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中文摘要 

由於製程的演進，超大型積體電路的最小關鍵尺寸已趨近於物理極限，而傳

統光學曝光所使用之光源因其解析度而逐漸不敷使用，電子束曝光則因其高度的

精準特性而成為極具潛力的次世代製程選擇。 

電子束的精準程度可以達到奈米量級，在使用上必須非常精確的將電路資訊

傳輸至曝光系統。而現今的超大型積體電路複雜程度與日俱增，製程上若欲讓電

子束機臺得以即時曝光顯影生產，就必須仰賴極有效率的資料傳輸方式，將電路

資料即時傳輸至機臺上，此傳輸規格超越了現今光纖傳輸所能達到的極限。因此

實際在工業上的使用，必須先將電路的資訊壓縮以後再傳輸，至機臺上解壓縮，

才能達到預期的產率。 

本篇論文將要探討的問題是，若已經選擇了特定的壓縮演算法，是否能夠在

電路實體設計的階段，就產生出能夠讓此壓縮演算法表現得更加優異的電路布

局，進而提升整體的壓縮效率。而實驗的結果證明了此一理論，也同時說明了由

繞線階段便加以考量，進而影響資料壓縮的效果是不容忽視的。此一領域亦極具

發展的潛力與研究價值。 

 

 

 

關鍵字：電子束曝光、資料壓縮、實體設計、電路布局、繞線 
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ABSTRACT 

 The feature size of Integrated Circuits(IC) are shrinking down along with the 

advancement of technology, but the resolution of the ArF laser is far from the target for 

next generation lithography. Electron beam (E-beam) lithography, with its 

high-accuracy characteristic, is very likely to become the main role in next generation 

lithography. 

 Because of the accuracy of E-beam, the exact information of the circuit has to be 

delivered to the E-beam emitter. However, circuits nowadays has become so 

complicated that the successfulness of this process relies on the speed of data 

transmission, which is not sufficiently fast even with technologies today. So in practice, 

data should be compressed first, transmitted by optic fibers, and then decompressed in 

the E-beam machines. 

 In this thesis, we proposed a detailed routing method to improve data compression 

quality before applying the actual compression algorithm. The results of experiments 

show that, with one particular data compression algorithm, LineDiff Entropy, chosen, 

we improve data compression ratio with our proposed detailed router. And we can 

conclude that considering data compression ratio in physical design phase is a field 

worth studying. 

 

 

 

Keywords: Lithography, Electron Beam, Data Compression Algorithm, Physical Design, 

Detailed Routing 
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Chapter 1 Introduction 

 As long as the rapid advancement of technology today, the size of integrated 

circuits (IC) are getting smaller and smaller these days. However, diffraction is now a 

very severe problem due to the limitation of 193-nm light source in traditional 

lithography [1]. So we have to search for an alternative way with high resolution, but 

throughput still comparable to today’s optical lithography systems. 

Among all candidates, Electron Beam Lithography (EBL) systems are well known 

to produce excellent resolution, good line edge roughness and good line width 

roughness [2], but they also have a common problem in their low throughput. A simple 

way to improve it is to use the concept of massive parallelism [3]. So a Multiple 

Electron Beam Lithography (MEBL) system should be a feasible alternative. 

Another benefit of using MEBL is that, due to its high precision, we can now apply 

a maskless process into practice. The traditional optical projection systems use a mask 

to project the entire chip pattern; while a maskless system, also known as a 

“direct-write” system, allowed us to use electron beams to draw custom shapes directly. 

The concept is that there is an electron-sensitive film on the surface called a resist. And 

while exposure, the beams change the solubility of the resist, results in the removal of 

either the exposed or non-exposed regions after immersed in a solvent. The most 

significant advantage of a Multiple Electron Beam Direct-Write (MEBDW) system is 

that we can easily modify the image we want to project by changing the dose of each 

emitter, whereas a mask once made is difficult to modify [4]. And with a direct-write 

system we can also save our expenses of the masks. 

 There already exist some applications of MEBDW systems, Figure 1.1 shows a 

concept of Reflective Electron Beam Lithography (REBL). It’s an industrial application 
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of MEBDW system by KLA-Tencor Corporation. Within this thesis, we’ll focus on the 

feasibility of this application and try to make it more practical and play its role in next 

generation manufacturing process. 

 

Figure 1.1 Concept of REBL nanowriter. [5] 

 

1.1 MEBDW Systems Difficulty 

Every advantage has its disadvantage, there also exist some problems in MEBDW 

systems. One of them, maybe the most important one, must be the limitation in data 

transmission rate. 

Because of the high accuracy of electron beams, we have to deliver the exact 

circuit information called a “bitmap” to the electron beam emitters. Bitmap is a data 

type of circuit layout. And just like a monitor, it displays information pixel by pixel. 
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Figure 1.2 Circuit layout example. 

 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 14 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

00 00 18 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 

00 00 18 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 

00 00 12 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 12 18 18 18 18 18 18 18 18 18 18 18 

00 00 00 00 00 00 00 16 31 31 31 31 31 31 31 31 31 31 31 

00 00 00 00 00 00 00 16 31 31 31 31 31 31 31 31 31 31 31 

00 00 00 00 00 00 00 14 12 12 12 12 12 12 12 12 12 12 12 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Figure 1.3 5-bit bitmap transformed from Figure 1.2. 
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Figure 1.2 and Figure 1.3 show an example of bitmap transforming. A pixel 

represented by 00 in bitmap shows there’s no content in the pixel, while 31 shows that 

the whole pixel was occupied. And any other number in between shows the ratio of area 

occupied to total area in that pixel. 

 

Device Specification Maskless Process Specification 

Wafer size 300 mm Pixel size 7 nm * 7 nm 

Writing rate 70 WPH Pixel depth 5 bits 

Writing time 50 s Wafer data size 7200 Tb 

Optical fiber transmission rate 10 Gbps Required rate 144 Tbps 

Number of fibers connected 32 Required fibers 14400 

450 times exceeded 

Table 1.1 Specification of data transmission rate. 

 

And in Table 1.1, we can now estimate the data volume and required data 

transmission rate. From [6] we can get our device specifications shown below: wafer 

size is 300 mm in the diameter and expected throughput is 70 wafers per hour (WPH), 

which gives us about 50 seconds to write a single layer of a wafer. The digital pattern 

generator (DPG) in a REBL system is a chip of less than 26 mm * 33 mm, so the 

number of optical fibers connected to DPG is limited. And we can also know the data 

transmission rate of a single fiber is about 10 G-bits per second (Gbps) [1], [3]. 

On the other hand, let’s take a look at the specifications of MEBDW systems. The 

pixel size should be defined by half the minimum feature size [5], so we set our pixel 

size to be 7 nm each side to match-up the 14-nm technology node. And we’ll use a 5-bit 

gray level in each pixel, which gives it 32 different levels. Total data size can be 
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estimated by equation 1.1.  

 

 

 

So now we can know that our required data transmission rate is 7200 / 50 = 144 

T-bits per second (Tbps), which required 14400 optical fibers operating at the speed of 

10 Gbps to work simultaneously. That’s about 450 times over the acceptable number of 

fibers today. We definitely need to do something more to make it work. 

There are several different architectures to build up MEBDW systems, which we’ll 

give a brief introduction in the following chapter. But to fit the data transmission 

limitation we just discussed, the procedures in Figure 1.4 is the only adequate solution. 

The bitmap file has a very huge volume, so in practice we have to compress it first, and 

then transmit the compressed file instead. In the end we decompress it just before 

lithography. 

 

Figure 1.4 Procedures in MEBDW system. 

 

1.2 Motivation and Accomplishment 

Just like we’ve talked about in section 1.1, we need a data compression algorithm 

in MEBDW systems. And among all such algorithms, two major characteristics we have 

to pay attention to are respectively data compression ratio and decompression rate. Data 

compression ratio directly affects the feasibility of MEBDW systems, so it’s definitely 
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worthy a first priority concern. Decompression units are placed by the electron beam 

controllers just like in Figure 1.4, and that’s why we don’t want to put too much 

hardware resource onto it but still want the emitters to work in real time. So 

decompression speed is also an important matter. 

There do exist many data compression algorithms, some of them are even 

originally designed to compress bitmap data. But what we are really interested in is that 

whether we can improve the results of compression even before we get to that part. We 

want to enhance the quality of data compression in physical design phase of the circuit. 

In other words, with a specific data compression algorithm selected, we want to design 

a router that generates layout patterns performing better in such algorithm. And so far, 

there is no published material shows something like this research has been done. So we 

decided to do some research on this topic. 

And the results of our experiments are pretty excited. A data compression 

algorithm that performs well in bitmap has been chosen. And with our proposed router, 

the data compression ratio can be further increased by up to 67% while decompression 

time remains unchanged. 

But other than these numbers, the most valuable contribution of this research is 

that our conclusion can be further deductive to a whole new field: no matter what kind 

of data compression algorithm we fall to, we can always improve the performance by 

some modification in the physical design phase. 

 

1.3 Organization 

There are several theme topics will be illustrated in this thesis. We’ve talked about 

the introduction of the MEBDW systems and the problem we encountered in this 
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chapter. In Chapter 2, some of the existed architectures and algorithms related to our 

research will be presented. And our proposed detailed router will be specifically 

expressed in Chapter 3. And in the end, the results of experiments and our conclusion 

are respectively in Chapter 4 and Chapter 5. There will also be some discussion of what 

this work can be further enhanced in Chapter 5. 
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Chapter 2 Preliminaries 

There are three major topics in this chapter. Section 2.1 will be a brief introduction 

of the MEBDW system architectures, which states the problem we confronted and why 

data compression algorithms are important. After that, some of the published data 

compression algorithms will be introduced in section 2.2, including the one performing 

extremely well with bitmap data, LineDiff Entropy. In the end of this chapter, an 

important routing algorithm and its predecessor will be given in section 2.3. All of the 

work in this thesis are developed mainly from all these three fields. 

 

2.1 MEBDW System Architecture Designs 

From Chapter 1, we are aware of how important MEBDW systems are. And 

speaking of the architectures of MEBDW systems, the most straight forward thought 

should be something like Figure 2.1. Many things should be a lot easier if we just 

connect the disk with layout data to the electron beam controller. But unfortunately, 

with our estimation in section 1.1, this kind of architecture requires a 144-Tbps 

transmission rate, which is much more than what we can accomplish today. So this is 

definitely not a solution. 

 

 

Figure 2.1 Direct transmission. 
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To avoid the data transmission rate limitation, another thought might be using 

memory. Just like Figure 2.2, we try to attach a memory onto the electron beam emitter. 

But if we want to store the information of whole wafer into the memory, we need a 

memory element of 7200 Tb according to the calculation before. Even if we don’t need 

to keep all information of a wafer, instead we only store one chip, we still need a 

memory more than 20 Tb with a chip size 10 mm * 20 mm. But considering the small 

area of electron beam controller, memory size is estimated to be limited by 16 Gb [3] 

even with the highest-density DRAM. 

 

 

Figure 2.2 Whole chip information in on-chip memory. 

 

It is probably the time to think about data compression now. The first architecture 

considering data compression might be like Figure 2.3. We compress the layout data and 

store them into the on-chip DRAM. And then our data needs to be decoded back to 

bitmap before sent to electron beam emitter. There are two difficulties in this 

architecture. The first one is the data compression algorithm. We’ve already known that 

the original data size of a single chip is 20 Tb and what we have is a 16 Gb DRAM, so 

our compression ratio (CR) must be more than 1250. That is almost impossible. 

Moreover, we’ll need an on-chip decoder according to the data type. Considering the 

limited area, we actually can’t expect to do these two things well at the same time. 
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Figure 2.3 Compressed information in on-chip memory. 

 

Now we know that we can’t do too many things because of the area limitation on 

electron beam controllers, so let’s try to move the memory and the decoder off-chip like 

Figure 2.4. But now we’re still facing the problem of data transmission rate limitation in 

optical fibers. 

 

 

Figure 2.4 Off-chip memory and decoder. 

 

Finally, we have found one feasible solution. Let the decoder on-chip, and all the 

other elements placed on the memory off-chip. If our data compression algorithm is 

capable of providing CR fitting the transmission limitation, and the speed of 

decompression can make the electron beam emitter work in real time, then it is good 

enough for us with architecture in Figure 2.5. 

All the above are the architectures of MEBDW systems. Apparently there are not 

too many choices for us. Therefore Figure 2.5 is the only architecture we’ll talk about in 

this thesis. 
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Figure 2.5 Architecture of data delivery in MEBDW systems. 

 

2.2 Data Compression Algorithms 

There are several published data compression algorithms now, and some of them 

were designed for images. Among those algorithms, some of them were even designed 

for data type like bitmap. LineDiff Entropy, proposed by Tang et al. from NTU in 2013 

[1], is our favorite compression algorithm because it outperforms other algorithms in the 

aspects of both data compression ratio and decompression speed. So in this section, 

we’re going to give a brief introduction of some data compression algorithms for bitmap, 

and a more-detailed one for LineDiff Entropy algorithm. 

 

2.2.1 Introduction of data compression algorithms 

First of all, LZ77 [7] is a lossless data compression method that was used in a 

variety of compression software including zip, gzip, WinZip and others [4]. The 

popularity of those software programs also reveals its significance. LZ77 is a 

dictionary-based compression algorithm that encodes raw data by a sliding window. 

Here is an example of LZ77 in Figure 2.6. The encryption format of each row is (P, L, c), 

where P is the offset between current character and the match one in the dictionary 

buffer, L is the length of the identical pairs, and c is the first character of the 

unencrypted stream. So we can conclude that LZ77 is an algorithm taking advantage of 
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the repetition of input data. 

 

 

Figure 2.6 Example of LZ77. 

 

LZ77 has been proved to be an efficient way to encrypt data in rows. But to apply 

this technique to bitmap, which is a flattened and rasterized data scheme, there’s 

something more needs to be done. Figure 2.7 is an updated version of LZ77 called 

2D-LZ [5] technique. The most significant difference between LZ77 and 2D-LZ is that 

we now have to memorize the coordinates of the repeated pattern because we work on 

patterns in a 2D-plane now. 

 

Figure 2.7 Example if 2D-LZ. [5] 
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The compression techniques in LZ is based on the highly-repetitive characteristic 

of the data map, but what if the layout is not so repetitive? Another widely-used way is 

to compress data by context-based prediction schemes. Figure 2.8 shows two example 

of such prediction. 

 

Figure 2.8 Context-based prediction: 

(a) ten-block prediction (b) three-block prediction. [4] 

 

Joint Bi-level Image experts Group (JBIG) is a standard for lossless compression 

of binary images, developed jointly by the CCITT and ISO international standards 

bodies. JBIG uses a 10-pixel context to estimate the probability of the next pixel being 

white or black [5], just like shown in Figure 2.8(a). 

To combine the advantages of the LZ-style and context-based prediction, Vito Dai 

from University of California, Berkeley, has proposed a well-known compression 

algorithm called Context-Copy-Combinatorial Coding (C4) and its advanced version 

called Block C4 in 2008 [4]. Both of these two algorithms accomplished this goal 

through automatic segmentation of an image into copy regions and prediction regions. 

And data in copy regions can be easily dealt with LZ-style encryption, while three-block 

prediction format (Figure 2.8(b)) is used in the prediction regions. So these algorithms 

performs extremely well when it comes to bitmap data compression. 
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2.2.2 LineDiff Entropy 

 Despite the high efficiency of Block C4, LineDiff Entropy [1] still performs even 

much better in bitmap data compression and decompression. And its simple structure is 

also elegantly attractive. So the main target of the research in this thesis was set to 

improve the quality of this algorithm. That is also why we’ll give a comprehensive 

presentation of this algorithm in this section. 

 LineDiff Entropy is a data compression algorithm designed for pixelized data 

format like bitmap. It was designed to access files with 1024 pixels in the width and 

5-bit gray level for each pixel. 

 According to the name of this algorithm, we know that it is composed of two main 

topic. LineDiff is actually the abbreviation for Line Difference, so the main idea is to 

compare two consecutive lines and record the duplicated part to achieve data 

compression. Entropy encoding is the final phase of this algorithm, and its purpose is to 

produce binary code by a concept like Huffman coding. There are three major steps: 

LineDiff Encoding, LineDiff Compaction, and Entropy Encoding, in this algorithm and 

they are listed in the following. 

The first step is LineDiff Encoding. In this step, line N will be encoded by some 

pairs in the form of (OP, L), and both OP and L are defined by comparison to line N-1 in 

the same position. If the data being encoded is the same as data at the same position 

previous row, or a duplication, we can just encode it by setting OP to DUP. Otherwise 

OP is set to be the color of these pixels, encoded by black, white, or a 5-bit binary 

number. On the other hand, L stands for length. So we set it to be the length of data that 

maintains this OP or we set L to END representing this OP will last to the end of this 

line. Figure 2.9 shows the concept of this step and Figure 2.10 is an example of 

LineDiff Encoding. 
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Figure 2.9 LineDiff Encoding. [1] 

 

 

Figure 2.10 Example of LineDiff Encoding. 

 

After LineDiff Encoding, here comes the next step called LineDiff Compaction. 

This step is the procedure to furthermore compress file size by omitting unnecessary 

data. There are three rules of LineDiff Compaction: 

1) Any (OP, L) pair has L = 1, omit L. 

2) First (OP, L) pair has OP = DUP, omit OP. 

3) Consecutive pairs have same pixel value, combine them. 

And these rules has a priority. If two or more conditions are satisfied, the order to apply 

these compaction rules should be 1) the first priority, then 2), and 3) be the last choice. 

This design is based on the next step to furthermore reduce data volume. Figure 2.11 is 

the previous example, we now apply these three compaction rules to them. 

 The last step in LineDiff Entropy is the Entropy Encoding. The author analyzed the 

frequency of every keyword appearance, and defined their code length by it. Table 2.1 is 

the analytical results in [1], and Table 2.2 is the Entropy Encoding defined by Table 2.1. 

One thing needed to be noticed is that this is a prefix-free encoding style, which means 



 16 

that we won’t be confused by prefix while decoding. 

 

 

Figure 2.11 Example of LineDiff Compaction. 

 

OP L 

DUP END White Black Gray 2 – 31 32 – 1023 

0.23 0.27 0.03 0.05 0.15 0.16 0.11 

Table 2.1 Relative frequency of occurrence of OP and L. [1] 

 

Type Value Custom Prefix # of Bits 

DUP  00 2 

END  01 2 

White  1000 4 

Black  1001 4 

Gray 1 – 30 101 + [5-bits] 8 

L 2 – 31 110 + [5-bits] 8 

L 32 – 1023 111 + [10-bits] 13 

Table 2.2 Entropy Encoding design of LineDiff data. [1] 

 

 This LineDiff Entropy algorithm runs in linear time both encoding and decoding 

because it just needs one scan of all data. And its performance is extremely good both in 
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data compression ratio and decompression time. That is exactly why we decided to 

work on improving this algorithm to make MEBDW system could be more robust with 

it. Despite our introduction here, we’ll take an even closer look in Chapter 3. 

 

2.3 Routing Algorithms 

Routing is an important step in the design of ICs. It generates wiring to 

interconnect pins of the same signal, on the premise that all the manufacturing design 

rules are obeyed. Since routing is a very complex procedure in VLSI design, we usually 

apply a two-stage approach of global routing followed by detailed routing to make it 

manageable. Global routing first partitions the routing region into tiles and decides 

tile-to-tile paths for all nets while attempting to optimize some given objective function 

(e.g., total wire length, circuit timing, and so on). Then detailed routing assigns actual 

tracks and vias for nets, following the guides of the paths obtained in global routing 

stage. In this thesis we focus on the topic of detailed routing. 

There are two kinds of detailed-routing models: the grid-based and grid-less 

models. For grid-based routing, a routing grid is superimposed on the routing region, so 

the detailed router just need to find routing paths in the grids as shown in Figure 2.12, 

and each path among grids are called routing tracks. The space between adjacent grid 

lines is called wire pitch, which is defined in the technology file and is larger than or at 

least equal to the sum of the minimum width and spacing of wires. Note that the router 

has to control the searching space such that the path in the horizontal layers can only run 

horizontally and path in vertical layers can only go vertically for the reserved layer 

model. And switching from layer to layer is only allowed at the intersection of vertical 

and horizontal grids with vias. In this way, the wires with the minimum width following 
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the path in the grid would automatically satisfy the design rules. Therefore, grid-based 

detailed routing is much more efficient and easier for implementation [8]. So in this 

thesis we will not talk about grid-less detailed routing, which is basically any detailed 

router other than grid-based detailed router. 

 

Figure 2.12 Example of grid-based routing. 

 

 With this preparation, we can now formulate our detailed routing into a 

path-finding problem on a grid-based map. Perhaps the most well-known algorithm for 

finding a path between two points is the maze-routing algorithm, or Lee’s algorithm [9], 

which is based on the breadth-first-search (BFS) technique. After Lee, a lot of 

pathfinding algorithms were published and made tremendous impacts on physical 

design. And among all them, A* search [10] might be the most efficient and effective 

algorithm that widely used in routing of many different orientations [11-13]. In this 

section, we will give a brief introduction of both Lee’s and A* search algorithm. 
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2.3.1 Lee’s Algorithm 

Lee’s algorithm takes a two-phase approach of filling and retracing. Filling is the 

phase of work by pushing on a frontier just like wave propagation in a BFS manner. 

From source node S, filling stage takes procedures to fill in every grid nodes one by one 

by their distance of the wave-front from S, until the target node T has been arrived. Here 

is an example of filling stage in Figure 2.13. Figure 2.13(a) is the stage when frontier is 

the nodes whose distance from source is 3, and Figure 2.13(b) is frontier to be 4. 

 

 

Figure 2.13 Example of filling stage in Lee’s algorithm. 

 

This filling stage goes until the target node is reached, and then a shortest path is 

attained by retracing from T to S in a decreasing order one node by one node while in 

the retracing stage. Note that there might be more than one path in the decreasing order, 

and each of them is a shortest path from S to T. Figure 2.14 shows an example of the 

retracing stage. Figure 2.14(a) is the state when the filling stage goes to reach the target 

node, and Figure 2.14(b) shows the retracing stage to attain the shortest path. 

The best property of Lee’s algorithm is that it guarantees to find a shortest path if 
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such path exists even with obstacles in the region. However it also suffers from the 

extremely-high time and space consuming shortcoming. The description above and the 

pseudo code in Figure 2.15 show its time and space complexity are both O(m*n), where 

m and n represent the number of respectively horizontal and vertical nodes, because in  

worst case every grid node must be labeled. And that makes it almost unfeasible to the 

complex networks today. 

 

Figure 2.14 Example of retracing stage in Lee’s algorithm. 

 

 

Figure 2.15 Pseudo code of Lee’s algorithm. 
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There are many grid-based shortest path algorithms inspired by Lee and enhance it 

in the filling complexity like Soukup [14] and Akers [15], but nowadays the most 

popular one must be A* search algorithm [10]. 

 

2.3.2 A* search Algorithm 

As we discussed in the previous section, Lee’s algorithm has a terrible time and 

space complexity because it basically picks the path in a blind way. One intuitive way to 

improve it might be to consider the nodes more likely to be in the shortest path in a 

prior order [8]. That is the main concept of A* search algorithm [10], and it is 

accomplished by adjusting the cost function in Lee’s algorithm. 

In Lee’s algorithm, the cost function is basically the distance between current node 

and S. While in A* search algorithm, we define the formula f(x) = g(x) + h(x) as the 

cost function to evaluate the cost of each node x, where g(x) is the distance from the S 

to the current node x, and h(x) is the heuristic (or estimated, predicted) cost from the 

current node x to T. And in each round, A* search algorithm selects a node with the least 

cost to propagate (i.e., the least f(x)), as a result A* search is also called best-first 

search. 

Let’s take a look at an example in Figure 2.16 and Figure 2.17, here we use the 

Manhattan distance to estimate the h(x) part of each node. From the source node, there 

are only four possible nodes to propagate, and in Figure 2.16(a) we’ve marked all of 

these four neighbors by its cost function in the form of g(x) + h(x). So there are two 

possible choice for A* search, either one or the other has the same priority. If we choose 

the up one from S to propagate, there will be three more neighbors that were added to 

the priority queue keeping track of the path just like in Figure 2.16(b). While in Figure 

2.17(a), there are also two possible nodes to be chosen. If the node which is on the top 
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of T is chosen, then the wave-front propagates like Figure 2.17(b), where the cost of T 

would be 14 + 0 = 14. So T will be popped out and the algorithm terminates. The 

pseudo code of A* search is showed in Figure 2.18. 

 

 

Figure 2.16 Example of A* search in the beginning. 

 

 

Figure 2.17 Example of A* search in the end. 

 

There is another key point in the utilization of Manhattan distance as the heuristic 

part h(x). In [10], Hart gave a specific proof of the influence of the admissibility in this 

heuristic function to the whole A* search algorithm. If the heuristic part of the cost 
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function is admissible, which means that it never overestimate the cost of the path, then 

A* search algorithm always returns an optimal solution if such solution exists.  

Manhattan distance is the smallest possible distance between two nodes in grid-based 

routing, and that keeps the admissibility of the heuristic function and the optimality of 

A* search algorithm. 

 

 

Figure 2.18 Pseudo code of A* search. 

 

A* search has many applications, and it also leads VLSI routing into a brand-new 

practical research with the appearance we see today. It perform a lot better in both time 

and space and that makes itself superior to other approaches. In our thesis, we not only 

modify this algorithm to meet our requirements, but also implement it to be the control 

group as a basis for comparison. 
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Chapter 3 Data Compression Ratio-aware Detailed 

Routing 

This chapter is the main theme of this thesis. In the following sections, we will 

introduce a detailed router which is capable of improving data compression ratio while 

LineDiff Entropy data compression algorithm is used. Our routing algorithm is also 

based on A* search, but three more strategies are proposed up onto it. The first strategy 

is to make the wires on-grid after pixelization, but this would cause a decrease in 

routability. So we propose the second strategy to enhance routability and to supply a 

reference for the third strategy, which is to route the patterns more expected to enhance 

total data compression ratio. All the details will be illustrated in the following sections 

right after the introduction of the routing specification. 

 

3.1 Routing Specifications 

International Technology Roadmap for Semiconductors (ITRS) [13] shows that in 

14-nm technology node, half wire pitch is expected to be 40nm. Wire pitch is defined as 

in Figure 3.1, so in the routing spec., we can make our wires to be 40 nm, and a routing 

track is therefore 80 nm to avoid design rule violation. 

 

Figure 3.1 Narration of wire pitch. 
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And just like what we’ve talked about in section 1.1, our pixel size is set to be 7nm 

by 7nm. Each pixel contains a 5-bit data, which gives a precision of 32-level grayscale. 

Total routing spec. is shown in Table 3.1.  

14/16-nm technology node 

Wire width 40 nm 

Track width 80 nm 

Pixel size 7nm * 7nm 

Pixel depth 5 bits 

# of layers 3 

Expected CR 450 

Table 3.1 Routing specification. 

MEBDW systems are relatively costly and slow compared to traditional process, so 

we usually use them in the layers with the thinnest wires. In our research, we assume 

the number of this kind of layers to be three, including two horizontal-orientation layers 

and one vertical layer in a staggered order. Expected Compression Ratio (CR) is also 

attained from section 1.1, which is the ratio of required optical fibers to the actual 

number. This spec. is also implemented to be the control group with merely A* search 

algorithm and the 450 times of compression ratio is the ultimate goal we want to 

achieve. 

 

3.2 1st strategy: on-grid wires 

The first thing we do for this data compression ratio-aware router is to make the 

wires we route can be exactly on the grid lines after pixelization. Figure 3.2 is a small 

example of the benefit we can get with this strategy. In the figure, layout on the right is 
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the one with some special process to make the wires lies just on the gridlines, while the 

left one isn’t. And the binary digits beneath them are the encoded results with LineDiff 

Entropy algorithm. 

We can see that in a layout, a piece of wire is composed of two parts. The interior 

pixels are all set to be 31 (Black) because all of the area in these pixels is occupied by 

the wire, while the pixels surrounding the wire are all set to be some number between 1 

and 30 because their area are just partially occupied. And we also notice that these 

surrounding pixels does burden CR a lot because of their fragmented information. If we 

can make our nets lie on grid lines as much as possible like in the example in Figure 3.2, 

we can get the results of a 1.87 times of improvement in CR. 

 

Figure 3.2 Example of nets on grid lines. 

To put this idea into practice, we modify the routing specification we’ve described 

in the previous section. In section 3.1, we’ve talked about that ITRS expected the wire 

pitch (hence the track width) to be at least 80 nm and a pixel is of 7-nm in each side. 
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With this spec., it is difficult to make wires lie on the exact grid lines. So what we did is 

to adjust the routing track to be 84 nm which is divisible by 7 and make the wires on the 

top-left corner of each track. With this little technique, we can now make sure that our 

metal wires will always stick on the grid lines for up, left, and right sides. 

Figure 3.3 shows the concept of the first strategy. Figure 3.3(a) is the layout with 

original track width, while (b) is the layout after adjustment. We can see that the track 

width in (b) is wider than (a), so the requirements in ITRS roadmap are automatically 

achieved at the cost of fewer routing tracks. After the process of pixelization, (a) 

becomes (c), and (b) becomes (d). It is obvious that the edges of all nets in (d) are right 

on gird lines, therefore CR is much better than (c). 

 

Figure 3.3 Concept of the first strategy. 
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We adjust the size of each routing grids to make the nets on-grid so that the 

compression ratio could be improved, but the number of routing tracks is therefore 

reduced. That might cause a severe problem in routability, so we propose the second 

strategy to ease this problem. 

 

3.3 2nd strategy: simple route 

The second strategy is a process called simple route. We’ve already known that A* 

search is a shortest-path finding algorithm. And as the description in our routing spec., 

we route in three layers containing two layers of horizontal wires and a layer of vertical 

in between, just like shown in Figure 3.4. So it is reasonable to speculate that the nets 

we route with A* search would congest in Layer 0 and Layer 1 since all pins are defined 

in Layer 0. This and the problem we’ve talked about in section 3.2 cause a drop in 

routability. 

 

Figure 3.4 Illustration of our 3-layer routing scheme, 

X denote pins to be connected. 
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 To alleviate this routability problem, we’ve designed a simple route process to 

enhance the utilization of Layer 2. Whenever we are going to route a new wire, we 

check whether we can go directly by Layer 1 and Layer 2 just like Figure 3.5. In the 

figure we illustrated two different types of simple route, each of them routes in an 

opposite order of vertical wires and horizontal wires. Both of them are used in the 

proposed routing algorithm to enhance routability and Layer 2 area usage. Note that A* 

search algorithm is used if we cannot apply either of these two simple route processes. 

 

Figure 3.5 Examples of simple route. 

 

With this technique, proposed router did surpass the control groups in routability. 

We’ll talk about the experiment results in the later chapters. Another benefit of this 

simple route process is that our algorithm routes some layout pattern that is long and 

steady first, and these patterns themselves can be a great reference when we want to 

route some patterns we really want in the next strategy. 
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3.4 3rd strategy: desired patterns 

In addition to the two previous strategies, the most important part must be how to 

route the patterns with better compression ratio. In the description in 2.2.2, we’ve 

introduced LineDiff Entropy compression algorithm in detail. And in 2.3.2, we know 

that A* search algorithm takes advantage of cost functions to find a path between the 

source pin and the target pin. So in this section, the main purpose is to first find out 

what patterns perform well with LineDiff Entropy, and then we’ll make an adjustment 

in the cost functions to make our router produce these patterns more likely. 

Because LineDiff Entropy makes use of the duplication of layouts to compress data 

volume, it is trivial that layout with more repetitive patterns has a better CR. Here we’ll 

talk about layout pattern performance with horizontal layer (Layer 0, Layer 2) and 

vertical layer (Layer 1) separately. 

In Layer 0 and Layer 2, only horizontal wires are allowed. Our strategy is to make 

sure that a routing track is more likely to be selected if it had been used before. This 

idea comes from Figure 3.6(a) and (b). We can see that there are both three wires in 

these two figures, but (b) is more likely to have a better CR because all wires are in the 

same track. So LineDiff Entropy would take a little effort to encode this one track and 

then just duplicate all the blank tracks, which might results in a great CR. 

And there is a similar situation in Layer 1 which only vertical-oriented wires are 

allowed. In Figure 3.6(c) and (d) we can see that there are also three wires in both 

figures but (d) should perform better in CR. Because patterns in (c) is not well-aligned 

as in (d), LineDiff Entropy cannot encode them only by their duplication. So we can 

conclude that in the layer of vertical wires, our strategy is also to make the best out of 

the duplication. 
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Figure 3.6 Expected routing patterns. 

 

Because LineDiff Entropy needs input file which is 1024-pixel wide and a pixel is 

7 nm each side, the first specific procedure to do the above is to split the whole routing 

map into several stripes which is 7168 nm wide. And then give the routing grids that is 

not forming our desired pattern a punishment in the cost. In this case, A* search would 

more likely to use the desired grid because it always picks the node with least cost to 

propagate. 

Figure 3.7 shows an example of Layer 1 (vertical-wire allowed). In this figure, the 

whole layout is split into 7168-nm-wide stripes. The blue obstacle is a wire that had 

been routed already and the yellow one is the one to be routed. There are two possible 

directions A and B for the wire to propagate because it can go only vertically. And in 

this case, the cost of B would be raised by a punishment because if the router route that 

path, LineDiff Entropy should spend more resource to compress. 

So what we actually do is that we keep trace of wires routed in each stripe 

horizontally because of the raster scan order of LineDiff Entropy. In A* search, we can 
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say that we add the candidate nodes of the next propagation into a priority queue to pick 

the one with least cost. And in our algorithm, we check whether the row where the node 

lies in has been used beforehand or not. If not, we add a punishment to the cost of it. For 

example, in Figure 3.7, we’ve record the blue wire. So when we are routing the yellow 

wire, we check the record to know that the row of node A has been used, while the row 

of node B hasn’t. So it is more expected to use A than B for LineDiff Entropy 

performance. We raised the cost of node B by a punishment value to make the router go 

for A more likely.  

 

 

Figure 3.7 Example of the third strategy. 

 

Another important issue we want to talk about is that in section 3.2 we have 

mentioned our routing track is set to be 84 nm. So if we want to split the layout into 

stripes with 7168 nm, each stripe would contain about 85.33 tracks, which is not 

processable. 

We dealt with this problem by the expression in Figure 3.8. We try to solve it by 

the way as simple as possible, so all stripes are divided into groups of three. The first 
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and the third stripes contain 85 tracks, and the second stripe contains 86. So every three 

stripes contains 256 tracks, which is exactly 21504 nm for three stripes. 

 

 

Figure 3.8 Stripe splitting. 

 

In the end of this chapter, Figure 3.9 shows the whole flow chart of the proposed 

algorithm except for the track width adjustment. In the figure we know that we first use 

simple route in both directions, and the modified A* search carries out if both of them 

failed. The key procedure of this modified A* search is the cost calculation because we 

use the information of not only distance but the applicability of LineDiff Entropy to 

determine the cost, and that makes our proposed detailed routing meaningful and 

effective. We’ll give some experiment results to support this statement in the next 

chapter. 
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Figure 3.9 Total flow chart of the proposed algorithm. 
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Chapter 4 Results of Experiments 

In this chapter, the results of experiments we collected will be illustrated. And all 

of them are conducted on workstation running Linux with Intel(R) Xeon(R) CPU 

E5-2643 v2 3.50 GHz system with 70 GB RAM. Both proposed algorithm and the 

control group, along with LineDiff Entropy algorithm, were implemented in C++ 

programming language compiled by g++ (GCC) v.4.8.2 released on 20140120. 

Table 4.1 is adopted from Table 3.1, and it shows the specification of our 

implementation. Basically our proposed router and the control group are both designed 

for 14/16-nm technology node just like we introduced in section 3.1. The only 

difference between them is the strategies we’ve expressed in the previous chapter. The 

first strategy needs the routing track to be 84 nm in the width, resulting in a drop in 

routability. So a procedure which checks whether the source pin is able to connect the 

target pin directly, simple route, is taken place. But the most important modification is 

the calculation of the cost in A* search. Proposed router takes advantage of both 

distance and the performance of the patterns in LineDiff Entropy algorithm. While the 

control group in our implementation is a detailed router which contains only the original 

A* search algorithm to find the shortest path. And all other specifications in both 

designs are just the basic requirements in the technology roadmap. Expected 

compression ratio is 450, estimated in section 1.1 and it’s the ultimate goal we are trying 

to reach out. 

The input cases were generated at random by their coordinates, and the original 

point was set on the top-left corner. Figure 4.1 shows a concept of this input file 

generation. There are three pairs of source and target pins in this figure, and our detailed 

router should find paths to connect them separately without any intersection. Another 
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constraint set in generating input is that each source and target node cannot be in the 

same grid in neither proposed router nor control group. Note that this figure does not 

show the exact input file format, the actual format is just pairs and pairs of coordinates 

of pins. 

Groups Proposed A* search 

Track width 84 nm 80 nm 

Simple route Yes No 

Cost evaluation 

Distance and 

 LDE(*) preference 

Distance only 

Wire width 40 nm 

Pixel size 7nm * 7nm 

Pixel depth 5 bits, 32 gray-level scales 

Number of layers 3 layers 

Expected CR 450 

Table 4.1 Spec. of the implementation, 

(*)LDE: LineDiff Entropy algorithm. 

 

 

Figure 4.1 Concept of input generation. 
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The following tables are the results of our experiments. Each of these tables 

contains four sets of input cases generated at random, and they are grouped by the size 

of the input circuit. We named the input cases in Table 4.2 the huge cases because each 

of them contains 10,000 wires to be routed. And the other cases are called large, 

medium, small, and tiny cases for Table 4.3, Table 4.4, Table 4.5, and Table 4.6 

respectively, because of the number of wires needing routed is 8000, 5000, 3000, and 

1000. After these complicated information, Table 4.7 shows the organized result of all. 

In these tables, the basic information of each cases is listed on the top. The 

identifiers of each input cases were given just for convenience. In each cases, all the 

results can be viewed by two parts. The information on the left is from the control group 

which was implemented using A* search algorithm only, while the one on the 

right-hand side is our proposed detailed router. There are four topics we want to discuss, 

including routability, total wire length, and the two most-important issues in MEBDW 

systems, decompression rate and data compression ratio in LineDiff Entropy. 

 Routability is the primary concern for every router, and it’s defined by the success 

rate while finding the actual path for each wire. In the proposed detailed router, we 

designed a simple route process in order to deal with the severe problem in routability 

caused by making wires on-grid. And the results show that the proposed algorithm does 

route more wires than pure A* search. Actually the proposed detailed router has 

routability more than 95% in every single test case and 97.59% on average. 

 But everything has its price. To reach such a high routability and the benefits in 

other aspects, the router usually needs to take longer detours. So in Table 4.7 we can see 

that the total wire length in the proposed algorithm is 23.43% more than the control 

group. It’s actually not negligible, but compared to the contribution of this work, we 

should try to do something more in the future to fix this. 
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The two issues we want to discuss next, which are also extremely important in 

MEBDW systems, are decompression rate and compression ratio. Decompression 

hardware should be directly attached to the electron beam writer, so decompression rate 

being as fast as possible can save the hardware resources and make sure the 

decompressed data sent to the writers in real time. In our experiment results, we can see 

that the decompression time in the proposed router and the control group are almost the 

same. So we can conclude that our design did not affect the decompression rate. 

 As for the compression ratio, just like we estimated, has a great improvement. The 

compression ratio (CR) here is defined as the original data size divided by the 

compressed data size. The results show that CR in proposed router is improved by at 

most 1.67 times than the router with only A* search. And in Table 4.7 we can also know 

that our design has a roughly 1.42 times on average better than the control group in CR. 

 But aside from the multiples we’ve mentioned above, the important part is the goal 

of our design. In the previous section we know that the desired CR is about 450 in 

manufacturing. The results also show that in most of the input case, proposed router 

reach this target, while the control group doesn’t. 

These two important issues are also plotted in Figure 4.2 and Figure 4.3. Note that 

in these figures, the numbers had been taken average in each size of input. We can see in 

Figure 4.2 that the decompression time is nearly the same in both designs. And Figure 

4.3 shows CR in both designs, with the black line in the middle shows the ultimate goal, 

450 times, of compression ratio in our research. 
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Input case ID. Huge_#1 Huge_#2 

# of wires 10000 10000 

Area (nm2) 97440 * 97440 97440 * 97440 

Group A* search Proposed A* search Proposed 

Routability 84.03% 93.40% 91.55% 97.48% 

Total wire length (nm) 29614800 37031228 14799960 18289352 

Decompression time (s) 38.51 37 37.02 37.72 

Original data size (Byte) 1796598720 1796598720 1796598720 1796598720 

Compressed data size (Byte) 6795886 4066245 5513903 3660736 

Compression ratio 264.3656353 441.8323834 325.830672 490.7752758 

CR Improvement 1.671292802 1.506227983 

 

Input case ID. Huge_#3 Huge_#4 

# of wires 10000 10000 

Area (nm2) 97440 * 97440 97440 * 97440 

Group A* search Proposed A* search Proposed 

Routability 91.74% 97.73% 88.95% 96.05% 

Total wire length (nm) 14773440 18223484 19912040 24538916 

Decompression time (s) 37.82 37.24 34.74 35.39 

Original data size (Byte) 1796598720 1796598720 1796598720 1796598720 

Compressed data size (Byte) 5539075 3655172 5962215 3807019 

Compression ratio 324.3499537 491.522347 301.3307504 471.9174556 

CR Improvement 1.515407483 1.566111175 

Table 4.2 Results of experiments for huge cases. 
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Input case ID. Large_#1 Large_#2 

# of wires 8000 8000 

Area (nm2) 87360 * 87360 87360 * 87360 

Group A* search Proposed A* search Proposed 

Routability 85.81% 94.34% 92.81% 97.89% 

Total wire length (nm) 21290680 26586708 10617960 12997012 

Decompression time (s) 30.83 30.84 31.82 32.69 

Original data size (Byte) 1495690560 1495690560 1495690560 1495690560 

Compressed data size (Byte) 5277262 3252139 4338296 2947402 

Compression ratio 283.4216986 459.9097886 344.7645251 507.4606586 

CR Improvement 1.622704934 1.471905088 

 

Input case ID. Large_#3 Large_#4 

# of wires 8000 8000 

Area (nm2) 87360 * 87360 87360 * 87360 

Group A* search Proposed A* search Proposed 

Routability 92.28% 98.01% 89.76% 96.65% 

Total wire length (nm) 10520240 12951368 14125160 17563512 

Decompression time (s) 31.75 31.41 29.49 30.12 

Original data size (Byte) 1495690560 1495690560 1495690560 1495690560 

Compressed data size (Byte) 4333774 2940447 4708042 3062791 

Compression ratio 345.1242635 508.6609485 317.6884488 488.3423518 

CR Improvement 1.473848704 1.537173774 

Table 4.3 Results of experiments for large cases. 
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Input case ID. Medium_#1 Medium_#2 

# of wires 5000 5000 

Area (nm2) 67200 * 67200 67200 * 67200 

Group A* search Proposed A* search Proposed 

Routability 88.10% 95.74% 93.60% 98.30% 

Total wire length (nm) 10160440 12623972 4951760 5968560 

Decompression time (s) 18.35 19.1 17.45 17.45 

Original data size (Byte) 885024000 885024000 885024000 885024000 

Compressed data size (Byte) 2980874 1892347 2414204 1714069 

Compression ratio 296.9008418 467.6858948 366.5903958 516.3292726 

CR Improvement 1.575225897 1.40846372 

 

Input case ID. Medium_#3 Medium_#4 

# of wires 5000 5000 

Area (nm2) 67200 * 67200 67200 * 67200 

Group A* search Proposed A* search Proposed 

Routability 93.46% 98.64% 91.40% 97.38% 

Total wire length (nm) 4921960 5973624 6738560 8327120 

Decompression time (s) 17.98 17.48 18.47 18.08 

Original data size (Byte) 885024000 885024000 885024000 885024000 

Compressed data size (Byte) 2426859 1721081 2661106 1798012 

Compression ratio 364.6787885 514.2256524 332.5775072 492.2236337 

CR Improvement 1.410078317 1.48002683 

Table 4.4 Results of experiments for medium cases. 
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Input case ID. Small_#1 Small_#2 

# of wires 3000 3000 

Area (nm2) 52080 * 52080 52080 * 52080 

Group A* search Proposed A* search Proposed 

Routability 91.07% 96.90% 95.20% 99.07% 

Total wire length (nm) 4700520 5883716 2269280 2628396 

Decompression time (s) 10.98 11.38 10.85 10.55 

Original data size (Byte) 548714880 548714880 548714880 548714880 

Compressed data size (Byte) 1703269 1110990 1337456 1010446 

Compression ratio 322.1539757 493.8972268 410.2676125 543.0422605 

CR Improvement 1.533109209 1.323629368 

 

Input case ID. Small_#3 Small_#4 

# of wires 3000 3000 

Area (nm2) 52080 * 52080 52080 * 52080 

Group A* search Proposed A* search Proposed 

Routability 94.30% 99.20% 93.30% 98.67% 

Total wire length (nm) 2234960 2648696 3063680 3672492 

Decompression time (s) 10.8 10.45 11.34 11.29 

Original data size (Byte) 548714880 548714880 548714880 548714880 

Compressed data size (Byte) 1332523 1008515 1489779 1058049 

Compression ratio 411.7864232 544.0820216 368.3196501 518.6100833 

CR Improvement 1.321272366 1.408043484 

Table 4.5 Results of experiments for small cases. 
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Input case ID. Tiny_#1 Tiny_#2 

# of wires 1000 1000 

Area (nm2) 30240 * 30240 30240 * 30240 

Group A* search Proposed A* search Proposed 

Routability 95.00% 97.80% 97.50% 99.30% 

Total wire length (nm) 881440 1072176 421040 427356 

Decompression time (s) 3.97 4.14 3.89 3.8 

Original data size (Byte) 199130400 199130400 199130400 199130400 

Compressed data size (Byte) 497082 361671 383569 316350 

Compression ratio 400.598694 550.5843709 519.1514434 629.4623044 

CR Improvement 1.374403809 1.212483009 

 

Input case ID. Tiny_#3 Tiny_#4 

# of wires 1000 1000 

Area (nm2) 30240 * 30240 30240 * 30240 

Group A* search Proposed A* search Proposed 

Routability 98.10% 99.60% 97.20% 99.60% 

Total wire length (nm) 437640 439072 572360 625980 

Decompression time (s) 4.13 3.79 3.85 4.01 

Original data size (Byte) 199130400 199130400 199130400 199130400 

Compressed data size (Byte) 389990 318149 423360 335303 

Compression ratio 510.6038616 625.9029574 470.3571429 593.8819515 

CR Improvement 1.225809291 1.262619183 

Table 4.6 Results of experiments for tiny cases. 
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Group A* search Proposed 

Average routability 92.26% 97.59% 

Total wire length (nm) 177007920 218472740 

Total wire length exceeded 23.43% 

Total decompression time (s) 404.04 403.93 

Difference of decompression time -0.03% 

Average compression ratio 364.0431 517.5174 

Average CR improvement 1.421583 

Table 4.7 Overall results of experiments. 

 

 

 

Figure 4.2 Decompression time comparison 
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Figure 4.3 Compression ratio comparison,  

the black line indicates the goal of the research 450 

 

There are two routing results shown in Figure 4.4 and Figure 4.5. In both figures, 

the layouts on the left is the result of the control group, while the ones on the right is the 

result of our proposed router. And all three layers are listed together. We can see that 

when we’re using only A* search, layer_2 is rarely used, while proposed router has a 

better area utilization. Figure 4.4 is the result of case Huge_#1 and Figure 4.5 shows the 

result of case Medium_#3. 
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Layer_0 Layer_0 

  

Layer_1 Layer_1 

  

Layer_2 Layer_2 

(a) A* search (b) Proposed 

Figure 4.4 Routing results for Huge_#1. 
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Layer_0 Layer_0 

  

Layer_1 Layer_1 

  

Layer_2 Layer_2 

(a) A* search (b) Proposed 

Figure 4.5 Routing results for Medium_#3. 
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Chapter 5 Conclusion and Future Work 

In this thesis we have proposed a detailed router that supports the data compression 

algorithm, LineDiff Entropy algorithm, for MEBDW systems. In the beginning we have 

introduced such system including the significance, the expectation, and the problem it 

confronts. And then we did some calculation to estimate the lack in throughput needs a 

compression ratio larger than 450. 

After the complete expression of the algorithms, the results of experiments were 

listed. And they’ve shown that for LineDiff Entropy algorithm, proposed detailed router 

performs much better than the router without our modification in compression ratio 

while maintaining decompression rate. And the estimated goal 450 is reached after 

applying our algorithm. 

And there is another important contribution in our research. We’ve mentioned that 

there is no such research in solving throughput problem in MEBDW system from the 

aspect of circuit physical design. Our research proved that this is a field worth 

investment. 

But there also exists something more to improve. For routing part, routability 

should be further promoted to around 100% to meet the requirements in manufacturing 

these days. And this could be done if we introduce a structure which is able to 

dynamically select, defuse and reroute. Such structure could automatically selects wires 

causing routing congestion or making LineDiff Entropy performs poorly. And then these 

wires might be canceled in order to route other wires first, to further improve routability 

or CR. 

As for industrial manufacturability, there is actually an important phase we ignored 

in this thesis called Electron-beam Proximity Correction (EPC). This phase is necessary 
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because the patterns might have a distortion after written by E-beam emitter. 

 

Figure 5.1 Latent image simulation procedures. [17] 

 

Figure 5.1 shows the simulation of a pattern distortion. In this flow, the original 

layout is represented by some standard polygons, and then they’re taken convolution 

with a Point Spread Function (PSF) which can be derived from Gaussian function [18] 

to get the energy map. And finally after filtered by a threshold, we get the image on the 

right in Figure 5.1, which is the actual pattern that will be written. We can see such a 

variation that even causes circuit short. 

This is why the EPC process is needed. But we can also comprehend that after 

EPC, layout patterns could have skewed shapes which cannot be compressed easily by 

any data compression algorithm. 

Another work might be worth researching is a brand new data compression 

algorithm which can cooperate with our proposed router or with little adjustment. 

Because the basic idea of proposed router is to take advantage of the repetition of 

patterns, there should be some more ways to further improve compression performance 

with it. 
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