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中文 要

自我運動估測在機器人控制及自動化上有相當廣泛的應用。正確的

區域自我運動估測可以幫助機器人了解、感知周遭環境，並建構出走

過的路徑。在這篇論文裡，我們提出了一個結合基於關鍵影格的視覺

里程計及慣性資料的自我運動估測系統。系統硬體包括擷取影像的彩

色深度攝影機和取得慣性資料的慣性測量單元。

兩張連續影像間的攝影機運動經由視覺特徵的對應關係來進行計

算。剛體限制可以有效地將初始對應點裡的異常對應點去除。此外，

我們估測運動的過程中利用隨機抽樣一致性算法來處理剩餘異常對應

點的影響。這些方式都能讓我們確保在進行攝影機運動估算時所用的

對應點幾乎都是正確的對應。

我們進行了各種實驗來證明演算法的穩固性和正確性，以及正確地

處理真實場景的能力。

關鍵字：自我運動、運動估測、視覺里程計、彩色深度攝影機、慣

性測量單元
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Abstract

Ego-motion estimation has a wide variety of applications in robot control

and automation. Proper local estimation of ego-motion benefits to recognize

surrounding environment and recover the trajectory traversed for autonomous

robot. In this thesis, we present a system that estimates ego-motion by fusing

key frame based visual odometry and inertial measurements. The hardware

of the system includes a RGB-D camera for capturing color and depth images

and an Inertial Measurement Unit (IMU) for acquiring inertial measurements.

Motion of camera between two consecutive images is estimated by finding

correspondences of visual features. Rigidity constraints are used to efficiently

remove outliers from a set of initial correspondence. Moreover, we apply

random sample consensus (RANSAC) to handle the effect of the remaining

outliers in the motion estimation step. These strategies are reasonable to in-

sure that the remaining correspondences which involved in motion estimation

almost contain inliers.

Several experiments with different kind of camera movements are per-

formed to show that the robustness and accuracy of the ego-motion estimation

algorithm, and the ability of our system to handle the real scene data correctly.

Keywords:ego-motion, motion estimation, visual odometry, RGB-D cam-

era, inertial measurement unit
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Chapter 1

Introduction

1.1 Ego-motion Estimation

Environment perception plays an important role on robotics system for autonomously

navigation because surrounding environment understanding can help robot avoid colli-

sions and reach the target position correctly. With an accurate estimate of the robot cur-

rent state is good for autonomous navigation and Simultaneous Localization AndMapping

(SLAM) [1].

Stelzer et al. in the German Aerospace Center (DLR) produce a six-legged walking

robot, attached with stereo cameras and inertial sensors for motion estimation. Accord-

ing to the estimated motion, the robot can be navigated to walk in unknown terrain. A.

S. Huang et al. propose a quadrotor carries RGB-D cameras and laser scanner for state

estimation and then control quadrotor’s flight. Google Project Tango applied ego-motion

estimation on the mobile devices (e.g. tablet or smart phone) for positioning. Obviously,

ego-motion estimation becomes more and more important issue for robotics tasks such as

robot navigation, drone control and mobile device positioning.
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(a) DLR Crawler robot (b) Huang et al.’s quadrotor (c) Project Tango Tablet

Figure 1.1: ego-motion applications

Visual odometry, which determine camera motion according to the associated camera

images, gives accurate estimation of translatory movement, but it is possibly inaccurate to

estimate the rotational movement. In contrast, the Inertial Measurement Unit, which de-

termine camera motion by integrating the measurements from accelerometers, gyroscopes

and magnetometers, provides accurate orientation estimation, but produces drift in long-

term translation estimation due to the integration noise. Therefore, combining visual and

inertial measurements has complementary properties which make a more robust motion

estimation for many robotic applications.

This thesis describes a system that estimates camera motion of an agent, which moves

unconstraint in the static scene by attached RGB-D camera and inertial sensor. Our expec-

tation is to integrate vision and inertial data incrementally to estimate the camera motion

with respect the starting position and recover the trajectory.

1.2 Hardware Sensors

RGB-D cameras are sensing systems that capture RGB images along with per-pixel

depth information. In our work, we use Microsoft Kinect, which captures 640 x 480 reg-

istered image and depth pixels. Kinect analyses a speckle pattern of infrared laser light

to sensing the depth informtaion and its cameras allow the capture of reasonably accurate

depth and color information at high data rates of up to 30 fps.

Inertial Measurement Unit (IMU) contains a number of micro-electrical-mechanical

(MEMS) sensors including gyroscope, accelerometer, and magnetometer. The informa-

tion from each of these sensors is combined through the sensor fusion process to determine
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the motion of the IMU in real world. In our work, the Oculus Rift, which acquires iner-

tial data at about 50 Hz is used as the inertial sensor to integrate measurements from

accelerometer, gyroscope and magnetometer to derive the orientation.

1.3 Organization of the Thesis

The remainder of this thesis is structured as follows. In Section 2, we provide an

overview of the related works. Section 3 introduces the theoretical detail of our algorithm,

computing ego-motion based on feature correspondences and fusing with inertial data for

robust motion estimation. Section 4 describes the experimental setup of our system, then

presents extensive results on different evaluation schemes. In Section 5 we conclude this

thesis and discuss some future works about this work.
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Chapter 2

Related work

Ego-motion estimation has been developed for a long time and becomemore andmore

popular in many robotics applications. A complete tutorial of visual odometry has been

given by Scaramuzza et al. [2] at ETH.

The term visual odometry was coined in 2004 by Nister et al. [3]. In the past few

years, several ego-motion estimation methods have been developed by using different

sensors such as Kneip et al. [4] combine monocular camera and IMU, Geiger et al. [5]

use stereo cameras and Hirschmuller et al. [6] perform a system combing stereo cameras

and IMU. In this section, we will give an overview of some related work about visual

odometry.

2.1 Single Camera and IMU

Kneip et al. proposed a robust, continuous pose computation method combing single

camera and IMU [4]. Firstly, a local point cloud is iniitalized from two frames with suffi-

cient disparity. If the disparity between current frame and previous key frame is not large

enough, then the relative camera pose will be determined using the pre-generated point

cloud. In contrast, if the disparity is large enough, then current frame and key frame are

used to triangulate the new point cloud and the current will be treated as key frame. The

system overview is the left image in Figure 2.1. They also use the generated point clouds

to reconstruct the environment map shown in right image in Figure 2.1.
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(a) system overview of Kneip et al.’s
method

(b) reconstructed map

Figure 2.1: Kneip et al’s method combing monocular camera and IMU

2.2 Stereo and IMU

Figure 2.2: The perception hand-held device

Hirschmuller et al. [6] developed a real-time and accurate ego-motion computation

system on a hand-held device attachedwith stereo cameras and IMU like Figure 2.2 shows.

Their method will generate the depth map based on semi-global matching (SGM) algo-

rithm first, and then use the 2-D corner features and depth information to reconstruct the 3-

D corners. Moreover, feature correspondences will be found based on 2-D corners. Next,

outlier detection is used to remove the possibly wrong corner correspondences. Finally,

the remaining correspondences can be used to calculate the relative pose. The overall

scheme is shown in Figure 2.3.
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Figure 2.3: Overall scheme of Hirschmuller et al.’s method

2.3 RGB-D visual odometry

A survey of state-of-the-art RGB-D visual odometry is given by Fang et al. [7]. They

divide current RGB-D method into three categories according to what kind of data are

mainly used : Image-based [5], [8], [9], Depth-based [10], [11] andHybrid-based [12], [13], [14].

Next, we are going to introduce a most related work with our system.

Fovis [8] is a vision-based method that estimates the camera motion using depth in-

formation for each pixel. It first detects FAST features in color image. Then, the depth

corresponding to each feature is extracted from the depth image. Features that do not have

an associated depth are discarded. After that, each feature is assigned an 80-byte descrip-

tor. Features are then matched across frames by comparing their feature descriptor values

using a mutual-consistency check. Then, the inliers are detected by computing a graph

of consistent feature matches and using a greedy algorithm to approximate the maximal

clique in the graph. Finally, the motion estimate is computed from the matched features

in three steps.

Moreover, a key frame technique is used in Fovis. If the motion relative to the key

frame is successfully computed with a sufficient number of inliers, then the key frame is

not changed. Otherwise, the current frame replaces the reference frame after the estima-
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tion is finished. If the motion estimation against the reference frame fails, then the motion

estimation is tried again with the second most recent frame.
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Chapter 3

Methodology

In this section, we introduce our method for ego-motion estimation. Color and depth

images are captured fromRGB-D camera, and the cameramotion can be determined based

on visual odometry. Then, the orientation which acquired from inertial sensor fuses with

visual odometry to get a more robust estimation. The synchronizer is responsible for

synchronizing timestamps on visual and inertial measurements. A system overview is

given in Figure 3.1.

Figure 3.1: system overview

3.1 FeatureBasedVisualOdometrywith Spatial Constraints

Since visual odometry is computed incrementally from one frame to the next and every

step introduces small errors due to noise. These errors will accumulate to drift at high
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frame rate and then cause negative effect. Hence, we compute the camera motion to the

current frame from every previous frame first, and select the best result. The consideration

of handling accumulated error is shown in Figure 3.2

Figure 3.2: When the current frame is at time t, then the motion between t and t-1, t and
t-2, ... , t and 1 will be computed and select the best one from all results.

For visual odometry, the color images are used to detect the 2-D features and extract

feature descriptors using SURF feature [15] first, and then 2-D features are combined with

depth information to calculate point clouds in 3-D space. Next, initial correspondences

can be derived by matching feature descriptors from the previous and current frame. The

initial correspondences are expected to exist a large number of incorrect match pairs, called

outliers and these outliers could lead to a bad estimated motion. To avoid this situation,

outlier detection is necessary for calculation of the camera motion. Two spatial constraints

are used to detect outliers in the set of correspondences. The result of outlier detection is

a set of corresponding points, whose satisfied the spatial constraints between each other

and the influence of remaining outliers are considered low. Therefore, a singular value de-

composition ( SVD ) solution [16] can be used to sufficiently calculate the transformation

between two consistent corresponding 3-D point clouds by minimizing the least square

error. The accuracy of the estimated transformation is further improved by an iterative

optimization method ( e.g. RANSAC [17] ). An overview of visual odometry algorithm

is given in Figure 3.3.
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Figure 3.3: Feature Based Visual Odometry with Spatial Constraints

3.2 Feature Correspondences

3.2.1 Initial Correspondences

Figure 3.4: Consideration of Feature Matching

It is assumed that the agent is moving in the static environment, then two correspond-

ing feature points in two different images represent the same 3-D position in the real world.

Feature matching is a good strategy to find the relation between two different images. The

consideration of feature matching is shown in Figure 3.4 The SURF detector is applied to

detect SURF features first, then extracts feature descriptors. Feature descriptors are used
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to perform feature matching by matching every feature to other feature set and find the

nearest neighbor with the criteria to minimizing the sum of squared differences ( SSD ).

An example procedure of finding feature correspondence is given in Figure 3.5.

(a) There are two input images at different
timestamps.

(b) First, the images are used to detect
SURF features.

(c) Then, extracting feature descriptors for
every detected features.

(d) Finally, finding feature matching by
minimizing SSD of descriptors

Figure 3.5: An example of finding feature correspondence.

The correspondence between relevant points from different camera images is required.

It is assumed that therewill be a high amount of points, for which no correspondence exists,

because some points are outside the field of view of the camera. Furthermore, points can

be occluded by objects. It means that SURF detector can fail to detect a feature point in one

image, but detects it in the other. Hence, it is not important to find all correspondences.

Theoretically, three none co-linear points are sufficient to calculate the camera motion.

However, a higher amount is useful to increase accuracy, because the effect of noise can

be reduced.

3.2.2 2-D to 3-D correspondences

After feature corresponding step, the 3-D feature positions can be derived from 2-D

feature points and depth information. It means that the relation between two 3-D point

clouds is also derived from feature matching. Figure 3.6 shows the correspondence be-

tween 2-D matching and 3-D point clouds.
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(a) (b)

Figure 3.6: An example of correspondences between 2-D matching (left) and 3-D point
clouds (right). Every green line means a corresponding pair.

Theoretically, the cameramotion can be determined by the corresponding point clouds.

However, there are some feature points exist no correspondences, because they are outside

the field of view of the camera or suffer occlusion. Furthermore, there will be a large num-

ber of incorrect matching in the correspondences due to the similarity of different feature

descriptors like Figure 3.7 shows.

(a) (b)

Figure 3.7: An example of correspondences between 2-D matching (left) and 3-D point
clouds (right). Every red line means a incorrect corresponding pair ( i.e. outlier ).

All of the issues mentioned above will lead to an unexpectable estimated motion.

Therefore, it is essential to use some strategies for handling outliers. The rigidity con-

straints proposed by Hirschmuller et al. [18] are considered as a practicable method to

handle these outliers.
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3.3 Outlier Detection

In order to derive a more consistent corresponding set, two spatial constraints are used

to remove possibly incorrect correspondence. The initial correspondences step provides

a set of corresponding points. The 3-D position in the camera coordinate system can be

calculated by combining 2-D position and depth information. The 3-D feature points in

the previous and current camera coordinate system are denoted by Pi
t−1 and Pi

t, with

corresponding index i and time index t − 1 and t. The motion transformation between

two camera coordinate systems is denoted by a rotation matrix R and a translation vector

T . The mathematical relation is expressed in equation (3.1). The geometrical bias due to

noise in point position is symbolised by bgi
.

Pi
t−1 = RPi

t + T + bgi
with i = 1...n (3.1)

It is expected that there are a large number of outliers in the initial correspondences.

The noise term bgi
would become a critical issue for these outliers, the calculation ofR and

T would derive a bad estimatedmotion. Inmost papers, statisticsmethod ( e.g. RANSAC )

is a common way to calculated R and T in the presence of these outliers. However, there

are many outliers would be involved in the calculation of transformation. Therefore, we

exploit the spatial constraints to efficiently remove most of these outliers, before R and T

are calculated.

3.3.1 Relative Distance Constraint

The first constraint is the relative distance between two 3-D points should remain

unchanged under a rigid transformation. Therefore, the distance between any two points

dpik
t−1 = ||Pi

t−1 − Pk
t−1|| should be the same for the corresponding points dpik

t = ||Pi
t − Pk

t||.

Hence, we set a small d represents the difference between two relative distance. All of the

feature correspondences should satisfy inequality ( 3.2 ).

Hirschmuller et al. [19] have showen that how models the image based errors and

propagates into distance errors. The derived results are shown in equation 3.2. All of the
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feature correspondences should satisfy inequality ( 3.2).

||dpik
t−1 − dpik

t || ≤ 3d with i, k = 1...n (3.2)

(a) (b)

Figure 3.8: The relative distance between Pi and Pk should be the same at time t and
t − 1 ( i.e. the length of orange line keeps unchanged ). Similarly, the gray line also keeps
unchanged.

3.3.2 Rotation Angle Constraint

The second constraint is derived by setting an upper bound θ on the rotation angle of

the camera between consecutive images. The rotation angle is limited by a high frame rate

(e.g. 30 fps). That is, camera wouldn’t suffer a large rotation movement within 1/30 sec

(i.e. between two consecutive images). Mathematically, all rotations in three dimensions

can be represented by a rotation axis and a rotation angle. If the vector Pi
t−1 − Pk

t−1

is orthogonal to the rotation axis, then the angle between Pi
t−1 − Pk

t−1 and Pi
t − Pk

t

matches exactly the rotation angle. If Pi
t−1 − Pk

t−1 is parallel to the rotation axis, then

the angle between Pi
t−1 − Pk

t−1 and Pi
t − Pk

t is always 0. In all other cases, the angle

is in between 0 and the rotation angle. The rotation axis is unknown, but the angle is

limited by θ as described above. Therefore, all pairs of correct correspondences must

14



satisfy inequality (3.3).

(Pi
t−1 − Pk

t−1)T (Pi
t − Pk

t)
dpik

t−1dpik
t

≥ cosθ with i, k = 1...n (3.3)

(a) (b)

Figure 3.9: A vector a⃗ = Pi
t−1 − Pk

t−1 is formed by two 3-D points Pi
t−1 and Pk

t−1

at time t − 1. This vector becomes vector b⃗ = Pi
t − Pk

t by suffering a transformation at
time t (left). The rotation angle constraint is setting a limitation of the angle θ between
vector a⃗ and b⃗ (right).

3.3.3 Consistent Subset of Correspondences

The initial correspondence of matching pairs can be validated by check both con-

straints. If there is a pair (i, k) of corresponding matching pairs (Pi
t−1, Pi

t) and (Pk
t−1,

Pk
t) satisfies both constraints, then both correspondences may be correct. If one of the

constraints doesn’t satisfy, then at least one of the correspondences in the pair is abso-

lutely wrong. Although we cannot determine that which one would be the wrong cor-

respondence. However, these information can be used to construct a consistent table of

corresponding points. Each entry in the table represent whether the corresponding match-

ing pairs satisfy both constraints. If some pairs satisfy both constraints , then the entry will

equal to one. Otherwise, entry in the table will be filled in zero. Figure 3.10 visualizes

an example of consistent table. After we construct a consistent table, our goal is to find a

subset that the table entries of all combinations of points are one.
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Figure 3.10: An example of the consistent table.

Theoretically, we want to find out the largest subset would involve testing all the

combinations of n points with 2n possibilities, but it is obvious that this task is not be a

practical issue. Actually, in real usage, it is not necessary to find the largest subset, but

only a large enough subset. The first thing is selecting the point i with the largest number

of consistencies (i.e. the column i with the largest number of 1-elements) and putting into

the consistent subset. Then, selecting another point into subset insures that the consisten-

cies are maintained for all points in the subset. Repeating this procedure until there are no

other points can be added into subset. In the Figure 3.11, a 5 × 5 consistent table example

is given to demonstrate how to find the consistent subset by using the scheme mentioned

above.

Although we perform an outlier detection procedure, it may remain incorrect cor-

respondences. However, the remaining outliers also satisfies the distance and rotation

constraints ( 3.2 ) and ( 3.3 ). We can expect that the influence of remaining outliers

would be small. Therefore, these errors can be well handled during calculation of R and

T . The results of original matching and matching after removing outliers are shown in

Figure 3.12.
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(a) A 5 × 5A consistent table which the en-
tries have been filled with 0 or 1.

(b) First, we select the column with most 1-
elements ( second column in this example ).

(c) Adding the second corresponding pair
into subset.

(d) Finding next corresponding pair ( e.g.
third pair ) is consistent with second pair.

(e) Checking the consistencies between
third pair and all pairs in subset.

(f) If the consistencies satisfied, then adding
the third pair into subset.

(g) Repeating the same steps, then the forth
pair is also added into subset.

(h) Next, finding corresponding pair ( e.g.
fifth pair ) is consistent with second pair.

(i) Checking the consistencies between fifth
pair and all pairs in subset.

(j) Since the consistencies don’t satisfy, the
fifth pair is not added into subset.

Figure 3.11: A 5 × 5 example to show how to finding the consistent subset.

17



(a) original matching result

(b) matching result after outlier detection

Figure 3.12: feature matching results

3.4 Motion Estimation

Figure 3.13: Motion Estimation Scenario

A camera moving in the static environment can be viewed as the camera is fixed

and the feature points suffer the movements in opposite direction. Therefore, the camera
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motion R, T between consecutive images can be calculated from the set of consistent

correspondences. With the transformation described in equation (3.1), the least squared

error can be used to estimate the camera pose by minimizing equation (3.4). The initial

solution is solved by SVD, and then refines the solution by RANSAC. The scenario of

motion estimation is shown in Figure 3.13.

k∑
i=1

||Pi
t − (RPi

t−1 + t)||2 (3.4)

3.5 Fusion with Inertial Measurement Unit

Visual odometry, which determine camera motion according to the associated camera

images, gives accurate estimation of translatory movement, but it is possibly inaccurate to

estimate the rotational movement. Therefore, an inertial measurement with accurate rota-

tional estimation would be useful for justifying the rotational error generated in the visual

odometry. We acquire inertial measurements from inertial sensor to compute an initial

rotation, then estimating camera motion by minimizing sum of squared error between two

3-D point clouds. The fusion scheme is described below.

step1 : random sample 10 corresponding points B = {Pi
t−1, Pi

t} for i = 1, 2, ..., 10 from

corresponding point clouds A = {Pi
t−1, Pi

t} for i = 1, 2, ..., n

step2 : compute camera motion using sampling points and initial orientation derived from

inertial sensor by equation 3.5

t = 1
10

10∑
i=1

Pi
t − R

1
10

10∑
i=1

Pi
t−1 (3.5)

step3 : calculate the re-projection error defined by equation 3.6

∑
{Pi

t−1,Pi
t}∈A\B

||Pi
t − (RPi

t−1 + t)||2 (3.6)

step4 : repeat step1 − step3 for 100 times, and then select a motion estimation with min-
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imal re-projection error

3.6 Key Frame Selection

As mention in section 3.4, since visual odometry is computed incrementally between

two consecutive images and every step produces tiny errors due to noise, these errors will

accumulate to a non-negligible drift at high frame rate. Nevertheless, if the frame rate

is too slow for the local camera motion, it is difficult to find enough correspondences for

motion estimation, which also degrades the performance. Hence, we compute camera mo-

tion to the current frame from every previous frame to reduce the influence of accumulated

error. However, computing motion to the current frame from every previous frame is time-

consuming. Thus, we compute the motion to the current frame from n previous frames

that called key frames, where n is a pre-defined, fixed number ( 5 in our experiments).

The overall motion error from current frame to one of key frames can be calculated by

equation 3.7. The motion with minimal overall motion error would be chosen as the final

6-D motion. The new frame replaces the one with the highest overall motion error in the

list of n key frames. With this strategy, it mitigates the influence of accumulated error.

n∑
i=1

||Pi
t0 − (RPi

tk + t)||2 +
n∑

i=1
||Pi

tk − (RPi
t + t)||2 (3.7)

20



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.14: For computing the motion of Fn, we calculate the motion to Fn from
KF1 KF5. Then, selecting the motion with minimal overall motion error and replacing
the key frame with highest overall motion error.
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Chapter 4

Experimental Results

In this section, we evaluate the performance of our ego-motion estimation algorithm

in several experiments with no prior knowledge of camera motion and environment. Our

approach is tested by image sequences contains only translatory motion or rotational mo-

tion first, and demonstrate the accuracy of the algorithm. Then, we compare the results

between visual results and fusion results to verify that IMU can really improve the per-

formance of motion estimation. Finally, we take several turn rounds in different seminar

rooms to show the robustness of our method.

4.1 Experimental Setup

Figure 4.1 shows our ego-motion estimation agent. A Microsoft Kinect v1 with a

resolution of 640 x 480 pixels and an Oculus Rift integrating a triaxial accelerometer,

gyroscope and magnetometer are attached on a sliding chair. When the agent is moving in

a static environment, the color and depth information will be captured by Kinect and the

inertial measurement will be acquired by Oculus Rift. Two scenes of the testing rooms

are shown in Figure 4.2. The camera motion is determined by those data.
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(a) (b)

Figure 4.1: The ego-motion estimation device

(a) (b)

Figure 4.2: Two scenes of the testing rooms

4.2 Effect of Outlier Detection

An example sequence that consists of 600 images has been captured with our sys-

tem. The camera has basically been moved in 360◦ circle. The diagram on the Figure 4.3

demonstrates the power of the method to discriminate outliers from the initial correspon-

dence set.
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Figure 4.3: The number of initial correspondences, consistent correspondences and re-
maining inliers after RANSAC between two images.

4.3 Translatory Motion Experiments

Some simple cases are performed to test our algorithm can cope with translatory mo-

tion correctly.

In these experiments, the agent moved forth about 3 meters and back, then the camera

motion was calculated by the visual and inertial readings. Figure 4.4 shows the estimated

motion sequences and demonstrates the ability to robustly estimate the translatory mo-

tion by fusing visual and inertial measurements. The detail estimated data are given in

Table 4.1. A 4.6% average error rate is achieved by using the fusion algorithm.
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Figure 4.4: Estimated result with translatory motion only
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Table 4.1: Evaluation of Translation Test
Translation Distance Ground Truth Estimated

Results

Run 1 ∼ 3 meters 2.86 meters

Run 2 ∼ 3 meters 2.71 meters

Run 3 ∼ 3 meters 2.95 meters

Run 4 ∼ 3 meters 2.93 meters

Run 5 ∼ 3 meters 2.84 meters

Average ∼ 3 meters 2.86 meters

4.4 Comparison of visual results and fusion results

Visual odometry, which determine camera motion according to the associated camera

images, gives accurate estimation of translatory movement, but it is possibly inaccurate to

estimate the rotational movement. In contrast, the Inertial Measurement Unit, which de-

termine camera motion by integrating the measurements from accelerometers, gyroscopes

and magnetometers, provides accurate orientation estimation, but produces drift in long-

term translation estimation due to the integration noise. Therefore, combining visual and

inertial measurements has complementary properties which make a more robust motion

estimation for many robotic applications.

We have chosen a round trips way in room 324 at our institute for comparing the

influence of fusion with inertial measurement. The experimental results are shown in Fig-

ure 4.5. We get the travelled distances about 11.8 m and 14.2 m and are in the end 1.1 m

and 0.3 m away from camera’s initial position, respectively.
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(a) visual odometry alone (b) fusion with inertial measurements

Figure 4.5: Estimated results of a turn round trip

It can be seen that computing visual odometry alone is inferior to using the fusion

method. That is, fusion with inertial data is really useful for improving the performance

of motion estimation.

4.5 Long-term Round Trip Experiment

Another experiment is a round trip way through a part of corridor in our institute for

testing the robustness of our system. The estimated results are shown in Figure 4.6. The

red trajectory is visual alone result and the blue trajectory is fusion result. Moreover, we

compare our result with other ego-motion estimation method mentioned in section 2 using

the loop-closing error criteria. The comparison results is shown in Table 4.2. The loop-

closing error is the distance in the end of trajectory away from the start position divides

by the total distance of the trajectory.
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Figure 4.6: Estimated results of long-term round trip. The red trajectory is the visual
alone result, the blue trajectory is the fusion result and the green trajectory is the ground
truth. The total distance of blue and red path are 142.9 m and 116.3 m, respectively. The
manually measured ground truth is 119.7 m.

Table 4.2: Comparison with other methods

Method Trajectory Error Loop-closing
Distance Error

Kneip et al.’s 22.59 meters 0.6 meters 2.66 %

Hirschumller et al.’s 140 meters 0.61 meters 0.44 %

Ours 119.7 meters 8.7 meters 7.27 %
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Chapter 5

Conclusion and Future Work

A system proposed in this thesis for visual-inertial-based ego-motion estimation starts

from feature correspondences, goes through fusion with inertial data to robust camera mo-

tion computation.

In the feature correspondences part, SURF features are extracted for feature matching

usage first, then two spatial constraints are applied to efficiently remove outliers, and get

consistent corresponding 3-D point clouds through a procedure of complexity handling.

Camera motion estimation utilize consistent corresponding 3-D point clouds with

statistic optimization method for outlier handling, the inertial measurement is involved

in this step as initial setting. The accumulated drift problem due to the noise of consecu-

tive images is also concerned by a key frame technique.

The test in Section 4.3 shows that the algorithm can estimate translatory movements

correctly. With an accurate initial rotation value, it is also shown that the estimated mo-

tion will be more accurate in Section 4.4. Section 4.5 demonstrates that our system can

estimate different camera movements robustly in real round trip data.

In the future, we plan to improve accuracy by revising the key frame selection tech-

nique. A more suitable key frame can be found by comparing the viewpoints between

current frame and frames in the whole past track. With this strategy, the camera motion

can be estimated using two images which having similar viewpoints. We expect that new

key frame technique will be useful for feature matching and benefits to the final result.

With an accurate performance for ego-motion system, we see a great potential applica-
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tion for drone control and navigation. It is also suitable for augmented reality applications

on head-mounted display.
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