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Abstract

Background

Deterministic models are conducive to estimate a very important indicator for

assessing the spread of infectious disease such as epidemic, endemic, and extinction,

namely, the basic reproductive number (R0). However, when small or moderate

population size and the question of the probability of the extinction of infectious disease

in question are involved the deterministic model is therefore not adequate. Furthermore,

it may not be adequate when minor outbreak occurred if the R0 is less than 1. The

alternative is the application of stochastic model.

Of these stochastic models, the branching process is one of considerations

because it can be easily applied to estimating both the extinction probability and R0. In

spite of these two advantages, because we often have the total number of infected

individuals for a given period of time and generations usually overlap each other in

reality that enables the branching processes difficult to estimate R0. The

continuous-time Markov process embodied with birth-death process may be more

appropriate.

Objectives

The objectives of my thesis are to develop various types of stochastic

models for estimating R0 and the extinct probability of infectious disease by

demonstrating the two examples of SARS and pulmonary TB. Specific aims are to

(1) apply the deterministic compartmental model to data on SARS poliomyelitis

for estimating R0;

(2) develop branching process and birth-death process to SARS dataset to estimate
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both R0 and the extinct probability and also extend the simple branching

process to mortal branching process for measles;

(3) apply the Becker’s SIR model to the data of TB for estimating latent period and

incubation period;

(4) develop a novel three-state Markov model embodied with birth-death process

to assess the effect of covariates (such as IGRA) on infection rate and

conversion rate using Bayesian MCMC method and to further apply birth-death

process to estimate extinct probability and the expected time to reach final size.

Materials and Methods

Generating Data by simulations

We simulated a branching process with 9 generations of data for a given offspring

distribution under various values of R0=2, 1.5, 1.1 and 0.9 for calculating the extinction

probability. We simulated a birth-death process with given birth rate, death rate and

different initial infected cases. We calculate the mean and variance of arrival time from

the initial state.

Empirical Data

. SARS

The thesis used 346 confirmed cases with SRAS from November 2002 to July

2003 in Taiwan obtained from Taiwan CDC and also 22,520,776 population of Taiwan

at the beginning of 2003. This thesis also made use of total 56 infected with SARS in a

hospital in Singapore from Mar. 26 to Apr. 15, 2003. Only 3 generation of offspring was

noted after outbreak investigation.
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Mycobacterium tuberculosis

The outbreaks of TB in the Long-term Care Facility

The data on outbreak of TB in the LTCF provide empirical data for estimating the

unobserved incubation period and latent period before onset of symptoms.

Data for estimating parameters of TB natural course

Various datasets were used including a total of 2,420 TB cases with age  30

enrolled in our cohort study from 2009 to 2011 (surveillance system for TB from 2009

to 2011 in Changhua County), a total of 22,510 TB contacts with age  30 enrolled in

our cohort study from 2005 to 2011 (B contact registry database from 2005 to 2011 in

Changhua County), a matched case-control study for risk factors of TB from 2012 to

2014 in Changhua County, and a IGRA survey for general population from 2011 to

2013 in Changhua County

Model Specification and Statistical Analysis

   Three types of stochastic processes were applied and proposed. We first

applied branching process and birth-death process to estimate R0, extinct probability

and the expected time to reach final size for SARS epidemics. We then applied the

Becker’s SIR model to estimate unobserved incubation period (including latent period)

to the outbreak of TB to estimate its R0 and extinct probability. The novel three-state

Markov process embodied with birth-death process was develop to assess the effect of

IGRA on the transition from susceptible to LTBI and the conversion from LTBI to TB

with Bayesian MCMC method.
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Results

Part I Simulation

Branching Process

The results of estimating R0 on the generating data of a branching process with six

generations for a given offspring distribution (such as Poisson, Binomial, and Negative

Binomial distributions) are presented. The estimated R0 were consistent with the

nonparametric or parametric method with different distributions. However, the

variances were heterogeneous by different methods.

Pure birth process

The simulated results of 1000 simulations for pure birth process assuming =0.5

compared with the true results estimated the exact equation for E(Ta). It is very

interesting to note that the simulated curve with mean value was still deviant from the

curve obtained from the exact formula. However, when n0 became larger, the simulated

curve with mean value was close to the true curve obtained from the formula with larger

n0 but deviant from the formula with smaller n0. When  was enlarged to 3, the results

were not changed at all.

Part II Estimation of R0 for the outbreak of SARS in Taiwan

The estimated R0 was 0.9971 (0.5090~1.4852) by using branching process given

16~22 generations assuming the incubation of 5 or 7 days. The estimated extinction

probability was 0.9912 under the assumption of Poisson distribution.

Using Borel-Tanner distribution under the assumption of R<1, the stimulated  R0

was from 0.9790 (0.8437 ~ 1.1143) to 1.0134 (0.8535 ~ 1.1733). The estimated

extinction probability was 0.9709 ~ 0.9989.

As linear birth-death process did not fit well with data apply instead general birth
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death process to fit the observed cumulated SARS data. The estimated birth rates were

0.57 (< 55 day of outbreak), 11.45 (the 55th ~ 80th day of outbreak) and 1.413 (after the

80th day of outbreak). The expected time to reach final size a (Ta) were 54.97(10.09),

80.00 (10.41) and 112.01 (11.47) days for T32 , T300 and T346, respectively.

Part III Natural Course of TB

Outbreak of TB

The latent period was estimated about 223.6 days [ =0.0045 (2.17*10-6) ] and the

infectious period before symptoms onset was estimated about 55.9 days [ =0.0179

(3.47*10-5)]. Hence, the incubation period was about 279.5 days. According to our

estimation of latent period, there were at least two generations and at most 3 generations.

R0 was bounded between 0.9739 and 0.9796 in this cluster. The extinction probability

was almost certain.

The effect of IGRA on the occurrence of TB with a case-control study

Using a match-case-control study, the estimated odds ratios in multivariable

logistic regression mode for positive QFT-GIT after further adjustment for positive TST

was 2.47 (95% CI: 1.72-3.54). After further considering the interaction term in the

model, the odds ratio of QFT-GIT for subjects with positive TST was estimated as 4.28

(95% CI: 1.16-15.76) whereas the odds ratio of QFT-GIT for subjects with negative

TST was estimated as 1.15 (95% CI: 0.66-2.00).

The effect of IGRA on the infection rate and conversion rate with multi-state

Markov model

The overall estimated infection rate (per person-years) and conversion rate (per

year) were 0.0168 (95% CI: 0.0157-0.0180) and 0.0113 (95% CI: 0.0098-0.0129). The
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infection rate was higher for the young age group (30-44 years old) and male sex. Those

with positive IGRA were 1.60 (RR=1.59, 95% CI:1.39-1.84) times likely to be

susceptible to LTBI compared with negative IGRA. In contrast to the effect of age on

infection rate, the older the subject was, the higher the conversion rate. Males still had

higher conversion rate than females. Those with positive IGRA were two times

(RR=2.12, 95% CI:1.57-2.85) likely to surface to TB compared with negative IGRA.

After taking the effect of age and sex on both infection rate and conversion rate

into account, subjects with positive QFT-GIT still had higher risk of being infected and

converting to tuberculosis with estimated RR being 1.71 (95% CI: 1.49-2.00) and 1.58

(95% CI: 1.15-2.17), respectively.

Application of birth-and-death process with the parameters obtained from

three-state Markov model found one initial case may take about 61 days to have 10 of

final size and 87 days to have 30 of final size without considering covariates. The young

people, male and positive IGRA tended to spread quickly. The male aged less than 45

years with positive results of IGRA took only one week to reach final size given five

initial cases. It should be noted that an increase in initial size reduced the time to reach

the expected final size. When initial size was larger than five the extinct probability of

TB was very unlikely.

Conclusion

There are five major conclusions on the practical findings reached as follows.

1. While evaluating SARS in the two regions, the estimation of R0 given 3~8

generations was between 1 and 1.5, and the estimated extinct probability was almost

certain using branching process in Singarepore. The SAS outbreak yielded 0.99 of

R0 using branching process in Taiwan. The estimated extinct probability was 0.99.
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The similar findings were noted by using the mortal branching process with

Borel-Tanner distribution.

2. Estimate unobserved incubation period with approximately 9 months, including

seven months of latent period and two months of infectious period before onset of

symptoms given data from an outbreak of TB occuring even among subjects with

negative TST result after undergoing TB screening. Surveillance of the elderly

people even with a negative TST after TB screening is still necessary given a long

latent period if the outbreak of TB in a long-term care facility is to be controlled.

3. This is the first study to assess the effect of IGRA on the occurrence of TB by

conducting a case-control study making allowance for demographic characteristics

and induration size of TST.

4. This is the first study to assess the effects of age, gender, and IGRA on infection

from susceptible to LTBI and also the conversion from LTBI to TB in the natural

course of TB. The young age was at increased risk for being LTBI but the old age

enhanced the risk of conversion from LTBI to TB. Male had higher risk for being

infected as LTBI and also the conversion from LTBI to TB. The elevated IGRA

plays a significant role not in the infection rate (from free of LTBI (susceptible) to

LTBI) but also in the conversion rate after adjusting for age and gender.

5. The application of infection rate (birth rate) and conversion rate (death rate) gives

the time expected to reach number of LTBI of final size and the extinct probability

by various combinations of age, gender, and the results of IGRA. Subjects with

positive IGRA results had shorter expected time to reach final size than those with

negative result.

This thesis has also contributed to developing the methodological part related to
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infectious disease consisting of three summary points:

1. Provide several statistical simulated methods for simulating various R0 with

branching process and also birth-and-death process so as to estimate the extinct

probability and the expected time to reach final size.

2. Demonstrate how to apply the Becker’s SIR model in conjunction with branching

process to estimate incubation period and latent period for the surveillance of TB.

3. Develop a continuous-time Markov process embodied with birth-and-death process

in conjunction with a novel case-cohort design data given the known sampling

fraction to assess how covariates such as IGRA affect the infection rate and the

conversion rate framed with a three-state Markov process. The further application of

birth-and-death process used in the simulation of SARS process can compute the

extinct probability and the expected time to reach final size, both of which provide a

new insight into the golden period for the formulation of policy for the containment

of infectious disease in question.

Keywords: stochastic process; branching process; birth-death process; TB; SARS
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1

  Stochastic Processes for SARS and TB

Infectious Diseases

Chapter 1  Introduction

1.1 Basic Reproductive number (R0) and mathematical models

The application of the mathematical model to studying the effectiveness of

vaccination against smallpox was pioneered by Daniel Bernoulli in 1760[1]. The

literatures about mathematical epidemiology have increasingly gained attention after

the threshold theorem was established by Kermack and McKendrick in 1927 [2].

Among these models, the deterministic model with ordinary differential equations

(ODE) has been widely used for studying dynamics of infection disease, such as the

SIR(Susceptible-Infectious-Recovered) model, the SIS (Susceptible-Infectious-

Susceptible) model, and the SEIR (Susceptible-Exposed-Infectious- Recovered)

model. Note that these models are population-based models and their underlying

theories rely on the law of large numbers. While these models are applied during the

epidemic process, they are conducive to yielding a very important indicator for

assessing the spread of infectious disease such as epidemic outbreak, endemic, and

extinction, with the threshold values of infection disease, namely, the basic

reproductive number (R0). These models were further applied to estimating effective

reproduction number (R) after the containment of infectious disease with different

strategies. Equation Section (Next)

To further elucidate the stage of infectious disease process, these models have

been used to estimate latent or incubation period, the infectious period, the dynamic

population (births, deaths or migrations) and the immunity status of the susceptible
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(the exposure of infectious hosts or the vaccination). More importantly, the herd

immunity can also be evaluated by these deterministic models.

1.2  Discrete-time stochastic model for estimating R0

In a small or moderate population size, the deterministic model (SIR) may not

be adequate. The expedient strategy with the deterministic model is to consider

clinical symptoms while R is estimated given the herd immunity [3]. In my previous

work, the 95% CI of R0 through the simulations with assigning the proper

distributions of these parameters was estimated by still using the deterministic model

[4] (in submitting). However, the probability of the extinction of infectious disease in

question cannot be evaluated by using the deterministic model. Furthermore, it may

not be adequate when minor outbreak occurred if the R0 is less than 1. The extinction

of infectious disease was still noted even though the R0 large than one for the spread

of infectious disease at the beginning of stage. The alternative is the application of

stochastic model.

The application of stochastic model in relation to the study of infectious disease

was proposed by McKendrick in 1926 and continuous time version of the

deterministic model in a stochastic manner was further provided by McKendrick and

Kermack in 1927. The stochastic model for infectious disease has become popular

since 1950s.[5-7] Of these stochastic models, the branching process is one of

considerations. The merit of using branching process is two-fold. First, it can also be

easily applied to the evaluation of disease extinction probability and R0 or R. Second

it enables one to start from individual level and sometimes is called an

individual-based model when the focus is placed on the transmission probability that a

contact between an infective and a susceptible. It can be extended from individual

level to population level. The most difficulty with the application of branching
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process is that mathematical computation is very intractable because of the

complexity of mathematical property of branching process. To solve this issue, Cox

and Miller proposed generating function for such a purpose but it has not been widely

used in infectious diseases [8]. The alternative to generating function for overcoming

the difficulty of the estimation in parameters of the complex stochastic model is the

use of Bayesian Markov chain Monte Carlo (MCMC) method that is one of technical

breakthrough in my thesis.

1.3 Continuous-time stochastic model for estimating R0

Because we often have the total number of infected individuals for a given

period of time and generations usually overlap each other in reality, it is difficult to

estimate R0 with branching processes. Hence, the birth-death process which is a

continue time discrete state Markov process may be more appropriate. In addition,

only the infected rate is considered and the recovery rate is not considered in the

branching process. If we want to consider the both ones, birth death process may be

used instead. However, this model has been barely addressed in infectious disease

process. It is particularly useful for estimating the unobserved incubation period in

chronic infectious disease such as TB. It is also very interesting to assess the effect of

covariates on infectious process (from susceptible to infectives) and also conversion

process (from infectives to disease) as the example of the effect IGRA on the natural

course of TB.

1.4 Objectives

The objectives of my thesis are to develop various types of stochastic models

for estimating R0 and the extinct probability of infectious disease by demonstrating
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the two examples of SARS and pulmonary TB. Specific aims are to

(1) apply the deterministic compartmental model to data on SARS for estimating

R0;

(2) develop branching process and birth-death process to SARS dataset to

estimate both R0 and the extinct probability and also extend the simple

branching process to mortal branching process for measles;

(3) apply the Becker’s SIR model to the data of TB for estimating latent period

and incubation period;

(4) develop a novel three-state Markov model embodied with birth-death process

to assess the effect of covariates (such as IGRA) on infection rate and

conversion rate using Bayesian MCMC method and to further apply

birth-death process to estimate extinct probability and the expected time to

reach final size.
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Chapter 2 Literature Reviews

The basic reproduction number is the key concept in infectious disease and is

also used to assess the risk of an epidemic or pandemic in emerging infectious disease.

Review literatures related to the important method used for the derivation of R0 are

described in the following section. Equation Section 2

2.1 Epidemic threshold method

The theoretical basis of herd immunity was derived from “the mass-action

principle” which was introduced by Hamer [9]. “The ability to infection” was thought

to be a function of the number of susceptibles in the underlying population, which can

be expressed as

t 1 t tC  C S r (2.1)

 where tS is the number of susceptibles at Time t, Ct+1 and Ct are the number of

cases at Time t+1, r is a function of the transmission parameter and contact rate. The

number of susceptibles cycles reaching the equilibrium is described as “epidemic

threshold” (Se). The equation (1.1) can be rewritten as

t 1 t tC /  C S r (2.2)

,which reveals that the threshold is equal to 1/r. Only when t 1 tC /  C 1 (St > 1/r ,

the number of infectious disease cases increases. Therefore, if the proportion on

immune is so high that result in the number of susceptibles below the epidemic

threshold, then incidence will decrease. It can be easy to express as follows:

1
1 1

Se
H

T rT
(2.3)

where H is the herd immunity threshold, T is the total population size, and Se is the
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epidemic threshold.

The earliest reproduction number is described by Lotz’s study the effectiveness

of smallpox vaccination. Let a denote initial cases and q denote the infection ratio, the

number of cases in the nth generation is aqn. So, Lotz’s ‘infection ratio’, q, is the

earliest expression of the reproduction number.

The basic reproductive rate of infection R0 is the average number of secondary

cases produced by one primary infective in a wholly susceptible population. In other

words, if the infectious disease can be spread and maintained in a susceptible

population, the R0 must be greater than one. Let St =T and Ct=1 in equation (2.1), we

can easy get the equation R0 Tr. However, there are some persons with infected or

immunity in the population. Hence, the average number of secondary cases by each

infected individual is less than the basic reproduction number. It can be called as net

reproduction rate or effective reproductive rate (Rn). So Rn=f R0, where f denotes the

percentage of the susceptibles in the population and it is equal to St /T. If Rn=f R0 =1,

R0 can be estimated as 1/ f (T/Se). It can be inferred to the herd immunity threshold as

follows:

0

1
1H

R
. (2.4)

We can also estimate R0 with epidemic threshold theory considering the heterogeneity

of population. If the death rate is not associated with age in a steady population, R0

can be expressed as follows:

0 asR 1 defined type II mor
T L

tality in the popul
Se

a ion
A

t , (2.5)

and

0 asR defined type I mortality in the popula
L

A
tion (2.6)

, where L denotes the life span of this population and A denotes average age A at

infection.[10]
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If we consider the immunity of infants obtained from their mothers against from

infectious diseases, R0 can be expressed as follows:

0 as1R defined type II mortality in the
L

populati n
M

A
o

M
, (2.7)

and

0 asR defined type I m
L M

A M
ortality in the population (2.8)

 where M denotes the loss of immunity at average age M.[2, 11]

Population-based age-stratified serological surveys is suitable for using (2.5) –(2.8)

estimators. Farrington studied the seroprevalence of hepatitis A in Bulgaria for

estimating R [12]. The constant force of infection model is readily fitted by using a

generalized linear model, giving an estimated value of 0.0494/year. Under this

model,

0 1 exp( )

L
R

L
(2.9)

, where L denotes lifespan. R0 was estimated as 3.6 (3.3-3.9) for hepatitis A in

Bulgaria with assuming type 1 survival (L=70 years). He also estimated R0 for rubella

(1986-1987) and mumps (1991) in UK. So, R0 was estimated as 2.62 (2.42-2.91) for

rubella and 2.62 (2.42-2.91) for mumps with assuming type 1 survival (L=75 years).

If the age-specificity of infection is different and the “contact” means that the

susceptible contact with not only the same age group but also the different age groups.

Hence, the mass-action principle can be expanded as follows:

a,t 1 i,t a,t
1

C  C S
n

a i
i

R (2.10)

, where a denote age a group, i denotes the i-th age group (i=1,2,…n) and a iR

denotes the contact parameters in different age groups. The parameter can be

simplified as WAIFW (Who Acquires Infection From Whom) matrix [2, 13].

Farrington also studied rubella and mumps for estimating R0 by using WAIFW (Who
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Acquires Infection From Whom) matrix [12]. They use the age groups 0-3, 3-8, 8-15,

15-25 and 25-75 years and investigate three contrasting but plausible contact

structures. These matrix are

1 1 3 4 5 1 1 4 4 5 1 5 5 5 5

1 2 3 4 5 1 2 4 4 5 5 2 5 5 5

3 3 3 4 5 4 4 3 4 5 5 5 3 5 5

4 4 4 5 5 4 4 4 5 5 5 5 5 4 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

matrix A matrix B matrix C

Each digit represents a distinct parameter value. R0 was estimated for rubella as 3.3

(2.5-5.6) with matrix A, 3.6 (2.8-5.7) with matrix B, 4.2 (3.7-9.3) with matrix C.

Estimated R0 for mumps were 3.3 (3.1-3.5) with matrix A, 8.0 (4.6-11.5) with matrix

B, 25.5(8.4-31.7) with matrix C.

Let S(a) be the probability that a newly infected individual remains infectious for at

least time a and let b(a) denote the average number of newly infected individuals that

an infectious individual will produce per unit time when infected for total time a.

Then R0 can be expressed as[14]

0

0

( ) ( )R b a S a da (2.11)

The method can be extended to delineate models which a series of states are

involved in the spread of infectious disease. S(a) can be defined as the probability that

an individual in state 1 at time zero produces an individual who is in state 2 until at

least time a. Hence, S(a) in Malaria can be expressed as
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0

(human infected at time 0

exits at time t)

(human infected tot . time
( )

infects mosquito)

(nfect mosquito

a t)

a

prob

prob for t
S a

prob ed live to be

age

(2.12)

Estimated values of the basic reproductive rate, R0, and herd immunity threshold, H,

for various infectious disease are listed in Table 2.1. It was found that there were

different values of R0 and H of the same disease in different areas or different

epidemic times since R0 depends on the duration of the infectious period, the contact

rate and transmission probability of infectious disease.

The theory of epidemic threshold is the most widespread method. The key to

using this method is to estimate the exact R0.There are many methods to estimate the

R0, such as survival function, next generation method, derivations of threshold criteria

and estimations from epidemiological data. [15]

2.2 Deterministic model

Deterministic models delineate the spread under the assumption of mass action,

relying on the law of large numbers. It is the well-known SIR model introduced by

Anderson[2]. It is also called the compartmental models.

There are many studies for estimating R0, by using the SEIR model for many

infectious diseases. One study built a deterministic model for estimating R0 of 1918

influenza pandemic. [16] The differential equations are as follows:

ds
si

dt

di
si ve

dt
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di
ve i

dt
 .

d
i

dt

, where ,  and  are rate constants for transformation of individuals from susceptible

to exposed, from exposed to infectious, and from infectious to recovered and immune

states, respectively. Hence, the estimator of R0 is as follows:

0R .

Basic reproduction number for 1918 influenza pandemic ranged between 1.3 and 3.1.

We developed a dynamic epidemic model to fit surveillance data to estimate the

effective reproductive number (R) of HFMD by using the extended SIR

(Susceptible-Infected-Recovered) differentiation method. The estimated effective

reproductive number was about 1.22 in 2000, 1.21 in 2001, and 1.18 in 2008. As there

were two waves of epidemic curves in 2005. The average effective R was 1.59 in

2005. We also carried out the sensitivity analysis on the basic reproductive number to

assess the variability in R0 that results from the uncertainty in the model parameters

with next generation method. Monte Carlo procedure (simple random sampling) was

used to measure the uncertainty of R0 by given proper distributions of these

parameters ( , , a, s, and ) according to the findings from these outbreaks in 2000,

2001, 2005 and 2008. After 10000 times of simulation, the mean value of R0 was

estimated as 1.37 (95% CI: 0.23~5.71) by the next generation method with sensitivity

analysis [17].

2.3 Markov model applied to infectious disease

(1) Binominal Chain Model

The above SIR model is not suitable for simulating the spread of disease in
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small population, such as household. Binominal chain model is designed for this

condition[18]. Let there be St (the number of susceptibles) of generation t exposed to

the It (the number of infectives) infectives of generation t, the probability of x

x=0,1,2,… infectives of generation t+1 It+1  is estimated as follows:

1

!
(I x | S s, I i) 0,1, 2,..., , 1

!( )!
x s x

t t t i i i i

s
Pr p q x s p q

s s x
  (2.13)

where q i  denotes the probability that a given susceptible escapes infection when

exposed to the i infectives of a special generation. p i is equal to 1-q i , where i=1.2….

There are two famous models to simplify the binominal model. One is Reed-Frost

model (q i = q i
1) and another is Greenwood model (q i =q). The Reed-Frost model is

suitable for the infection via close person-to-person contact. The Greenwood model is

suitable for the infection under the environment “saturated” with infectious agent.

The Greenwood model is suitable for the transmission mechanism of saturated

infection such as the spread of common cold and measles.[18-20] However, the

Reed-Frost model is suitable for the transmission mechanism of close contact such as

sex transmitted disease.[18, 20, 21]

To modify the Reed-Frost model with the mass-action principle, we can get the

formula as

1 {1 (1 p) }tC
t tC S  [21] (2.14)

, where p denotes the probability of effective contact, Si, Ci denote the number of

susceptible and case, given the time i. So, there are different probabilities of effective

contact in different small groups, such as kindergarten, nursery school and elementary

school.

The modified model is as follows:

0  1
C

I I V  [22] (2.15)
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, where I denote the incidence, I0 denote the incidence in unimmunized population, V

denote the rate of vaccine coverage, and C denote the parameter of herd immunity

effect. Hence, herd immunity effect is measured by the parameter C.

These models using the escaped probability to describe the herd immunity,

therefore it is different from the concept of threshold. The main drawback is unsuited

for large population.

Becker proposed the underlying models in term of absolute time, rather than

generations. The logistic regression form is expressed as[18]

log
(1 )

tj tj
t t

tj tj

m q
j

m q
(2.16)

, where mtj denotes the number of susceptibles exposed to j infectives in generation

t-1. Effects of generation and number of infectives on escaped probability and

relevant covariates can be included in the model.

Chain binomial models was utilized to elucidate the force of disease spread

including tuberculosis [23, 24], human immunodeficiency virus [25], and influenza

[26-28]. Chen et al. adopted the logistic form of (2.14) proposed in the Becker model

and further extended the model with Bayesian approach to evaluate the effectiveness

of vaccination at individual level and heterogeneity across household level [29]. They

reported quantities of influenza transmission in the community, including the basic

reproductive number of 2.56 (95% CI: 1.98-3.32), the transmission probability of

8.3% (95% CI: 7.0-9.6%) and the contact rate of 7.74 (95% CI: 7.70-7.79).

(2) Chain Binominal Chain and Markov Model[30]

 The chain binomial model is a conditional model for the joint probability.

Hence, the Markov assumption contained in the chain binomial model jointly

describes the spread of infectious disease and facilitates the analysis of infectious

disease data [31-33]. The matrix of transition probability is the result from the
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construction of discrete state Markov model with discrete time. For the Greenwood

model with the relation between escaped probability and number of infectives

specified the transition probability is expressed as[30]

0 1 1 0

0 2 1 1 2 0

1 20 1 2 0
0

0 1 . . . .

1 1
(1 ) (1 ) . . .1

0 1

2 2 2
(1 ) (1 ) (1 ) ... .2

0 1 2

(1 ) (1 ) (1 ) ... (1 )
0 1 2

t t t ttt t tX X X X

t

q q q q

q q q q q q

XX X X
X q q q q q q q q

X

,                                                                 (2.17)

which is an univariate Markov model with state space of the number of susceptible of

the household [29, 33].

For the Greenwood model with the relation between escaped probability and

number of infectives specified the transition probability is expressed as[30]

00

0 11 0 0

0

1

1

0 ( )

0

0 0 0 0

0 0 0 0

(1 ) 0 0 0

0 ( 1) (1 ) 0 0

0

0 0 (1 ) 0

x j xt

t

i j
j

i i jij
j

i x j i jx

X

X

q

j q q

x
q q

x j

p

 . (2.18)

Bailey proposed that the probability distribution of the process of disease

transmission can be a geometric distribution [31]. In addition, Becker proposed chain

binomial models with random effect to take the unobserved heterogeneity into

account. [32]. Furthermore, O’Neill et al. extended this flexibility of the model by the
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Markov Chain Monte Carlo approach [34]. However, an increase in the disease status

of interest, the transition probability will become more complicated. Most of current

application of chain binomial model assuming two states of disease transition. C.Y.

Hsu et al. also analyzed the Flu data by using the continuous-time three-state Markov

models with homogenous and non-homogenous transition rates specified by using a

variety of distributions including exponential, Weibull, and lognormal

distributions.[30] In addition, C.Y. Hsu et al. analyzed the Flu data with the multilevel

structure by Bayesian generalized linear models to facilitate hypothesis testing.[35]

2.4 Branching processes

The literatures about branching process applying to the infection disease are

limited. The earliest application of branching process to the study of smallpox from

1950 to 1970 in Europe was initiated by Becker [36]. There were 762 smallpox cases

and 49 generations. He asserted the total number of offspring is a power series

distribution on conditional extinction (Mortal branching process) and Poisson

offspring distribution. Hence, let Y denote the total number of infected offspring by

the end of the outbreak. The mortal branching process with n initial infected

individuals as n independent mortal branching processes each with one initial infected

individual.

If we can observe on T1, T2,…, Ty, where Ti is the i-th interremoval time. For

the offspring distribution it follows that

1

{ ( 1,2,..., )} { ( )} / ( )i

y
x y

i i i
i

P X x i y a x A (2.19)

Hence, the distribution of Y has the following form

1 2( ) ( )y

n
P Y y P X X X y n

y
(2.20)

, where y=n, n+1,n+2,… and X1, X2,... Xr are independent and identically distributed
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random variables with the same distribution as X. We assume that the Xi are not

observable. For the offspring distribution following the power series family, it follows

that

( ) ( , ) / ( ), , 1, 2,yP Y y b y n B y n n n (2.21)

, where / ( ) ( ) nA and B

The maximum likelihood estimate for  is obtained by solving the following formula

for .

( ) 1 /n y (2.22)

The maximum likelihood estimator of the mean of total numbers of removals can be

written as /y n .

The estimation of R was 0.936. The extinct probability was 0.9123.

Becker analyzed the data on smallpox in a closed community in Abakaliki in

southeastern Nigeri. There were total 30 cases in a population of 120 susceptibles

[37].

In fact, the number of generations and the generation sizes are usually not

observed. Becker combined Reed-Frost model and branching process to estimate R as

1 1

ˆ
(k y )

n

j j

y

x
 , (2.23)

where ny  denotes total number of n generation offspring, jx  denotes total number

of the j-th generation offspring and k denote the initial size of the susceptible

population.

Suppose it is determined that the number of generations lies strictly between

and l . Then he derived the bound of R as follows:

2 2
0 0

ˆ
( ) y / 2( 1) ( ) (y / 2) / 2

ky ky

k y x k y x l l
, (2.24)
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where 0x  denotes initial size.

 The reproductive number of small pox in one closed community of Nigeria was

estimated as 1.10 1.26R . After changing the incubation period, the above data

had 6 to 10 generations. Therefore, Becker obtained that1.11 1.20R .

Farrington studied the surveillance of infectious diseases, measles outbreaks

occurring between 1997 and 1999 in USA, after combining the branching process and

Bayesian theory with application of Metropolis–Hastings sampling [38]. When the

offspring distribution is Poisson the total outbreak size follows the Borel–Tanner

distribution. In addition, when the offspring distribution is a geometric distribution,

the total outbreak size follows the Haight distribution. The distribution of the outbreak

duration U, given s introductory

cases, is then

0

1

( ;s) 0

(u;s) (u) ( ;s) 0

1 ( )

n n
n

s

p u

f h p u

q u

(2.25)

Here, he assumed serial intervals z are distributed as h (z). Let hn (z) denote the

distribution of the sum of n independent serial intervals and q ( ) denotes the

extinction probability. The total number of cases in the 41 outbreaks was 207.

The probability of this event is 41(1 e )  for the Poisson offspring distribution and

41 41(1 )  for the geometric offspring distribution.

The estimated R was 0.66 (0.55, 0.78) assuming Poisson offspring and 0.60 (0.48,

0.75). He also combined simulations by Reed-Frost model to evaluate the bias of

estimation.

Another study demonstrated that applying a Bayesian approach with mortal

branching process to estimate the R of mumps in Bulgaria during the period 2005–
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2008 [39]. Estimated R0 was 0.83 ~0.91 for the region of Lovech and approximately 1

for Sofia city and the region of Kyustendil. [40]

     One study on SARS outbreaks that occurred in Hong Kong, Vietnam,

Singapore, and Canada in 2003 for estimating R0 by likelihood-based procedure

which is derived from the concept of branching process. The relative likelihood ijp

denotes case i has been infected by case j, given their difference in time of symptom

onset –i jt t . This distribution for the generation interval is ( )w . So, the likelihood is

expressed as

(t t )

(t t )
i j

ij
i k

i k

w
p

w
(2.26)

The effective reproduction number for case j is the sum over all cases i, weighted by

the relative likelihood that case i has been infected by case j, it is expressed as

follows.

j ij
i

R p (2.27)

The results are shown as next Table. The average effective reproduction numbers,

before the first World Health Organization global alert was issued on March 12, 2003,

were markedly similar (2.4-3.6) across the regions.

Another study also used likelihood based procedure to estimate the farm-to-farm

reproduction number for outbreaks of highly pathogenic avian influenza in

commercial poultry in Italy in 1999/2000, H7N7 in the Netherlands in 2003, and

H7N3 in British Columbia, Canada in 2004. In these outbreaks the mean farm-to-farm

reproductive number prior to controls ranged from 1.1 to 2.4, with the maximum

farm-based reproductive number in the range 2.2 to 3.2.
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2.5 Birth death process

The literatures about branching process applying to the infection disease are

limited. A renewal equation with a birth-death process model is derived for the

description of parasitic diseases on host populations with age structure.[40] The

model has not been applied to empirical data on infectious disease.

Wood RM et al. proposed a model based on birth-death process by incorporating a

fundamental mechanism undergone by intracellular bacteria, phagocytosis [41]. The

model was applied to Francisella tularensis, for stochastic interaction between

bacteria and cells of the immune system and heterogeneity in susceptibility to

infection. The study reported a median infectious dose of about 23 organisms and an

average incubation period of between 3 and 7 days depending on dose.
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Chapter 3 Methodology

3.1 Becker’s SIR model

The time between the (i-1)-th and i-th “infected event” was assumed as

exponential distribution, we can estimated the latent period and incubation period of

infectious disease by using Becker’s method incorporating the information of contact

history [18]. The conventional SIR model is the application of differential equation to

capturing the infection rate (I), which is determined by the transmission probability,

contact rate, and the recovery rate (R), the duration of disease process, during the

susceptible (S) population. Here, we use an alternative way to model the two

parameters by using Becker’s concept that is widely applied to estimating the

parameters related to the latent period and the infectious period following exponential

distributions. My theses intend to apply the proposed method to estimated R0 derived

from the outbreak of TB (see data sources). Equation Section (Next)

If the beginning and end points of the infectious period for each patient with TB

can be observed, let variable U denote the time to infectious period and variable W

denote the time to removal. So Y=W-U denotes the duration of infectious period

because we assumed that all TB cases are incommunicable after removal upon show

of symptoms and treatment. Let X denote the duration of latent period. The method of

deduction about characteristics of the latent period is less apparent because the precise

time at which the infectious of TB contact occurs is unobservable. Hence, we assume

that the infectiousness function is as follows:

,
( )

0, .

t

y

e U t W
f t

otherwise
(3.1)

We also assume that the latent period function is an exponential distribution.
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(x )(x; , ) e ,xf x (3.2)

To explain how inference can be made about the infectious rate  and characteristics

of the latent period we consider for the moment affected LTCF of size two. We

assumed that the observed TB outbreaks can be classified into the chains:

2 – two index TB cases;

1 - one index TB case, no secondary TB case;

1 1- one index TB case, one secondary TB case.

Data from the outbreaks of TB in LTCF with two index TB cases contains no

information about , because  represents a rate of infection within LTCF. But it

contains the available information about the latent period. Let U1, W1 and U2, W2

denote the infectious periods for the two index cases. We assume that outbreaks in

LTCF develop independently of each other. It will also be reasonable to assume that

the two index TB cases are infected in the meantime. Thus U1-U2=X1-X2, where X1

and X2 are the durations of the two latent periods. As E(U1-U2)=0 and

Var(U1-U2)=2Var(X) it is clear that U1-U2 is informative primarily about the

dispersion of the duration of the latent period. From the latent period function density

(3.7), U1-U2 has a distribution depending on parameter  only. So the likelihood

function is as follows:

1 2 1 2

0

(y ) (y ) (x u u ) (x)dxy y x xf f f f (3.3)

Consider affected LTCF of size two with one index TB case and no secondary TB

case. These data contain no information about latent period, but they do contain

information about the infection parameter . The likelihood is as follows:

(w u)(w )eYf u (3.4)

The exponential term represents the probability of escaping infection in the
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susceptible.

Finally, consider affected LTCF of size two with one index TB case and one

secondary TB case. Now U2-U1=X2+Z, where X2 is the duration of the latent period

for the secondary case and Z represents the time from U1 until the infection of the

secondary case. The conditional density of U2-U1, given that the index TB case has an

infectious period of duration y and chain 1 1 is observed, is expressed as

1

1

2 1 1 1

0

(a | Y y ,1 1) ( )dz/ (1 e )
y

yz
U U Xf e f a z (3.5)

So, because infectious make a contribution, the likelihood is as follows:

1

1 2 1 2

0

(y ) (y ) (u u z)dz
y

z
Y Y Xf f e f (3.6)

But the data now only consist of the end points of the infectious period of all TB cases.

Hence, the two time points W1 and W2 are observed in the cases which do contain

some information about characteristics of the distribution of X+Y. Specifically,

2 1 2 2 1 1(X Y ) (X Y )W W (3.7)

and the observation w2-w1 contributes the likelihood function of observed chain 2

(two index TB cases) .

2 1

0

(x w w ) (x)dxX Y X Yf f (3.8)

The likelihood of an affected LTCF of size with observed chain is as follows:

(e ) ( )YE M (3.9)

Here, M is the moment generating function of the duration of the infectious period Y.

Now consider affected LTCF of size two with one index TB case and one secondary

TB case. The likelihood is expressed as
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2 1

0

(a w w ) e ( )da
X Y Y

a

f e f u uda (3.10)

To simplify problems, Y, the duration of infectious period, is constant ( y ). The

likelihood contributions for outbreaks 2,1, and 1  1 in LTCF of two are expressed

by formula (3.13), (3.14) and (3.15) respectively. Now they simplify to give

2 1

0

(x w w ) ( ) ,X Xf f x dx (3.11)

exp( ),y (3.12)

and

2 1

0

(w w x)
y

x
Xe f dx (3.13)

Therefore, the likelihood function of data from outbreaks of LTCF is as follows:

12
0

( , | ) ( )
n x

x ii
L w e f w w x dx

where n denotes the number of the infectives (n=1,2,…).
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3.2 Various Types of Stochastic Processes for Estimating R0

3.2.1 Deterministic model

Deterministic models delineate the spread under the assumption of mass action,

relying on the law of large numbers. It is the well-known SIR model introduced by

Anderson[2]. There are also called compartmental models.

We applied the deterministic model to data on the outbreak of SARS in Taiwan.

Let S, I and R denote the size of subpopulation of susceptibles, infectives, removed

individuals (meaning immune or dead or in quarantine, but neither susceptible nor

infective). We assume that the force of infection is proportional to I and an infected

individual becomes immediately infectious. Let  denotes transmission rate from S to

I and  denotes remove rate from I to R. The ordinary differential equations are as

follows:

dS
SI

dt
(3.14)

dI
SI I

dt
(3.15)

dR
I

dt
 . (3.16)

In addition, S+I+R=N, where N denotes the total population size. Therefore, the

estimator of R0 is as follows:

0R (3.17)

If the parameters of models are dependent on time, models become dynamic

models; otherwise models are static model. Next generation method [42] is a general

method of deriving R0 in models with several disjoint compartments. R0 is defined as

-1
0R (FV ) , (3.18)

where )(  is the matrix dominant eigenvalue (spectral radius), F is the newly
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infection rate matrix, and V is the transition matrix between compartments.

It is suitable for large population, but not for the small population, such as

household. Note that only the dynamic model can predict the herd effect of

intervention (vaccination).

3.2.2 Markov Renewal process

Consider a state space . Let Xt represent the number of infected cases in the

interval (0, t] and it is associated states. Let T1 denote the time of first “infected

event”, and Ti denote the time between the (i-1)-th and i-th “infected event” for

{2,3,...}i . 1 2(T ,T ,...)T  is assumed as an independent, identically distributed (F)

sequence of random variables. The stochastic process is defined as renewal process.

Let Sn denote the time of the n-th renewal

1

n

n i
i

S T (3.19)

In renewal process, we have

( )t n nP X n P S t F t (3.20)

1 1

1

( ) ( )

t t t

n n n n

P X n P X n P X n

P S t P S t F t F t
(3.21)

Hence, the sequence (Xn, Tn) is called Markov renewal process if

1 1 0 0 1 1

1 1

(T t, X j | (X ,T ), (X ,T ),...(X i,T ))

(T t, X j | X i, )  n 1, t 0,i, j
n n n n

n n n

P

P

3.2.3 Birth-death process

If the common distribution F is an identically exponential distribution in a

Markov renewal process, the renewal process is simplified as a linear birth-death

process.
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(1) Linear birth-death process [8, 43]

Suppose that the infective population size changes by infected and recovery. If

there is one group of infectious people, the model is to assume that in (t, t+ t ) each

infective individual present at t has a chance ( )t o t  of giving birth to a new

infective individual and a chance ( )t o t  of recovery. We also suppose that the

probability of newly infected and recovery are independent. The intervals between

events are exponential distribution with parameters  in this model. The

probability of infected is  and the probability of recovery is .

Let N(t) denote the number of infected individual at time t ( 0 t ). If N(t)=i, the

conditional probability of newly infected and recovery are ( )i t o t ,

( )i t o t , respectively.

In the deterministic theory, the infected population size is ( )
0

tn e  if the initial

infectious individuals have n0. For stochastic theory, let

( ) Pr{ ( ) } 0,1,...iP t N t i i ,

and then

1 1( ) [1 ( )] ( ) ( 1) ( ) ( 1) ( )i i i iP t t i tP t i tP t i tP t .  (3.22)

So

1 1

( ) ( )
( ) ( ) ( ) ( 1) ( ) ( 1) ( )i i

i i i i

P t t P t
P t i P t i P t i P t

t
  (3.23)

0
(0)i inP .

In formula (3.23), with i=0, 1( ) 0P t .

If the p.g.f. of N(t) is
0

( , ) ( ) i
i

i

G z t P t Z , from (3.23) we can obtain that
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1 1( ) ( ) ( ) ( 1) ( ) ( 1) ( )i i i i
i i i iP t Z i P t Z i P t Z i P t Z (3.24)

since

' 1

0 0 0

( , ) ( , )
( , ) ( ) ( ) ( )i i i

i i i
i i i

G z t G z t
G z t P t Z P t Z iP t Z

t z
.

Hence,

2( , ) ( , ) ( , ) ( , )
( )

G z t G z t G z t G z t
Z Z

t z z z
(3.25)

Then, we have that

( , ) ( , )
( )( 1)

G z t G z t
Z Z

t z
(3.26)

The auxiliary equation is

  (z, t) 0
1 ( )( 1)

dt dz
dG

z z
(3.27)

The procedure of solving the problem is as follows:

1 1
( )

1 ( )( 1) 1

dt dz
dz

z z z z
(3.28)

1

1
(log 1 log )t z z c (3.29)

2( 0) ( ) log 1 logG c dG t z z c

( , ) (( ) log 1 log ) (( ) log 1 log )G z t a t z z b F t z z

( ) 1
( , ) (log( )) ( )t z

G z t F e f w
z

( ) 1t z
w e

z
(3.30)
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Therefore, the solution satisfying the initial condition is that

0( ,0) ( ) nG z f w Z when t=0,

1 1

1

z w
w Z

z w
, and

0
1

( ,0) ( )
1

nw
G z

w
(3.31)

When Z=1,
0

0 (1, ) (0) ( ) 1i
i

w G t f P t .

0 0 0

( )
( )

( )
( )

1
1

1 (1 ) ( )
( , ) ( ) ( ) ( )

11 (1 ) ( )1

t
t

n n n
t

t

z
ue

w z z ez
G z t

zw z z ee
z

(3.32)

Let
( )

( )

1
( ) ( ) ( )

t

t

e
t t t

e
, then

0
( ) [1 ( ) ( )]

( , ) { }
1 ( )

nt t t z
G z t

t z
(3.33)

The mean of the size of infective population is

0 1
0 2

1 ( ) [1 ( ) ( )](1 ( )) [ ( ) (1 ( ) ( ))]
( ( )) (1, ) ( )

1 ( ) (1 ( ))
nt t t t t t t

E N t G t n
t t

( )
0 0

1 ( )
( ( ))

1 ( )
tt

E N t n n e
t

(3.34)

At finally time t, the size of infective population is ( )
0

tn e . The estimation is the

same as previous result in deterministic model.

The variance of the size of infective population is

2Var N t "(1, ) '(1, ) [ '(1, )]G t G t G t

0 2

[1 ( )][ ( ) ( )]
Var N t

[1 ( )]

t t t
n

t
(3.35)

( ) ( )
0Var N t ( ) [ 1]t tn e e (3.36)
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The zero state, corresponding to extinction, is an absorbing state. The

probability of infection extinction has occurred at or before t is the coefficient of z0 in

(3.33).

When , the probability of extinction is

0

( )

0 ( )( ) (0, ) ( )
t

n
t

e
P t G t

e
      (3.37)

If , then

0
0 ( ) ( )nP t                 (3.38)

If , then 0( ) 1P t .

The basic reproductive number R0=pcd, where p denotes the probability of infected, c

denotes the contact rate between the infective and the susceptible. For simplification

of problems, we assume c=1. Then the basic reproductive number is expressed as

0R                      (3.39)

In summary, if the rate of recovery is not lower than the rate of infected, it is that

0 1R , the probability of extinction at or before time t is one. On the contrary, if

the rate of recovery is lower than the rate of infected, 0 1R , the probability of

extinction at or before time t is 0( )n  when the time is long enough (t ).

 (2) Generalized birth-death process [43]

If the rate of infected and recovery is not constant and it is dependent on time,

the simple linear birth death process is not suitable for use. For example, the latent

tuberculosis has higher disease occurrence rate in the initial two year. In addition, the

disease incidence rate drops with time. Hence, the newly infected rate is varied by



29

time.

Similarly, let N(t) denote the number of infected individual at time t

( 0 t ). If N(t)=i, the conditional probability of newly infected and recovery are

( ) ( )i t t o t , ( ) ( )i t t o t , respectively.

Therefore, we can change the ,  to (t), (t) in formula (3.23)

1 1( ) { ( ) ( )} ( ) ( 1) ( ) ( ) ( 1) ( ) ( )i i i iP t i t t P t i t P t i t P t   (3.40)

Similarly, we can obtain that

( , ) ( , )
( ( ) ( ))( 1)

G z t G z t
t Z t Z

t z
             (3.41)

The auxiliary equation is

( , ) 0
1 ( ( ) ( ))( 1)

dt dz
dG z t

t z t z
(3.42)

Let 1(1 )s z , then

2 2 1
(1 ) (1 )

s
ds z dz dz z ds z

s
 .

We can obtain that

2[ ( ) ( )](1 ) (1 )t z t z dt dz z ds (3.43)

( ) ( ) (1 )
ds

t z t z
dt

1 1
( ) ( )( ) ( ) 0

ds s ds s
t t

dt s dt s

[ ( ) ( )] ( ) 0
ds

t t s t
dt

(3.44)

Let
0

( ) [ ( ) ( )]
t

r t d , then the formula (3.100) multiply ( )r te

( ) ( ) ( )[ ( ) ( )] ( ) 0r t r t r tds
e t t se t e

dt
(3.45)

( ) ( )[ ] ( ) 0r t r td
se t e

dt
 (3.46)

Integrating the above formula and replacing s with (1-z)-1, we can obtain that
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( ) ( )

0

1
( )

1

t
r t re e d c

z
(3.47)

, where c is constant.

From formula (3.47) and the auxiliary equation, we can obtain that

( ) ( )

0

1
( . ) { ( ) }

1

t
r t rG z t F e e d

z
(3.48)

Suppose 0N 0 n , 0
1

( ,0) { } 1
1

nG z F z z
z

Let 0
1 1 1 1

1 ( ) (1 ) 1 1
1

nz F
z

, hence

0

( ) ( )

0

1
( , ) {1 }

1
( )

1

n
t

r t r

G z t

e e d
z

, then

0

( ) ( )

0

1
( , ) {1 }

(1 ) ( )

n
t

r t r

z
G z t

e z e d

(3.49)

Let ( )

( ) ( )

0

1
( ) 1 ( ) 1 [1 ( )]

1
( )

1

r t
t

r t r

t t e t

e e d
z

, then

0
( ) [1 ( ) ( )]

( , ) { }
1 ( )

nt t t z
G z t

t z
(3.50)

From the definition of r(t) and ( ) ( ) ( )

0
0

[ ( ) ( )] 1
t

tr r r te d e e , we obtain

that

( ) ( ) ( )

0 0

( ) 1 ( )
t t

r t r re e d e d (3.51)

Hence, the probability of extinction is



31

0 0

0 ,0
( ) ( )

0

1
( ) (0, ) { ( )} {1 }

( )

n n
n t

r t r

P t G t t

e e d

, then

0

0

( )

0
,0

( )

0

( )

( ) { }

1 ( )

t
r

n
n t

r

e d

P t

e d

(3.52)

.

If ( )

0

( )
t

re d is diverge, that is ( ) ( ) , then

0 ,0 ( ) 1 0nP t .

If ( )

0

( )
t

re d is converge, that is ( ) ( ) , then

0

0

( )

0
,0

( )

0

( )

( ) { }

1 ( )

t
r

n
n t

r

e d

P t

e d

(3.53)

To sum up, if the rate of recovery is not lower than the rate of infected, it is that

0

( )
( ) 1

( )

t
R t

t
, the probability of extinction at or before time t is one. On the

contrary, if the rate of recovery is lower than the rate of infected, 0

( )
( ) 1

( )

t
R t

t
, the

probability of extinction at or before time t is 0

( )

0

( )

0

( )

{ }

1 ( )

t
r

n
t

r

e d

e d

 when the time is

long enough (t ).
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3.2.4 Multi-state continue time Markov process

The progression of tuberculosis can be categorized into three stages: free of

tuberculosis infection (state 0), latent tuberculosis infection (LTBI, state 1), and

development of tuberculosis (state 2).[44] The national registry of tuberculosis and

contact tracing provide the information on both the time frame and the proportion of

subjects belonging to above three states among population. It is thus suitable for

applying multi-state model to elucidate the natural history of disease progression and

the effect of relevant covariates on the rates of disease progression, namely infection

rate and conversion rate in infectious disease.[45] Based on the context of the

progression of tuberculosis, the random variable of stochastic process is denoted by

X(t) with the state space defined by  ={0,1,2} corresponding to free of TB infection,

LTBI, and tuberculosis. For a subject detected as LTBI during survey performed at

age t1 then progress to TB at time t2 can be expressed as {X(0)=0, X(t1)=1, X(t2)=2}.

The joint probability of the sequence representing TB progression can be decomposed

into the product of a series of conditional probabilities as the follows

1 2

1 2 1

0 0, 1, 2

0 0 1 | 0 0 2 | 1

P

, 0

r

Pr Pr 0Pr

X X t X t

X X t X X t X t X

which can be further reduced to

1 2 1

01 1 12 1 2

P 1| 0 0 2r Pr

(0, ) ( ,

| 1

)P t P

X t X X X t

t t

t

based on Markov property and the fact that Pr(X(0)=0)=1. This can be simplified as

01 1 12 2 1( ) ( )P t P t t (3.54)

assuming a time homogenous process. The transition rate dominate the generation of

observed sequence of disease progression can thus be written as
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0 1 2

0 0

1 0

2 0 0 0

Q (3.55)

The probability of having observation of transition of state i to j after the elapse of

period t can be derived as the following [46]

00 01 02

11 12

0 1 2

0 ( ) ( ) ( )
( )

1 0 ( ) ( )

2 0 0 1

P t P t P t
P t

P t P t
(3.56)

00 ( ) tP t e (3.57)

1
01

1 2

( )
( )

t te e
P t (3.58)

2 1
02 ( ) 1

t te e
P t (3.59)

11( ) tP t e (3.60)

12 ( ) tP t e (3.61)

Bayesian revision for data with case-cohort design

The framework of our case-cohort study design is shown in Figure 3.1. In

addition to the information on disease progression, observed data on QFT-GIT survey

and matched case-control study were sampled from the cohort of general population,

TB contacts, and TB cases. Such a data is collected based on the case-cohort design

with the underpinning of multistate disease progression. Bayesian revision can be
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utilized to derive the joint probability of having observed data [47, 48]. Denote the

sampling fraction for state j ( j ) at time ti for individual i by

Pr( 1| 0 ; ) it
i jS j t f (3.62)

 ,which can be simplified as jf  given a time-homogenous sampling process.

The probability of observing a subject with such an transition can be derived as

the following

2

0

Pr 1| 0 , Pr(0 , )
Pr(0 , | 1)

Pr 1| 0 , Pr(0 , )

i i
i

i i
j

S j t j t
j t S

S j t j t
(3.63)

2

0

0

2

0
0

Pr(0 , )

Pr(0 , )

( ) Pr(0 , )

( )

j i

j i
j

j j i i

j j i
j

f j t

f j t

f P t j t

f P t

Likelihood function for observed data

QFT-GIT survey for general population using sampled data

The samples of QFT-GIT survey study for general population were derived from

four sources of cohorts: general population without contact history, contact cohort

remaining in the state of free of TB infection, contact cohort with LTBI, and the

cohort of TB cases. Denote sampling for these cohorts are denoted as follows

0 : sampling fraction of subjects belong to general cohort without contact historyf

00 : sampling fraction of subjects belong to the contact cohort free of TB infectionf

01 : sampling fraction of subjects belong to the contact cohort with LTBIf

02 : sampling fraction of subjects belong to the cohort of TB casesf
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Hence, f0 was estimated from the information of IGRA survey, f00 and f01 were

estimated from the information of TB contact registry database; f10 ,f11, f11 estimated

from the information of matched case-control study for TB.

The likelihood for subjects with contact history detected as free of TB infection

and LTBI are thus

00 00
00

0

( )P t f
l (3.64)

and

01 01
01

0

( )P t f
l (3.65)

The likelihood for subjects detecting as TB cases is

02 02
02

0

( )P t f
l (3.66)

and those without contact history and detected as free of TB infection and LTBI

are

00 0
03

0

( )
,

P t f
l (3.67)

and

01 0
04

0

( )P t f
l (3.68)

,where

0 00 01 02 03 04l l l l l .

The likelihood for observed data during survey is hence

0 1 2 0 1

00 00 01 01 02 02 00 0 01 0
0

0 0 0 0 0

( ) ( ) ( ) ( ) ( )
c c
i i i i in n n n n

i i i i i
S

i

P t f P t f P t f P t f P t f
L
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, where 0in , 1in , 0
c
in , and 1

c
in  represent the count of subjects i detected as free of TB

infection and LTBI with or without contact history, respectively. In addition, 2in be

the number of subjects with TB during survey at age ti.

After initial survey, subjects were free of TB infection (state 0) or LTBI (state 1).

However, they may be transited into TB after the follow-up period (tf ). The likelihood

are P02(tf) and P12(tf) for those ,who were free of tuberculosis or LTBI at initial survey,

had tuberculosis, respectively. If subjects are free of TB after following the period tf

till the end of study, those belong to censored data. The likelihood for these subjects

,who identified as free of TB infection or LTBI, can be written as

00 01( ) ( )f fP t P t (3.69)

and

11( )fP t . (3.70)

Likelihood function for follow-up data after initial survey is as follows,

12
02 0 1

0 00 01 1102 12 ( ) ( ) ( )

f
f f fi

i i i

fi fi

n
n n n

F fi fi fi
i

PL P t P t P tt P t (3.71)

, where 02 12 0 1, , , andf f f f
i i i in n n n represents the count of subjects turning into TB cases,

censored initially identified as free of TB infection, and LTBI after the follow-up time

of tfi. The likelihood function for observed data on QFT-GIT survey using sampled

data from general population is thus

0 0S FL L . (3.72)
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Case-control study for TB cases and contacts

The likelihood for TB cases and contacts can be derived similarly using the

transition probability of tuberculosis based on continuous time Markov model and the

sampling fraction for each cohort the observed data was derived in Case-control study

for TB. The observed data were derived by sampling from three types of cohorts: the

cohort of TB cases, that of contact and infected by TB (LTBI), and that of contact by

remain free of TB infection. Symbols denote the sampling fraction from these three

cohorts are as follows

10

11

12

: sampling fraction of subjects belongs to the contact cohort free of TB infection

: sampling fraction of subjects belongs to the contact cohort with LTBI

: sampling fraction of subjects belo

f

f

f ngs to the cohort of TB cases.

During initial survey using QFT-GIT performed at time t, observed subjects

belongs to one of the three categories during their progression of tuberculosis: free of

TB infection, LTBI and TB cases. The likelihood can be written as follows:

likelihood for TB case identified during survey

02 12
12

1

( )P t f
l  , (3.73)

likelihood for subjects with LTBI identified during survey

01 11
11

1

( )P t f
l , (3.74)

and likelihood for subjects free of LTBI identified during survey

00 10
10

1

( )P t f
l  , (3.75)

where 1 10 11 12l l l .

Thus the likelihood of observed data of case-control study during initial survey is
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0 1 2

00 10 01 11 02 12
1

1 1 1

( ) ( ) ( )
i i in n n

i i i
S

i

P t f P t f P t f
L (3.76)

,where 0 1 2, andi i in n n  represent the count of subjects at age i identified as free of TB

infection among contacts, LTBI among contacts and TB cases. After initial survey, the

control group, namely TB contacts may develop TB or being followed for time tf till

the end of the study. The likelihood for subjects, who identified as free of TB

infection or LTBI, developing TB after the follow-up period tf are written as P02(tf)

and P12(tf), respectively. The likelihood for those avoid from turning into TB is written

as

00 01( ) ( )f fP t P t (3.77)

and

11( )fP t (3.78)

for subjects initially identified as free of TB and LTBI, respectively.

Total likelihood for follow-up data after initial survey is thus

12
02 0 1

1 00 01 1102 12 ( ) ( ) ( )
f

f f fi
i i i

n
n n n

F ei eidi i e
i

dL P t P t Pt tP P t (3.79)

The likelihood function for the observations in data of case-control study is thus

1 1S FL L . (3.80)

Combining the likelihood function for QFT-GIT survey for general population using

sampled data and that for case-control study, total likelihood function is thus

0 0 1 1S F S FL L L L (3.81)
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Incorporation the effect of covariates

The effect of covariates such as age group, sex, and the result of QFT-GIT on

the rates of infection and conversion can be assessed based on the concept of

generalized linear stochastic process [30]. For infection rate, the effect of covariate

can be incorporated into the model as the follows

1 11 12 13 141 2i i i i iage group age group sex IGRA   (3.82)

1
0 ,

1, age <65
1 ,

0, otherwise

1, age
2 .

0, otherwise

i
i

i
i

i
i

e

if
age group

if
age group

Similarly, the effect of covariates can be assessed by using

2 21 22 23 241 2i i i i iage group age group sex IGRA   (3.83)

2
0 .i

i e

3.2.5 Branching process

If T denotes the generations of infectious disease in the Markov renewal process,

the renewal process is simplified as branching process. The classical branching

process, arising from Francis Galton’s study of the extinction of family names in 1873,

is a discrete time Markov chain. It is also called Galton-Watson branching process.

The earliest application of branching process to build the infectious disease model for

the outbreak of smallpox in Europe from 1950 to 1976 is initiated by Becker [36, 37,

49]. There were some similar studies on infectious disease based on branching

process and these stochastic individual based models were applied to the spread of

infectious disease in the population [38, 50].

A simple branching process model with different distributions is applied to the

spread of disease under the assumption of homogeneity. However, it cannot be applied
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to more complicated situations. Multi-type branching processes was derived for the

heterogeneity and the continue time branching process was developed from the

discrete time branching process. Therefore, we can flexibly build the model with

branching process for SARS outbreak in hospital of Singapore, TB outbreak in LTCF

and measles in Taiwan.

(a) Simple discrete branching process [8, 43, 51]

We assumed that the susceptible can be infected independently and all of them are

infectious. Let random variable Xn denote the size of an infected population in

generation n, n=1,2,…. The initial infected population size X0 is taken as a known

constant. We suppose that each infected individual produces offspring independently

with the same offspring distribution. Each infected individual produces k infected

persons (offspring) with the same probability Pk; therefore the new infected

population size by each infected individual is the same distribution k k 0
P . We can

obtain from the probability axioms. Let Gn(z) is the probability generating

function (p.g.f.) of Xn and , then we can obtain

1
0

0 1

(1) k
k k

k k

G kP Z kP R . (3.84)

If Xn=j, then Xn+1 denotes the sum of j independent random variables

(Z1,Z2,……,Zj) and each random variable has the distribution {Pk}. Hence,

1 1 2Pr( | ) Pr( )jk n n jP X k X j Z Z Z k (3.85)

That is, jkP  is equal to the coefficient of Zk in {G(z)}j.

If there was only one infectious person in initial status, then X0=1, let us define

1

1k
k

P

0

( ) 0 1k
k

k

G z P z z
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( ) Pr( )n
k nP X k (3.86)

thus { ( )n
kP } is the distribution of the number of nth generation infective of a single

person. Since

( ) 1

0

n n
k j jk

j

P p p (3.87)

( ) 1

1

{ ( )}n k n j
k j

j

P coefficient of z in p G z .

We define the p.g.f. of the size of the nth generation as

( )

0

( ) n k
n k

k

F z p z (3.88)

,we have

( 1)
1

0

( ) { ( )} ( ( ))n j
n j n

j

F z p G z F G z . (3.89)

Since 1 2 1( ) ( ), ( ) ( ( )), , ( ) ( ( ( ( )) )nF z G z F z F G z F z G G G G z ,

we can also write

1( ) ( ( ))n nF z G F z (3.90)

But Fn(z) will be difficult to get from the above recurrence relation (3.90). However,

the moments of the size of nth generation can be obtained. Let z=e  and define the

cumulant generating functions

K log G e (3.91)

n nK log F e (3.92)

Then it becomes

1 ( )
1log ( ) log ( ( )) log ( )nK

n nF e G F e G e (3.93)
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1 ( )
1( ) log ( ) log ( ) ( ( ))nK

n n nK F e G e K K (3.94)

Let , 2 denote the mean and variance of the number of infected offspring per

infectious individual, respectively. If n is finite, the average number ( ) and variance

2) of persons by one infectious person is as follows:

2(0) (0)K K (3.95)

We can obtain the mean and variance of the size of the n-th generation from (3.94) as

follows:

(0)n nK , (0)n
nK

1
n

n n n (3.96)

2
1 1 1 1 1(0) { ( (0)) [ (0)]} ( (0)) [ (0)] ( (0)) [ (0)]n

n n n n n nK K K K K K K K K K

1(0) 0nK

2 2( 1) 2 1 2( 1) 2 1
1

1
( )

1

n
n n n n

n n   (3.97)

From the definition of R0, we know .

When R0 < 1, both n  and n approach 0 as n . It means that the infection will

be extinct.

When R0 =1, n =1 and 2
n n as n . It means that the infection will be

continued but it will not be enlarged.

When R0 > 1, both n  and n approach  as n . It means that the infection will

be continued and enlarged.

The infection will be extinct when R0 < 1, but how about the probability of extinction

is? Let nq  denote the probability of no one be infected in the n-th generation, then

0R
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( )
0 (0)n

n nq P F . Now ( )
0 1Pr( 0 | 1)n

nP X X  and 0 is an aperiodic recurrent

state. In fact, it is an absorbing state. From the limit theorem for Markov chain,

( )
0lim (0)n

n
n

p F .From (2) we have 1(0) ( (0))n nF G F , and we can obtain the

relation

( )G as n (3.98)

Therefore,  is the roots of equation x=G(x), and we must seek roots satisfying

0 1  because  is to be a probability. The roots of (3.98) are the values of x at

which the curve y=G(x) and the line y=x intersect graphically.

G(x) is a convex monotonically increasing function if (1) 0G  and ( ) 0G x for

x>0. Thus the curve y=G(x) can intersects the line y=x in at most two points. It is

clear that x=1 is one point of intersect. Let 1 2  are the two positive roots of

(3.98). Since G(x) is increasing, we have

1(0) (0) ( )i iF G G  for any positive roots i

2(0) ( (0)) ( )i iF G G G .

By induction

(0) ( 1,2, )n iF n

Since lim (0)nn
F ,  must be the smallest positive root of (3.98).

Then we can see the following results graphically,

if 0 1 2(1) 1, 1R G  (Figure 3.2(a));

if 0 1 2(1) 1, 1R G (Figure 3.2(b))
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if 0 1 2(1) 1, 1R G (Figure 3.2(b))

Conclusion: For one initial infective individual and 0 1R , the probability of

ultimate extinction =1 and extinction is certain. When 0 1R , then the probability

<1 and the probability of enlarged infected population is 1- .

Similarly, for x0 initial infective individuals and 0 1R , the probability of ultimate

extinction 0k =1 and extinction is certain since the offspring of any one initial

individual are independent of those of any other. When 0 1R , then the probability

0k <1 and the probability of enlarged infected population is 1- 0k .

Now we introduce some nonparametric estimators for n  [49]:

(1) 1
1 1

1
1

( 0); 1 ( 0)

n

i
i

n ni in

i
i

X
if X if X

X
  (3.99)

(2) 1 1
1

( 0); 1 ( 0)n
n nn n

n

X
if X if X

X
   (3.100)

 (3) 1/

0

( ) ( 0); 1 ( 0)nn
n nn n

X
if X if X

X
   (3.101)

All the above estimators are consistent estimators for . The n  is the

Maximum likelihood estimator when the offspring distribution belongs to a certain

exponential family distributions. The estimator of standard error for n  is

1/2
1

1

/ ( )
n

i
i

X (3.102)
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The consistence estimator of variance ( 2) is

2
2

1 1
1

( / ) /
n

ni i i
i

X X X n (3.103)

,where n denotes the generation.

It is convenient for analysis to let the infected offspring distribution

(P0,P1,P2,…,Pk) in particular be the power series distribution (psd)

Pn, (P0; ,P1; ,P2; ,…,Pk; ). We assume that the offspring distribution of X belongs to

the power series family

,Pr( ) 0,1, , 0
( )

k
k

k

a
X k P k

A
(3.104)

Here ( 0 1, ,a a a are non-negative constants with >0 and >0 for at least one k

2, >0 is the unknown parameter, ( ) k
kA a .

The p.g.f. of Pn, is

( )
( ) 0 1

( )k

A s
G s s

A
. Hence,

'( )
E X

( )

A

A
(3.105)

( )
d

Var X
d

               [52]  (3.106)

In the power series distribution, the parameters of geometric distribution,

binomial distribution, negative binomial distribution and Poisson distribution are

shown as Table 3.1. The probability of no one be infected is q and q is the smallest

roots of equation ( )G s s .Since

( ) ( ) ( )

{ ( )} ( )}

G qs A qs A qs

q q A A q
(3.107)

q  is the smallest roots of equation:

( )qA A q (3.108)

If we want to know the conditional distribution of the total size of the n-th
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infected generation for given the extinction ( R 1) or explosive ( R 1) occurred, we

can infer it by Bayes Theorem [53, 54]. Therefore, the conditional probability is as

follows:

0

0

( )
( )

0 0

Pr( | )Pr( )
Pr( | )

Pr( | )

k n
k n nn n k

n kn

extinction X k X k p
X k extinction p

extinction X n

(3.109)

0

0

( )
( )

0 0

Pr( | )Pr( )
Pr( | )

Pr( | )

k n
k n nn n k

n kn

extinction X k X k p
X k extinction p

extinction X n
(3.110)
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(b)Mortal branching process

Usually, we do not obtain complete information about the number of infected

individuals by each infectious individual. But we can have the total number of

infected individuals for a given period of time. If the infected offspring distribution in

a branching process is a power series distribution, the total number of offspring also

has a power series distribution conditional on extinction [36].

Let Y denote the total number of infected offspring by the end of the outbreak. It is

defined as follows:

0
n

n

Y X   (3.111)

We can view the mortal branching process with n initial infected individuals as

n independent mortal branching processes each with one initial infected individual.

If we can observe on T1, T2,…, Ty, where Ti is the i-th inter-removal time. For the

offspring distribution it follows that

1

{ ( 1,2,..., )} { ( )} / ( )i

y
x y

i i i
i

P X x i y a x A (3.112)

Hence, the distribution of Y has the form

1 2( ) ( )y

n
P Y y P X X X y n

y
(3.113)

, where y=n, n+1,n+2,… and X1, X2,... Xr are independent and identically distributed

random variables with the same distribution as X. We assume that the Xi are not

observable.

For the offspring distribution following the power series family, it follows that

( ) ( , ) / ( ), , 1, 2,yP Y y b y n B y n n n (3.114)

, where / ( ) ( ) nA and B

Note that
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1

( )

d

d A
(3.115)

The mean and variance of the Y are n  and n 2, where  and 2 are the mean and

variance of the total number Yi of removals for a mortal process with one initial

infected individual. We can also note that

3
2 2 21/ (1 ), / (1 )

d
where

d

The maximum likelihood estimate for  is obtained by solving the following formula

for .

( ) 1 /n y (3.116)

The maximum likelihood estimator of the mean of total numbers of removals can be

written /y n . Fisher’s information measure on the mean is

3
2 2( ) / (1 ) /I n n (3.117)

Borel-Tanner distribution

Let the infected offspring distribution be Poisson,

( )
( )

!

ke
P X k

k
, k=0,1,2,….

Thus the distribution of the total offspring is:

1 2

( )
( ) ( )

( )!

y y n

y

n n e y
P Y y P X X X y n

y y y n
(3.118)

, y=n, n+1, n+2,….

Therefore, Y has a Borel-Tanner distribution [55]. The minimum variance unbiased

estimator for  is

1 1/ n 1 n / Y                       (3.119)

The minimum variance unbiased estimator for the variance of the above estimator is

2 2 2( )( ) /Y n Y n n n Y (3.120)
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3.3 Parameter Estimation

3.3.1 Deterministic model

Inputs of clinical Parameters

The parameters except the transmission coefficient ( ) were estimated by

published literatures. The incubation period of SARS is about 5 days (1~10days), and

the infectious period occurred after the onset of symptoms. the infectious period is not

yet understood. The maximum period of communicability in less than 21 days. [56]

Therefore, we let =0.2~0.4. We applied the deterministic model to fit SARS data to

estimate the transmission coefficient ( ) and effective reproductive number in Taiwan.

Goodness of fit

The total number of simulated cases to fit the total number of observed SARS cases

with the Pearson's chi-squared test was also performed.

3.3.2 Estimation of latent period for TB

In September 2011, a resident of the small-scale LTC facility was referred to a

hospital and then reported as TB. Following diagnosis of the index case, contact

investigation was performed by the local health authority according to the guideline of

Centers for Disease Control, Taiwan.[57] All facility staff and residents were

considered close household contacts, and visitors and family members were

considered close non-household contacts if the shared airspace > 8 hours/day or > 40

hours exposure with cases and were offered TB screening, including a review of

symptoms, chest radiography, sputum smear and culture for Mycobacterium

tuberculosis and the tuberculin skin test (TST). TST which contained 2 tuberculin unit
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of purified protein derivative (PPD) of the RT23 strain (1 TU PPD RT23) was

performed immediately, and an induration  10 mm was considered positive.

The local health authority of Changhua applied genotyping for early detection of the

TB outbreak when two or more cases of TB occurred within 2-year period in the same

congregate setting. Isolates of M. tuberculosis were sent to the National Reference

Laboratory of Mycobacteriology for genotyping using IS6110 restriction fragment

length polymorphism (RFLP) [58, 59] and spacer oligonucleotide genotyping

(spoligotyping).[60] The RFLP and spoligotype analyzed using Bionumerics®

software, version 6.6 (Applied Maths, Kortijk, Belgium). Clustered cases, defined as

isolates with matching strains, were considered to reflect recent transmission

events.[61] An intensified contact investigation targeted at all the facility staffs and

residents should be initiated when the first clustered TB case occurred.

An outbreak is defined as at least two epidemiologic-linked cases infected with

identical genotypes of Mycobacterium tuberculosis isolates. Suspected cases defined

as clinical TB cases, on the basis of symptoms, physical findings, and radiologic

evidence, had epidemiologic links without laboratory confirmation. LTBI patients

were not compelled to receive treatment in Taiwan. However, we still provided the

LTBI treatment if they consent.

We estimated the latent and infectious period before symptoms onset following
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the exponential distributions with parameters  and  respectively by maximum

likelihood estimation (MLE) method assuming the fixed duration of infectious period

[18]. The likelihood function is obtained from this outbreak (appendix). Basic

reproductive number (R) was also computed by branching process.[37, 49] The study

was approved by the Taipei City Hospital Institutional Review Board.

The likelihood function is as follows:

5

12
0

( , | ) ( )x
x ii

L w e f w w x dx           (3.121),

then

4 [(220 ) (260 ) (306 ) (332 )]

0

4 1118 (4 )

0

x x x x x

x

e e dx

e dx

If 4 0 ,

4 1118 4 1118 5 1118

0

4 1118 1118

1118 1118

4 ( 4 )

4 [5 1118 ] 0

5 1118 0 ( , 0)

5 20
0.0045 0.0179

1118 1118

L e dx e e

dL
e e

d

e e

Therefore, E(X)=1118/5=223.6 days, E(Y)=1118/20=55.9 days and E(X+Y)=279.5

days.

2
3 1118 4 1118 2 4 1118

2
( ) 80 24*1118 4*1118

d L
I e e e

d

We can get the variance of  and  from inverse expected information matrix:

8 6Var 2.41*10 2.17*10 ( 90)if . Similarly, we have,
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6 5Var (4 ) 16*2.17*10 3.47*10Var

If 4 0

4
4 1118 (4 ) 1118 (4 )

0 0

4
1118 (4 )

(4 )
4

[ 1]
4

x xL e dx e dx

e e

3 (4 ) 3 4 (4 ) 11184 (3 ) 4 (3 ) [ (4 )(4 1118)]
dL

e e
d

4 2 4( 1118)(1 4 )[ 1]
dL

e
d

Let 0
dL dL

d d
, we can get (a) If 0, is arbitrary.  (b) If

21 4 0 ,

then

1 5
1.62, 0

2 ;(c) if 4( 1118) 1, then it is insoluble.

All parameters ( ) must be positive numbers. Therefore, we obtained the solution,

5 20
,

1118 1118 .

(3) A matched case-control study for risk factors of TB in Changhua
County, Taiwan

We estimated univariate odds ratios (OR) and 95% confidence intervals (CI)

using conditional logistic regression. Conditional logistic regression model with a

stepwise selection procedure (P to enter < 0.1; P to remove > 0.05) was used to

identify the most important determining factors for active TB.
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3.3.3 Three state Continue time Markov process

In the three-state Markov process for depicting the natural course of TB we used

Bayesian MCMC to estimate the parameters including infection rate (birther rate), and

conversion rate (death rate), and the corresponding regression coefficients of each

covariates (age, gender, and IGRA) as mentioned above.

Bayesian method and MCMC

We use Markov chain Monte Carlo (MCMC) method to evaluate the posterior

distribution. Assume that the target distribution is known up to a normalizing constant.

We would like to construct a chain with  as its stationary distribution.

We take a proposal distribution ,   |q x y q y x , where the proposal for a new

value of a chain is y, given that the chain is at value x.

Thus q defines transition kernel ,   ( | )
A

Q A x q y x dx , which is the probability of

transition to some y A .

A Markov Chain with transition density ,   |q x y q y x satisfies detailed balance

equation if there exists a distribution f such that

y)| (y( |)q q xf x fy x (3.122)

The distribution f is stationary and the chain is reversible.

If (3.122) holds,

| y | | ( )(y) ( ) ( )f dy f x f xq x q y x dy q y x dy f x ,

which is the definition of invariant distribution.

Metropolis-Hastings Algorithm is universal. One can select an arbitrary proposal

distribution that is admissible. Of course such arbitrary distribution/kernel cannot be

expected to satisfy the detailed balance equation (3.122) for the target distribution
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i.e, ( | ) ( ) ( | ) ( )q x y y q y x x

( | ) (x) ( | ) ( )q y x q x y y  Then there is a factor ( , ) 1x y   such that the above

inequality is balanced,

( | ) ( ) ( , ) ( | ) ( ) 1q x y y x y q y x x ,

suppose

( | ) ( ) ( | ) ( )q x y y q y x x .

By solving with respect to ( , )x y , we get

( | ) ( )
( , ) 1

( | x) (x)

q x y y
x y

q y

where a b  denotes min{a,b}.

Metropolis-Hastings Algorithm

(1) Set any X0 = a

(2) Generating Yk+1 from the density function, (Y | X )kq ; here (Y | X)q  is a

proposal function.

(3) Generating random variable u from uniform distribution U(0,1)

(4) If u  then let 1 1k kX Y  ; otherwise, let 1k kX X , where

( ) (X | Y)
min(1, )

(X) ( | )

Y q

q Y X

(5) Repeat Step 2 to Step 4.

Elicitation of prior distribution

Non-informative priors using N(0,106) and Uniform (-5,5) were assigned for the

exponent of baseline rates of infection and conversion and the regression coefficient

of factors.
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Parameter Prior distribution
0e N (0,106)
0e N (0,106)

11 12 13 14, , , Uniform (-5,5)

21 22 23 24, , , Uniform (-5,5)

Gibbs sampling and model comparison

A Gibbs sampler was used to derive samples of a stationary distribution by

which inferences on posterior distributions were made. The initial values for the

regression coefficients, including the parameters of covariates

( 11 12 13 14 21 22 23 24, , , , , , , ) were set to 0.5 and the initial value of 0.001 and 0.01

were assigned for parameter of the exponent of baseline infection rate and conversion

rate ( 0 0,e e ), respectively. Full conditional distributions of models were used to

update the process of sampling. All of the estimates of parameters to derive summary

statistics of posterior distributions were computed by 50,000 iterations carried out

with a thinning interval of 10 after a burn-in period of 50,000 iterations. Such a

MCMC simulation yielded a total of 5,000 updated posterior samples. Estimates

based on the posterior distributions of parameters were derived using the MCMC

method, which was carried out using SAS 9.4. The comparison between models was

guided by the deviance information criterion (DIC) values of models.

3.3.4 Discrete time Markov process

(a) Complete information data

Models of branching process and application of the nonparametric method

allows us to estimate the R0 using simulated and real data. We also apply the

parametric methods to the simulated and real data for estimating the R0. It was

assumed that the offspring distribution of branching process belongs to the family of

generalized power series distribution.



56

The extinction probability can be computed with a generating-function approach.

After having defined and constructed a branching process with offspring distribution,

the extinction probability (q) is the smallest non-negative solution of the equation (6).

(b) Incomplete information data

Usually we do not have complete information about the number of infected

individuals by each infectious individual. Therefore, we can use “approximations to

branching process by means of diffusion processes” or “mortal branching process”

with Bayesian method, or linear birth death process to estimate the R0.

(c)Nonparametric method to estimate the R0 and the extinction probability

We applied the nonparametric estimators for n . It is expressed by the formula

1
1 1

1
1

( 0); 1 ( 0)

n

i
i

n ni in

i
i

X
if X if X

X

and the estimator of standard error for n  is as formula

1/2
1

1

/ ( )
n

i
i

X

The consistence estimator of variance ( 2) is applied as formula

2
2

1 1
1

( / ) /
n

ni i i
i

X X X n ,

(d)Parametric method to estimate the R0 with Maximum Likelihood Estimation

Let (x | )f  denote the density function for the offspring, 1 2( , , , )nX x x x .

The likelihood function is the density function regarded as a function of ,

( | ) ( | )L x f x   (3.123)

The maximum likelihood Estimator is
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ˆ( ) arg max ( | x)x L (3.124)

(e)Nonparametric method to estimate the extinction probability

If k denotes the number of infected offspring by one infectious case, the

probability of k offspring was observed as Pk. Hence, PGF
0

n
k

k
k

G s p s . We

solved the equation x=G(x), and obtained the extinction probability.

(f) Parametric method to estimate the extinction probability

If the distribution of infected offspring was assumes as Poisson, Geometric,

Binomial and negative binomial distribution, we can obtain the extinction probability

after solving the equation x=G(x). G(x) was the probability generation function of

Poisson, Geometric, Binomial or negative binomial distribution.

(g) Mortal branching process

While the infectious disease was extinct, the total number of infected cases (Y) may

be a Borel-Tanner distribution under the assumption of R<1. Therefore, the minimum

variance unbiased estimator for R0 is

1 1/ n 1 n / Y ,

where n is the generation.

The minimum variance unbiased estimator for the variance of the R0 is

2 2 2( )( ) /Y n Y n n n Y .



58

3.4. Simulation

3.4.1 Simulation of birth-death process

(a) Generating data and estimated by approximation equations

We simulated the birth-death process with Matlab 2014a and the algorithm is as

follows:

(1) Set the initial number of case (n).

(2) Set the initial time (t).

(3) Set the birth rate 

(4) Set the death rate 

(5) Set the final state a

(6) Let U ~ uniform distribution (0,1)

(7) Let the time_  = -log(U)/n 

(8) Let the time_  = -log(U)/ n

(9) Let time=min (time_ , time_ )

(10) If time_  < time_ , then n=n+1

(11) If time_  < time_ , then n=n-1

(12) Let state=n.

(13) Let interval time (t_jump) = time.

(14) If n=0 then stop the process

(15) If n=a then stop the process

(16) Go to step 5 till satisfy the condition of stopping.

To simulate the pure birth process, we started with different initial cases after given

fixed parameter . We used the approximation equation as follows:

0

1
~ log( ),

a

n
(3.125)
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1
~ log(a 1), (3.126)

and

0

11 1
E(T )=

a

a
j n j

(3.127)

Where ‘a’ denotes the final state, n0 denotes the number of initial case, and  denotes

the parameter of pure birth process. We also calculate the variance of arrival time with

following equation:

0

1

2

1 1
V(T )=

a

a
j n j

(3.128)

(b) Simulated model with birth-death process for SARS

We simulated the birth-death process with Matlab 2014a and the algorithm is as

follows:

(1) Set the initial number of case (n).

(2) Set the initial time (t).

(3) Set the birth rate 

(4) Set the death rate 

(5) Set the final state a

(6) Let U ~ uniform distribution (0,1)

(7) Let the time_  = -log(U)/n   or [the time_  = -log(U)/ n ]

(8) Let the time_  = -log(U)/ n   or [the time_  = -log(U)/ ]

(9) Let time=min (time_ , time_ )

(10) If time_  < time_ , then n=n+1

(11) If time_  < time_ , then n=n-1

(12) Let state=n.

(13) Let interval time (t_jump) = time.

(14) If n=0 then stop the process
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(15) If n=a then stop the process

(16) Go to step 5 till satisfy the condition of stopping.

The total number of simulated cases to fit the total number of observed SARS

cases and mean time of state in simulation data fit the observed data. Calculating the

extinct probability was also performed via simulation.

3.4.2 Simulation of a branching process

We simulated the branching process with Matlab 2014a and the algorithm is as

follows:

(1) Set the initial number of case (x).

(2) Set parameters of determined distribution

(3) Set the generation g

(4) Set i=1

(5) Let j=x

(6) Let offspring y ~ given distributions

(7) Let Y[i,j]=y

(8) Let s=s+y

(9) Let j=j-1

(10) If j>0 then go to step (5) else j=s, i=i+1

(11) If i >g then stop

We simulated the branching process for a given offspring distribution. We

assumed all the offspring distribution is the independent and identically distribution

and it belongs to the family of generalized power series distribution. We carried out

the simulations using MATLAB version 8.3.0.532 to generate the data of a branching

process.
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We also calculated the extinction probability and the average number of offspring

in each generation under 10000 times simulations for a given distributions with

different parameters (R=2, 1.5, 1.1 and 0.9).
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Chapter 4 Data sources

4.1 Generating Data by simulations

We simulated a branching process with 9 generations of data for a given

offspring distribution which is the power series distribution under various values of

R0=2, 1.5, 1.1 and 0.9. We simulated a branching process with 10 generations of data

for calculating the extinction probability.

We simulated a birth-death process with given birth rate, death rate and

different initial infected cases. We calculate the mean and variance of arrival time

from the initial state.

4.2 Empirical Data

4.2.1 SARS

SARS is a viral respiratory disease caused by the SARS coronavirus

(SARS-CoV). The incubation period for SARS is 3 to 10 days (median 5 days) [56,

62]. Few cases with SARS were noted even though there were many susceptibles in

the population and it cannot be protected by vaccination till now. 8098 cases were

reported in the worldwide SRAS outbreak from November 2002 to July 2003 [62].

(a) The outbreak of SARS in Taiwan

The cases with SARS of Taiwan in 2003 were obtained from Taiwan CDC

[Figure 4.1(a)]. Three hundred and forty-six patients with SARS were reported and

case fatality was 10.7% (37 patients died) from Feb. 25 to Jun. 15, 2003. In addition,

there were 22,520,776 population of Taiwan at the beginning of 2003.



63

(b) SARS in a tertiary hospital in Singapore

Two hundred and thirty-eight patients with SARS were reported and case

fatality was 13.9% (33 patients died) from Mar. 6 to May 22, 2003. There were total

56 infected with SARS in a hospital in Singapore from Mar. 26 to Apr. 15. Only 3

generation of offspring was noted after outbreak investigation. [Figure 4.3(b)].

4.2.2 Mycobacterium tuberculosis

Tuberculosis (TB) is caused by Mycobacterium tuberculosis. Although most

people received BCG (Bacillus Calmette-Guerin) vaccine against TB in Taiwan, there

are still many susceptibles for TB. There are many cases with TB because long

incubation period and latent TB present. The incubation period for TB is unknown.

The period from infection to primary lesion or significant tuberculin reaction is about

2 to 10 weeks [56]. Using genotyping data may identify small clusters that are likely

to become outbreaks and define areas for location-based TB screenings in previous

studies [63-66]. Hence, using genotyping can enhance TB outbreak monitoring and

the targeted interventions.

Changhua County is located in the middle Taiwan, with a population of around

1,300,000, 12.5% of which were older than 65 years. Nearly 0.7% of the Changhua

people resided in LTC facilities. Changhua County is divided into 1 city, 7 urban

townships and 18 rural townships. There are around 669,000 people with age  30.

(a) The outbreaks of TB in the Long-term Care Facility

The outbreak of TB in the LTCF is shown in [Figure 4.2(a)]. The Data was
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obtained from Changhua County Public Health Bureau in Taiwan.

(b)The cohort study for TB in Changhua County

We built up a continue-time Markov process to estimate the parameters for the

evaluation of the role of QFT-GIT in this cohort study. In addition, we also calculated

the extinct probability by the simulation with birth-death process. We built the

continue time Markov process with four classes of data, which are explained as

follows:

(1)Data from the surveillance system for TB from 2009 to 2011 in Changhua

County

The incidence of TB in Changhua County is shown in Figure 4.2(b). A total of

2,420 TB cases with age  30 enrolled in our cohort study from 2009 to 2011.

(2)Data from TB contact registry database from 2005 to 2011 in Changhua

County

A total of 22,510 TB contacts with age  30 enrolled in our cohort study from 2005 to

2011.

(3)A matched case-control study for risk factors of TB from 2012 to 2014 in

Changhua County

The matched case-control study was conducted in Changhua County from

March 1, 2012 to December 31, 2013. All participants were continued follow-up till

the end of 2014. The study was approved by the Changhua Christain hospital

Institutional Review Board. TB cases were confirmed by Mycobacterium tuberculosis

isolates or clinical TB cases, based on symptoms, physical findings, and radiologic

evidence without laboratory confirmation.

All participants received questionnaires with interview, the tuberculin skin test

(TST) and QuantiFERON-TB Gold In-Tube test (QFT-GIT) after gave consent to
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participate in the study. The interpretation criteria approved by FDA in 2007 for

QFT-GIT were followed.[67] One TB case was matched to four TB contacts with

living the same TB incidence area. According to TB incidence rate in 26 sub-areas in

Changhua County, we divided into three areas; The TB incidence rate > 79.7/100,000

per year was defined as high incidence area, 62.6 – 79/100,000 per year was medium

incidence area and <62.6/100,000 per year was low incidence area.

All participants received questionnaires with interview, the tuberculin skin test

(TST) and QuantiFERON-TB Gold In-Tube test (QFT-GIT) after they had given

informed consent to participate in the study. The questionnaires were designed to

collect socio-demographic information, clinical history of TB and factors considered

relevant for the disease, such as living location, travel history, contact with ill persons,

Cigarettes, alcohol, betel nuts, medications taken, and previous morbidity.

Of the 213 confirmed TB patients and 954 TB contacts attending this study, 212

TB cases and 948 TB contacts met the study criteria. The questionnaires were

designed to collect socio-demographic information, clinical history of TB and factors

considered relevant for the disease, such as living location, travel history, contact with

ill persons, Cigarettes, alcohol, betel nuts, medications taken, and previous morbidity.

Specimen collection and Laboratory Methods. All TB cases were confirmed by

Mycobacterium tuberculosis isolates or clinical TB cases, on the basis of symptoms,

physical findings, and radiologic evidence without laboratory confirmation. TST

which contained 2 tuberculin unit of purified protein derivative (PPD) of the RT23

strain (1 TU PPD RT23) was performed immediately, and an induration  10 mm

was considered positive. The IFN-  assay was performed in 2 stages according to the

manufacturer’s instructions. The cutoff value of 0.35 IU/mL was defined as a positive



66

response.[68, 69]

(4)IGRA survey for general population from 2011 to 2013 in Changhua County

A community-based study was conducted in Changhua city from 2011 to

2013. [70] The attendee of Changhua community-based integrated screen (CHCIS)

were enrolled after gave consent to participate in the study. All participants underwent

both QFT-GIT and TST. total of 492 subjects who met the inclusion criteria

underwent QFT-GIT and TST in the study. (Figure 4.3)
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Chapter 5 Results

5.1 Simulation of R0 with different methods

5.1.1. Simulation of R0 using branching process

The results of estimating R0 on the generating data of a branching process with

six generations for a given offspring distribution, such as Poisson (Table 5.1-5.2),

Binomial (Table 5.3-5.6), Geometric (Table 5.7-5.8) and Negative Binomial

distributions (Table 5.9-5.16), are shown in Table 5.1-5.16. The estimated R0 were

consistent with the nonparametric or parametric method with different distributions.

However, the variances were heterogeneous by different methods. The results show

that the extinction probability was similar across different methods except the

parametric method with geometric assumption. Estimated extinction probability under

geometric assumption was higher than that using other methods. Apparently, the

assumption of negative binomial offspring distribution was not adequate to estimate

the R0 even though the offspring, in fact, was a negative binomial distribution.

The results of the extinction probability and the average number of offspring in

each generation under 10000 times of simulations are listed as Table 5.17-5.22. The

calculated extinction probability was a bit higher than previous estimated under the

same condition (means the same initial cases size and the same R0). Calculated

extinction probability for a given geometric offspring distribution was higher than

those for others. When R0 increases, the probability of extinction of an infectious

disease decreased apparently. An increase in initial infected population size, the size

of total infected population increased and the probability of extinction of an infectious

disease decreased. When the offspring distribution follows the negative binomial

distribution [NB(r,p)], the probability of extinction of an infectious disease decreased

with the increase of the value of parameter ‘r’, number of the failure before success in
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the same conditions. Final size of total population was affected not only initial

infected individuals but also the underlying offspring distribution. (Figure 5.1-5.2).

The results of estimated R0 with non-parametric method after given generations

are showed in Figure 5.3.

2. Estimated time to outbreak size and extinct probability from simulation data

with birth death process

Generating data with simulation with birth-death process after given = 0.5, 3

and different initial infected cases was performed by Matlab 2014a. We estimated the

time to infected size a (Ta) with formula 3.125-3.127. Results of simulated data and

estimation with these formulas are showed in Figure 5.4-5.5.

5.1.2 Simulation of R0 using birth-death process

Figure 5.4 (Appendix Table 1) showed the simulative results of 1000

simulations for pure birth process assuming =0.5 compared with the true results

estimated the exact equation for E(Ta) which has been derived in the methodological

section. The different results given different birth rate ( =3) are given in Figure 5.5

(Appendix Table 2).

It is very interesting to note that the simulated curve with mean value was still

deviant from the curve obtained from the formula (1)
0

1
log( )

a

n
 (2)

1
log(a 1) .

However, when n0 and
0

a

n
 became larger [8], the simulated curve with mean value

was close to the true curve obtained from the formula (1) but deviant from formula (2).

When  was enlarged to 3, the results were not changed at all.
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5.2 SARS (Severe Acute Respiratory Syndrome)

5.2.1 Outbreak of SARS in Singapore

Simple branching process

According to the outbreak investigation, there were only 3 generations among 55

patients with SARS in the hospital. Estimated R0 was 2.38 (-3.52~8.11) with

non-parametric method, but the extinct probability was one estimated by solving

generating function (see the equation 3.67) with empirical observed data. In addition,

R0 was 1 (0.7533~1.3016) for Poisson offspring distribution, 1 (0.6262~1.3738) for

geometric offspring distribution. The estimated extinct probability was one by

parametric method.

Branching process with generation size determined by incubation period of

infectious disease

As we had only the information on the date of onset of SARS onset date (Figure

4.2.b.ii) without the detailed information on contact investigation we assumed one

generation had taken 5-7 days. The estimated R0 was 1 (0.57182~2.5718) with

non-parametric method by median days of incubation. Hence, there were 3~8

generations and the estimated R0 was from 1 (0.1080~ 1.8920) to 1.5 (-3.4609 ~

6.4609)
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5.2.2. SARS in Taiwan

(a) Deterministic model

We simulated the SARS cases with SIR model to fit the cumulated cases in the

period of outbreak. The size of total population in Taiwan was 22,520,776 in 2003.

The transmission rate ( ) of SARS infection was estimated as 7.3*10-9 in the first 8

weeks, 1.96*10-8 from the 8th to 11th weeks and 5.4*10-9 after 11 weeks of outbreak

period assuming 2.5 days of infectious period ( =0.4) defined in the methodological

section. The R0 was estimated as 0.411, 1.1035 and 0.30 in the three different periods,

respectively. The average R0 was 0.49 estimated from data on three periods.

A total of observed cases were 346 during the period of 112 days (16 weeks)

and 345.1 cases were simulated by SIR model (Figure 5.6). The Goodness of fit test

was chi-square =0.0021 with one degrees of freedom (p=0.9634) for SARS cases in

2003. Similarly, the transmission rate ( ) was estimated as 3.5*10-9 in the first 8

weeks, 8*10-8 from the 8th to 11th weeks and 8.4*10-9 after 11 weeks of outbreak

under the assumption of 5 days of infectious period ( =0.4). The Goodness of fit test

was chi-square =0.0021 with one degrees of freedom (p=0.9634). The R was

estimated as 0.394, 9.01 and 0.946 in the three different periods, respectively. The

average R0 was 2.52 on three periods. Hence, the estimated R0 ranged from 0.49 to

2.52.

(b)Branching process

There were 16~22 generations by the incubation of 5 or 7 days. Estimated R0

was from 0.9971 (0.3308~0.6663) to 0.9971 (0.5090~1.4852) with non-parametric

method. Estimated extinction probability was 0.9912 under the assumption of Poisson

distribution.

While the SARS went to extinction, the total number of SARS (Y) may be
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describe as Borel-Tanner distribution under the assumption of R<1. Therefore,

Estimated R0 was from 0.9790 (0.8437 ~ 1.1143) to 1.0134 (0.8535 ~ 1.1733)

according to the information of 16 ~ 22 generations. Estimated extinction probability

was 0.9709 ~ 0.9989.

(c) Birth-death process

We simulated the SARS cases with pure birth process to fit the cumulated cases

in the period of outbreak. Estimated birth rate was 0.0577 per day given the mean

time to final outbreak size of 346 with 112.29 (23.72) days. The result of observed

data is showed as Figure 5.7(a). The birth rate of the n infective cases was .

The simulated data was not similar to the observed data. We simulated the

SARS cases with general birth death process to fit the observed cumulated SARS data.

Finally, the estimated birth rates were 0.57 (< 55 day of outbreak), 11.45 (the 55th ~

80th day of outbreak) and 1.413 (after the 80th day of outbreak). It was as Figure

5.7(b). The birth rate of the n infective cases was . The result was obtained after

fitting the means of T32 , T300 and T346, where Ta denotes the time to outbreak size of a.

The observed T32 , T300 and T346 were 55, 80 and 112 days, respectively. In this model,

T32 , T300 and T346 were 54.97(10.09), 80.00 (10.41) and 112.01 (11.47) days.
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5.3 TB

5.3.1 Application to TB in the Long-term Care Facility (LTCF)

Over a period of 13 months, 7 confirmed cases and 2 suspected cases were

associated with a pulmonary TB outbreak which began in September 2011 and

continued following until September 2013 (Figure 5.8). The index case of active

pulmonary TB with cavitation was diagnosed in Sep. 2011. The contact investigation

did not found any new TB cases. Eight months later, two TB cases were reported in

May and June 2012, separately, whose genotyping matched that of the index case.

Therefore, contact investigations were conducted by the local health authority in July

2012. Totally, there were five TB cases found by the intensified contact investigation.

Even through the LTC is a three-floor building housing 63 beds in 13 rooms, there are

only 40 beds registered and approved for use by the local health authority. The fresh

air exchange rate was not enough in this building, because there was no exhaust unit

in the central air conditioning system. There were 62 residents and 18 staff members

in this LTC during the investigation period (Figure 5.9). In addition, another 4 case

residents had been reported. Four cases located at the third floor and two cases located

at the second floor during the investigation period (Figure 5.10). Tracing back the

history, these cases and the index case were contacted with each other in the same

rooms at the third floor. In addition, the resident case located at the first floor had

been cared by the suspected staff case who had the contact history with these cases

located at the third floor. Characters of residents and staff are listed in Table 5.23. A

new TST conversion rate was 25.0% among residents and 0% among staff. All these

resident cases except for the first-floor case had been contacted with each other in the

same room during the period of communicability. Among these TB cases, first 5

resident cases presented fever and the others had no symptoms. Sputum smears were
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positive for TB but the sputum culture showed no growth in one resident-case and one

staff case. In addition, results of RFLP and spoligotyping showed that these active

cases were infected by M. tuberculosis with an identical genotype (Figure 5.11).

The attack rate was 12.1% (8/66) for residents and 5.6% (1/18) for staff. All of the

case-residents were bedridden because of stroke (5; 62.5%), chronic obstructive

pulmonary disease with hypoxic encephalopathy (3; 37.5%) and bladder cancer with

distal metastasis (1; 12.5%). In addition, half of them needed tracheostomy suction,

and the others needed oral and nasal tracheal suction. The strain was susceptible to all

first-line anti-TB drugs. However, 5 resident cases were dead during treatment. Of

total 46 suspected LTBI persons, only 26 LTBI persons agreed with receiving

treatment. Two cases died from other causes during the treatment and one case

stopped the treatment due to side effects.

The latent period was estimated about 223.6 days [ =0.0045 (2.17*10-6) ] and

the infectious period before symptoms onset was estimated about 55.9 days

[ =0.0179 (3.47*10-5)]. Hence, the incubation period was about 279.5 days.

According to our estimation of latent period, there were at least two generations and

at most 3 generations. R0 was bounded between 0.9739 and 0.9796 in this cluster.

Control measures including contact tracing and cases follow-up were performed by

the facility with assistance of the local public health authority. Closing the facility to

admissions, increasing ventilation rates in the building and decreasing the numbers of

residents in one room were implemented. All cases of suspected or confirmed TB

disease should be placed in an isolated room or transferred to hospitals for treatment.

All contact residents and staff members have to receive chest x-ray examination every

6 months till 2 years after the last one confirmed TB case. Sputum culture should be

done if any symptom or sign was noted in contacts for suspected TB disease.

The probability of extinction was one under assumption of binomial distribution with
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total 80 persons. Of course, the probability of extinction was one under Poisson or

geometric offspring distribution’s assumption.

5.3.2 A matched case control study for TB

Of the 213 confirmed TB patients and 954 TB contacts attending this study, 212

TB cases and 948 TB contacts met the study criteria. One TB case and six TB

contacts were excluded because results of TST and QFT-GIT were all missing.

Characteristics of TB cases and TB contacts are listed in Table 5.24. Positive TST and

positive QFT-GIT results had the same distribution (68.4% vs 69.4%) among active

TB cases. However, the percentage of positive TST (52%) was higher than those of

positive QFT-GIT (39.3%).

Applying conditional logistic regression model to data on TB cases and contacts

with matched case-control study design shows that both TST and QFT-GIT were

independent predictor for the development of tuberculosis adjusted for age group and

sex. Results of univariate analysis showing factors significantly associated with TB

are presented in Table 5.25. The estimated odds ratios in multivariable logistic

regression mode for positive QFT-GIT after further adjusted for positive TST was

2.47 (95% CI: 1.72-3.54, Table 5.26).

This result showed that the effect of QFT-GIT on turning into TB cases

depended on whether TST is positive. After considering the interaction term in the

model, the odds ratio of QFT-GIT for subjects with positive TST was estimated as

4.28 (95% CI: 1.16-15.76), on the other hand, the odds ratio of QFT-GIT for subjects

with negative TST was estimated as 1.15 (95% CI: 0.66-2.00)(Table 5.27).

After the stepwise selection procedure and comparing AIC values, the model

considering the main effect of age, sex, TST, and QFT-GIT as well as the interaction

term between TST and QFT-GIT is the most parsimonious model (Table 5.28).This
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result showed that subjects with LTBI, positive QFT-GIT have higher risk of turning

into TB cases. However, persons with positive QFT-GIT may not be associated with

higher risk of turning into TB cases for those who were not the state of LTBI.
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5.3.3 A case-cohort study for nature history of TB in Changhua
County, Taiwan

The application of the case-cohort design in conjunction with the sampling

fractions for each state of diseases using a three-state Markov model embodied with

birth-and-death process yielded the univariate results as shown in Table 5.29. The

overall estimated infection rate (per person-years) and conversion rate (per year) were

0.0168 (95% CI: 0.0157-0.0180) and 0.0113 (95% CI: 0.0098-0.0129). The effect of

each covariate on the infection rate is shown in the upper middle panel. Only one

parameter ( ) was incorporated with each of three covariates and  was estimated

without covariates. Three models are listed as follows:

(1) 0= exp( 0.5316 (45 64) 0.6016 ( 65))Age Age

(2) 0= exp(0.403 )Sex

(3) 0= exp(0.4662 )IGRA

The infection rate was higher for the young age group (30-44 years old) and

male sex. Those with higher IGRA were 1.60 (RR=1.59 (95% CI:1.39-1.85) times

likely to be susceptible to LTBI compared with low IGRA.

In a similar vein, the effect of each covariate on the conversion rate is shown in the

lower middle panel. Only one parameter ( ) was incorporated with each of three

covariates and  was estimated without covariates. Three models are listed as follows:

(4) 0= exp(0.7315 (45 64) 1.8319 ( 65))Age Age ,

(5) 0= exp(0.403 )Sex ,

(6) 0= exp(0.4662 )IGRA .

In contrast to the effect of age on infection rate, the older the subject was, the
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higher the conversion rate. Males still had higher conversion rate than females. Those

with higher IGRA were two times (RR=2.20 (95% CI:1.60-1.85) likely to surface to

TB compared with low IGRA.

The effects of one covariate affecting both of two parameters (  and ) are

shown in Table 5.30. The three three-state Markov models are listed as follows:

(1) 1 0

1 0

= exp( 0.5348 (45 64) 0.6302 ( 65))

= exp(0.7074 (45 64) 1.846 ( 65))

Age Age

Age Age

 ,

(2) 2 0

2 0

= exp(0.4007 )

= exp(0.5277 )

Sex

Sex
,

(3) 3 0

3 0

= exp(0.4671 )

= exp(0.7495 )

IGRA

IGRA
.

The joint effect of each covariate (age, gender, and IGRA) on infection rate and

conversion rate were similar to the marginal effect of each covariate.

Results of multivariate analysis with the incorporation of three covariates into

infection rate or conversion rate are presented in the middle panel of Table 5.31. A

total of three models are listed as follows:

(1)

1 0

1

= exp( 0.5825 (45 64) 0.7585 ( 65) 0.3576 0.5307 )Age Age Sex IGRA

(2)

2

2 0= exp(0.6126 (45 64) 1.6308 ( 65) 0.4233 0.4934 )Age Age Sex IGRA

After adjustment for age and gender, the effect of IGRA on infection rate (RR=

1.70; 95%CI:1.46-1.95) remained the same as that in univariate analysis but the effect

on conversion rate were slightly reduced but were statistically significant (RR=1.64;
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95%CI:1.19-2.25).

Results of multivariate analysis with the incorporation of three covariates into

infection rate and conversion rate simultaneously are presented in the right panel of

Table 5.31. The model form is listed as follows.

(3) 3 0

3 0

= exp( 0.5799 (45 64) 0.7896 ( 65) 0.3583 0.5371 )

= exp(0.4256 (45 64) 1.4886 ( 65) 0.4104 0.4578 )

Age Age Sex IGRA

Age Age Sex IGRA

(5.1)

After taking the effect of age and sex on both infection rate and conversion rate

into account, subjects with positive QFT-GIT still had higher risk of being infected

and converting to tuberculosis with estimated RR being 1.71 (95% CI: 1.49-2.00) and

1.58 (95% CI: 1.15-2.17), respectively (Table 5.31). Table 5.32 show the model

selection with deviance information criterion (DIC). The trace plus of the parameters

in equation 5.1 with Bayesian MCMC method are presented in Figure 5.12.

Given the parameters of  and  estimated for subjects with various

combinations of three covariates (Formula 5.1), we simulated the time to final size

(10) and final size (30) of LTBI. The results are listed in Table 5.33 and Table 5.34.

The results suggest one initial case may take 60.94 days to have 10 of final size and

87.36 days to have 30 of final size without considering covariates. The young people,

male and positive IGRA tended to spread quickly. The male aged less than 45 years

with positive results of IGRA took only one week to reach final size given five initial

size. It should be noted that an increase in initial size reduced the time to reach the

expected final size. The corresponding results of estimated extinct probability with

various combinations of covariates and different initial cases of LTBI are shown in
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Table 5.35. It is clearly seen that when initial size was larger than five the extinct

probability of TB was very unlikely.
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Chapter 6 Discussion

6.1 Summary of findings

The main contribution made from this thesis embrace two aspects, clinical and

epidemiological epidemic investigation of SARS and TB and the methodological

development including the application of various stochastic processes to throwing

light on the infectious process (including latency period and infectious period) in the

axis of infection and incubation period in the axis of disease process by estimating R0,

the expected time to reach final size, and the extinct probability and the development

of a novel infectious model by combining the flexible multi-state Markov process

with birth-and-death process.

6.1.1 Clinical and epidemiological findings on outbreak of SARS and

TB

The main contributions of clinical and epidemiological epidemic profiles of

SARS and TB include the following points.

1. Applications to SARS in the two regions: In Singapore, the estimation of R0 given

3~8 generations was between 1 and 1.5. The estimated extinct probability was

almost certain using branching process. The three period of SAS outbreak yielded

0.99 of R0 using branching process in Taiwan. The estimated extinct probability

was 0.99. The similar findings were noted by using the mortal branching process

with Borel-Tanner distribution.

2. Estimate unobserved incubation period with approximately 9 months, including

seven months of latent period and two months of infectious period before onset of

symptoms given data from an outbreak of TB occuring even among subjects with

negative TST result after undergoing TB screening. Surveillance of the elderly
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people even with a negative TST after TB screening is still necessary given a long

latent period if the outbreak of TB in a long-term care facility is to be controlled.

3. This is the first study to assess the effect of IGRA on the occurrence of TB by

conducting a case-control study making allowance for demographic characteristics

and induration size of TST.

4. This is the first study to assess the effects of age, gender, and IGRA on infection

from susceptible to LTBI and also the conversion from LTBI to TB in the natural

course of TB. The young age was at increased risk for being LTBI but the old age

enhanced the risk of conversion from LTBI to TB. Male had higher risk for being

infected as LTBI and also the conversion from LTBI to TB. The elevated IGRA

plays a significant role not in the infection rate (from free of LTBI (susceptible) to

LTBI) but also in the conversion rate after adjusting for age and gender.

5. The application of infection rate (birth rate) and conversion rate (death rate) gives

the time expected to reach number of LTBI of final size and the extinct probability

by various combinations of age, gender, and the results of IGRA. Subjects with

positive IGRA results had shorter expected time to reach final size than those with

negative result.

6.1.2 Methodological development

     This thesis has contributed to developing the methodological part related to

infectious disease as follows.

1. Provide several statistical simulated methods for simulating various R0 with

branching process and also birth-and-death process so as to estimate the extinct

probability and the expected time to reach final size.

2. Demonstrate how to apply the Becker’s SIR model in conjunction with branching

process to estimate incubation period and latent period for the surveillance of TB.

3. Develop a continuous-time Markov process embodied with birth-and-death
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process in conjunction with a novel case-cohort design data given the known

sampling fraction to assess how covariates such as IGRA affect the infection rate

and the conversion rate framed with a three-state Markov process. The further

application of birth-and-death process used in the simulation of SARD process

can compute the extinct probability and the expected time to reach final size, both

of which provide a new insight into the golden period for the formulation of

policy for the containment of infectious disease in question.

6.2 Clinical Usefulness

In spite of numerous studies that have already estimated R0 in the previous

studies, it is lacking of a systematic approaches to estimate R0 by proposing various

stochastic processes to accommodate various types of infectious diseases. The

proposed model can be flexibly adapted to large and small population of outbreak,

time to each period, latent period, incubation period exactly known or unknown form

empirical data such as TB, the probability of extinction, and the expected time to

reach final size.

6.2.1 SARS

The estimated R0 depends on the determinants of infectious disease. Variant

values of R0 for SARS were obtained using the SIR model even though all simulations

have not rejected the Goodness of fit test. The consistent results were obtained from

simple branching process, mortal branching process and birth-death process. The

effective R for SARS was also heterogeneous in the different stage which was before

or after global alert in previous reports.[71, 72] In addition, results of these studies
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were similar to ours.

To compare previous studies, R0 was estimated 1.1 for the nationwide of

Singapore [73]. Even though our data was partial information of outbreak in

Singapore and especially it was derived from hospital, our findings were similar to the

previous report. By using branching process, we can provide not only the information

about 95% CI of R0 but also the expected time to reach final size and the extinct

probability of SARS. Such information is very useful for how to devise the policy of

the containment in order to forestall the outbreak before the expected time reaching to

final size and also the likelihood of extinction.

From the results of simulations with birth-death process, we found that the

parameter  more tended to fit the observed data than the parameter n . The infection

rate was not associated with cumulated cases because it may be resulted from

isolation policy.

6.2.2 TB

6.2.2.1 TB outbreak in LTCF

In a LTC facility, 7 confirmed cases and 2 suspected cases were associated with

a pulmonary TB outbreak which began in September 2011 and continued following

until September 2013. The TST positive rate of contacts was 50.0 % (29/58) and

76.5% (13/17) among residents and staff, respectively. By comparison, TB contacts

had 69% positive TST response in Taiwan community-based study.[74] However, a

new TST conversion rate was 25.0% for residents. LTBI treatment should be
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considered even though in BCG-vaccinated populations, which was suggested in

previous studies.[75, 76] Furthermore, monitoring and documented TST results for

residents regularly should be considered in the LTC facility and other health care

facility.

Using genotyping data may identify small clusters that are likely to become

outbreaks and define areas for location-based TB screenings in previous

studies.[63-66] Hence, using genotyping can enhance TB outbreak monitoring and the

targeted interventions (e.g., intensified contact investigation). However, LTC facilities

were never reported as high risk for TB outbreaks by using genotyping monitor in

previous studies. This strategy also enables us to identify which LTC facilities are in

high-risk status in our study.

Two sputum culture-positive TB cases with normal CXR was noted, which was

not uncommon [77]. Screening by sputum culture should be suggested for all

contacts. In addition, early diagnosis of active TB occurs in individuals who initially

have negative TST results is important to reduce the transmission in a LTC facility.

Two active TB cases that tested TST-negative were later diagnosed by sputum

examinations in this outbreak. Sputum examination and chest radiograph should be

performed regardless of a negative TST result. In addition, providing LTBI treatment

to elderly contacts with comorbidities regardless of LTBI test results should be
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considered. The above findings were due to the lower sensitivity of the TST among

the elderly. [78-82] However, we are also concern about the risk of adverse reactions

to the medication for LTBI among the elderly population. Therefore, further study

about the tolerance of LTBI treatment among the elderly with high comorbidity in

LTC facilities or other health care settings should be considered.

Studies on estimation of the latent and infectious period of TB are rare. The

infectious period before symptoms onset was estimated about 2 months in this

outbreak. Based on expert opinions, the infectious period defined as 3 months before

symptom onset is recommended[83]. The latent period was estimated about 32 weeks.

Contact investigations and LTBI treatment become important strategies in TB control

and elimination within the latent period. The shorter incubation periods in our study

than previous study (45% within one year; median 1.26 years)[84] may be attributed

in part to the outbreak study, and perhaps also in part to some bias resulting from only

2-year follow-up.

Previous studies on R0 for TB are various and no available data from Taiwan

TB for comparison. Our estimation of R0 excluding reactivation of TB and very

slowly progressing TB (longer than 2 years) may be underestimated [85].

There were some limitations in this study. Without two-step testing to measure

tuberculin reactivity in this investigation and no previous documented baseline TST
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results within the prior 12 months, false-negative TST results are a greater concern.

Because boosting is more common in the elderly, occurring in 15% of elderly subjects

screened.[86] False-positive TST results are not common. The effect of remote

vaccination with BCG on positive tuberculin response in adults aged >30 years is

probably negligible. [74] LTBI or M. tuberculosis infection should be assumed in an

older patient with a positive TST result. The air exchange rate was low in field

investigation, but the number of air changes per hour was not measured.

Aerosolization of the TB patient’s secretions from repeated suctioning and inadequate

ventilation in his room were routes for spreading in this outbreak. Prior investigations

of TB outbreaks in health care settings have found the same transmission routes.[78]

We inferred that sputum suction and low air ventilation rate were the risk factors for

TB transmission among residents in this outbreak.

This outbreak reinforced the importance of considering comprehensive TB

screening included sputum examinations and chest radiograph for all residents and

staff regardless of a negative TST result given the estimated long latency period.

LTBI treatment to elderly contacts should be considered if the tolerance of treatment

for the elderly with high comorbidity can be accepted.

6.2.2.2 IGRA & LTBI/TB

The tuberculin skin test (TST) for detecting latent TB infection (LTBI) was
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performed for decades. However, the lower sensitivity of the TST among the elderly

was reported in previous studies because of booster phenomenon, [78-82] and the

results of TST were affected by BCG (bacillus Calmette-Guérin) vaccine. [87]

Though the effect of remote vaccination with BCG on positive tuberculin response in

adults aged >30 years is probably negligible,[74] Interferon-gamma release assays

(IGRAs) have emerged as attractive alternatives because it was unaffected by BCG

and most NTM exposure and it has no booster phenomenon.

Interferon-gamma release assays (IGRAs) appears to demonstrate better

specificity than the TST and good correlation to the risk of exposure to TB. [88-90]

IGRAs may be better at detecting recent rather than remote infection.[90] However,

the performance of IGRA was different between high and low TB incidence settings

in previous reports, and relatively lower sensitivity in high-incidence countries was

also reported.[91, 92] The IGRAs have dynamic characteristics over time.[93]

Therefore, the difference between IGRAs and TST in the course of TB infection is

still unclear.

Diel et al. evaluated progression from latent tuberculosis infection to active TB

in close contacts of TB patients. Of 954 subjects, 20.8% were QFT positive. 12.9% of

a TB progression rate among subjects with QFT positive was found over the

observation period.[94] Corresponding progression rate of 4.8% for the TST positive

(>10mm) was significant lower. The progression rate of 28.6% for QFT-positive

children was significantly higher than 10.3% for adults in Diel’s study. Another

prospective cohort study for QuantiFERON screening of adult contacts reported

13.4% (2-year rate) in QFT positive adults for developing TB [95]. Similar results
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were found in our study. The infection rate was estimated as 1.68% in our study. The

high IGRA is more likely to be susceptible to LTBI compared with low IGRA. The

infection rate was higher in the young age group. Haldar et al., also reported the

positive predictive value of QFT loses significance for older contacts ( 36 years).

However, our study presents the gender difference for developing TB. The infection

rate was higher in male population in our study but there was lacking of statistical

significant in sex for progression of TB in Diel’s study.[94]

The heterogeneity of tuberculosis incidence was observed among different age

groups and sex in previous studies[96]. This observation may due to the differences in

rate of conversion between age groups and sex as well as that in rate of infection. The

effect of QFT-GIT on the progression of tuberculosis is faced with similar argument.

Applying conditional logistic regression to the collected data on case control

study of TB cases and their contacts, we evaluated the effects QFT-GIT on the

probability of turning into TB cases adjusted for age, sex, and TST results. Although

this approach shows significant correlation between positive QFT-GIT and the

probability of turning into TB cases and hence provides the information of the role of

QFT-GIT on TB progression. However, this conventional method is not capable of

telling the mechanism of these effects.

In addition to prove the correlation between positive QFT-GIT and the

development of TB cases, the role of QFT-GIT on different stages of disease

progression is also of great interest. Although previous studies showing the correlation

between QFT-GIT the intensity of TB exposure implying the correlation between TB

infection and positive QFT-GIT result [97], our results further demonstrated that

positive QFT-GIT was also an independent predictor for the progression to

tuberculosis.

The gold standard for diagnosis of active TB is bacteriological diagnostic tests.
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However, they have limitations because smear microscopy test is less sensitive and

culture test is time-consuming. Though QFT-GIT was developed for diagnosis of

LTBI, IGRAs can be used as diagnosis of active TB in previous studies.[98, 99] But

IGRAs cannot distinguish active TB from latent infection because its utility for active

TB diagnosis is low in TB-endemic countries, where most of the people are believed

to be latently infected with M. tuberculosis.[100, 101] QFT-GIT reduced utility for

active TB diagnosis because it is able to diagnose both active TB disease and LTBI,

[102] which leads to the different sensitivity of QFT-GIT for active TB diagnosis in

high or low TB endemic areas.

IGRA was an independent risk factor associated with active TB and positive

IGRA with positive TST had more risk to developed active TB in our study. Dosanjh

DP et al. reported that IGRA in combination with TST can be used to rule out the

suspicion of active TB disease.[103] The role of QFT-GIT on different stages of

disease progression is still unclear.

Applying generalized linear stochastic model enable us to assess the effect of

positive QFT-GIT on the force of disease progression, namely infection rate and

conversion rate, while taking relevant factors such as age and sex into account. By

using multistate method, we are able to quantify these effects on the rate of infection

and conversion. However, it is often not admissible to have information on the results

of biomarker such as QFT-GIT at population level. This is especially true for the

study on diseases with relatively low incidence such as tuberculosis. To tackle this

difficulty, we proposed case-cohort study method based on multistate disease

progression and derive the probability of having observed sample given sampling

fractions for each underlying cohort in terms of the state of disease progression using

Bayesian revision. In addition to elucidate the mechanism on disease progression, the

strength of the proposed method make it possible to evaluated the effect of candidate
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biomarkers using sampled data, which is more feasible and cost-saving (see below).

6.3 Strength and concerns of methodology

6.3.1 The novelty of multi-state Markov model in conjunction with

birth-death process

The most breakthrough point in the methodological development of this thesis is

that we made use of a continuous-time Markov process embodied with

birth-and-death process to capture the disease natural history of infectious disease

consisting of infectious process and also the conversion of infected to disease process.

The parameters on birth rate and death rate were further applied to calculate tie

expected time to reach final size and also the extinct probability. Doing so has

numerous advantages for modelling the natural course of susceptible-infection-disease

like TB. First, as mentioned earlier, covariate-specific such as IGRA-specific

infection rate and conversion rate provide a new insight into personalized infection

control when screening for TB with IGRA is considered. LTBI with positive IGRA

may consider the use of prophylactic treatment and require intensive surveillance.

Second, the identification of high-risk subjects in the LTBI may provide an evidence

on personalized isolated and quarantine suggestion in order to reduce the likelihood of

spread of TB. Third, quantifying the disease natural history of chronic infectious

disease would provide a pseudo control group for evaluation of any intervention

related to TB control when a randomized controlled trial design cannot be used.

Fourth, the parameters also provide best-case estimates for future cost-effectiveness

analysis.
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6.3.2 Expedient use of non-standard case-cohort design

Another novelty of this thesis is to make use of multi-state Markov process in

conjunction with a non-standard case-cohort design. The transition parameters

underpinning the disease natural history using case-cohort design in Markov model by

Chen et al. enable one to evaluate the effectiveness of intervention using surrogate

endpoint for dispensing with long-term follow-up.[48] This approach is applied to

modelling of progression of adenoma to colorectal cancer as an example.[47] A

case-cohort study was conducted to review and collect a set of random samples to

estimate the disease natural history. A total of 305 normal cases, 300 polyp patients,

and 116 CRCs were extracted from a total of 13908 subjects in the routine medical

care setting and collected with the full information on pathological findings. It is less

costly and efficient to review all medical charts. A Markov process was further

applied to this case-cohort study to elucidate the disease progress from adenoma to

carcinoma with and without consideration of covariates, e.g., adenoma size. This

thesis applied this novel and efficient design together with a novel statistical method

for estimating multi-state TB natural history that would render the study very

efficient.

6.3.3 Simulations

According to our results of simulations with branching process, we can

estimate the R0 with parametric or non-parametric method. It depends on the structure

of information about infection disease. If the sample size (the number of generations)

is large enough, we can obtain unbiased estimation of R0 using the method of

simulation with branching process. However, if small generations of infection disease,

we can’t obtain the unbiased R0.
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Combination of non-parametric method with Poisson offspring distribution

assumption, we can easily calculate the extinct probability of infectious disease.

Though deterministic model can be used to estimate R0, the extinct probability of

infectious disease is unable to be known.

Similarly, the precise of estimated R using the method of simulation with birth-death

process depends on the initial infected cases and final infection size. ]

From results of our simulations, R0 can be consistently estimated by using any

method. However, with the decrease of generation size, estimation of R0 by using

nonparametric method may tend to increase variance than the parametric method if

the offspring size is larger than the generation size. It depends on the sample size.

Hence, the results of estimation by parametric method are unbiased than by

nonparametric method in our illustration of SARS in Singapore. The extinct

probability was consistent by both methods because sample size is the same.

 In addition, the method of branching process and the SIR model all depend on

the incubation period seemed to have a good estimation.

Data of TB outbreak was used for the validation of time prediction from

birth-death process model. There were at least 9 newly onset of LTBI during 2

months periods in the outbreak of LTCF (Table 5.23). If these night LTBI cases were

infected by one initial active TB case, it was fitted for our estimation (about 60 days).

However, it should be noted that the expected time to reach final size is very easily

affected by small initial size and final size when birth-death process is considered.

This is worthy of being investigated in the future.

6.5 Limitation

In fact, human contact patterns are more heterogeneous than assumed by

homogeneous-mixing models, such as SIR model and simple birth-death process. This
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simplifying assumption makes the analysis easy to control but may not adequately

reflect reality. Without two-step testing to measure tuberculin reactivity in the cohort

study, lower TST positive rate was estimated because of booster phenomenon. Hence,

LTBI cases were lower estimated. Furthermore, reactivation or reinfection of TB was

not considered in the three-state Markov model because those cases were few in TB.

6.6 Conclusion

Several conclusions could be reached in this thesis, including

1. the simulation of various R0 with branching process and also birth-and-death

revealed a full knowledge of the extinct probability and the expected time to reach

final size given initial size;

2. the demonstration of how to apply the Becker’s SIR model in conjunction with

branching process to estimate incubation period and latent period for the surveillance

of TB;

3. the development of a novel continuous-time Markov process embodied with

birth-and-death process in conjunction with a novel case-cohort design data given the

known sampling fraction to assess how covariates such as IGRA affect the infection

rate and the conversion rate framed with a three-state Markov process. The further

application of birth-and-death process used in the simulation of SARS process can

compute the extinct probability and the expected time to reach final size, both of

which provide a new insight into the golden period for the formulation of policy for

the containment of infectious disease in question.
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Table2.1Reproduction number for infectious disease

Infectious disease Area Epidemic

period

R0 References

SARS Toronto 2003 0.86,1.2,2,2.5 [73,

104-106]

Hong Kong 2003 1.2,1.7,2.1,2.7,3.4,3.6

Singapore 2003 1.1

Beijing 2003 1.1, 3.3

Taiwan 2003 4.2

All locations 2003 3

MERS Saudi Arabia 2013 0·60 (0·42–0·80) [107]

Poliomyelitis USA 1955 5-6 [2]

Netherlands 1960 6-7

Senegal 1981 18 [108]

Dominican 1963 19

French Morocco 1953 25

Burma 1979 30

Taiwan 1982 2.19-3.15 [3]

Mycobacterium

tuberculosis

Worldwide 1990s 1.1-31.26

< 8.93 90%

>1 >99%

[109]

Measles England 1947-50 13-14 [2]

England and Wales 1950-68 16-18

USA 1918-21 5-6

Italy 1964-79 6.1 [110]

Denmark 1983 9.7

England and Wales 1956-65 10.2

Canada 1912-13 11-12 [2]

England 1912-13 11-12

Ghana 1960-8 14-15

Eastern Nigeria 1960-8 16-17

Italy Homogeneous mixing

South

Centre

1949-1976 10-14.5

13-20

8.5-12

[111]

HFMD Taiwan 2000-2008 1.37 (0.23~5.71) [3]

Hong Kong 2004-2009 5.48(4.20-5.61)EV71

2.6 (1.963.67) Cox

A16

[112]

SARS: Severe Acute Respiratory Syndrome; MERS: Middle East Respiratory
Syndrome; HFMD: Hand Foot Mouth Disease
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Table 2.1. Reproduction number for infectious disease (continue)

Infectious disease Area Epidemic period R0 References

Influenza Switzerland 1918 1st  wave

2nd  wave

1.45-1.53

3.57-3.93

[113]

USA 1918 2.9 [114]

Brazil 1918 2.68 [115]

New Zealand 1918 1.3-3.1 [16]

Taiwan 2001-2001 2.56 [116]

CMV London 1975-82

1983-85

2.4

2.7

[117]

Haemophilus

influenzae type b

England and Wales 1993 3.3 [118]

Diphtheria USA 1918-19 4-5

USA 1908-17 4-5

Rubella Finland 1979 3.4 [110]

England and Wales 1986-7 3.7

Denmark 1983 4.2

Italy 1970-81 4.2

UK 1986 6.1(4.3-9.2 [119]

Netherlands 1958-74 6.4 [110]

East Germany 1978-89 7.8

England and Wales 1960-70 6-7 [2]

West Germany 1970-7 6-7

Czechoslovakia 1970-7 8-9

Poland 1970-7 11-12

Gambia 1976 15-16

Varicella USA 1913-17 7-8 [2]

USA 1912-21 7-8

USA 1943 10-11

England and Wales 1944-68 10-12
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Table 2.1. Reproduction number for infectious disease (continue)

Infectious disease Area Epidemic period R0 References

Dengue fever Brazil 2001 2.74-11.57 [120]

Yellow fever Brazil 2001 1.57-6.61 [120]

Scarlet fever USA 1908-17 7-8 [2]

USA 1908-17 5-6

USA 1918-19 6-7

Ebola Congo 1995 1.83 [121]

Uganda 2000 1.34

Malaria African 2000-3 1-3000 [122-127]

Northwest

Tanzania

1950s 1600

Central Uganda 1950s 2000-5000

Papua New

Guinea

1980s >500

7 age

seroprevalence

the island of

Principe, Gulf of

Guinea

1999 1.6

Papua New

Guinea

- 3.89

Tanzania 1990 3.7

Schistosoma

haematobium

Zimbabwe - 3.02 [127]

Schistosoma spp. Mali - 2.9 [127]

Bacterial STDs France - 12.01 [127]

Chlamydia Colorado 1996-7 0.55

46.5% R=0;

21.3% R<1;

5.4% R 2.0

[128]

Pertussis England and Wales 1944-78 16-18 [2]

USA 1943 16-17

Canada 1912-13 10-11
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Table 2.1. Reproduction number for infectious disease (continue)

Infectious disease Area Epidemic

period

R0 References

HIV type I Uganda ART 1994-98 1.44 [129]

England and Wales

male homosexuals

1981-5 2-5 [2]

Kenya female

prostitutes

1981-5 11-12

Uganda heterosexuals 1985-7 10-11

UK 13.82 [127]

Kunming,China IDUs 1994-2003 32 [130]

Smallpox Boston, USA 1721 4.3 [131]

Burford, England 1758 3.4

Chester, England 1774 5.8

Warrington, England 1773 4.7 4.0-5.3

Paris, France 1766 > 4-5

London 1836-70 > 5

Kosovo 1972 10.8

Europe 1958-73 10-12

Mumps Denmark 1983 3.6 [110]

East Germany 1968-72

1983-90

4.0

Italy 1964-81 4.2

Netherlands 1970s 4.3

England and Wales 1986-87 4.5

USA 1943 7-8 [2]

England and Wales 1960-80 11-14

Netherlands 1970-80 11-14

UK 1986 19.3 4-31.5 [119]

HIV: Human Immunodeficiency Virus
ART antiretroviral therapy
IDUs injecting drug users
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Table3.1The parameters of power series distribution.

a(k) ( )A '( )A pmf pgf

Geometric

distribution

G( )

1  1 1

1
2(1 ) (1 )k

1 (1 )s

Binomial

distribution

Bin(n, )

1
n

k

(1 )n 1(1 )nn
(1 )k n kn

k

(1 )ns

negative

binomial

distribution

NB(r, )

1 1r k

k

(1 ) r 1(1 ) rr 1
(1 )r kr k

k

1
( )
1 (1 )

r

s

poisson

distribution

P( )

1

!k
e e

!

ke

k

( 1)se

pmf: probability mass function; pgf: probability generating function
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Table 5.1Data generated with Poisson distribution

R0

0X 1X 2X 3X 4X 5X 6X
Total

2 1 2

(2)

3

(1,2)

3

(1,2,0)

3

(1,1,1)

5

(1,1,3)

19

(5,3,6,3,2)

36

1.5 1 2

(2)

3

(1,2)

5

(1,1,3)

8

(2,1,2,0,3)

8

(0,2,1,3,0,2,0,0)

13

(3,0,1,2,2,3,1,1)

40

1.1 1 2

(2)

2

(0,2)

2

(1,1)

2

(2)

1

(0,1)

0

(0)

10

0.9 1 2

(2)

1

(1,0)

1

(1)

0

(0)

- - 5

2 5 10

(0,3,3,2,2)

14

(0,0,2,

5,1,2,0,

2,1,1)

20

(3,1,1,1,

2,2,0,2,1,

0,1,3,3,0)

37

(2,1,3,4,

0,0,1,2,

3,2,1,4,

1,3,1,1,

3,1,1,3)

90

(3,0,3,3,2,1,0

1,1,3,8,0,1,3,2,

1,3,4,1,0,4,6,4,

1,2,1,3,1,1,3,0,

4,7,4,1,5,3)

196

(2,1,2,3,1,3,2,3,2,1,

1,1,3,2,1,2,4,0,5,3,

2,4,2,2,4,0,2,1,1,3,

5,2,2,1,0,2,1,0,2,3,

2,1,2,1,0,2,0,4,2,2,

0,1,2,2,3,2,0,1,2,3,

0,3,1,1,4,2,4,1,1,3,

0,2,4,2,4,3,5,5,2,4,

4,3,1,4,2,2,7,3,3,3,)

372

1.5 5 11

(3,2,1,3,2)

13

(1,0,2,1,2,

2,1,0,1,1,

2)

19

(0,2,1,0,1,

2,1,2,2,0,

4,2,2)

28

(2,0,2,1,2,

1,2,2,1,2,

1,3,0,1,1,

2,2,1,2)

41

(2,0,2,1,0,0,1,3,3,0,

2,2,1,2,0,2,2,2,2,0,

0,2,4,0,4,0,2,2)

62

(1,4,2,1,1,2,0,2,3,2,

2,0,3,1,0,2,4,2,1,2,

0,2,2,1,1,2,0,2,1,1,

3,2,0,0,3,0,2,1,2,1,1)

179

1.1 5 4

(1,1,2,0,0)

3

(3,0,0,0)

5

(1,4,0)

7

(2,1,1,2,1)

6

(0,2,1,0,0,3,0)

9

(0,4,0,1,0,4)

39

0.9 5 6

(2,0,3,0,1)

7

(2,2,1,0,0,

2)

5

(0,0,0,0,3,

2,0,)

3

(2,0,0,1,0)

3

(0,2,1)

3

(0,2,1)

32

R0 :the basic reproductive number; Xi : the total number of the i-th generation offspring.
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Table 5.2 Estimation for simulated data with Poisson distribution

0R 0X Method
Estimate

Non-parametric method Nbin Poisson Bin (n=1000) Bin (n=100) Geo

2 1

R
2.0588

(1.1286~2.9890)
2.0588

(1.3461~2.7716)
2.0588

(1.4340~2.8633)
2.0588

(1.9700~2.1477)
2.0588

(1.7805~2.3371)
2.0588

0.8659~3.2518)

q 0.104 0.2069 0.1879 0.1874 0.1836 0.4857

1.5 1

R
1.4444

(1.2046~1.6842)
-* 1.4444

(1.0271~1.9746)
1.4444

(1.3700~1.5189)
1.4444

(1.2106~1.6783)
1.4444

(0.7357~2.1532)

q 0.4000 0.4553 0.4552 0.4512 0.6923

1.1 1
R

1.0000
(0.5999~1.4000)

-* 1.0000
(0.4573~1.8983)

1.0000
(0.9381~1.0619)

1.0000
(0.8050~1.1950)

1.0000
(0.0760~1.9240)

q 1 1 1 1 1

0.9 1
R

0.8000
(0.1353~1.4647)

-* 0.8000
(0.2180~2.0483)

0.8000
(0.7446~0.8554)

0.8000
(0.6254~0.9746)

0.8000
(-0.2518~1.8518)

q 1 1 1 1 1

2 5
R

2.0852
(1.8358~2.3347 )

2.0852
(1.8618~2.3087 )

2.0852
(1.8719~2.2986)

2.0852 (1.9958~2.1746) 2.0852
(1.8052~2.3653)

2.0852
(1.7105~2.4600)

q 0.2003 0.201 0.1814 0.1810 0.1772 0.4795

1.5 5
R

1.4872
(1.3465~1.6279)

-* 1.4872
(1.2662~1.7082)

1.4872
(1.4117~1.5627)

1.4872
(1.2499~1.7244)

1.4872
(1.1387~1.8357)

q 0.3550 0.4256 0.4252 0.4213 0.6725

1.1 5
R

1.1333
(0.8526~1.4141)

1.1333
(0.6413~1.6253)

1.1333
(0.7849~1.5837)

1.1333
(1.0674~1.1993)

1.1333
(0.9259~1.3408)

1.1333
(0.5769~1.6898)

q 0.8456 0.8538 0.7744 0.7742 0.7723 0.8825

0.9 5
R

0.9310
(0.7431~1.1190)

0.9310
(0.5488~1.3133)

0.9310
(0.6136~1.3546)

0.9310
(0.8713~0.9908)

0.9310
(0.7428~1.1193)

0.9310
(0.4430~1.4191)

q 1 1 1 1 1 1

Nbin: Negative Binomial distribution; Bin: Binomial distribution; Geo: Geometric distribution; R : estimated reproductive number; q : estimated extinction probability.
*: No results because it cannot be estimated
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Table 5.3Data generated with Binomial distribution (n=1000)

R0 0X 1X 2X 3X 4X 5X 6X Total

2 1 5

(5)

6

(0,1,2,1,2)

11

(1,2,2,2,1

3)

23

(2,1,3,1,1,

2,3,4,2,0,

4)

44

(0,1,6,2,0,4,0,2,1,0,

0,1,2,0,2,4,5,2,2,2,

2,3,3)

93

(3,1,5,1,2,1,1,3,7,1,

3,3,3,1,1,2,1,1,3,1,

2,3,0,3,1,3,1,3,0,6,

2,3,2,4,1,3,2,1,1,3,

2,2,1,0)

183

1.5 1 2

(2)

5

(3,2)

7

(1,2,0,4,0)

14

(5,3,2,1,2,0,1)

18

(1,1,2,0,3,1,1,2,2,0,

1,1,1,2)

24

(1,1,2,1,3,1,2,2,2,2,

0,1,0,1,0,0,2,3,)

71

1.1 1 1

(1)

2

(2)

3

(1,2)

2

(1,0,1)

1

(0,1)

3

(3)

13

0.9 1 1

(1)

2

(2)

1

(0,1)

1

(1)

2

(2)

0

(0,0)

8

2 5 8

(2,3,1,2,0)

17

(3,1,1,2,3,

2,1,4)

32

(1,5,1,0,5,

2,1,0,3,1,

3,3,1,3,1,

1,1)

71

(2,4,2,3,2,

6,4,2,2,2,

5,1,2,2,3,

2,2,1,1,1,

0,1,2,3,1,

1,0,6,3,1,

1,3)

139

(0,4,4,2,4,3,0,1,1,1,

4,3,0,1,2,2,3,2,3,3,

3,1,2,3,2,3,2,3,3,1,

2,3,4,2,3,3,0,1,2,0,

0,1,4,2,1,1,2,4,3,1,

1,0,1,2,2,2,1,1,0,2,

1,2,3,2,1,4,0,2,4,2,1)

286

(4,2,2,2,1,1,2,4,4,3,

1,0,1,2,1,1,2,1,3,1,

4,1,1,0,2,0,3,4,1,0,

2,4,3,1,1,1,1,4,4,2,

1,2,2,3,2,4,2,1,4,4,

3,3,4,0,2,2,4,1,2,0,

1,1,1,2,1,0,0,6,2,4,*)

594

1.5 5 9

(2,2,1,0,4)

13

(3,0,5,1,1,

0,1,1,1)

27

(2,1,0,4,2,

1,3,2,2,4,

2,2,2)

30

(1,0,1,0,0,

1,2,1,0,0,

1,0,1,2,0,

1,3,1,0,3,

5,2,2,2,1,

0,0)

39

(1,2,2,2,0,5,2,2,0,1,

1,1,1,0,5,1,3,3,3,1,

0,1,0,0,0,0,0,3,1,0)

61

(1,2,2,0,0,2,1,2,1,1,

1,1,0,2,1,0,2,4,0,3,

1,0,4,1,2,1,2,1,2,1,

3,2,1,1,3,2,4,2,2)

184

1.1 5 7

(1,1,0,3,2)

4

(0,1,0,0,2,

1,0)

8

(1,4,2,1)

6

(2,1,0,1,0,

2,0,0)

5

(0,3,1,0,0,1)

7

(3,2,1,1,0)

42

0.9 5 6

(4,1,1,0,0)

5

(1,1,0,1,0,2)

6

(0,2,1,2,1)

4

(2,2,0,0,0,0)

2

(0,0,1,1)

1

(0,1)

29

R0 :the basic reproductive number; Xi : the total number of the i-th generation offspring.
*(...,2,2,3,1,3,1,3,0,4,2,5,4,2,1,2,4,1,2,1,2,4,3,1,1,3,1,2,5,5,1,1,3,3,4,2,0,2,2,2,2,2,1,4,1,1,4,2,3,2,2,2,1,3,

1,0,2,3,1,5,3,0,2,0,0,2,1,2,2)
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Table 5.4Estimation for simulated data with Binomial distribution (n=1000)

0R 0X Method
Estimate

Non-parametric

method

Nbin Poisson Bin

(n=1000)

Bin

(n=100)

Geo

2 1
R

2.0222
(1.7163~2.3281)

2.0222
(1.7211~2.3233)

2.0222
(1.7284~2.3160)

2.0222
(1.9342~2.1103)

2.0222
(1.7463~2.2981)

2.0222
(1.5115~2.5330)

q 0.1869 0.2075 0.1972 0.1968 0.1929 0.4945
1.5 1

R
1.4894

(1.2235~1.7552)
-* 1.4894

(1.1610~1.8817)
1.4894

(1.4138~1.5649)
1.4894

(1.2520~1.7268)
1.4894

(0.9389~2.0399)
q 0.3622 0.4241 0.4237 0.4199 0.6714

1.1 1
R

1.2000
(0.5836~1.8164)

-* 1.2000
(0.6201~2.0962)

1.2000
(1.1321~1.2679)

1.2000
(0.9866~1.4134)

1.2000
(0.1929~2.2071)

q 0.5616 0.6863 0.6860 0.6835 0.8332
0.9 1

R
0.8750

(0.2843~1.4657)
-* 0.8750

(0.3518~1.8028)
0.8750

(0.8170~0.9330)
0.8750

(0.6925~1.0575)
0.8750

(-0.0126~1.7626)
q 1 1 1 1 1

2 5
R

2.0331
(1.9493~2.1169)

-* 2.0331
(1.8636~2.2025)

2.0331
(1.9448~2.1214)

2.0331
(1.7565~2.3097)

2.0331
(1.7380~2.3282)

q 0.1557 0.1944 0.1940 0.1901 0.4919
1.5 5

R
1.4553

(1.2271~1.6835)
1.4553

(1.2330~1.6775)
1.4553

(1.2421~1.6685)
1.4553

(1.3806~1.5300)
1.4553

(1.2206~1.6900)
1.4553

(1.1212~1.7893)
q 0.4688 0.4716 0.4475 0.4471 0.4434 0.6872

1.1 5
R

1.0571
(0.6883~1.4260)

1.0571
(0.7017~1.4126)

1.0571
(0.7443~1.4571)

1.1
(0.9934~1.1208)

1.0571
(0.8567~1.2576)

1.0571
(0.5686~1.5457)

q 0.9016 0.9020 0.8939 0.8237 0.8929 0.9459
0.9 5

R
0.8571

(0.6348~1.0795)
0.8571

(0.5049~1.2094)
0.8571

(0.5492~1.2754)
0.8571

(0.7998~0.9145)
0.8571

(0.6765~1.0378)
0.8571

(0.3898~1.3245)
q 1 1 1 1 1 1

Nbin: Negative Binomial distribution; Bin: Binomial distribution; Geo: Geometric distribution; R : estimated reproductive number; q : estimated extinction
probability

*: No results because it cannot be estimated
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Table 5.5Data generated with Binomial distribution (n=100)

R0 0X 1X 2X 3X 4X 5X 6X Total

2 1 2

(2)

1

(1,0)

2

(2)

5

(4,1)

10

(1,2,0,3,4)

22

(2,4,5,0,1,2,3,1,2,2)

43

1.5 1 1

(1)

3

(3)

8

(3,3,2)

10

(1,1,0,2,1,

1,2,2)

21

(3,2,0,3,3,3,2,3,1,1)

24

(1,1,1,1,0,2,1,0,0,1,

0,0,0,1,3,1,4,2,0,4,1)

68

1.1 1 3

(3)

4

(1,1,2)

1

(0,0,0,1)

1

(1)

3

(3)

2

(1,0,1)

15

0.9 1 1

(1)

1

(1)

2

(2)

1

(1,0)

1

(1)

0

(0)

7

2 5 15

(2,1,2,4,6)

32

(2,4,1,1,2,

1,3,0,4,3,

3,2,0,4,2,

2,1,1,1,1,

2,2,1,3,4)

58

(4,3,1,3,2,

2,2,1,2,2,

1,1,2,4,0,

4,1,0,2,1,

1,1,2,2,0,

1,1,3,2,1,

0,2)

110

(*)

214

(#)

435

($)

869

1.5 5 6

(3,1,1,1,0)

11

(1,0,1,4,3,

2)

11

(1,2,1,0,0,

3,0,0,1,2,1)

16

(0,2,1,3,0,

5,1,2,0,2,

0)

26

(2,1,2,2,0,3,2,3,1,0,

1,1,1,0,3,4)

43

(4,2,2,1,3,0,0,0,4,3,

1,2,0,3,3,3,3,1,1,1,

2,1,1,0,1,1)

118

1.1 5 6

(1,0,2,0,3)

5

(1,2,1,0,0,1)

6

(1,3,0,0,2)

7

(0,1,1,2,1,

2)

8

(0,2,2,2,0,1,1)

9

(1,1,2,2,2,0,1,0)

46

0.9 5 7

(1,2,2,0,2)

8

(1,1,3,1,0,

1,1,0)

7

(2,1,1,0,2,

1,0)

2

(1,0,0,1,0,

0,0)

1

(0,1)

2

(2)

32

R0 :the basic reproductive number; Xi : the total number of the i-th generation offspring.

*(3,3,2,2,1,1,2,2,1,1,3,3,0,2,3,3,3,3,5,0,3,2,2,0,1,2,1,2,1,2,2,2,2,2,0,1,3,1,3,2,2,3,4,5,3,0,0,2,2,2,3,3,2,1,3,0,1,4)

#(2,0,1,2,2,1,3,1,3,0,1,1,2,0,1,1,2,3,4,1,1,3,2,2,3,2,0,0,4,5,1,2,1,1,3,1,2,1,2,0,1,4,2,3,1,0,3,0,1,2,2,0,4,0,1,1,4,3,4,1,

2,1,1,4,3,5,1,1,4,5,2,2,1,3,1,3,3,3,5,0,0,2,4,4,3,1,1,1,2,3,1,3,0,1,3,0,2,4,3,1,0,2,3,1,2,4,5,4,2,3)

$(3,1,1,3,2,1,2,1,1,3,1,2,2,5,2,4,1,1,3,2,4,1,2,3,2,2,0,2,2,1,1,2,3,0,2,3,2,0,2,1,3,4,3,4,2,2,2,5,2,2,1,6,2,2,4,3,0,2,0,1,1,0,

3,1,2,0,1,1,1,1,1,3,1,0,0,0,2,1,1,3,5,2,2,3,3,4,2,6,1,2,4,1,2,1,0,5,3,1,2,2,0,2,2,2,5,0,0,2,0,1,3,3,2,4,0,2,1,2,2,2,2,1,2,3,2,

2,0,0,0,1,1,2,5,1,5,2,4,3,3,2,0,0,3,3,2,2,1,4,3,2,0,2,2,0,2,2,1,2,3,1,5,2,3,3,0,0,0,1,4,1,3,2,3,2,0,4,1,0,4,4,1,1,2,3,0,2,0,2,

2,1,0,4,2,6,3,1,2,4,6,5,0,2,4,3)
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Table 5.6 Estimation for simulated data with Binomial distribution (n=100)

0R 0X Method
Estimate

Non-parametric

method

NBin Poisson Bin

(n=1000)

Bin

(n=100)

Geo

2 1
R

2.0000
(1.5942~2.4058)

-* 2.0000
(1.4414~2.7034)

2.0
(1.9124~2.0876)

2.0000
(1.7256~2.2744)

2.0000
(0.9523~3.0477)

q 0.2079 0.2032 0.2028 0.1988 0.4999
1.5 1

R
1.5227

(1.0867~1.9588)
-* 1.5227

(1.1801~1.9338)
1.5227

(1.4463~1.5992)
1.5227

(1.2827~1.7627)
1.5227

(0.9436~2.1019)
q 0.3829 0.4028 0.4023 0.3984 0.6567

1.1 1
R

1.0769
(0.4839~1.6700)

-* 1.0769
(0.5888~1.8069)

1.0769
(1.0126~1.1412)

1.0769
(0.8746~1.2792)

1.0769
(0. 2639~1.8899)

q 0.8508 0.8607 0.8605 0.8593 0.9286
0.9 1

R
0.8571

(0.3948~1.3195)
-* 0.8571

(0.3146~1.8656)
0.8571

(0.7998~0.9145)
0.8571

(0.6765~1.0378)
0.8571

(-0.0775~1.7918)
q 1 1 1 1 1

2 5
R

1.9908
(1.9308~2.0508)

-* 1.9908
(1.8580~2.1235)

1.9908
(1.9034~2.0781)

1.9908
(1.7170~2.2646)

1.9908
(1.7612~2.2204)

q 0.2024 0.2057 0.2053 0.2013 0.5024
1.5 5

R
1.5067

(1.3155~1.6978)
1.5067

(1.2235~1.7898)
1.5067

(1.2289~1.7845)
1.5067

(1.4306~1.5827)
1.5067

(1.2679~1.7454)
1.5067

(1.0668~1.9465)
q 0.4394 0.4234 0.4129 0.4124 0.4086 0.6636

1.1 5
R

1.1081
(1.0127~1.2036)

-* 1.1081
(0.7952~1.5033)

1.1081
(1.0429~1.1733)

1.1081
(0.9029~1.3133)

1.1081
(0.6156~1.6006)

q 0.7578 0.8115 0.8113 0.8097 0.9026
0.9 5

R
0.9000

(0.5870~1.2130)
-* 0.9000

(0.5931~1.3095)
0.9000

(0.8412~0.9588)
0.9000

(0.7149~1.0851)
0.9000

(0.4321~1.3679)
q 1 1 1 1 1

Nbin: Negative Binomial distribution; Bin: Binomial distribution; Geo: Geometric distribution; R : estimated reproductive number; q : estimated extinction
probability

*: No results because it cannot be estimated
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Table 5.7 Data generated with Geometric distribution

R0 0X 1X 2X 3X 4X 5X 6X Total

2 1 4

(4)

12

(6,2,2,2)

31

(0,4,0,3,0,

8,3,0,1,0,

3,9)

66

(0,4,2,1,2,0,7,1,2,0,

0,1,2,3,4,5,5,3,3,1,

2,0,2,1,2,0,1,5,2,2,

3)

117

(4,1,2,2,2,2,1,3,3,5,

1,2,0,0,2,3,1,0,0,1,

2,1,3,2,1,3,6,0,2,1,

8,0,3,0,1,0,0,1,3,1,

0,2,0,2,0,0,0,1,0,0,

1,1,0,4,0,6,11,4,2,0,

0,1, 1,1,7,0)

241

(1,0,1,2,1,2,3,4,5,2,

7,2,0,4,5,3,1,1,9,7,

2,4,1,0,3,3,0,4,3,1,

0,0,0,1,0,0,2,8,1,0,

1,1,0,5,0,3,0,0,5,0,

1,1,0,0,6,1,0,8,3,1,

4,5,1,1,3,1,0,1,0,4,

3,2,5,1,4,0,0,0,5,3,

1,5,1,11,1,1,0,1,1,0,

2,3,4,0,0,4,0,0,0,3,

1,2,0,1,1,0,0,7,1,1,

1,11,0,0,0,4,1)

472

1.5 1 3

(3)

4

(2,0,2)

4

(1,1,2,0)

9

(5,1,3,0)

11

(0,1,7,0,0,1,0,1,1)

15

(0,0,2,0,3,4,0,0,5,1,0)

47

1.1 1 3

(3)

2

(1,0,1)

4

(4,0)

4

(1,0,2,1)

3

(0,0,0,3)

3

(3,0,0)

20

0.9 1 4

(4)

4

(3,0,1,0)

3

(0,0,0,3)

3

(1,1,1)

1

(0,0,1)

0

(0)

16

2 5 9

(1,5,1,2,0)

22

(3,4,4,1,0,

8,1,1,0)

58

(2,6,1,3,0,

1,14,3,1,2,

4,0,4,0,0,

4,1,6,2,3,1,0)

85

(3,1,1,0,3,3,1,4,1,0,

4,0,0,0,0,1,1,2,4,1,

2,3,0,0,2,1,2,0,0,0,

1,0,0,4,0,0,0,1,3,0,

0,1,4,6,1,1,0,6,1,0,

7,3,0,3,0,2,1,0)

170

(2,4,0,4,3,0,4,0,2,0,

4,0,6,1,4,0,2,2,3,0,

1,0,0,3,3,9,1,1,6,3,

0,0,0,0,0,5,8,1,4,3,

0,1,0,0,6,0,5,1,0,2,

0,2,3,0,0,1,3,1,2,2,

2,5,3,0,2,4,3,0,5,3,

7,4,0,1,2,5,1,1,2,0,

0,0,0,2,0,)

354

(2,1,0,4,0,12,2,0,0,0,

5,4,0,3,0,1,0,0,0,0,

1,3,1,4,3,0,0,0,2,2,

1,2,0,3,4,0,0,4,0,3,

1,0,4,1,12,2,9,6,1,0,

1,0,2,1,11,1,0,5,0,1,

0,0,6,5,2,0,5,6,0,1,

0,2,1,0,3,2,1,0,2,3,

1,1,1,0,0,7,1,1,0,1,*)

703

1.5 5 8

(1,3,1,1,2)

15

(2,0,1,1,1,

1,0,9)

34

(1,4,0,4,3,

7,1,1,0,4,

0,1,1,1,6,)

55

(2,1,1,0,0,3,0,1,0,2,

3,2,4,3,0,0,3,4,1,1,

0,5,0,3,0,5,0,2,0,1,

1,3,2,2)

84

(3,0,1,0,3,1,1,1,1,0,

0,4,0,1,1,4,1,0,2,0,

2,0,2,0,6,0,3,1,4,0,

1,10,0,2,0,0,0,0,1,2,

3,4,0,2,0,1,1,0,5,0,

2,6,0,2,0)

100

(0,0,2,2,0,0,0,0,0,4,

1,0,1,0,0,0,2,1,0,1,

0,2,3,0,0,1,1,0,0,1,

0,4,1,0,3,6,0,0,1,0,

2,0,3,9,0,4,0,0,6,3,

0,2,0,1,1,1,6,2,0,0,

3,0,0,0,0,0,7,0,0,0,

2,0,3,0,0,0,1,0,0,0,

4,0,0,3)

301

1.1 5 6

(2,2,1,1,0)

13

(3,1,3,1,2,3)

12

(1,0,0,3,0,

0,1,0,1,4,1,0,1)

21

(1,3,0,2,3,0,0,4,1,1,

2,4)

23

(0,1,1,0,0,1,2,1,0,0,

0,3,0,0,0,6,2,3,2,0,1)

14

(4,1,0,0,0,4,0,0,0,0,

1,0,1,1,1,0,0,0,0,0,0,1,0)

94

0.9 5 5

(0,5,0,0,0)

6

(2,0,3,0,1)

12

(3,1,1,0,0,7)

9

(1,4,1,2,1,0,0,0,0,0,0,0)

7

(2,0,4,0,0,0,1,0,0)

1

(0,0,0,0,1,0,0)

45

R0 :the basic reproductive number; Xi : the total number of the i-th generation offspring.
*(1,2,0,2,2,0,0,0,0,0,4,5,0,0,0,4,0,0,0,12,1,1,0,2,0,1,0,0,7,3,2,6,3,1,0,4,0,3,2,0,1,2,1,0,2,0,2,2,5,0,4,0,10,2,5,5,6,2,4,1
,4,6,2,1,2,2,0,1,4,0,0,0,0,3,3,2,1,0,3,21)
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Table 5.8 Estimation for simulated data with Geometric distribution

0R 0X Method
Estimate

Non-parametric method NBin Poisson Bin
(n=1000)

Bin
(n=100)

Geo

2 1 R 2.0390
(1.8279~2.2500)

2.0390
(1.7412~2.3367)

2.0390
(1.8548~2.2231)

2.0390
(1.9505~2.1274)

2.0390
(1.7620~2.3160

2.0390
(1.7180~2.3600)

q 0.4477 0.4466 0.1929 0.1924 0.1886 0.4905
1.5 1 R 1.4375

(1.0809~1.7942)
1.4375

(0.8005~2.0745)
1.4375

(1.0524~1.9174)
1.4375

(1.3632~1.5118)
1.4375

(1.2042~1.6708)
1.4375

(0.7889~2.0861)
q 0.6844 0.6875 0.4604 0.4600 0.4563 0.6958

1.1 1 R 1.1176
(0.6287~1.6066)

1.1176
(0.4312~1.8040)

1.1176
(0.6729~1.7453)

1.1176
(1.0522~1.1831)

1.1176
(0.9116~1.3237(

1.1176
(0.3863~1,8490)

q 0.8675 0.8820 0.7972 0.7970 0.7953 0.8947
0.9 1 R 0.9375

(0.2585~1.6165)
0.9375

(0.2992~1.5758)
0.9375

(0.5247~1.5463)
0.9375

(0.8775~0.9975)
0.9375

(0.7486~1.1264)
0.9375

(0.2771~1.5979)
q 1 1 1 1 1 1

2 5 R 2.0000
(1.7709~2.2291)

2.0000
(1.7359~2.2641)

2.0000
(1.8516~2.1484)

2.0000
(1.9124~2.0876)

2.0000
(1.7256~2.2744)

2.0000
(1.7430~2.2570)

q 0.5125 0.5159 0.2032 0.2028 0.1988 0.4999
1.5 5 R 1.4726

(1.2305~1.7147)
1.4726

(1.2001~1.7452)
1.4726

(1.3049~1.6404)
1.4726

(1.3975~1.5478)
1.4726

(1.2365~1.7087)
1.4726

(1.2088~1.7364)
q 0.6904 0.6941 0.4355 0.4351 0.4312 0.6790

1.1 5 R 1.1125
(0.7341~1.4909)

1.1125
(0.8090~1.4160)

1.1125
(0.8934~1.3690)

1.1125
(1.0472~1.1778)

1.1125
(0.9069~1.3181)

1.1125
(0.7766~1.4484)

q 0.8737 0.8785 0.8048 0.8046 0.8030 0.8990
0.9 5 R 0.9091

(0.4882~1.3300)
0.9091

(0.4158~1.4024)
0.9091

(0.6495~1.2379)
0.9091

(0.8500~0.9682)
0.9091

(0.7231~1.0951)
0.9091

(0.5198~1.2984)
q 1 1 1 1 1 1

Nbin: Negative Binomial distribution; Bin: Binomial distribution; Geo: Geometric distribution; R : estimated reproductive number; q : estimated extinction probability
*: No results because it cannot be estimated



117

Table 5.9 Data generated with Negative Binomial distribution (r=10)

R0 0X 1X 2X 3X 4X 5X 6X Total

2 1 1

(1)

1

(1)

2

(2)

3

(2,1)

9

(3,4,2)

20

(4,8,0,1,1,2,0,3,1)

37

1.5 1 2

(2)

3

(1,2)

3

(0,2,1)

5

(1,0,4)

6

(2,1,1,1,1)

13

(4,3,1,0,2,3)

33

1.1 1 2

(2)

8

(6,2)

6

(1,1,0,1,1,

0,2,0)

7

(2,2,1,1,1,0)

4

(0,1,0,1,1,0,1)

4

(0,2,1,1)

32

0.9 1 1

(1)

3

(3)

2

(0,1,1)

2

(0,2)

2

(2,0)

1

(0,1)

12

2 5 12

(1,1,1,6,3)

29

(2,3,2,4,0,

1,1,5,4,3,

4,0)

55

(1,1,4,1,1,

4,5,0,4,1,

2,0,1,1,2,

0,2,0,3,4,

0,0,2,3,2,

3,4,3,1)

108

(2,2,0,0,2,1,1,1,0,2,

0,3,4,3,2,1,1,4,0,5,

0,2,1,2,3,0,1,1,1,1,

5,0,2,2,0,4,4,2,5,1,

3,1,2,1,6,2,1,2,3,3,

3,3,1,4,2)

221

(*)

443

(#)

873

1.5 5 8

(1,3,1,0,3)

15

(2,4,0,0,2,

3,3,1)

31

(3,1,2,3,0,

2,3,1,4,3,

3,2,1,2,1)

39

(0,0,0,2,2,5,1,0,1,1,

1,0,1,1,1,0,0,0,0,2,

1,0,4,4,2,3,1,0,0,2,4)

54

(0,2,1,1,1,0,0,5,0,1,

1,4,0,1,0,3,0,1,1,1,

1,0,1,4,0,2,3,1,2,1,

0,3,1,1,3,2,3,2,1)

83

(1,0,0,0,1,2,0,0,1,1,

2,1,1,2,3,0,1,1,1,1,

4,1,2,1,4,1,1,1,2,0,

2,3,5,1,0,1,1,1,5,1,

3,2,3,2,3,2,1,0,0,0,

1,2,4,4)

235

1.1 5 8

(1,2,3,1,1)

5

(0,0,2,0,0,

1,1,1)

8

(1,2,2,1,2)

7

(2,2,0,2,0,

0,0,1)

6

(0,1,1,1,1,

1,1)

10

(1,0,4,2,1,2)

49

0.9 5 6

(0,2,0,0,4)

7

(0,1,2,1,3,0)

4

(1,1,1,0,1,0,0)

3

(1,1,1,0)

3

(1,0,2)

3

(2,0,1)

31

R0 :the basic reproductive number; Xi : the total number of the i-th generation offspring.

*(0,1,2,1,0,4,1,0,0,6,1,0,2,2,0,7,3,2,1,2,6,2,3,2,2,2,2,1,4,4,3,1,1,3,1,1,1,2,0,2,2,3,1,2,2,1,2,2,3,3,4,3,2,0,2,1,2,1,0,4,

4,2,4,1,1,4,3,1,3,3,2,4,2,1,2,1,2,3,6,0,0,2,4,0,0,1,0,1,3,2,1,1,3,2,4,2,2,3,3,4,0,1,2,4,2,2,4,1)

#(0,4,2,2,1,2,4,3,5,0,2,3,1,6,1,5,1,2,4,2,1,1,3,0,2,1,1,1,0,1,1,0,3,4,2,0,2,1,1,2,2,1,2,3,5,4,3,1,2,2,4,1,2,5,0,3,2,1,1,3,

1,1,2,4,1,1,1,1,3,3,0,3,2,2,1,1,3,2,3,3,2,3,3,0,1,1,2,3,0,3,2,2,3,1,1,1,0,1,3,3,1,6,5,2,0,2,4,2,3,1,1,5,0,2,3,4,2,2,1,2,4,

1,1,1,3,1,7,0,0,1,1,3,3,2,4,1,1,2,3,5,1,3,1,4,0,2,4,4,2,2,4,2,2,2,2,4,0,1,1,2,3,0,1,3,0,3,1,3,0,2,2,0,3,1,2,1,1,5,3,0,2,3,

2,1,0,4,2,0,1,5,1,1,0,1,0,2,3,3,0,0,1,1,2,3,4,3,3,1,2,0,1,4,5,2,0,4,1,2,2,1,4)
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Table 5.10 Estimation for simulated data with Negative Binomial distribution (r=10)

0R 0X Method
Estimate

Non-parametric
method

Nbin Poisson Bin
(n=1000)

Bin
(n=100)

Geo

2 1 R 2.1176
(1.6539~2.5814)

2.1176
(1.2709~2.9644)

2.1176
(1.4832~2.9317)

2.1176
(2.0275~2.2077)

2.1176
(1.8355~2.3998)

2.1176
(0.8962~3.3391)

q 0.1977 0.2658 0.1739 0.1735 0.1697 0.4723
1.5 1 R 1.6000

(1.2422~1.9578)
-* 1.6000

(1.0944~2.2587)
1.6000

(1.5217~1.6783)
1.6000

(1.3541~1.8459)
1.6000

(0.7061~2.4939)
q 0.2904 0.3580 0.3576 0.3536 0.6250

1.1 1 R 1.1071
(0.4203~1.7940)

1.1071
(0.6911~1.5232)

1.1071
(0.7522~1.5715)

1.1071
(1.0420~1.1723)

1.1071
(0.9021~1.3122)

1.1071
(0.5414~1.6729)

q 0.8339 0.8321 0.8130 0.8128 0.8112 0.9033
0.9 1 R 1.0000

(0.4696~1.5304)
-* 1.0000

(0.4992~1.7893)
1.0000

(0.9381~1.0619)
1.0000

(0.8050~1.1950)
1.0000

(0.1643~1.8357)
q 1 1 1 1 1

2 5 R 2.0186
(1.9479~2.0893)

2.0186
(1.8797~2.1575)

2.0186
(1.8843~2.1529)

2.0186
(1.9306~2.1066)

2.0186
(1.7430~2.2943)

2.0186
(1.7853~2.2519)

q 0.2177 0.2133 0.1982 0.1978 0.1938 0.4954
1.5 5 R 1.5132

(1.3254~1.7010)
1.5132

(1.3014~1.7249)
1.5132

(1.3176~1.7087)
1.5132

(1.4370~1.5893)
1.5132

(1.2739~1.7524)
1.5132

(1.2031~1.8232)
q 0.4590 0.4538 0.4087 0.4083 0.4044 0.6609

1.1 5 R 1.1282
(0.7888~1.4677)

-* 1.1282
(0.8198~1.5146)

1.1282
(1.0624~1.1940)

1.1282
(0.9212~1.3352)

1.1282
(0.6419~1.6145)

q 0.7170 0.7817 0.7815 0.7797 0.8864
0.9 5 R 0.9286

(0.7280~1.1292)
0.9286

(0.5599~1.2973)
0.9286

(0.6066~1.3606)
0.9286

(0.8689~0.9883)
0.9286

(0.7406~1.1166)
0.9286

(0.4329~1.4243)
q 1 1 1 1 1 1

Nbin: Negative Binomial distribution; Bin: Binomial distribution; Geo: Geometric distribution; R : estimated reproductive number; q : estimated extinction probability
*: No results because it cannot be estimated
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Table 5.11 Data generated with Negative Binomial distribution (r=5)

R0 0X 1X 2X 3X 4X 5X 6X Total

2 1 3

(3)

8

(2,2,4)

19

(4,2,4,4,1,

1,1,2)

40

(2,1,1,2,3,

1,1,4,1,5,

1,1,2,3,1,

0,5,0,6)

77

(2,1,3,6,4,2,0,2,2,2,

2,1,5,0,0,3,2,0,2,1,

6,2,0,0,3,1,3,1,1,2,

0,0,1,1,1,1,6,3,1,4)

152

(2,3,2,5,3,10,1,0,4,3,

1,0,2,1,1,2,1,0,3,1,

3,0,0,3,0,3,5,2,2,0,

0,1,1,0,0,2,0,2,4,0,

2,3,3,1,1,3,3,4,3,4,

0,2,1,1,3,2,5,0,3,3,

5,1,3,2,0,3,3,2,1,2,

1, 0,3,1,3,1,1)

300

1.5 1 2

(2)

9

(3,6)

14

(0,0,4,1,4,

1,3,1,0)

23

(2,4,1,0,1,

3,0,1,1,1,

2,3,2,2)

31

(1,0,4,0,2,2,1,4,0,2,

0,1,8,1,1,1,0,0,2,0,

1,0,0)

42

(1,1,1,0,3,1,1,4,1,1,

2,1,2,0,1,2,0,1,2,3,

0,0,3,1,4,1,1,2,2,0,1)

122

1.1 1 4

(4)

11

(4,5,1,1)

18

(2,1,1,4,1,

3,1,2,0,3,0)

13

(1,0,1,2,0,0,0,0,2,2,

1,1,1,0,1,0,1,0)

10

(1,2,0,2,0,0,1,0,1,1,

1,0,1)

6

(1,0,0,1,2,0,0,1,0,1)

63

0.9 1 1

(1)

2

(2)

2

(1,1)

1

(1,0)

1

(1)

0

(0)

8

2 5 6

(1,2,2,0,1)

15

(3,0,3,2,4,3)

23

(1,0,2,1,0,

3,2,1,0,1,

1,5,1,2,3)

37

(4,0,0,3,1,0,3,2,1,1,

1,0,2,2,2,2,3,1,3,2,

3,0,1)

78

(3,0,2,4,2,0,2,3,2,0,

2,6,3,1,1,6,2,1,0,3,

1,5,2,3,0,2,2,3,2,2,

2,2,5,0,0,1,3)

175

(*)

339

1.5 5 9

(3,0,4,0,2)

14

(2,0,0,1,3,

4,0,3,1)

22

(1,1,3,0,2,

2,5,1,2,1,

0,0,2,2)

27

(1,1,1,4,0,0,0,4,1,1,

1,2,2,0,1,2,0,1,2,0,

2,1)

41

(1,0,0,4,0,3,1,4,0,0,

0,1,1,4,6,1,1,1,1,2,

2,1,1,4,1,0,1)

61

(1,0,0,1,3,2,2,3,1,1,

1,1,3,0,0,1,1,0,4,3,

3,1,2,0,2,1,1,1,4,1,

1,2,1,4,0,2,0,0,2,4,1)

179

1.1 5 4

(1,0,2,0,1)

5

(0,1,3,1)

6

(1,0,0,3,2)

13

(3,1,2,2,3,2)

8

(2,0,0,1,0,1,0,1,0,1,0,2,0)

9

(0,2,2,0,3,0,1,1)

50

0.9 5 7

(1,0,1,5,0)

5

(0,0,0,1,2,

0,2)

5

(1,3,0,0,1)

5

(3,1,0,0,1)

1

(0,0,0,0,1)

2

(2)

30

R0 :the basic reproductive number; Xi : the total number of the i-th generation offspring.

*(2,1,2,3,3,2,6,1,0,1,4,5,2,2,1,0,0,0,2,1,2,3,2,1,6,6,4,2,3,5,3,0,4,5,3,1,2,1,0,3,3,2,1,1,1,0,1,1,0,3,3,2,0,0,3,1,1,3,1,5,
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4,5,1,0,2,2,2,3,4,3,6,4,0,1,5,3,2,2)
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Table 5.12 1Estimation for simulated data with Negative Binomial distribution (r=5)

0R 0X Method
Estimate

Non-parametric
method

NBin Poisson Bin
(n=1000)

Bin
(n=100)

Geo

2  1
R

2.0203
(1.8906~2.1499)

2.0203
(1.7546~2.2860)

2.0203
(1.7913~2.2493)

2.0203
(1.9323~2.1083)

2.0203
(1.7445~2.2960)

2.0203
(1.6223~2.4182)

q 0.2667 0.2673 0.1977 0.1973 0.1934 0.4950
1.5 1

R
1.5125

(1.1151~1.9099)
1.5125

(1.1904~1.8346)
1.5125

(1.2430~1.7820)
1.5125

(1.4363~1.5887)
1.5125

(1.2733~1.7517)
1.5125

(1.0853~1.9397)
q 0.5029 0.5107 0.4092 0.4087 0.4048 0.6611

1.1 1
R

1.0877
(0.5175~1.6579)

1.0877
(0.8339~1.3944)

1.0877
(0.5175~1.6579)

1.0877
(1.0231~1.1523)

1.0877
(0.8844~1.2910)

1.0877
(0.6965~1.4789)

q 0.8720 0.8699 0.8432 0.8430 0.8417 0.9194
0.9 1

R
0.8750

(0.4390~1.3110)
-* 0.8750

(0.3518~1.8028)
0.8750

(0.8170~0.9330)
0.8750

(0.6925~1.0575)
0.8750

(-0.0126~1.7626)
q 1 1 1 1 1

2  5
R

2.0366
(1.7841~2.2891)

2.0366
(1.7963~2.2769)

2.0366
(1.8182~2.2550)

2.0366
(1.9482~2.1249)

2.0366
(1.7597~2.3134)

2.0366
(1.6560~2.4172)

q 0.2542 0.2673 0.1935 0.1931 0.1892 0.4910
1.5 5

R
1.4746

(1.3672~1.5819)
1.4746

(1.2308~1.7183)
1.4746

(1.2555~1.6937)
1.4746

(1.3994~1.5498)
1.4746

(1.2383~1.7108)
1.4746

(1.1299~1.8192)
q 0.4950 0.5107 0.4341 0.4377 0.4299 0.6781

1.1 5
R

1.0976
(0.6931~1.5020)

-* 1.0976
(0.8006~1.4686)

1.0976
(1.0327~1.1625)

1.0976
(0.8934~1.3018)

1.0976
(0.6331~1.5620)

q 0.8271 0.8276 0.8274 0.8260 0.9109
0.9 5

R
0.8929

(0.5464~1.2393)
0.8929

(0.4434~1.3423)
0.8929

(0.5778~1.3180)
0.8929

(0.8343~0.9514)
0.8929

(0.7085~1.0772)
0.8929

(0.4113~1.3744)
q 1 1 1 1 1 1

Nbin: Negative Binomial distribution; Bin: Binomial distribution; Geo: Geometric distribution; R : estimated reproductive number; q : estimated
extinction probability

*: No results because it cannot be estimated
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Table 5.13 Data generated with Negative Binomial distribution (r=2)

R0 0X 1X 2X 3X 4X 5X 6X Total

2 1 2

(2)

3

(0,3)

9

(4,4,1)

22

(0,0,6,0,4,

1,0,2,9)

37

(0,1,5,1,0,1,0,1,1,5,

1,5,1,0,1,2,1,0,6,0,

2,3)

78

(0,4,3,1,1,2,3,1,0,3,

2,3,0,7,0,4,0,5,1,2,

4,0,4,5,2,3,0,0,6,1,

0,4,2,1,0,0,4)

152

1.5 1 2

(2)

3

(1,2)

4

(2,2,0)

10

(1,2,1,6)

15

(0,2,3,1,2,0,0,6,1,0)

19

(0,1,1,1,0,0,2,5,0,1,

1,1,1,3,2)

54

1.1 1 2

(2)

2

(1,1)

2

(2,0)

4

(2,2)

2

(0,1,0,1)

3

(3,0)

16

0.9 1 3

(3)

2

(2,0,0)

1

(0,1)

2

(2)

1

(1,0)

0

(0)

10

2 5 5

(0,1,1,1,2)

12

(1,2,1,4,4)

22

(3,1,0,0,1,

2,2,2,3,4,

3,1)

53

(1,2,0,6,3,

2,1,7,2,2,

0,1,0,2,2,

0,1,4,4,0,

8,5)

96

(1,2,0,0,2,1,0,1,3,2,

0,1,2,4,0,0,2,2,1,2,

1,2,0,4,3,2,0,1,2,7,

0,1,2,0,2,1,3,2,0,2,

5,1,4,2,1,0,0,5,3,3,

7,1,3)

193

(*)

386

1.5 5 7

(3,1,0,1,2)

8

(0,0,2,3,1,

0,2)

11

(1,3,1,1,1,

1,1,2)

19

(2,1,2,5,2,

0,0,4,0,3,

0)

36

(3,1,6,0,0,1,1,8,1,4,

1,0,1,0,1,4,1,1,2)

47

(0,1,1,1,1,6,9,2,3,0,

0,1,1,0,3,1,0,2,1,0,

2,3,3,0,3,0,2,3,0,0,

2,0,0,3,1,1)

133

1.1 5 10

(2,0,4,3,1)

14

(2,2,1,1,2,

0,0,0,3,3)

13

(2,1,0,1,2,

3,0,1,1,1,

0,0,1,0)

17

(0,1,0,5,1,

3,2,0,2,0,

1,0,2)

15

(2,0,3,0,0,0,1,0,0,3,

0,0,1,1,0,3,1)

13

(0,0,0,4,0,1,2,0,0,1,

2,2,0,0,1)

87

0.9 5 7

(1,2,3,0,1)

7

(1,1,0,0,1,

4,0)

7

(1,0,1,1,4,

0,0)

3

(1,1,0,0,1,

0,0)

6

(0,2,4)

2

(1,1,0,0,0,0)

37

R0 :the basic reproductive number; Xi : the total number of the i-th generation offspring.

*(1,0,1,4,1,1,4,1,2,0,0,2,5,5,0,0,4,0,4,2,2,2,3,0,6,0,4,0,4,2,0,0,3,3,3,0,3,2,6,0,3,2,0,2,1,0,7,2,2,5,4,0,1,0,3,8,2,3,1,5,

0,1,7,0,2,1,2,4,1,1,0,1,4,0,1,3,0,4,1,3,0,2,6,1,1,2,0,1,0,2,3,0,0,1,3,4)
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Table 5.14 Estimation for simulated data with Negative Binomial distribution (r=2)

0R 0X Method
Estimate

Non-parametric
method

Nbin Poisson Bin
(n=1000)

Bin
(n=100)

Geo

2 1 R 2.0405
(1.7805~2.3006)

2.0405
(1.5367~2.5444)

2.0405
(1.7151~2.3660)

2.0405
(1.9521~2.1290)

2.0405
(1.7634~2.3177)

2.0405
(1.4730~2.6081)

q 0.4328 0.4205 0.1925 0.1921 0.1882 0.4901
1.5 1 R 1.5143

(1.2076~1.8210)
1.5143

(1.0200~2.0086)
1.5143

(1.1343~1.9807)
1.5143

(1.4381~1.5905)
1.5143

(1.2749~1.7536)
1.5143

(0.8678~2.1607)
q 0.5053 0.5179 0.4080 0.4076 0.4037 0.6603

1.1 1 R 1.1538
(0.6994~1.6082)

-* 1.1538
(0.6458~1.9031)

1.1538
(1.0873~1.2204)

1.1538
(0.9445~1.3632)

1.1538
(0.2969~2.0108)

q 0.7016 0.7458 0.7456 0.7435 0.8667
0.9 1 R 0.900

(0.2195~1.5805)
0.900

(0.2193~1.5807)
0.900

(0.4115~1.7085)
0.900

(0.8412~0.9588)
0.900

(0.7149~1.0851)
0.900

(0.0895~1.7105)
q 1 1 1 1 1 1

2 5 R 1.9741
(1.7781~2.1701)

1.9741
(1.7082~2.2400)

1.9741
(1.7759~2.1723)

1.9741
(1.8871~2.0611)

1.9741
(1.7014~2.2467)

1.9741
(1.6322~2.3159)

q 0.3692 0.3610 0.2014 0.2100 0.2060 0.5065
1.5 5 R 1.4884

(1.2780~1.6988)
1.4884

(1.1658~1.8109)
1.4884

(1.2305~1.7462)
1.4884

(1.4128~1.5639)
1.4884

(1.2510~1.7257)
1.4884

(1.0816~1.8951)
q 0.5489 0.5518 0.4248 0.4244 0.4205 0.6720

1.1 5 R 1.1081
(0.8527~1.3635)

1.1081
(0.8223~1.3939)

1.1081
(0.8813~1.3755)

1.1081
(1.0429~1.1733)

1.1081
(0.9029~1.3133)

1.1081
(0.7599~1.4563)

q 0.8556 0.8603 0.81115 0.8113 0.8097 0.9026
0.9 5 R 0.9129

(0.5201~1.3085)
0.9129

(0.5253~1.3033)
0.9129

(0.6254~1.2907)
0.9129

(0.8550~0.9735)
0.9129

(0.7277~1.1008)
0.9129

(0.4760~1.3526)
q 1 1 1 1 1 1

Nbin: Negative Binomial distribution; Bin: Binomial distribution; Geo: Geometric distribution; R : estimated reproductive number; q : estimated extinction probability
*: No results because it cannot be estimated
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Table 5.15 Data generated with Negative Binomial distribution (r=1)

R0 0X 1X 2X 3X 4X 5X 6X Total

2 1 4
(4)

12
(6,2,2,

2)

31
(0,4,0,3,

0,
8,3,0,1,0

,
3,9)

66
(0,4,2,1,

2,
0,7,1,2,0

,
0,1,2,3,4

,
5,5,3,3,1

,
2,0,2,1,2

,
0,1,5,2,2

,
3)

117
(4,1,2,2,2,2,1,3,3,5,
1,2,0,0,2,3,1,0,0,1,
2,1,3,2,1,3,6,0,2,1,
8,0,3,0,1,0,0,1,3,1,
0,2,0,2,0,0,0,1,0,0,
1,1,0,4,0,6,11,4,2,0,
0,1, 1,1,7,0)

241
(1,0,1,2,1,2,3,4,5,2,
7,2,0,4,5,3,1,1,9,7,
2,4,1,0,3,3,0,4,3,1,
0,0,0,1,0,0,2,8,1,0,
1,1,0,5,0,3,0,0,5,0,
1,1,0,0,6,1,0,8,3,1,
4,5,1,1,3,1,0,1,0,4,
3,2,5,1,4,0,0,0,5,3,
1,5,1,11,1,1,0,1,1,0,
2,3,4,0,0,4,0,0,0,3,
1,2,0,1,1,0,0,7,1,1,
1,11,0,0,0,4,1)

472

1.5 1 1
(1)

1
(1)

2
(2)

2
(0,2)

6
(4,2)

9
(0,1,0,1,4,3)

22

1.1 1 8
(8)

10
(0,1,2,

0,3,
4,0,0)

6
(0,0,0,0,

0,
1,1,2,0,2

)

8
(6,1,1,0,

0,
0)

6
(0,0,1,0,0,
1,4,0)

3
(1,1,0,1,0,0)

42

0.9 1 3
(3)

3
(1,2,0)

4
(1,2,1)

1
(0,0,1,0)

1
(1)

0
(0)

13

2 5 9
(1,5,1,
2,0)

22
(3,4,4,

1,0,
8,1,1,0

)

58
(2,6,1,3,

0,
1,14,3,1,

2,
4,0,4,0,0

,
4,1,6,2,3

,1,0)

85
(*)

170
(#)

354
(&)

703#

1.5 5 14
(4,3,2,
1,4)

12
(0,0,2,

0,0,
0,0,3,2

,0,
0,3,0,2

)

23
(2,2,0,1,

1,
0,4,3,4,0

,
2,4)

42
(0,0,1,1,

1,
9,1,5,2,2

,
1,0,6,2,0

,
0,4,1,3,0

,
0,0,3)

48
(0,0,3,0,0,1,5,0,0,0,0,0,
0,7,0,1,0,2,1,1,2,0,0,0,1
,0,0,1,2,3,3,0,0,0,0,1,7,
2,1,2,0,2)

71
(4,7,1,2,1,1,6,0,1,1,1,2,0,0
,3,0,2,2,2,0,5,1,0,0,0,1,4,0
,0,6,1,
1,3,2,0,0,1,0,0,1,0,1,0,0,2,
0,4,1,1)

215

1.1 5 6
(2,2,1,
1,0)

13
(3,1,3,

1,2,
3)

12
(1,0,0,3,

0,
0,1,0,1,4

,
1,0,1)

21
(1,3,0,2,

3,
0,0,4,1,1

,
2,4)

23
(0,1,1,0,0,
1,2,1,0,0,
0,3,0,0,0,
6,2,3,2,0,1)

14
(4,1,0,0,0,4,0,0,0,0,
1,0,1,1,1,0,0,0,0,0,
0,1,0)

94

0.9 5 5
(0,5,0,
0,0)

6
(2,0,3,
0,1)

12
(3,1,1,0,

0,7)

9
(1,4,1,2,

1,
0,0,0,0,0

,0,0)

7
(0,2,0,4,0,
0,0,1,0)

1
(0,0,0,0,1,0,0)

45

R0 :the basic reproductive number; Xi : the total number of the i-th generation offspring.

*(3,1,1,0,3,3,1,4,1,0,4,0,0,0,0,1,1,2,4,1,2,3,0,0,2,1,2,0,0,0,1,0,0,0,4,0,0,0,1,3,0,0,1,4,6,1,1,0,6,1,0,7,3,0,3,0,2,1,0,2,4,0,4,3,0,4,0,2,0);#(4,0,6,1,4,0,

2,2,3,0,1,0,0,3,3,9,1,1,6,3,0,0,0,0,0,5,8,1,4,3,0,1,0,0,6,0,5,1,0,2,0,2,3,0,0,1,3,1,2,2,5,3,0,2,4,3,0,5,3,7,4,0,1,2,5,1,1,2,0,0,0,0,2,0,2,1,0,4,0,12,2,0,

0,0,5);&(4,0,3,0,1,0,0,0,0,1,3,1,4,3,0,0,0,2,2,1,2,0,3,4,0,0,4,0,3,1,0,4,1,12,2,9,6,1,0,1,0,2,1,11,1,0,5,0,1,0,0,6,5,2,0,5,6,0,1,0,2,1,0,3,2,1,0,2,3,1,1

,1,0,0,7,1,1,0,1,1,2,0,2,2,0,0,0,0,0,4,5,0,0,0,4,0,0,0,12,1,1,0,2,0,1,0,0,7,3,2,6,3,1,0,4,0,3,2,0,1,2,1,0,2,0,2,2,5,0,4,0,10,2,5,5,6,2,4,1,4,6,2,1,2,2,0,

1,4,0,0,0,0,3,3,2,1,0,3,21)
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Table 5.16 Estimation for simulated data with Negative Binomial distribution (r=1)

0R 0X Method
Estimate

Non-parametric
method

Nbin Poisson Bin
(n=1000)

Bin
(n=100)

Geo

2 1 R 2.0390
(1.8279~2.2501)

2.0390
(1.7412~2.3367)

2.0390
(1.8548~2.2231)

2.0390
(1.9505~2.1274)

2.0390
(1.7620~2.3160)

2.0390
(1.7180~2.3600)

q 0.4477 0.4466 0.1929 0.1924 0.1886 0.4905
1.5 1 R 1.6154

(1.0913~2.1395)
1.6154

(0.8842~2.3466)
1.6154

(0.9999~2.4693)
1.6154

(1.5367~1.6941)
1.6154

(1.3683~1.8625)
1.6154

(0.4980~2.7327)
q 0.3991 0.3812 0.3498 0.3494 0.3454 0.6192

1.1 1 R 1.0513
(0.1127~1.9899)

1.0513
(0.5096~1.5929)

1.0513
(0.7544~1.4262)

1.0513
(0.9878~1.1148)

1.0513
(0.8514~1.2512)

1.0513
(0.5904~1.5122)

q 0.9656 0.9642 0.9040 0.9039 0.9031 0.9512
0.9 1 R 0.9231

(0.3150~1.5311)
-* 0.9231

(0.4770~1.6124)
0.9231

(0.8636~0.9826)
0.9231

(0.7356~1.1105)
0.9231

(0.1988~1.6477)
q 1 1 1 1 1

2 5 R 2.0000
(1.7709~2.2291)

2.0000
(1.7359~2.2641)

2.0000
(1.8516~2.1484)

2.0000
(1.9124~2.0876)

2.0000
(1.7256~2.2744)

2.0000
(1.7430~2.2570)

q 0.5125 0.4466 0.2032 0.2028 0.1988 0.4999
1.5 5 R 1.4583

(1.1324~1.7843)
1.4583

(1.1528~1.7639)
1.4583

(1.2611~1.6556)
1.4583

(1.3835~1.5331)
1.4583

(1.2234~1.6933)
1.4583

(1.1491~1.7676)
q 0.6762 0.3812 0.4454 0.4450 0.4412 0.6858

1.1 5 R 1.1125
(0.7341~1.4909)

1.1125
(0.8090~1.4160)

1.1125
(0.8934~1.3690)

1.1125
(1.0472~1.1778)

1.1125
(0.9069~1.3181)

1.1125
(0.7766~1.4484)

q 0.8737 0.8785 0.8048 0.8046 0.8030 0.8990
0.9 5 R 0.9091

(0.4882~1.3300)
0.9091

(0.4158~1.4024)
0.9091

(0.6495~1.2379)
0.9091

(0.8500~0.9682)
0.9091

(0.7231~1.0951)
0.9091

(0.5198~1.2984)
q 1 1 1 1 1 1

Nbin: Negative Binomial distribution; Bin: Binomial distribution; Geo: Geometric distribution; R : estimated reproductive number; q : estimated extinction probability
*: No results because it cannot be estimated
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Table 5.17 Average number of offspring in each generation under 10000 times simulations for a given Poisson distribution

R0 0X 1X 2X 3X 4X 5X 6X 7X 8X 9X Total R (SE) q

2 1 1.98 3.95 7.87 15.76 31.59 63.18 126.31 252.79 505.39 1009.81 2.00(0.47) 0.209

1.5 1 1.52 2.28 3.40 5.07 7.61 11.46 17.14 25.61 38.46 113.55 1.50(0.28) 0.4176

1.1 1 1.12 1.24 1.39 1.52 1.66 1.84 2.01 2.23 2.45 16.46 1.10(0.09) 0.7314

0.9 1 0.91 0.82 0.72 0.65 0.58 0.52 0.46 0.42 0.37 6.45 0.90(0.13) 0.9037

2 5 10.04 20.10 40.35 80.82 161.68 323.52 647.04 1293.01 2586.91 5168.47 2.00(0.47) 0.0005

1.5 5 7.49 11.20 16.73 25.14 37.78 56.53 84.87 127.39 190.83 562.95 1.50(0.29) 0.013

1.1 5 5.49 6.06 6.70 7.39 8.13 8.88 9.77 10.76 11.82 80.00 1.10(0.13) 0.2192

0.9 5 4.55 4.09 3.68 3.33 2.98 2.68 2.42 2.19 1.99 32.91 0.90(0.04) 0.5964

R : Estimated by parametric method; q : extinction probability calculated by simulation; SE: standard error.
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Table 5.18 Average number of offspring in each generation under 10000 times simulations for a given Binomial distribution (n=1000)

R0 0X 1X 2X 3X 4X 5X 6X 7X 8X 9X Total R (SE) q

2 1 2.00 4.01 8.05 16.07 32.17 64.33 128.73 257.72 515.50 1029.58 2.00(0.0004) 0.2014

1.5 1 1.50 2.25 3.37 5.07 7.64 11.45 17.19 25.81 38.66 113.94 1.50(0.0009) 0.4135

1.1 1 1.10 1.20 1.32 1.45 1.59 1.75 1.93 2.15 2.34 15.82 1.10(0.0002) 0.7418

0.9 1 0.89 0.81 0.73 0.66 0.59 0.53 0.48 0.43 0.40 6.52 0.90(0.0002) 0.9003

2 5 9.99 19.95 39.93 79.99 159.80 319.41 639.15 1278.26 2556.71 5108.19 2.00(0.0003) 0.0006

1.5 5 7.47 11.24 16.84 25.36 37.88 56.81 85.25 127.83 191.79 565.46 1.50(0.0008) 0.0112

1.1 5 5.53 6.06 6.69 7.36 8.10 8.88 9.76 10.78 11.90 80.07 1.10(0.0011) 0.2191

0.9 5 4.47 4.01 3.60 3.24 2.92 2.65 2.41 2.17 1.97 32.44 0.90(0.0018) 0.5945

R : Estimated by parametric method; q : extinction probability calculated by simulation.
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Table 5.19 Average number of offspring in each generation under 10000 times simulations for a given Binomial distribution (n=100)

R0 0X 1X 2X 3X 4X 5X 6X 7X 8X 9X Total R (SE) q

2 1 2.00 3.97 7.95 15.85 31.71 63.49 126.96 253.74 507.29 1013.96 2.00(0.0004) 0.201

1.5 1 1.50 2.22 3.35 4.99 7.48 11.22 16.79 25.19 37.76 111.49 1.50(0.0009) 0.4124

1.1 1 1.11 1.22 1.34 1.47 1.61 1.80 1.99 2.20 2.41 16.15 1.10(0.0002) 0.7366

0.9 1 0.90 0.79 0.72 0.65 0.58 0.51 0.46 0.41 0.36 6.39 0.90(0.0002) 0.9046

2 5 9.99 19.92 39.84 79.62 159.21 318.56 636.90 1273.92 2547.79 5090.76 2.00(0.0003) 0.0003

1.5 5 7.51 11.25 16.96 25.42 38.18 57.32 85.98 128.90 193.44 569.96 1.50(0.0008) 0.0118

1.1 5 5.46 5.97 6.56 7.19 7.87 8.65 9.52 10.43 11.49 78.16 1.10(0.0011) 0.2297

0.9 5 4.50 4.03 3.58 3.20 2.89 2.59 2.36 2.11 1.89 32.14 0.90(0.0018) 0.5982

R : Estimated by parametric method; q : extinction probability calculated by simulation.
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Table 5.20 Average number of offspring in each generation under 10000 times simulations for a given Geometric distribution

R0 0X 1X 2X 3X 4X 5X 6X 7X 8X 9X Total R (SE) q

2 1 1.98 3.97 7.83 15.67 31.30 62.67 125.58 250.87 502.14 1003.01 2.00(0.0011) 0.5063

1.5 1 1.54 2.30 3.41 5.06 7.54 11.30 16.76 25.13 37.67 111.71 1.50(0.0029) 0.6553

1.1 1 1.10 1.22 1.34 1.47 1.60 1.77 1.94 2.15 2.37 15.95 1.10(0.0021) 0.8511

0.9 1 0.89 0.82 0.72 0.66 0.59 0.55 0.49 0.44 0.38 6.55 0.90(0.0069) 0.9416

2 5 9.98 19.98 39.88 79.43 159.10 318.13 636.66 1273.71 2548.65 5090.53 2.00(0.0005) 0.0339

1.5 5 7.55 11.26 16.82 25.20 37.78 56.80 85.27 127.80 191.54 565.01 1.50(0.0008) 0.1266

1.1 5 5.52 6.07 6.72 7.39 8.06 8.86 9.71 10.75 11.71 79.80 1.10(0.0021) 0.4393

0.9 5 4.53 4.04 3.61 3.24 2.93 2.61 2.35 2.09 1.87 32.26 0.90(0.0018) 0.7419

R : Estimated by parametric method; q : extinction probability calculated by simulation.
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Table 5.21 Average number of offspring in each generation under 10000 times simulations for a given Negative Binomial distribution

R0 0X r 1X 2X 3X 4X 5X 6X 7X 8X 9X Total R (SE) q

2 1

10 2.00 4.00 7.98 15.96 31.92 63.88 127.79 255.62 511.23 1021.38 2.00(0.0003) 0.2426

5 2.03 4.04 8.10 16.18 32.32 64.55 129.10 257.84 515.16 1030.31 2.00(0.0005) 0.2853

2 2.01 4.00 8.00 16.04 31.95 63.74 127.62 255.35 510.68 1020.39 2.00(0.0008) 0.3894

1 1.98 3.97 7.83 15.67 31.30 62.67 125.58 250.87 502.14 1003.00 2.00(0.0011) 0.5063

1.5 1

10 1.50 2.28 3.43 5.13 7.68 11.50 17.21 25.81 38.68 114.21 1.50(0.0010) 0.4498

5 1.50 2.27 3.41 5.08 7.58 11.39 17.10 25.67 38.48 113.46 1.50(0.0012) 0.4858

2 1.53 2.34 3.49 5.28 7.92 11.85 17.75 26.67 39.98 117.79 1.50(0.0021) 0.5577

1 1.54 2.30 3.41 5.06 7.54 11.30 16.76 25.13 37.67 111.71 1.50(0.0029) 0.6553

1.1 1

10 1.11 1.23 1.35 1.49 1.65 1.81 1.99 2.18 2.36 16.18 1.10(0.0029) 0.7507

5 1.11 1.22 1.34 1.48 1.63 1.77 1.94 2.13 2.33 15.94 1.10(0.0020) 0.7657

2 1.13 1.24 1.37 1.53 1.67 1.84 2.02 2.23 2.46 16.49 1.10(0.0035) 0.8092

1 1.10 1.20 1.31 1.44 1.59 1.76 1.92 2.10 2.28 15.70 1.10(0.0022) 0.8542

0.9 1

10 0.90 0.82 0.72 0.64 0.57 0.51 0.47 0.42 0.37 6.42 0.90(0.0043) 0.9072

5 0.90 0.82 0.73 0.65 0.58 0.52 0.46 0.42 0.38 6.46 0.90(0.0027) 0.9129

2 0.93 0.86 0.79 0.73 0.65 0.57 0.51 0.47 0.41 6.90 0.90(0.0063) 0.9194

1 0.90 0.82 0.72 0.66 0.59 0.55 0.48 0.44 0.38 6.55 0.90(0.0068) 0.9418

R : Estimated by parametric method; q : extinction probability calculated by simulation



131

Table 5.22 Average number of offspring in each generation 10000 times simulations for a given Negative Binomial distribution

R0 0X r 1X 2X 3X 4X 5X 6X 7X 8X 9X Total R (SE) q

2 5

10 10.01 19.97 40.10 80.08 160.05 319.88 639.61 1278.84 2558.92 5112.47 2.00(0.0004) 0.0008

5 9.99 19.95 39.99 79.87 159.68 318.87 638.32 1275.62 2551.19 5098.46 2.00(0.0004) 0.0027

2 9.99 19.99 39.88 79.69 159.21 318.59 637.45 1275.44 2551.10 5096.34 2.00(0.0003) 0.0094

1 9.98 19.98 39.88 79.43 159.10 318.13 636.66 1273.71 2548.65 5090.53 2.00(0.0005) 0.0339

1.5 5

10 7.48 11.29 16.92 25.43 38.03 57.07 85.64 128.53 192.87 568.25 1.50(0.0006) 0.0192

5 7.49 11.27 16.97 25.47 38.19 57.27 85.91 128.85 193.30 569.73 1.50(0.0004) 0.0295

2 7.49 11.24 16.93 25.43 38.20 57.26 86.11 129.16 193.86 570.68 1.50(0.0006) 0.0603

1 7.55 11.26 16.82 25.20 37.78 56.80 85.27 127.80 191.54 565.01 1.50(0.0008) 0.1266

1.1 5

10 5.48 6.02 6.61 7.29 7.99 8.87 9.78 10.73 11.80 79.56 1.10(0.0014) 0.2589

5 5.49 6.05 6.63 7.26 8.00 8.77 9.65 10.61 11.67 79.13 1.10(0.0008) 0.278

2 5.57 6.10 6.75 7.46 8.23 9.03 9.92 10.89 11.98 80.93 1.10(0.0016) 0.3428

1 5.53 6.15 6.79 7.40 8.13 8.91 9.78 10.81 11.83 80.34 1.10(0.0020) 0.4451

0.9 5

10 4.50 4.05 3.64 3.29 2.94 2.64 2.37 2.12 1.93 32.50 0.90(0.0014) 0.6217

5 4.46 4.03 3.63 3.26 2.92 2.64 2.38 2.11 1.91 32.35 0.90(0.0019) 0.6382

2 4.46 4.06 3.68 3.28 2.93 2.65 2.37 2.10 1.89 32.43 0.90(0.0026) 0.6922

1 4.53 4.03 3.61 3.25 2.92 2.61 2.37 2.10 1.88 32.31 0.90(0.0021) 0.741

R : Estimated by parametric method; q : extinction probability calculated by simulation
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Table 5.23 Tuberculosis Contact Investigation in Long-term Care Facility

Resident (N=62) Staff (N=18)

Age   Mean (SD) 75.9 (11.8) 35.5 (12.2)

Gender

Male (%) 21 (33.9) 2 (11.1)

Female (%) 41 (66.1) 16 (88.9)
aPositive TST (1st ) 21/57 (36.8%) 14/18 (77.8%)
bPositive TST (2nd ) 11/41 (26.8%) 0/4 (0.0%)

New TST conversion 9/36 (25.0%) 0/4 (0.0%)

Tuberculosis case 4 (6.5%) 1 (5.6%)

TST: tuberculin skin test;
a The first TST was done on July 2, 2012.
b The second TST was done on September 18, 2012.
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Table 5.24 Characteristics of TB cases and TB contacts in Changhua County, Taiwan

Characteristics

TB cases

(n=212)

N(%)

TB contacts (n=948)

N(%)

Location High incidence area 82(38.7) 311(32.8)

Medium incidence area 70(33.0) 294(31.0)

Low incidence area 60(28.3) 343(36.2)

Age Mean(SD) 133(62.7) 420(44.3)

Age group@ <35 12(5.7) 250(26.4)

35-65 88(41.5) 555(58.5)

>=65 112(52.8) 143(15.1)

Gender Male 133(62.7) 420()

Female 79(37.3) 528()

TST* Mean(SD) 12.6(7.7) 10.2(6.7)

TST* <10 mm 65(31.5) 445(46.9)

10-14 mm 48(23.3) 242(25.5)

15 mm 93(45.1) 260(27.4)

QFT-GIT# Mean(SD) 3.5(3.8) 1.3(2.3)

QFT-GIT Negative 63(30.1) 541(57.6)

Positive ( 0.35 IU/ml) 145(69.4) 369(39.3)

Indeterminate 1(0.5) 38(4.0)

QFT-GIT <0 IU/ml 10(4.8) 160(17.0)

0-0.01 IU/ml 8(3.8) 38(4.0)

0.01-0.35 IU/ml 45(21.5) 325(34.6)

0.35 IU/ml 145(69.4) 387(41.2)

Indeterminate 1(0.5) 38(4.0)

TST: tuberculin skin test; QFT-GIT: QuantiFERON-TB Gold In-Tube test.
* The results of TST were missed in Six TB cases and one TB contact.
# The results of QFT-GIT were missed in 3 TB cases and 8 TB contacts.
@ Five TB cases with age below 30 and 168 TB contacts with age below 30.
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Table 5.25 Univariable Analysis for risk factors of TB

Characteristic
Coefficient

(95% CI)
OR (95% CI)

Age Group

>=65 2.788(2.140, 3.436) 16.25  8.50, 31.06

35-65 1.252(0.621, 1.882) 3.50  1.86, 6.57

<35 Reference - -

Gender

Male 0.816(0.497, 1.135) 2.26 1.64, 3.11

Female Reference -

TST

10 mm 0.726(0.383, 1.070) 2.07 1.47, 2.92

< 10 mm Reference -

TST

15 mm 0.850(0.519, 1.180) 2.34 1.68, 3.26

< 15 mm Reference -

QFT-GIT

0.35 IU/ml 1.265(0.936, 1.594) 3.54 2.55, 4.93

<0.35 IU/ml Reference -

QFT-GIT

<0 IU/ml Reference -

0-0.01 IU/ml 1.508(0.490, 2.527) 4.52  1.63, 12.52

0.01-0.35 IU/ml 0.875(0.150, 1.600) 2.40 1.16, 4.95

0.35 IU/ml 1.958(1.273, 2.644) 7.09  3.57, 14.07

OR: odds ratio; CI: confidence interval; TST: tuberculin skin test; QFT-GIT:

QuantiFERON-TB Gold In-Tube test.
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Table 5.26 Multivariable Analysis for risk factors of TB (without interaction)

Characteristic
Coefficient

(95% CI)
OR (95% CI)

Age Group

>=65 2.652(1.979, 3.326) 14.19 7.23, 27.83

35-65 1.053(0.408, 1.698) 2.87 1.50, 5.46

<35 Reference - -

Gender

Male 0.907(0.538, 1.275) 2.48 1.71, 3.58

Female Reference -

TST

10 mm 0.616(0.220, 1.013) 1.85 1.25, 2.75

< 10 mm Reference -

QFT-GIT

0.35 IU/ml 0.903(0.542, 1.264) 2.47 1.72, 3.54

<0.35 IU/ml Reference -

OR: odds ratio; CI: confidence interval; TST: tuberculin skin test; QFT-GIT:

QuantiFERON-TB Gold In-Tube test.
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Table 5.27 Multivariable Analysis for risk factors of TB (with interaction)

Characteristic
Coefficient

(95% CI)
OR (95% CI)

Age Group

>=65 2.652(1.977, 3.327) 14.18 7.22, 27.86

35-65 1.059(0.411, 1.707) 2.88 1.51, 5.51

<35 Reference - -

Gender

Male 0.930(0.558, 1.303) 2.54 1.75, 3.68

Female Reference -

TST

10 mm -0.115 (-0.696, 0.467)

< 10 mm Reference -

QFT-GIT

0.35 IU/ml 0.139(-0.414, 0.693) - -

<0.35 IU/ml Reference

QFT-GIT*TST 1.315(0.566, 2.064)

QFT-GIT
Positive TST 4.28 1.16, 15.76

Negative TST 1.15 0.66, 2.00

OR: odds ratio; CI: confidence interval; TST: tuberculin skin test; QFT-GIT:

QuantiFERON-TB Gold In-Tube test.
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Table 5.28 Akaike Information Criterion values of models

Models

Number

of

parameter

AIC

TST(10), age, sex 5 742.064

QFT-GIT age, sex 5 743.594

TST(10), QFT-GIT, age, sex 6 709.523

TST(10), QFT-GIT, age, sex, age*TST(10) 8 710.915

TST(10), QFT-GIT, age, sex, age* QFT-GIT 8 711.976

TST(10), QFT-GIT, age, sex, age*TST(10), age* QFT-GIT 10 713.121

TST(10), QFT-GIT, age, sex, TST(10)*QFT-GIT 7 699.372
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Table 5.29 Characteristics of TB cohort study in Changhua County, Taiwan

Data source Period Number Sampling

fraction (%)

TB surveillance

system

2009-2011 calculation

Population(a) (person-year) 2,009,183*

All  TB  cases  (T) 2,420

TB contacts

database

2005-2011

All contacts (C) 22,510

Receiving TST (C_) 6,259

Negative TST(C-) 2,758

Positive TST(C+) 3,501

Prevalent TB case 28

Incident TB cases 45

IGRA survey for

general population

2011-2013

Non-contacts (n-c)

Negative TST 218 0.07152 (f0)  3*n-c/a

Positive TST 261

Contacts

Negative TST(c-) 3 0.21171 7*c-/[C*(C+/C

_)]

Positive TST(c+) 10 0.55595 7*c+/(C)(C+/C

_)

    TB cases (ct) 1 0.12397 3*ct/T

Matched

case-control study

2012-2014

TB cases (t) 207 25.66116 3*t/T

Contacts 780

Negative TST (Cg-) 346 24.41796 7*Cg-/(C-/C_)

Positive TST (Cg+) 434 24.12821 7*Cg+/C(C+/C

_)

Incident TB cases 2

All persons with age 30 were enrolled in this study. Prevalent TB case: diagnosed as

TB at survey periods; Incident TB cases: diagnosed as TB cases during follow-up

period.
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Table 5.30 Univariate analysis for infection rate ( ) and conversion rate ( ) of three-state Markov

model with and without covariates

Without Covariate
One covariate

affecting  or 

One covariate

affecting both  and 

Transition

/Covariates

Estimate

(95% CI)

Estimate

(95% CI)

RR

(95%CI)

Estimate

(95% CI)

RR

(95%CI)

Free of TB infection  LTBI

Infection rate ( )
0.0168

(0.0157,0.0180)

Age 30-44 reference reference

45-64
-0.5316

(-0.6911 , -0.3637)

0.59

(0.50, 0.69)

-0.5348

(-0.7016 , -0.3653)

0.59

(0.50, 0.69)

65
-0.6016

(-0.7975 , -0.4031)

0.55

(0.45, 0.67)

-0.6302

(-0.839 , -0.44)

0.53

(0.43, 0.64)

Sex Male
0.403

(0.2656 , 0.5465)

1.50

(1.30, 1.73)

0.4007

(0.2631 , 0.5449)

1.49

(1.30, 1.72)

IGRA Positive
0.4662

(0.3261 , 0.6149)

1.59

(1.39, 1.85)

0.4671

(0.3274 , 0.6107)

1.59

(1.39, 1.84)

LTBI TB

Conversion rate* ( )
0.0113

(0.0098,0.0129)

Age 30-44 reference reference

45-64
0.7315

(0.2298 , 1.2374)

2.08

(1.26, 3.45)

0.7074

(0.2155 , 1.235)

2.03

(1.24, 3.44)

65
1.8319

(1.3368 , 2.3399)

6.25

(3.81, 10.38)

1.846

(1.3505 , 2.354)

6.33

(3.86, 10.5)

Sex Male
0.5283

(0.2405 , 0.8081)

1.70

(1.27, 2.24)

0.5277

(0.2427 , 0.8139)

1.70

(1.28, 2.26)

IGRA Positive
0.7886

(0.4719 , 1.0822)

2.20

(1.60, 2.95)

0.7495

(0.4533 , 1.0474)

2.12

(1.57, 2.85)

CI: credible interval; TB: tuberculosis; LTBI : Latent TB infection; IGRA: Interferon-Gamma

Release Assays; * Three-state Markov model without incorporating any covariates.
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Table 5.31 Multivariate analysis for estimating infection rates and conversion rate of three-state

Markov model

Three covariates

affecting  or 

Three covariates

affecting both  and 

Parameter
Estimate

(95% CI)

RR

(95%CI)

Estimate

(95% CI)

RR

(95% CI)

Free of TB infection  LTBI

baseline ( )
0.01883

(0.0163, 0.0220)

Age 30-44 reference reference

45-64
-0.5825

(-0.749 , -0.4193)

0.56

(0.47,1.51)

-0.5799

(-0.7515,-0.4194)

0.56

(0.47, 0.66)

65
-0.7585

(-0.9606, -0.5481)

0.47

(0.38, 0.58)

-0.7896

(-0.9993,-0.5869)

0.45

(0.37, 0.56)

Sex Male
0.3576

(0.2164, 0.495)

1.43

(1.24, 1.64)

0.3583

(0.2124,0.4975)

1.24

(1.24, 1.64)

IGRA Positive
0.5307

(0.3776, 0.6699)

1.70

(1.46, 1.95)

0.5371

(0.3961,0.6933)

1.71

(1.49, 2.00)

LTBI TB

baseline ( )
0.0032

(0.0020, 0.0051)

Age 30-44 reference reference

45-64
0.6126

(0.0956,1.1364)

1.85

(1.10, 3.12)

0.4256

(-0.061, 0.9224)

1.53

(0.94, 2.52)

65
1.6308

(1.1248,2.176)

5.11

(3.08, 8.81)

1.4886

(0.9787,1.9605)

4.43

(2.66, 7.10 )

Sex Male
0.4233

(0.1038,0.719)

1.53

(1.11, 2.05)

0.4104

(0.105, 0.7157)

1.51

(1.11, 2.05)

IGRA Positive
0.4934

(0.1716,0.8105)

1.64

(1.19, 2.25)

0.4578

(0.1428, 0.7743)

1.58

(1.15, 2.17)

CI: credible interval; TB: tuberculosis; LTBI : Latent TB infection; IGRA: Interferon-Gamma

Release Assays
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Table 5.32 Model selection for multivariate analysis in three states Markov model.

DIC: Deviance Information Criterion; D : Expectation of deviance; pD : the effective number of parameters

Model D pD DIC

Incorporating covariates on infection rate:

0 11 12 13 14exp 1 2i i i i iage group age group sex IGRA
4387.77 6.97 4394.73

Incorporating covariates on conversion rate:

0 21 22 23 24exp 1 2i i i i iage group age group sex IGRA
4415.11 6.93 4422.04

Incorporating covariates on rates of infection and conversion:

0 21 22 23 24exp 1 2i i i i iage group age group sex IGRA

4298.77 10.92 4309.68
0 11 12 13 14exp 1 2i i i i iage group age group sex IGRA
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Table 5.33 Estimated time to the LTB size of 10 according to TB cohort study with simulation of birth-death process

Covariates Parameters T  Mean (SD) days

Gender Age group IGRA status 0N =1 0N =2 0N =3 0N =5

Female <45 Negative 0.0181 0.0034 51.53(33.38) 41.58(17.15) 30.32(12.90) 16.50(7.87)
Female 45-65 Negative 0.0101 0.00524 56.01(63.2) 66.41(42.28) 47.28(28.55) 25.73(17.77)
Female >=65 Negative 0.00828 0.0151 33.87 (72.54) 62.85(69.76) 92.92(83.10) 66.61(61.37)
Male <45 Negative 0.0264 0.00505 34.82 (22.33) 28.51(11.75) 20.78(8.84) 11.31(5.39)
Male 45-65 Negative 0.0146 0.00777 38.13(42.10) 44.70(28.34) 32.68(19.49) 18.27(12.21)
Male >=65 Negative 0.0121 0.0224 19.64(44.34) 38.00(50.41) 58.44(51.37) 51.15(44.95)

Female <45 Positive 0.032 0.00522 30.31(18.09) 23.93(10.12) 16.58(6.87) 9.45(4.14)
Female 45-65 Positive 0.0177 0.00801 38.56(35.46) 40.61(23.64) 27.60(15.48) 15.95(9.97)
Female >=65 Positive 0.0146 0.023 16.08(35.17) 37.88(39.51) 28.43(28.80) 20.59(30.23)
Male <45 Positive 0.0465 0.00892 19.77(12.68) 16.19(6.67) 11.80(5.02) 6.42(3.06)
Male 45-65 Positive 0.0258 0.0119 27.59(24.10) 26.28(15.50) 18.95(10.71) 10.55(6.01)
Male >=65 Positive 0.0213 0.0341 13.33(27.00) 26.83(27.91) 23.91(20.81) 16.00(19.78)

Overall 0.0168 0.0113 27.86 (33.73) 36.85(28.63) 25.01(16.87) 15.9(15.15)

T : Time to size of 10 cases; 0N : initial number of cases; SD: standard deviation.
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Table 5.34 Estimated time to the TB size of 30 according to TB cohort study with simulation of birth-death process

Covariates Parameters T  Mean (SD)  days

Gender Age group IGRA status 0N =1 0N =5 0N =10 0N =15

Female <45 Negative 0.0181 0.0034 72.02(39.50) 42.76(10.06) 25.63(6.19) 15.94(4.22)
Female 45-65 Negative 0.0101 0.00524 95.18(77.70) 68.56(25.95) 41.22(16.03) 25.92(9.29)
Female >=65 Negative 0.00828 0.0151 31.37(76.42) 72.27(60.40) 48.51(31.44) 34.82(36.44)
Male <45 Negative 0.0264 0.00505 49.78(27.27) 29.25(6.93) 17.55(4.27) 10.91(2.91)
Male 45-65 Negative 0.0146 0.00777 61.59(56.16) 47.55(17.82) 28.56(10.90) 18.68(5.46)
Male >=65 Negative 0.0121 0.0224 18.95(48.27) 56.95(55.13) 19.41(24.63) 19.13(10.52)

Female <45 Positive 0.032 0.00522 42.19(22.26) 23.89(5.51) 14.44(3.62) 9.00(2.37)
Female 45-65 Positive 0.0177 0.00801 51.53(45.68) 41.50(14.49) 25.23(6.52) 15.21(5.54)
Female >=65 Positive 0.0146 0.023 23.55(49.62) 43.65(34.45) 27.00(24.52) 18.86(24.37)
Male <45 Positive 0.0465 0.00892 28.26(15.48) 16.61(3.94) 9.97(2.43) 6.19(1.65)
Male 45-65 Positive 0.0258 0.0119 35.40(31.47) 28.29(9.77) 17.38(4.48) 10.32(3.79)
Male >=65 Positive 0.0213 0.0341 18.00(34.46) 29.40(22.81) 17.90(14.63) 11.06(11.46)

Overall 0.0168 0.0113 48.47(47.57) 43.48(13.32) 25.15(11.22) 15.92(7.57)

T : Time to state10; SD: standard deviation.
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Table 5.35 Estimated extinct probability of TB by generating function of birth-death process

Covariates q

Gender Age group
IGRA
status 0N =1 0N =2 0N =3 0N =4 0N =5 0N =6 0N =7 0N =8 0N =9 0N =10

Female <45 Negative 0.1878 0.0353 0.0066 0.0012 2.3*10-4 4.4*10-5 8.3*10-6 1.6*10-6 1.55*10-6 5.47*10-8

Female 45-65 Negative 0.5188 0.2678 0.1383 0.0714 0.0369 0.0191 0.0099 0.0051 0.0026 0.0014
Female >=65 Negative 1 1 1 1 1 1 1 1 1 1
Male <45 Negative 0.1913 0.0366 0.007 0.0013 2.6*10-4 4.9*10-5 9.4*10-6 1.8*10-6 3.4*10-7 6.6*10-8

Male 45-65 Negative 0.5322 0.2830 0.1505 0.0086 0.0426 0.0227 0.0039 0.0018 7.9*10-4 3.6*10-4

Male >=65 Negative 1 1 1 1 1 1 1 1 1 1
Female <45 Positive 0.1631 0.0266 0.0043 7.2*10-4 1.2*10-4 1.9*10-5 3.1*10-6 5.0*10-7 8.2*10-8 1.3*10-8

Female 45-65 Positive 0.4525 0.2048 0.0927 0.0419 0.019 0.0086 0.0039 0.0018 8.0*10-4 3.6*10-4

Female >=65 Positive 1 1 1 1 1 1 1 1 1 1
Male <45 Positive 0.1918 0.0368 0.0071 0.0014 2.6*10-4 5.0*10-5 9.6*10-6 1.8*10-6 3.5*10-7 6.7*10-8

Male 45-65 Positive 0.4612 0.2127 0.0981 0.0453 0.0209 0.0096 0.0044 0.0020 9.4*10-4 4.4*10-4

Male >=65 Positive 1 1 1 1 1 1 1 1 1 1
Overall 0.6726 0.4517 0.3033 0.2037 0.1368 0.0919 0.0617 0.0415 0.0278 0.0187

0N : initial number of cases: q : estimated extinction probability by generating function
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Figure3.1The framework of our TB case-cohort study design
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Figure3.2 Graph of the root of generating function

(a) 0 1R (b) 0 1R
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Figure 4. 1The outbreak of SARS
(a) The number of patients with SARS of Taiwan in 2003
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(b) The ooutbreak of SARS in a hospital of Singapore
(i) Relationship of Contact linkage
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(ii) Epidemiologic Curve for SRAS Cases in a hospital of Singapore
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Figure 4. 2Pulmonary Tuberculosis in Taiwan
(a) Epidemiologic Curve for Pulmonary Tuberculosis Cases in a Long-term Care Facility
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(b) The number of TB cases in Changhua County from 1982 to 2012
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Figure 4. 3 Flowchart of subjects IGRA survey for general population from 2011 to 2013 in Changhua County.
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Figure 5. 1
 Total number of all infectives after 9 generations, Poisson offspring distribution
(a) R=2 and X0=1

(b) R=1.5 and X0=1

(c) R=1.1 and X0=1

(d) R=0.9 and X0=1

(e) R=2 and X0=5
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(f) R=1.5 and X0=5

(g) R=1.1 and X0=5

(h) R=0.9 and X0=5
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Figure 5. 2 Total number of all infectives after 9 generations, Geometric offspring distribution
(a) R=2 and X0=1

(b) R=1.5 and X0=1

(c) R=1.1 and X0=1

(d) R=0.9 and X0=1

(e) R=2 and X0=5
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(f) R=1.5 and X0=5

(g) R=1.1 and X0=5

(h) R=0.9 and X0=5
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Figure 5. 3 The relations between estimated R0 and the number of generations which was obtained
from the simulated data with differential offspring distributions.
(a) Poisson distribution ( =2) with initial one infected case.

(b) Poisson distribution ( =1.5) with initial one infected case.
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(b)Poisson distribution ( =1.1) with initial one infected case.

(c) Poisson distribution ( =0.9) with initial one infected case.
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(d) Poisson distribution ( =2) with initial five infected case.

(e) Poisson distribution ( =1.5) with initial five infected case.
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(f)Poisson distribution ( =1.1) with initial five infected case.

(g) Poisson distribution ( =0.9) with initial five infected case.
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(h) Binomial distribution (n=1000, p=0.002) with initial one infected case.

(i) Binomial distribution (n=1000, p=0.0015) with initial one infected case.
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(j) Binomial distribution (n=1000, p=0.0011) with initial one infected case.

(k) Binomial distribution (n=1000, p=0.0009) with initial one infected case.
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(l) Binomial distribution (n=1000, p=0.002) with initial five infected case.

(m) Binomial distribution (n=1000, p=0.0015) with initial five infected case.



164

(n) Binomial distribution (n=1000, p=0.0011) with initial five infected case.

(o) Binomial distribution (n=1000, p=0.0009) with initial five infected case.
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(p) Binomial distribution (n=100, p=0.02) with initial one infected case.

(q) Binomial distribution (n=100, p=0.015) with initial one infected case.
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(r) Binomial distribution (n=100, p=0.011) with initial one infected case.

(s) Binomial distribution (n=100, p=0.009) with initial one infected case.
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(t) Binomial distribution (n=100, p=0.02) with initial five infected case.

(u) Binomial distribution (n=100, p=0.015) with initial five infected case.
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(v) Binomial distribution (n=100, p=0.011) with initial five infected case.
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(w) Binomial distribution (n=100, p=0.009) with initial five infected case.
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Figure 5. 4 1000 times of Simulation with pure birth process with =0.5, estimated by equations:
‘solid line’ : mean of simulation data, ‘dashed line’: 0.25% quantile, ‘x’: 97.5% quantile, ‘diamond’:

approximation equation 1:
0

1
log( )

a

n
, a: final infected case number, n0: the number of initial case;

‘pentagram’: approximation equation 2:
1

~ log(a 1)

(a)The number of initial case is one (N0=1)

(b) The number of initial case is 2 (N0=2)
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(c) The number of initial case is 5 (N0=5)

(d) The number of initial case is 10 (N0=10)
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(e) The number of initial case is 10 (N0=25)
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Figure 5. 5 1000 times of Simulation with pure birth process with =3, estimated by equations.
‘solid line’ : mean of simulation, ‘dashed line’: 0.25% quantile, ‘x’: 97.5% quantile, ‘diamond’:

approximation equation1:
0

1
log( )

a

n
, a: final infected cases, n0: the number of initial case;

‘pentagram’: approximation equation2:
1

log(a 1) .

(a)The number of initial case is one (N0=1)

(b) The number of initial case is 2 (N0=2)
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(c) The number of initial case is 5 (N0=5)

(d) The number of initial case is 10 (N0=10)
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(e) The number of initial case is 10 (N0=25)
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Figure 5. 6 The observed SARS cases and simulated cases with deterministic model in Taiwan, 2003.
(a) New SARS cases per week

(b) Cumulated SARS cases per week
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Figure 5.7 Simulated cases with birth death process in Taiwan, 2003
(a) Simulation with pure birth process

(b) Simulation with general birth death process
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Figure 5 8 Epidemic Data in Chronological Order for Pulmonary Tuberculosis Cases in a Long-term
Care Facility
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Figure 5.9 Flow-Chart Overview of the Contacts Investigation.
One resident with 1st TST negative died from other illness before 2nd TST. Three
confirmed cases and one suspected case were noted before or during the contact
investigation period.
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Figure 5.10 Room locations of residents with confirmed active cases during investigation period in the
Long-term Care Facility. The index case had been in room 303; the eighth case was a suspected
staff-case.
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Figure 5. 11 Patients with TB in the cluster had identical RFLP and spoligotyping pattents
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Figure 5.12 Essentially Perfect Trace for IGRA
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Appendix

Appendix Table

Appendix Table 1 Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given
different initial infected cases. (Continue)

Infected size
Initial cases Ta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Mean 0 1.9640 2.9356 3.5895 4.0826 4.5069 4.8322 5.1150 5.3567 5.5852 5.7950 5.9716 6.1498 6.3019 6.4329
SD - 1.9247 2.1348 2.2221 2.2710 2.2800 2.3013 2.3183 2.3383 2.3476 2.3554 2.3690 2.3804 2.3872 2.3852

Q0.25 - 0.0570 0.3786 0.6873 0.9971 1.3306 1.5704 1.7432 1.9698 2.2002 2.3985 2.6153 2.7553 2.8700 2.9722
Q97.5 - 7.4802 8.8542 9.6274 10.3453 10.5578 10.9327 11.3224 11.4233 11.5039 11.8130 12.0349 12.2080 12.2657 12.4157

2 Mean 0 0.9964 1.6520 2.1551 2.5465 2.8684 3.1585 3.4030 3.6309 3.8329 4.0079 4.1704 4.3240 4.4684
SD - 1.0097 1.2047 1.3169 1.3893 1.4129 1.4335 1.4518 1.4762 1.4960 1.5087 1.5255 1.5263 1.5356

Q0.25 - 0.0259 0.2035 0.4004 0.6665 0.8754 1.1001 1.2371 1.3889 1.6130 1.6866 1.8292 1.9387 2.0845
Q97.5 - 3.7096 4.7580 5.2798 5.7375 6.2250 6.4820 6.8559 7.1080 7.3642 7.4235 7.6819 7.8180 8.0010

5 Mean 0 0.4147 0.7397 1.0337 1.2879 1.5125 1.7086 1.8877 2.0550 2.2084 2.3565
SD - 0.4279 0.5285 0.6050 0.6490 0.6836 0.7069 0.7348 0.7576 0.7726 0.7882

Q0.25 - 0.0067 0.0945 0.1764 0.3359 0.4954 0.6062 0.7026 0.8244 0.9456 1.0116
Q97.5 - 1.5949 2.0531 2.4528 2.8931 3.1819 3.3801 3.5981 3.8508 4.0386 4.1905

Ta: Expected time to infected size a; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given
different initial infected cases. (Continue)

Infected size
Initial cases Ta 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 Mean 6.5675 6.6967 6.8129 6.9216 7.0264 7.1260 7.2236 7.3144 7.3985 7.4843 7.5646 7.6404 7.7168 7.7850 7.8532
SD 2.3806 2.3813 2.3812 2.3871 2.3921 2.3943 2.3961 2.3963 2.4049 2.4134 2.4159 2.4211 2.4214 2.4229 2.4236

Q0.25 3.0930 3.1758 3.2786 3.4304 3.5492 3.6437 3.7035 3.7316 3.8050 3.8952 4.0053 4.0923 4.1595 4.2179 4.3037
Q97.5 12.5058 12.5920 12.7352 12.9359 13.1465 13.2214 13.3036 13.3119 13.4211 13.5382 13.5558 13.6858 13.7068 13.7168 13.9063

2 Mean 4.5966 4.7244 4.8400 4.9507 5.0527 5.1525 5.2474 5.3379 5.4312 5.5129 5.5943 5.6754 5.7501 5.8242 5.8957
SD 1.5399 1.5444 1.5459 1.5519 1.5550 1.5571 1.5663 1.5662 1.5665 1.5686 1.5674 1.5725 1.5705 1.5702 1.5699

Q0.25 2.1517 2.3123 2.4774 2.5678 2.6916 2.7858 2.8295 2.9189 3.0169 3.1305 3.2041 3.2653 3.3011 3.3815 3.4622
Q97.5 8.2846 8.4080 8.4788 8.5291 8.6955 8.7662 8.8221 8.9581 9.0059 9.0807 9.1333 9.1616 9.2679 9.3380 9.3571

5 Mean 2.4879 2.6189 2.7359 2.8551 2.9694 3.0668 3.1651 3.2565 3.3451 3.4265 3.5044 3.5830 3.6559 3.7226 3.7891
SD 0.7960 0.8088 0.8189 0.8286 0.8388 0.8428 0.8420 0.8502 0.8539 0.8565 0.8599 0.8643 0.8689 0.8714 0.8721

Q0.25 1.1509 1.2735 1.3636 1.4592 1.5498 1.6072 1.7330 1.8237 1.9107 2.0394 2.0780 2.1525 2.1998 2.2300 2.3110
Q97.5 4.2967 4.4496 4.6137 4.7846 4.8603 4.9582 5.0689 5.1947 5.2575 5.3489 5.4334 5.4877 5.5799 5.7056 5.7865

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

1 Mean 7.9213 7.9874 8.0492 8.1116 8.1709 8.2316 8.2877 8.3421 8.3988 8.4530 8.5043 8.5553 8.6042 8.6523 8.6990
SD 2.4214 2.4194 2.4187 2.4201 2.4221 2.4230 2.4281 2.4284 2.4307 2.4327 2.4300 2.4315 2.4316 2.4314 2.4306

Q0.25 4.3848 4.4523 4.5067 4.5627 4.5890 4.6558 4.7049 4.7564 4.7818 4.8353 4.8953 4.9374 5.0192 5.0423 5.1139
Q97.5 14.1047 14.1889 14.2285 14.2699 14.3133 14.4432 14.5058 14.6185 14.7703 14.8336 14.8796 14.9653 15.0405 15.0481 15.1073

2 Mean 5.9575 6.0284 6.0888 6.1541 6.2140 6.2712 6.3278 6.3834 6.4338 6.4865 6.5379 6.5882 6.6344 6.6784 6.7243
SD 1.5699 1.5727 1.5741 1.5749 1.5740 1.5742 1.5724 1.5746 1.5768 1.5793 1.5797 1.5825 1.5841 1.5856 1.5856

Q0.25 3.5325 3.6195 3.6574 3.7142 3.7821 3.8071 3.8671 3.9777 4.0372 4.0708 4.1041 4.1197 4.1581 4.1877 4.2136
Q97.5 9.3571 9.4295 9.4847 9.5816 9.6030 9.6620 9.7344 9.8171 9.8956 9.9500 10.0052 10.0419 10.1116 10.1252 10.1633

5 Mean 3.8578 3.9207 3.9838 4.0426 4.1015 4.1593 4.2164 4.2719 4.3279 4.3817 4.4307 4.4790 4.5255 4.5715 4.6181
SD 0.8731 0.8761 0.8816 0.8832 0.8863 0.8902 0.8912 0.8945 0.8985 0.9001 0.9016 0.9013 0.9036 0.9048 0.9036

Q0.25 2.3716 2.4290 2.4733 2.5162 2.5774 2.6022 2.6662 2.7178 2.7754 2.7994 2.8502 2.9114 2.9512 2.9738 3.0482
Q97.5 5.8585 5.8934 5.9712 6.0294 6.1289 6.2193 6.2905 6.3424 6.3999 6.4275 6.4407 6.5181 6.5421 6.5549 6.5985

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1 Mean 8.7425 8.7861 8.8300 8.8727 8.9133 8.9541 8.9914 9.0304 9.0683 9.1060 9.1414 9.1766 9.2120 9.2474 9.2810
SD 2.4291 2.4273 2.4264 2.4260 2.4258 2.4265 2.4269 2.4256 2.4261 2.4244 2.4257 2.4242 2.4232 2.4253 2.4253

Q0.25 5.1472 5.1960 5.2340 5.2889 5.3350 5.3813 5.4209 5.4748 5.5264 5.5409 5.5576 5.6154 5.6211 5.6535 5.6670
Q97.5 15.1613 15.1733 15.1869 15.1984 15.2199 15.2691 15.2845 15.3164 15.3767 15.4466 15.4787 15.5026 15.5560 15.5720 15.5913

2 Mean 6.7694 6.8129 6.8562 6.8992 6.9399 6.9777 7.0183 7.0581 7.0958 7.1317 7.1667 7.2004 7.2356 7.2702 7.3034
SD 1.5862 1.5887 1.5902 1.5919 1.5930 1.5943 1.5926 1.5946 1.5950 1.5955 1.5959 1.5957 1.5969 1.5969 1.5952

Q0.25 4.2661 4.3238 4.3483 4.3768 4.3931 4.4345 4.4465 4.4868 4.5413 4.5742 4.5887 4.6136 4.6553 4.6962 4.7141
Q97.5 10.1972 10.2475 10.2944 10.3419 10.4059 10.4796 10.5285 10.5544 10.5730 10.5808 10.6107 10.6573 10.7356 10.7486 10.7835

5 Mean 4.6620 4.7055 4.7482 4.7895 4.8293 4.8668 4.9051 4.9442 4.9821 5.0184 5.0551 5.0899 5.1261 5.1602 5.1939
SD 0.9031 0.9018 0.9032 0.9040 0.9049 0.9084 0.9097 0.9117 0.9104 0.9096 0.9118 0.9126 0.9114 0.9110 0.9116

Q0.25 3.0898 3.1283 3.1970 3.2180 3.2414 3.2943 3.3172 3.3558 3.3888 3.4197 3.4645 3.4938 3.5181 3.5681 3.5886
Q97.5 6.6657 6.7266 6.7785 6.8459 6.8900 6.9063 6.9742 6.9982 7.0234 7.0641 7.0778 7.1224 7.1332 7.1472 7.1670

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

1 Mean 9.3141 9.3457 9.3790 9.4102 9.4408 9.4732 9.5035 9.5357 9.5646 9.5932 9.6220 9.6486 9.6762 9.7029 9.7287
SD 2.4255 2.4236 2.4251 2.4235 2.4244 2.4239 2.4250 2.4264 2.4263 2.4268 2.4264 2.4269 2.4265 2.4293 2.4296

Q0.25 5.7279 5.7653 5.7917 5.8059 5.8311 5.8637 5.9300 5.9304 5.9420 5.9769 6.0179 6.0353 6.1040 6.1228 6.1641
Q97.5 15.6147 15.6427 15.6497 15.6929 15.7289 15.7465 15.7690 15.7717 15.7836 15.8206 15.8417 15.8664 15.9182 15.9454 15.9504

2 Mean 7.3383 7.3721 7.4042 7.4373 7.4665 7.4958 7.5268 7.5555 7.5837 7.6120 7.6392 7.6666 7.6954 7.7231 7.7505
SD 1.5949 1.5963 1.5977 1.5978 1.5974 1.5985 1.5980 1.5993 1.5999 1.6001 1.6009 1.6015 1.6016 1.6029 1.6032

Q0.25 4.7668 4.7917 4.8156 4.8622 4.9112 4.9462 4.9923 5.0118 5.0414 5.0996 5.1274 5.1579 5.1838 5.2166 5.2372
Q97.5 10.8069 10.8456 10.9034 10.9108 10.9493 10.9668 10.9772 11.0116 11.0648 11.0945 11.1071 11.1178 11.1287 11.1507 11.1631

5 Mean 5.2293 5.2620 5.2950 5.3273 5.3582 5.3887 5.4188 5.4494 5.4785 5.5077 5.5365 5.5649 5.5915 5.6198 5.6467
SD 0.9128 0.9137 0.9142 0.9154 0.9156 0.9152 0.9136 0.9135 0.9146 0.9160 0.9160 0.9171 0.9184 0.9192 0.9198

Q0.25 3.6291 3.6568 3.6914 3.7229 3.7422 3.7800 3.8146 3.8333 3.8656 3.9003 3.9316 3.9514 3.9818 3.9885 4.0423
Q97.5 7.2347 7.2471 7.3016 7.3282 7.3783 7.4017 7.4277 7.4608 7.4782 7.5213 7.5271 7.5606 7.5883 7.6352 7.6462

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

1 Mean 9.7560 9.7820 9.8073 9.8329 9.8584 9.8833 9.9075 9.9318 9.9548 9.9785 10.0023 10.0255 10.0483 10.0698 10.0921
SD 2.4307 2.4320 2.4320 2.4316 2.4322 2.4305 2.4312 2.4314 2.4317 2.4315 2.4316 2.4314 2.4315 2.4329 2.4348

Q0.25 6.1923 6.2088 6.2266 6.2545 6.2779 6.3186 6.3384 6.3461 6.3686 6.4025 6.4424 6.4499 6.4743 6.4936 6.5129
Q97.5 15.9731 16.0065 16.0295 16.0849 16.1557 16.1654 16.1916 16.2046 16.2135 16.2409 16.2552 16.2818 16.3061 16.3378 16.3723

2 Mean 7.7788 7.8067 7.8323 7.8574 7.8843 7.9104 7.9351 7.9609 7.9839 8.0077 8.0313 8.0549 8.0782 8.1021 8.1241
SD 1.6047 1.6043 1.6045 1.6053 1.6058 1.6059 1.6055 1.6041 1.6041 1.6038 1.6043 1.6040 1.6029 1.6037 1.6039

Q0.25 5.2527 5.2804 5.2922 5.3068 5.3586 5.3613 5.4074 5.4372 5.4431 5.4691 5.5135 5.5176 5.5389 5.5722 5.5918
Q97.5 11.1841 11.2186 11.2653 11.2666 11.3388 11.3510 11.3983 11.4047 11.4336 11.4681 11.5191 11.5247 11.5309 11.5713 11.6000

5 Mean 5.6749 5.7006 5.7252 5.7511 5.7770 5.8018 5.8267 5.8501 5.8754 5.9005 5.9234 5.9460 5.9692 5.9914 6.0150
SD 0.9191 0.9209 0.9215 0.9216 0.9209 0.9207 0.9217 0.9216 0.9217 0.9215 0.9213 0.9218 0.9213 0.9210 0.9211

Q0.25 4.0578 4.0680 4.0816 4.1093 4.1488 4.1716 4.2223 4.2558 4.2632 4.3071 4.3456 4.3575 4.3734 4.3965 4.4248
Q97.5 7.7019 7.7413 7.7564 7.7861 7.8016 7.8266 7.8727 7.8841 7.9051 7.9228 7.9437 7.9692 7.9951 8.0160 8.0558

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial
cases

Ta 91 92 93 94 95 96 97 98 99 100

1 Mean 10.1145 10.1365 10.1595 10.1814 10.2018 10.2212 10.2412 10.2627 10.2827 10.3030
SD 2.4342 2.4340 2.4342 2.4344 2.4340 2.4341 2.4345 2.4342 2.4344 2.4333

Q0.25 6.5200 6.5487 6.5638 6.5813 6.5977 6.6119 6.6342 6.6565 6.6682 6.6896
Q97.5 16.3956 16.4066 16.4290 16.4454 16.4681 16.4769 16.5047 16.5095 16.5267 16.5557

2 Mean 8.1457 8.1676 8.1889 8.2113 8.2324 8.2537 8.2746 8.2961 8.3169 8.3376
SD 1.6038 1.6046 1.6054 1.6057 1.6054 1.6051 1.6061 1.6062 1.6059 1.6053

Q0.25 5.6056 5.6275 5.6524 5.6696 5.7035 5.7252 5.7486 5.7692 5.7763 5.8111
Q97.5 11.6136 11.6234 11.6528 11.6704 11.6981 11.7026 11.7222 11.7319 11.7514 11.8017

5 Mean 6.0370 6.0595 6.0808 6.1027 6.1235 6.1442 6.1637 6.1844 6.2031 6.2236
SD 0.9216 0.9221 0.9225 0.9222 0.9211 0.9217 0.9227 0.9236 0.9237 0.9263

Q0.25 4.4475 4.4619 4.5079 4.5249 4.5497 4.5752 4.5827 4.6021 4.6247 4.6373
Q97.5 8.0736 8.1034 8.1274 8.1559 8.1647 8.1997 8.2070 8.2135 8.2222 8.3246

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given
different initial infected cases. (Continue)

Infected size
Initial cases Ta 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10 Mean 0 0.2021 0.3846 0.5492 0.7132 0.8522 0.9893 1.1164 1.2361 1.3469 1.4560 1.5488 1.6453 1.7327 1.8208

SD - 0.1955 0.2695 0.3126 0.3516 0.3832 0.4097 0.4222 0.4338 0.4495 0.4552 0.4681 0.4772 0.4833 0.4929
Q0.25 - 0.0056 0.0469 0.1208 0.2129 0.2949 0.3670 0.4623 0.5404 0.6047 0.7110 0.7538 0.8308 0.9039 0.9718
Q97.5 - 0.7495 1.0999 1.3202 1.5640 1.7546 1.9183 2.0636 2.2286 2.3674 2.4463 2.5317 2.6409 2.7571 2.8416

Initial cases Ta 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
25 Mean 0 0.0783 0.1560 0.2291 0.3021 0.3727 0.4383 0.5053 0.5689 0.6310 0.6911 0.7504 0.8097 0.8631 0.9124

SD - 0.0789 0.1111 0.1343 0.1534 0.1665 0.1767 0.1858 0.1953 0.2024 0.2113 0.2171 0.2284 0.2335 0.2376
Q0.25 - 0.0015 0.0206 0.0425 0.0794 0.1218 0.1600 0.2055 0.2503 0.2960 0.3387 0.3782 0.4363 0.4615 0.4948
Q97.5 - 0.2919 0.4483 0.5519 0.6710 0.7709 0.8692 0.9349 1.0108 1.0837 1.1492 1.2333 1.3144 1.3893 1.4521

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial
cases

Ta 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

10 Mean 1.9040 1.9827 2.0575 2.1304 2.2012 2.2707 2.3358 2.3991 2.4598 2.5213 2.5832 2.6421 2.6990 2.7509 2.8034 2.8538
SD 0.5020 0.5072 0.5160 0.5247 0.5313 0.5385 0.5410 0.5439 0.5486 0.5528 0.5549 0.5572 0.5597 0.5619 0.5648 0.5664

Q0.25 1.0126 1.1036 1.1699 1.2379 1.2850 1.3662 1.4068 1.4622 1.5152 1.5612 1.6069 1.6467 1.7068 1.7556 1.7906 1.8361
Q97.5 2.9363 3.0238 3.1243 3.2459 3.3226 3.4149 3.4787 3.5510 3.6101 3.6506 3.6969 3.7765 3.8246 3.8975 3.9788 4.0229

Initial
cases

Ta 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

25 Mean 0.9663 1.0166 1.0648 1.1104 1.1566 1.2035 1.2484 1.2927 1.3354 1.3754 1.4165 1.4560 1.4949 1.5313 1.5696 1.6058
SD 0.2435 0.2473 0.2503 0.2563 0.2609 0.2662 0.2728 0.2777 0.2821 0.2859 0.2886 0.2907 0.2925 0.2960 0.2994 0.3007

Q0.25 0.5434 0.5891 0.6339 0.6685 0.7122 0.7448 0.7810 0.8064 0.8388 0.8573 0.9153 0.9509 0.9873 1.0153 1.0345 1.0712
Q97.5 1.4947 1.5497 1.6018 1.6615 1.7123 1.7654 1.8430 1.8777 1.9342 1.9834 2.0313 2.0871 2.1194 2.1649 2.2133 2.2418

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial
cases

Ta 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

10 Mean 2.9048 2.9537 3.0005 3.0482 3.0939 3.1395 3.1824 3.2268 3.2700 3.3120 3.3517 3.3936 3.4327 3.4699 3.5065 3.5420
SD 0.5680 0.5724 0.5738 0.5781 0.5832 0.5852 0.5849 0.5844 0.5865 0.5860 0.5865 0.5896 0.5925 0.5939 0.5930 0.5941

Q0.25 1.8775 1.9378 1.9878 2.0092 2.0428 2.0857 2.1295 2.1736 2.2131 2.2345 2.2804 2.3248 2.3475 2.3812 2.4183 2.4625
Q97.5 4.0746 4.1293 4.2058 4.2510 4.3365 4.3688 4.4147 4.4408 4.4712 4.5246 4.5799 4.6217 4.7020 4.7312 4.7593 4.7986

Initial
cases

Ta 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

25 Mean 1.6402 1.6738 1.7073 1.7415 1.7757 1.8087 1.8403 1.8711 1.9026 1.9341 1.9644 1.9960 2.0263 2.0543 2.0823 2.1125
SD 0.3036 0.3051 0.3073 0.3103 0.3126 0.3144 0.3165 0.3192 0.3213 0.3233 0.3234 0.3250 0.3271 0.3291 0.3300 0.3325

Q0.25 1.1110 1.1267 1.1509 1.1841 1.2152 1.2371 1.2602 1.2806 1.3020 1.3336 1.3676 1.3930 1.4124 1.4335 1.4628 1.5153
Q97.5 2.3158 2.3357 2.3701 2.4145 2.4579 2.5005 2.5164 2.5426 2.5726 2.6111 2.6482 2.6943 2.7147 2.7438 2.7871 2.8181

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial
cases

Ta 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

10 Mean 3.5787 3.6137 3.6482 3.6824 3.7150 3.7461 3.7800 3.8121 3.8429 3.8738 3.9062 3.9355 3.9637 3.9936 4.0226 4.0523
SD 0.5970 0.5972 0.5983 0.5995 0.5998 0.6008 0.6032 0.6055 0.6052 0.6049 0.6045 0.6063 0.6064 0.6065 0.6089 0.6097

Q0.25 2.4802 2.5237 2.5469 2.5871 2.6227 2.6590 2.7018 2.7173 2.7594 2.7875 2.8125 2.8613 2.8985 2.9280 2.9480 2.9581
Q97.5 4.8315 4.8729 4.8837 4.9067 4.9419 4.9815 5.0041 5.0366 5.0544 5.0885 5.1181 5.1782 5.1852 5.2096 5.2346 5.2894

Initial
cases

Ta 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

25 Mean 2.1418 2.1707 2.1977 2.2247 2.2507 2.2768 2.3016 2.3270 2.3519 2.3772 2.4020 2.4265 2.4508 2.4740 2.4969 2.5202
SD 0.3334 0.3349 0.3362 0.3361 0.3368 0.3390 0.3404 0.3404 0.3417 0.3428 0.3443 0.3455 0.3452 0.3459 0.3478 0.3476

Q0.25 1.5384 1.5550 1.5959 1.6250 1.6429 1.6631 1.6772 1.7085 1.7254 1.7453 1.7795 1.7959 1.8362 1.8493 1.8633 1.8848
Q97.5 2.8494 2.9011 2.9234 2.9394 2.9799 3.0080 3.0375 3.0693 3.0844 3.1146 3.1404 3.1625 3.1863 3.1968 3.2424 3.2635

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data
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Appendix Table 1. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =0.5 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

Mean 4.0812 4.1085 4.1372 4.1631 4.1893 4.2164 4.2429 4.2679 4.2930 4.3173 4.3420 4.3660 4.3898 4.4139 4.4376 4.4615
SD 0.6106 0.6113 0.6138 0.6128 0.6135 0.6157 0.6162 0.6163 0.6158 0.6157 0.6159 0.6155 0.6153 0.6147 0.6140 0.6155

10 Q0.25 2.9764 3.0170 3.0256 3.0561 3.0821 3.0953 3.1192 3.1558 3.1705 3.1956 3.2150 3.2411 3.2567 3.2930 3.3142 3.3256
Q97.5 5.3156 5.3592 5.3883 5.4150 5.4316 5.4585 5.4880 5.5440 5.5648 5.5684 5.5755 5.5829 5.6028 5.6401 5.6837 5.7050
Ta 89 90 91 92 93 94 95 96 97 98 99 100
Mean 4.4848 4.5069 4.5289 4.5519 4.5733 4.5945 4.6164 4.6382 4.6596 4.6805 4.6998 4.7198
SD 0.6150 0.6158 0.6144 0.6151 0.6160 0.6164 0.6173 0.6170 0.6172 0.6166 0.6167 0.6165
Q0.25 3.3511 3.3672 3.4112 3.4242 3.4320 3.4637 3.4826 3.4974 3.5362 3.5553 3.5813 3.5974
Q97.5 5.7421 5.7576 5.7854 5.7939 5.8053 5.8303 5.8357 5.8525 5.8618 5.8793 5.8911 5.9178

Initial cases Ta 88 89 90 91 92 93 94 95 96 97 98 99 100

25 Mean 2.5437 2.5654 2.5863 2.6097 2.6322 2.6546 2.6754 2.6967 2.7184 2.7393 2.7602 2.7803 2.7994
SD 0.3478 0.3495 0.3499 0.3512 0.3522 0.3520 0.3521 0.3527 0.3537 0.3536 0.3555 0.3565 0.3568
Q0.25 1.9176 1.9289 1.9516 1.9865 2.0022 2.0219 2.0452 2.0662 2.0877 2.1010 2.1197 2.1371 2.1572
Q97.5 3.2916 3.3270 3.3507 3.3722 3.3932 3.4078 3.4443 3.4615 3.4895 3.5089 3.5168 3.5395 3.5510

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data
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Appendix Table 2 Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given
different initial infected cases. (Continue)

Infected size
Initial cases Ta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Mean 0 0.3187 0.4780 0.5848 0.6715 0.7352 0.7891 0.8353 0.8772 0.9150 0.9470 0.9772 1.0056 1.0316 1.0554

SD - 0.3208 0.3558 0.3704 0.3785 0.3800 0.3836 0.3864 0.3897 0.3913 0.3926 0.3948 0.3967 0.3979 0.3975
Q0.25 - 0.0081 0.0490 0.1130 0.1710 0.2227 0.2663 0.2958 0.3296 0.3729 0.4163 0.4339 0.4542 0.4818 0.5034
Q97.5 - 1.1056 1.3383 1.4488 1.5725 1.6214 1.6715 1.7304 1.7741 1.7961 1.8183 1.9166 1.9475 1.9584 1.9736

2 Mean 0 0.1661 0.2753 0.3592 0.4244 0.4781 0.5264 0.5672 0.6051 0.6388 0.6680 0.6951 0.7207 0.7447
SD - 0.1683 0.2008 0.2195 0.2316 0.2355 0.2389 0.2420 0.2460 0.2493 0.2515 0.2543 0.2544 0.2559
Q0.25 - 0.0043 0.0339 0.0667 0.1111 0.1459 0.1834 0.2062 0.2315 0.2688 0.2811 0.3049 0.3231 0.3474
Q97.5 - 0.6183 0.7930 0.8800 0.9563 1.0375 1.0803 1.1427 1.1847 1.2274 1.2372 1.2803 1.3030 1.3335

5 Mean 0 0.0691 0.1233 0.1723 0.2147 0.2521 0.2848 0.3146 0.3425 0.3681 0.3927
SD - 0.0713 0.0881 0.1008 0.1082 0.1139 0.1178 0.1225 0.1263 0.1288 0.1314
Q0.25 - 0.0011 0.0158 0.0294 0.0560 0.0826 0.1010 0.1171 0.1374 0.1576 0.1686
Q97.5 - 0.2658 0.3422 0.4088 0.4822 0.5303 0.5633 0.5997 0.6418 0.6731 0.6984

Ta: Expected time to infected size a; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 Mean 1.0767 1.0980 1.1183 1.1372 1.1539 1.1703 1.1859 1.2011 1.2167 1.2308 1.2438 1.2569 1.2690 1.2810 1.2924

SD 0.3968 0.3969 0.3969 0.3978 0.3987 0.3991 0.3993 0.3994 0.4008 0.4022 0.4026 0.4035 0.4036 0.4038 0.4039
Q0.25 0.5193 0.5317 0.5479 0.5756 0.5908 0.6073 0.6324 0.6433 0.6503 0.6599 0.6745 0.6890 0.7017 0.7160 0.7230
Q97.5 2.0004 2.0346 2.0403 2.0501 2.0868 2.1010 2.1136 2.1195 2.1371 2.1596 2.1664 2.1759 2.1841 2.1895 2.2147

2 Mean 0.7661 0.7874 0.8067 0.8251 0.8421 0.8588 0.8746 0.8897 0.9052 0.9188 0.9324 0.9459 0.9584 0.9707 0.9826
SD 0.2572 0.2566 0.2574 0.2576 0.2586 0.2592 0.2595 0.2610 0.2610 0.2611 0.2614 0.2612 0.2621 0.2617 0.2617
Q0.25 0.3586 0.3854 0.4129 0.4280 0.4486 0.4643 0.4716 0.4865 0.5028 0.5218 0.5340 0.5442 0.5502 0.5636 0.5770
Q97.5 1.3525 1.3808 1.4013 1.4131 1.4215 1.4492 1.4610 1.4703 1.4930 1.5010 1.5135 1.5222 1.5269 1.5446 1.5563

5 Mean 0.4146 0.4365 0.4560 0.4759 0.4949 0.5111 0.5275 0.5427 0.5575 0.5711 0.5841 0.5972 0.6093 0.6204 0.6315
SD 0.1327 0.1348 0.1365 0.1381 0.1398 0.1405 0.1403 0.1417 0.1423 0.1428 0.1433 0.1440 0.1448 0.1452 0.1453
Q0.25 0.1918 0.2122 0.2273 0.2432 0.2583 0.2679 0.2888 0.3040 0.3185 0.3399 0.3463 0.3587 0.3666 0.3717 0.3852
Q97.5 0.7161 0.7416 0.7689 0.7974 0.8100 0.8264 0.8448 0.8658 0.8762 0.8915 0.9056 0.9146 0.9300 0.9509 0.9644

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
1 Mean 1.3037 1.3147 1.3250 1.3348 1.3449 1.3542 1.3635 1.3724 1.3814 1.3904 1.3987 1.4068 1.4144 1.4226 1.4303

SD 0.4036 0.4032 0.4031 0.4033 0.4037 0.4038 0.4047 0.4047 0.4051 0.4054 0.4050 0.4053 0.4053 0.4052 0.4051
Q0.25 0.7317 0.7436 0.7528 0.7684 0.7772 0.7822 0.7907 0.8031 0.8079 0.8143 0.8230 0.8370 0.8449 0.8561 0.8632
Q97.5 2.2209 2.2357 2.2462 2.2471 2.2657 2.2691 2.2836 2.3004 2.3124 2.3159 2.3244 2.3281 2.3359 2.3396 2.3448

2 Mean 0.9929 1.0047 1.0148 1.0257 1.0357 1.0452 1.0546 1.0639 1.0723 1.0811 1.0896 1.0980 1.1057 1.1131 1.1207
SD 0.2616 0.2621 0.2624 0.2625 0.2623 0.2624 0.2621 0.2624 0.2628 0.2632 0.2633 0.2637 0.2640 0.2643 0.2643
Q0.25 0.5887 0.6032 0.6096 0.6190 0.6303 0.6345 0.6445 0.6629 0.6729 0.6785 0.6840 0.6866 0.6930 0.6979 0.7023
Q97.5 1.5595 1.5716 1.5808 1.5969 1.6005 1.6103 1.6224 1.6362 1.6493 1.6583 1.6675 1.6736 1.6853 1.6875 1.6939

5 Mean 0.6430 0.6535 0.6640 0.6738 0.6836 0.6932 0.7027 0.7120 0.7213 0.7303 0.7385 0.7465 0.7543 0.7619 0.7697
SD 0.1455 0.1460 0.1469 0.1472 0.1477 0.1484 0.1485 0.1491 0.1497 0.1500 0.1503 0.1502 0.1506 0.1508 0.1506
Q0.25 0.3953 0.4048 0.4122 0.4194 0.4296 0.4337 0.4444 0.4530 0.4626 0.4666 0.4750 0.4852 0.4919 0.4956 0.5080
Q97.5 0.9764 0.9822 0.9952 1.0049 1.0215 1.0366 1.0484 1.0571 1.0666 1.0713 1.0735 1.0864 1.0903 1.0925 1.0998

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1 Mean 1.4376 1.4448 1.4519 1.4587 1.4655 1.4722 1.4790 1.4853 1.4918 1.4978 1.5039 1.5100 1.5160 1.5219 1.5275
SD 0.4049 0.4046 0.4044 0.4043 0.4043 0.4044 0.4045 0.4043 0.4043 0.4041 0.4043 0.4040 0.4039 0.4042 0.4042

Q0.25 0.8726 0.8779 0.8806 0.8867 0.8927 0.8991 0.9051 0.9180 0.9218 0.9333 0.9383 0.9482 0.9517 0.9534 0.9548
Q97.5 2.3569 2.3638 2.3765 2.3832 2.3869 2.3967 2.3986 2.4040 2.4077 2.4130 2.4244 2.4278 2.4327 2.4388 2.4423

2 Mean 1.1282 1.1355 1.1427 1.1499 1.1567 1.1629 1.1697 1.1763 1.1826 1.1886 1.1944 1.2001 1.2059 1.2117 1.2172
SD 0.2644 0.2648 0.2650 0.2653 0.2655 0.2657 0.2654 0.2658 0.2658 0.2659 0.2660 0.2660 0.2662 0.2661 0.2659

Q0.25 0.7110 0.7206 0.7247 0.7295 0.7322 0.7391 0.7411 0.7478 0.7569 0.7624 0.7648 0.7689 0.7759 0.7827 0.7857
Q97.5 1.6995 1.7079 1.7157 1.7236 1.7343 1.7466 1.7548 1.7591 1.7622 1.7635 1.7685 1.7762 1.7893 1.7914 1.7972

5 Mean 0.7770 0.7843 0.7914 0.7982 0.8049 0.8111 0.8175 0.8240 0.8303 0.8364 0.8425 0.8483 0.8543 0.8600 0.8657
SD 0.1505 0.1503 0.1505 0.1507 0.1508 0.1514 0.1516 0.1519 0.1517 0.1516 0.1520 0.1521 0.1519 0.1518 0.1519

Q0.25 0.5150 0.5214 0.5328 0.5363 0.5402 0.5490 0.5529 0.5593 0.5648 0.5699 0.5774 0.5823 0.5863 0.5947 0.5981
Q97.5 1.1109 1.1211 1.1298 1.1410 1.1483 1.1511 1.1624 1.1664 1.1706 1.1773 1.1796 1.1871 1.1889 1.1912 1.1945

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.



199

Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
1 Mean 1.5331 1.5386 1.5436 1.5488 1.5539 1.5591 1.5643 1.5692 1.5740 1.5788 1.5836 1.5882 1.5928 1.5974 1.6023

SD 0.4043 0.4039 0.4042 0.4039 0.4041 0.4040 0.4042 0.4044 0.4044 0.4045 0.4044 0.4045 0.4044 0.4049 0.4049
Q0.25 0.9604 0.9632 0.9717 0.9771 0.9817 0.9865 0.9933 0.9944 0.9977 1.0028 1.0074 1.0150 1.0218 1.0277 1.0295
Q97.5 2.4457 2.4546 2.4586 2.4623 2.4654 2.4684 2.4719 2.4836 2.4944 2.5012 2.5031 2.5083 2.5117 2.5139 2.5171

2 Mean 1.2230 1.2287 1.2340 1.2395 1.2444 1.2493 1.2545 1.2593 1.2640 1.2687 1.2732 1.2778 1.2826 1.2872 1.2918
SD 0.2658 0.2661 0.2663 0.2663 0.2662 0.2664 0.2663 0.2665 0.2667 0.2667 0.2668 0.2669 0.2669 0.2671 0.2672
Q0.25 0.7945 0.7986 0.8026 0.8104 0.8185 0.8244 0.8321 0.8353 0.8402 0.8499 0.8546 0.8597 0.8640 0.8694 0.8729
Q97.5 1.8012 1.8076 1.8172 1.8185 1.8249 1.8278 1.8295 1.8353 1.8441 1.8491 1.8512 1.8530 1.8548 1.8585 1.8605

5 Mean 0.8716 0.8770 0.8825 0.8879 0.8930 0.8981 0.9031 0.9082 0.9131 0.9179 0.9227 0.9275 0.9319 0.9366 0.9411
SD 0.1521 0.1523 0.1524 0.1526 0.1526 0.1525 0.1523 0.1522 0.1524 0.1527 0.1527 0.1528 0.1531 0.1532 0.1533
Q0.25 0.6048 0.6095 0.6152 0.6205 0.6237 0.6300 0.6358 0.6389 0.6443 0.6500 0.6553 0.6586 0.6636 0.6648 0.6737
Q97.5 1.2058 1.2078 1.2169 1.2214 1.2297 1.2336 1.2379 1.2435 1.2464 1.2536 1.2545 1.2601 1.2647 1.2725 1.2744

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
1 Mean 1.6069 1.6114 1.6158 1.6199 1.6240 1.6283 1.6323 1.6364 1.6405 1.6443 1.6482 1.6521 1.6561 1.6599 1.6636

SD 0.4051 0.4053 0.4053 0.4053 0.4054 0.4051 0.4052 0.4052 0.4053 0.4053 0.4053 0.4052 0.4052 0.4055 0.4058
Q0.25 1.0347 1.0372 1.0424 1.0474 1.0498 1.0539 1.0583 1.0637 1.0681 1.0718 1.0738 1.0766 1.0793 1.0851 1.0897
Q97.5 2.5220 2.5290 2.5303 2.5394 2.5414 2.5458 2.5474 2.5522 2.5569 2.5662 2.5689 2.5723 2.5742 2.5900 2.5934

2 Mean 1.2965 1.3011 1.3054 1.3096 1.3141 1.3184 1.3225 1.3268 1.3306 1.3346 1.3385 1.3425 1.3464 1.3503 1.3540
SD 0.2674 0.2674 0.2674 0.2675 0.2676 0.2677 0.2676 0.2673 0.2674 0.2673 0.2674 0.2673 0.2672 0.2673 0.2673
Q0.25 0.8755 0.8801 0.8820 0.8845 0.8931 0.8936 0.9012 0.9062 0.9072 0.9115 0.9189 0.9196 0.9231 0.9287 0.9320
Q97.5 1.8640 1.8698 1.8775 1.8778 1.8898 1.8918 1.8997 1.9008 1.9056 1.9113 1.9199 1.9208 1.9218 1.9285 1.9333

5 Mean 0.9458 0.9501 0.9542 0.9585 0.9628 0.9670 0.9711 0.9750 0.9792 0.9834 0.9872 0.9910 0.9949 0.9986 1.0025
SD 0.1532 0.1535 0.1536 0.1536 0.1535 0.1534 0.1536 0.1536 0.1536 0.1536 0.1536 0.1536 0.1536 0.1535 0.1535
Q0.25 0.6763 0.6780 0.6803 0.6849 0.6915 0.6953 0.7037 0.7093 0.7105 0.7179 0.7243 0.7262 0.7289 0.7327 0.7375
Q97.5 1.2837 1.2902 1.2927 1.2977 1.3003 1.3044 1.3121 1.3140 1.3175 1.3205 1.3239 1.3282 1.3325 1.3360 1.3426

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial
cases

Ta 91 92 93 94 95 96 97 98 99 100

1 Mean 1.6673 1.6710 1.6747 1.6782 1.6818 1.6852 1.6884 1.6920 1.6952 1.6983
SD 0.4057 0.4057 0.4057 0.4057 0.4057 0.4057 0.4058 0.4057 0.4057 0.4056
Q0.25 1.0914 1.0955 1.0984 1.0995 1.1072 1.1078 1.1088 1.1146 1.1185 1.1220
Q97.5 2.5958 2.5989 2.6007 2.6017 2.6040 2.6119 2.6194 2.6228 2.6256 2.6282

2 Mean 1.3576 1.3613 1.3648 1.3685 1.3721 1.3756 1.3791 1.3827 1.3862 1.3896
SD 0.2673 0.2674 0.2676 0.2676 0.2676 0.2675 0.2677 0.2677 0.2676 0.2676
Q0.25 0.9343 0.9379 0.9421 0.9449 0.9506 0.9542 0.9581 0.9615 0.9627 0.9685
Q97.5 1.9356 1.9372 1.9421 1.9451 1.9497 1.9504 1.9537 1.9553 1.9586 1.9669

5 Mean 1.0062 1.0099 1.0135 1.0171 1.0206 1.0240 1.0273 1.0307 1.0338 1.0373
SD 0.1536 0.1537 0.1538 0.1537 0.1535 0.1536 0.1538 0.1539 0.1540 0.1544
Q0.25 0.7412 0.7436 0.7513 0.7541 0.7583 0.7625 0.7638 0.7670 0.7708 0.7729
Q97.5 1.3456 1.3506 1.3546 1.3593 1.3608 1.3666 1.3678 1.3689 1.3704 1.3874

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given
different initial infected cases. (Continue)

Infected size
Initial cases Ta 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10 Mean 0 0.0337 0.0641 0.0915 0.1189 0.1420 0.1649 0.1861 0.2060 0.2245 0.2427 0.2581 0.2742 0.2888 0.3035

SD - 0.0326 0.0449 0.0521 0.0586 0.0639 0.0683 0.0704 0.0723 0.0749 0.0759 0.0780 0.0795 0.0806 0.0822
Q0.25 - 0.0009 0.0078 0.0201 0.0355 0.0492 0.0612 0.0770 0.0901 0.1008 0.1185 0.1256 0.1385 0.1507 0.1620
Q97.5 - 0.1249 0.1833 0.2200 0.2607 0.2924 0.3197 0.3439 0.3714 0.3946 0.4077 0.4219 0.4402 0.4595 0.4736

Infected size
Initial cases Ta 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
25 Mean 0 0.0131 0.0260 0.0382 0.0503 0.0621 0.0730 0.0842 0.0948 0.1052 0.1152 0.1251 0.1350 0.1438 0.1521

SD - 0.0132 0.0185 0.0224 0.0256 0.0277 0.0295 0.0310 0.0326 0.0337 0.0352 0.0362 0.0381 0.0389 0.0396
Q0.25 - 0.0003 0.0034 0.0071 0.0132 0.0203 0.0267 0.0343 0.0417 0.0493 0.0565 0.0630 0.0727 0.0769 0.0825
Q97.5 - 0.0486 0.0747 0.0920 0.1118 0.1285 0.1449 0.1558 0.1685 0.1806 0.1915 0.2056 0.2191 0.2315 0.2420

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data.
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial
cases

Ta 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

10 Mean 0.3173 0.3304 0.3429 0.3551 0.3669 0.3784 0.3893 0.3999 0.4100 0.4202 0.4305 0.4403 0.4498 0.4585 0.4672 0.4756
SD 0.0837 0.0845 0.0860 0.0874 0.0886 0.0898 0.0902 0.0906 0.0914 0.0921 0.0925 0.0929 0.0933 0.0936 0.0941 0.0944
Q0.25 0.0837 0.0845 0.0860 0.0874 0.0886 0.0898 0.0902 0.0906 0.0914 0.0921 0.0925 0.0929 0.0933 0.0936 0.0941 0.0944
Q97.5 0.4894 0.5040 0.5207 0.5410 0.5538 0.5692 0.5798 0.5918 0.6017 0.6084 0.6162 0.6294 0.6374 0.6496 0.6631 0.6705

Infected size
Initial
cases

Ta 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

25 Mean 0.1610 0.1694 0.1775 0.1851 0.1928 0.2006 0.2081 0.2155 0.2226 0.2292 0.2361 0.2427 0.2492 0.2552 0.2616 0.2676
SD 0.0406 0.0412 0.0417 0.0427 0.0435 0.0444 0.0455 0.0463 0.0470 0.0477 0.0481 0.0484 0.0488 0.0493 0.0499 0.0501
Q0.25 0.0906 0.0982 0.1057 0.1114 0.1187 0.1241 0.1302 0.1344 0.1398 0.1429 0.1525 0.1585 0.1646 0.1692 0.1724 0.1785
Q97.5 0.2491 0.2583 0.2670 0.2769 0.2854 0.2942 0.3072 0.3130 0.3224 0.3306 0.3385 0.3478 0.3532 0.3608 0.3689 0.3736

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial
cases

Ta 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

10 Mean 0.4841 0.4923 0.5001 0.5080 0.5157 0.5232 0.5304 0.5378 0.5450 0.5520 0.5586 0.5656 0.5721 0.5783 0.5844 0.5903
SD 0.0947 0.0954 0.0956 0.0963 0.0972 0.0975 0.0975 0.0974 0.0978 0.0977 0.0977 0.0983 0.0988 0.0990 0.0988 0.0990
Q0.25 0.3129 0.3230 0.3313 0.3349 0.3405 0.3476 0.3549 0.3623 0.3688 0.3724 0.3801 0.3875 0.3913 0.3969 0.4030 0.4104
Q97.5 0.6791 0.6882 0.7010 0.7085 0.7228 0.7281 0.7358 0.7401 0.7452 0.7541 0.7633 0.7703 0.7837 0.7885 0.7932 0.7998

Initial
cases

Ta 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

25 Mean 0.2734 0.2790 0.2845 0.2902 0.2959 0.3015 0.3067 0.3118 0.3171 0.3224 0.3274 0.3327 0.3377 0.3424 0.3471 0.3521
SD 0.0506 0.0508 0.0512 0.0517 0.0521 0.0524 0.0527 0.0532 0.0535 0.0539 0.0539 0.0542 0.0545 0.0549 0.0550 0.0554
Q0.25 0.1852 0.1878 0.1918 0.1974 0.2025 0.2062 0.2100 0.2134 0.2170 0.2223 0.2279 0.2322 0.2354 0.2389 0.2438 0.2525
Q97.5 0.3860 0.3893 0.3950 0.4024 0.4096 0.4167 0.4194 0.4238 0.4288 0.4352 0.4414 0.4491 0.4524 0.4573 0.4645 0.4697

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases. (Continue)

Infected size
Initial cases Ta 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
10 Mean 0.5964 0.6023 0.6080 0.6137 0.6192 0.6243 0.6300 0.6353 0.6405 0.6456 0.6510 0.6559 0.6606 0.6656 0.6704 0.6754

SD 0.0995 0.0995 0.0997 0.0999 0.1000 0.1001 0.1005 0.1009 0.1009 0.1008 0.1008 0.1010 0.1011 0.1011 0.1015 0.1016
Q0.25 0.4134 0.4206 0.4245 0.4312 0.4371 0.4432 0.4503 0.4529 0.4599 0.4646 0.4687 0.4769 0.4831 0.4880 0.4913 0.4930
Q97.5 0.8052 0.8121 0.8139 0.8178 0.8236 0.8303 0.8340 0.8394 0.8424 0.8481 0.8530 0.8630 0.8642 0.8683 0.8724 0.8816

Initial cases Ta 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
25 Mean 0.3570 0.3618 0.3663 0.3708 0.3751 0.3795 0.3836 0.3878 0.3920 0.3962 0.4003 0.4044 0.4085 0.4123 0.4161 0.4200

SD 0.0556 0.0558 0.0560 0.0560 0.0561 0.0565 0.0567 0.0567 0.0570 0.0571 0.0574 0.0576 0.0575 0.0576 0.0580 0.0579
Q0.25 0.2564 0.2592 0.2660 0.2708 0.2738 0.2772 0.2795 0.2847 0.2876 0.2909 0.2966 0.2993 0.3060 0.3082 0.3105 0.3141
Q97.5 0.4749 0.4835 0.4872 0.4899 0.4967 0.5013 0.5062 0.5116 0.5141 0.5191 0.5234 0.5271 0.5311 0.5328 0.5404 0.5439

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data
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Appendix Table 2. Expected time to infected size ‘a’ after 1000 times of simulation with simulation with pure birth process with =3 given different
initial infected cases.

Infected size
Initial cases Ta 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

Mean 0.6802 0.6848 0.6895 0.6938 0.6982 0.7027 0.7071 0.7113 0.7155 0.7196 0.7237 0.7277 0.7316 0.7356 0.7396 0.7436
SD 0.1018 0.1019 0.1023 0.1021 0.1022 0.1026 0.1027 0.1027 0.1026 0.1026 0.1026 0.1026 0.1025 0.1025 0.1023 0.1026

10 Q0.25 0.4961 0.5028 0.5043 0.5094 0.5137 0.5159 0.5199 0.5260 0.5284 0.5326 0.5358 0.5402 0.5428 0.5488 0.5524 0.5543
Q97.5 0.8859 0.8932 0.8980 0.9025 0.9053 0.9097 0.9147 0.9240 0.9275 0.9281 0.9293 0.9305 0.9338 0.9400 0.9473 0.9508

Ta 89 90 91 92 93 94 95 96 97 98 99 100
Mean 0.7475 0.7512 0.7548 0.7587 0.7622 0.7657 0.7694 0.7730 0.7766 0.7801 0.7833 0.7866

SD 0.1025 0.1026 0.1024 0.1025 0.1027 0.1027 0.1029 0.1028 0.1029 0.1028 0.1028 0.1028
Q0.25 0.5585 0.5612 0.5685 0.5707 0.5720 0.5773 0.5804 0.5829 0.5894 0.5926 0.5969 0.5996
Q97.5 0.9570 0.9596 0.9642 0.9657 0.9676 0.9717 0.9726 0.9754 0.9770 0.9799 0.9819 0.9863

Initial cases Ta 88 89 90 91 92 93 94 95 96 97 98 99 100

25 Mean 0.4240 0.4276 0.4311 0.4350 0.4387 0.4424 0.4459 0.4494 0.4531 0.4566 0.4600 0.4634 0.4666
SD 0.0580 0.0583 0.0583 0.0585 0.0587 0.0587 0.0587 0.0588 0.0589 0.0589 0.0593 0.0594 0.0595

Q0.25 0.3196 0.3215 0.3253 0.3311 0.3337 0.3370 0.3409 0.3444 0.3480 0.3502 0.3533 0.3562 0.3595
Q97.5 0.5486 0.5545 0.5585 0.5620 0.5655 0.5680 0.5740 0.5769 0.5816 0.5848 0.5861 0.5899 0.5918

Ta: Expected time to infected size ‘a’; SD: standard deviation; Q2.5: 2.5% quantile of simulation data; Q97.5: 97.5% quantile of simulation data
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