Rzt B 8T BT TR T 1IAEFT AT
FAL 2
Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

FHITIEREG X i;}ﬁ#—'—fiﬁ”ﬁb“ 5| 2. fm 3R AR
Data Compression Ratio-aware Detailed Routing for

Multiple E-Beam Direct Write Systems

FRVE 2

'

Yu-Hsiang Chiu

R YT B
Advisor: Chung-Ping (Charlie) Chen, Ph.D.

¢ £ ® 104 E 9

September, 2015



.ilﬁigsg‘jim’gﬁ'f’ﬁl’fﬁ L

DREBEEL
HHLEFRAEZL2HEHRYE ttfﬁ*]i‘»’m%ﬁ***"%‘i

Data Compression Ratio-aware Detailed Routing for
Multiple E-Beam Direct Write Systems

15518 9 E (R02943148) ARy &% K EEF T 245
mﬁﬁmﬁki@-}:'ﬂ"fﬂ X MEBR 104509824 aATHERELE

7
HBEBR ORI HFLEH

T fep Febe
PRy 4%k ﬁ% 3 v

‘«-—“1113\

N )

AEEFRE



>+ 2
A

BRI R B |

FAREMA DA A MU AL R R AR TR N F S
AP SESREZR ARG RPEHA EF SRR

Bl g T R

T RHIYY AN T L RS TESD

TR PREB T LB SR
PR IR X P Y g e g -

w
@;;}%;;o}ggg]tﬁm ERERARERNE o ¥ 0 A4 E Py B A S

Huk 3, o
FoRFTDARPALE L A0 AN E- BERES - BHEEA O FEPE

% %

ﬁ%g—tﬁ%ﬁ%&ﬁ%@%iOWﬁ&a;mmna@%ﬁﬁﬁkﬁ%
R Ag R A B4z g £ 12 Bonnie - A2 3kenp F o FR A frRE A qpE T A7
CAE 4T RRELR A A @ESEY Y o R ITHF L R LG

,r»i, ‘}\

.)_
3\
\_‘

@\

S g R L HHEE ICS BB E RS RS fp i A

w4
bl
y

[
[ S T
A’h mﬁ}

-
i
T
¥
\\E‘_

:%mﬁﬁh%oi%%%&ﬁwﬂﬁl——%ééﬁ’%%Luﬁ e

ol

PR ESTIp L oA R e o P LK F e A RN
m

=
~

RHENB=Z2I FRAADEREY ST T opip & 5 > BEARIR s
RER e o BRI AP S WA T8 A RE 2 RBERY B AR

R R T RS R BT EUSE IS EE R S
5

k=1

7 03 R o AR BB R LB T Keyway 10 e X X F AL B IS
king ZAARAAE PR S A A PR e o BB R P
&ﬁkﬁ”xﬁ?i*§7’“?”ﬁ’f EHEFERY FEE Y P
g |

B R S d o RAHf LA PE L S EE g AL 3 o FL R
AL AFEPALAT LT NPT BRE AT I FEDPENE

PRz A2 R AREREE G RS FRIFEL S AR LB
A HAS T REL S B



A 4

d O BARFE 0 AR A A BT R BAER T 2 ARIT NP R &
SR B R 2 RRFIH TR A BB B Y > TF AREMTFIE B RS
HEFEH L L REES oty A RERE o

TEAOHERET UER A B AR P Y HEORTERTR
B RE ke AR g A AR BAT AR AR S P RH > WAL FAGRT

FARBEETEREERE A R IR R TR N BTR
ARG D L AR T S R R T T R e F

F
FRELEI DR Y AT rm??‘*@‘fﬁ” fs £ @ﬁ%} It Pﬁ*@ﬁ

"

o

hEw e RN e SER O FLORGRE S LT3N
TEF A DR )I*}ijf MRS REFEZ LRI BRHTET
BooiEw g A gww@@n4omaﬁm$%ﬁmﬂ&—ﬂ%’ﬁF%ﬁmﬂé
HERPBPET AT L &a PETHERBREILELT F LR - R THRE

BB B W

MAET 0 T ABR S TARE SRR TET R BR



ABSTRACT

The feature size of Integrated Circuits(IC) are shrinking down along with the
advancement of technology, but the resolution of the ArF laser is far from the target for
next generation lithography. Electron beam (E-beam) lithography, with its
high-accuracy characteristic, is very likely to become the main role in next generation
lithography.

Because of the accuracy of E-beam, the exact information of the circuit has to be
delivered to the E-beam emitter. However, circuits nowadays has become so
complicated that the successfulness of this process relies on the speed of data
transmission, which is not sufficiently fast even with technologies today. So in practice,
data should be compressed first, transmitted by optic fibers, and then decompressed in
the E-beam machines.

In this thesis, we proposed a detailed routing method to improve data compression
quality before applying the actual compression algorithm. The results of experiments
show that, with one particular data compression algorithm, LineDiff Entropy, chosen,
we improve data compression ratio with our proposed detailed router. And we can
conclude that considering data compression ratio in physical design phase is a field

worth studying.

Keywords: Lithography, Electron Beam, Data Compression Algorithm, Physical Design,

Detailed Routing



CONTENTS

o+ U 35S ST P & 1 Y. W % 4 i
- o S i
B2 BB & o ii
ABSTRACT ettt ettt h et e e b e e e b e s ae et e e arneene e v
CONTENTS ettt b et b et e b e e et e e sbe e et e e s be e e neesaneenes Y
LIST OF FIGURES ... .ot ettt Vil
LIST OF TABLES ...ttt ettt st IX
Chapter 1 INTrOQUCTION ......cviiiiiiiiiii s 1
1.1 MEBDW Systems DiffiCUItY ........ccoooiiiiiiiiiiieeee s 2

1.2 Motivation and ACCOMPIISNMENT........c.coiiiiiiiiiiicee s 5

1.3 OFQANIZALION ...oeeiiiiiieieie ettt bbb 6
Chapter 2 PrelimMiNAries ... 8
2.1  MEBDW System Architecture DESINS.........ccovririririeieie e 8

2.2 Data Compression AIgOrthmS.........ccoiiiiiiiiie e 11
2.2.1 Introduction of data compression algorithms.............ccccocviniiiiinnnn, 11

2.2.2  LINEDIff ENrOPY .ooveiiieiiiiseieieeeee e 14

2.3 RoULING AIGOITTNMS ..o 17
2.3.1  Lee’s AIZOTItRM.....ccviiiiiiiici e 19

2.3.2  A*search AlgOrithm ..o, 21
Chapter 3  Data Compression Ratio-aware Detailed Routing..........c.c.cccoevvveneen. 24
3.1 ROULING SPECITICALIONS........eviviieiiiiciieieie e 24

3.2 I%tstrategy: ON-grid WIrS ........cccccevevevererererereieieieie e, 25

3.3 2" strategy: SIMPIE FOUE ....c..eeveeereeeeee ettt 28



3.4  39strategy: deSired PAEINS ..........c..ceviverereeeesesesisee s esise et

Chapter 4
Chapter 5

REFERENCE

ReSUItS Of EXPErIMENTS ......cveiieiecie e s saa s e

Conclusion and FUTUIE WOTK.........eeeeeeeeeeeeeeeeeeeeee e eie e

Vi



LIST OF FIGURES

Figure 1.1 Concept of REBL NaNOWIITEr. [5]......ccoiiiiiiiiiiiieieec ittt 2
Figure 1.2 Circuit 1ayout eXamMpPIE.........cccoiiiiiiiiiiiie e e e 3
Figure 1.3 5-bit bitmap transformed from Figure 1.2. ........ccooeieiiiiiiniieeeeeecee, 3
Figure 1.4 Procedures in MEBDW SYSIEM. ........ccviiiiieiieie e 5
Figure 2.1 DIreCt tranSMISSION. .....ccueiieiieiiieiesiee st e see st see st sieebe e steeee e sseeeesneeneeas 8
Figure 2.2 Whole chip information in on-chip Memory. ........ccccoeviiiiinininiecee, 9
Figure 2.3 Compressed information in on-Chip Memory. ..........cccccevivenineninieieree, 10
Figure 2.4 Off-chip memory and deCOE. ..........cccoiiiiiiiiiieeeee e, 10
Figure 2.5 Architecture of data delivery in MEBDW SyStems. .........ccoovivniiinnnieennnn. 11
Figure 2.6 EXample OF LZ77. ..o 12
Figure 2.7 EXample if 2D-LZ. [5]. i oo 12
Figure 2.8 Context-based prediCtion. [4] ... 13
Figure 2.9 LineDiff ENCOding. [1] ...ccoveiiiieiiee e 15
Figure 2.10 Example of LineDiff ENCOTING. .....ccccoevieiiiiiiieeecc e 15
Figure 2.11 Example of LineDiff Compaction. ...........ccccoveiieiiiic i 16
Figure 2.12 Example of grid-based routing. ..........cccccveviiiiiieie e 18
Figure 2.13 Example of filling stage in Lee’s algorithm. ...........ccccooeiiiiiininiinciin 19
Figure 2.14 Example of retracing stage in Lee’s algorithm. ..........c.cccceoviniiiiniicnnenn, 20
Figure 2.15Pseudo code of Lee’s algorithm. ...........cccooiiiiiiiiiiicicn e, 20
Figure 2.16 Example of A* search in the beginning...........ccccoooeiiiiiiiii i, 22
Figure 2.17 Example of A* search inthe end. ..., 22
Figure 2.18 Pseudo code OF A* SEAICN. ........coviiiieiieiie e 23
Figure 3.1 Narration of Wire PitCh.........ccoiiiiiiiiiiiic e 24

Vil



Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

Figure 5.1

Example of nets on grid HINES. .......ccoveiiiieiiec et 26
Concept Of the first Strategy. .....cccveiieiieiiiicse e e 27
Illustration of our 3-layer routing SCheme. .........cccccveveiieein i, 28
Examples of SImple route. ........cc.ooveiiiiece e 29
Expected routing Patterns. ........ccviveieeie e 31
Example of the third Strategy. ........cccovveveiie i 32
SEPE SPHEEING. ...veeieieiee e s 33
Total flow chart of the proposed detailed router. ...........cccccoevveveiieieecnee 34
Concept of INPUL GENEIALION..........ccveiieieiieceee e 36
Decompression time COMPAIISON........cc.ccveieerieiiese e see e e sre e sre e, 44
Compression ratio COMPATISON. ........ccverreeieieere e re e se s 45
Routing results for HUge #1.........cooooveiiiieieece e 46
Routing results for Medium_#3..........cccoiieiieiecceee e 47
Latent image simulation procedures. [17] ......ccccoovirieiinenieienireseeeeeee 49

viii



Table 1.1

Table 2.1

Table 2.2

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

LIST OF TABLES

Specification of data transSMISSION Fate. ..........cooviieieiieree it 4
Relative frequency of occurrence of OP and L. [1] ....cccoovieviniiiinciininniienns 16
Entropy Encoding design of LineDiff data. [1] .......cccccoveviiiniiininiiicen 16
ROULING SPECITICALION. ... 25
Spec. of the IMPIEeMENTALION. .........covriiiiii e 36
Results of experiments for NUQe CASES. .........ccvvririiiiiiie s 39
Results of experiments for 1arge Cases..........cocvvrireriiieneiesc e 40
Results of experiments for medium CaSeS. .......ccccvvvervrierieerene e 41
Results of experiments for Small Cases. ..........ccoovvvriiiiieieienneeeee 42
Results of experiments for tiny CASES. .........ccocvriririiiieiee s 43
Overall results of eXPEriMEeNtS. .......c.cooiiiiiiiireeee e 44



Chapter 1  Introduction

As long as the rapid advancement of technology today, the size of integrated
circuits (IC) are getting smaller and smaller these days. However, diffraction is now a
very severe problem due to the limitation of 193-nm light source in traditional
lithography [1]. So we have to search for an alternative way with high resolution, but
throughput still comparable to today’s optical lithography systems.

Among all candidates, Electron Beam Lithography (EBL) systems are well known
to produce excellent resolution, good line edge roughness and good line width
roughness [2], but they also have a common problem in their low throughput. A simple
way to improve it is to use the concept of massive parallelism [3]. So a Multiple
Electron Beam Lithography (MEBL) system should be a feasible alternative.

Another benefit of using MEBL is that, due to its high precision, we can now apply
a maskless process into practice. The traditional optical projection systems use a mask
to project the entire chip pattern; while a maskless system, also known as a
“direct-write” system, allowed us to use electron beams to draw custom shapes directly.
The concept is that there is an electron-sensitive film on the surface called a resist. And
while exposure, the beams change the solubility of the resist, results in the removal of
either the exposed or non-exposed regions after immersed in a solvent. The most
significant advantage of a Multiple Electron Beam Direct-Write (MEBDW) system is
that we can easily modify the image we want to project by changing the dose of each
emitter, whereas a mask once made is difficult to modify [4]. And with a direct-write
system we can also save our expenses of the masks.

There already exist some applications of MEBDW systems, Figure 1.1 shows a

concept of Reflective Electron Beam Lithography (REBL). It’s an industrial application



of MEBDW system by KLA-Tencor Corporation. Within this thesis, we’ll focus on the
feasibility of this application and try to make it more practical and play its role in next

generation manufacturing process.

/

Generator

Projection <
tics
Op «——Electron Gun

Multiple Wafer
Linear Stage

Figure 1.1 Concept of REBL nanowriter. [5]

1.1 MEBDW Systems Difficulty

Every advantage has its disadvantage, there also exist some problems in MEBDW
systems. One of them, maybe the most important one, must be the limitation in data
transmission rate.

Because of the high accuracy of electron beams, we have to deliver the exact
circuit information called a “bitmap” to the electron beam emitters. Bitmap is a data
type of circuit layout. And just like a monitor, it displays information pixel by pixel.

2



Figure 1.2 Circuit layout example.

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

14

18

18

12

00

00

00

00

00

00

00

00

00

20

31

31

09

00

00

00

00

00

00

00

00

00

20

31

31

09

00

00

00

00

00

00

00

00

00

20

31

31

09

00

00

00

00

00

00

00

00

00

20

31

31

09

00

00

00

00

00

00

00

Figure 1.3 5-bit bitmap transformed from Figure 1.2.




Figure 1.2 and Figure 1.3 show an example of bitmap transforming. A pixel
represented by 00 in bitmap shows there’s no content in the pixel, while 31 shows that
the whole pixel was occupied. And any other number in between shows the ratio of area

occupied to total area in that pixel.

Device Specification Maskless Process Specification
Wafer size 300 mm | Pixel size 7nm™*7nm
Writing rate 70 WPH | Pixel depth 5 bits
Writing time 50s Wafer data size | 7200 Th

Optical fiber transmission rate | 10 Gbps | Required rate 144 Thps

Number of fibers connected 32 Required fibers | 14400

450 times exceeded

Table 1.1 Specification of data transmission rate.

And in Table 1.1, we can now estimate the data volume and required data
transmission rate. From [6] we can get our device specifications shown below: wafer
size is 300 mm in the diameter and expected throughput is 70 wafers per hour (WPH),
which gives us about 50 seconds to write a single layer of a wafer. The digital pattern
generator (DPG) in a REBL system is a chip of less than 26 mm * 33 mm, so the
number of optical fibers connected to DPG is limited. And we can also know the data
transmission rate of a single fiber is about 10 G-bits per second (Gbps) [1], [3].

On the other hand, let’s take a look at the specifications of MEBDW systems. The
pixel size should be defined by half the minimum feature size [5], so we set our pixel
size to be 7 nm each side to match-up the 14-nm technology node. And we’ll use a 5-bit

gray level in each pixel, which gives it 32 different levels. Total data size can be
4



estimated by equation 1.1.

Data si _Areaofwaferx ol d th—HXI50X150mm2x5b't 7200 Th
ata size = o Tsize < Pixeldepth =——= s % 720010 ... (1D

So now we can know that our required data transmission rate is 7200 / 50 = 144
T-bits per second (Thps), which required 14400 optical fibers operating at the speed of
10 Gbps to work simultaneously. That’s about 450 times over the acceptable number of
fibers today. We definitely need to do something more to make it work.

There are several different architectures to build up MEBDW systems, which we’ll
give a brief introduction in the following chapter. But to fit the data transmission
limitation we just discussed, the procedures in Figure 1.4 is the only adequate solution.
The bitmap file has a very huge volume, so in practice we have to compress it first, and
then transmit the compressed file instead. In the end we decompress it just before

lithography.

Layout Bit Optic Fiber E-beam
Data Map Emitter

Figure 1.4 Procedures in MEBDW system.

1.2  Motivation and Accomplishment

Just like we’ve talked about in section 1.1, we need a data compression algorithm
in MEBDW systems. And among all such algorithms, two major characteristics we have
to pay attention to are respectively data compression ratio and decompression rate. Data

compression ratio directly affects the feasibility of MEBDW systems, so it’s definitely
5



worthy a first priority concern. Decompression units are placed by the electron beam
controllers just like in Figure 1.4, and that’s why we don’t want to put too much
hardware resource onto it but still want the emitters to work in real time. So
decompression speed is also an important matter.

There do exist many data compression algorithms, some of them are even
originally designed to compress bitmap data. But what we are really interested in is that
whether we can improve the results of compression even before we get to that part. We
want to enhance the quality of data compression in physical design phase of the circuit.
In other words, with a specific data compression algorithm selected, we want to design
a router that generates layout patterns performing better in such algorithm. And so far,
there is no published material shows something like this research has been done. So we
decided to do some research on this topic.

And the results of our experiments are pretty excited. A data compression
algorithm that performs well in bitmap has been chosen. And with our proposed router,
the data compression ratio can be further increased by up to 67% while decompression
time remains unchanged.

But other than these numbers, the most valuable contribution of this research is
that our conclusion can be further deductive to a whole new field: no matter what kind
of data compression algorithm we fall to, we can always improve the performance by

some modification in the physical design phase.

1.3  Organization

There are several theme topics will be illustrated in this thesis. We’ve talked about

the introduction of the MEBDW systems and the problem we encountered in this



chapter. In Chapter 2, some of the existed architectures and algorithms related to our
research will be presented. And our proposed detailed router will be specifically
expressed in Chapter 3. And in the end, the results of experiments and our conclusion
are respectively in Chapter 4 and Chapter 5. There will also be some discussion of what

this work can be further enhanced in Chapter 5.



Chapter 2  Preliminaries

There are three major topics in this chapter. Section 2.1 will be a brief introduction
of the MEBDW system architectures, which states the problem we confronted and why
data compression algorithms are important. After that, some of the published data
compression algorithms will be introduced in section 2.2, including the one performing
extremely well with bitmap data, LineDiff Entropy. In the end of this chapter, an
important routing algorithm and its predecessor will be given in section 2.3. All of the

work in this thesis are developed mainly from all these three fields.

2.1 MEBDW System Architecture Designs

From Chapter 1, we are aware of how important MEBDW systems are. And
speaking of the architectures of MEBDW systems, the most straight forward thought
should be something like Figure 2.1. Many things should be a lot easier if we just
connect the disk with layout data to the electron beam controller. But unfortunately,
with our estimation in section 1.1, this kind of architecture requires a 144-Thps
transmission rate, which is much more than what we can accomplish today. So this is

definitely not a solution.

On-chip hardware

Optical Fiber E-beam
T Emitter

144 Tbps

Figure 2.1 Direct transmission.



To avoid the data transmission rate limitation, another thought might be using
memory. Just like Figure 2.2, we try to attach a memory onto the electron beam emitter.
But if we want to store the information of whole wafer into the memory, we need a
memory element of 7200 Tb according to the calculation before. Even if we don’t need
to keep all information of a wafer, instead we only store one chip, we still need a
memory more than 20 Tb with a chip size 10 mm * 20 mm. But considering the small
area of electron beam controller, memory size is estimated to be limited by 16 Gb [3]

even with the highest-density DRAM.

On-chip hardware

Optical Fiber E-beam

Emitter

Figure 2.2 Whole chip information in on-chip memory.

It is probably the time to think about data compression now. The first architecture
considering data compression might be like Figure 2.3. We compress the layout data and
store them into the on-chip DRAM. And then our data needs to be decoded back to
bitmap before sent to electron beam emitter. There are two difficulties in this
architecture. The first one is the data compression algorithm. We’ve already known that
the original data size of a single chip is 20 Th and what we have is a 16 Gb DRAM, so
our compression ratio (CR) must be more than 1250. That is almost impossible.
Moreover, we’ll need an on-chip decoder according to the data type. Considering the

limited area, we actually can’t expect to do these two things well at the same time.
9



On-chip hardware

Optical Fiber

Memory

Layout
Data

T
16 Gb (CR = 1250)

Figure 2.3 Compressed information in on-chip memory.

Now we know that we can’t do too many things because of the area limitation on
electron beam controllers, so let’s try to move the memory and the decoder off-chip like
Figure 2.4. But now we’re still facing the problem of data transmission rate limitation in

optical fibers.

Optical Fiber

Layout : E-beam
Data . . . I Emitter

Figure 2.4 Off-chip memory and decoder.

Finally, we have found one feasible solution. Let the decoder on-chip, and all the
other elements placed on the memory off-chip. If our data compression algorithm is
capable of providing CR fitting the transmission limitation, and the speed of
decompression can make the electron beam emitter work in real time, then it is good
enough for us with architecture in Figure 2.5.

All the above are the architectures of MEBDW systems. Apparently there are not
too many choices for us. Therefore Figure 2.5 is the only architecture we’ll talk about in

this thesis.

10



On-chip hardware

Layout Optic Fiber E-beam
Data Emitter

Figure 2.5 Architecture of data delivery in MEBDW systems.

2.2  Data Compression Algorithms

There are several published data compression algorithms now, and some of them
were designed for images. Among those algorithms, some of them were even designed
for data type like bitmap. LineDiff Entropy, proposed by Tang et al. from NTU in 2013
[1], is our favorite compression algorithm because it outperforms other algorithms in the
aspects of both data compression ratio and decompression speed. So in this section,
we’re going to give a brief introduction of some data compression algorithms for bitmap,

and a more-detailed one for LineDiff Entropy algorithm.

2.2.1 Introduction of data compression algorithms

First of all, LZ77 [7] is a lossless data compression method that was used in a
variety of compression software including zip, gzip, WinZip and others [4]. The
popularity of those software programs also reveals its significance. LZ77 is a
dictionary-based compression algorithm that encodes raw data by a sliding window.
Here is an example of LZ77 in Figure 2.6. The encryption format of each row is (P, L, ¢),
where P is the offset between current character and the match one in the dictionary
buffer, L is the length of the identical pairs, and c is the first character of the

unencrypted stream. So we can conclude that LZ77 is an algorithm taking advantage of

11



the repetition of input data.

Pl alclaJalc|alblclalblalalale] ( ,0,a)

__"a|c|a]a cTalblclalblalalale] (1,1,¢)

__’-ala]cla Bca5aalalc] (3,4.b)

> (o] 2 | c =512 [a c] (3,3,2)

~[alalclalalc N ETaTE] (1,2,c)

Figure 2.6 Example of LZ77.

LZ77 has been proved to be an efficient way to encrypt data in rows. But to apply
this technique to bitmap, which is a flattened and rasterized data scheme, there’s
something more needs to be done. Figure 2.7 is an updated version of LZ77 called
2D-LZ [5] technique. The most significant difference between LZ77 and 2D-LZ is that

we now have to memorize the coordinates of the repeated pattern because we work on

patterns in a 2D-plane now.

(X, y)

sssssaa

width (w)

sassssnw

height ()

- Match region

Previously coded

Not yet coded

RN

: Search region

senst

L)

Figure 2.7 Example if 2D-LZ. [5]

12



The compression techniques in LZ is based on the highly-repetitive characteristic
of the data map, but what if the layout is not so repetitive? Another widely-used way is
to compress data by context-based prediction schemes. Figure 2.8 shows two example

of such prediction.

al b
0 0 0
c| z
ofo]2
(@) 99.5% chance of (b) If (c=a) thenz=b
being zero elsez=c

Figure 2.8 Context-based prediction:

(a) ten-block prediction (b) three-block prediction. [4]

Joint Bi-level Image experts Group (JBIG) is a standard for lossless compression
of binary images, developed jointly by the CCITT and ISO international standards
bodies. JBIG uses a 10-pixel context to estimate the probability of the next pixel being
white or black [5], just like shown in Figure 2.8(a).

To combine the advantages of the LZ-style and context-based prediction, Vito Dai
from University of California, Berkeley, has proposed a well-known compression
algorithm called Context-Copy-Combinatorial Coding (C4) and its advanced version
called Block C4 in 2008 [4]. Both of these two algorithms accomplished this goal
through automatic segmentation of an image into copy regions and prediction regions.
And data in copy regions can be easily dealt with LZ-style encryption, while three-block
prediction format (Figure 2.8(b)) is used in the prediction regions. So these algorithms

performs extremely well when it comes to bitmap data compression.
13



2.2.2 LineDiff Entropy

Despite the high efficiency of Block C4, LineDiff Entropy [1] still performs even
much better in bitmap data compression and decompression. And its simple structure is
also elegantly attractive. So the main target of the research in this thesis was set to
improve the quality of this algorithm. That is also why we’ll give a comprehensive
presentation of this algorithm in this section.

LineDiff Entropy is a data compression algorithm designed for pixelized data
format like bitmap. It was designed to access files with 1024 pixels in the width and
5-bit gray level for each pixel.

According to the name of this algorithm, we know that it is composed of two main
topic. LineDiff is actually the abbreviation for Line Difference, so the main idea is to
compare two consecutive lines and record the duplicated part to achieve data
compression. Entropy encoding is the final phase of this algorithm, and its purpose is to
produce binary code by a concept like Huffman coding. There are three major steps:
LineDiff Encoding, LineDiff Compaction, and Entropy Encoding, in this algorithm and
they are listed in the following.

The first step is LineDiff Encoding. In this step, line N will be encoded by some
pairs in the form of (OP, L), and both OP and L are defined by comparison to line N-1 in
the same position. If the data being encoded is the same as data at the same position
previous row, or a duplication, we can just encode it by setting OP to DUP. Otherwise
OP is set to be the color of these pixels, encoded by black, white, or a 5-bit binary
number. On the other hand, L stands for length. So we set it to be the length of data that
maintains this OP or we set L to END representing this OP will last to the end of this
line. Figure 2.9 shows the concept of this step and Figure 2.10 is an example of

LineDiff Encoding.
14



LineDiff Encoding for Scanline N:
(OP,,L;))(OP,, L) ... (OPy, L)
OP = DUP or P, where P = white, black, or any gray value.
L = Any length value or END.

Figure 2.9 LineDiff Encoding. [1]

1. (white, END)

(DUP, END)

(DUP, 2)(7, 2)(16, 2)(DUP, 4)(black, 3)(14, 1)(DUP, END)
(DUP, 2)(14, 2)(black, 2)(DUP, END)

(DUP, 10)(16, 3)(DUP, END)

(DUP, 2)(white, 4)(DUP, 4)(white, 4)(DUP, END)

(DUP, END)

Figure 2.10 Example of LineDiff Encoding.

SN B WD -

1 & W s W M

~

After LineDiff Encoding, here comes the next step called LineDiff Compaction.
This step is the procedure to furthermore compress file size by omitting unnecessary
data. There are three rules of LineDiff Compaction:

1) Any (OP, L) pair has L =1, omit L.

2) First (OP, L) pair has OP = DUP, omit OP.

3) Consecutive pairs have same pixel value, combine them.
And these rules has a priority. If two or more conditions are satisfied, the order to apply
these compaction rules should be 1) the first priority, then 2), and 3) be the last choice.
This design is based on the next step to furthermore reduce data volume. Figure 2.11 is
the previous example, we now apply these three compaction rules to them.

The last step in LineDiff Entropy is the Entropy Encoding. The author analyzed the
frequency of every keyword appearance, and defined their code length by it. Table 2.1 is
the analytical results in [1], and Table 2.2 is the Entropy Encoding defined by Table 2.1.

One thing needed to be noticed is that this is a prefix-free encoding style, which means
15



that we won’t be confused by prefix while decoding.

1. (white, END) 1
2. (DUP,END)

3. (DUP,2)(7, 2)(16, 2)(DUP, 4)(black, 3)(14. 1)(DUP, END)

4 (DUP,2)(14, 2)(black, 2)(DUP, END) *

(white, END)
(. END)
§ 2 (7 2)(16, 2)(DUP, 4)(black, 3)(14.)(DUP, END)
T
by G
G
G

2)(14, 2)(black, 2)(DUP, END)
5. (DUP, 10)(16, 3)(DUP, END) 5 10)(16, 3)(DUP, END)
6. (DUP, 2)(white, 4)(DUP, 4)(white, 4)(DUP, END) 6. 2)(white, END)
7. (DUP,END) END)

Figure 2.11 Example of LineDiff Compaction.

OP L

DUP | END | White | Black | Gray | 2—-31 | 32-1023

0.23 0.27 0.03 0.05 0.15 0.16 0.11

Table 2.1 Relative frequency of occurrence of OP and L. [1]

Type Value Custom Prefix | # of Bits
DUP 00 2
END 01 2
White 1000 4
Black 1001 4
Gray 1-30 101 + [5-bits] 8

L 2-31 110 + [5-bits] 8

L 32-1023 | 111 + [10-hits] 13

Table 2.2 Entropy Encoding design of LineDiff data. [1]

This LineDiff Entropy algorithm runs in linear time both encoding and decoding

because it just needs one scan of all data. And its performance is extremely good both in
16



data compression ratio and decompression time. That is exactly why we decided to
work on improving this algorithm to make MEBDW system could be mare robust with

it. Despite our introduction here, we’ll take an even closer look in Chapter 3.

2.3 Routing Algorithms

Routing is an important step in the design of ICs. It generates wiring to
interconnect pins of the same signal, on the premise that all the manufacturing design
rules are obeyed. Since routing is a very complex procedure in VLSI design, we usually
apply a two-stage approach of global routing followed by detailed routing to make it
manageable. Global routing first partitions the routing region into tiles and decides
tile-to-tile paths for all nets while attempting to optimize some given objective function
(e.g., total wire length, circuit timing, and so on). Then detailed routing assigns actual
tracks and vias for nets, following the guides of the paths obtained in global routing
stage. In this thesis we focus on the topic of detailed routing.

There are two kinds of detailed-routing models: the grid-based and grid-less
models. For grid-based routing, a routing grid is superimposed on the routing region, so
the detailed router just need to find routing paths in the grids as shown in Figure 2.12,
and each path among grids are called routing tracks. The space between adjacent grid
lines is called wire pitch, which is defined in the technology file and is larger than or at
least equal to the sum of the minimum width and spacing of wires. Note that the router
has to control the searching space such that the path in the horizontal layers can only run
horizontally and path in vertical layers can only go vertically for the reserved layer
model. And switching from layer to layer is only allowed at the intersection of vertical

and horizontal grids with vias. In this way, the wires with the minimum width following

17



the path in the grid would automatically satisfy the design rules. Therefore, grid-based
detailed routing is much more efficient and easier for implementation [8]. So in this
thesis we will not talk about grid-less detailed routing, which is basically any detailed

router other than grid-based detailed router.

Figure 2.12 Example of grid-based routing.

With this preparation, we can now formulate our detailed routing into a
path-finding problem on a grid-based map. Perhaps the most well-known algorithm for
finding a path between two points is the maze-routing algorithm, or Lee’s algorithm [9],
which is based on the breadth-first-search (BFS) technique. After Lee, a lot of
pathfinding algorithms were published and made tremendous impacts on physical
design. And among all them, A* search [10] might be the most efficient and effective
algorithm that widely used in routing of many different orientations [11-13]. In this

section, we will give a brief introduction of both Lee’s and A* search algorithm.

18



2.3.1 Lee’s Algorithm

Lee’s algorithm takes a two-phase approach of filling and retracing. Filling is the
phase of work by pushing on a frontier just like wave propagation in a BFS manner.
From source node S, filling stage takes procedures to fill in every grid nodes one by one
by their distance of the wave-front from S, until the target node T has been arrived. Here
is an example of filling stage in Figure 2.13. Figure 2.13(a) is the stage when frontier is

the nodes whose distance from source is 3, and Figure 2.13(b) is frontier to be 4.

.

;

~N
W N =N w

W N = | v~ w
[TUR I ST N S Y
& lw N w s

Bl N =N w| s

prlow|N|RPr[(N|lw| s

Blw N = v w|s

(a) Frontier is 3 (b) Frontier is 4

|&wwmePw@amd

Figure 2.13 Example of filling stage in Lee’s algorithm.

This filling stage goes until the target node is reached, and then a shortest path is
attained by retracing from T to S in a decreasing order one node by one node while in
the retracing stage. Note that there might be more than one path in the decreasing order,
and each of them is a shortest path from S to T. Figure 2.14 shows an example of the
retracing stage. Figure 2.14(a) is the state when the filling stage goes to reach the target
node, and Figure 2.14(b) shows the retracing stage to attain the shortest path.

The best property of Lee’s algorithm is that it guarantees to find a shortest path if

19



such path exists even with obstacles in the region. However it also suffers from the
extremely-high time and space consuming shortcoming. The description above and the
pseudo code in Figure 2.15 show its time and space complexity are both O(m*n), where
m and n represent the number of respectively horizontal and vertical nodes, because in
worst case every grid node must be labeled. And that makes it almost unfeasible to the

complex networks today.

1 12 13
10 11 12 13

11 12 13

o | ©
—-
o

s lwN|Rr([Nw| s N|w|w

0 | o
—
o

Plw|N|R(vVw| sl |lo| N w|w

o AW (N W A || N| |
VI EWIN RPN W A O || 0
rlw R |lvolRr|vM sl |~

sl w(N|lw| s|la|loa|N|ow|wv
sl wN (=[N | s || o]~
SElwin|= |l mlw|s|lva|la|

%]

(a) Tis reached (b) Shortest path retraced

I&wwanPw@amﬂ

Figure 2.14 Example of retracing stage in Lee’s algorithm.

f*initialization*/
{ ==
The source node ig labeled with i

f¥filling*/
REPEAT
- Find all nodes labeled with i
- Label all their unlabeled neighbors with i+l
= 4 =]
ONTIL target node reached or no more nodes to label

{*retracing*/
g0 to the target node
REPEAT
- add this node into the path
- g0 to its neighbor with a lower cost
UNTIL source node reached

Figure 2.15 Pseudo code of Lee’s algorithm.

20



There are many grid-based shortest path algorithms inspired by Lee and enhance it
in the filling complexity like Soukup [14] and Akers [15], but nowadays the most

popular one must be A* search algorithm [10].

2.3.2 A* search Algorithm

As we discussed in the previous section, Lee’s algorithm has a terrible time and
space complexity because it basically picks the path in a blind way. One intuitive way to
improve it might be to consider the nodes more likely to be in the shortest path in a
prior order [8]. That is the main concept of A* search algorithm [10], and it is
accomplished by adjusting the cost function in Lee’s algorithm.

In Lee’s algorithm, the cost function is basically the distance between current node
and S. While in A* search algorithm, we define the formula f(x) = g(x) + h(x) as the
cost function to evaluate the cost of each node x, where g(x) is the distance from the S
to the current node X, and h(x) is the heuristic (or estimated, predicted) cost from the
current node x to T. And in each round, A* search algorithm selects a node with the least
cost to propagate (i.e., the least f(x)), as a result A* search is also called best-first
search.

Let’s take a look at an example in Figure 2.16 and Figure 2.17, here we use the
Manhattan distance to estimate the h(x) part of each node. From the source node, there
are only four possible nodes to propagate, and in Figure 2.16(a) we’ve marked all of
these four neighbors by its cost function in the form of g(x) + h(x). So there are two
possible choice for A* search, either one or the other has the same priority. If we choose
the up one from S to propagate, there will be three more neighbors that were added to
the priority queue keeping track of the path just like in Figure 2.16(b). While in Figure

2.17(a), there are also two possible nodes to be chosen. If the node which is on the top
21



of T is chosen, then the wave-front propagates like Figure 2.17(b), where the cost of T
would be 14 + 0 = 14. So T will be popped out and the algorithm terminates. The

pseudo code of A* search is showed in Figure 2.18.

T T
2+10
1411 2412 | 12 | 2410
1413 S 1+11 14 S 12
1413 14

() (b)

Figure 2.16 Example of A* search in the beginning.

16 16 16 16 | 1442
1 14 14 14 14 14 | 142
14 12 14 i
14 12
14 12
14 12
14 12
14 12
14 12
14 12

wIBIR[IRB|IRIRIR|R

=
S

(a) (b)

Figure 2.17 Example of A* search in the end.

There is another key point in the utilization of Manhattan distance as the heuristic
part h(x). In [10], Hart gave a specific proof of the influence of the admissibility in this

heuristic function to the whole A* search algorithm. If the heuristic part of the cost

22



function is admissible, which means that it never overestimate the cost of the path, then
A* search algorithm always returns an optimal solution if such solution exists.
Manhattan distance is the smallest possible distance between two nodes in grid-based
routing, and that keeps the admissibility of the heuristic function and the optimality of

A* search algorithm.

f*initialization*/
The source node is labeled with 0 + h{g)
add the source node into et S

f¥filling*/
REPEAT
- Find the node N with the least cost in S
- for each N's neighbors M
- get M.parent() to N
- if M ig not in S
- label M with ¢(N) + 1 + h{})
- add M into S
- elge
- update the cost of M if g(N) + | + h(M) is smaller than its original cost

UNTIL target node reached or S isg empty

!¥retracing*/

go to the target node

REPEAT
- add this node N into the path
- go to N.parent()

UNTIL source node reached

= the distance from source to x
= the estimated distance from x to target

Figure 2.18 Pseudo code of A* search.

A* search has many applications, and it also leads VLSI routing into a brand-new
practical research with the appearance we see today. It perform a lot better in both time
and space and that makes itself superior to other approaches. In our thesis, we not only
modify this algorithm to meet our requirements, but also implement it to be the control

group as a basis for comparison.

23



Chapter 3 Data Compression Ratio-aware Detailed

Routing

This chapter is the main theme of this thesis. In the following sections, we will
introduce a detailed router which is capable of improving data compression ratio while
LineDiff Entropy data compression algorithm is used. Our routing algorithm is also
based on A* search, but three more strategies are proposed up onto it. The first strategy
is to make the wires on-grid after pixelization, but this would cause a decrease in
routability. So we propose the second strategy to enhance routability and to supply a
reference for the third strategy, which is to route the patterns more expected to enhance
total data compression ratio. All the details will be illustrated in the following sections

right after the introduction of the routing specification.

3.1 Routing Specifications

International Technology Roadmap for Semiconductors (ITRS) [13] shows that in
14-nm technology node, half wire pitch is expected to be 40nm. Wire pitch is defined as
in Figure 3.1, so in the routing spec., we can make our wires to be 40 nm, and a routing

track is therefore 80 nm to avoid design rule violation.

—  Pitch <]

-

About ¥ Pitch

Figure 3.1 Narration of wire pitch.
24



And just like what we’ve talked about in section 1.1, our pixel size is set to be 7nm
by 7nm. Each pixel contains a 5-bit data, which gives a precision of 32-level grayscale.

Total routing spec. is shown in Table 3.1.

14/16-nm technology node
Wire width 40 nm
Track width 80 nm
Pixel size nm * 7nm
Pixel depth 5 bits
# of layers 3
Expected CR 450

Table 3.1 Routing specification.

MEBDW systems are relatively costly and slow compared to traditional process, so
we usually use them in the layers with the thinnest wires. In our research, we assume
the number of this kind of layers to be three, including two horizontal-orientation layers
and one vertical layer in a staggered order. Expected Compression Ratio (CR) is also
attained from section 1.1, which is the ratio of required optical fibers to the actual
number. This spec. is also implemented to be the control group with merely A* search
algorithm and the 450 times of compression ratio is the ultimate goal we want to

achieve.

3.2 1Ststrategy: on-grid wires

The first thing we do for this data compression ratio-aware router is to make the
wires we route can be exactly on the grid lines after pixelization. Figure 3.2 is a small

example of the benefit we can get with this strategy. In the figure, layout on the right is

25



the one with some special process to make the wires lies just on the gridlines, while the

left one isn’t. And the binary digits beneath them are the encoded results with LineDiff

Entropy algorithm.

We can see that in a layout, a piece of wire is composed of two parts. The interior

pixels are all set to be 31 (Black) because all of the area in these pixels is occupied by

the wire, while the pixels surrounding the wire are all set to be some number between 1

and 30 because their area are just partially occupied. And we also notice that these

surrounding pixels does burden CR a lot because of their fragmented information. If we

can make our nets lie on grid lines as much as possible like in the example in Figure 3.2,

we can get the results of a 1.87 times of improvement in CR.

176 /94 = 1.87

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[~ 28 28 28 28 []7 0 0 0 31 31 31 31 0 0 0 0
31 31 31 31 10 0 0 0 31 31 31 31 0 0 0 0
29 29 29 29 8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5 18 18 18 8 0 0 0 0 31 31 31 31
0 0 0 8 31 31 31 31 0 0 0 0 31 31 31 31
0 0 0 6 27 27 27 27 0 0 0 0 g g T T
100001 100001
1011110011000100101001110001 1001110001000001
100111000100101010100001 01
1011110111000100101010000001 10101001110001000001
1000101001000001 1000110001000001
11000011101001011011001001 11000100100101
1100001110101000100101 01
11000011101001101011101101 110001001010100001
Total 176 bits! Total 94 bits!

Figure 3.2 Example of nets on grid lines.

To put this idea into practice, we modify the routing specification we’ve described

in the previous section. In section 3.1, we’ve talked about that ITRS expected the wire

pitch (hence the track width) to be at least 80 nm and a pixel is of 7-nm in each side.

26



With this spec., it is difficult to make wires lie on the exact grid lines. So what we did is
to adjust the routing track to be 84 nm which is divisible by 7 and make the wires on the
top-left corner of each track. With this little technique, we can now make sure that our
metal wires will always stick on the grid lines for up, left, and right sides.

Figure 3.3 shows the concept of the first strategy. Figure 3.3(a) is the layout with
original track width, while (b) is the layout after adjustment. We can see that the track
width in (b) is wider than (a), so the requirements in ITRS roadmap are automatically
achieved at the cost of fewer routing tracks. After the process of pixelization, (a)
becomes (c), and (b) becomes (d). It is obvious that the edges of all nets in (d) are right

on gird lines, therefore CR is much better than (c).

L » R

(© (d)

Figure 3.3 Concept of the first strategy.
27



We adjust the size of each routing grids to make the nets on-grid so that the
compression ratio could be improved, but the number of routing tracks is therefore
reduced. That might cause a severe problem in routability, so we propose the second

strategy to ease this problem.

3.3 2"9strategy: simple route

The second strategy is a process called simple route. We’ve already known that A*
search is a shortest-path finding algorithm. And as the description in our routing spec.,
we route in three layers containing two layers of horizontal wires and a layer of vertical
in between, just like shown in Figure 3.4. So it is reasonable to speculate that the nets
we route with A* search would congest in Layer 0 and Layer 1 since all pins are defined
in Layer 0. This and the problem we’ve talked about in section 3.2 cause a drop in

routability.

% %
Layer 0
" S——
(@) (b)

Figure 3.4 Illustration of our 3-layer routing scheme,

X denote pins to be connected.

28



To alleviate this routability problem, we’ve designed a simple route process to
enhance the utilization of Layer 2. Whenever we are going to route a new wire, we
check whether we can go directly by Layer 1 and Layer 2 just like Figure 3.5. In the
figure we illustrated two different types of simple route, each of them routes in an
opposite order of vertical wires and horizontal wires. Both of them are used in the
proposed routing algorithm to enhance routability and Layer 2 area usage. Note that A*

search algorithm is used if we cannot apply either of these two simple route processes.

7 LT
AV v
7 AT -

(@) (b)

Figure 3.5 Examples of simple route.

With this technique, proposed router did surpass the control groups in routability.
We’ll talk about the experiment results in the later chapters. Another benefit of this
simple route process is that our algorithm routes some layout pattern that is long and
steady first, and these patterns themselves can be a great reference when we want to

route some patterns we really want in the next strategy.

29



3.4 3"strategy: desired patterns

In addition to the two previous strategies, the most important part must be how to
route the patterns with better compression ratio. In the description in 2.2.2, we’ve
introduced LineDiff Entropy compression algorithm in detail. And in 2.3.2, we know
that A* search algorithm takes advantage of cost functions to find a path between the
source pin and the target pin. So in this section, the main purpose is to first find out
what patterns perform well with LineDiff Entropy, and then we’ll make an adjustment
in the cost functions to make our router produce these patterns more likely.

Because LineDiff Entropy makes use of the duplication of layouts to compress data
volume, it is trivial that layout with more repetitive patterns has a better CR. Here we’ll
talk about layout pattern performance with horizontal layer (Layer 0, Layer 2) and
vertical layer (Layer 1) separately.

In Layer 0 and Layer 2, only horizontal wires are allowed. Our strategy is to make
sure that a routing track is more likely to be selected if it had been used before. This
idea comes from Figure 3.6(a) and (b). We can see that there are both three wires in
these two figures, but (b) is more likely to have a better CR because all wires are in the
same track. So LineDiff Entropy would take a little effort to encode this one track and
then just duplicate all the blank tracks, which might results in a great CR.

And there is a similar situation in Layer 1 which only vertical-oriented wires are
allowed. In Figure 3.6(c) and (d) we can see that there are also three wires in both
figures but (d) should perform better in CR. Because patterns in (c) is not well-aligned
as in (d), LineDiff Entropy cannot encode them only by their duplication. So we can
conclude that in the layer of vertical wires, our strategy is also to make the best out of

the duplication.

30



I N
—
(@) (b)
(©

Figure 3.6 Expected routing patterns.

()

Because LineDiff Entropy needs input file which is 1024-pixel wide and a pixel is
7 nm each side, the first specific procedure to do the above is to split the whole routing
map into several stripes which is 7168 nm wide. And then give the routing grids that is
not forming our desired pattern a punishment in the cost. In this case, A* search would
more likely to use the desired grid because it always picks the node with least cost to
propagate.

Figure 3.7 shows an example of Layer 1 (vertical-wire allowed). In this figure, the
whole layout is split into 7168-nm-wide stripes. The blue obstacle is a wire that had
been routed already and the yellow one is the one to be routed. There are two possible
directions A and B for the wire to propagate because it can go only vertically. And in
this case, the cost of B would be raised by a punishment because if the router route that
path, LineDiff Entropy should spend more resource to compress.

So what we actually do is that we keep trace of wires routed in each stripe

horizontally because of the raster scan order of LineDiff Entropy. In A* search, we can
31



say that we add the candidate nodes of the next propagation into a priority queue to pick
the one with least cost. And in our algorithm, we check whether the row where the node
lies in has been used beforehand or not. If not, we add a punishment to the cost of it. For
example, in Figure 3.7, we’ve record the blue wire. So when we are routing the yellow
wire, we check the record to know that the row of node A has been used, while the row
of node B hasn’t. So it is more expected to use A than B for LineDiff Entropy
performance. We raised the cost of node B by a punishment value to make the router go

for Amore likely.

— 7168 nm C——

Figure 3.7 Example of the third strategy.

Another important issue we want to talk about is that in section 3.2 we have
mentioned our routing track is set to be 84 nm. So if we want to split the layout into
stripes with 7168 nm, each stripe would contain about 85.33 tracks, which is not
processable.

We dealt with this problem by the expression in Figure 3.8. We try to solve it by

the way as simple as possible, so all stripes are divided into groups of three. The first
32



and the third stripes contain 85 tracks, and the second stripe contains 86. So every three

stripes contains 256 tracks, which is exactly 21504 nm for three stripes.

1020 pixel 1032 pixel 1020 pixel 1020 pixel 1032 pixel 1020 pixel 1020 pixel ...
85 86 85 85 86 85 85
Stripe 0 Stripe 1 Stripe 2 Stripe 3 Stripe 4 Stripe 5 Stripe6 ...

Figure 3.8 Stripe splitting.

In the end of this chapter, Figure 3.9 shows the whole flow chart of the proposed
algorithm except for the track width adjustment. In the figure we know that we first use
simple route in both directions, and the modified A* search carries out if both of them
failed. The key procedure of this modified A* search is the cost calculation because we
use the information of not only distance but the applicability of LineDiff Entropy to
determine the cost, and that makes our proposed detailed routing meaningful and
effective. We’ll give some experiment results to support this statement in the next

chapter.

33



Simple Route

Modified
A* search

Horizontal

Anymore
input?

Success

simple route

Vertical

Success

simple route

Fail

Push S

I

Pop least

T reached or
no more to pop

Find all next
candidate

I

Calculate cost

I

Push all

candidate

Figure 3.9 Total flow chart of the proposed algorithm.

34

Path confirm
and erase

FINISH



Chapter 4 Results of Experiments

In this chapter, the results of experiments we collected will be illustrated. And all
of them are conducted on workstation running Linux with Intel(R) Xeon(R) CPU
E5-2643 v2 3.50 GHz system with 70 GB RAM. Both proposed algorithm and the
control group, along with LineDiff Entropy algorithm, were implemented in C++
programming language compiled by g++ (GCC) v.4.8.2 released on 20140120.

Table 4.1 is adopted from Table 3.1, and it shows the specification of our
implementation. Basically our proposed router and the control group are both designed
for 14/16-nm technology node just like we introduced in section 3.1. The only
difference between them is the strategies we’ve expressed in the previous chapter. The
first strategy needs the routing track to be 84 nm in the width, resulting in a drop in
routability. So a procedure which checks whether the source pin is able to connect the
target pin directly, simple route, is taken place. But the most important modification is
the calculation of the cost in A* search. Proposed router takes advantage of both
distance and the performance of the patterns in LineDiff Entropy algorithm. While the
control group in our implementation is a detailed router which contains only the original
A* search algorithm to find the shortest path. And all other specifications in both
designs are just the basic requirements in the technology roadmap. Expected
compression ratio is 450, estimated in section 1.1 and it’s the ultimate goal we are trying
to reach out.

The input cases were generated at random by their coordinates, and the original
point was set on the top-left corner. Figure 4.1 shows a concept of this input file
generation. There are three pairs of source and target pins in this figure, and our detailed

router should find paths to connect them separately without any intersection. Another

35



constraint set in generating input is that each source and target node cannot be in the
same grid in neither proposed router nor control group. Note that this. figure does not

show the exact input file format, the actual format is just pairs and pairs of coordinates

of pins.
Groups Proposed A* search
Track width 84 nm 80 nm
Simple route Yes No

Distance and
Cost evaluation Distance only
LDE(*) preference

Wire width 40 nm

Pixel size nm > 7nm

Pixel depth 5 bits, 32 gray-level scales
Number of layers 3 layers
Expected CR 450

Table 4.1 Spec. of the implementation,

(*)LDE: LineDiff Entropy algorithm.

Routing space

51 T

. g
s TYTTRRERR——

Figure 4.1 Concept of input generation.

36



The following tables are the results of our experiments. Each of these tables
contains four sets of input cases generated at random, and they are grouped by the size
of the input circuit. We named the input cases in Table 4.2 the huge cases because each
of them contains 10,000 wires to be routed. And the other cases are called large,
medium, small, and tiny cases for Table 4.3, Table 4.4, Table 4.5, and Table 4.6
respectively, because of the number of wires needing routed is 8000, 5000, 3000, and
1000. After these complicated information, Table 4.7 shows the organized result of all.

In these tables, the basic information of each cases is listed on the top. The
identifiers of each input cases were given just for convenience. In each cases, all the
results can be viewed by two parts. The information on the left is from the control group
which was implemented using A* search algorithm only, while the one on the
right-hand side is our proposed detailed router. There are four topics we want to discuss,
including routability, total wire length, and the two most-important issues in MEBDW
systems, decompression rate and data compression ratio in LineDiff Entropy.

Routability is the primary concern for every router, and it’s defined by the success
rate while finding the actual path for each wire. In the proposed detailed router, we
designed a simple route process in order to deal with the severe problem in routability
caused by making wires on-grid. And the results show that the proposed algorithm does
route more wires than pure A* search. Actually the proposed detailed router has
routability more than 95% in every single test case and 97.59% on average.

But everything has its price. To reach such a high routability and the benefits in
other aspects, the router usually needs to take longer detours. So in Table 4.7 we can see
that the total wire length in the proposed algorithm is 23.43% more than the control
group. It’s actually not negligible, but compared to the contribution of this work, we

should try to do something more in the future to fix this.
37



The two issues we want to discuss next, which are also extremely important in
MEBDW systems, are decompression rate and compression ratio. Decompression
hardware should be directly attached to the electron beam writer, so decompression rate
being as fast as possible can save the hardware resources and make sure the
decompressed data sent to the writers in real time. In our experiment results, we can see
that the decompression time in the proposed router and the control group are almost the
same. So we can conclude that our design did not affect the decompression rate.

As for the compression ratio, just like we estimated, has a great improvement. The
compression ratio (CR) here is defined as the original data size divided by the
compressed data size. The results show that CR in proposed router is improved by at
most 1.67 times than the router with only A* search. And in Table 4.7 we can also know
that our design has a roughly 1.42 times on average better than the control group in CR.

But aside from the multiples we’ve mentioned above, the important part is the goal
of our design. In the previous section we know that the desired CR is about 450 in
manufacturing. The results also show that in most of the input case, proposed router
reach this target, while the control group doesn’t.

These two important issues are also plotted in Figure 4.2 and Figure 4.3. Note that
in these figures, the numbers had been taken average in each size of input. We can see in
Figure 4.2 that the decompression time is nearly the same in both designs. And Figure
4.3 shows CR in both designs, with the black line in the middle shows the ultimate goal,

450 times, of compression ratio in our research.

38



Input case ID. Huge #1 Huge #2

# of wires 10000 10000

Area (nm?) 97440 * 97440 97440 * 97440

Group A* search Proposed A* search Proposed
Routability 84.03% 93.40% 91.55% 97.48%
Total wire length (nm) 29614800 37031228 14799960 18289352
Decompression time (s) 38.51 37 37.02 37.72
Original data size (Byte) 1796598720 | 1796598720 | 1796598720 | 1796598720
Compressed data size (Byte) 6795886 4066245 5513903 3660736
Compression ratio 264.3656353 | 441.8323834 | 325.830672 | 490.7752758
CR Improvement 1.671292802 1.506227983

Input case ID. Huge #3 Huge #4

# of wires 10000 10000

Area (nm?) 97440 * 97440 97440 * 97440

Group A* search Proposed A* search Proposed
Routability 91.74% 97.73% 88.95% 96.05%
Total wire length (nm) 14773440 18223484 19912040 24538916
Decompression time (s) 37.82 37.24 34.74 35.39
Original data size (Byte) 1796598720 | 1796598720 | 1796598720 | 1796598720
Compressed data size (Byte) 5539075 3655172 5962215 3807019
Compression ratio 324.3499537 491522347 | 301.3307504 | 471.9174556
CR Improvement 1.515407483 1.566111175

Table 4.2 Results of experiments for huge cases.

39




Input case ID. Large #1 Large #2

# of wires 8000 8000

Area (nm?) 87360 * 87360 87360 * 87360

Group A* search Proposed A* search Proposed
Routability 85.81% 94.34% 92.81% 97.89%
Total wire length (nm) 21290680 26586708 10617960 12997012
Decompression time (s) 30.83 30.84 31.82 32.69
Original data size (Byte) 1495690560 | 1495690560 | 1495690560 | 1495690560
Compressed data size (Byte) 5277262 3252139 4338296 2947402
Compression ratio 283.4216986 | 459.9097886 | 344.7645251 | 507.4606586
CR Improvement 1.622704934 1.471905088

Input case ID. Large #3 Large #4

# of wires 8000 8000

Area (nm?) 87360 * 87360 87360 * 87360

Group A* search Proposed A* search Proposed
Routability 92.28% 98.01% 89.76% 96.65%
Total wire length (nm) 10520240 12951368 14125160 17563512
Decompression time (s) 31.75 31.41 29.49 30.12
Original data size (Byte) 1495690560 | 1495690560 | 1495690560 | 1495690560
Compressed data size (Byte) 4333774 2940447 4708042 3062791
Compression ratio 345.1242635 | 508.6609485 | 317.6884488 | 488.3423518
CR Improvement 1.473848704 1.537173774

Table 4.3 Results of experiments for large cases.

40




Input case ID. Medium_#1 Medium_#2

# of wires 5000 5000

Area (nm2) 67200 * 67200 67200 * 67200
Group A* search Proposed A* search Proposed
Routability 88.10% 95.74% 93.60% 98.30%
Total wire length (nm) 10160440 12623972 4951760 5968560
Decompression time (s) 18.35 19.1 17.45 17.45
Original data size (Byte) 885024000 885024000 885024000 885024000
Compressed data size (Byte) 2980874 1892347 2414204 1714069
Compression ratio 296.9008418 | 467.6858948 | 366.5903958 | 516.3292726
CR Improvement 1.575225897 1.40846372

Input case ID. Medium_#3 Medium_#4

# of wires 5000 5000

Area (nm2) 67200 * 67200 67200 * 67200
Group A* search Proposed A* search Proposed
Routability 93.46% 98.64% 91.40% 97.38%
Total wire length (nm) 4921960 5973624 6738560 8327120
Decompression time (s) 17.98 17.48 18.47 18.08
Original data size (Byte) 885024000 885024000 885024000 885024000
Compressed data size (Byte) 2426859 1721081 2661106 1798012
Compression ratio 364.6787885 | 514.2256524 | 332.5775072 | 492.2236337
CR Improvement 1.410078317 1.48002683

Table 4.4 Results of experiments for medium cases.

41




Input case ID. Small_#1 Small_#2

# of wires 3000 3000

Area (nm?) 52080 * 52080 52080 * 52080
Group A* search Proposed A* search Proposed
Routability 91.07% 96.90% 95.20% 99.07%
Total wire length (nm) 4700520 5883716 2269280 2628396
Decompression time (s) 10.98 11.38 10.85 10.55
Original data size (Byte) 548714880 548714880 548714880 548714880
Compressed data size (Byte) 1703269 1110990 1337456 1010446
Compression ratio 322.1539757 | 493.8972268 | 410.2676125 | 543.0422605
CR Improvement 1.533109209 1.323629368

Input case ID. Small_#3 Small_#4

# of wires 3000 3000

Area (nm?) 52080 * 52080 52080 * 52080
Group A* search Proposed A* search Proposed
Routability 94.30% 99.20% 93.30% 98.67%
Total wire length (nm) 2234960 2648696 3063680 3672492
Decompression time (s) 10.8 10.45 11.34 11.29
Original data size (Byte) 548714880 548714880 | 548714880 | 548714880
Compressed data size (Byte) 1332523 1008515 1489779 1058049
Compression ratio 411.7864232 | 544.0820216 | 368.3196501 | 518.6100833
CR Improvement 1.321272366 1.408043484

Table 4.5 Results of experiments for small cases.

42




Input case ID. Tiny #1 Tiny #2

# of wires 1000 1000

Area (nm?) 30240 * 30240 30240 * 30240
Group A* search Proposed A* search Proposed
Routability 95.00% 97.80% 97.50% 99.30%
Total wire length (nm) 881440 1072176 421040 427356
Decompression time (s) 3.97 4.14 3.89 3.8
Original data size (Byte) 199130400 199130400 199130400 199130400
Compressed data size (Byte) 497082 361671 383569 316350
Compression ratio 400.598694 550.5843709 | 519.1514434 | 629.4623044
CR Improvement 1.374403809 1.212483009

Input case ID. Tiny #3 Tiny #4

# of wires 1000 1000

Area (nm?) 30240 * 30240 30240 * 30240
Group A* search Proposed A* search Proposed
Routability 98.10% 99.60% 97.20% 99.60%
Total wire length (nm) 437640 439072 572360 625980
Decompression time (s) 4.13 3.79 3.85 4.01
Original data size (Byte) 199130400 199130400 199130400 199130400
Compressed data size (Byte) 389990 318149 423360 335303
Compression ratio 510.6038616 | 625.9029574 | 470.3571429 | 593.8819515
CR Improvement 1.225809291 1.262619183

Table 4.6 Results of experiments for tiny cases.

43




Group A* search Proposed
Average routability 92.26% 97.59%
Total wire length (hm) 177007920 | 218472740
Total wire length exceeded 23.43%

Total decompression time (s) 404.04 403.93
Difference of decompression time -0.03%

Average compression ratio 364.0431 517.5174
Average CR improvement 1.421583

Decompression time(s)

Table 4.7 Overall results of experiments.

Decompression time

=R NN W W
L o o T O 1 e T 1 N s T O e |

1000 3000

/

5000

input size

8000 10000

=== A* search

Proposed

Figure 4.2 Decompression time comparison

44



Compression ratio
700

600

500
&

400 \
e S

300

— =@ A% search

200 Proposed

Compression ratio

100

1000 3000 5000 8000 10000

input size

Figure 4.3 Compression ratio comparison,

the black line indicates the goal of the research 450

There are two routing results shown in Figure 4.4 and Figure 4.5. In both figures,
the layouts on the left is the result of the control group, while the ones on the right is the
result of our proposed router. And all three layers are listed together. We can see that
when we’re using only A* search, layer 2 is rarely used, while proposed router has a
better area utilization. Figure 4.4 is the result of case Huge #1 and Figure 4.5 shows the

result of case Medium_#3.

45



Layer O

r o

Laye

Layer_1

ril

Laye

r2

Laye

r2

Laye

(b) Proposed

search

(@) A*

Figure 4.4 Routing results for Hug

e #1.

46



p II'UL bl b
u !' J:‘l l‘ | lh \'; i r‘J‘:v :&1
"”‘"l I |s

! |

h
l- ,v 1} :
g ""‘“. A

s O
AL 1--&'""'1 1\‘“'

ﬂ_l'”'l |||’ .F
'

Layer_2

(a) A* search

Layer_0O

Ty 1

' NURTR LN by : | '
'{‘ lll',.,‘“\jl- il |r }""' "1“L ‘I:l, ‘ * *‘:lf; X I}‘h "' “ I| . '. |II| r
I'| * |'. | .

la

I“" 'l ',]‘
"-’."..\ ",.l
i tl t'u- 'I"‘L.)' ; fl fl i:} RF ’.“.'L‘,‘

1% 'ly . lll “' o )

\lun ¢ | ¢ ll * ,
IHM ».l. *u:‘.'jﬁ , s ‘f“"" '*I' } 5" ",'. ‘d||' "' th
’i’ls 1o u.- | Y, ;..& B “'H : I};. ."'JP:i'Iil
"\ U l.rn Ay ) :1[fr|!| Lra)
' “|,'4..|“].- AL

" 'n i ,) g t
'w"ﬂ #” 1 ’\ |L . I‘I‘”"I ’5 .;, s ' || H- ‘ nuﬂ l|'" v

W
I ! ) L
' L I ‘

"lhl'}lfh ,. b 1,“N+'Jr|’h
'illl o | .|. A . . 1
g ""”‘lv .\;J'l 1'1 ,'-, i ‘u

¥ I
\ wly "Jl"r"l:
'\u ” .u., Il| ‘)"'a ;" tl i |‘|, 'ﬂllé ] ‘m ,i‘l'lh |h“|“\'

ol p.l’,c"

l|ly|,

| IRV
'Ix|.' 'I"‘|1\"rll!"|l'~"l'

Layer_1

Layer_2

(b) Proposed

Figure 4.5 Routing results for Medium_#3.

47



Chapter 5 Conclusion and Future Work

In this thesis we have proposed a detailed router that supports the data compression
algorithm, LineDiff Entropy algorithm, for MEBDW systems. In the beginning we have
introduced such system including the significance, the expectation, and the problem it
confronts. And then we did some calculation to estimate the lack in throughput needs a
compression ratio larger than 450.

After the complete expression of the algorithms, the results of experiments were
listed. And they’ve shown that for LineDiff Entropy algorithm, proposed detailed router
performs much better than the router without our modification in compression ratio
while maintaining decompression rate. And the estimated goal 450 is reached after
applying our algorithm.

And there is another important contribution in our research. We’ve mentioned that
there is no such research in solving throughput problem in MEBDW system from the
aspect of circuit physical design. Our research proved that this is a field worth
investment.

But there also exists something more to improve. For routing part, routability
should be further promoted to around 100% to meet the requirements in manufacturing
these days. And this could be done if we introduce a structure which is able to
dynamically select, defuse and reroute. Such structure could automatically selects wires
causing routing congestion or making LineDiff Entropy performs poorly. And then these
wires might be canceled in order to route other wires first, to further improve routability
or CR.

As for industrial manufacturability, there is actually an important phase we ignored

in this thesis called Electron-beam Proximity Correction (EPC). This phase is necessary

48



because the patterns might have a distortion after written by E-beam emitter.

Digital (Image)
Representation of Developed

the Circuil Energy Image Image

r .

Threshold

Figure 5.1 Latent image simulation procedures. [17]

Figure 5.1 shows the simulation of a pattern distortion. In this flow, the original
layout is represented by some standard polygons, and then they’re taken convolution
with a Point Spread Function (PSF) which can be derived from Gaussian function [18]
to get the energy map. And finally after filtered by a threshold, we get the image on the
right in Figure 5.1, which is the actual pattern that will be written. We can see such a
variation that even causes circuit short.

This is why the EPC process is needed. But we can also comprehend that after
EPC, layout patterns could have skewed shapes which cannot be compressed easily by
any data compression algorithm.

Another work might be worth researching is a brand new data compression
algorithm which can cooperate with our proposed router or with little adjustment.
Because the basic idea of proposed router is to take advantage of the repetition of
patterns, there should be some more ways to further improve compression performance

with it.

49



[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCE

Chin-Khai Tang, Ming-Shing Su, and Yi-Chang Lu, “LineDiff Entropy: Lossless
Layout Data Compression Scheme for Maskless Lithography Systems,” IEEE
Signal Processing Letters, Vol. 20, No. 7, July 2013, pp. 645-648.

P. Petric, C. Bevis, A. Brodie, A. Carroll, A. Cheung, L. Grella, M. McCord, H.
Percy, K. Standiford, and M. Zywno, “REBL nanowriter: Reflective Electron
Beam Lithography,” Proc. SPIE, vol. 7271, Alternative Lithographic Technologies,
727107, Mar. 2009, doi: 10.1117/12.817319.

Ming-Shing Sua, Kuen-Yu Tsaia, Yi-Chang Lua, Yu-Hsuan Kuoa, Ting-Hang Peia,
and Jia-Yush Yenb, “Architecture for next generation massively parallel maskless
lithography system (MPMLZ2),” Proc. SPIE, Vol. 7637, Alternative Lithographic
Technologies 11, 76371Q, Apr. 2010, doi: 10.1117/12.846444.

V. Dai, “Data Compression for Maskless Lithography Systems: Architecture,
Algorithms and Implementation,” Ph.D. dissertation, University of California,
Dept. Electrical Engineering Computer Science, Berkeley, CA, USA, 2008.
Jeehong Yang, “Lossless Circuit Layout Image Compression Algorithm for
Multiple Electron Beam Direct Write Lithography Systems,” Ph.D. dissertation,
University of Michigan, 2012.

Cheng-Chi  Wu, Jensen Yang, Wen-Chuan Wang, Shy-Jay Lin, “An
Instruction-based High-Throughput Lossless Decompression Algorithm for
E-Beam Direct-Write System,” Proc. SPIE, vol. 9423, Alternative Lithographic
Technologies VI, 94231P, Mar. 2015, doi: 10.1117/12.2085278.

Jacob Ziv, Abraham Lempel, "A Universal Algorithm for Sequential Data

Compression". IEEE Transaction on Information Theory, Vol. I1T-23, No. 3, May

50


http://dx.doi.org/10.1117/12.817319
http://dx.doi.org/10.1117/12.846444
http://spie.org/profile/Cheng-Chi.Wu-4675
http://spie.org/profile/Wen-Chuan.Wang-6376
http://spie.org/profile/Shy-Jay.Lin-29845
http://dx.doi.org/10.1117/12.2085278

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

1977, pp. 337-343.

Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Cheng, “Electronic Design
Automation: Synthesis, Verification, and Test (Systems on Silicon),” 1st Edition,
Elsevier Inc., 2009, Chapter 12, pp. 687-749.

Lee, C.Y., and Whippany, N. J., “An Algorithm for Path Connections and Its
Applications,” IEEE IRE Transactions on Electronic Computers, Vol. EC-10, No.
3, Sept. 1961, pp. 346-365.

Peter E. Hart, Nils J. Nilsson, Bertram Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science
and Cybernetics, Vol. 4, No. 2, July, 1968, pp. 100-107.

Minsik Cho, Yongchan Ban, and David Z. Pan, “Double Patterning Technology
Friendly Detailed Routing,” in IEEE/ACM International Conference on
Computer-Aided Design, 2008, pp. 506-511.

Shao-Yun Fang, “Lithography Optimization for Sub-22 Nanometer
Technologies,” Ph.D. dissertation, National Taiwan University, Graduate Institute
of Electronics Engineering, Taipei, Taiwan, 2013.

Jhih-Rong Gao, and David Z. Pan, “Flexible self-aligned double patterning aware
detailed routing with prescribed layout planning,” Proceedings of the ACM
international symposium on International Symposium on Physical Design, 2012,
pp. 25-32.

Soukup, J., “Fast Maze Router,” 15th Design Automation Conference, 1978, pp.
100-102.

Akers, Sheldon B., “A Modification of Lee’s Path Connection Algorithm,” IEEE
Transactions on Electronic Computers, Vol. EC-16, No. 1, Feb., 1967, pp. 97-98.

2013 International Technology Roadmap for Semiconductors: http://www.itrs.net/

51


http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Laung-Terng+Wang&search-alias=books&field-author=Laung-Terng+Wang&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Yao-Wen+Chang&search-alias=books&field-author=Yao-Wen+Chang&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=Kwang-Ting+%28Tim%29+Cheng&search-alias=books&field-author=Kwang-Ting+%28Tim%29+Cheng&sort=relevancerank
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lee,%20C.Y..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4670335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4670335
http://dl.acm.org/author_page.cfm?id=81367595355&coll=DL&dl=ACM&trk=0&cfid=704994565&cftoken=36799034
http://dl.acm.org/author_page.cfm?id=81100484614&coll=DL&dl=ACM&trk=0&cfid=704994565&cftoken=36799034
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Soukup,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Akers,%20Sheldon%20B..QT.&newsearch=true
http://www.itrs.net/

[17]

[18]

S.-Y. Lee and B. D. Cook, “PYRAMID-A Hierarchical, Rule-Based Approach
Toward Proximity Effect Correction-Part 1. Exposure Estimation,” IEEE
Transactions on Semiconductor Manufacturing, Vol.11, No. 1, 1998, pp. 108-116.
Shy-Jay Lin, Pei-Yi Liu, Cheng-Hung Chen, Wen-Chuan Wang, Jaw-Jung Shin,
Burn J. Lin, “Influence of Data Volume and EPC on Process Window in
Massively Parallel E-Beam Direct Write,” Proc. SPIE, vol. 8680, Alternative

Lithographic Technologies V, 86801C,March, 2013, doi: 10.1117/12.2010865.

52


http://dx.doi.org/10.1117/12.2010865

