410429
Train-15% 0.371966 0.374065 0.380272 0.385796 0.390473 0.39763 0.404003 0.407734 0.408679 0.41221

Train-10% 0.363071 0.369609 0.376426 0.373986 0.378987 0.382819 0.390417 0.394565 0.400337 0.402749
Train-5% 0.367237 0.361576 0.370987 0.371427 0.377014 0.383246 0.388726 0.391149 0.394567 0.397769
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Figure 22: NDCG evaluation for 20% training size
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Figure 23: NDCG evaluation for 15% training size

55



0.5

0.45

0.4

0.35

0.3

NDCG

NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25 NDCG@30 NDCG@35 NDCG@40 NDCG@45 NDCG@50

@==Ommm PRR e==@mmm ROR @= A== RRR e===gmmm BCPNN === RankingSVM
Figure 24: NDCG evaluation for 10% training size
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Figure 25: NDCG evaluation for 5% training size
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Figure 26: NDCG evaluation acorss different training sizes (using Ranking SVM)

4.4.3 Experiment 3: Effects of Surveillance and Control Window Sizes

In this experiment, we attempt to examine the effects of sizes of control and
surveillance windows on the detection effectiveness of our proposed ranking method.
We design two experiments that vary the size of control window and that of the
surveillance window independently. For surveillance window, we fix the surveillance
window as 12 months and examine the sizes of control window from 1, 3, 6 to 12
months. For control window, we fix the control window as 12 months and vary the sizes
of surveillance window from 1, 3, 6, to 12 months.

From Table 17 and Figure 27, we observe that the change of control window size

does not have significant influence on the detection effectiveness of our proposed
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ranking method. However, according to Table 17 and Figure 28, we notice that

surveillance window sizes have stronger impacts on the detection effectiveness of our

proposed ranking method than control window sizes do. Specifically, the increase of

surveillance window size from 1 month to 12 months generally improves detection

effectiveness. Thus, we perform a detailed look into each disease-anchored query of

different surveillance window sizes. Before comparing the performance of each query,

we show the change of drug-outcome pairs that can be detected under different

surveillance window sizes in Table 18. When we decrease the surveillance window size

from 12 months to 1 month, the number of drug-outcome pairs associated to

hepatotoxicity and acute renal toxicity decreases with a greater magnitude than that

associated to cardiovascular events and cancer.

Table 17: Effects of sizes of control window and surveillance window (where c12_s12

means that control window of 12 months and surveillance window of 12 months)

NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25 NDCG@30 NDCG@35 NDCG@40 NDCG@45 NDCG@50
cl2_s12 0.375349 0.367747 0.375066 0.383424 0.387503 0.393022 0.400416 0.404632 0.405939 0.410429
cl12_s6 0.340878 0.333196 0.344085 0.355006 0.36966 0.375812 0.376511 0.381115 0.386412 0.395126
c12_s3 0.327075 0.327599 0.32805 0.333469 0.345429 0.355695 0.36823 0.375882 0.382686 0.388666
cl2_s1 0.277644 0.312992 0.327247 0.328716 0.338755 0.347565 0.355814 0.363879 0.371259 0.37847
c6_s12 0.322468 0.342734 0.36779 0.373795 0.384859 0.392265 0.398971 0.404367 0.40828 0.411226
c3_s12 0.320167 0.339235 0.35998 0.36911 0.378844 0.390089 0.39451 0.400711 0.40513 0.41034
cl_s12 0.336869 0.348018 0.360918 0.371872 0.380472 0.389986 0.39258 0.398455 0.403156 0.40813
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Figure 27: NDCG evaluation of different control window sizes
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Figure 28: NDCG evaluation of different surveillance window sizes
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Table 18: Number of drug-outcome pairs in each disease query under different

surveillance window sizes

cl2s12 4 3 2 1 total cl2s6 4 3 2 1 total
Cardiovascular | 375 | 43 | 1gg3 | 57 | 2359 U Esilhy | o 43 | 1883 | 57 | 2359
events events
Cancer 24 5 300 43 372 Cancer 24 5 300 43 372
Hepatotoxicity 346 176 585 44 1151 Hepatotoxicity 343 173 579 43 1138
Acute renal 230 87 768 21 1106 Acute renal 221 86 748 21 1076
toxicity toxicity

c12s3 4 3 2 1 total cl2s1 4 3 2 1 total
pandioyasculaylig o 43 | 1883 | 57 | 2358 eardinzasculaiiig o) 43 | 1871 | 57 | 2341
events events
Cancer 24 5 300 43 372 Cancer 24 5 298 43 370
Hepatotoxicity 336 171 569 43 1119 Hepatotoxicity 320 164 545 41 1070
Acute renal 220 84 | 731 | 20 | 1055 Acute renal 204 81 | 689 | 19 993
toxicity toxicity

Figures 29 to 32 illustrates the effects of surveillance window sizes on the

detection effectiveness for each disease-anchored query. It is obviously that detecting

cancer events (ADRs) needs longer surveillance window. Cardiovascular events may

include both short-term and long-term, so that 3 and 12 months of surveillance window

perform better. In this experiment, we only explain what we have observed, and more

thorough analyses require inputs and insights from domain experts.

60



0.5

0.45 M

0.4

0.35

0.3

0.25

NDCG

0.2

0.15

0.1

0.05

0
NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25 NDCG@30 NDCG@35 NDCG@40 NDCG@45 NDCG@50

c12s12 c12s6 c12s3 c12s1

Figure 29: NDCG evaluation of different surveillance window sizes (for
hepatotoxicity)
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Figure 30: NDCG evaluation of different surveillance window sizes (for cancer)
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Figure 31: NDCG evaluation of different surveillance window sizes (for

cardiovascular events)
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Figure 32: NDCG evaluation of different surveillance window sizes (for acute renal
toxicity)
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4.4.4 Experiment 4: Appropriateness of Non-Mono-Domain Training

In our previous experiments and evaluations, we use mono-domain training. That
is, for each disease-anchored query, we randomly select a certain percentage of drug-
outcome pairs from the query for training purpose and use the remaining drug-outcome
pairs from the same query for testing purpose. In this experiment, we attempt to
examine the feasibility of non-mono-domain training. Specifically, we design two non-
mono-domain training scenarios: cross-domain training and mixed domain training.

Figure 33 illustrates the scenario of cross-domain training. Specifically, we use the
drug-outcome pairs from some queries for training purpose and use the drug-outcome
pairs from the remaining query for testing purpose. For example, as mentioned, we have
4 disease-anchored queries (i.e., cardiovascular events, cancer, hepatotoxicity, and
acute renal toxicity). Thus, in the cross-domain training scenario, we may use the drug-
outcome pairs from three queries (e.g., cardiovascular events, cancer, and
hepatotoxicity) as the training set and employ the drug-outcome pairs from the

remaining one query (i.e., acute renal toxicity) as the testing set.
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Figure 33: Illustration of cross-domain training

From Table 19 and Figure 34, we can find that this cross-domain training scenario

achieves worse detection effectiveness than some benchmarks. Such inferior

performance may be caused by that the characteristics of ADEs of different disease

queries may be different. Although we combine three disease queries for training

purpose, their characteristics may be different from those of the testing query, which

weakening the detection effectiveness of our proposed ranking method.

Table 19: NDCG evaluations for the cross-domain training scenario

NDCG@5 NDCG@10 | NDCG@15 | NDCG@20 | NDCG@25 | NDCG@30 | NDCG@35 | NDCG@40 | NDCG@45 | NDCG@50
PRR 0.222721 0.285462 0.297434 0.311365 0.336339 0.352086 0.360764 0.363177 0.376467 0.38452
ROR 0.222721 0.28555 0.296466 0.309945 0.336611 0.351388 0.36136 0.369192 0.377857 0.384207
RRR 0.244614 0.323644 0.332241 0.338287 0.354039 0.361794 0.364732 0.370055 0.387492 0.399487
BCPNN 0.251998 0.291074 0.310819 0.326193 0.341293 0.34977 0.356004 0.367305 0.382263 0.390585
Ranking SVM

0.262384 0.282681 0.30854 0.317723 0.325441 0.335989 0.347397 0.354729 0.360503 0.36958
- Cross-Domain
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Figure 34: NDCG evaluation for cross-domain training

The second scenario for non-mono-domain training is the mixed domain. As

illustrated in Figure 35, we use part of drug-outcome pairs from all disease queries to

form a training set for building a signal ranking model, and then use the remaining drug-

outcome pairs of each disease query for testing purpose.

Training set Testing set
q > o
o —>| o
% —>| @
q: > g

Figure 35: Illustration of mixed-domain training

From Table 20 and Figure 36, we can observe that the performance of the mixed-

domain training does not go beyond the benchmarks. Although the training set contain
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drug-outcome pairs from the same disease query as the testing set, the training set also

include drug-outcome pairs from other disease queries, which undermines detection

effectiveness. The detection effectiveness of the mixed-domain training scenario

appears to be better than that of the cross-domain training scenario. This result suggests

the utility of the inclusion of drug-outcome pairs (into the training set) from the same

disease query as the testing set.

Table 20: NDCG evaluations for mixed-domain training

NDCG@5 | NDCG@10 | NDCG@15 | NDCG@20 | NDCG@25 | NDCG@30 | NDCG@35 | NDCG@40 | NDCG@45 | NDCG@50
PRR 0.323043 0.372997 0.402165 0.422755 0.43396 0.443417 0.449631 0.457553 0.46569 0.475247
ROR 0.321797 0.37059 0.401533 0.423635 0.433261 0.443882 0.449794 0.458949 0.465195 0.475084
RRR 0.32195 0.373946 0.40259 0.423266 0.434229 0.443879 0.449073 0.45816 0.466334 0.475348
BCPNN 0.336302 0.38266 0.412145 0.430298 0.43754 0.442887 0.451806 0.46152 0.470519 0.478853
Ranking SVM

0.300185 0.35885 0.388277 0.409716 0.423674 0.436056 0.444196 0.454677 0.461726 0.470559

- Mixed Domain
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Figure 36: NDCG evaluation for mixed-domain training
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Chapter 5 Conclusion and Future Work

Pharmacovigilance is a serious and worldwide issue that should be put much
concern on it. Many drug safety signal detection methods for SRS databases have been
developed in the literature. Due to the problems of volunteer nature in SRS-based
methods, researchers start to investigate and develop EHR-based drug safety signal
detection methods. Extended from SRS-based methods, EHR-based methods generally
use single disproportional analysis measure, which ranks candidate drug-outcome pairs
by the value of the selected measure.

In this study, we develop a supervised learning method (i.e., learning to rank) that
learns from a collection of ranked drug-outcome pairs a signal ranking model, which
can be employed to rank for unranked candidate drug-outcome pairs. In addition, we
try to extract implicit relations between drugs and diseases by using the LDA method
and develop additional measures for ranking purpose. Our empirical evaluation results
suggest that our proposed ranking method (using Ranking SVM as the underlying
learning to rank method) significantly outperforms the benchmarks (i.e., using single
disproportional analysis measures). In addition, we conduct four additional experiments

that provide more in-depth analyses. First, in the effects of variable selection
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experiment, we find that combining traditional disproportional analysis measures and

drug-disease association measures (extracted from the LDA method) can achieve the

best detection effectiveness. Second, in the effects of training size experiment, we

observe that smaller training size only slightly lower the detection effectiveness of our

proposed ranking method, and the smallest training size (i.e., 5%) examined in this

experiment still performs better than benchmarks. Third, in the effects of surveillance

and control window size experiment, the control window size does not influence much

on the performance of ranking, but the surveillance window size seems to have greater

influence. We also observe that different disease queries may require different

surveillance window sizes. Finally, in the non-mono-domain training experiment, we

show that cross-domain and mixed-domain training scenarios perform worse than the

benchmarks. The mono-domain training still represents the best design.

There are some limitations and further research directions relevant to our study.

First, we suggest expanding the number of disease-anchored queries in order to improve

the reliability of our evaluation reuslts. In our study, we only have four disease queries

(i.e., cardiovascular events, cancer, hepatotoxicity, and acute renal toxicity). In the

future, we should collect more disease queries and associated labeled drug-outcome
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pairs for evaluation purposes. Second, incorporating more measures that are potentially

useful to drug safety signal detection in the claims databases may further improve the

effectiveness of our proposed ranking method. Third, there exist further research

directions for drug safety signal detection in EHR. For example, it would be essential

to detect ADEs from EHR databases with the consideration of patients’ preexisting

medical conditions. In addition, it is also imperative to develop appropriate detection

methods capable of detecting drug interactions and dose-related ADEs from EHR

databases.
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