

國立臺灣大學電機資訊學院電子工程學研究所

碩士論文

Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

針對多電子束直寫系統資料壓縮比例之細部繞線

Data Compression Ratio-aware Detailed Routing for

Multiple E-Beam Direct Write Systems

邱煜翔

Yu-Hsiang Chiu

指導教授：陳中平 博士

Advisor: Chung-Ping (Charlie) Chen, Ph.D.

中華民國 104年 9月

September, 2015

 ii

誌謝

終於輪到我寫謝詞啦！

 首先要感謝我的父母家人，從小到大總是無怨無悔當我最堅實的後盾，讓我

沒有絲毫後顧之憂，如果沒有你們絕對不會有今天的我。

 感謝我的指導教授陳中平老師，讓我有了這樣的環境可以與同儕砥礪戮力研

究。感謝方姊姊在我的研究生涯迷茫無方向時及時出現，並且當做自己的學生一

般指導。感謝郝市長隨時願意提供你的專業知識，並且在生活上也給了我非常多

的建議。

 實驗室的大家都很善良，大白不只是一個好同學也是一個好室友，希望日後

還能有機會一起找家賢哥繼續嘴砲泰宇。阿智很久沒出現了，但吃飯想揪人的時

候還是會讓人想起當年跟 Bonnie一起修課的日子。家豪哥和紅線老大指導了我不

少東西，力巴哥跟孝銓哥則是嘴砲時的好夥伴。感謝博班的學長們，特別是士倫

學長，對我的厚愛與教導。昶毅、砲灰、謝等等 ICS 組的學長同學們也陪伴了我

度過無數歡樂與苦悶的時光。至於學弟妹們我就不一一點名了，希望你們可以在

這間實驗室找到自己的研究和人生的道路方向。此外更希望的是我沒有漏掉哪一

個重要的人。

 感謝辜狗哥三不五時提醒我畢業時程中所剩下的時日無多，雖然很煩但也是

很重要的啦。感謝小枝阿台常常陪我吃飯，並且在求學及求職過程中給了我無數

重要的建議。感謝薄薄小黑在我碩一的時候讓我除了自己的實驗室以外還有別人

的可以去鬼混。本來還想要感謝一下 Keyway的，但想了半天實在沒想到這兩年多

來你有為我做甚麼事，就感謝你總是當我們的話題守護者吧。其他想要感謝的以

往的同學朋友們實在太多了，一言以蔽之就感謝國小同學國中同學高中同學和大

學同學們吧！

 最後壓軸的是品嘉，感謝妳在我的學生生涯尾端加入我的人生。因為有妳在

我身邊，我覺得我甚麼事情都可以辦得到。雖然這本論文妳真正參與的份量約莫

只是三分之二，但我想以後還是會有很多需要麻煩妳的地方。妳很好，各個方面

都是，對我而言很重要，謝謝妳。

 好，我要畢業了！

 iii

中文摘要

由於製程的演進，超大型積體電路的最小關鍵尺寸已趨近於物理極限，而傳

統光學曝光所使用之光源因其解析度而逐漸不敷使用，電子束曝光則因其高度的

精準特性而成為極具潛力的次世代製程選擇。

電子束的精準程度可以達到奈米量級，在使用上必須非常精確的將電路資訊

傳輸至曝光系統。而現今的超大型積體電路複雜程度與日俱增，製程上若欲讓電

子束機臺得以即時曝光顯影生產，就必須仰賴極有效率的資料傳輸方式，將電路

資料即時傳輸至機臺上，此傳輸規格超越了現今光纖傳輸所能達到的極限。因此

實際在工業上的使用，必須先將電路的資訊壓縮以後再傳輸，至機臺上解壓縮，

才能達到預期的產率。

本篇論文將要探討的問題是，若已經選擇了特定的壓縮演算法，是否能夠在

電路實體設計的階段，就產生出能夠讓此壓縮演算法表現得更加優異的電路布

局，進而提升整體的壓縮效率。而實驗的結果證明了此一理論，也同時說明了由

繞線階段便加以考量，進而影響資料壓縮的效果是不容忽視的。此一領域亦極具

發展的潛力與研究價值。

關鍵字：電子束曝光、資料壓縮、實體設計、電路布局、繞線

 iv

ABSTRACT

 The feature size of Integrated Circuits(IC) are shrinking down along with the

advancement of technology, but the resolution of the ArF laser is far from the target for

next generation lithography. Electron beam (E-beam) lithography, with its

high-accuracy characteristic, is very likely to become the main role in next generation

lithography.

 Because of the accuracy of E-beam, the exact information of the circuit has to be

delivered to the E-beam emitter. However, circuits nowadays has become so

complicated that the successfulness of this process relies on the speed of data

transmission, which is not sufficiently fast even with technologies today. So in practice,

data should be compressed first, transmitted by optic fibers, and then decompressed in

the E-beam machines.

 In this thesis, we proposed a detailed routing method to improve data compression

quality before applying the actual compression algorithm. The results of experiments

show that, with one particular data compression algorithm, LineDiff Entropy, chosen,

we improve data compression ratio with our proposed detailed router. And we can

conclude that considering data compression ratio in physical design phase is a field

worth studying.

Keywords: Lithography, Electron Beam, Data Compression Algorithm, Physical Design,

Detailed Routing

 v

CONTENTS

口試委員審定書 ..i

誌謝 .. ii

中文摘要 ... iii

ABSTRACT ...iv

CONTENTS .. v

LIST OF FIGURES .. vii

LIST OF TABLES ..ix

Chapter 1 Introduction .. 1

1.1 MEBDW Systems Difficulty .. 2

1.2 Motivation and Accomplishment .. 5

1.3 Organization ... 6

Chapter 2 Preliminaries .. 8

2.1 MEBDW System Architecture Designs .. 8

2.2 Data Compression Algorithms .. 11

2.2.1 Introduction of data compression algorithms 11

2.2.2 LineDiff Entropy ... 14

2.3 Routing Algorithms .. 17

2.3.1 Lee’s Algorithm ... 19

2.3.2 A* search Algorithm ... 21

Chapter 3 Data Compression Ratio-aware Detailed Routing 24

3.1 Routing Specifications .. 24

3.2 1st strategy: on-grid wires ... 25

3.3 2nd strategy: simple route .. 28

 vi

3.4 3rd strategy: desired patterns ... 30

Chapter 4 Results of Experiments .. 35

Chapter 5 Conclusion and Future Work.. 48

REFERENCE .. 50

 vii

LIST OF FIGURES

Figure 1.1 Concept of REBL nanowriter. [5] ... 2

Figure 1.2 Circuit layout example. ... 3

Figure 1.3 5-bit bitmap transformed from Figure 1.2. ... 3

Figure 1.4 Procedures in MEBDW system. ... 5

Figure 2.1 Direct transmission. .. 8

Figure 2.2 Whole chip information in on-chip memory. ... 9

Figure 2.3 Compressed information in on-chip memory. .. 10

Figure 2.4 Off-chip memory and decoder. ... 10

Figure 2.5 Architecture of data delivery in MEBDW systems. 11

Figure 2.6 Example of LZ77. ... 12

Figure 2.7 Example if 2D-LZ. [5] .. 12

Figure 2.8 Context-based prediction. [4] ... 13

Figure 2.9 LineDiff Encoding. [1] ... 15

Figure 2.10 Example of LineDiff Encoding. ... 15

Figure 2.11 Example of LineDiff Compaction. ... 16

Figure 2.12 Example of grid-based routing. .. 18

Figure 2.13 Example of filling stage in Lee’s algorithm. .. 19

Figure 2.14 Example of retracing stage in Lee’s algorithm. .. 20

Figure 2.15 Pseudo code of Lee’s algorithm. ... 20

Figure 2.16 Example of A* search in the beginning. ... 22

Figure 2.17 Example of A* search in the end. ... 22

Figure 2.18 Pseudo code of A* search. .. 23

Figure 3.1 Narration of wire pitch.. 24

 viii

Figure 3.2 Example of nets on grid lines. .. 26

Figure 3.3 Concept of the first strategy. ... 27

Figure 3.4 Illustration of our 3-layer routing scheme. ... 28

Figure 3.5 Examples of simple route. .. 29

Figure 3.6 Expected routing patterns. .. 31

Figure 3.7 Example of the third strategy. ... 32

Figure 3.8 Stripe splitting. .. 33

Figure 3.9 Total flow chart of the proposed detailed router. .. 34

Figure 4.1 Concept of input generation.. 36

Figure 4.2 Decompression time comparison .. 44

Figure 4.3 Compression ratio comparison. .. 45

Figure 4.4 Routing results for Huge_#1. .. 46

Figure 4.5 Routing results for Medium_#3. ... 47

Figure 5.1 Latent image simulation procedures. [17] .. 49

 ix

LIST OF TABLES

Table 1.1 Specification of data transmission rate. .. 4

Table 2.1 Relative frequency of occurrence of OP and L. [1] 16

Table 2.2 Entropy Encoding design of LineDiff data. [1] .. 16

Table 3.1 Routing specification. ... 25

Table 4.1 Spec. of the implementation. .. 36

Table 4.2 Results of experiments for huge cases. ... 39

Table 4.3 Results of experiments for large cases. ... 40

Table 4.4 Results of experiments for medium cases. ... 41

Table 4.5 Results of experiments for small cases. .. 42

Table 4.6 Results of experiments for tiny cases. .. 43

Table 4.7 Overall results of experiments. ... 44

 1

Chapter 1 Introduction

 As long as the rapid advancement of technology today, the size of integrated

circuits (IC) are getting smaller and smaller these days. However, diffraction is now a

very severe problem due to the limitation of 193-nm light source in traditional

lithography [1]. So we have to search for an alternative way with high resolution, but

throughput still comparable to today’s optical lithography systems.

Among all candidates, Electron Beam Lithography (EBL) systems are well known

to produce excellent resolution, good line edge roughness and good line width

roughness [2], but they also have a common problem in their low throughput. A simple

way to improve it is to use the concept of massive parallelism [3]. So a Multiple

Electron Beam Lithography (MEBL) system should be a feasible alternative.

Another benefit of using MEBL is that, due to its high precision, we can now apply

a maskless process into practice. The traditional optical projection systems use a mask

to project the entire chip pattern; while a maskless system, also known as a

“direct-write” system, allowed us to use electron beams to draw custom shapes directly.

The concept is that there is an electron-sensitive film on the surface called a resist. And

while exposure, the beams change the solubility of the resist, results in the removal of

either the exposed or non-exposed regions after immersed in a solvent. The most

significant advantage of a Multiple Electron Beam Direct-Write (MEBDW) system is

that we can easily modify the image we want to project by changing the dose of each

emitter, whereas a mask once made is difficult to modify [4]. And with a direct-write

system we can also save our expenses of the masks.

 There already exist some applications of MEBDW systems, Figure 1.1 shows a

concept of Reflective Electron Beam Lithography (REBL). It’s an industrial application

 2

of MEBDW system by KLA-Tencor Corporation. Within this thesis, we’ll focus on the

feasibility of this application and try to make it more practical and play its role in next

generation manufacturing process.

Figure 1.1 Concept of REBL nanowriter. [5]

1.1 MEBDW Systems Difficulty

Every advantage has its disadvantage, there also exist some problems in MEBDW

systems. One of them, maybe the most important one, must be the limitation in data

transmission rate.

Because of the high accuracy of electron beams, we have to deliver the exact

circuit information called a “bitmap” to the electron beam emitters. Bitmap is a data

type of circuit layout. And just like a monitor, it displays information pixel by pixel.

 3

Figure 1.2 Circuit layout example.

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 14 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

00 00 18 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

00 00 18 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31

00 00 12 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 12 18 18 18 18 18 18 18 18 18 18 18

00 00 00 00 00 00 00 16 31 31 31 31 31 31 31 31 31 31 31

00 00 00 00 00 00 00 16 31 31 31 31 31 31 31 31 31 31 31

00 00 00 00 00 00 00 14 12 12 12 12 12 12 12 12 12 12 12

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Figure 1.3 5-bit bitmap transformed from Figure 1.2.

 4

Figure 1.2 and Figure 1.3 show an example of bitmap transforming. A pixel

represented by 00 in bitmap shows there’s no content in the pixel, while 31 shows that

the whole pixel was occupied. And any other number in between shows the ratio of area

occupied to total area in that pixel.

Device Specification Maskless Process Specification

Wafer size 300 mm Pixel size 7 nm * 7 nm

Writing rate 70 WPH Pixel depth 5 bits

Writing time 50 s Wafer data size 7200 Tb

Optical fiber transmission rate 10 Gbps Required rate 144 Tbps

Number of fibers connected 32 Required fibers 14400

450 times exceeded

Table 1.1 Specification of data transmission rate.

And in Table 1.1, we can now estimate the data volume and required data

transmission rate. From [6] we can get our device specifications shown below: wafer

size is 300 mm in the diameter and expected throughput is 70 wafers per hour (WPH),

which gives us about 50 seconds to write a single layer of a wafer. The digital pattern

generator (DPG) in a REBL system is a chip of less than 26 mm * 33 mm, so the

number of optical fibers connected to DPG is limited. And we can also know the data

transmission rate of a single fiber is about 10 G-bits per second (Gbps) [1], [3].

On the other hand, let’s take a look at the specifications of MEBDW systems. The

pixel size should be defined by half the minimum feature size [5], so we set our pixel

size to be 7 nm each side to match-up the 14-nm technology node. And we’ll use a 5-bit

gray level in each pixel, which gives it 32 different levels. Total data size can be

 5

estimated by equation 1.1.

So now we can know that our required data transmission rate is 7200 / 50 = 144

T-bits per second (Tbps), which required 14400 optical fibers operating at the speed of

10 Gbps to work simultaneously. That’s about 450 times over the acceptable number of

fibers today. We definitely need to do something more to make it work.

There are several different architectures to build up MEBDW systems, which we’ll

give a brief introduction in the following chapter. But to fit the data transmission

limitation we just discussed, the procedures in Figure 1.4 is the only adequate solution.

The bitmap file has a very huge volume, so in practice we have to compress it first, and

then transmit the compressed file instead. In the end we decompress it just before

lithography.

Figure 1.4 Procedures in MEBDW system.

1.2 Motivation and Accomplishment

Just like we’ve talked about in section 1.1, we need a data compression algorithm

in MEBDW systems. And among all such algorithms, two major characteristics we have

to pay attention to are respectively data compression ratio and decompression rate. Data

compression ratio directly affects the feasibility of MEBDW systems, so it’s definitely

 6

worthy a first priority concern. Decompression units are placed by the electron beam

controllers just like in Figure 1.4, and that’s why we don’t want to put too much

hardware resource onto it but still want the emitters to work in real time. So

decompression speed is also an important matter.

There do exist many data compression algorithms, some of them are even

originally designed to compress bitmap data. But what we are really interested in is that

whether we can improve the results of compression even before we get to that part. We

want to enhance the quality of data compression in physical design phase of the circuit.

In other words, with a specific data compression algorithm selected, we want to design

a router that generates layout patterns performing better in such algorithm. And so far,

there is no published material shows something like this research has been done. So we

decided to do some research on this topic.

And the results of our experiments are pretty excited. A data compression

algorithm that performs well in bitmap has been chosen. And with our proposed router,

the data compression ratio can be further increased by up to 67% while decompression

time remains unchanged.

But other than these numbers, the most valuable contribution of this research is

that our conclusion can be further deductive to a whole new field: no matter what kind

of data compression algorithm we fall to, we can always improve the performance by

some modification in the physical design phase.

1.3 Organization

There are several theme topics will be illustrated in this thesis. We’ve talked about

the introduction of the MEBDW systems and the problem we encountered in this

 7

chapter. In Chapter 2, some of the existed architectures and algorithms related to our

research will be presented. And our proposed detailed router will be specifically

expressed in Chapter 3. And in the end, the results of experiments and our conclusion

are respectively in Chapter 4 and Chapter 5. There will also be some discussion of what

this work can be further enhanced in Chapter 5.

 8

Chapter 2 Preliminaries

There are three major topics in this chapter. Section 2.1 will be a brief introduction

of the MEBDW system architectures, which states the problem we confronted and why

data compression algorithms are important. After that, some of the published data

compression algorithms will be introduced in section 2.2, including the one performing

extremely well with bitmap data, LineDiff Entropy. In the end of this chapter, an

important routing algorithm and its predecessor will be given in section 2.3. All of the

work in this thesis are developed mainly from all these three fields.

2.1 MEBDW System Architecture Designs

From Chapter 1, we are aware of how important MEBDW systems are. And

speaking of the architectures of MEBDW systems, the most straight forward thought

should be something like Figure 2.1. Many things should be a lot easier if we just

connect the disk with layout data to the electron beam controller. But unfortunately,

with our estimation in section 1.1, this kind of architecture requires a 144-Tbps

transmission rate, which is much more than what we can accomplish today. So this is

definitely not a solution.

Figure 2.1 Direct transmission.

 9

To avoid the data transmission rate limitation, another thought might be using

memory. Just like Figure 2.2, we try to attach a memory onto the electron beam emitter.

But if we want to store the information of whole wafer into the memory, we need a

memory element of 7200 Tb according to the calculation before. Even if we don’t need

to keep all information of a wafer, instead we only store one chip, we still need a

memory more than 20 Tb with a chip size 10 mm * 20 mm. But considering the small

area of electron beam controller, memory size is estimated to be limited by 16 Gb [3]

even with the highest-density DRAM.

Figure 2.2 Whole chip information in on-chip memory.

It is probably the time to think about data compression now. The first architecture

considering data compression might be like Figure 2.3. We compress the layout data and

store them into the on-chip DRAM. And then our data needs to be decoded back to

bitmap before sent to electron beam emitter. There are two difficulties in this

architecture. The first one is the data compression algorithm. We’ve already known that

the original data size of a single chip is 20 Tb and what we have is a 16 Gb DRAM, so

our compression ratio (CR) must be more than 1250. That is almost impossible.

Moreover, we’ll need an on-chip decoder according to the data type. Considering the

limited area, we actually can’t expect to do these two things well at the same time.

 10

Figure 2.3 Compressed information in on-chip memory.

Now we know that we can’t do too many things because of the area limitation on

electron beam controllers, so let’s try to move the memory and the decoder off-chip like

Figure 2.4. But now we’re still facing the problem of data transmission rate limitation in

optical fibers.

Figure 2.4 Off-chip memory and decoder.

Finally, we have found one feasible solution. Let the decoder on-chip, and all the

other elements placed on the memory off-chip. If our data compression algorithm is

capable of providing CR fitting the transmission limitation, and the speed of

decompression can make the electron beam emitter work in real time, then it is good

enough for us with architecture in Figure 2.5.

All the above are the architectures of MEBDW systems. Apparently there are not

too many choices for us. Therefore Figure 2.5 is the only architecture we’ll talk about in

this thesis.

 11

Figure 2.5 Architecture of data delivery in MEBDW systems.

2.2 Data Compression Algorithms

There are several published data compression algorithms now, and some of them

were designed for images. Among those algorithms, some of them were even designed

for data type like bitmap. LineDiff Entropy, proposed by Tang et al. from NTU in 2013

[1], is our favorite compression algorithm because it outperforms other algorithms in the

aspects of both data compression ratio and decompression speed. So in this section,

we’re going to give a brief introduction of some data compression algorithms for bitmap,

and a more-detailed one for LineDiff Entropy algorithm.

2.2.1 Introduction of data compression algorithms

First of all, LZ77 [7] is a lossless data compression method that was used in a

variety of compression software including zip, gzip, WinZip and others [4]. The

popularity of those software programs also reveals its significance. LZ77 is a

dictionary-based compression algorithm that encodes raw data by a sliding window.

Here is an example of LZ77 in Figure 2.6. The encryption format of each row is (P, L, c),

where P is the offset between current character and the match one in the dictionary

buffer, L is the length of the identical pairs, and c is the first character of the

unencrypted stream. So we can conclude that LZ77 is an algorithm taking advantage of

 12

the repetition of input data.

Figure 2.6 Example of LZ77.

LZ77 has been proved to be an efficient way to encrypt data in rows. But to apply

this technique to bitmap, which is a flattened and rasterized data scheme, there’s

something more needs to be done. Figure 2.7 is an updated version of LZ77 called

2D-LZ [5] technique. The most significant difference between LZ77 and 2D-LZ is that

we now have to memorize the coordinates of the repeated pattern because we work on

patterns in a 2D-plane now.

Figure 2.7 Example if 2D-LZ. [5]

 13

The compression techniques in LZ is based on the highly-repetitive characteristic

of the data map, but what if the layout is not so repetitive? Another widely-used way is

to compress data by context-based prediction schemes. Figure 2.8 shows two example

of such prediction.

Figure 2.8 Context-based prediction:

(a) ten-block prediction (b) three-block prediction. [4]

Joint Bi-level Image experts Group (JBIG) is a standard for lossless compression

of binary images, developed jointly by the CCITT and ISO international standards

bodies. JBIG uses a 10-pixel context to estimate the probability of the next pixel being

white or black [5], just like shown in Figure 2.8(a).

To combine the advantages of the LZ-style and context-based prediction, Vito Dai

from University of California, Berkeley, has proposed a well-known compression

algorithm called Context-Copy-Combinatorial Coding (C4) and its advanced version

called Block C4 in 2008 [4]. Both of these two algorithms accomplished this goal

through automatic segmentation of an image into copy regions and prediction regions.

And data in copy regions can be easily dealt with LZ-style encryption, while three-block

prediction format (Figure 2.8(b)) is used in the prediction regions. So these algorithms

performs extremely well when it comes to bitmap data compression.

 14

2.2.2 LineDiff Entropy

 Despite the high efficiency of Block C4, LineDiff Entropy [1] still performs even

much better in bitmap data compression and decompression. And its simple structure is

also elegantly attractive. So the main target of the research in this thesis was set to

improve the quality of this algorithm. That is also why we’ll give a comprehensive

presentation of this algorithm in this section.

 LineDiff Entropy is a data compression algorithm designed for pixelized data

format like bitmap. It was designed to access files with 1024 pixels in the width and

5-bit gray level for each pixel.

 According to the name of this algorithm, we know that it is composed of two main

topic. LineDiff is actually the abbreviation for Line Difference, so the main idea is to

compare two consecutive lines and record the duplicated part to achieve data

compression. Entropy encoding is the final phase of this algorithm, and its purpose is to

produce binary code by a concept like Huffman coding. There are three major steps:

LineDiff Encoding, LineDiff Compaction, and Entropy Encoding, in this algorithm and

they are listed in the following.

The first step is LineDiff Encoding. In this step, line N will be encoded by some

pairs in the form of (OP, L), and both OP and L are defined by comparison to line N-1 in

the same position. If the data being encoded is the same as data at the same position

previous row, or a duplication, we can just encode it by setting OP to DUP. Otherwise

OP is set to be the color of these pixels, encoded by black, white, or a 5-bit binary

number. On the other hand, L stands for length. So we set it to be the length of data that

maintains this OP or we set L to END representing this OP will last to the end of this

line. Figure 2.9 shows the concept of this step and Figure 2.10 is an example of

LineDiff Encoding.

 15

Figure 2.9 LineDiff Encoding. [1]

Figure 2.10 Example of LineDiff Encoding.

After LineDiff Encoding, here comes the next step called LineDiff Compaction.

This step is the procedure to furthermore compress file size by omitting unnecessary

data. There are three rules of LineDiff Compaction:

1) Any (OP, L) pair has L = 1, omit L.

2) First (OP, L) pair has OP = DUP, omit OP.

3) Consecutive pairs have same pixel value, combine them.

And these rules has a priority. If two or more conditions are satisfied, the order to apply

these compaction rules should be 1) the first priority, then 2), and 3) be the last choice.

This design is based on the next step to furthermore reduce data volume. Figure 2.11 is

the previous example, we now apply these three compaction rules to them.

 The last step in LineDiff Entropy is the Entropy Encoding. The author analyzed the

frequency of every keyword appearance, and defined their code length by it. Table 2.1 is

the analytical results in [1], and Table 2.2 is the Entropy Encoding defined by Table 2.1.

One thing needed to be noticed is that this is a prefix-free encoding style, which means

 16

that we won’t be confused by prefix while decoding.

Figure 2.11 Example of LineDiff Compaction.

OP L

DUP END White Black Gray 2 – 31 32 – 1023

0.23 0.27 0.03 0.05 0.15 0.16 0.11

Table 2.1 Relative frequency of occurrence of OP and L. [1]

Type Value Custom Prefix # of Bits

DUP 00 2

END 01 2

White 1000 4

Black 1001 4

Gray 1 – 30 101 + [5-bits] 8

L 2 – 31 110 + [5-bits] 8

L 32 – 1023 111 + [10-bits] 13

Table 2.2 Entropy Encoding design of LineDiff data. [1]

 This LineDiff Entropy algorithm runs in linear time both encoding and decoding

because it just needs one scan of all data. And its performance is extremely good both in

 17

data compression ratio and decompression time. That is exactly why we decided to

work on improving this algorithm to make MEBDW system could be more robust with

it. Despite our introduction here, we’ll take an even closer look in Chapter 3.

2.3 Routing Algorithms

Routing is an important step in the design of ICs. It generates wiring to

interconnect pins of the same signal, on the premise that all the manufacturing design

rules are obeyed. Since routing is a very complex procedure in VLSI design, we usually

apply a two-stage approach of global routing followed by detailed routing to make it

manageable. Global routing first partitions the routing region into tiles and decides

tile-to-tile paths for all nets while attempting to optimize some given objective function

(e.g., total wire length, circuit timing, and so on). Then detailed routing assigns actual

tracks and vias for nets, following the guides of the paths obtained in global routing

stage. In this thesis we focus on the topic of detailed routing.

There are two kinds of detailed-routing models: the grid-based and grid-less

models. For grid-based routing, a routing grid is superimposed on the routing region, so

the detailed router just need to find routing paths in the grids as shown in Figure 2.12,

and each path among grids are called routing tracks. The space between adjacent grid

lines is called wire pitch, which is defined in the technology file and is larger than or at

least equal to the sum of the minimum width and spacing of wires. Note that the router

has to control the searching space such that the path in the horizontal layers can only run

horizontally and path in vertical layers can only go vertically for the reserved layer

model. And switching from layer to layer is only allowed at the intersection of vertical

and horizontal grids with vias. In this way, the wires with the minimum width following

 18

the path in the grid would automatically satisfy the design rules. Therefore, grid-based

detailed routing is much more efficient and easier for implementation [8]. So in this

thesis we will not talk about grid-less detailed routing, which is basically any detailed

router other than grid-based detailed router.

Figure 2.12 Example of grid-based routing.

 With this preparation, we can now formulate our detailed routing into a

path-finding problem on a grid-based map. Perhaps the most well-known algorithm for

finding a path between two points is the maze-routing algorithm, or Lee’s algorithm [9],

which is based on the breadth-first-search (BFS) technique. After Lee, a lot of

pathfinding algorithms were published and made tremendous impacts on physical

design. And among all them, A* search [10] might be the most efficient and effective

algorithm that widely used in routing of many different orientations [11-13]. In this

section, we will give a brief introduction of both Lee’s and A* search algorithm.

 19

2.3.1 Lee’s Algorithm

Lee’s algorithm takes a two-phase approach of filling and retracing. Filling is the

phase of work by pushing on a frontier just like wave propagation in a BFS manner.

From source node S, filling stage takes procedures to fill in every grid nodes one by one

by their distance of the wave-front from S, until the target node T has been arrived. Here

is an example of filling stage in Figure 2.13. Figure 2.13(a) is the stage when frontier is

the nodes whose distance from source is 3, and Figure 2.13(b) is frontier to be 4.

Figure 2.13 Example of filling stage in Lee’s algorithm.

This filling stage goes until the target node is reached, and then a shortest path is

attained by retracing from T to S in a decreasing order one node by one node while in

the retracing stage. Note that there might be more than one path in the decreasing order,

and each of them is a shortest path from S to T. Figure 2.14 shows an example of the

retracing stage. Figure 2.14(a) is the state when the filling stage goes to reach the target

node, and Figure 2.14(b) shows the retracing stage to attain the shortest path.

The best property of Lee’s algorithm is that it guarantees to find a shortest path if

 20

such path exists even with obstacles in the region. However it also suffers from the

extremely-high time and space consuming shortcoming. The description above and the

pseudo code in Figure 2.15 show its time and space complexity are both O(m*n), where

m and n represent the number of respectively horizontal and vertical nodes, because in

worst case every grid node must be labeled. And that makes it almost unfeasible to the

complex networks today.

Figure 2.14 Example of retracing stage in Lee’s algorithm.

Figure 2.15 Pseudo code of Lee’s algorithm.

 21

There are many grid-based shortest path algorithms inspired by Lee and enhance it

in the filling complexity like Soukup [14] and Akers [15], but nowadays the most

popular one must be A* search algorithm [10].

2.3.2 A* search Algorithm

As we discussed in the previous section, Lee’s algorithm has a terrible time and

space complexity because it basically picks the path in a blind way. One intuitive way to

improve it might be to consider the nodes more likely to be in the shortest path in a

prior order [8]. That is the main concept of A* search algorithm [10], and it is

accomplished by adjusting the cost function in Lee’s algorithm.

In Lee’s algorithm, the cost function is basically the distance between current node

and S. While in A* search algorithm, we define the formula f(x) = g(x) + h(x) as the

cost function to evaluate the cost of each node x, where g(x) is the distance from the S

to the current node x, and h(x) is the heuristic (or estimated, predicted) cost from the

current node x to T. And in each round, A* search algorithm selects a node with the least

cost to propagate (i.e., the least f(x)), as a result A* search is also called best-first

search.

Let’s take a look at an example in Figure 2.16 and Figure 2.17, here we use the

Manhattan distance to estimate the h(x) part of each node. From the source node, there

are only four possible nodes to propagate, and in Figure 2.16(a) we’ve marked all of

these four neighbors by its cost function in the form of g(x) + h(x). So there are two

possible choice for A* search, either one or the other has the same priority. If we choose

the up one from S to propagate, there will be three more neighbors that were added to

the priority queue keeping track of the path just like in Figure 2.16(b). While in Figure

2.17(a), there are also two possible nodes to be chosen. If the node which is on the top

 22

of T is chosen, then the wave-front propagates like Figure 2.17(b), where the cost of T

would be 14 + 0 = 14. So T will be popped out and the algorithm terminates. The

pseudo code of A* search is showed in Figure 2.18.

Figure 2.16 Example of A* search in the beginning.

Figure 2.17 Example of A* search in the end.

There is another key point in the utilization of Manhattan distance as the heuristic

part h(x). In [10], Hart gave a specific proof of the influence of the admissibility in this

heuristic function to the whole A* search algorithm. If the heuristic part of the cost

 23

function is admissible, which means that it never overestimate the cost of the path, then

A* search algorithm always returns an optimal solution if such solution exists.

Manhattan distance is the smallest possible distance between two nodes in grid-based

routing, and that keeps the admissibility of the heuristic function and the optimality of

A* search algorithm.

Figure 2.18 Pseudo code of A* search.

A* search has many applications, and it also leads VLSI routing into a brand-new

practical research with the appearance we see today. It perform a lot better in both time

and space and that makes itself superior to other approaches. In our thesis, we not only

modify this algorithm to meet our requirements, but also implement it to be the control

group as a basis for comparison.

 24

Chapter 3 Data Compression Ratio-aware Detailed

Routing

This chapter is the main theme of this thesis. In the following sections, we will

introduce a detailed router which is capable of improving data compression ratio while

LineDiff Entropy data compression algorithm is used. Our routing algorithm is also

based on A* search, but three more strategies are proposed up onto it. The first strategy

is to make the wires on-grid after pixelization, but this would cause a decrease in

routability. So we propose the second strategy to enhance routability and to supply a

reference for the third strategy, which is to route the patterns more expected to enhance

total data compression ratio. All the details will be illustrated in the following sections

right after the introduction of the routing specification.

3.1 Routing Specifications

International Technology Roadmap for Semiconductors (ITRS) [13] shows that in

14-nm technology node, half wire pitch is expected to be 40nm. Wire pitch is defined as

in Figure 3.1, so in the routing spec., we can make our wires to be 40 nm, and a routing

track is therefore 80 nm to avoid design rule violation.

Figure 3.1 Narration of wire pitch.

 25

And just like what we’ve talked about in section 1.1, our pixel size is set to be 7nm

by 7nm. Each pixel contains a 5-bit data, which gives a precision of 32-level grayscale.

Total routing spec. is shown in Table 3.1.

14/16-nm technology node

Wire width 40 nm

Track width 80 nm

Pixel size 7nm * 7nm

Pixel depth 5 bits

of layers 3

Expected CR 450

Table 3.1 Routing specification.

MEBDW systems are relatively costly and slow compared to traditional process, so

we usually use them in the layers with the thinnest wires. In our research, we assume

the number of this kind of layers to be three, including two horizontal-orientation layers

and one vertical layer in a staggered order. Expected Compression Ratio (CR) is also

attained from section 1.1, which is the ratio of required optical fibers to the actual

number. This spec. is also implemented to be the control group with merely A* search

algorithm and the 450 times of compression ratio is the ultimate goal we want to

achieve.

3.2 1st strategy: on-grid wires

The first thing we do for this data compression ratio-aware router is to make the

wires we route can be exactly on the grid lines after pixelization. Figure 3.2 is a small

example of the benefit we can get with this strategy. In the figure, layout on the right is

 26

the one with some special process to make the wires lies just on the gridlines, while the

left one isn’t. And the binary digits beneath them are the encoded results with LineDiff

Entropy algorithm.

We can see that in a layout, a piece of wire is composed of two parts. The interior

pixels are all set to be 31 (Black) because all of the area in these pixels is occupied by

the wire, while the pixels surrounding the wire are all set to be some number between 1

and 30 because their area are just partially occupied. And we also notice that these

surrounding pixels does burden CR a lot because of their fragmented information. If we

can make our nets lie on grid lines as much as possible like in the example in Figure 3.2,

we can get the results of a 1.87 times of improvement in CR.

Figure 3.2 Example of nets on grid lines.

To put this idea into practice, we modify the routing specification we’ve described

in the previous section. In section 3.1, we’ve talked about that ITRS expected the wire

pitch (hence the track width) to be at least 80 nm and a pixel is of 7-nm in each side.

 27

With this spec., it is difficult to make wires lie on the exact grid lines. So what we did is

to adjust the routing track to be 84 nm which is divisible by 7 and make the wires on the

top-left corner of each track. With this little technique, we can now make sure that our

metal wires will always stick on the grid lines for up, left, and right sides.

Figure 3.3 shows the concept of the first strategy. Figure 3.3(a) is the layout with

original track width, while (b) is the layout after adjustment. We can see that the track

width in (b) is wider than (a), so the requirements in ITRS roadmap are automatically

achieved at the cost of fewer routing tracks. After the process of pixelization, (a)

becomes (c), and (b) becomes (d). It is obvious that the edges of all nets in (d) are right

on gird lines, therefore CR is much better than (c).

Figure 3.3 Concept of the first strategy.

 28

We adjust the size of each routing grids to make the nets on-grid so that the

compression ratio could be improved, but the number of routing tracks is therefore

reduced. That might cause a severe problem in routability, so we propose the second

strategy to ease this problem.

3.3 2nd strategy: simple route

The second strategy is a process called simple route. We’ve already known that A*

search is a shortest-path finding algorithm. And as the description in our routing spec.,

we route in three layers containing two layers of horizontal wires and a layer of vertical

in between, just like shown in Figure 3.4. So it is reasonable to speculate that the nets

we route with A* search would congest in Layer 0 and Layer 1 since all pins are defined

in Layer 0. This and the problem we’ve talked about in section 3.2 cause a drop in

routability.

Figure 3.4 Illustration of our 3-layer routing scheme,

X denote pins to be connected.

 29

 To alleviate this routability problem, we’ve designed a simple route process to

enhance the utilization of Layer 2. Whenever we are going to route a new wire, we

check whether we can go directly by Layer 1 and Layer 2 just like Figure 3.5. In the

figure we illustrated two different types of simple route, each of them routes in an

opposite order of vertical wires and horizontal wires. Both of them are used in the

proposed routing algorithm to enhance routability and Layer 2 area usage. Note that A*

search algorithm is used if we cannot apply either of these two simple route processes.

Figure 3.5 Examples of simple route.

With this technique, proposed router did surpass the control groups in routability.

We’ll talk about the experiment results in the later chapters. Another benefit of this

simple route process is that our algorithm routes some layout pattern that is long and

steady first, and these patterns themselves can be a great reference when we want to

route some patterns we really want in the next strategy.

 30

3.4 3rd strategy: desired patterns

In addition to the two previous strategies, the most important part must be how to

route the patterns with better compression ratio. In the description in 2.2.2, we’ve

introduced LineDiff Entropy compression algorithm in detail. And in 2.3.2, we know

that A* search algorithm takes advantage of cost functions to find a path between the

source pin and the target pin. So in this section, the main purpose is to first find out

what patterns perform well with LineDiff Entropy, and then we’ll make an adjustment

in the cost functions to make our router produce these patterns more likely.

Because LineDiff Entropy makes use of the duplication of layouts to compress data

volume, it is trivial that layout with more repetitive patterns has a better CR. Here we’ll

talk about layout pattern performance with horizontal layer (Layer 0, Layer 2) and

vertical layer (Layer 1) separately.

In Layer 0 and Layer 2, only horizontal wires are allowed. Our strategy is to make

sure that a routing track is more likely to be selected if it had been used before. This

idea comes from Figure 3.6(a) and (b). We can see that there are both three wires in

these two figures, but (b) is more likely to have a better CR because all wires are in the

same track. So LineDiff Entropy would take a little effort to encode this one track and

then just duplicate all the blank tracks, which might results in a great CR.

And there is a similar situation in Layer 1 which only vertical-oriented wires are

allowed. In Figure 3.6(c) and (d) we can see that there are also three wires in both

figures but (d) should perform better in CR. Because patterns in (c) is not well-aligned

as in (d), LineDiff Entropy cannot encode them only by their duplication. So we can

conclude that in the layer of vertical wires, our strategy is also to make the best out of

the duplication.

 31

Figure 3.6 Expected routing patterns.

Because LineDiff Entropy needs input file which is 1024-pixel wide and a pixel is

7 nm each side, the first specific procedure to do the above is to split the whole routing

map into several stripes which is 7168 nm wide. And then give the routing grids that is

not forming our desired pattern a punishment in the cost. In this case, A* search would

more likely to use the desired grid because it always picks the node with least cost to

propagate.

Figure 3.7 shows an example of Layer 1 (vertical-wire allowed). In this figure, the

whole layout is split into 7168-nm-wide stripes. The blue obstacle is a wire that had

been routed already and the yellow one is the one to be routed. There are two possible

directions A and B for the wire to propagate because it can go only vertically. And in

this case, the cost of B would be raised by a punishment because if the router route that

path, LineDiff Entropy should spend more resource to compress.

So what we actually do is that we keep trace of wires routed in each stripe

horizontally because of the raster scan order of LineDiff Entropy. In A* search, we can

 32

say that we add the candidate nodes of the next propagation into a priority queue to pick

the one with least cost. And in our algorithm, we check whether the row where the node

lies in has been used beforehand or not. If not, we add a punishment to the cost of it. For

example, in Figure 3.7, we’ve record the blue wire. So when we are routing the yellow

wire, we check the record to know that the row of node A has been used, while the row

of node B hasn’t. So it is more expected to use A than B for LineDiff Entropy

performance. We raised the cost of node B by a punishment value to make the router go

for A more likely.

Figure 3.7 Example of the third strategy.

Another important issue we want to talk about is that in section 3.2 we have

mentioned our routing track is set to be 84 nm. So if we want to split the layout into

stripes with 7168 nm, each stripe would contain about 85.33 tracks, which is not

processable.

We dealt with this problem by the expression in Figure 3.8. We try to solve it by

the way as simple as possible, so all stripes are divided into groups of three. The first

 33

and the third stripes contain 85 tracks, and the second stripe contains 86. So every three

stripes contains 256 tracks, which is exactly 21504 nm for three stripes.

Figure 3.8 Stripe splitting.

In the end of this chapter, Figure 3.9 shows the whole flow chart of the proposed

algorithm except for the track width adjustment. In the figure we know that we first use

simple route in both directions, and the modified A* search carries out if both of them

failed. The key procedure of this modified A* search is the cost calculation because we

use the information of not only distance but the applicability of LineDiff Entropy to

determine the cost, and that makes our proposed detailed routing meaningful and

effective. We’ll give some experiment results to support this statement in the next

chapter.

 34

Figure 3.9 Total flow chart of the proposed algorithm.

 35

Chapter 4 Results of Experiments

In this chapter, the results of experiments we collected will be illustrated. And all

of them are conducted on workstation running Linux with Intel(R) Xeon(R) CPU

E5-2643 v2 3.50 GHz system with 70 GB RAM. Both proposed algorithm and the

control group, along with LineDiff Entropy algorithm, were implemented in C++

programming language compiled by g++ (GCC) v.4.8.2 released on 20140120.

Table 4.1 is adopted from Table 3.1, and it shows the specification of our

implementation. Basically our proposed router and the control group are both designed

for 14/16-nm technology node just like we introduced in section 3.1. The only

difference between them is the strategies we’ve expressed in the previous chapter. The

first strategy needs the routing track to be 84 nm in the width, resulting in a drop in

routability. So a procedure which checks whether the source pin is able to connect the

target pin directly, simple route, is taken place. But the most important modification is

the calculation of the cost in A* search. Proposed router takes advantage of both

distance and the performance of the patterns in LineDiff Entropy algorithm. While the

control group in our implementation is a detailed router which contains only the original

A* search algorithm to find the shortest path. And all other specifications in both

designs are just the basic requirements in the technology roadmap. Expected

compression ratio is 450, estimated in section 1.1 and it’s the ultimate goal we are trying

to reach out.

The input cases were generated at random by their coordinates, and the original

point was set on the top-left corner. Figure 4.1 shows a concept of this input file

generation. There are three pairs of source and target pins in this figure, and our detailed

router should find paths to connect them separately without any intersection. Another

 36

constraint set in generating input is that each source and target node cannot be in the

same grid in neither proposed router nor control group. Note that this figure does not

show the exact input file format, the actual format is just pairs and pairs of coordinates

of pins.

Groups Proposed A* search

Track width 84 nm 80 nm

Simple route Yes No

Cost evaluation

Distance and

 LDE(*) preference

Distance only

Wire width 40 nm

Pixel size 7nm * 7nm

Pixel depth 5 bits, 32 gray-level scales

Number of layers 3 layers

Expected CR 450

Table 4.1 Spec. of the implementation,

(*)LDE: LineDiff Entropy algorithm.

Figure 4.1 Concept of input generation.

 37

The following tables are the results of our experiments. Each of these tables

contains four sets of input cases generated at random, and they are grouped by the size

of the input circuit. We named the input cases in Table 4.2 the huge cases because each

of them contains 10,000 wires to be routed. And the other cases are called large,

medium, small, and tiny cases for Table 4.3, Table 4.4, Table 4.5, and Table 4.6

respectively, because of the number of wires needing routed is 8000, 5000, 3000, and

1000. After these complicated information, Table 4.7 shows the organized result of all.

In these tables, the basic information of each cases is listed on the top. The

identifiers of each input cases were given just for convenience. In each cases, all the

results can be viewed by two parts. The information on the left is from the control group

which was implemented using A* search algorithm only, while the one on the

right-hand side is our proposed detailed router. There are four topics we want to discuss,

including routability, total wire length, and the two most-important issues in MEBDW

systems, decompression rate and data compression ratio in LineDiff Entropy.

 Routability is the primary concern for every router, and it’s defined by the success

rate while finding the actual path for each wire. In the proposed detailed router, we

designed a simple route process in order to deal with the severe problem in routability

caused by making wires on-grid. And the results show that the proposed algorithm does

route more wires than pure A* search. Actually the proposed detailed router has

routability more than 95% in every single test case and 97.59% on average.

 But everything has its price. To reach such a high routability and the benefits in

other aspects, the router usually needs to take longer detours. So in Table 4.7 we can see

that the total wire length in the proposed algorithm is 23.43% more than the control

group. It’s actually not negligible, but compared to the contribution of this work, we

should try to do something more in the future to fix this.

 38

The two issues we want to discuss next, which are also extremely important in

MEBDW systems, are decompression rate and compression ratio. Decompression

hardware should be directly attached to the electron beam writer, so decompression rate

being as fast as possible can save the hardware resources and make sure the

decompressed data sent to the writers in real time. In our experiment results, we can see

that the decompression time in the proposed router and the control group are almost the

same. So we can conclude that our design did not affect the decompression rate.

 As for the compression ratio, just like we estimated, has a great improvement. The

compression ratio (CR) here is defined as the original data size divided by the

compressed data size. The results show that CR in proposed router is improved by at

most 1.67 times than the router with only A* search. And in Table 4.7 we can also know

that our design has a roughly 1.42 times on average better than the control group in CR.

 But aside from the multiples we’ve mentioned above, the important part is the goal

of our design. In the previous section we know that the desired CR is about 450 in

manufacturing. The results also show that in most of the input case, proposed router

reach this target, while the control group doesn’t.

These two important issues are also plotted in Figure 4.2 and Figure 4.3. Note that

in these figures, the numbers had been taken average in each size of input. We can see in

Figure 4.2 that the decompression time is nearly the same in both designs. And Figure

4.3 shows CR in both designs, with the black line in the middle shows the ultimate goal,

450 times, of compression ratio in our research.

 39

Input case ID. Huge_#1 Huge_#2

of wires 10000 10000

Area (nm2) 97440 * 97440 97440 * 97440

Group A* search Proposed A* search Proposed

Routability 84.03% 93.40% 91.55% 97.48%

Total wire length (nm) 29614800 37031228 14799960 18289352

Decompression time (s) 38.51 37 37.02 37.72

Original data size (Byte) 1796598720 1796598720 1796598720 1796598720

Compressed data size (Byte) 6795886 4066245 5513903 3660736

Compression ratio 264.3656353 441.8323834 325.830672 490.7752758

CR Improvement 1.671292802 1.506227983

Input case ID. Huge_#3 Huge_#4

of wires 10000 10000

Area (nm2) 97440 * 97440 97440 * 97440

Group A* search Proposed A* search Proposed

Routability 91.74% 97.73% 88.95% 96.05%

Total wire length (nm) 14773440 18223484 19912040 24538916

Decompression time (s) 37.82 37.24 34.74 35.39

Original data size (Byte) 1796598720 1796598720 1796598720 1796598720

Compressed data size (Byte) 5539075 3655172 5962215 3807019

Compression ratio 324.3499537 491.522347 301.3307504 471.9174556

CR Improvement 1.515407483 1.566111175

Table 4.2 Results of experiments for huge cases.

 40

Input case ID. Large_#1 Large_#2

of wires 8000 8000

Area (nm2) 87360 * 87360 87360 * 87360

Group A* search Proposed A* search Proposed

Routability 85.81% 94.34% 92.81% 97.89%

Total wire length (nm) 21290680 26586708 10617960 12997012

Decompression time (s) 30.83 30.84 31.82 32.69

Original data size (Byte) 1495690560 1495690560 1495690560 1495690560

Compressed data size (Byte) 5277262 3252139 4338296 2947402

Compression ratio 283.4216986 459.9097886 344.7645251 507.4606586

CR Improvement 1.622704934 1.471905088

Input case ID. Large_#3 Large_#4

of wires 8000 8000

Area (nm2) 87360 * 87360 87360 * 87360

Group A* search Proposed A* search Proposed

Routability 92.28% 98.01% 89.76% 96.65%

Total wire length (nm) 10520240 12951368 14125160 17563512

Decompression time (s) 31.75 31.41 29.49 30.12

Original data size (Byte) 1495690560 1495690560 1495690560 1495690560

Compressed data size (Byte) 4333774 2940447 4708042 3062791

Compression ratio 345.1242635 508.6609485 317.6884488 488.3423518

CR Improvement 1.473848704 1.537173774

Table 4.3 Results of experiments for large cases.

 41

Input case ID. Medium_#1 Medium_#2

of wires 5000 5000

Area (nm2) 67200 * 67200 67200 * 67200

Group A* search Proposed A* search Proposed

Routability 88.10% 95.74% 93.60% 98.30%

Total wire length (nm) 10160440 12623972 4951760 5968560

Decompression time (s) 18.35 19.1 17.45 17.45

Original data size (Byte) 885024000 885024000 885024000 885024000

Compressed data size (Byte) 2980874 1892347 2414204 1714069

Compression ratio 296.9008418 467.6858948 366.5903958 516.3292726

CR Improvement 1.575225897 1.40846372

Input case ID. Medium_#3 Medium_#4

of wires 5000 5000

Area (nm2) 67200 * 67200 67200 * 67200

Group A* search Proposed A* search Proposed

Routability 93.46% 98.64% 91.40% 97.38%

Total wire length (nm) 4921960 5973624 6738560 8327120

Decompression time (s) 17.98 17.48 18.47 18.08

Original data size (Byte) 885024000 885024000 885024000 885024000

Compressed data size (Byte) 2426859 1721081 2661106 1798012

Compression ratio 364.6787885 514.2256524 332.5775072 492.2236337

CR Improvement 1.410078317 1.48002683

Table 4.4 Results of experiments for medium cases.

 42

Input case ID. Small_#1 Small_#2

of wires 3000 3000

Area (nm2) 52080 * 52080 52080 * 52080

Group A* search Proposed A* search Proposed

Routability 91.07% 96.90% 95.20% 99.07%

Total wire length (nm) 4700520 5883716 2269280 2628396

Decompression time (s) 10.98 11.38 10.85 10.55

Original data size (Byte) 548714880 548714880 548714880 548714880

Compressed data size (Byte) 1703269 1110990 1337456 1010446

Compression ratio 322.1539757 493.8972268 410.2676125 543.0422605

CR Improvement 1.533109209 1.323629368

Input case ID. Small_#3 Small_#4

of wires 3000 3000

Area (nm2) 52080 * 52080 52080 * 52080

Group A* search Proposed A* search Proposed

Routability 94.30% 99.20% 93.30% 98.67%

Total wire length (nm) 2234960 2648696 3063680 3672492

Decompression time (s) 10.8 10.45 11.34 11.29

Original data size (Byte) 548714880 548714880 548714880 548714880

Compressed data size (Byte) 1332523 1008515 1489779 1058049

Compression ratio 411.7864232 544.0820216 368.3196501 518.6100833

CR Improvement 1.321272366 1.408043484

Table 4.5 Results of experiments for small cases.

 43

Input case ID. Tiny_#1 Tiny_#2

of wires 1000 1000

Area (nm2) 30240 * 30240 30240 * 30240

Group A* search Proposed A* search Proposed

Routability 95.00% 97.80% 97.50% 99.30%

Total wire length (nm) 881440 1072176 421040 427356

Decompression time (s) 3.97 4.14 3.89 3.8

Original data size (Byte) 199130400 199130400 199130400 199130400

Compressed data size (Byte) 497082 361671 383569 316350

Compression ratio 400.598694 550.5843709 519.1514434 629.4623044

CR Improvement 1.374403809 1.212483009

Input case ID. Tiny_#3 Tiny_#4

of wires 1000 1000

Area (nm2) 30240 * 30240 30240 * 30240

Group A* search Proposed A* search Proposed

Routability 98.10% 99.60% 97.20% 99.60%

Total wire length (nm) 437640 439072 572360 625980

Decompression time (s) 4.13 3.79 3.85 4.01

Original data size (Byte) 199130400 199130400 199130400 199130400

Compressed data size (Byte) 389990 318149 423360 335303

Compression ratio 510.6038616 625.9029574 470.3571429 593.8819515

CR Improvement 1.225809291 1.262619183

Table 4.6 Results of experiments for tiny cases.

 44

Group A* search Proposed

Average routability 92.26% 97.59%

Total wire length (nm) 177007920 218472740

Total wire length exceeded 23.43%

Total decompression time (s) 404.04 403.93

Difference of decompression time -0.03%

Average compression ratio 364.0431 517.5174

Average CR improvement 1.421583

Table 4.7 Overall results of experiments.

Figure 4.2 Decompression time comparison

 45

Figure 4.3 Compression ratio comparison,

the black line indicates the goal of the research 450

There are two routing results shown in Figure 4.4 and Figure 4.5. In both figures,

the layouts on the left is the result of the control group, while the ones on the right is the

result of our proposed router. And all three layers are listed together. We can see that

when we’re using only A* search, layer_2 is rarely used, while proposed router has a

better area utilization. Figure 4.4 is the result of case Huge_#1 and Figure 4.5 shows the

result of case Medium_#3.

 46

Layer_0 Layer_0

Layer_1 Layer_1

Layer_2 Layer_2

(a) A* search (b) Proposed

Figure 4.4 Routing results for Huge_#1.

 47

Layer_0 Layer_0

Layer_1 Layer_1

Layer_2 Layer_2

(a) A* search (b) Proposed

Figure 4.5 Routing results for Medium_#3.

 48

Chapter 5 Conclusion and Future Work

In this thesis we have proposed a detailed router that supports the data compression

algorithm, LineDiff Entropy algorithm, for MEBDW systems. In the beginning we have

introduced such system including the significance, the expectation, and the problem it

confronts. And then we did some calculation to estimate the lack in throughput needs a

compression ratio larger than 450.

After the complete expression of the algorithms, the results of experiments were

listed. And they’ve shown that for LineDiff Entropy algorithm, proposed detailed router

performs much better than the router without our modification in compression ratio

while maintaining decompression rate. And the estimated goal 450 is reached after

applying our algorithm.

And there is another important contribution in our research. We’ve mentioned that

there is no such research in solving throughput problem in MEBDW system from the

aspect of circuit physical design. Our research proved that this is a field worth

investment.

But there also exists something more to improve. For routing part, routability

should be further promoted to around 100% to meet the requirements in manufacturing

these days. And this could be done if we introduce a structure which is able to

dynamically select, defuse and reroute. Such structure could automatically selects wires

causing routing congestion or making LineDiff Entropy performs poorly. And then these

wires might be canceled in order to route other wires first, to further improve routability

or CR.

As for industrial manufacturability, there is actually an important phase we ignored

in this thesis called Electron-beam Proximity Correction (EPC). This phase is necessary

 49

because the patterns might have a distortion after written by E-beam emitter.

Figure 5.1 Latent image simulation procedures. [17]

Figure 5.1 shows the simulation of a pattern distortion. In this flow, the original

layout is represented by some standard polygons, and then they’re taken convolution

with a Point Spread Function (PSF) which can be derived from Gaussian function [18]

to get the energy map. And finally after filtered by a threshold, we get the image on the

right in Figure 5.1, which is the actual pattern that will be written. We can see such a

variation that even causes circuit short.

This is why the EPC process is needed. But we can also comprehend that after

EPC, layout patterns could have skewed shapes which cannot be compressed easily by

any data compression algorithm.

Another work might be worth researching is a brand new data compression

algorithm which can cooperate with our proposed router or with little adjustment.

Because the basic idea of proposed router is to take advantage of the repetition of

patterns, there should be some more ways to further improve compression performance

with it.

 50

REFERENCE

[1] Chin-Khai Tang, Ming-Shing Su, and Yi-Chang Lu, “LineDiff Entropy: Lossless

Layout Data Compression Scheme for Maskless Lithography Systems,” IEEE

Signal Processing Letters, Vol. 20, No. 7, July 2013, pp. 645-648.

[2] P. Petric, C. Bevis, A. Brodie, A. Carroll, A. Cheung, L. Grella, M. McCord, H.

Percy, K. Standiford, and M. Zywno, “REBL nanowriter: Reflective Electron

Beam Lithography,” Proc. SPIE, vol. 7271, Alternative Lithographic Technologies,

727107, Mar. 2009, doi: 10.1117/12.817319.

[3] Ming-Shing Sua, Kuen-Yu Tsaia, Yi-Chang Lua, Yu-Hsuan Kuoa, Ting-Hang Peia,

and Jia-Yush Yenb, “Architecture for next generation massively parallel maskless

lithography system (MPML2),” Proc. SPIE, Vol. 7637, Alternative Lithographic

Technologies II, 76371Q, Apr. 2010, doi: 10.1117/12.846444.

[4] V. Dai, “Data Compression for Maskless Lithography Systems: Architecture,

Algorithms and Implementation,” Ph.D. dissertation, University of California,

Dept. Electrical Engineering Computer Science, Berkeley, CA, USA, 2008.

[5] Jeehong Yang, “Lossless Circuit Layout Image Compression Algorithm for

Multiple Electron Beam Direct Write Lithography Systems,” Ph.D. dissertation,

University of Michigan, 2012.

[6] Cheng-Chi Wu, Jensen Yang, Wen-Chuan Wang, Shy-Jay Lin, “An

Instruction-based High-Throughput Lossless Decompression Algorithm for

E-Beam Direct-Write System,” Proc. SPIE, vol. 9423, Alternative Lithographic

Technologies VII, 94231P, Mar. 2015, doi: 10.1117/12.2085278.

[7] Jacob Ziv, Abraham Lempel, "A Universal Algorithm for Sequential Data

Compression". IEEE Transaction on Information Theory, Vol. IT-23, No. 3, May

http://dx.doi.org/10.1117/12.817319
http://dx.doi.org/10.1117/12.846444
http://spie.org/profile/Cheng-Chi.Wu-4675
http://spie.org/profile/Wen-Chuan.Wang-6376
http://spie.org/profile/Shy-Jay.Lin-29845
http://dx.doi.org/10.1117/12.2085278

 51

1977, pp. 337-343.

[8] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Cheng, “Electronic Design

Automation: Synthesis, Verification, and Test (Systems on Silicon),” 1st Edition,

Elsevier Inc., 2009, Chapter 12, pp. 687-749.

[9] Lee, C.Y., and Whippany, N. J., “An Algorithm for Path Connections and Its

Applications,” IEEE IRE Transactions on Electronic Computers, Vol. EC-10, No.

3, Sept. 1961, pp. 346-365.

[10] Peter E. Hart, Nils J. Nilsson, Bertram Raphael, “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science

and Cybernetics, Vol. 4, No. 2, July, 1968, pp. 100-107.

[11] Minsik Cho, Yongchan Ban, and David Z. Pan, “Double Patterning Technology

Friendly Detailed Routing,” in IEEE/ACM International Conference on

Computer-Aided Design, 2008, pp. 506-511.

[12] Shao-Yun Fang, “Lithography Optimization for Sub-22 Nanometer

Technologies,” Ph.D. dissertation, National Taiwan University, Graduate Institute

of Electronics Engineering, Taipei, Taiwan, 2013.

[13] Jhih-Rong Gao, and David Z. Pan, “Flexible self-aligned double patterning aware

detailed routing with prescribed layout planning,” Proceedings of the ACM

international symposium on International Symposium on Physical Design, 2012,

pp. 25-32.

[14] Soukup, J., “Fast Maze Router,” 15th Design Automation Conference, 1978, pp.

100-102.

[15] Akers, Sheldon B., “A Modification of Lee’s Path Connection Algorithm,” IEEE

Transactions on Electronic Computers, Vol. EC-16, No. 1, Feb., 1967, pp. 97-98.

[16] 2013 International Technology Roadmap for Semiconductors: http://www.itrs.net/

http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Laung-Terng+Wang&search-alias=books&field-author=Laung-Terng+Wang&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Yao-Wen+Chang&search-alias=books&field-author=Yao-Wen+Chang&sort=relevancerank
http://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=Kwang-Ting+%28Tim%29+Cheng&search-alias=books&field-author=Kwang-Ting+%28Tim%29+Cheng&sort=relevancerank
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lee,%20C.Y..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4670335
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4670335
http://dl.acm.org/author_page.cfm?id=81367595355&coll=DL&dl=ACM&trk=0&cfid=704994565&cftoken=36799034
http://dl.acm.org/author_page.cfm?id=81100484614&coll=DL&dl=ACM&trk=0&cfid=704994565&cftoken=36799034
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Soukup,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Akers,%20Sheldon%20B..QT.&newsearch=true
http://www.itrs.net/

 52

[17] S.-Y. Lee and B. D. Cook, “PYRAMID-A Hierarchical, Rule-Based Approach

Toward Proximity Effect Correction-Part I: Exposure Estimation,” IEEE

Transactions on Semiconductor Manufacturing, Vol.11, No. 1, 1998, pp. 108-116.

[18] Shy-Jay Lin, Pei-Yi Liu, Cheng-Hung Chen, Wen-Chuan Wang, Jaw-Jung Shin,

Burn J. Lin, “Influence of Data Volume and EPC on Process Window in

Massively Parallel E-Beam Direct Write,” Proc. SPIE, vol. 8680, Alternative

Lithographic Technologies V, 86801C,March, 2013, doi: 10.1117/12.2010865.

http://dx.doi.org/10.1117/12.2010865

