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中文摘要 

緒論 

生命的祕密至今無解。各種律動組合成人體的運作，是維持生命的要素。這些

律動彼此交互影響、形成迴路、並共同與擾動的、多變的環境發生應對。他們提

供組成生命所需有序的功能。回顧歷史，心臟在許多不同文化裡被視為是情緒和

智慧的本源。大多數的神經科學家認為意識及思考只是大腦及其相關的神經生理

功能。然而，心臟在腦形成以前已經開始跳動。傳統說法，心與腦經由神經及荷

爾蒙兩種路徑互相溝通，其溝通是否也能經由個別律動內所隱藏的動態變化，則

令人好奇。心律變異是心臟自主神經系統的指標，腦波動態變化則被證明與意識

活動有關。本論文始於複習非線性訊號分析。生物訊號屬於多尺度、非線性且非

穩定性序列，混沌理論是否可行不需執著，非隨機的複雜性的確存在於生物信號

中。我選擇以探討規則的統計為中心的複雜性分析來探討心腦連結問題。同步記

錄及非同步記錄的腦波及心電圖都將被使用。實驗對象使用一群老人，基本上心

臟功能健康、而意識功能則從健全到失智拉開分布。腦的電磁活動運轉非常迅速，

類穩定的腦波信號是非常短的，處於幾十秒的尺度。因此我採用符號動力學方法

來分析同步信號。腦波的來源至今未有定論，其中新近被討論的皮層慢電位，其

頻率範圍接近心臟的。我採用非線性、直覺性的方法來著手探討皮層慢電位。並

且對於腦波之電位及即時頻率兩個成分將分開探討。 

研究方法及材料 

實驗對象包含 89 個老年門診病患，分為三個族群，38 個血管型失智症、22

個阿茲海默症、以及 29 個智能健全的對照組。多尺度熵分析(Multiscale entropy)

用以分析非同步的腦波心電圖，符號動力學方法用以分析同步的腦波心電圖。另

外分散信號的方法用以將波幅及即時頻率分開。傅立葉頻譜低頻對高頻比(LF/HF)

用以代表交感副交感神經平衡指數。 
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結果與討論 

在非同步信號經由多尺度熵分析，我發現心腦信號之複雜動態間，的確存在

線性關係。但短暫的同步信號之間並無關聯證據。這可能因為同步於腦波的心律

變異太短，無法穩定表現個案特質。不過，符號動力學方法顯示: 每個分散的腦波

局部高峰，其電位值的變異與智能相關，但是腦波的及時頻率並不相關。這表是

局部同步激發的皮質神經元數量而非其激發的時機與智能相關。熵的值，或說複

雜度，亦即規則性的強弱並不代表健康度。不同方法測量的是生物信號的不同尺

度。在腦波分析方面，分散信號的方法所得到的資訊，並不亞於全波形的分析。

失智的病理表現可能是連續性而非階梯式的。 

關鍵字 

信號複雜性; 心電圖; 腦波; 多尺度熵分析; 符號動力學; 振幅; 及時頻率 
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ABSTRACT 

Introduction 

The secret of life remains extremely concealed. There are all sorts of rhythms in 

human bodies and they are central to life. The rhythms interact with each other as well 

as the outside fluctuating, noisy environment under the control of innumerable feedback 

systems. They provide an orderly function that enables life. The heart has been 

considered the source of emotional experience and wisdom in many cultures throughout 

the ages. Most neuroscientists consider consciousness or even thought is merely an 

epiphenomenon of the human brain function and its associated neurophysiology. 

However, the heart begins to beat before the brain is formed. Conventionally, both 

neural and humoral pathways connect the heart with the brain. Whether the interplay 

between the heart and brain could be explored through their rhythms is the question. 

Heart rate variability is recognized as the indicator of cardiac autonomic function. The 

dynamics of human electroencephalography (EEG) dynamics has been proved to be 

related to cognitive activities. This dissertation starts with reviewing the nonlinear 

methods in analyzing biological rhythms, which are multiscale, nonlinear and 

non-stationary. Regardless of whether chaos is present, deterministic complexity exists 

in biological rhythms. Regularity based complexity was chosen after comparisons. The 

goal is to find correlations between EEG and electrocardiography (ECG) through 
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regularity based complexity analysis. Both simultaneous and non-simultaneous data 

would be examined. The experimental subjects are from a geriatric sample with varied 

cognitive abilities and basically healthy hearts. The electromagnetic activity of the brain 

works at an extremely fast speed, and the quasi-stationary epochs of EEG are, in general, 

short lasting, in the order of tens of seconds. Therefore symbolic techniques were 

introduced when exploring the very short simultaneous EEG and R-R interval (RRI) 

data. The origin of EEG remains unknown. Slow cortical potential (SCP), one 

component of EEG, is in the frequency range similar to that of the heart, and would be 

explored in an intuitive nonlinear way. In addition, the amplitude and instantaneous 

frequency of EEG would be separately approached. 

Methods 

The sample consisted of 89 geriatric outpatients in three patient groups: 38 fresh 

cases of vascular dementia (VD), 22 fresh cases of Alzheimer’s disease (AD) and 29 

controls. Multiscale entropy (MSE) analysis was applied to the non-simultaneous EEG 

and RRI data. Symbolic analysis was applied to the simultaneous EEG and RRI data. 

Discrete events (local peaks) of EEG were extracted to separate the amplitude and 

instantaneous frequency. The low-to-high frequency power (LF/HF) ratio of RRI was 

calculated to represent sympatho-vagal balance. 

Results and Discussions 
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MSE revealed correlations between the signal complexity of brain and cardiac 

activities in non-simultaneous data. Linear correlation between the MSE value and the 

score of the mini-mental state examination was first found. Symbolic dynamics failed to 

correlate the heart to the brain. This is due to that the RRI is too short to represent the 

characteristics of a subject. The symbolic analysis revealed important information that 

the EEG dynamics which relates to either the cognitive functions or the underlying 

pathologies of dementia are embedded within the dynamics of the amount of but not the 

interval between each synchronized firing of adjacent cerebral neurons. Just like RRI of 

ECG, discrete events of EEG also provided important information. The relative value of 

complexity does not indicate health condition straightly. It depends on the method and 

the scale or dimension that particular method measures. Discrete events provide no less 

information than continuous waveforms of EEG. Pathological condition is continuous 

rather than stepwise. 

 

 

Key words: signal complexity; ECG; EEG; Multiscale entropy; symbolic dynamics; 

amplitude; instantaneous frequency 
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Chapter 1 Introduction 

What is life? Alongside the development of modern science, physics and chemistry 

have been leading researches in biology, ranging from the molecular level to the entire 

organism. For example, individual atoms are combined to form molecules such as 

polypeptide chains, which then fold into protein. Protein, together with polysaccharides, 

nucleic acids, electrolytes, water, etc., confined by a sheet of lipid bi-layer called 

―membrane‖, form the basic unit of living organism called ―cell‖. Contrary to religious 

legends, ―life‖, ―intelligence‖, and ―consciousness‖ simply emerge from the interaction 

of those ―inanimate‖ atoms. Nevertheless, these emergent phenomena remain outside 

the range of engineering-like sciences. Even when people are able to simulate a small 

organism like bacteria with a computer by putting all the chemical components together 

with rules of their interactions, it would probably far from manufacturing life itself. 

What is the essence of life? What are the laws of nature? Are there lawgivers? People 

ask all sorts of questions with desire to manipulate ―life‖ on the background of the fear 

of ―death‖. 

1.1 The Heart and the brain 

The prenatal development of heart activity starts at the 3
rd 

week, while the neural 

activity of the human brain starts between the 17
th

 and 23
rd

 week of prenatal 
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development. The heart begins to beat before the brain is formed. Whether conventional 

hierarchical central commands sent by the brain to the heart alone explain all the 

interplay between these two organs should be reconsidered. The heart has been 

considered the source of emotional experience and wisdom in many cultures throughout 

the ages. Nevertheless, scientists have been telling a different story which emphasizes 

the role of the brain as being responsible for those. The heart and the brain are the two 

most important organs in the body and their electromagnetic dynamics can easily be 

measured. The connection of the heart and brain is mainly through autonomic pathways 

by current knowledge. According to previous neuroanatomical and 

pharmacophysiological findings, various functional units within the central nervous 

system (CNS) serving either attention, emotion, physiological adaptabilities, and 

behavioral responses to accommodate fast changing environmental demands were 

proposed. These units such as the central autonomic network (Benarroch, 1993), the 

anterior executive region (Devinsky et al. , 1995), the emotion circuit (Damasio, 1998), 

the frontal-subcortical circuits (Masterman et al. , 1997), and the cardiovascular control 

circuits during affective behavior (Spyer, 1989) all share many common components 

and pathways. Thayer has suggested those units may just represent a common central 

functional network recognized from diverse approaches and proposed the neurovisceral 

integration model, which included inhibitory GABAergic pathways from the prefrontal 
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cortex (mainly right side) to the amygdala and another inhibitory pathways between the 

amygdala and the medullary neurons of sympathoexcitatory and 

para-sympathoinhibitory output (Thayer et al. , 2009).  Cerebral hemispheral 

dominance with regard to autonomic control was proposed as right predominantly 

sympathetic and left predominantly parasympathetic (Oppenheimer et al. , 1992). 

The heart and the brain have an intimate and underestimated relation (Daemen, 

2013). Diseases caused by the disturbance of this relationship can be grouped into three 

categories: 1) the brain’s effects on the heart (i.e., Takotsubo cardiomyopathy (Merli et 

al. , 2006) and sudden unexpected death in epilepsy (SUDEP) (Dupuis et al. , 2012); 2) 

neurocardiac syndromes (i.e., hypertrophic cardiomyopathy in Friedreich ataxia); and 3) 

the heart’s effects on the brain (i.e., the cardiac origin of embolic strokeand the 

cardiovascular contribution to cognitive impairment (Muqtadar et al. , 2012)). Trough 

the studies of SUDEP one may get a quick impression of how powerful the effect of the 

neurocardiological connection can be. Sudden unexpected death in epilepsy (SUDEP) is 

the most important direct epilepsy-related cause of death in people with chronic 

epilepsy. It remains an unknown case in pathophysiology and may share the same 

mechanism with Takotsubo cardiomyopathy. It has been understood as the effect of 

autonomic storm, both sympathetic-early and parasympathetic-later impacts mainly 

through direct nerve terminal but not hormonal pathway (adrenal glands) (Samuels, 
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2007). The risk factor include age (young male), early onset of epilepsy, duration of 

epilepsy (long), uncontrolled seizures, mainly temporal lobe epilepsy (TLE), seizure 

frequency (more), anti-epileptic drugs number (more), and winter temperature 

(Stollberger et al. , 2004). As stimulation of certain brain areas (subiculum, posterior 

hypothalamus, ventrolateral thalamus and substantia nigra) has been shown to modify 

heart function without producing disturbances in the activity of the brain (Delgado, 

1960), SUDEP could possibly be related to some focal brain lesion. Epileptic activity 

originating in the amygdala, cingulated gyrus, insular cortex, frontopolar or 

frontoorbital regions may induces supraventricular tachycardia, sinus tachycardia, sinus 

bradycardia, sinus arrest, atrioventricular block and asystole (Devinsky et al. , 1997). 

Current data (experimental and clinical) support an important role of thalamus on 

manifestations, initiation and propagation of epileptic seizures (Scorza et al. , 2009).  

The heart communicates with the brain in three ways: neurologically, biochemically, 

and possible energetically (as electromagnetic field). The neurological communication 

between the heart and the brain is bidirectional. Evidences showed that the intrinsic 

cardiac ganglia contain sensory and local circuit neurons as well as sympathetic and 

parasympathetic efferent postganglionic neurons; and the intrathoracic extracardiac 

ganglia contain not only cardiac sympathetic efferent postganglionic neurons but also 

cardiac afferent neurons and local circuit neurons. These neurons can operate and 
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processes information independently of the brain and they and their interactions are 

under the tonic influence of central (medullary and spinal cord) neurons (Armour, 2010, 

2011). This is what allows a heart transplant to work. In a heart transplant, only the 

intrinsic cardiac nervous system is intact and the connections to other body parts do not 

reconnect for an extended period of time, if at all; however, the transplanted heart is 

able to function in its new host. Studies have demonstrated that stimulation of vagus 

afferents regulate brain structures involved in epilepsy on the hypothesis that vagal 

afferents have diffuse projections into the central nervous system and that activation of 

these afferents has a widespread effect on neuronal excitability (Boon et al. , 2001, 

Beekwilder et al. , 2010). Vagal stimulation is an FDA-approved treatment for epilepsy 

and is currently under investigation as a therapy for obesity, depression, migraine 

anxiety and Alzheimer’s disease (Beekwilder et al. , 2010). 

The body often responds to a future emotionally arousing stimulus 1 to 10 seconds 

prior to experiencing the stimulus. This process is system-wide as studies reported 

changes in pupil size and blinking (Radin et al. , 2009) as well as both the heart and 

brain (Radin, 1997, McCraty et al. , 2004a, b, Mossbridge et al. , 2012, Mossbridge et 

al. , 2014). And the heart may even response earlier than the brain (McCraty et al. , 

2004b). If the heart does percept a future external event before the brain, current 

knowledge of human body should be extended revised. 
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1.2 Biological rhythms 

Most neuroscientists consider consciousness or even thought is merely an 

epiphenomenon of the human brain function and its associated neurophysiology. They 

believe that eventual understanding of these physiological processes through studies 

such as anatomical structure of the brain for cognition, sensory perception, and language 

will ultimately reveal the mind’s structure and function. It is most hard for me to believe 

that ―thought‖ simply emerges from the chemical and physical components of neurons 

following the correct dynamics of the system. However, the secret of life remains 

extremely concealed. What might be a practical approach is to better understand the 

emergent properties of the systems once the interactions between their parts are known. 

Such approach deals with what is called complexity and rhythms. There are all sorts of 

rhythms in human bodies, like heart beats, brain waves, circadian cycles, menstrual 

cycles, the repetitive swings of limbs in locomotion, and many other rhythms 

underlying the release of hormones that regulating metabolism, growth and 

degeneration, etc. All these rhythms are central to life. The rhythms interact with each 

other as well as the outside fluctuating, noisy environment under the control of 

innumerable feedback systems. They provide an orderly function that enables life. 

Through this aspect, we could say that life is self-organized complexity of various 

physiological rhythms (Glass, 1988). Applying techniques of engineering to the analysis 



 

7 
 

of ―rhythms‖ would be able to find long trends which can be interpreted as the presence 

of memory, an interesting feature in biological systems (Gisiger, 2001). Many questions 

are waiting to be answered, such as ―Where are the pacemakers of these rhythms?‖, 

―Are they running in stochastic or deterministic ways?‖ etc. 

The analysis of such high-level dynamics induced by internal interactions and 

feedbacks cannot be reduced to analysis of their components. The ―whole‖ is more than 

the sum of the parts, so the traditional reductionistic modeling is not appropriate. 

Nevertheless, biomedical signals (biosignals) in their manifold forms which when 

appropriately processed are rich information sources, including individual dynamics, 

couplings between varied systems, responses to stresses, interaction with the 

environment and even disease prediction/diagnosis. According to studies, contradictory 

to the traditional sense of homeostasis as equilibrium, the best condition of the human 

body may not be in a steady state, it fluctuates (Goldberger et al. , 2002). Regardless of 

the mechanism, it is debatable whether this fluctuation is essential to physiological 

function, and to what extent is the fluctuation acceptable. Furthermore, in most natural 

as opposed to laboratory settings, the interaction from the environment is continuous, so 

that separation of dynamics due to intrinsic from extrinsic mechanism is not possible. It 

is very difficult in dealing with complex physiological rhythms.  
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1.3 Electroencephalography (EEG) 

The wakeful resting EEG represents the stimulus-independent intrinsic activity of 

the brain, which accounts for a big part of the energy budget of the brain (Raichle, 

2006), and its alteration may lead to disorders ranging from Alzheimer’s to 

schizophrenia (Zhang et al. , 2010). The underlying origins of EEG rhythms remain 

mystery. The network is extremely complicated. 

The human head consists of different layers including the scalp, skull, brain, and 

many other thin layers in between. The skull attenuates the signals approximately one 

hundred times more than the soft tissue. Only large populations of active neurons can 

generate enough potential to be recordable using the scalp electrodes. Approximately 

10
11

 neurons are developed at birth when the central nervous system (CNS) becomes 

complete and functional. This makes an average of 10
4
 neurons per cubic mm. Neurons 

are interconnected interwoven through synapses. Adults have approximately 5 × 10
14 

synapses. The number of synapses per neuron increases with age, whereas the number 

of neurons decreases with age. Because of the huge attenuation by the skull, EEGs are 

of tiny amplitudes which would easily be corrupted by noises such as the patient-related 

or internal artefacts: electromyography (EMG), ECG (and pulsation), electroculograph 

(EOG), ballistocardiogram, and sweating. The system artefacts include 50/60 Hz power 

supply interference, impedance fluctuation, cable defects, electrical noise from the 
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electronic components, and unbalanced impedances of the electrodes. 

1.3.1 Components and characteristics of EEG 

In neuroscience, the reactions of neurons or neural networks upon particular stimuli 

can be regarded as impulse responses. Examples are, currents through single ion 

channels as measured in patch-clamp experiments, receptor potentials, local field 

potentials, evoked or event-related brain potentials (ERP), and functional magnetic 

imaging (fMRI) data, in psychophysics and cognitive neuroscience (beim Graben et al. , 

2007). The dynamics of EEG is therefore extremely not stationary. Rhythmic 

oscillations were the very beginning of EEG research. The German neurophysiologist 

Berger (1929) first observed the dominant oscillations of approximately 10 Hz recorded 

from the human scalp, which was called alpha waves. The second type of rhythm 

approximately 12-30 Hz was called beta waves by Berger. Adrian (1942) named 

oscillations around 40 Hz (more general 30-80 Hz) observed after odor stimulation in 

the hedgehog as gamma waves. The slow oscillations below 4 Hz was named delta next, 

and then, the rhythm around 4-8 Hz was named theta after the first letter of their 

assumed region of origin, the thalamus. Arrhythmic EEG activities were recognized 

much later. The arrhythmic EEG contains no true rhythms but mainly the slow cortical 

potential (SCP) (Steriade et al. , 1993), which is scale-free and may better be considered 

as fluctuations rather than oscillations at the slow end (mainly < 1 Hz, can extend up to 
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4 Hz) of the field potential. The SCP does not only correlate with fMRI signals, but also 

seems to modulate the amplitude of higher-frequency activity (Monto et al. , 2008, He 

et al. , 2009). The mechanism of this cross-frequency phase amplitude coupling, which 

means that the amplitude of one frequency band is dependent on the phase of the other, 

is not yet clear. 

The brain is an organ with memories so EEG records might be highly autocorrelated 

and even worse as the time delay is longer than 10 msec since the feedback through 

synapses might come into play (Xu et al. , 1988). Does a series of data points taken 

from a segment of one channel of EEG represent an attractor of brain? To answer this 

question, one need to exclude the data considered as the transient effect than calculate 

the dimension from the remaining data. The embedding theorem requires that all data 

points are on the attractor and also an infinite number of clean values, which means a 

long series of noise-free points. However, in the case of EEG record we do not know 

where the transient segment is and how rapidly the brain changes its states. Besides, the 

tendency to see things as results of short-term events undermines our ability to see 

things on a grander scale. In the other hand, if the EEG data belong to a mixture of 

different dimensions, then what would be the results as we calculate them as a whole? 

All these limitations have made EEG analysis difficult in real time status monitoring. 
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1.3.2 Functional connectivity 

The human brain is believed to function on the base of networks of interactivity of 

neural assemblies, which could be approached through the transient phase couplings 

(synchronization) of different types between EEG signals from various regions. Balance 

between synchronization (phase locking between two regions) and desynchronization 

(phase shifting) is essential for normal brain function and abnormal balance is often 

associated with diseases (Stam et al. , 2003, Hong et al. , 2004, Pijnenburg et al. , 2004, 

Garcia Dominguez et al. , 2005, Lackner et al. , 2013). Functional connectivity thus was 

proposed to be essential for cognitive functions. However, functional MRI (fMRI) 

studies showed that a direct anatomical link does not necessarily coexist with robust 

functional connectivity (Koch et al. , 2002) and the within-subject test–retest reliability 

of functional connectivity as measured was surprisingly low (Honey et al. , 2009). 

A study in 1988 reported that in normal opened eyes resting states, the correlation 

dimensions of EEGs are coincidently about 3-4, while in closed-eye states, the 

dimensions are varied between people (Xu et al. , 1988). Is this result related to mental 

states, free thought or attention states? While in open-eye states, a big part of the input 

information into brain would be from visual sensation. Would this associate with the 

attention state which determines the dimension of EEGs?  
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1.3.3 Amplitude of EEG 

The dynamics of EEG rhythm has been proved to provide information related to 

cognitive functions (Vecchio et al. , 2013). Whether the dynamics of EEG amplitude 

also correlates to cognitive functions is not often discussed. The EEG amplitude of a 

normal subject in the wakeful state recorded with the scalp electrodes is 10 µV to 100 

µV. Higher background amplitudes are associated with lower frequencies in normal 

EEGs for all age groups (Aurlien et al. , 2004). Symmetrical low voltage and even 

visually unrecognizable alpha rhythm was not regarded as pathological. The well 

known and widely-used techniques in amplitude estimates of EEG include the 

amplitude integrated EEG (aEEG), integrated root mean square voltage (RMS), and the 

integrated magnitude of the analytic associate of the EEG (mA A) (Stevenson et al. , 

2010): 

1) the amplitude integrated EEG (aEEG) 

 

where F(eeg(t)) =  eeg(t)          |eeg(t)|<=10uV 

                   10log10(eeg(t))   |eeg(t)|>10uV 

2) integrated RMS voltage (RMS) 
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3) integrated magnitude of the analytic associate of the EEG (mA A) 

mAA (t0)=  

Z(t) = eeg(t)+jH{eeg(t)} 

These methods actually do not represent the real EEG amplitude intuitively sensed by 

the neurophysiologist. We would expect nonlinear approaches can reveal more of the 

hidden characteristics of EEG amplitude. The question is how to evaluate the EEG 

amplitude intuitively and separately from the rhythm. 

The scalp EEG mainly records large postsynaptic potentials (Nunez, 1981). One 

peak of a single-channel EEG contains relatively simultaneous firing electromagnetic 

activities of a big collection of neurons. The peaks and troughs of a physical wave 

indicate levels of probability for the occurrence of certain phenomenon. One peak 

implies a local maximal (in time domain) amount of synchronized active neurons in a 

localized region. One intuitively expects that the brain works on those synchronized 

firing. The dynamics of the local peaks of EEG reflects the changing degree of neuronal 

couplings in the localized brain area. One would suppose these discrete events (local 

maxima) may provide more focused information in certain dimension of the dynamics. 

When extracting the peaks from a single-channel EEG, one obtains two sequences, the 

local-peak voltage sequence and the interpeak interval sequence. The local-peak voltage 

sequence depicts the amplitude change while the interpeak interval sequence illustrates 
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the instantaneous frequency. This is my approach to treating the amplitude and rhythm 

separately. 

1.4 Electrocardiography (ECG)  

Signal processing has made ECG a new tool to understand physiology through its 

dynamic properties as expressed by changes in rhythm and beat morphology. 

Techniques have been developed that characterize oscillations related to the 

cardiovascular system and reflected by subtle variations in heart rate. Heart period 

variability is the result of the following mechanisms: cardiovascular reflexes mediated 

by vagal and sympathetic afferences, activity of vasomotor and respiratory centers, 

baroreflex and chemoreflex feedback loops, and vascular autoregulation. All these 

mechanisms act over similar but not coincident frequencies (below 0.5 Hz) contributing 

to the complexity of the signal (Guzzetti et al. , 2005). The study of heart rate variability 

(HRV), namely the variability of RR intervals (RRI), can monitor the autonomic system. 

The detection of low-level, alternating changes in T wave amplitude comprises another 

dynamic complexity which can indicate the risk for sudden, life-threatening arrhythmias 

(Korhonen et al. , 2009).  

   Ectopic beats either benign or pathological are very common in clinical ECG 

recordings; they come from pathological origin or conduction, which cannot represent 

the real heart rate variability. The problem comes to how to replace the ectopic data 
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when we exclude them. Two commonly used methods have deficits for each. Imputing 

an observed variable mean for a variable’s missing values preserves the observed 

sample means, but distorts the covariance structure, biasing estimated variances and 

covariances toward zero. On the other hand imputing predicted values from regression 

models tends to inflate observed correlations, biasing them away from zero. So both can 

lead to misleading standard errors and p-values, since they fail to reflect the uncertainty 

due to the missing data (Everitt, 2005). 

1.5 Exploring a system 

1.5.1 System thinking 

Ever since Descartes, reductionism has leaded a dominant role in the modern 

science of this present civilization. Although smaller and smaller parts such as 

components inside an atom nucleus have been understood, knowledge such as how life 

emergent from atoms and how does it work remain mysterious. Genetics studies have 

gained the most attention in medicine during the second half of the last centuries. A 

considerably large amount of capital has burned without practical achievements in 

disease control. In the real world, the ―whole‖ is not the sum of the parts. Therefore, 

people turned to ―systems philosophy‖, which regards an understanding of a system by 

examining the linkages, interactions, and feedback loops between the elements that 
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compose the entirety of the system. An important point here is that the interactions of 

the parts are not "static" and ―constant‖ but "dynamic" processes. 

In Schrödinger's ―what is life?‖ published in 1944, he proposed a paradox: 

According to the second law of thermodynamics, "The entropy of a closed system 

cannot decrease.", life approaches and maintains a highly ordered state, therefore it 

seems to violate the second law (Schrödinger, 1944). Entropy is the disorder of an 

object, and a closed system is a system in which no energy can enter or exit. But life its 

self is not a closed system since energy can easily enter and leave your body. If a human 

body were a closed system, then no energy could be taken into or out of the body and 

thus one would never need to eat. The decrease of order inside an organism would be 

paid for by an increase in disorder outside this organism. 

   System theory has provided a view of web, high above the phenomenon. For 

physiological systems of human body, two concepts would be emphasized first. The 

first one is ―self-regulating system‖, which means the system is open and can be 

self-correcting through feedback. The second one is ―adaptive system‖, which means a 

set of interacting or interdependent entities, real or abstract, forming an integrated whole 

that together are able to respond to environmental changes or changes in the interacting 

parts. 

   In 1978, James Grier Miller has proposed the living system theory. He stated that 

http://en.wikipedia.org/wiki/Schr%C3%B6dinger's_paradox
http://en.wikipedia.org/wiki/Second_law_of_thermodynamics
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living systems are open self-organizing living things that interact with their environment. 

These systems are maintained by flows of information, energy and matter. Systems exist 

at eight "nested" hierarchical levels: cell, organ, organism, group, organization, 

community, society, and supranational system. There are twenty critical subsystems, 

which process matter–energy or information (Miller et al. , 1992). In the living system 

theory, it would be difficult to understand if determinism is denied. Thus it still comes to 

the big problem, how to prove determinism. 

1.5.2 System dynamics 

System dynamics is an approach to understanding the behavior of complex systems 

over time. It tries to understand internal feedback loops through the changes of the 

behavior of the system due to time delays. The use of feedback loops is the weighting 

point. These loops help describe how even seemingly simple systems display annoying 

nonlinearity. System dynamics is a methodology and mathematical modeling techniques 

for framing, understanding, and discussing complex issues and problems. System 

dynamics is an aspect of systems theory as a method for understanding the dynamic 

behavior of complex systems. It was developed in the 1950s for helping the 

understanding of industrial processes (Forrester, 1971). The main part of the method is 

the recognition of the structure of a system — the many circular, interlocking, 

sometimes time-delayed relationships among its components. 



 

18 
 

1.5.3 Critical point 

   A system, no matter it is a laboratory or a mathematical model, is very insensitive to 

details of its dynamics or structure near critical points. If we can find a parameter which 

behaves the universality, then we only need to consider the simplest mathematical 

model possibly conceivable in the same universality class. It will then yield the same 

critical exponents as the system under study. In other words, for any particular physical 

system, there may be many scale-dependent parameters and aspects. When we approach 

the phase transition, the scale-dependent parameters play less and less of an important 

role, and the scale-invariant parts become dominant. Thus, a simplified, and often 

solvable, model can be used to approximate the behavior of these systems near the 

critical point. 

1.5.4 Complexity 

What is complexity? ―When the same action has dramatically different effects in the 

short run and the long, there is dynamic complexity. When an action has one set of 

consequences locally and a very different set of consequences in another part of the 

system, there is dynamic complexity. When obvious interventions produce non-obvious 

consequences, there is dynamic complexity (Senge, 1990). 

   For a long time, physics has been able to avoid complex situations and to only work 

on systems that are comparatively simple. This is because they were only dealing with 
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few degrees of freedom and when in systems involving large numbers of degrees of 

freedom one can apply central limit theorems. It became clear recently that this 

simplification is not sufficient to avoid complex behavior. And even very simple 

systems with few degrees of freedom can show very complex behavior if they are 

"chaotic". Confronted with so complex biological systems that might be with large 

numbers of degrees of freedom, intuitively one best approach would be quantifying this 

judgment by defining an observable. In serious consideration in physics there are 

different concepts of complexity, set complexity, algorithmic complexity, true measure 

complexity, and effective measure complexity. I am not going into details of those; my 

concerned point is to search for useful variables which are good in prediction of the 

health condition. 

The complexity theory deals with non-equilibrium processes of change. It comes 

from statistical physics. The real-world processes of change rarely take the form of 

sudden leaps between equilibrium states. So a general dynamic theory of living 

systems –the ―dynamic-strategy theory‖ was gradually developed. As it turns out, the 

construction (rather than the ―emergence‖) of complex systems is the outcome of a 

process of ―strategic exchange‖ between the demand and supply sides of dynamic living 

systems, rather than the outcome of supply-side local interactions between agents 

(Snooks, 2008). The dynamic model of the strategy process is a way of understanding 
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how strategic actions occur. Strategic planning is dynamic, that is, strategy-making 

involves a complex pattern of actions and reactions, which may be involved with 

deterministic and random parts. This is the breakthrough required in the quest for a 

general theory of complexity. 

There is no such thing as a linear system in the real world. The traditional approach 

in science is to see complexity and attribute it to randomness, to try to smooth it, and to 

try to model nonlinearity with successively more complicated approximations to 

linearity. Through doing this, we might be in a direction away from the reality. To 

medieval thinkers, the union of mathematics and natural science would have been illicit 

and barren. Following Aristotle, they held mathematics to be a product of the human 

mind. For this reason mathematics was not thought to provide true descriptions of 

reality: useful descriptions – yes – but not true descriptions. Under the thriving 

computer techniques, mathematics models are much emphasized in life science 

nowadays. But we should always keep some doubt in mind that the nature does run 

according to mathematics. 

Nevertheless, statistical approaches, typified by fractal statistics, that measure 

roughness directly, could provide an alternative way of approach. Starting from 

Poincaré, for example, in the early years of 20th century, recognized this and then 

promoted a more convenient and "useful" description of the corresponding phenomena. 
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Instead of finding the numerical solution of differential equations, his methods using 

non-Euclidean geometry opened the door to the study of chaotic deterministic systems. 

After a long silence, not until Benoit Mandelbrot’s work in 1975 did the scientific study 

of fractals begin. Besides statistical techniques, other chaotic measures, entropy values, 

neural networks, genetic algorithms, fuzzy pattern recognition, and machine learning all 

contribute to the analysis of complexity. The first requirement of physically useful 

measures of complexity is that they be probabilistic. The second point we should notice 

is the assumption of ergodicity. In a nonergodic case, the ergodic components are in 

general enumerable, and we can just study each component by itself (Grassberger, 1986). 

The third point is then the assumption of stationarity (or translation invariance). The 

most interesting part is to find the heterogeneity or nontranslational invariance of a 

system. Through works in last decades, complexity analysis is now commonly 

performed through the evaluation of entropy (e.g., Shannon entropy) and entropy rate 

(e.g., approximate entropy, sample entropy, multiscale entropy, or other conditional 

entropy) with fruitful results in medicine. This would be further discussed in later 

sections. 

1.6 Deterministic dynamics 

1.6.1 Dynamics observation 
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Simple observed dynamics such as sinusoidal periodicities can be easily described 

by traditional tools like Fourier transform. As mentioned before that the real world does 

not follow linear mathematics at all, more complex dynamics such as bifurcation and 

chaotic oscillations would be adopted in science. However, those studies of nonlinearity 

require more sophisticated methods which warrant more considerations for the 

underlying physics, the signal-to-noise ratio, the sampling rate and the dynamic 

instrument response. 

1.6.2 Randomness and stochasticity 

   Does God Play Dice? Albert Einstein did not believe that ―God plays dice‖. He 

thought the universe is governed by immutable laws of physics and leaves no room for 

chance. Scientists have reconsidered this after chaos theory showed that the systems 

obeying precise laws can nevertheless act in a random manner. Perhaps God does play 

dice, within a cosmic game of complete law and order. In chaotic world, the systems 

obey simple laws but are neither constant nor predictable. Both chaotic and truly 

stochastic systems are unpredictable in the long term, but only chaotic systems admit 

short-term predictability. According to Laplace, randomness is only a measure of our 

ignorance of the different causes involved in the production of events (Laplace, 1814). 

The answer to whether the ultimate truth of noise is unknown deterministic chaos of 

high dimension is in the zone of ―God or Gods‖, which may be under the category of 
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―Karma‖. Regardless of this extreme question, the general accepted resolution is that 

simple low dimensional chaotic systems to be recognized as deterministic, whereas 

complicated, high dimensional systems to be best recognized in purely stochastic terms, 

using probabilistic prediction at any time scale. 

Before understanding ―determinism‖ such as chaotic oscillations we need to sieve 

out the part as random or stochastic from a system. It is complicated to define the 

degree of randomness. A discrete random variable is defined in relation to a probability 

function. For continuous random variables, instead of the probability function, we use 

the probability density function, which gives the probability of observing a value of the 

variable within a certain range of possible values. The properties of the probability 

density function such as variance is then measured to describe the dynamics of a 

phenomenon or system. A stochastic process is one that evolves over time and for which 

the evolution at each time step is governed, at least in part, by probability. It could be a 

random behavior such as ordinary Brownian motion or a behavior that is influenced by 

both deterministic and random processes. Probability theory is a mathematical model of 

uncertainty. The real world is full of uncertainty, which is also called noise: bridges design 

should take account of the vibrations from wind; communication systems are designed to 

compensate for noise; the power distribution grid carries an unpredictable load; searching for 

genes is looking for shells among sand; studying heart rate dynamics is looking for the degree 
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of variation, etc. 

1.6.3 Law of nature 

    The story begins with the ―1/f noise. The 1/f fluctuations were first found in 1925 

in an electric current passing a vacuum tube (Johnson, 1925). Many phenomena have 

been found after, such as frequency fluctuation of cellular membrane potential (Verveen, 

1965), conduction of electronic devices, light emission intensity curves in quasars, 

velocities of underwater sea currents, the flow of sand in an hour glass (Schick et al. , 

1974), cyclic insulin needs of diabetics (Campbell et al. , 1972), fluctuation of the alpha 

brain wave (Suzuki, 1980), the fluctuation of the heartbeat period (Kobayashi et al. , 

1982), and highway traffic current fluctuations (Musha, 1976). The 1/f is a rhythm that 

appears throughout biology, nature, engineering, and elsewhere. The low-frequency 

power spectra of such systems display a power-law behavior f 
- β

 over vastly different 

time scales. 

Another puzzle in nature is the empirical observation that many objects, such as 

coastal lines, mountain landscapes and cosmic strings, appear to be self-similar fractal 

structures (Mandelbrot, 1983). An important (defining) property of a fractal is 

self-similarity, which refers to an infinite nesting of structure on all scales. Strict 

self-similarity refers to a characteristic of a form exhibited when a substructure 

resembles a superstructure in the same form. Circulatory and bronchial branches in 
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Human body seem to exhibit fractals as well (Goldberger et al. , 1990). The common 

features for these systems are the power-law temporal or spatial correlations. Gutenberg 

and Richter (1954) were the first who found out that the statistical distribution of 

earthquake sizes follow a power-law (Gutenberg, 1954). Generally, the scale invariant 

phenomena such as fractals and power laws emerged at the critical point (e.g. between 

phase transitions). 

How do physicists explain the power laws? M.E.J. Newman suggests that there are a 

number of ―physical mechanisms‖ underlying power laws. The chief among them are 

the ―Yule process‖ (preferential attachment process), often characterized as ―the rich get 

richer‖, and theory of self-organised criticality (Newman, 2005). Bak el al. (1987) 

presented a simple computer-model (Bak-Tang-Wiesenfeld sandpile model, BTW), 

based on cellular automata, suggested that ―self-organized criticality‖ (SOC) is the 

common underlying mechanism behind the phenomena of ―1/f noise‖, ―fractal‖ and 

―power law‖. The definition of SOC is: ―A system exhibits SOC if its phase space 

contains a strange attractor where events of all sizes occur, and where the size 

distribution of these events follows a power law.‖ They stated: large interacting systems 

evolve by themselves to a critical state. In this self-organized state disturbances trigger 

effects the sizes of which correlate negatively with their frequency by a power law (N(S) 

= S
- τ

, where N(S) is the number of effects of a given size (or their frequency) and S is 
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the size of these effects). This means that plotting frequency and size of the effect in a 

log–log plot results in a straight line, the exponent τ giving its slope (log N(S) = - τ log S). 

Accordingly, the extent of the effect is not due to the strength of its cause, but lies in the 

intrinsic dynamics of the system (Bak et al. , 1987). This has already been verified and 

SOC has become a possibility for explaining the behavior of real sand piles, 

earthquakes, power blackouts and forest fires. SOC could even describe epidemics, 

biological evolution and financial markets. Although self-organized criticality was able 

to reproduce 1/f noise in sandpile models (Bak et al. , 1987), there are no simple 

mathematical models to create pink noise. It is usually generated by filtering white 

noise. Universal theories of 1/ƒ noise remain an unresolved problem in current research. 

SOC is a far-from-equilibrium state, generated by a constant flow of energy from 

outside the system. In this state, the addition of just a single grain of sand will cause the 

pile to generate either a single large avalanche or a series of smaller avalanches (Bak et 

al. , 1989). A critical point of a system needs an exact configuration, so even a tiny 

change of the variables could destroy the power-law. The puzzle is why so many 

phenomena follow such a hypothetical critical point, if it is so difficult to reach that 

state. 

1.6.4 Fractals 

Fractals are sets defined by the three related principles of self-similarity, scale 
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invariance, and power law relations. Self-similarity implies a distribution of ―power 

law‖. The number of self-similar pieces must be related to their size by a power law. 

Therefore the complexity of a fractal pattern can be achieved. Generally speaking, 

power law distributions are the only scale-invariant distributions. ―The wide 

applicability of scale invariance provides a rational basis for fractal statistics just as 

the central limit theorem provides a rational basis for Gaussian statistics. ― (Turcotte, 

1997). The essential characteristics of fractal patterns are captured by a statistic called 

the fractal dimension (Brown, 2010). 

power law relations : f (x) = K x 
-D 

, when the constant K is ignored  

N =  , D = - (  ) 

N: the number of self-similar pieces 

S: the linear scaling factor (size) of the pieces to the whole 

D: the dimension that characterizes the (invariant) relationship between size and number 

1.6.5 Deterministic chaos 

Being one of the greatest natural science discoveries in the 20th century, chaos 

theory has been extensively investigated and applied in the broad areas of computer and 

communication networks, physical and biological networks, as well as social and 

financial networks. As 1/f and fractals were found, scientists also tried to fit 
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deterministic chaos (or simply chaos) into one of models for life. Chaotic dynamics 

describe behaviors that fluctuates irregularly in time, could be observed in deterministic 

dynamical equations, not a fixed point and not a cycle, and has sensitive dependence on 

initial conditions (generally referred to as ―the butterfly effects‖)(Glass, 1986). However, 

not all behavior that fluctuates irregularly in time represents chaotic behavior. 

The story may start with whom we have previously mentioned, Henri Poincaré in 

1880s. He found that there can be orbits which are nonperiodic, and yet not forever 

increasing nor approaching a fixed point (Poincaré, 1890). Later in 1898, Jacques 

Hadamard in his famous ―Hadamard’s billiards‖ studies showed that in chaos all 

trajectories are unstable in that all particle trajectories diverge exponentially from one 

another, with a positive Lyapunov exponent. After the appearance of ―ergodic theory‖ 

and ―nonlinear differential equations‖, Edward Lorenz in 1961, on the work of weather 

prediction, with the help of repeated iteration by computers, showed that small changes 

in initial conditions produced huge changes in the long-term outcome (Lorenz, 1963). In 

his theory as the famous ―Lorenz attractor‖, he showed that given detailed modeling 

long-term predictions were still not possible. The theory of chaos gradually formed 

under many people’s devotion such as Benoît Mandelbrot (Mandelbrot, 1983), 

Yoshisuke Ueda, Robert Shaw, Mitchell Feigenbaum, Albert J. Libchaber, and 

Bak–Tang–Wiesenfeld (whith the  work of sandpile) during the second half of last 

http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/w/index.php?title=Yoshisuke_Ueda&action=edit&redlink=1
http://en.wikipedia.org/wiki/Robert_Shaw_%28physicist%29
http://en.wikipedia.org/wiki/Mitchell_Feigenbaum
http://en.wikipedia.org/wiki/Albert_J._Libchaber
http://en.wikipedia.org/wiki/Bak%E2%80%93Tang%E2%80%93Wiesenfeld_sandpile
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century. For a dynamical system to be classified as chaotic, it must have the following 

properties: few variables, trajectories sensible to initial conditions, fractal structure of 

phase space, being topologically mixing, and dense periodic orbits. 

Although the future dynamics are fully defined by the initial conditions, the 

behavior of chaotic systems seems pretty random. This is because the dynamics 

manifests itself as an exponential growth of perturbations in the initial conditions. Any 

minor uncertainty will be amplified so as to render actual knowledge of the state of the 

system impossible. In a real system (as opposed to an equation) it is always impossible 

to know the state of a system exactly, since there is always some measure of 

experimental uncertainty, such as those due to rounding errors in numerical computation. 

Therefore a long-term prediction is impossible in general. 

According to current knowledge, at the lowest level, the elementary particles follow 

the stochastic model of quantum mechanics with uncertainty. At the atom level, the 

―billiard balls‖ model which is deterministic appropriately predicts velocities moments. 

In a mass of millions of atoms, individual collisions cannot be tracked, and the 

statistical mechanics again is proper. With increasing numbers of interacting entities and 

longer time scale, it is deterministic quantities like temperatures, pressures, and 

entropies that best characterize the system. While regarding convection and turbulence 

of the temperature distributions, it is statistical model; while in complete turbulence, it 
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is deterministic model again since only concentrations need to be studied (Hyotyniemi, 

2006). This concept is also useful when we regard biological systems, for example, 

typical cells have of the order of at least 10
3 

ionic channels of each type, deterministic 

equations can be used to model cells even though the underlying mechanism is probably 

stochastic (DeFelice et al. , 1993). ―Science‖ only provides ―appropriate‖ models for 

each case, it doesn’t guarantee the truth. There is a bias over here; the methods used to 

check determinism are based on the assumption of deterministic chaos. However, as 

mentioned before, regardless of whether the theoretical footstone is strong, rapid 

developments of nonlinear mathematical methods based on chaos theory have made 

―rhythms‖ of the human body being able to connect with some clinical features, and this 

is where the value is. 

1.6.6 Chaos in medicine 

Electrophysiological signals, with electrocardiography (ECG) and 

electroencephalography (EEG) playing the major roles, are non-linear, non-stationary, 

and very noisy. For such complex signals, we need to find some suitable models for 

quantification in order to understand the mechanism governing the dynamics of the 

system. Major models of complex time series include deterministic chaos, noisy chaos, 

stochastic oscillations, random 1/f processes, random Lévy processes, and complex time 

series with multiple scaling behaviors (Hu et al. , 2009). Copious works of ECG and 
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EEG have been especially dedicated to checking whether deterministic chaos is an 

appropriate model. 

In 1986 the New York Academy of Sciences co-organized with the National Institute 

of Mental Health and the Office of Naval Research the first important conference on 

Chaos in biology and medicine. Since then the application of chaos in physiology 

became popular especially in heart rate dynamics. It is generally accepted that the 

dynamics of heart rate variability (HRV) are nonlinear, of the 1/f fluctuations 

(Kobayashi et al. , 1982), with fractal noises and motions in time series of 

presympathetic and sympathetic neural activities (Gebber et al. , 2006), and multifractal 

(Ivanov et al. , 1999, Sassi et al. , 2009). From a physiological perspective, the detection 

of robust multifractal scaling in heart rate dynamics is very attractive, because it 

indicates that the regulation mechanisms might play a part in a system of coupled 

cascade of feedback loops. 

But the issue of whether normal HRV is chaotic or stochastic remains highly 

controversial. Some authors have claimed the presence of chaos in the HRV or in the 

whole electrocardiography (ECG) signal of normal subjects (Chaffin et al. , 1991, 

Baselli et al. , 2002). The heart rate variability (HRV) of cardiac transplant subjects 

regained the same signature of chaos as that of the HRV for normal subjects 3 months 

after the transplantations (Khadra et al. , 1997). This may suggest the source of the 

http://en.wikipedia.org/wiki/National_Institute_of_Mental_Health
http://en.wikipedia.org/wiki/National_Institute_of_Mental_Health
http://en.wikipedia.org/wiki/Office_of_Naval_Research
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chaos characteristic of HRV, if any, is beyond the intrinsic cardiac nervous system. 

Some authors even showed more chaotic HRV data in healthy conditions rather than 

diseased states (Babloyantz et al. , 1988, Skinner et al. , 1993, Meyer et al. , 1996, Poon 

et al. , 1997, Selig et al. , 2011). They generally claimed that there are underlying low 

dimensional chaos displayed in biological systems. Contradictory evidences also exist 

as some authors found no evidence for chaos, for example, truly exponential divergence 

between nearby trajectories in a phase space, however, they still found different 

nonlinear complexity in HRV between healthy and diseased states (Lefebvre et al. , 

1993, Kanters et al. , 1994, Costa et al. , 1999, Hu et al. , 2009). The same situation is 

seen for EEG, there were evidences of chaotic properties (Babloyantz et al. , 1985, 

Freeman et al. , 1985, Rapp et al. , 1985, Babloyantz et al. , 1986, Skarda, 1987, Rapp et 

al. , 1988, Xu et al. , 1988) as well as ones that are not supportive of the presence of 

deterministic chaos (Korn et al. , 2003). Other than heart beats and brain waves, there 

are also examples of chaos in biological systems in excitable membrane systems (Chay 

et al. , 1985, Fan et al. , 1994) and variable determinism was also found in motor system 

(Riley et al. , 2002). Goldberger has suggested that increased regularity of signals 

represents a 'decomplexification' characteristic of illness (Goldberger, 1997). We may 

consider the dynamic patterns of biological signals change with the deterioration of 

health condition as characterized by loss of complexity and development of stereotypy, 
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but the questions are ―whether this ―reordering‖ process stepwise or continuous?‖ and 

―whether this direction is one way and universal?‖   

Recent studies have shown that sudden transitions in the amplitude of the human 

electroencephalogram (EEG) are represented by power laws and scale invariance and 

long-range temporal correlations (Linkenkaer-Hansen et al. , 2001, Freeman, 2003, 

Parish et al. , 2004, Nikulin et al. , 2005). While the chaos theory widely applied in 

analysis of EEG during the past 2 to 3 decades, expectation has been too high in 

unraveling the mystery of mind through the application of chaos models in brain waves. 

With the less tangible subjective aspects of experience, such as intuition, emotion, or 

instinct being neglected (Dunne et al. , 2007), the mathematics would not easily resolve 

the secretes of mind. Nevertheless, mathematical models as fractal, entropy and chaos 

do provide tools for studying rhythms in human body, especially the interaction 

between them. 

1.6.7 Measures of chaos 

Recent developments in the studies of nonlinear problems (Eckmann et al. , 1985) 

provide some criteria to characterize the chaotic states, such as Kolmogorov entropy, 

Lyapunov exponents, fractal dimensions, correlation dimensions, etc. The evolution of 

the system in time defines a trajectory in phase space. When the dynamics of the system 

exhibits an asymptotic behavior which is almost independent from initial conditions, the 
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asymptotic trajectory is called "attractor". Points that get close enough to the attractor 

will be drawn closer to a specific field or point, and after they have passed within a 

certain distance of the attractor, they will adopt a stable configuration and resist minor 

disturbances in the system. An attractor can be a point (stable equilibrium), a finite set 

of points, a curve, a manifold, a limited cycle or even a complicated set with a fractal 

structure known as a strange attractor. There could be more than one attractor in a 

system. A strange attractor is a fractal, and its fractal dimension is less than the 

dimensions of its phase space. An equation that includes a strange attractor must 

incorporate non-integer dimensional values. Therefore the trajectories of chaos seem to 

be random and they predict patterns called semi-stable. The dimensionality of strange 

attractor shows the following properties: 1. the trajectory of a strange attractor cannot 

intersect with itself; 2. nearby trajectories diverge exponentially. 3. the attractor is 

bounded to the phase space; 4. the trajectory does not fill the phase space. A chaotic 

system is deterministic but aperiodic - the trajectory never repeats itself. In conclusion, 

the infinitely long trajectory occupies only a finite portion of the state space. This leads 

to the fractal nature of the strange attractor of a chaotic system. 

   The dimension of an attractor is clearly the first level of knowledge necessary to 

characterize its properties. There are two groups of methods in determining the fractal 

dimension (DF) of a set in a Euclidean space. The first group is called the ―metric 
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dimension‖ such as capacity, Minkowski-Bouligand dimension (also known as 

box-counting dimension), and Hausdorff dimension. The other group, frequency 

(probability) dependent, is called the ―dimension of the natural measure‖ (Dμ), such as 

information dimension and correlation dimension (D2) (Farmer et al. , 1983). A 

box-counting dimension counts how many boxes are required to cover the set lying on 

an evenly-spaced grid. The dimension is calculated by seeing how this number changes 

as we make the grid finer by applying a ―box-counting‖ algorithm. The same idea can 

be used in phase space, as the evolution of the system in time also defines a trajectory in 

phase space. So with the concept of probability, ―dimension of the natural measure‖ (Dμ) 

was then appeared. Metric dimension is equal to DF, and Dμ is less then DF. 

The correlation dimension, D2, is widely applied in biological time series to quantify 

the complexity of the dynamics. D2 is a lower estimator of the Hausdorff dimension D 

that measures the occupation of the attractor in phase space (D2 < DF) (Costa et al. , 

1999). A most widely used mathematical method of counting correlation dimension is 

Grassberger-Procaccia algorithm (Grassberger et al. , 1983, Grassberger, 1986, 

Shelhamer, 2007). A finite noninteger value of D2 (deterministic regular dynamics have 

integer D2), is consistent with low-dimensional chaotic behavior, but does not 

necessarily imply the presence of chaos (Osborne et al. , 1989, Rapp et al. , 1993), 

because correlated stochastic dynamics may give rise to a noninteger D2 too. So the 
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correlation dimension is not a definitive diagnostic of chaos. While predication is 

impossible in the long term for a dynamical system showing deterministic chaos, it is 

possible to predict the behavior of the system with some degree of confidence over the 

short term (Farmer et al. , 1991). 

The correlation dimension D2 is defined as:  

D2 = ,   

Where C(ε) is called the correlation integral in the form as: 

C(ε) = (1/N(N-1))    (I≠j) 

Where N (N-1) is the number of inter-point pairs of vector Xi and Xj,  is the 

Heaviside function. 

Chaotic measures such as correlation dimension could be used in physiology under the 

following hypotheses. At first, the observed signals of physiological data can have been 

produced by deterministic nonlinear equations with instability, probably spoiled by 

stochastic noise, that is can follow a low-dimensional chaotic dynamics. Second, the 

characteristics of such processes can be explored as changing time qualities and give 

insight into underlying phenomena. Third, abnormal changes in such characteristics can 

be related to dysfunction or diseases and can be used as monitoring or diagnostic tools. 

There are of course some problems and limitations over here, such as only finite amount 

of data could be attained which would not render the real measurements of the 



 

37 
 

dimension, problems of choice of the time delay and the embedding dimension, and 

problems distinguishing between signal and noise. 

On another side, Lyapunov exponent (Wolf et al. , 1985) could also be a test for 

determinism as it quantifies the rate of divergence of nearby trajectory paths in the state 

space, giving a measure of sensitive dependence on initial condition, which is a 

hallmark of chao (Binder et al. , 2005). Therefore the Lyapunov exponent quantifies the 

average stability properties of an orbit on an attractor. For a chaotic system, the distance 

between two trajectory paths that are initially a distance d0 apart will increase with time 

as d (t) ~ d0 e
λt
, the λ is roughly equal to Lyapunov exponent. Although algorithms were 

developed, there is difficulty in finding good estimates of the values. In the real world, 

phase spaces are generically infinitely interwoven patterns of stable and unstable 

behaviors. 

1.6.8 Interpretation of the fractal dimension 

Evidences have shown that filtered noise can exhibit a finite correlation dimension, 

compatible with that from a chaotic system (Rapp et al. , 1993). Besides, purely random 

processes with power-law frequency spectra (spectra that decay as f 
- β

) can also yield 

finite dimensions (Osborne et al. , 1989). Nevertheless, even for those ―chaoticity‖ or 

dimension not determined by certainty, relative dimension values between different 

systems can be useful (Rapp et al. , 1993). Instantaneous condition of the dimension of 
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data evolution could have better dynamic description. Farmer et al. in 1983 proposed 

the point correlation dimension (Pointwise-D2 or Pointwise-Dcorr) (Farmer et al. , 1983), 

which is not sensitive to changes in frequency or amplitude, could reject bursts of 

high-dimensional noise in the data (Skinner et al. , 1992). The Pointwise-D2 has an 

advantage in that it does not presume stationarity of the data, as the D2 algorithm must. 

There are cases in which signals generated by large and complicated system 

produced almost disproportionally small dimension, taking EEG as an example, with 

billions of neurons interconnected in trillions of ways what does it mean for the EEG to 

have a dimension on the order or 2 to 5 (Rapp et al. , 1993)? Although this question 

remains unsolved, there are many evidences showing a significant decrease in 

dimensionality in pathological cases. These might be interpreted as an unhealthy 

reduction in system flexibility and information-processing capability, reflected in low 

dimensions. Variation in estimates of correlation dimension may be due to small sample 

sizes and high embedding dimensions. 

   Dimension is a critical property because it indicates how many independent state 

variables are required to reproduce the system dynamics in state space, and this also 

indicates how many state variables should be included in a mathematical model of the 

system. The dimension could represent the degree of ―complexity‖ of a system, and 

tracking any changes in dimension due to pathology, manipulations or other 
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environmental changes to the system could be a useful diagnostic criterion. 

1.6.9 Other fractal measurements 

1.6.9.1 Rescaled range analysis (Hurst et al. , 1965, Mandelbrot, 1983) 

The rescaled range is a statistical measure of the variability of a time series 

introduced by the British hydrologist Harold Edwin Hurst (1880-1978). Its purpose is to 

provide an assessment of how the apparent variability of a series changes with the 

length of the time-period being considered. The rescaled range is calculated from 

dividing the range of the values exhibited in a portion of the time series by the standard 

deviation of the values over the same portion of the time series. For example, consider a 

time series {2, 5, 3, 7, 8, 12, 4, 2} which has a range, R, of 12 - 2 = 10. Its standard 

deviation, S, is 3.69, so the rescaled range is R/S = 2.71. In this example, the number of 

observations, n, of the time series is 8. 

If we consider the same time series, but increase the number of observations of it, 

the rescaled range will generally also increase. The increase of the rescaled range can be 

characterized by making a plot of the logarithm of R/S vs. the logarithm of n. The slope 

of this line gives the Hurst exponent, H. If the time series is generated by a random walk 

it has the value of H = 1/2. Many physical phenomena that have a long time series 

suitable for analysis exhibit a Hurst exponent greater than 1/2. For example, 
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observations of the height of the Nile River measured annually over many years gives a 

value of H = 0.77. 

The Rescaled Range is calculated for a time series, X=X1, X2,…, Xn , as follows: 

Calculate the mean: m =  

Create a mean adjusted series: Yt = Xt - m for t=1,2,…,n 

Calculate the cumulative deviate series Z: Zt =    for t=1,2,…,n 

Create a range series R: Rt = max (Z1, Z2, …, Zt) – min (Z1, Z2, …, Zt) for t=1,2,…,n 

Create a standard deviation series S: St =  for t=1,2,…,n 

Calculate the rescaled range series (R/S) : (R/S)t = Rt/St for t=1,2,…,n 

1.6.9.2 Detrended fluctuation analysis (Peng et al. , 1994) 

Given a bounded time series xt, t∈N, first converts this into an unbounded process Xt. 

Xt is called cumulative sum or profile. This process converts, for example, an 

independent and identically distributed (i.i.d.) white noise process into a random walk. 

Then, Xt is divided into time windows Yj of length L samples, and a local least squares 

straight-line fit (the local trend) is calculated by minimising the squared error E
2
 with 

respect to the slope and intercept parameters a, b: E
2
 = . Trends of 

higher order can be removed by higher order DFA, where the linear function aj + b is 

replaced by a polynomial of order n. Next, the root-mean-square deviation from the 

trend, the fluctuation, is calculated over every window at every time scale: F(L) = [1/L 

http://en.wikipedia.org/wiki/Nile_River
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]
1/2

, This detrending followed by fluctuation measurement process is 

repeated over the whole signal at a range of different window sizes L, and a log-log 

graph of L against F (L) is constructed. A straight line on this log-log graph indicates 

statistical self-affinity expressed as F (L)  L
α
. The scaling exponent α is calculated as 

the slope of a straight line fit to the log-log graph of L against F (L) using least-squares. 

This exponent is a generalization of the Hurst exponent (Hurst, 1951, Hurst et al. , 

1965). Because the expected displacement in an uncorrelated random walk of length L 

grows like  , an exponent of 1/2 would correspond to uncorrelated white noise. 

When the exponent is between 0 and 1, the result is fractional Brownian motion, with 

the precise value giving information about the series self-correlations: 

α < 1 / 2: anti-correlated 

α  1 / 2: uncorrelated, white noise  

α > 1 / 2: correlated 

α  1: 1/f-noise, pink noise  

α > 1: non-stationary, random walk like, unbounded 

α  3 / 2: Brownian noise  

There are different orders of DFA. In the described case, linear fits (n = 1) are 

applied to the profile, thus it is called DFA1. In general, DFAn, uses polynomial fits of 

order n. Due to the summation (integration) from xi to Xt, linear trends in the mean of 
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the profile represent constant trends in the initial sequence, and DFA1 only removes 

such constant trends (steps) in the xi. In general DFA of order n removes (polynomial) 

trends of order n − 1. For linear trends in the mean of xi at least DFA2 is needed. The 

Hurst R/S analysis removes constants trends in the original sequence and thus, in its 

detrending it is equivalent to DFA1. Since in the fluctuation function F (L) the square 

(root) is used, DFA measures the scaling-behavior of the second moment-fluctuations, 

this means α = α (2). The multifractal generalization uses a variable moment q and 

provides α (q). Kantelhardt et al. intended this scaling exponent as a generalization of 

the classical Hurst exponent. The classical Hurst exponent corresponds to the second 

moment for stationary cases H = α (2) and to the second moment minus 1 for 

nonstationary cases H = α (2) − 1. Generally, we call alpha > 0.5, persistant or 

correlated and alpha < 0.5, anti-persistant or anti-correlated. 

1.6.10 Issues of embedding dimension 

Techniques involved in chaos verification have to determine proper values for 

embedding parameters τ and m (Sauer, 1991). For this purpose, the mutual information 

(Fraser et al. , 1986) and false nearest neighbour method (Kaplan et al. , 1992) can be 

used. Selection of embedding dimension m is a major issue. The embedding dimension 

m should be large enough that the attractor is properly embedded in the topological 

sense. There should be no trajectory crossings if the system is truly deterministic 



 

43 
 

(although all sorts of noise can introduce crossings which can often be safely ignored). 

For this purpose, false nearest neighbor method is a good approach. As in false nearest 

neighbor method, simply to increase the embedding dimension during time-delay 

reconstruction until there are no false nearest neighbors and no trajectory crossings, and 

to say that the attractor has the dimension of the least embedding dimension at which 

this occurs (Shelhamer, 2007). 

Although an embedding dimension of at least twice the attractor dimension is 

required to guarantee a proper embedding, in fact it has been shown that an embedding 

dimension that is at least equal to the attractor dimension is sufficient for reliable 

computation of the correlation dimension (Ding et al. , 1993). This holds for large data 

sets. For shorter data sets of a few thousand points, larger embedding dimensions may 

required but not necessarily as large as two times the attractor dimension (Shelhamer, 

2007). 

1.6.11 Multifractality 

A multifractal system is a generalization of a fractal system in which a single 

exponent (the fractal dimension) is not enough to describe its dynamics; instead, a 

continuous spectrum of exponents (the so-called singularity spectrum) is needed. The 

singularity spectrum is a spectrum of related dimensions. In other words, if the 

dimensions vary but are well-defined power laws, then the phenomenon classifies as 

http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Fractal_dimension
http://en.wikipedia.org/wiki/Singularity_spectrum
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multifractal (Brown, 2010). Multifractals are spatially intertwined fractals. They may 

have continuous fractal spectra or discrete spectra. Two types of interrelated methods 

have been developed for modeling the continuous multifractals and widely used in 

physics and geoscience: the Evertsz-Mandelbrot model has been developed on the basis 

of the multifractal spectrum and the Schertzer-Lovejoy model on the codimension 

function C (y) (Cheng, 1997). Multifractals represent the extension of fractal theory 

from sets to measures. It is a measure incorporates the idea of quantity or magnitude, 

and addresses not presence/absence questions, but rather quantity, density, 

concentration, and so forth. 

1.6.12 Lacunarity 

Lacunarity, meaning ―gap‖ or ―lake‖, measures the deviation of a geometric object, 

especially fractals from translational invariance; in other words, how patterns fill space. 

Patterns having more or larger gaps generally have higher lacunarity. It is important in 

multifractal analysis. Translational invariance, of course, also can be a property of 

nonfractal sets. Several works have pointed out that sets with the same fractal 

dimension may have different lacunarities, only few have emphasized that the lacunarity 

is highly dependent of dimension (codimension).The properties and characteristics of a 

fractal set are not completely determined by its fractal dimension D. It is easy to 

construct a family of fractals that share the same D but differ sharply.  
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1.6.13 Advantages of chaos in physiology 

   Chaos theory has helped to resolve some difficult problems in the fields of physics 

and chemistry, problems such as how to calculate a turbulent event in fluid dynamics 

and how to quantify the pathway of a molecule during Brownian motion. Biology and 

medicine also have unresolved problems. Probably the greatest appeal of chaos for 

physiology is the simple observation that so much physiological activity is highly 

variable, appearing random or noisy. Application of mathematical tools made a 

breakthrough for biology that what was thought to be higher-dimensional noise in many 

of the systems turns out to be low-dimensional chaos (Mayer-Kress et al. , 1988). A 

chaotic system can appear random as well, but there is an underlying deterministic 

structure. Even simple nonlinear deterministic systems can exhibit chaotic behavior. 

   The sensitivity to initial conditions, being one principal characteristic of chaos, can 

lead two arbitrarily closely points to significant future trajectories. Therefore chaotic 

complexity could provide biological systems adaptability, flexibility, stability, 

exploratory and perceptual function, as well as helps in facilitating transitions between 

behavioral mode (Riley et al. , 2002). The combination of adaptability and stability 

therefore could provide biological systems ―controllability‖ (Liebovitch, 1998). 

Adaptability makes sure a system can keep on function in an ever-changing or 

unknown environment. The biological system could be treated as a system with a set of 
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states and a transition scheme which governing the state to state transitions.  The 

relation between the statistical properties of the biological system and the statistical 

properties of the environment could reveal something about the ways systems work. 

The transition schemes are generally probabilistic. Theoretically, adaptability of the 

biological system could be due to either intrinsically random processes or completely 

attributed to deterministic. But if life processes are running according to a random walk 

without following a certain path or bearing some specific purposes, it would be very 

hard to explain the extreme rapid processing of neural information, the variability of 

immunoglobulin molecules produced in very short time when stimulated by stress, and 

the highly efficient metabolic or hormonal changes which allows organisms to protect 

their essential dynamical properties in the face of environmental changes by varying 

less essential dynamical properties. 

Genetic variation and population dynamics, as provided by chaos (Emlen et al. , 

1998) have made both human bodies and human societies evolve in very efficient ways 

which should be very difficult to achieve by random process. Another function of chaos 

is defense, which means that based on a chaotic neural mechanism, the unpredictable 

manifestation of motor behavior of animals would make the animals more difficult to 

catch. Finally in the nervous system, with the help of chaotic dynamics the functional 

independence of different parts could easily be maintained (Conrad, 1986). Chaos looks 
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random, but there is an underlying deterministic rule. Additionally, as we have seen the 

function of chaos in physiological systems, there must be functions of noise too. This 

would be another big issue outside this work. 

People argued about whether or not the physiological dynamics reflect real chaos, 

real as according to the strict definition. People also suspect that chaos is nothing more 

than a mathematical artefact, a phenomenon non-existing outside the simulations of the 

computer. It might be much less interesting to clarify those doubts than to elucidate the 

underlying mechanisms controlling the dynamics (Glass, 2001).  

1.6.14 Non-stationarity 

Most statistical approaches for time series analysis assume that the observed process 

is at least locally stationary. It is to say the system’s control parameters are constant and 

external perturbations are minimal. If the observed system is not stationary, that means 

the parameters of that system change during the time period of data acquisition, the 

recorded irregular behavior of the dynamics may solely from the nonstationarity but 

chaos. Biological systems are non-stationary since they all continuously vary in 

response to the changes of the environment and stress. Another cause of nonstationarity 

is the noise-contaminated impulse responses, and which can be resolved by ensemble 

averaging of many realizations as increasing the signal to noise ratio (SNR). 

Nonstationarity can also occur if the system under study is approaching a bifurcation, 
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such as an instability threshold.  

The usual solution for dealing with potential nonstationarity is to try to limit the 

data-acquisition process to a relatively short period compared with any slow changes 

that the system may undergo (Daw et al. , 2003). Methods like Empirical mode 

decomposition (also known as Hilbert Huang transformation, HHT) (Huang et al. , 1998) 

and wavelet transformation (Burrus, 1998) would be good choices for non-stationary 

data. 

1.6.15 No guarantee of chaos 

The mathematical tools used to explore the dynamics of low dimension of 

deterministic chaos are themselves based on the assumption that the time series under 

analysis was indeed generated by a chaotic system. Another issue is that experimental 

biological time series are necessarily corrupted by noises of endogenous or exogenous 

origins, even after the most robust noise titration the sufficient condition could still not 

be achieved (Sassi et al. , 2009). The two main characteristics of chaos to be checked 

are nonlinearity and determinism. 

   Systems in which the dynamics are governed by a small number of coupled 

deterministic equations called low-dimensional systems. As mentioned, although a 

low-dimensional system can behave chaotic dynamics, a low dimension found in a 

cardiac system by a computer algorithm does not guarantee that the system is chaotic. 
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Further, although some report low dimensions in normal HRV (Babloyantz et al. , 1988, 

Bezerianos et al. , 1995), others do not (Kanters et al. , 1994, Costa et al. , 1999). 

Although sensitivity to initial conditions is a characteristic in chaotic systems, and it is 

associated with a positive Lyapunov number, finding a positive Lyapunov number in a 

cardiac system using a computer algorithm does not necessarily mean that the 

underlying system displays deterministic chaos. Random systems could also give a 

positive Lyapunov number. Many papers have mentioned that the subtleties of the 

computer algorithms that are being used to analyze HRV make them difficult to apply 

and susceptible to misinterpretation (Glass, 1999). 

Although physiological and bio-signals can provide physiological meanings. The 

physiological meanings which are provided by bio-signals could be biased by the 

acquisition processes as well as the analytic methods of the signals. And the 

performance of bio-signal classification further depends on the choice of any suitable 

features, which are called biomarkers or parameters. In a study of COP (center of 

pressure) dynamics, the result showed that more variability with eye closed was 

accompanied by less randomness (more determinism), and less variability with eye 

open was accompanied by more randomness (less determinism). This findings may 

suggests variability is not equal to randomness (Riley et al. , 1999). In another 

experiment of COP with suprapostural task, the investigators observed that just as 
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variability cannot be equated with randomness, controllability cannot be simply equated 

with determinism (Balasubramaniam et al. , 2000). I would suppose that the feedback 

from visual inputs to the balance of posture is a process of interaction between the 

environment and the human bodies. It is much more complicated than the determinism 

of this system; therefore it is classified as randomness. And this is the problem of 

standing point. Being deterministic or not depends on the scale of the view point. For 

example a random part viewing from human body’s scale could be explained by some 

deterministic rule if you examine it from a higher scale’s view such as the earth or the 

universe. Stephen Hawking has alleged the inevitable uncertainty in the universe by the 

argument that loss of particles and information occurs when a system falls down into 

black holes which means that the particles that come out from black holes are random. 

That may be right, but although one could not make any definite predictions, one could 

calculate probabilities at some scale. The scale is not only about which position is one 

standing (e.g., inside a cell, inside the body, or inside the earth, etc.), it may also be 

about how the data together with the noise being collected. Further, since those 

biological data are discrete what we analyze, the time scale we collected them could 

also interfere the prediction of ―degree of randomness‖. 

1.7 Entropy 

As mentioned above, the search for specific sequences or patterns more frequent 
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than others which is the basis of information or entropy is another approach to the 

detection of determinism in a time series. Temporal patterns or binding of neuronal 

firing are considered as Morse code for neurological activities include sensory 

awareness (Engel et al. , 2001), motor tasks (Hooper, 1998), or autonomic control 

(Porta et al. , 1998). 

   Phase-locked dynamics have been observed in spontaneous oscillators such as 

cardiac cells (Guevara et al. , 1981) and neurons (Aihara et al. , 1986) when they are 

stimulated by periodic electrical impulses, and the phase locking phenomenon could be 

disrupted by changing either the amplitudes or the frequencies of the periodic inputs. 

Mechanical stimulation through ventilator could also produce such phenomenon to 

neural cells in the respiratory center (Petrillo et al. , 1984) or sympathetic neurons (Porta 

et al. , 1996). This kind of coordination may not be rigidly fixed: changes in the 

coupling ratio (Glass et al. , 1983) and in phase (Porta et al. , 1996) have been detected. 

These evidences suggested the pattern of regularity in biological signals could be 

externally manipulated and thus change. Being able to show the regularity of a system, 

entropy is a useful reflection of the complexity of the deterministic structure of the time 

series. 

It is important to note that no one measure of overall system complexity has 

emerged as sufficient. Whether deterministic chaos or stochastic process is suitable to 
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describe physiological phenomenon as heart rate variability or brain wave is not 

important for clinicians. What is important is the underlying mechanism and whether or 

not quantification of the degree of regularity is clinically useful.  

1.7.1 Information entropy 

In 1964, James Lovelock, who was requested by NASA to make a theoretical life 

detection system to look for life on Mars, had made the following comment: to find 

signs of life, one must look for ―a reduction or a reversal of entropy‖. Most people are 

familiar with entropy in the thermodynamic sense but not with entropy as information 

content. The amount of information contained in a message is directly related to the 

uncertainty or inversely proportional to the probability of its occurrence (Al-Nashash et 

al. , 2005). In probability theory, entropy quantifies the uncertainty associated to a 

random process, and is a measure of unpredictability. C.E. Shannon 1948 proposed that 

in a discrete source of the finite state type, for each possible symbols i, there will be a 

set of probabilities  of producing the various possible symbol j. Thus there is an 

entropy Hi for each state. The entropy of the source will be defined as the average of 

these Hi weighted in accordance with the probability of occurrence of the states: 

information entropy  H =  = - (Shannon, 1948). Entropy is 

simply the expectation value of the information produced by the experiment. For a time 

series representing the output of a stochastic process, that is, an indexed sequence of n 
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random variables, {X1,…, Xn}, with set of values V1,…,Vn, respectively, the joint 

entropy is defined as Hn = -   

where  is the joint probability for the n variables X1,…, Xn. The state of a 

system at a certain instant, Xn, is partially determined by its history, X1; X2; . . . ; Xn-1. 

However, each new state carries a certain amount of new information.  

The mean rate of creation of information is known as the Kolmogorov-Sinai (KS) 

entropy. Considering that the phase space of a system with D degrees of freedom is 

partitioned into hypercubes of content ε
D
 and the state of the system is measured at 

intervals of time τ, The KS entropy is defined as Hks = limτ->0 limε->0 limn->∞ (Hn+1 - Hn) 

(Costa et al. , 2002). 

1.7.2 Measures of entropy 

1.7.2.1 Sample entropy and approximate entropy 

Regularity before approximate entropy (ApEn) was originally measured by exact 

regularity statistics, for which accurate entropy calculation requires vast amounts of data, 

and the results will be greatly influenced by system noise. Because experimental data 

are noisy, therefore Steve M. Pincus during analysis of heart beat dynamics developed 

ApEn to handle these limitations by modifying an exact regularity statistic, 

Kolmogorov–Sinai (K-S) entropy. Sample entropy (SampEn) (Richman et al. , 2000) is 

http://en.wikipedia.org/w/index.php?title=Steve_M._Pincus&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=K%E2%80%93S_entropy&action=edit&redlink=1
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a modification of ApEn (Pincus, 1991, Pincus et al. , 1991, Pincus et al. , 1994). Both 

are techniques used to quantify the amount of regularity and the unpredictability of 

fluctuations over time series data; in other words, functionally similar to K-S entropy. 

Both SampEn and ApEn serve as the index of entropy rate by measuring the complexity 

of the dynamical relationship between a pattern and the next datum. They are tools 

widely applied in biological time series and are suitable for short and noisy 

experimental time series. Informally, given N points, the family of statistics ApEn (m, r, 

N) is approximately equal to the negative average natural logarithm of the conditional 

probability that two sequences that are similar for m points remain similar, that is, 

within a tolerance r, at the next point. Thus a low value of ApEn reflects a high degree 

of regularity. How does the ApEn work? Take a simplified example of time series of 

RRI for understanding the idea, the first step is coding into Si: 

Si = 0, if RRI >= 0, 

    1, if RRI < 0, (RRi = RR interval) 

In ApEn for binary sequences of length 8, the binary sequence 00000000 is more 

regular than 01100010. ApEn calculates the logarithmic frequency that sequences of 

length m that are close (within a tolerance r) remain close (within the same tolerance) in 

sequences of length m + 1, ApEn (m, r) depends on the length m and the tolerance r, and 

it assigns higher numbers to more irregular sequences. For binary sequences, the 
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tolerance r is set to r = 1 because this is the only practical setting for a binary metric, the 

length m is set to 1. Due to redundancies with respect to irregularities of the binary 

sequences, the 2
8
= 256 different sequences are assigned only 17 different values of 

ApEn (Cysarz et al. , 2007). 

ApEn and SampEn were developed for physiological data in view of their 

robustness to noise and finitude of data sets and they can be applied to stochastic, 

nonlinear-deterministic and composite processes (Pincus et al. , 1994, Richman et al. , 

2000). Beside their original application in HRV, these two entropy have been also 

successfully applied to EEG analysis in Alzheimer's disease (Abasolo et al. , 2005), 

seizures (Yum et al. , 2008), anaesthesiology (Jordan et al. , 2008), hypoxia (Papadelis 

et al. , 2007) and sleep (Burioka et al. , 2005). 

When m, r, τ and N, referred to as pattern length, normalized threshold, time delay 

and signal length respectively, for a time series [x(j)], j = 1,…,N, the vectors of the 

length m, Xm
(i)

, and a distance between any two vectors dm (Xm
(i)

 , Xm
(j)

) 

Xm
(i) 

 = [x (i), x (i + τ),…, x (i + (m - 1) τ], i = 1,…, N - (m - 1)τ      (1) 

dm (Xm
(i)

 , Xm
(j)

) =     (2) 

The probability Ci
m
(r) that any vector Xm

(j)
 is within the distance r from the ―template‖ 

Xm
(i)

 is estimated as 

Ci
m
(r) = Bm

r
(i) / (N - (m - 1) τ)   (3) 
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Where Bm
r 
(i) is a number of vectors for which the distance is below the predefined 

threshold value r, with I{
.
} denoting an indicator function: 

Bm
r 
(i) = dm(Xm

(i)
 , Xm

(j)
) < r}, i = 1,…, N - (m - 1) τ    (4) 

The procedure is then repeated for vectors of the length m + 1 and ApEn is defined 

as ApEn (m, r, N, τ) = (Ci
m
(r)) - Ci

m+1 
(r)  (5) 

ApEn allows self-matches (j = i) in Eq. (3) to avoid logarithm of zero, thus inducing the 

bias in estimates. SampEn approach eliminates this bias, making the following 

alternations: (a) self-matches are excluded from Bm
r 

(i); (b) the number of sliding 

window comparison for template vectors of length m and m + 1 are equalized; (c) 

summation and logarithm in Eq. (5) exchange the places: 

SampEn (m, r, N, τ) = ln Bm
r
(i) - 1) – ln Bm+1

r
(i) - 1)     (6) 

To be more clearly, ApEn (m, r, N) is biased and suggests more similarity than is 

present, and the bias is from self-matching. There are two differences between the 

modified version, SampEn and ApEn. First, SampEn does not count self-matches thus 

reduces bias. Discounting self-matches is more reasonable since entropy is conceived as 

a measure of the rate of information production, therefore comparing data with 

themselves is meaningless. Second, SampEn does not use a template-wise approach 

when estimating conditional probabilities. To describe SampEn in short, when m, r and 
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N, referred to as pattern length, normalized threshold (normalized by the standard 

deviation of the original sequence), and signal length respectively, suppose Bm (r) is the 

probability that two sequences will match for m points, and Am (r) is the probability that 

two sequences will match for m + 1 points. The match is considered within tolerance 

and with self-matches excluded. The parameter, SampEn, is estimated by the statistic 

SampEn (m, r, N) = - ln [Am (r) / Bm (r)]. In contrast to ApEn (m, r, N), which calculates 

probabilities in a template-wise fashion, SampEn (m, r, N) calculates the negative 

logarithm of a probability associated with the time series as a whole. 

There are no explicit constraints regarding the signal stationarity within the 

aforementioned definitions of ApEn and SampEn (Boskovic et al. , 2012). The choice 

of parameters m and r is critical, especially for moderately sized signal lengths N 

(Pincus et al. , 1994). Parameter m is closely related to data length N and threshold r as 

many studies (Chen et al. , 2005, Lu et al. , 2008, Chon et al. , 2009) have been shown. 

The false nearest neighbors approach (Kennel et al. , 1992) is a good method dedicated 

to a reasonable choice of m. As to the parameter τ (the delay), Govindan et al. firstly 

raised the issue of suitability of unit delay (τ = 1) for signals with long range linear 

correlation (Govindan et al. , 2007). If the autocorrelation function is decaying rapidly 

as most of the physiological data are, unity delay may be sufficient to provide an 

accurate measure of signal complexity resulting from the nonlinear features in the signal. 
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If the autocorrelation function is decaying slowly, Kaffashi et al suggested that τ should 

be chosen as the first minimum or zero crossing of the autocorrelation function 

(Kaffashi et al. , 2008b). Chen et al. showed that down sampling, thereby indirectly 

adjusting the time delay parameter in the computation, and reducing the linear 

correlation between consecutive samples, resulted in higher signal complexity (Chen et 

al. , 2005). Threshold, r, is defined as a fixed percentage of the standard deviation 

estimated from the signals, therefore the signal need to be at least wide sense stationary 

(Boskovic et al. , 2012). Studies especially in neurological signal analysis note that the 

stationarity is not a prerequisite for ApEn (and SampEn) estimates (Hudetz et al. , 2003, 

Huang et al. , 2004). Pinkus and Goldberger state that ApEn is insensitive to artifacts 

(outliers) if they are not frequent. (Pincus et al. , 1994). Nevertheless, an analysis of 

RRI recordings on ApEn showed that outlying points which inflate standard deviation 

of the time series could reduced entropy values (Lake De Fau - Richman et al. , 2002). 

In order to decrease the non-stationarity of EEG in SampEn measurement, nonlinear 

filters such as empirical mode decomposition (EMD) could supplied good results of 

data detrending and increased the group differentiating power of SampEn in dementia 

(Tsai et al. , 2012). 

1.7.2.2 Multiscale entropy (MSE) 

MSE was introduced in 2002 by Costa and colleagues for the purpose of analysis of 
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HRV (Costa et al. , 2002, 2005). It is an extension of SampEn into multiple time scales, 

based on the assumption that dynamical complexity of biological signals may operate 

across a range of temporal scales. Since interactions due to both local dense 

interconnectivity and sparse long-range excitatory projections give rise to the outputs of 

neuronal networks (Friston et al. , 1995), the resulting dynamics could be expected to 

operate at multiple scales. MSE approaches have been fruitfully applied in medical 

fields. It compared different physiological conditions in HRV like aging, disease, and 

pregnancy (Costa et al. , 2005, Baumert et al. , 2012). It provided novel insight into 

physiological mechanisms in neuronal spiking patterns in human (Bhattacharya et al. , 

2005). It empowered the role of postural sway time series in rehabilitation (Costa et al. , 

2007). It analyzed EEG of aging (McIntosh et al. , 2008, Takahashi et al. , 2009) and 

dementia (Escudero et al. , 2006). It identified abnormal dynamics of the EEG in 

schizophrenia and that abnormality was normalized selectively in fronto-central areas 

after antipsychotic treatment (Takahashi et al. , 2010). This has suggested quite 

promising contributions in clinical monitoring by MSE. 

This method consists of two parts, coarse graining procedure and SampEn. The 

method of MSE analysis inspects signals at different time scales by performing the 

coarse-graining procedure. The process of coarse-graining in MSE is: given a 

one-dimensional discrete time series, {X1,…, Xi,…, XN}, construct consecutive 
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coarse-grained time series, {y
( )

}, determined by the scale factor,  , according to the 

equation: y
( )

j  = 
1

 ( 1) 1

j

i

i j

X


  

 , 1   j   
N


. For scale one, the time series {y

(1)
} is 

simply the original time series. The length of each coarse-grained time series is N/ . 

The sample entropy (SampEn) for each coarse grained time series is measured and 

plotted as a function of the scale factor. 

1.7.3 Network theory 

The macromolecules in living cells are connected to each other, and the different 

cell types of an organ connected to each other. How do we model biological networks? 

There are three possible types of network, regular, random and scale free. The number 

of connections per node for both the regular and random networks will have a roughly 

normal distribution with an average value that gives a characteristic ―scale‖ to the 

network. In the third type, ranging from a very few highly connected nodes to a large 

number of weakly connected nodes, the number of molecules (N) with a given number 

of connections (k) falls off as a power law: N (k) ~ k 
– g

, where g is between 2 and 3. 

Because N (k) does not show a characteristic peak value, this type of network is often 

referred to as ―scale free‖ (Bray, 2003). The most well-studied re-entrant artificial 

neural network is the Hopfield net (Hopfield 1984) in which every neuron is connected 

to every other neuron. It is a recurrent neural network having synaptic connection 

pattern such that there is an underlying Lyapunov function for the activity dynamics 
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(Hopfield, 1982, 1984). If the synaptic strengths of the Hopfield net are allowed to be 

asymmetrical, the network can converge toward a single stable state or toward a 

repeating pattern of two or more states that it cycles between indefinitely. Alternatively 

it may move chaotically between different states without converging. For biological 

system, the asymptotic dynamic behavior of a network can also depend on its initial 

conditions (Bates, 2006).  

1.7.4 Multiple attractors or single attractor 

Almost all diseases, no matter simple as common cold, complicated as cancer, 

chronic as hypertension, acute as stroke, strange as autoimmune diseases, or mysterious 

as degenerative brain diseases, are all found to be of multi-factorial etiologies, widely 

varying prognoses, and frequently unclear therapeutic options. This brought up the 

thought that multiple attractors exist in biological networks, and that makes a disease 

state the entrapment in a non-normal attractor (Segel, 1998, Bates, 2006). Whether 

biological networks fit in this or even work in mathematical law, the theory of 

networks has been as applied to the immune system (Detours, 1996). A Hopfield-type 

theory with multiple attractors was used to explain the effects of vaccination on 

immunological status (Segel, 1998).  And the attractors of the network of gene 

interactions were used to explain cellular phenotypes (Kauffman, 1971, Ribeiro et al. , 

2007, Kim et al. , 2011). There were evidences showing that there is a critical degree of 
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network connectivity beyond which multiple attractors can be supported, and suggest 

that the connectivity of real biological networks may have evolved to balance the 

dangers of multiple attractors against the need for agility and robustness (Anafi et al. , 

2010).  A disease called idiopathic pulmonary fibrosis, which manifests as 

inappropriate persistence in processes of repairing for tissue injury, could be explained 

by an entrapment in a abnormal attractor (Agostini et al. , 2006). 

1.8 Symbolic dynamics 

1.8.1 Symbolization or symbolic time-series analysis 

Symbolic dynamics is based on a way of coarse graining or reduction of description. 

The phase space is divided into a finite number of partitions which are labeled with a 

symbol. In the study of biological signals, we sample points along the trajectories of a 

continuous flow. In other analytical methods like those time series analyses, infinite 

sequences of numbers are used to represent the trajectories. In symbolic dynamics, one 

watches the alternation of symbols of those partitions. At first, the data are transformed 

into a pattern which is composed of only a few symbols. Then only the dynamics of the 

symbol sequences is studied. Although losing a great amount of detailed information, 

some of the invariant, robust properties of the dynamics may be kept, e.g. periodicity, 

symmetry, or chaotic nature of an orbit (Bai-lin, 1991).  
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There are some merits of symbolization or symbolic time-series analysis. With 

careful partitioning process, the effects of noise interference could be less than other 

methods, as beim Graben showed that symbolization can directly enhance 

signal-to-noise ratios (beim Graben et al. , 2007). Therefore it can sometimes be 

accomplished by low-resolution (even ―disposable‖) sensors as long as an appropriate 

analysis is used. Good applications of symbolic methods could be favored in situations 

when cost, speed, or noise is seriously considered. Noise can either enhance or distort 

the information content. Cue ĺlar and Binder found that by adding a small amount of 

uncorrelated noise before discretization limited the increase of the average error and 

improved the estimation of Lyapunov exponents (Cuellar et al. , 2001). Tang et al. has 

shown the method of symbol sequences statistics is quite good in the problem of 

reconstruction of chaotic dynamics from short and/or noisy data sets even in the 

presence of observational and dynanmic noise (Tang et al. , 1995). The partition process 

acts just like down-sampling, through which the entropy can increase since the 

statistical dependence of consecutive samples decreases (Chen et al. , 2005, Kaffashi et 

al. , 2008a). Evidence could be provided in the work of Chen et al (Chen et al. , 2005) 

of ApEn and SampEn showing that down sampling the respiratory time series increased 

its complexity. The partition process in symbolic analysis is similar to using large values 

of r in the sense of down sampling. As one may intuitively think that large values of r is 
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too coarse to enable pronounced process distinction, yet the work by Boskovic et al 

(Boskovic et al. , 2012) in estimating entropy of HRV in stress of rats has shown a 

stable entropy difference between different clinical situations, without a decrease in 

sensitivity. 

After the symbolic series being constructed, measures of entropy or entropy rate are 

generally adopted to explore the dynamics. The following treatments were shown in 

literature for HRV analysis: 1) the calculation of Shannon entropy (SE) of the 

distribution of patterns lasting three beats; 2) the calculation of a regularity index based 

on an entropy rate (i.e., the conditional entropy); 3) the classification of frequent 

deterministic patterns (FDPs) lasting three beats (Porta et al. , 2001, Guzzetti et al. , 

2005). With the symbolization method, two studies enriched HRV in clinical role, one 

showed that in congestive heart failure, the heart is largely decreased the influence from 

the autonomic nervous system (Cysarz et al. , 2007); whereas the other one showed the 

neural pathophysiological mechanisms occurring during the short periods that precede 

acute cardiac events (Guzzetti et al. , 2005). Symbolic dynamics may well detect the 

phase transitions in EEG signal analyses. It provided especial good reflection of the 

state changes in epileptic EEGs (Staniek et al. , 2008, 2009, Schindler et al. , 2012, 

Zhao et al. , 2012, Paternoster et al. , 2013). It was successfully applied with neural 

network models in EEG dynamics during mental tasks (Dimitriadis et al. , 2012). Phase 
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changes in wakeful resting EEG in dementia may not be as prominent as those during 

epileptic bursts and mental tasks, but the degree of change of dynamics could be 

compared. 

1.8.2 Procedure of symbolization (Porta et al. , 2001) 

Each sample of the series X = {Xi, i = 1,…, N} is first normalized by subtracting the 

mean and, then, divided by the standard deviation, thus obtaining the series x = {xi, i = 

1,…, N}. Next, through coarse-graining, the full range of a series x = {xi, i = 1,…, N} 

was uniformly spread on ξ levels (from 0 to ξ-1) and transformed into a series of 

symbols x
ξ 
= {x

ξ
i, i = 1,…, N} from the limited alphabet of symbols {0,1,…,

 
ξ-1}. From 

the symbolic series x
ξ
, patterns of L delayed samples were constructed as x

ξ
3, i = (x

ξ
i, x

ξ
i-1, 

x
ξ
i-2). The overlapping delayed symbol x

ξ
3, i was codified in decimal format as (x

ξ
i, x

ξ
i-1, 

x
ξ
i-2)decimal = x

ξ
i * ξ

L -1
+ x

ξ
i-1 * ξ

L-2
 + x

ξ
i-2* x

ξL-3 
= wi , w = {wi, i = 1,…, N-L+1} with wi 

ranging from zero to Np = (ξ-1)
L 1

0

i

i






 . 

An important condition should be noticed is that the number of detected pattern 

N-L+1 should be larger than the number of possible patterns Np+1 in order to allow 

patterns to be found several times (Porta et al. , 2001). 

1.8.3 Forbidden words 

A high number of forbidden words (same as missing pattern) stands for a rather 
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regular behavior in the time series. If the time series is highly complex in the 

Shannonian sense, only a few forbidden words can be found (Wessel et al. , 2000). So 

the number or the pattern of forbidden words may also embrace information. 

1.9 Surrogate data 

For a data driven analysis, the application of nonlinear time series methods has to be 

justified by establishing nonlinearity in the time series in order to represent a fair 

account of the structures that are present in the data. For example, in epileptic EEG, 

strong fluctuations could be from a large collection of neurons intermittently 

synchronizing to give rise to the burst episodes. However, the spikiness could come 

from a distortion by the measurement procedure and the serial correlations are due to 

linear stochastic dynamics (Schreiber et al. , 2000).  

Surrogate data sets are generally created under a null single hypothesis. Different 

surrogates can be generated by randomizing some aspect of the data, and this 

randomization can be carried many times with different results each time, but all based 

on the same null hypothesis. Then the particular values of some properties would be 

taken from those surrogate data. For example, the correlation dimension of each 

surrogate data are calculated, thereby the distribution of dimensions under that 

particular null hypothesis is determined. Finally the correlation dimension from the 

original data is compared to the distribution of dimensions under the null hypothesis. 
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The simplest null hypothesis is that the data are random and drawn from a population 

with a given set of values. Other null hypotheses include Gaussian, or a linear system 

with a particular autocorrelation function. Pure noise has infinite dimension, so the 

surrogates should have dimensions that are greater than that of the original. In short, 

determinism (non-randomness) could be tested by random shuffling and non-linearity 

by phase randomization of the surrogate data provided. Three classes of surrogates are 

now commonly in use: random-shuffle surrogates, random-phase surrogates (i.e. 

Fourier Transform), and Gaussian-scaled random-phase surrogates (e.g. amplitude 

adjusted Fourier transform (AAFT) (Theiler et al. , 1992) and iterated amplitude 

adjusted Fourier transform (IAAFT) (Schreiber et al. , 1996)). The AAFT algorithm can 

yield an incorrect test since it introduces a bias towards a slightly flatter spectrum and 

leads to spurious detection of nonlinearity partitioning (Rapp et al. , 1994). An IAAFT 

surrogate time series is random, matches the original power spectrum, and preserves the 

exact original marginal distribution. The linear structure of the IAAFT surrogate time 

series may differ only slightly from the original linear structure, favoring rejection of 

the test. There are other surrogate data methods, some based on wavelet transform 

(Breakspear et al. , 2003, Keylock, 2007) and some capable of dealing with some types 

of non-stationary data (Nakamura et al. , 2006, Lucio et al. , 2012). Finally, the number 

of detected patterns should be larger than the number of possible patterns in order to 
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allow patterns to be found several times (Porta et al. , 2001). 

1.10 Empirical mode decomposition (EMD) 

Empirical mode decomposition (EMD) (Huang et al. , 1998) is based on nonlinear 

theories and was designed to extract dynamic information from nonstationary signals at 

different time scales. It makes no assumptions a priori about the composition of the 

signal. The advantages of EMD over traditional Fourier-based methods have been 

appreciated in many studies of different physiological systems such as blood pressure 

hemodynamics, cerebral autoregulation, cardiac dynamics, respiratory dynamics, and 

electroencephalographic activities (Lo et al. , 2009). 

  The decomposition is based on the simple assumption that any data consists of a 

finite number of intrinsic modes of oscillations. For a time series x (t) with at least 2 

extremes, the EMD applies a sifting procedure to extract intrinsic mode functions (IMFs) 

one by one from a smallest to the largest time scale. 

x (t) = c1 (t) + r1 (t) 

    = c1 (t) + c2 (t) + r2 (t)  

       

    = c1 (t) + c2 (t) +
 
+ cn (t) 

where ck (t) is the kth IMF and rk (t) = x (t) -
1

( )
k

i

i

c t


 is the residual after extracting the 

first k IMFs. The steps of sifting process to extract the kth IMF (Thuraisingham, 2006): 
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(1) Initialize h0 (t) = hi-1 (t) = rk-1 (t) (if k = 1, h0 (t) = x (t)), where i = 1; 

(2) Extract local minima and maxima of hi-1 (t) (if the total number of minima and 

maxima is less than 2, ck (t) = hi-1 (t) and it’s the end of the whole EMD process); 

(3) Obtain upper envelope, u (t), and lower envelope, l (t), by the cubic spline 

interpolation for local minima and maxima of hi-1 (t), respectively; 

(4) Calculate the hi (t) = hi-1 (t) - mean of (u (t) + l (t)); 

(5) Calculate the standard deviation (SD) of the mean of (u (t) + l (t)); 

(6) To determine a criterion for the sifting process to stop, calculate the limiting size of 

standard deviation to guarantee that the IMF components retain enough physical 

sense of both amplitude and frequency modulations. 

SDmax = [
T

t o

 |(hi-1 (t) - hi (t))|
2 

/ h
2
i-1 (t)] (typically between 0.2 and 0.3) (Hu et al. , 

2008) 

(7) When SD < SDmax, the kth IMF is assigned as ck (t) = hi (t) and rk (t) = rk-1 (t) - ck (t); 

otherwise repeat steps (2) to (5) for i + 1 until SD < SDmax. 

   By definition, an IMF is any function with the same number of extrema and zero 

crossings, whose envelopes are symmetric with respect to zero. This definition 

guarantees a well-behaved Hilbert transform of the IMF. Each IMF represents a certain 

frequency–amplitude modulation at a specific time scale, and therefore it can be used to 

analyze temporal or phase associations with comparable IMFs from other signals. 
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1.11 Dementia 

The load of care for demented patients is increasing very fast globally as eighty 

million demented population is expected in 2040. Alzheimer’s disease (AD) and 

vascular dementia (VD) are the two major causes of dementia. Since all current 

therapies for dementia depend on early diagnosis, risk and predicative factors for 

dementia are crucial. AD and VD share common risk factors as aging and vascular risks 

such as diabetes, hypertension, metabolic syndrome, homocystinemia, atrial fibrillation, 

and smoking. There are bidirectional connections between the heart and the brain. A 

neurovisceral integration model with laterality on the right prefrontal cortex was 

proposed to describe the pathways. 

The cholinergic deficits in the brain of dementia may affect the central autonomic 

network. Yet the HRV changes in dementia in previous reports were not congruent. A 

higher risk of dementia was shown in people with obstructive sleep apnea, which could 

be indicated by some newly developed methods of HRV analysis. 

Traditional EEG records hardly help the diagnosis or treatment of dementia, 

although the decline in mentality does slow down the brain waves. Using new 

mathematical techniques with computers’ help, scientists hope to find some 

characteristics to help in early diagnosis or treatment monitoring. 
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Chapter 2 Experiments 

2.1 Hypotheses 

1. Correlations between the heart and brain can be found in signal complexity. 

2. Higher complexity does not guarantee more health. 

3. Discrete events can provide more direct information than continuous waveforms. 

4. Pathological condition is continuous rather than stepwise. 

5. Regularity based study is good for the study of biological rhythms. 

* The experiments were published (Lin et al. , 2014, Lin et al. , 2015) 

2.2 Material and Methods  

2.2.1. Study population 

The final study population included 89 geriatric outpatients, who were free of 

previously diagnosed neurologic and cardiovascular diseases (except mild hypertension), 

and found to have varied cognitive abilities (female = 43; age = 79.3 6.4 years, 

mean standard deviation (SD), range 65.3–93.7 years). Sixty (female = 30; 81.1 5.7 

years) newly diagnosed cases of dementia presented on the first visit with a chief 

complaint of memory or cognitive decline, corroborated by informants, and had a 

Chinese version of the mini-mental state examination, the mini-mental state 

examination of Taiwan, version 1 (MMSE-T1) score with illiteracy adjustment less than 
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or equal to 26. After laboratory tests and brain-imaging referrals, the recruited demented 

patients included only two types: probable Alzheimer’s disease (AD) (n = 22; female = 

7; age = 81.9 6.6 years; MMSE-T1 = 22.2 5.8) according to NINCDS-ADRDA 

(McKhann et al. , 1984) and vascular dementia (VD) (n = 38; female = 23; age = 

80.6 5.1 years; MMSE-T1 = 18.4 7.2) of subcortical arteriosclerotic encephalopathy 

according to NINDS-AIREN (Roman et al. , 1993). The control group consisted of 

Twenty-nine (female = 13; age = 75.5 6.2 years; MMSE-T1 = 28.4 0.9) ambulatory 

geriatric patients with only mild hypertension and/or mild diabetes. The original 

MMSE-T1 scores were adjusted for illiteracy by multiplying 30/27 (3 points for reading 

or writing Chinese characters). Exclusion criteria included mixed dementia, heart failure, 

atrial fibrillation, frequent atrial premature complex or ventricular premature complex, 

major systemic diseases, infection, hypothyroidism, vitamin B12 or folic acid deficiency, 

psychosis, previous stroke, major head injury, epilepsy, normal pressure hydrocephalus, 

subdural effusion or hemorrhage, and exposure to sympatholytic agents (including beta 

blockers), acetyl cholinesterase inhibitors, tranquilizers, or antidepressants. The ethics 

committee on human research of Tainan Hospital approved the study. All participants or 

their surrogates gave written informed consent. The investigation conformed to the 

principles of the Declaration of Helsinki. 
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2.2.2 Data collection 

All subjects underwent routine EEG recordings with determination of arousal 

reaction to eye opening and references at ear electrodes. The routine multichannel EEG 

includes two parts: the 30-minute wakeful resting recording and the 2.5-minute 

recording under intermittent photic stimulation. The surface EEG was collected by a 

digital EEG recorder (Harmonie version 3.1 digital EEG Stellate Systems, Canada) at 

200Hz from the 19 electrodes of the international standard 10/20 system (Figure 1). The 

raw data, contaminated with artifacts such as eye movements, blinks, muscle activities 

and others, were saved in text files for off-line analysis on a personal computer. I chose 

three 80-second segments from each file: one visually-censored (by an experienced 

neurologist) artifact-free eye-closed wakeful resting recording, one photic-simulated 

recording at frequencies 1, 3, 6 and 9 Hz (slowPS, duration 10 seconds and interval 10 

seconds) and one photic-simulated recording at frequencies 12, 15, 18 and 24 Hz 

(fastPS, duration 10 seconds and interval 10 seconds). The ECGs simultaneously 

recorded with the EEGs were also obtained. R-peak detection and the beat annotations 

were performed by an automated arrhythmia detection algorithm and verified by visual 

inspection. The series of interbeat interval between successive R-peaks, that is the R-R 

interval (RRI, figure 1), served as the basis for the calculations. Occasional ectopic 

beats were identified and replaced with linearly interpolated RRI data. Those subjects 
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with more than 1% ectopic beats were excluded from the final analysis. All the data 

from EEG would be applied in the analysis of MSE and symbolic dynamics. 

All subjects underwent electrocardiography (ECG) monitoring for 24 hours by a 

standard ambulatory ECG recorder (MyECG E3-80 Portable Recorder, Microstar, 

Taiwan) at 250 Hz. Two epochs of 2-hour ECG recorded during 9-11am (wakeful) and 

1-3 am (sleep) were obtained from each subject. Another 7-minute ECG recording was 

extracted from the wakeful resting EEG for each subject (Figure 1). The R-peak 

detection was performed by an automated arrhythmia detection algorithm and corrected 

by visual inspection. Occasional ectopic beats were identified and replaced with linearly 

interpolated RRI data. Those people with a rate of ectopic beats higher than 1 % were 

excluded from the final analysis. Four people having too many ectopic beats only 

during sleep were included in the final analysis only with the awake RRI data. The three 

RRI time series were linearly re-sampled at 2 Hz. Because of insufficient data points for 

the 7-minute RRI, only the two 2-hour RRI time series proceeded to the MSE analysis. 

One 80-second RRI recorded simultaneously with the EEG from each subject was 

extracted to be applied in the symbolic analysis. They were not re-sampled. 

2.2.3 Data analysis 

2.2.3.1 Filtering and detrending of EEG 
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The EEG recordings were firstly processed by a notch filter at the frequency of 

current 60 Hz. They were further processed by the EMD techniques to collect the 

components of frequency around 1-58 Hz for the MSE analysis and 0.5-59 Hz for the 

symbolic analysis. The broader band used in the symbolic analysis was aimed to 

preserve the components of slow cortical potential, to which the relationship of the 

simultaneous RRI dynamics would be explored. 

2.2.3.2 LF/HF ratio 

The low-to-high frequency power (LF/HF) ratio of RRI was calculated to represent 

sympatho-vagal balance. 

2.2.3.3 Multiscale entropy 

Multiscale entropy (MSE) analysis was applied to three epochs (wakeful resting, 

fastPS and slowPS) of EEG in the 1-58 Hz frequency range, and three (2-hour awake, 

2-hour sleep, 7-minute from EEG recordings) epochs of RRIs. 

2.2.3.4 Symbolic dynamics 

2.2.3.4.1Four sequences derived from EEG 

I detected the local peaks (points from which all paths are downhill) along the EEG 

waveform and made two sequences from them: the local-peak voltage and interpeak 

interval sequences (figure 2a). I then calculated the difference between the respective 
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envelopes of the peaks and troughs to acquire the EEG excursion amplitude (AMPeeg) 

(Stevenson et al. , 2010) using a method based on the envelope fitting procedure defined 

in the sifting process of the empirical mode decomposition (EMD) (Huang et al. , 1998). 

The local peaks of the AMPeeg were also detected to form another two sequences: the 

local-peak voltage and interpeak interval of the AMPeeg. Details of the procedure are 

described below. Then peak detection was performed for each channel of the EEG 

according to the EMD method: 

maxima (n) = 
1   ( 1) ( ) 0 & ( ) ( 1) 0

0  otherwise

x n x n x n x n     



 

minima (n) = 
1   ( 1) ( ) 0 & ( ) ( 1) < 0

0  otherwise

x n x n x n x n    



 

 nmax = n, when maxima (n) = 1; nmin = n when minima (n) = 1;  

where x (n) is the filtered EEG signal, n = {0,1,2,.. . , N - 1} and N is the signal length. 

With the local peaks of the filtered EEG, I made two sequences, the local-peak voltage 

(x (nmax)) and interpeak interval (difference (nmax)) sequences (Fig. 2a). Next, natural 

cubic splines were applied to the maximal (nmax, x (nmax)) and minimal (nmin, x (nmin)) 

points respectively according to the sifting procedure of the EMD. Thus the upper EEG 

envelope (EEGenv
u
) and the lower EEG envelop (EEGenv

l
) were formed from the 

maximal points and minimal points, respectively. The EEG excursion amplitude 

(AMPeeg) was defined as the difference between the upper and lower envelopes, 
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AMPeeg (n) = EEGenv
u
-EEGenv

l
 (figure 2b). The local peaks of the AMPeeg were again 

detected to form another two sequences, the local-peak voltage and interpeak interval of 

the AMPeeg (figure 2c). 

2.2.3.4.2 Construction of symbolic sequences 

I followed the method developed and validated by Porta et al. (Porta et al. , 2001). 

Each sample of the series X = {Xi, i = 1,…, N} (either a RRI, a filtered single-channel 

EEG whole tracing, or any of the four sequences derived from each single-channel EEG) 

is first normalized by subtracting the mean and, then, divided by the standard deviation, 

thus obtaining the series x = {xi, i = 1,…, N}. Next, through coarse-graining, the full 

range of a series x = {xi, i = 1,…, N} was uniformly spread on 6 levels (from 0 to 5) and 

transformed into a series of symbols x
6 

= {x
6

i, i = 1,…, N} from the limited alphabet of 

symbols {0,1,…,
 
5} (figure 2d, 3b). From the symbolic series x

6
, patterns of 3 delayed 

samples (L = 3) were constructed as x
6

3, i = (x
6
i, x

6
i-1, x

6
i-2). The overlapping triplet 

symbol x
6

3, i was codified in decimal format as (x
6
i, x

6
i-1, x

6
i-2)decimal = x

6
i * 6

3-1
+ x

6
i-1 * 6

3-2
 

+ x
6

i-2* 6
3-3 

= wi , w = {wi, i = 1,…, N-L+1} with wi ranging from zero to Np = (6-1)
3 1

0

6i

i






 

(figure 3c). 

2.2.3.4.3 Number of forbidden words and surrogate data 

I counted the number of forbidden words (NumFW) of the overlapping triplet 
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symbols x
6

3, i - that is the number of patterns which never occur. The number of all 

possible patterns of the overlapping triplet symbols x
6
3, i equals 216 = 6

3
 (also equals 1+ 

Np). A high NumFW stands for a rather regular behavior in the time series (Wessel et al. , 

2000). The sample length of the of the overlapping triplet symbols x
6

3, i would be 

checked to ensure that all patterns (ie. 216) could be found several times. To test the 

presence of deterministic structures in a sequence, I carried out a surrogate data analysis 

using Gaussian-scaled random-phase surrogates by iterated amplitude adjusted Fourier 

transform (IAAFT). (Schreiber et al. , 1996) An IAAFT surrogate time series is random, 

matches the original power spectrum and preserves the exact original marginal 

distribution. 

2.2.3.4.4 Steps and others 

At first, five methods were applied to the symbolic analysis of each RRI and filtered 

single-channel EEG whole tracing. Sample entropy (SampEn) (Richman et al. , 2000), 

Shannon entropy (Shannon, 1948), alpha (1) for detrended fluctuation analysis (DFA) 

(Peng et al. , 1994) and Hurst exponent for rescaled range analysis (RS) (Hurst, 1951) 

were calculated for each decimalized symbolic sequence, w, of the RRIs and EEG 

whole tracings. Number of forbidden words (NumFW) was calculated for each 

sequence of the overlapping triplet symbols, x
6

3,i, of the RRIs and EEG whole tracings. 

Methods that showed no significant between group differences by multivariate analysis 
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of variance (MANOVA) statistics would not be applied in the analysis of the four 

EEG-derived sequences. The second step was aimed to explore the issue of amplitude 

versus instantaneous frequency. Methods chosen from the first step would be calculated 

for the symbolic sequences of the four EEG-derived sequences (the local-peak voltage, 

interpeak interval, local-peak voltage of the AMPeeg and interpeak interval of the 

AMPeeg). 

For the SampEn, I chose m = 2 and r = 0.2. For the algorithms for other calculations, 

please refer to the references. The SampEn, alpha (1) for DFA and Hurst exponent for 

RS of the EEG whole tracings without the symbolization procedure were also calculated 

for comparison. 

2.2.3.5 Statistical analysis 

All statistical analyses were performed using R 2.11.0 at a 0.05 alpha level. For the 

symbolic dynamic study, I performed MANOVA to test for significant differences 

between means. For the symbolic analysis in the first step, I performed a one-way 

Multivariate analysis of variance (MANOVA) for significant differences between 

means. In post-hoc analyses, I used Tukey's Honestly Significant Difference (HSD) 

test to correct for multiple comparisons of 19 electrode sites in three conditions. And 

the Tukey's p values were further adjusted by Bonferroni corrections for five methods 

(by multiplication with five). SampEn and NumFW were chosen from the first step. In 
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the second step, I also performed MANOVA to examine SampEn and NumFW in the 

symbolic analysis of the four EEG-derived sequences. And the post-hoc comparisons 

using Tukey’s HSD test were also followed by Bonferroni corrections for two methods 

and four sequences (by multiplication with eight). Paired-t tests with Bonferroni 

corrections (19 electrode sites) were used to compare the very much correlated data in 

three EEG conditions. For the analysis of MSE, I performed Student’s t-tests to 

evaluate group differences, and age- and gender-adjusted Pearson’s partial correlation 

coefficients to evaluate correlations between any two variables. And I used Bonferroni 

corrections to adjust p-values by multiplying the number of the EEG channels (19 

channels). I used Student’s t-tests to evaluate group differences, and age- and 

gender-adjusted Pearson’s partial correlation coefficients to evaluate correlations 

between any two variables. The correlations among the three EEGs or three RRIs were 

calculated using paired t-tests. Kolmogorov-Smirnov and Levene tests were used to 

assess the normality of distribution and homoscedasticity, respectively. 
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Chapter 3 Results 

3.1 MSE analysis (non-simultaneous EEG and RRI) (Lin et al., 

2014) 

3.1.1 Linear correlations between the MSE of EEG and RRI 

I performed a visual inspection of the obtained MSE curves which represent the 

SampEn values of each coarse-grained sequence versus the scale. Most of the MSE 

curves had a pattern of an initial increase (from scale 1 to 5 for EEG and from scale 1 to 

10 for RRI) before a plateau or a fall. If the SampEn increases initially because of 

decorrelation before it begins to decrease because of averaging process, the presence of 

complex long time correlations is expected (Thuraisingham, 2006) (Figure 4). I also 

analyzed regression coefficients for the MSE slopes over   of 1-5, 6-10, 11-15 and 

16-20, and found no significant differences between groups. The MSE profiles of either 

the RRIs or EEGs showed no preference to evolve into a plateau or a fall in either the 

VD, AD or control subjects. Nevertheless the plateau on the MSE profiles of the EEGs 

seemed to be higher in the control than in the two demented groups. 

In all patients, I found significant and very consistent inverse linear correlations 

between any of the MSE values of the wakeful RRIs on the scale from 11 to 20 (after 

the initial rising) and any of the MSE values of the EEGs in many channels on the scale 
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from 6 to 20 (after the initial rising). Therefore I summed up the MSE values on 10 

scales (11-20) for the RRIs and on 15 scales (6-20) for the EEGs to facilitate statistical 

analyses. Using Pearson’s partial correlation tests with adjustment for age and gender, 

in all patients, I found significant inverse associations between the summed MSE values 

on the scales 11-20 of the RRI (RRI-MSE-coarse) during the wakeful state and the 

summed MSE values on the scales 6-20 of the EEG (EEG-MSE-coarse) during the 

resting-wakeful state after Bonferroni corrections at electrodes Fp2 (r = - 0.363, p = 

0.012), C4 (r = - 0.344, p = 0.024), T6 (r = - 0.332, p = 0.036) and T4 (r = - 0.325, p = 

0.046) (Figure 5). The inverse associations were present in all three patient groups 

individually, but failed to reach the alpha level after stringent Bonferroni corrections. 

The RRI-MSE-coarse of the RRI during sleep was not correlated with the 

EEG-MSE-coarse of the wakeful resting EEG at any channel. The EEG-MSE-coarse of 

the fast-PS EEG was also inversely correlated to the wakeful RRI-MSE-coarse after 

Bonferroni corrections at electrodes O1 (r = - 0.336, p = 0.011), O2 (r = - 0.357, p = 

0.015) and C4 (r = - 0.327, p = 0.042) (Figure 6), but not to the sleep RRI-MSE-coarse. 

In contrast, the EEG-MSE-coarse of the slow-PS EEG was significantly inversely 

correlated to the sleep RRI-MSE-coarse after Bonferroni corrections at electrode Fp2 (N 

= 83, r = - 0.332, p = 0.049), but not to the wakeful RRI-MSE-coarse. 
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In order to examine whether these associations between the complexity of heartbeat 

and brainwaves come from the autonomic nervous network, I calculated the high 

frequency power (HF), low frequency power (LF), and ratio of low frequency to high 

frequency power (LF/HF ratio) for all the three RRI time series. I found that the LF/HF 

ratio and RRI-MSE-coarse of the wakeful RRI had a positive age- and gender-adjusted 

Pearson’s partial correlation coefficient (r = 0.307, p = 0.004) between each other. 

Nevertheless, the inverse association between the LF/HF ratio of the wakeful RRI and 

the wakeful resting EEG-MSE-coarse at any channel was not strong enough to exist 

after Bonferroni corrections. In contrast, the LF/HF ratio and any of the MSE value on 

the fine scales (scales 1-3) of the wakeful RRI were inversely correlated to each other 

(age- and gender-adjusted Pearson’s partial correlation coefficients r = - 0.420 to - 

0.337, p-values all < 0.0001). The LF/HF ratio of the sleep RRI was not correlated to 

the sleep RRI-MSE-coarse or any of the EEG-MSE-coarse. Additionally, I found that 

both the RRI-MSE-coarse and LF/HF ratio of the wakeful RRI were negatively 

correlated to age using gender-adjusted Pearson’s partial correlation tests  (r = - 0.301, 

p = 0.005 and r = - 0.214, p = 0.047, respectively). 

Results of Student’s t-tests with Bonferroni corrections revealed that the wakeful 

resting EEG-MSE-coarse at electrode F8 (p = 0.036) and the fast-PS EEG-MSE-coarse 

at electrode Cz (p = 0.019) were significantly decreased in the VD group compared to 
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the control group. I also found a significant age- and gender-adjusted Pearson’s partial 

correlation between the MMSE-T1 score and the wakeful resting EEG-MSE-coarse at 

electrode F8 (r = 0.332, p = 0.036) after the Bonferroni correction. The wakeful resting 

EEG-MSE-coarse was not correlated to age or gender. None of the two sets of 

RRI-MSE-coarse showed group differences among the three patient groups using 

student’s t-tests after Bonferroni corrections. 

3.1.2 Correlated data 

The Fourier-based spectra of all three RRI time series were significantly similar to 

each other in spectral distribution. For the LF, HF and LF/HF ratio between the 2-hour 

sleep and 2-hour wakeful RRIs, the p-values for Pearson’s correlation coefficients were 

all below 10
-6

. For the LF and HF between the 7-minute and either of the 2-hour RRIs 

(wakeful or sleep), the p-values for Pearson’s correlation coefficients were all 

significantly below 0.001. Of the sleep RRI, the LF and LF/HF ratio (N = 83, p = 0.003 

and 0.019 respectively) were significantly lower in the VD group compared to the 

control group using Student’s t-tests. In contrast to previous evidence which showed 

either lower wakeful LF and LF/HF ratio in AD (Murakami et al. , 2002) or no HRV 

change in AD and VD (Allan et al. , 2005), our patients with VD other than AD had 

more prominent autonomic cardiac involvement. Finally, the paired-t test also showed 

that the EEG-MSE-coarse of the fast-PS EEG was much smaller than the 
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EEG-MSE-coarse of either the wakeful resting EEG or slow-PS EEG (p-values < 

0.0001 at all electrode sites). 

3.2 Symbolic dynamics (simultaneous EEG and RRI) (Lin et al. , 2015) 

3.2.1 Discriminative power found only after the symbolization procedure 

In the symbolic analysis of the EEG whole tracings: no alpha (1) for DFA or Hurst 

exponent for RS demonstrated significant differences among groups; Shannon entropy 

shared nearly the same findings with SampEn in the MANOVA and the post-hoc tests, 

only with larger p-values; NumFW reveled highest discriminative power. We chose 

SampEn and NumFW for the second step. For comparison, analyses of the EEG whole 

tracings without the symbolization procedure were performed with all methods except 

NumFW (not applicable). Findings without the symbolization procedure did not reveal 

any significant difference among groups. 

3.2.2 The local-peak voltage sequence of EEG shows the same dynamics in the EEG 

whole tracing 

Among patient groups, consistent relative values of SampEn of the decimalized 

symbolic sequence (Control = AD < VD) and NumFW of the overlapping triplet 

symbols (Control = AD > VD) were presented in the symbolic analyses of both the EEG 

whole tracing and the local-peak voltage sequence. Table 1 shows the means and 

standard deviations of the SampEn and NumFW of the symbolic dynamics of the EEG 
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whole tracing. Table 2 shows the means and standard deviations of the SampEn and 

NumFW of the symbolic dynamics of the local-peak voltage sequence of the EEG. 

Significant discriminative brain regions revealed by the post-hoc study of MANOVA 

were denoted by the star signs as ―
*
‖ for corrected p value < 0.05 and ―

**
‖ for corrected 

p value < 0.01. The symbolic dynamics of the other three sequences derived from EEGs 

(the interpeak interval sequence of the local peaks of the EEG, the interpeak interval 

sequence of the local peaks of the AMPeeg, and the local-peak voltage sequence of the 

AMPeeg) or any RRI sequence did not show discriminative ability. In conclusion, the 

symbolic dynamics in the EEG whole tracing were only found again in the local-peak 

voltage sequence of the EEG. 

The discriminative brain regions for the SampEn are presented as topographic maps 

in figure 7 and figure 8. In the analyses of the EEG whole tracings, lower NumFW 

(NumFW_EEGwhole) values in the VD compared with the control group are presented 

in figure 3 (a1- a3) at Fp2 (corrected p-value: 0.025), F4 (0.025), F8 (410
-4

), C4 

(510
-5

), T4 (0.002), P4 (510
-4

), T6 (210
-4

), O2 (0.005), Fp1 (0.030), F3 (0.010), F7 

(0.040), C3 (0.015), P3 (710
-4

), Fz (0.001), Cz (0.005) and Pz (610
-4

) with the 

wakeful resting EEG; at C4 (0.030), T4 (0.010), T6 (0.020), F7 (0.005), C3 (0.001), T3 

(0.002), P3 (210
-4

), T5 (0.005), O1 (0.005) and Pz (0.005) with the slowPS EEG; and 

at F4 (0.030), F8 (0.010), C4 (0.005), T4 (0.020), P4 (0.035), T6 (0.005), O2 (0.001), 
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Fp1 (0.005), F3 (0.010), F7 (0.030), C3 (810
-4

), T3 (410
-4

), P3 (810
-4

), T5 (0.001), 

O1 (210
-4

), Fz (0.015), Cz (0.020) and Pz (0.002) with the fastPS EEG. In the analyses 

of the EEG whole tracings, higher SampEn values in the VD compared with the control 

group are presented in figure 3 (b1- b3) at C4 (210
-4

), P4 (0.015), T6 (0.010), Fz 

(0.010), Cz (0.012) and Pz (0.002) with the wakeful resting EEG; at F7 (0.025), P3 

(0.015) and T5 (0.005) with the slowPS EEG; and at P4 (0.03), T6 (0.035), O2 (0.010), 

F3 (0.040), F7 (0.015), C3 (0.010), T3 (0.005), P3 (0.010), T5 (0.010), and Pz (0.005) 

with the fastPS EEG. In the analyses of the EEG whole tracings, lower 

NumFW_EEGwhole values in the VD compared with the AD group are presented in 

figure 3 (c1- c3) at F8 (0.028), C4 (0.049), T4 (0.002), P4 (810
-4

), T6 (210
-4

), O2 

(710
-4

), T5 (0.040), Fz (0.035) and Pz (0.005) with the wakeful resting EEG; at C4 

(0.005), T6 (0.030), C3 (0.020), T3 (0.035), T5 (0.005), O1 (0.015), Cz (0.030) and Pz 

(0.005) with the slowPS EEG; and at F4 (0.005), C4 (0.005), T4 (0.005), P4 (0.020), T6 

(0.001), O2 (0.001), F3 (0.020), C3 (0.020), T3 (0.005), P3 (0.005), T5 (0.005), O1 

(0.025), Fz (0.005), Cz (0.005) and Pz (0.002) with the fastPS EEG. In the analyses of 

the EEG whole tracings, higher SampEn values in the VD compared with the AD group 

are presented in figure 3 (d1- d3) at T6 with the wakeful resting EEG; at T6 (0.040) 

with the slowPS EEG; and at C4 (0.025), T4 (0.005), P4 (0.010), T6 (0.010), O2 (0.005) 

and Cz (0.045) with the fastPS EEG. 
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In the analyses of the local-peak voltage sequence of EEG, lower NumFW 

(NumFW_EEGpeak) values in the VD compared with the control group are presented in 

figure 4 (a1- a3) at Fp2 (0.048), C4 (0.032), P4 (0.048), Fp1 (0.048), F3 (0.016), O1 

(0.048), Fz (0.003), Cz (0.016) and Pz (10
-4

) with the wakeful resting EEG; at Fp2 

(0.008), C4 (0.048), Fp1 (0.008), F3 (0.002), F7 (0.016), C3 (710
-4

), P3 (610
-4

), T5 

(0.002), O1 (0.032), Fz (0.016) and Pz (0.008) with the slowPS EEG; and at F4 (0.032),  

C4 (810
-4

), T4 (0.048), O2 (0.048), F3 (0.008), C3 (0.016), T3 (0.040), P3 (0.008), T5 

(0.032), O1 (0.003), Fz (0.016), Cz (0.016) and Pz (0.024) with the fastPS EEG. In the 

analyses of the local-peak voltage sequence of EEG, higher SampEn values in the VD 

compared with the control group are presented in figure 4 (b1- b3) at C4 (0.003), T4 

(0.032), P4 (0.008), Fz (0.008), Cz (0.008) and Pz (210
-4

) with the wakeful resting 

EEG; at F3 (0.040), P3 (0.016) and T5 (0.032) with the slowPS EEG; and at C4 (0.16), 

F3 (0.016), O1 (0.024) and Pz (0.040) with the fastPS EEG. In the analyses of the 

local-peak voltage sequence of EEG, lower NumFW_EEGpeak values in the VD 

compare  In conclusion, symbolic entropy of the amplitude rather than the 

instantaneous frequency of EEG varies in dementia. The lower NumFW and higher 

SampEn of either the whole EEG tracings or the local-peak voltage sequences in the VD 

group implied a loss of regularity. 

The linear correlations between the NumFWwhole and NumFW_EEGpeak in all 
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three conditions were very high (the age- and gender-adjusted partial correlation 

coefficients r = 0.52 to 0.85, p = 10
-7 

to 10
-25

). I did not find any correlations between 

the NumFWwhole and the NumFW of any of the other three EEG derived sequences 

(the interpeak interval sequence of the local peaks of the EEG, the local-peak voltage 

sequence of the AMPeeg and the interpeak interval sequence of the local peaks of the 

AMPeeg.). The MMSE-T1 score decreased linearly with age (gender-adjusted Pearson’s 

partial correlation coefficient r = -0.337, p = 0.001). Using ANOVA test, the MMSE-T1 

score was significantly lower in the VD compared with in the control (p = 310
-10

) and 

AD (p = 0.04) groups. 

3.2.3 No correlations between simultaneous EEG and RRI 

I failed to find any correlation between the parameters from the symbolic analysis of 

the simultaneous RRIs and EEGs. 

3.2.4 Correlated data 

The NumFW_EEGpeak values in the EEGs of all three conditions were highly 

correlated with one another (all the p-values for Pearson’s correlation coefficients < 

0.001). Using paired-t tests with Bonferroni corrections, I found that: significant lower 

NumFW_EEG_whole value in the slowPS compared with the wakeful resting state at 

F1 (p = 610
-6

), Fz (p = 610
-5

), F2 (p = 410
-4

), F3 (p = 0.003), F4 (p = 0.009), Cz (p 
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= 0.030) and F8 (0.040); significant lower NumFW_EEGpeak value in the slowPS 

compared with the wakeful resting state at Fz (p = 10
-5

), Fp2 (p = 10
-4

), Fp1 (p = 

710
-4

), F8 (p = 0.007), Cz (p = 0.008), F3 (p = 0.003) and F4 (p = 0.02); significant 

lower NumFW_EEGwhole value in the fastPS compared with the wakeful resting state 

at Fz (p = 10
-4

), Fp1 (p = 210
-4

), Fp2 (p = 0.004), F3 (p = 0.007) and F8 (p = 0.01); 

significant lower NumFW_EEGpeak value in the fastPS compared with the wakeful 

resting state at F4 (p = 610
-6

), F1, F8, F3 and Fp2 (all p-values = 0.01). Both the 

NumFW_EEGwhole and NumFW_EEGpeak did not significantly differ between the 

slowPS and fastPS conditions. The NumFW values of the RRIs in all three conditions 

(wakeful resting, slowPS, and fastPS) were highly correlated to each other (Pearson’s 

correlation, p-values < 0.0001) but not different in their means (paired-t tests). High 

correlations were also seen with the SampEn  

3.2.5 The number N of words used for estimation of the number of 

forbidden words 

The sample length of the EEG whole tracing signal was originally 16,000 (80 

seconds, 200Hz). After the symbolic pattern construction of 3 delayed samples, the 

number N of words used for estimation of the number of forbidden words (N) became 

15998. The N of the local-peak derived sequences was around 1300-3000, and of the 

AMPeeg-derived sequence was around 400-1000. They were also large enough to allow 
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patterns (i.e., 216) to be found several times. I also used IAAFT surrogate time series 

for comparison. I found that in all three conditions, the NumFW values of the whole 

EEG tracings or their derived sequences (around 30 to 200) were also significantly 

much higher than those of their surrogate data (close to 0). Non-randomness and 

non-linearity in our data were justified. 
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Chapter 4 Discussion 

4.1 Inverse correlations between the signal complexity of cardiac and 

cerebral activities (Lin et al., 2014) 

The MSE anlayses of non-simultaneous EEGs and RRIs displayed inverse 

correlations between the signal complexity of cardiac and cerebral activities. And these 

could not be fully explained by the central autonomic pathways. The wakeful resting 

EEG was associated to the wakeful RRI time series in the right frontopolar, central and 

temporal area, the fast-PS EEG was also associated to the wakeful RRI time series in 

the bilateral occipital and right central area, whereas the slow-PS EEG was associated to 

the sleep RRI time series in the right frontopolar region. These results may imply a 

strong correlation between the dynamics of heartbeat and brainwaves; and the 

correlation could be manipulated by photic stimulation, and affected by the sleep-wake 

cycle. 

Although I adopted a stringent statistical criterion by using Bonferroni adjustments 

to enlarge the p-values by 19 times based on the interdependence between the EEGs of 

19 electrode sites, I understand that the likelihood of type II error is also increased, so 

that truly important differences are deemed non-significant (Perneger, 1998). Before 

Bonferroni corrections, the significant sites showing the heart-brain connection 
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distributed widely over the whole head, whereas after Bonferroni corrections, the 

heart-brain connection only appeared in the right frontopolar, central and temporal area 

during the wakeful state. Whether these correlations between the heart and brain exist 

globally and favor the right brain, and whether they could be fully explained by the 

central autonomic pathways are unknown. These correlations seemed to exist in all 

three aging groups, but whether they exist in younger populations as well is also 

questionable. According to previous neuroanatomical and pharmacophysiological 

findings, the prefrontal cortex plays the leading role in the central autonomic network. 

The connection between the heart and brain in signal complexity is beyond the 

anatomical evidence of the central autonomic network. 

The results correspond with the cholinergic hypothesis (Pakaski et al. , 2008) which 

states that cognitive decline (a lower EEG-MSE-coarse) is related to central cholinergic 

neuronal dysfunction and a consequent decrease in vagal cardiac modulation (a higher 

LF/HF and a higher RRI-MSE-coarse). In addition, because of the similarity between 

all three RRI data, HRV is stable and therefore characteristic of an individual (Sinnreich 

et al. , 1998). Finally, conforming to previous evidence, both the MMSE-T1 score and 

HRV in our study decreased linearly with age. 

4.2 The merits of symbolization (Lin et al. , 2015) 

A continuous visually clean EEG recording could only be acquired in a very limited 
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period because of copious artifacts from muscles or environments. The sequences of the 

amplitude and interpeak interval of the local peaks of EEG are even shorter. SampEn 

showed discriminative ability on the EEG whole tracing only after the symbolization 

techniques. This has clearly showed the merit of the symbolization technique. The 

NumFW, also known as missing patterns, outperformed SampEn in group 

differentiation. True missing patterns are robust against noise and they have the 

potential ability for distinguishing deterministic behavior from randomness in finite 

time series contaminated with observational white noise (Amigó et al. , 2007, Carpi et 

al. , 2010). In conclusion, the symbolization technique amplified the discriminative 

power in EEG. It is due to better sigal-noise ratio after the symbolization technique. 

4.3 Study of the discrete events (Lin et al. , 2015) 

The dynamics of heartbeat is studied through its discrete events, namely RRI. 

However, the study of the dynamics of EEG is generally not through the discrete events 

except the evoked potential. Detecting the local peaks, I approached the background of 

resting EEG through the aspect of discrete events. The human brain is believed to 

function on the base of networks of interactivity of neural assemblies, which could be 

approached through the transient phase couplings of EEG signals from various regions. 

A balanced dynamical pattern that switches between synchronization (phase coupling 

between two regions) and desynchronization (phase shifting) is crucial to proper brain 
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function (Stam et al. , 2003, Hong et al. , 2004, Pijnenburg et al. , 2004, Garcia 

Dominguez et al. , 2005, Lackner et al. , 2013). The scalp EEG mainly records large 

postsynaptic potentials (Nunez, 1981). Only large populations of active neurons can 

generate enough potential to be recordable using the scalp electrodes. The peaks and 

troughs of a physical wave indicate levels of probability for the occurrence of certain 

phenomenon. One peak of a single-channel EEG implies a local maximal (in time 

domain) amount of synchronized active neurons in a localized region. Therefore, the 

dynamics of the local maxima of a single-channel EEG reflects the changing degree of 

neuronal couplings in the localized brain area. I supposed that discrete events can 

provide more focused information in certain dimension of the dynamics. The EEG 

whole tracing revealed slightly more discriminative brain regions compared with the 

local-peak voltage sequence. This was due to that the Bonferroni corrections were more 

rigorous in the analyses of the local-peak voltage sequences according the study design. 

Whether the discrete events provide more focused information was not answered. But 

we can say that they provide no less information than the continuous EEG recordings. 

Using symbolic analysis, the differences between the VD and control groups in the 

dynamics of the EEG whole tracings could only be found in its local-peak voltage but 

not interpeak interval sequences. This may imply that the dynamics of the amount 

(local-peak voltage) of but not the interval (interpeak interval) between each 
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synchronous firing of adjacent cerebral neurons are relevant to clinical conditions. 

4.4 Regularity based complexity study 

It is still under debate whether chaos is present in the biological rhythms. In practice, 

this issue is not as interesting as one might think in clinical application. Actually, very 

few of the time series considered for a nonlinear treatment pass even a simple test for 

Gaussianity. Since both deterministic regularity and irregularity are present in the 

biological rhythms, regularity based complexity study should well explore the system 

dynamics. 

Biological systems are complex at multiple levels of temporal and spatial scales and 

consist of interconnected feedback loops. The Fourier-based spectral analysis averages 

the signals, so it can not sufficiently display the nonlinear and non-stationary properties 

of complex biological systems. The science of complex systems is closely related to 

variability analysis which detects and characterizes nonlinear dynamics (Stam, 2005). 

Heart rate variability (HRV) and signal variability of resting-state brain activity convey 

important information about network dynamics (Deco et al. , 2011). I found the entropy 

measurement techniques, which compute the regularity patterns of a time series, best 

suit our data and the entropy values can provide quantitative connotations to facilitate 

comparisons and correlations between two systems and between individual subjects. I 

also successfully used MSE to demonstrate the correlation between the 
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non-simultaneous EEGs and RRIs. This has proven the importance of multiscale 

approaches. In contrast, we found no discriminative abilities in DFA or RS, which are 

fractal based analyses. 

4.5 The issue of more or less complexity (Lin et al. , 2014, Lin et al. , 2015) 

Living organisms are generally believed to behave in a manner of high complexity 

in order to respond to a broad range of stimuli (Peng et al. , 2009). With the 

deterioration of health conditions, the change in dynamic patterns of biological signals 

is characterized by loss of complexity and development of stereotypy such as 

Cheyne-Stokes respiration, Parkinsonian gait, cardiac rhythms in heart failure 

(Goldberger, 1997) and dementia (Jeong, 2004). Nevertheless, an increase of entropy 

(ApEn) was noted in the hormone release patterns in Cushing’s disease (van den Berg et 

al. , 1997) and acromegaly (Hartman et al. , 1994). Previous EEG studies showed more 

regularity in AD using approximate entropy (Abasolo et al. , 2007) and SampEn (Park 

et al. , 2007). Various analytic methods may have explored different scales or 

dimensions. For example, multiscale entropy analysis revealed different results across 

fine- or coarse-time scales in AD, higher or less regularity, respectively (Escudero et al. , 

2006, Yang et al. , 2013). With multifractal biological signals, Vaillancourt and Newell 

made a point that no one direction fits all results (Thaler, 2002). Any physiological 

phenomenon plays only one part in the complex networks of a human body. While 
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exploring the dynamics of highly complex physiological signals with a very limited set 

of signals as state variables, one actually observes a low-dimensional projection of a 

trajectory embedded in the much higher dimension of state space (Costa et al. , 2005). 

Riley et al. also revealed that more variability does not mean more randomness, and 

more controllability does not mean more deterministic characteristics (Riley et al. , 

2002).  

I found a consistent decrease of regularity in the symbolic dynamics of EEG but an 

increase of regularity in the coarse-scaled MSE in VD. This discrepancy may be caused 

by the multifractal characteristic of EEG signals and the limitations of the analytic 

methods. The symbolic analysis of the discrete events and the MSE analysis depict 

different scales of the EEG dynamics. In addition, the correlations between the LF/HF 

ratio and MSE values of the wakeful RRI being positive on the coarse scales and 

negative on the fine scales of MSE. This has advocated the importance of a multiscale 

approach to biological signals. In conclusion, the direction of complexity change does 

not guarantee a better or worse physiological condition. But a consistent inverse 

correlation most likely indicates a certain physiological connection between the two 

systems. 

4.6 Photic stimulation amplified differences between groups (Lin et al. , 

2014, Lin et al. , 2015) 
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Photic stimulation (PS) is a procedure meant to elicit or accentuate epileptiform 

discharges during a routine EEG. Both cardiac and neuron cells are spontaneous 

oscillators. Despite the widespread utilization, the complete understanding of the brain 

response to PS is still an open problem. Photic stimulation (PS) of either slow or fast 

frequencies significantly interrupted the EEG dynamics with both the whole tracing and 

the local-peak voltage sequence. The PS procedure widely affects the EEG dynamics 

over the whole head in the MSE study. The symbolic dynamics under PS was 

significantly less regular (lower NumFW) in the frontal regions but not the occipital 

regions. Intuitively, any changes in cortical activity that occur during the PS procedure 

are attributed to the visual stress, which logically should mainly affect the occipital 

regions. In all our brain images, the frontal regions either are scattered with ischemic 

lesions or show age- or disease-related atrophy, whereas the occipital regions are 

relatively intact. Therefore I can attribute the changes in the frontal regions by the PS 

procedure to the vulnerability of the frontal regions. The PS procedure amplified the 

group differences, especially in fast frequencies. One can find more discriminative brain 

regions in the fastPS condition compared with the wakeful resting condition in both the 

EEG whole tracing and the local-peak voltage sequence from the topographic maps 

(figure 7, figure 8). The visual cortices were brightened up by the PS in fast frequencies. 

The PS procedure should have exerted a strong influence on the brain and consequently 
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provokes varied effects on different defective brain regions. The routine PS protocol of 

our laboratory uses a combination of short segments of different frequencies. Whether 

the symbolic dynamics can also be changed by PS at any particular frequency needs 

further research. 

A study of EEG under PS found no significant difference between the power spectra 

of the EEG under PS of frequencies 11 and 20 Hz (Kikuchi et al. , 2002). I found 

different MSE or symbolic entropy values between the EEGs under different PS 

frequencies. The fast-PS procedure changed the EEG dynamics and shifted the 

heart-brain associations topographically into the occipital lobes, the visual cortex. The 

slow-PS procedure, although not causing any obvious change in the MSE of EEG, also 

changed the EEG dynamics and shifted the heart-brain associations from wakeful state 

into sleep. I assume that the stimulation of fast-PS is very strong that highlights the 

connection between the heart and brain in the visual cortex, whereas the stimulation of 

slow-PS is weak and only blocks the background activity in the visual cortex just like 

what happens during sleep, being eye-closed. Sleep is a state of arousable ―loss of 

consciousness‖ with slowed heartbeats and brainwaves, and the mechanism of sleep 

remains unknown. 

4.7 Nonlinear and non-stationary filters 

I used linear filter to remove power line because the current oscillations are 
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sinusoidal periodicities and used nonlinear and non-stationary filter to remove nonlinear 

trending or mixed non-stationarities from artifacts such as eye and muscle movements. I 

have compared nonlinear decomposing techniques such as independent component 

analysis (ICA) (Comon, 1994), a stochastic approach, and empirical mode 

decomposition (EMD) (Huang et al. , 1998), a deterministic approach. Both techniques 

can detect and separate the contamination from wide variability of artificial sources in 

EEG recordings. ICA is suitable in eye-artifact elimination (Plochl et al. , 2012), 

whereas EMD works well for eliminating both eye- and muscle-artifact in EEG (Tsai et 

al. , 2012). EMD outperformed ICA for the denoising of data highly contaminated by 

muscular activity (Safieddine et al. , 2012). In this study, I chose the cleanest segments 

from long raw data by an experienced neurologist, eliminated the 60 Hz noise by notch 

filter, and eliminated the remained non-stationarities by EMD. 

4.8 Single or multi-channeled EEG 

Some studies have successfully approached the brain dynamics in a holistic way, 

namely multichannel, either through neural network models (Dimitriadis et al. , 2012) 

or through many other bivariate or multivariate synchronization models (Jalili et al. , 

2013). The scalp EEG signals of one single-channel already contain information shifting 

between synchronization and desynchronization of a certain network at a microscopic 

aspect. I took single-channel approach also because I intended to compare the 
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topographical results with those from fMRI studies. However, multichannel or situation 

under mental tasks would be considered in my future study. 

EEG possesses a remarkable advantage with its excellent time resolution which 

gives us a unique window on the dynamics of brain functions. When neuronal activity is 

measured by fMRI, a direct anatomical link does not necessarily coexist with robust 

functional connectivity (Koch et al. , 2002) and the within-subject test–retest reliability 

of functional connectivity as measured was surprisingly low (Honey et al. , 2009). 

Studies of EEG dynamics remains worthwhile until the questions between the brain and 

consciousness are fully answered. 

4.9 Wide band or narrow band 

Changes in the EEG dynamics of AD or amnesic mild cognitive impairment were 

reported in varied frequency ranges such as alpha1 (8–10.5 Hz) (Babiloni et al. , Adler 

et al. , 2003), theta (Adler et al. , 2003, Garn et al. , 2014), delta (Laskaris et al. , 2013) 

and all frequencies (Koenig et al. , 2005). Disturbed phase relations in vascular 

dementia revealed changes in all bands except delta (van Straaten et al. , 2014). 

Different methods may just explore different aspects or dimensions. Studies of 

approximate entropy (Abasolo et al. , 2007), SampEn (Park et al. , 2007) and multiscale 

entropy (Escudero et al. , 2006, Park et al. , 2007, Yang et al. , 2013) in dementia using 

wide-band EEG successfully showed eminent discriminative ability. Therefore I chose 
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wide-band EEG without a priori assumptions of the contribution of any frequency band. 

I have repeated the analyses in separated conventional bands with the symbolic analyses, 

but the discriminative ability in any conventional band was not as prominent as in the 

wide-band EEG. In addition, the amplitude fluctuation, which is crucial in my study 

design, would be reduced by the operation of extracting certain frequency band. 

4.10 Limitations 

Many recruited subjects were excluded due to varied reasons such as poor 

cooperation during the EEG procedure, poor EEG qualities, and too many ectopic 

heartbeats. A visually clean continuous EEG could only be acquired in a very limited 

period because of copious artifacts from eye movements, muscles or environments. The 

electromagnetic activity of the brain works at an extremely fast speed, and the 

quasi-stationary epochs of EEG are, in general, short lasting, in the order of tens of 

seconds (Fingelkurts, 2010). Therefore the simultaneous EEG and ECG data were not 

long enough for MSE, which warrants long series for better probability estimation. 

Using the symbolization techniques, I still found no correlation between the 

simultaneous EEG and RRI data. It is due to that the length of the RRI data in this study, 

even under the symbolization procedure, was too short to be characteristic of an 

individual. To achieve constant heart rate variability, it is generally recommended to 

obtain a minimum 5-minute ECG recording (Sinnreich et al. , 1998). 
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Chapter 5 Conclusion 

Answers to the hypotheses: 

1. Correlations between the heart and brain can be found in signal complexity.  Yes, 

the correlations were found in the MSE analyses of non-simultaneous EEG and RRI 

data. 

2. Higher complexity does not guarantee more health.  True, at first, it depends on the 

method and the scale or dimension that the method evaluates. Secondly, in the EEG 

dynamics for healthy brain conditions, homeostasis (less complexity) remains 

necessary in certain dimensions of the symbolic dynamics, whereas variability (more 

complexity) is found in the coarse scales of the MSE. 

3. Discrete events can provide more direct information than continuous waveforms.  I 

only proved the discrete events can show no less information than the continuous 

waveforms of EEG. Further studies are warranted to answer this hypothesis. 

4. Pathological condition is continuous rather than stepwise.  Yes, at least in dementia 

as the EEG-MSE-coarse at F8 was proportional to the score of cognitive test 

(MMSE-T1) in dementia. 

5. Regularity based study is good for the study of biological rhythms  Yes. I found the 

regularity based analyses perform much better than the fractal based analyses. 
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In lecture Halls of modern western medicine, I was persuaded by ―scientists‖ that 

life is but an ―integrative level‖ emerging on non-living substances, and consciousness 

emerging on electromagnetic activities of neurons. I don’t feel comfortable that 

consciousness is only some emergent phenomenon. I am puzzled by the mysterious 

meaning of the correlations between the signal complexity of the heart and brain that I 

found. We can’t consciously control any of the rhythms in our own bodies: heart rates, 

brain waves, circadian cycles, menstrual cycles, etc. But they do interact with each other 

and operate with an automatic way in a ―subconscious‖ level. We don’t really 

understand the conscious mind, not to say the subconscious one. 

Humans have been very good in inventing new terms whenever a mystery is 

encountered and then leave the unknown untouched ever since. The biggest example is 

possibly the God or Gods. A trendy term is called psi which denotes anomalous 

processes of information or energy transfer that are currently unexplained in terms of 

known physical or biological mechanisms. Modern scientists do not want to leave it 

untouched any more, but to do more experiments and to make models. Phenomena such 

as near death experiences (Charland-Verville et al. , 2014, Palmieri et al. , 2014), 

phantom pain (Lotze et al. , 2001) and personality change after organ transplantation 

(Bunzel et al. , 1992) could be very difficult to be explained by current scientific 

knowledge. Quantum physics informs us that a system exists in all possible states — 
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until we observe that it is only in one specific state (Rovelli, 1996, Aspect, 2007). What 

is reality? What is life? 
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Tables 

Table 1. The sample entropy (SampEn, m = 2) and number of forbidden words 

(NumFW) values (mean ± SD) of the filtered EEG whole tracings under three 

conditions (wakeful resting, slow photic stimulation, and fast photic stimulation). In 

post-hoc analyses one-way multivariate analysis of variance (MANOVA), I used 

Tukey's Honestly Significant Difference (HSD) test to correct for multiple comparisons 

of 19 electrode sites in three conditions. And the Tukey's p values were further adjusted 

by Bonferroni corrections for five methods. (* corrected p < 0.05, ** corrected p < 0.01, 

CON: control, AD: Alzheimer’s disease, VD: vascular dementia)  

EEG 

sites 

 

wakeful resting Slow Photic Stimulation Fast Photic Stimulation 

SampEn 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

NumFW 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

SampEn  

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

NumFW 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

SampEn 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

NumFW 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

Fp2 0.430±0.27 

0.570±0.24 

0.620±0.32 

159.1±23
*
 

151.6±26 

136.9±32
*
 

0.616±0.31 

0.720±0.28 

0.768±0.34 

139.6±32 

134.0±37 

116.9±44 

0.604±0.32 

0.689±0.22 

0.768±0.33 

140.2±28 

143.6±28 

119.4±45 

F4 0.722±0.28 

0.773±0.21 

0.872±0.26 

123.7±29
*
 

122.2±27 

97.7±37
*
 

0.823±0.27 

0.872±0.15 

0.987±0.27 

112.0±33 

107.5±24 

86.0±42 

0.834±0.24 

0.812±0.15 

0.993±0.29 

111.3±32
*
 

118.7±31
**

 

82.5±42
**

 

F8 0.633±0.27 

0.705±0.23 

0.831±0.27 

135.5±33
**

 

126.7±29
*
 

98.4±37
**

 

0.781±0.29 

0.810±0.22 

0.888±0.29 

113.8±36 

115.6±34 

91.7±40 

0.773±0.29 

0.781±0.19 

0.933±0.24 

116.9±32
*
 

113.9±33 

86.2±39
*
 

C4 0.740±0.31
**

 

0.851±0.13 

0.998±0.19
**

 

115.3±37
**

 

109.7±30
**

 

77.1±31
**

 

0.902±0.22
*
 

0.891±0.14 

1.002±0.32 

100.6±32
*
 

108.2±23
**

 

72.0±45
**

 

0.864±0.26 

0.830±0.24 

1.045±0.25 

105.9±32
**

 

111.0±31
**

 

72.7±43
**

 

T4 0.849±0.23 

0.805±0.16 

0.977±0.24 

104.9±34
**

 

107.9±27
**

 

73.2±32
**

 

0.740±0.31 

0.851±0.13 

0.998±0.19 

115.3±37
*
 

109.7±30 

77.1±31
*
 

0.858±0.26 

0.788±0.18
**

 

1.021±0.24
**

 

102.0±35
*
 

108.3±39
**

 

70.3±42
**

 

P4 0.820±0.25
*
 

0.818±0.15 

0.991±0.20
*
 

112.4±33
**

 

117.1±23
**

 

79.6±33
**

 

0.903±0.18 

0.862±0.17 

0.999±0.30 

98.6±22 

104.4±30 

77.5±45 

0.871±0.22
*
 

0.839±0.22
*
 

1.044±0.23
*
 

101.6±27
*
 

105.6±32
*
 

74.8±41
*
 

T6 0.818±0.24
*
 

0.807±0.19 

1.010±0.21
*
 

108.1±31
**

 

111.3±27
**

 

74.1±31
**

 

0.857±0.23 

0.794±0.23
*
 

1.011±0.29
*
 

104.7±30
*
 

106.3±31
*
 

74.6±44
*
 

0.857±0.24
*
 

0.809±0.24
*
 

1.048±0.26
*
 

100.8±32
**

 

117.5±35
**

 

67.8±39
**
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O2 0.827±0.23 

0.810±0.16 

0.986±0.22 

108.9±30
**

 

115.0±24
**

 

80.7±32
**

 

0.857±0.20 

0.817±0.23 

0.988±0.32 

115.3±37 

109.7±30 

77.1±31 

0.864±0.21
*
 

0.838±0.21
**

 

1.051±0.23
**

 

101.2±28
**

 

108.6±31
**

 

72.0±38
**

 

Fp1 0.416±0.23 

0.458±0.283 

0.589±0.34 

165.3±18
*
 

157.8±26 

142.4±37
*
 

0.554±0.30 

0.736±0.27 

0.762±0.33 

147.0±29 

131.1±38 

122.5±43 

0.540±0.27 

0.657±0.23 

0.763±0.36 

151.2±25
**

 

141.9±28 

119.2±42
**

 

F3 0.702±0.25 

0.738±0.25 

0.820±0.29 

131.8±27
*
 

124.3±33 

10.3.8±35
*
 

0.789±0.30 

0.845±0.23 

0.951±0.28 

116.0±35 

113.3±37 

87.5±43 

0.770±0.31
*
 

0.822±0.24 

0.973±0.25
*
 

119.6±35
*
 

112.7±33 

87.2±42
*
 

F7 0.589±0.26 

0.679±0.28 

0.771±0.29 

137.1±27
*
 

129.0±33 

112.0±37
*
 

0.664±0.24
*
 

0.767±0.23 

0.881±0.31
*
 

130.9±32
**

 

117.5±34 

95.5±46
**

 

0.661±0.30
*
 

0.750±0.24 

0.898±0.29
*
 

126.3±36
*
 

119.0±38 

94.7±45
*
 

C3 0.766±0.29 

0.837±0.25 

0.932±0.28 

116.7±33
*
 

109.7±34 

86.9±38
*
 

0.850±0.20 

0.874±0.22 

1.008±0.27 

109.3±26
**

 

103.9±34
*
 

73.3±40
**

 

0.821±0.25
*
 

0.900±0.18 

1.022±0.24
*
 

112.3±33
**

 

106.7±33
*
 

74.9±39
**

 

T3 0.784±0.28 

0.834±0.24 

0.933±0.27 

109.4±36 

106.7±35 

83.0±39 

0.828±0.26 

0.919±0.20 

0.998±0.30 

105.3±36
**

 

99.0±30
*
 

67.9±42
**

 

0.802±0.27
**

 

0.889±0.21 

1.025±0.25
**

 

107.4±37
**

 

104.2±33
**

 

67.3±39
**

 

P3 0.746±0.27 

0.856±0.22 

0.933±0.26 

122.4±30
**

 

108.8±33 

87.4±35
**

 

0.770±0.23
*
 

0.894±0.17 

0.973±0.28
*
 

117.8±29
**

 

103.7±29 

79.0±41
**

 

0.830±0.22
*
 

0.887±0.19 

1.026±0.24
*
 

108.8±31
**

 

106.7±33
**

 

72.3±39
**

 

T5 0.787±0.25 

0.806±0.20 

0.887±0.26 

110.7±37 

117.0±33
*
 

86.9±37
*
 

0.747±0.20
**

 

0.906±0.14 

0.968±0.29
**

 

113.8±24
**

 

102.7±26
**

 

70.7±41
**

 

0.777±0.26
*
 

0.855±0.25 

0.996±0.26
*
 

107.1±35
**

 

105.8±31
**

 

71.1±38
**

 

O1 0.777±0.25 

0.823±0.23 

0.905±0.30 

117.4±31 

113.0±31 

94.1±33 

0.784±0.23 

0.841±0.20 

0.972±0.27 

112.0±29
**

 

110.3±28
*
 

80.5±38
**

 

0.785±0.22 

0.871±0.22 

1.018±0.26 

114.3±31
**

 

105.2±31
*
 

75.4±38
**

 

Fz 0.655±0.31
*
 

0.725±0.18 

0.865±0.26
*
 

137.7±28
**

 

132.1±25
*
 

106.7±34.5
**

 

0.839±0.23 

0.854±0.14 

0.945±0.32 

117.1±28 

118.4±19 

94.5±43 

0.818±0.25 

0.805±0.19 

1.000±0.31 

118.5±34
*
 

123.8±24
**

 

87.2±44
**

 

Cz 0.790±0.26
*
 

0.855±0.15 

0.974±0.23
*
 

120.1±30
**

 

113.8±25 

91.2±35
**

 

0.901±0.18 

0.882±0.12 

0.997±0.32 

104.3±28 

110.1±19
*
 

82.2±41
*
 

0.879±0.21 

0.842±0.20
*
 

1.042±0.29
*
 

107.4±28
*
 

115.5±30
**

 

79.0±42
**

 

Pz 0.788±0.24
**

 

0.833±0.16 

1.004±0.23
**

 

117.3±35
**

 

117.0±24
**

 

82.5±35
**

 

0.840±0.22 

0.853±0.16 

1.008±0.31 

109.2±28
**

 

112.3±26
**

 

77.3±43
**

 

0.827±0.25
**

 

0.872±0.16 

1.053±0.28
**

 

110.4±30
**

 

112.2±30
**

 

73.7±41
**

 

 



 

141 
 

Table 2. The sample entropy (SampEn, m = 2) and number of forbidden words 

(NumFW) values (mean ± SD) of the local peak voltage sequences of the filtered EEG 

under three conditions (wakeful resting, slow photic stimulation, and fast photic 

stimulation). In post-hoc analyses of one-way multivariate analysis of variance 

(MANOVA), I used Tukey's Honestly Significant Difference (HSD) test to correct for 

multiple comparisons of 19 electrode sites in three conditions. And the Tukey's p values 

were further adjusted by Bonferroni corrections for two methods and four sequences (by 

multiplication with eight). (* corrected p < 0.05, ** corrected p < 0.01, CON: control, 

AD: Alzheimer’s disease, VD: vascular dementia) 

EEG 

sites 

 

wakeful resting Slow Photic Stimulation Fast Photic Stimulation 

SampEn 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

NumFW 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

SampEn 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

NumFW 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

SampEn 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

NumFW 

CON (mean ± SD) 

AD (mean ± SD) 

VD (mean ± SD) 

Fp2 0.391±0.25 

0.519±0.26 

0.587±0.34 

162.1±24
*
 

155.0±25 

139.0±30
*
 

0.574±0.28 

0.659±0.27 

0.736±0.33 

148.2±22
** 

143.1±25 

123.6±30
**

 

0.543±0.28 

0.611±0.26 

0.731±0.31 

146.2±22 

150.5±25 

127.9±34 

F4 0.680±0.27 

0.813±0.23 

0.874±0.25 

136.2±26 

125.8±31 

115.8±31 

0.823±0.21 

0.903±0.18 

0.957±0.27 

124.3±24 

120.7±28 

102.6±34 

0.817±0.24 

0.867±0.24 

0.970±0.24 

124.8±26
*
 

123.1±23 

101.4±34
*
 

F8 0.651±0.26 

0.751±0.21 

0.831±0.25 

141.8±28 

138.6±26 

122.2±26 

0.805±0.22 

0.828±0.21 

0.887±0.27 

127.8±26 

128.8±31 

111.6±31 

0.784±0.26 

0.822±0.22 

0.928±0.21 

129.1±30 

130.6±31 

108.1±28 

C4 0.795±0.29
** 

0.912±0.19 

1.015±0.18
**

 

125.7±32
*
 

118.2±29
 

101.5±28
*
 

0.926±0.16 

0.929±0.17 

1.025±0.26 

115.6±23
* 

115.6±23
 

92.2±34
*
 

0.874±0.22
* 

0.887±0.25 

1.064±0.20
*
 

119.5±25
** 

118.8±35
**

 

88.2±30
**

 

T4 0.798±0.21
* 

0.809±0.21 

0.960±0.18
*
 

132.8±27 

129.9±29
 

113.3±27 

0.851±0.20 

0.861±0.18 

0.946±0.27 

128.5±29 

124.5±28 

110.2±31 

0.841±0.18 

0.780±0.27
*
 

0.977±0.20
*
 

130.2±27
*
 

129.7±32 

107.1±28
*
 

P4 0.872±0.23
** 

0.881±0.27 

1.064±0.17
**

 

118.8±31
* 

119.6±33
 

 95.1±28
*
 

0.974±0.15 

0.946±0.18 

1.051±0.26 

107.5±23 

115.3±24
*
 

91.0±34
*
 

0.944±0.17 

0.936±0.24 

1.072±0.22 

109.2±25 

114.7±34
*
 

88.8±31
*
 

T6 0.876±0.26 

0.884±0.24 

1.001±0.21 

115.5±32 

119.5±27 

105.8±29 

0.914±0.20 

0.892±0.25 

1.004±0.31 

114.5±29 

119.6±32 

97.9±35 

0.899±0.21 

0.915±0.23 

1.0343±0.24 

117.9±26 

116.5±34 

94.6±35 

O2 0.894±0.22 

0.906±0.18 

117.0±30 

120.4±28
*
 

0.935±0.12 

0.916±0.17 

112.9±19 

118.0±26 

0.948±0.16 

0.944±0.17 

112.0±24
*
 

115.6±26
*
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1.041±0.18 95.5±30
*
 1.029±0.28 94.6±37 1.080±0.20 88.9±32

*
 

Fp1 0.386±0.21 

0.469±0.28 

0.577±0.36 

161.8±22
*
 

157.4±26 

138.0±34
*
 

0.536±0.28 

0.710±0.25 

0.734±0.34 

151.0±21
**

 

140.7±27
 

123.5±35
**

 

0.543±0.28 

0.611±0.26 

0.731±0.31 

146.2±22
 

150.5±25 

127.9±34 

F3 0.708±0.23 

0.800±0.24 

0.885±0.27 

136.0±26
* 

128.4±27 

110.3±32
*
 

0.801±0.25
* 

0.925±0.24 

1.007±0.27
*
 

126.0±29
** 

114.8±38 

91.6±34
**

 

0.781±0.31
*
 

0.907±0.18
 

1.005±0.25
*
 

125.5±34
** 

115.7±30
 

95.6±32
**

 

F7 0.610±0.27 

0.733±0.25 

0.786±0.30 

144.6±25 

137.4±25 

124.0±33 

0.711±0.24 

0.802±0.25 

0.906±0.29 

137.9±28
*
 

130.7±30
 

109.9±37
*
 

0.705±0.29 

0.811±0.26 

0.895±0.29 

134.3±33 

130.2±29 

112.0±35 

C3 0.820±0.30 

0.922±0.27 

1.002±0.22 

121.1±32 

121.1±32 

100.6±29 

0.910±0.20 

0.977±0.22 

1.051±0.25 

119.1±23
**

 

101.7±31
 

85.5±35
**

 

0.914±0.26 

0.958±0.15
 

1.062±0.25 

114.3±32
*
 

113.3±30
 

85.9±34
*
 

T3 0.800±0.28 

0.843±0.25 

0.937±0.26 

121.1±32 

121.1±32 

100.6±29 

0.845±0.27 

0.905±0.25 

0.992±0.30 

120.0±30 

117.9±33 

96.3±32 

0.801±0.29 

0.911±0.25 

0.994±0.27 

128.3±30
*
 

116.4±30 

103.5±31
*
 

P3 0.887±0.26 

0.928±0.19 

1.027±0.21 

120.0±36 

114.8±28 

96.9±27 

0.843±0.23
*
 

0.984±0.17 

1.055±0.29
*
 

124.6±27
**

 

104.8±28 

88.6±35
**

 

0.920±0.23 

0.983±0.16 

1.087±0.24 

114.3±31
**

 

106.3±31 

83.5±35
**

 

T5 0.880±0.23 

0.927±0.21 

0.968±0.24 

119.1±27 

114.8±35 

103.2±30 

0.838±0.24
*
 

0.954±0.19 

1.041±0.29
*
 

121.2±28
**

 

113.5±32 

89.9±33
**

 

0.886±0.27 

0.950±0.27 

1.054±0.26 

116.5±31
*
 

112.3±35 

90.1±31
*
 

O1 0.874±0.23 

0.935±0.25 
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*
 

110.1±31 
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*
 

0.887±0.23 

0.948±0.20 

1.064±0.25 

112.2±27
*
 

109.5±32 
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*
 

0.878±0.24
*
 

0.997±0.18 

1.075±0.26
*
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**
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**
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**
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**
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**

 

129.1±22 
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**

 

0.848±0.18 

0.901±0.16 

0.966±0.30 
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*
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*
 

0.855±0.22 

0.890±0.17 

1.027±0.27 

117.6±32
*
 

117.5±28
*
 

87.6±38
*
 

Cz 0.863±0.22
**

 

0.936±0.15 

1.026±0.18
**

 

121.9±29
* 

113.2±21 

97.9±29
*
 

0.952±0.18 

0.991±0.10 

1.040±0.29 

106.6±21 

104.9±23 

86.8±33 

0.929±0.19 

0.940±0.19 

1.083±0.25 

110.7±25
*
 

113.5±32
*
 

84.8±33
*
 

Pz 0.854±0.24
**

 

0.921±0.17 

1.069±0.15
**

 

122.6±31
**

 

117.2±26 

89.8±26
**

 

0.908±0.19 

0.957±0.17 

1.052±0.30 

113.5±23
**

 

107.9±29 

83.6±37
**

 

0.918±0.23
*
 

0.962±0.19 

1.089±0.22
*
 

111.3±29
*
 

108.9±32 

84.6±34
*
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Figures 

Figure 1 Electrocardiography (ECG) and electroencephalography (EEG). One cycle of 

ECG includes various deflections, P, Q, R, S (QRS complex) and T. All R peaks of ECG 

recordings were detected to obtain the RR interval (RRI) time series. Each EEG 

recording includes brain waves from 19 electrode sites, one ECG recording and one 

trace of photic stimulation (PS). 
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Figure 2 (a) Local peaks of a filtered EEG were detected according to the empirical 

mode decomposition (EMD) method to make two sequences of the local-peak voltage 

and interpeak interval. (b) Natural cubic splines were applied to the local maximal and 

local minimal points respectively according to the sifting procedure of the EMD. The 

upper and lower EEG envelopes were formed from the maximal points and minimal 

points, respectively.  (c) The EEG excursion amplitude (AMPeeg) was defined as the 

difference between the upper and lower envelopes. The local peaks of the AMPeeg were 

again detected to form another two sequences of the local-peak voltage and interpeak 

interval. (d) Any normalized sequence formed from (a) and (c) was uniformly spread on 

6 levels (from 0 to 5) and transformed into a series of symbols from the limited alphabet 

of symbols {0,1,…,
 
5}. 
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Figure 3 (a) The R-peak detection was performed by an automated arrhythmia detection 

algorithm and corrected by visual inspection. (b) The normalized RRI series was 

uniformly spread on 6 levels (from 0 to 5) and transformed into a series of symbols 

from the limited alphabet of symbols {0,1,…,
 
5}. (c) From a symbolic sequence, 

patterns of three delayed samples were constructed. The overlapping triplet symbols of 

the constructed pattern were codified in decimal format. 
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Figure 4 Examples of RR interval (RRI), detrended EEG and the multiscale entropy 

(MSE) profiles of them. One RRI time series and one detrended EEG signal are shown 

on the left-hand side of the figure. MSE-RRI 1-3 are examples of the MSE profiles 

showing the MSE values of RRI from scale 1 to scale 20, while MSE-EEG 1-3 are 

examples of the MSE profiles showing the MSE values of EEG from scale 1 to scale 20. 

All the MSE-profiles show an initial increasing before a plateau or a fall. 
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Figure 5 Inverse association between the multiscale entropy (MSE) values of the 

wakeful RRI and wakeful resting EEG. (a) Regions with significant inverse correlation 

between the summed MSE values on the scales 11-20 of the wakeful RRI and the 

summed MSE values on the scales 6-20 of the wakeful resting EEG after Bonferroni 

corrections (corrected p-values = original p-values 19, alpha = 0.05). r and p denote 

the Pearson’s partial correlation coefficient and corrected significance level, respectively. 

(b) The brain map illustrates regions with significant association. The relative 

brightness is according to the sequential p-values from the smallest one (Fp2, C4, T6 

and T4). 
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Figure 6 Inverse association between the multiscale entropy (MSE) values of the 

wakeful RRI and fast-PS EEG. (a) Regions with significant inverse correlation between 

the summed MSE values on the scales 11-20 of the wakeful RRI and the summed MSE 

values on the scales 6-20 of the photic-simulated EEG at frequency 12, 15, 18 and 24 

Hz (fast-PS, duration 10 seconds and interval 10 seconds) after Bonferroni corrections 

(corrected p-values = original p-values 19, alpha = 0.05). r and p denote the Pearson’s 

partial correlation coefficient and corrected significance level, respectively. (b) The 

brain map illustrates regions with significant association. The relative brightness is 

according to the sequential p-values from the smallest one (O1, O2 and C4). 
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Figure 7 Topographic maps of the significant findings from the post-hoc analyses of 

one-way multivariate analysis of variance (MANOVA) in the analysis of the filtered 

EEG whole tracings. The relative brightness is correlated with the p-values as the 

brightest the smallest p-value. (a1-3) Brain regions showing significant lower number of 

forbidden words (NumFW) in patients with vascular dementia (VD, n = 38) compared 

with the control group (n = 29) in three conditions (resting:wakeful resting, slowPS: 

slow photic stimulation, fastPS: fast photic stimulation).(b1-3) Brain regions showing 

significant higher sample entropy (SampEn, m = 2) in the VD compared with the 

control group. (c1-3) Brain regions showing significant lower NumFW in the VD 

compared with the Alzheimer’s group (AD, n = 22). (d1-3) Brain regions showing 

significant higher SampEn in the VD compared with the AD. 
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Figure 8 Topographic maps of the significant findings from the post-hoc analyses of 

one-way multivariate analysis of variance (MANOVA) for the analyses of the the 

local-peak voltage sequences of the filtered EEGs. The relative brightness is correlated 

with the p-values as the brightest the smallest p-value. (a1-3) Brain regions showing 

significant lower NumFW in patients with VD (n = 38) compared with the control group 

(n = 29) in three conditions (resting: wakeful resting (a1), slowPS: slow photic 

stimulation (a2), fastPS: fast photic stimulation (a3)). (b1-3) Brain regions showing 

significant higher sample entropy (SampEn, m = 2) in the VD compared with the 

control group. (c1-3) Brain regions showing significant lower NumFW in the VD 

compared with the AD (n = 22). (d1-3) Brain regions showing significant higher 

SampEn in the VD compared with the AD. 
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English Abbreviation 

AD Alzheimer’s disease 

AAFT Amplitude adjusted Fourier transform 

aEEG Amplitude integrated EEG 

ApEn Approximate entropy  

CNS Central nervous system 

DFA Detrended fluctuation analysis  

ECG Electrocardiography 

EEG Electroencephalography 

EMD Empirical mode decomposition 

EMG Electromyography 

EOG Electroculograph 

ERP Event-related brain potentials 

Dμ Dimension of the natural measure 

D2 Correlation dimension 

DF Fractal dimension 

fMRI Functional magnetic resonance imaging 

HF High frequency power 

HHT Hilbert-Huang transform 

HRV Heart rate variability 

H Hurst exponent 

IAAFT Iterated amplitude adjusted Fourier transform 

IMF Intrinsic mode function  

i.i.d. Independent and identically distributed 

(K-S) entropy Kolmogorov–Sinai entropy 

LF Low frequency power 

LF/HF Low /high frequency power ratio 

MANOVA Multivariate analysis of variance 

mA A The integrated magnitude of the analytic associate of the 

EEG 

MMSE Mini-mental status examination 

MSE Multiscale entropy 

NumFW Number of forbidden words 

RMS Root mean square 

RS Rescaled range analysis 
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RRI RR interval 

SampEn Sample entropy 

SCP Slow cortical potential 

SNR Signal to noise ratio 

SE Shannon entropy 

SOC Self-organized criticality 

SUDEP Sudden unexpected death in epilepsy 

TLE Temporal lobe epilepsy 

VD Vascular dementia 

 


