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ABSTRACT

EXISTING multi-robot cooperative perception solutions can be mainly classified into
two categories, measurement-based and belief-based, according to the information
shared among robots. With well-controlled communication, measurement-based
approaches are expected to achieve theoretically optimal estimates while belief-

based approaches are not. Nevertheless, belief-based approaches perform relatively stable
under unstable communication as a belief contains the information of multiple previous
measurements. Motivated by the observation that measurement sharing and belief shar-
ing are respectively superior in different conditions, in this thesis an adapting algorithm,
communication adaptive multi-robot simultaneous localization and tracking (ComAd MR-
SLAT), is proposed to combine the advantages of both to tackle the unstable communica-
tion conditions. However, the decision process of what kind of information to share is
only based on a probability distribution of states, which is estimated according to a set of
observations and observation probabilities. Therefore, it could be seen as a multi-robot par-
tially observable Markov decision process (POMDP) problem. The information to share is
decided by maximizing the expected uncertainty reduction, based on which the algorithm
dynamically alternates between measurement-sharing and belief-sharing without informa-
tion loss or reuse. With using the expected effective communication and information re-
ceiving, the proposed ComAd MR-SLAT can tackle the complexity issue and online decide
the sharing strategy to adapt different communication conditions. The proposed ComAd
MR-SLAT is evaluated in communication conditions with different packet loss rates, bursty
loss lengths, and data association conditions. The proposed ComAd MR-SLAT outper-
forms both measurement-based and belief-based MR-SLAT in both localization and data
association accuracy. In addition, the real data are also collected and evaluated, the ex-
perimental results demonstrate the effectiveness of the proposed adapting algorithm and
exhibit that the ComAd MR-SLAT is robust in the simulation and real data experiment.

Keywords: Communication, multi-robot, localization, tracking, cooperative, POMDP
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CHAPTER 1

Introduction

L
OCALIZATION is one of the most essential capabilities for autonomous robots

(Cox and Wilfong, 1990). In single-robot localization, the pose of the robot

w.r.t. a given map can be estimated in a probabilistic manner by properly

modeling the uncertainty of motion commands and measurements (Leonard

and Durrant-Whyte, 1991)(Fox et al., 1999). With the ability to detect other robots, multi-

robot cooperative localization has been proved to effectively outperform single-robot lo-

calization by incorporating relative measurements between a troop of robots (Fox et al.,

2000)(Roumeliotis and Bekey, 2002)(Howard et al., 2002). Moreover, in our previous work,

it has also been demonstrated that multi-robot simultaneous localization and tracking (MR-

SLAT) can further improve the performance by exploiting the relative measurements be-

tween robots and moving objects in dynamic scenes (Wang et al., 2007)(Chang et al., 2011).

Existing multi-robot cooperative perception solutions can be mainly classified into

two categories, measurement-based and belief-based, according to the information shared among

the teammate robots. In the measurement-based approaches (Fox et al., 2000)(Howard

et al., 2002)(Chang et al., 2011), the control data and measurements are shared. On the

other hand, the belief-based approaches (Bar-Shalom and Li, 1995) (Roumeliotis and Bekey,

2002)(Thrun and Liu, 2005)(Nerurkar et al., 2009)(Aeberhard et al., 2012)(Govaers and Koch,

2012)(Cunningham et al., 2013), each robot firstly fuses its own control data and measure-

ments into a local belief. Then the local beliefs are shared to the teammate robots, and the

global state is inferred by merging the local beliefs.
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However, with wireless communication, the packet loss is still a fundamental issue

which may critically degrade the performance of multi-robot cooperation. There had dis-

cussed that it would have two types packet loss, independent packet loss and bursty packet

loss (Yajnik et al., 1996). With the independent packet loss condition, packages get loss in-

dependently. Therefore, the duplicated transmission can effectively deal with the issue by

receiving the lost information from following packages. In contrast, the bursty packet loss

means that packages get loss continuously. Therefore, the problem caused by bursty packet

loss cannot be tackled by duplicated transmission because of following packages are also

lost.

By comparison with belief-based approaches, with well-controlled communication, in

which the packet loss rate is low and there are merely consecutive packets lost, measurement-

based approaches are expected to receive all control data and measurements from the other

robots, and the global state is inferred in a centralized manner to achieve theoretically opti-

mal estimation. Nevertheless, belief-based approach cannot achieve theoretically optimal

estimation because the cross-correlations between beliefs are hard to be perfect estimated.

On the other hand, with unstable communication, in which packets get lost continuously,

measurement-based approaches would be critically degraded. However, belief-based ap-

proaches would be more stable than measurement-based approaches because one belief

already contains several measurements.

This thesis is motivated by the different characteristics of the measurement-based and

belief-based approaches against different communication conditions. Fig. 1.1 shows the

performance of measurement-based and belief-based MR-SLAT under different packet loss

rates. It can be observed that when the packet loss rate is low, the measurement-based

approach outperforms the belief-based one. The main reasons are: (1) With perfect com-

munication, centralized measurement-based approaches are expected to achieve theoret-

ically optimal estimates while distributed belief-based approaches are not as the cross-

correlations between local beliefs are hard to be perfectly estimated in practice (Chen et al.,

2003). (2) Sharing beliefs generally requires more communication bandwidth, so under

the same communication load, the measurement loss rate can be lowered by simple com-

munication strategies such as duplicated transmission. In contrast, the advantage of belief-

based MR-SLAT arises from the fact that a single belief contains the information equivalent

to multiple measurements. While the performance of measurement-based MR-SLAT gets

2
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Figure 1.1. Comparison on the localization errors of measurement-based MR-SLAT
and belief-based MR-SLAT under different packet loss rates.

worse when the packet loss rate gets higher, the performance of belief-based one performs

relatively stable against packet loss as the information brought by the past measurements

has been encoded in the latest local beliefs.

Aiming at tackling practical scenes with unstable communication conditions, in this

thesis we propose communication adaptive MR-SLAT (ComAd MR-SLAT), an online adapt-

ing algorithm combining the advantages of both measurement-sharing and belief-sharing

by explicitly taking the communication condition into account. However, the sharing type

decision process should be determined with only the probability distribution of multiple

robot poses and the communication conditions between robots. Without perfect state infor-

mation, multi-robot partially observable Markov decision process (multi-robot POMDP) is

introduced to model the decision process. Nevertheless, the exact performance improve-

ment in accuracy cannot be determined without the actual measurements are fetched and

the packages are received. Therefore, the uncertainty reduction of the estimation is pro-

posed to tackle the issue, as the estimation results with the smaller uncertainty are statis-

tically expected to be more accurate. However, the complexity of the multi-robot POMDP

problem is exponentially increased according to the communication conditions and the

states of the MR-SLAT problem as the traditional approach should consider all possible

reward for every possible states. Therefore, to determine the sharing mode, the expected

3
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approach is proposed to use the expected communication conditions and measurement re-

ceiving to calculate the reward and guide the multi-robot POMDP problem. The simulation

approach is proposed to indicate the reward of uncertainty reduction for measurement-

sharing, and the geometric distribution between communication conditions and uncer-

tainty reduction is proposed to calculate the reward of belief-sharing. With the proposed

expected approach, we can guide the POMDP problem, and the communication condition

can be taken into account to adapt different situations.

The proposed ComAd MR-SLAT algorithm is evaluated under different communica-

tion and data association conditions in a multi-robot setting. Following the motion models

and sensor models used in practical RoboCup scenes, various packet loss rates and bursty

loss lengths (Yajnik et al., 1996) are simulated to verify the effectiveness of ComAd MR-

SLAT. Note that not only packet loss rates but also burtsy loss lengths can influence the

performance. In addition, the practical approach to do data association without informa-

tion reuse or loss in the adapting scheme are also discussed. Accordingly, the factor is

analyzed in the experiments. Moreover, the real experimental scenario is also evaluated to

verify the practicability of the proposed ComAd MR-SLAT algorithm. The experimental

results demonstrate that the proposed adapting solution outperforms both measurement-

based and belief-based MR-SLAT in localization accuracy under different communication

conditions, the ComAd MR-SLAT is more robust against unstable communication situa-

tions.

In our previous work (Chang et al., 2014), the concept for adapting measurement and

belief sharing was adopted and verified only for given correct data association in simula-

tion. In this thesis the multi-robot POMDP framework is introduced to model the problem

theoretically. With integrating the communication condition and the states of the MR-SLAT

problem, the complexity issue of the sharing mode determination is addressed. More-

over, the algorithm for generating correspondence of observations is also proposed and

the derivation of the modelling between communication and localization uncertainty is

conferred. Therefore, the ComAd MR-SLAT is able to tackle the communication issues by

taking the communication into account. Accordingly, with the data association algorithm,

the effectiveness of the proposed ComAd MR-SLAT is demonstrated in real data experi-

ment.

4
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Related Work

I
N multi-robot cooperative perception, measurement-based algorithms have been

proposed such as the particle filter (PF) based approach (Fox et al., 2000), the max-

imum likelihood estimation (MLE) based approach (Howard et al., 2002), and the

extended Kalman filter (EKF) based approach (Chang et al., 2011). In these ap-

proaches, measurements, e.g. map feature detection and robot detection, are shared to the

other robots, and then the global state is inferred in a centralized manner. Regarding com-

munication considerations, the communication condition is not discussed in (Fox et al.,

2000)(Howard et al., 2002) and is assumed well-controlled in (Chang et al., 2011).

On the other hand, various belief-based approaches have also been proposed based on

different techniques, such as distributed EKF (Roumeliotis and Bekey, 2002), distributed

Sparse Extended Information Filters (SEIF) (Thrun and Liu, 2005), distributed maximum a

posteriori (MAP) (Nerurkar et al., 2009), track-to-track fusion (Bar-Shalom and Li, 1995)(Ae-

berhard et al., 2012)(Govaers and Koch, 2012) and distributed smoothing and mapping

(SAM) (Cunningham et al., 2013). In these approaches, the measurements are first locally

fused into beliefs in a decentralized manner. Then the beliefs are shared to the other robots

and the global state is inferred by merging the local beliefs. Comparing to measurement-

based approaches, one of the advantages of the belief-based approaches is that the compu-

tation can be distributed to multiple robots.

The comparison of measurement-based approaches and belief-based approaches has

been discussed as follows: With well-controlled communication, the centralized measurement-

based approaches are expected to achieve better performance than the decentralized ones
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as it is generally hard to accurately estimate the correlations between tracks of the same en-

tity estimated by different robots in decentralized approaches (Chen et al., 2003). Though

in (Govaers and Koch, 2012), an exact solution is proposed to decorrelate the cross correla-

tions between tracks and is proved to be optimal based on Kalman filter (KF) assumptions.

However, the correlation estimation is still approximate in practical non-linear applica-

tions. In contrast, regarding unstable communication conditions in practice, it has also

been argued that the decentralized belief-based approaches have a higher tolerance to in-

dividual node failures due to the communication issues (Rabbat and Nowak, 2004).

Motivated by the different advantages of measurement-based and belief-based ap-

proaches, the idea is to switch the sharing strategy between measurement sharing and

belief sharing according to the environment and communication conditions. However,

the sharing decision should be made with only the probability distribution of the envi-

ronment because the environment cannot be perfectly observed. Therefore, the proposed

adapting algorithm could be treated as solving a partially observable Markov decision

process (POMDP) problem in multi-robot scenario. For dealing with multi-robot scenario,

the Decentralized POMDP (Dec-POMDP) model allows for fully decentralized execution

(Bernstein et al., 2002), while the multi-agent POMDP (MPOMDP) takes a centralized ap-

proach (Pynadath, 2002). Inspired by a realistic sensor network coordination problem,

the Networked Distributed POMDPs (ND-POMDPs) (Nair et al., 2005) is proposed to ex-

ploit local interactions in sensor networks. However, the number of states in a multi-robot

POMDP scales exponentially which quickly leads to intractability even with state-of-the-

art solvers (Hollinger and Singh, 2010). For dealing with the complexity, various approx-

imate approaches are proposed in specific tasks such as (Nair et al., 2003)(Capitan et al.,

2013), but the issues of communication between robots are not addressed. There also var-

ious approaches are proposed to consider the cost of communication such as (Xuan et al.,

2001)(Nair et al., 2003)(Goldman and Zilberstein, 2003). However, although these algo-

rithms consider the cost of communication, packet loss, which is a fundamental issue of

wireless communication, is not addressed.

In addition, although some approximate algorithms are able to successfully handle the

state spaces without the consideration of packet loss, the state spaces would be increased

exponentially according to the consideration of communication and the MR-SLAT prob-

lem. Therefore, POMDPs ultimately face a complexity issue according to the large state

6
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spaces. Moreover, with unstable communication, which the conditions may change dra-

matically, the sharing mode decision should be made online to adapt different situations

immediately. With modelling the problem as to maximize the uncertainty reduction, the

expected approach is proposed to tackle the complexity issue by using the expected effec-

tive communication and predicted measurement receiving. With modelling the problem

properly, the proposed adapting approach can adapt different communication conditions

by online determining the information to share.

7



CHAPTER 3

Multi-Robot Simultaneous Localization and Tracking

IN this section, the theoretical foundations of multi-robot simultaneous localization and

tracking (MR-SLAT) is introduced, and measurement-based MR-SLAT and belief-

based MR-SLAT are described.

3.1. Augmented-State Representation

In MR-SLAT, the states of multiple robots and nearby moving objects are estimated

simultaneously through the augmented state Xt :

(3.1) Xt =
[
(R1

t )
T . . . (RN

t )
T (O1

t )
T . . . (OM

t )T
]T

where t denotes the time index, N denotes the number of robots, M denotes the num-

ber of moving objects, Ri
t =

[
xi

t yi
t θ i

t
]T is the pose of the ith robot at time t, and O j

t =[
x j

t y j
t vx j

t vy j
t

]T
contains the position and velocity of the jth moving object at time t.

In this thesis, we refer the robots to the entities that can communicate and share information

with the others, and the moving objects to those that are not in the communication network.

3.2. Measurement-based MR-SLAT

In (Chang et al., 2011), following the theoretical framework of SLAMMOT (Wang et al.,

2007) the extended Kalman filter (EKF) is used to integrate the uncertain data fetched from

the robots, in which the covariance matrix maintains all of the pairwise correlations be-

tween the robots and moving objects. Regarding motion prediction, the odometry motion

model is used for teammate robots in the communication network while the constant veloc-

ity (CV) model is used for the moving objects as the control data is not available. Regarding

the measurement update, three types of measurements are aggregated: (1) relative infor-

mation between the robot and the map (robot-to-map), (2) relative information between
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two teammate robots (robot-to-robot), and (3) relative information between the robot and

the moving object (robot-to-moving-object).

In measurement-based MR-SLAT, the received odometry data and measurements are

shared to the teammates at each time step. Accordingly, with well-controlled communica-

tion, at time t each robot is expected to receive all odometry data and measurements from

all the other teammate robots. The global state, Bel1:t , is inferred through the standard EKF

procedure recursively in a centralized manner:

(3.2) Bel1:t ∼ Pr(Xt |Ui
1:t ,Z

i
1:t ,∀i = 1...N)

where Ui
1:t denotes the control data of the ith robot from time 1 to time t and Zi

1:t the mea-

surements. In this thesis, we denote the suffix of the belief to indicate the time period

during which the information has been fused into the belief.

3.3. Belief-based MR-SLAT

In belief-based MR-SLAT, for each robot its own odometry data and measurements are

firstly fused into a local belief following the same procedure as described in the measurement-

based approach. The local belief, Beli
1:t , contains the states of the ith robot itself and nearby

moving objects at time t:

(3.3) Beli
1:t ∼ Pr(Xi

t |Ui
1:t ,Z

i
1:t)

Instead of sharing measurements, in belief-based MR-SLAT each robot shares beliefs to

teammate robots, and then the global state is inferred by merging self and received beliefs:

(3.4) Bel1:t ∼ BM(Bel1
1:t ,Bel2

1:t , ...,BelN
1:t)

where BM(·) denotes the belief merging operator that can be realized through any existing

track-to-track fusion algorithm (Matzka and Altendorfer, 2008).

In the track-to-track fusion literature, the merged global belief can be fully-fed back,

semi-fed back, or none-fed back. In our implementation the none-feedback scheme is ap-

plied in order to avoid the information reuse problem following the arguments in (Tian

and Bar-Shalom, 2008): If the merged global belief Bel1:t , which has already contained the

information of Beli
1:t , is fed back or replaces the local belief of the ith robot, then at the next

time to merge local beliefs, the information in Beli
1:t would be reused. On the other hand,

in our implementation, we exploit the merged global state to improve the data association

in local beliefs, which will be detailed in Section 4.2.

9
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3.4. Communication Considerations in Practice

In this section, the foundations of two types packet loss are introduced, and the com-

munication consideration for both measurement-based MR-SLAT and belief-based MR-

SLAT are described. In addition, with the different superiors of measurement-based MR-

SLAT and belief-based MR-SLAT, the necessity of adaptive sharing is described.

3.4.1. Communication Conditions

A critical issue for such multi-robot applications is the manner in which packet losses

occur within the multicast network. With unstable communication, packet loss, which

is the fundamental issue of wireless communication. The packet loss conditions can be

roughly classified into two categories, independent packet loss and bursty packet loss ac-

cording to the behavior of packet loss conditions.

With independent packet loss condition, which means that packages get lost indepen-

dently, the information loss could be reduced effectively by using the duplicated transmis-

sion strategy as the information of the lost package could be received by following pack-

ages. In other words, with duplicate transmissions, robot sends a package containing not

only current measurements but also previous measurements for several frames, and then

the information loss rate could be exponentially decreased because the information could

be received by following packages. However, with bursty packet loss, which means that

packages get lost consecutively, the duplicated transmission strategy would not work well

as the lost package is more likely followed by lost package. Namely, even if each package

contains the information of sequential measurements, the information still gets lost after

consecutive packet loss.

With the model of packet loss conditions, the measurement-sharing loss rate and the

belief-sharing loss rate are introduced to represent the communication conditions. In gen-

eral, the communication load of the measurement-based MR-SLAT is lower than belief-

based MR-SLAT as the belief-based MR-SLAT should share the information contains the

covariance to integrate previous measurements. For instance, in our application the band-

width required by belief-based MR-SLAT is 6 times of that by measurement-based MR-

SLAT in the case with 5 robots and 5 moving objects. Therefore, under the same commu-

nication load, the loss rate of sharing measurements can be lowered by duplicated trans-

mission. Therefore, Lm, measurement-sharing loss rate, which is defined as the rate of

10
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unreceived measurements, would be equal to or less than the packet loss rate by using

duplicated transmission strategy. On the other hand, Lb, belief-sharing loss rate is equal to

the packet loss rate as the duplicated transmission strategy is not applied to belief-based

MR-SLAT.

3.4.2. Communication Considerations for Measurement-based and Belief-based MR-

SLAT

In theory, measurement-based MR-SLAT and belief-based MR-SLAT are expected to

achieve similar performance in accuracy with well-controlled communication as the same

amount of information is utilized. Nevertheless, in practice it can be observed that when

the packet loss rate is low, the measurement-based approach outperforms the belief-based

one as shown in Fig. 1.1. The first reason is that the communication bandwidth require-

ments for belief-sharing and measurement-sharing could be different and in general, belief-

sharing requires more. Two other reasons making the measurement-based MR-SLAT better

under well-controlled communication conditions are: (1) When merging two beliefs, it is

hard to perfectly estimate the cross-covariance between two beliefs (Chen et al., 2003)(Matzka

and Altendorfer, 2008), and (2) Measurement-based MR-SLAT maintains only one global

state whose uncertainty is generally less than the local beliefs maintained in belief-based

MR-SLAT, so Gaussian approximation and linearization are better in the measurement-

based MR-SLAT.

In contrast, the advantage of belief-based MR-SLAT arises from the fact that a single

belief contains the information equivalent to multiple measurements. For measurement-

based MR-SLAT, once a measurement is lost, the information brought by it is permanently

lost. As can be seen in Fig. 1.1, the performance of measurement-based MR-SLAT gets

worse when the packet loss rate gets higher while the performance of belief-based MR-

SLAT is relatively stable against packet loss as by definition, the information brought by

the past measurements has been encoded in the latest local beliefs.

Motivated by these observations, the communication adaptive MR-SLAT (ComAd

MR-SLAT) algorithm is proposed aiming at combining the advantages of measurement-

based MR-SLAT and belief-based MR-SLAT. By explicitly taking the communication con-

dition into account, the information to share is determined dynamically online.

11
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Adaptive MR-SLAT

To determine the sharing mode, the decision process is a multi-robot partially observable

Markov decision process (POMDP) problem. Because robot can only partially observe the

environment with the noise according to some physical or practical limitations, the estima-

tor cannot have the perfect information of the environment. With only the probability dis-

tribution of multiple robot poses and the communication conditions between robots and

uncertain results after the information shared, therefore, the decision process is a multi-

robot POMDP problem.

To take the consideration of communication into account to determine the sharing

mode dynamically, the notation introduced in (Bernstein et al., 2002) is used to formulate

the problem, which defines a DEC-POMDP as a tuple 〈α,β ,S,{Ai},P,R,{Ωi},O〉 where α is

the number of robots, β is the number of moving objects, S is the set of world state includ-

ing poses and motions for all robots, moving objects, and the communication condition

between every robot pairs:

(4.1) S = Rα ×Oβ ×φ α2

where:

• Rα denotes the state space of all possible poses and velocity for all robots

• Oβ denotes the state space of all possible positions and velocity for all moving

objects

• φ α2
denotes all communication conditions between robots

Note that both the MR-SLAT problem and the communication conditions should be inte-

grated into the state space to consider take the communication conditions into account.

Ai, which denotes the possible action set of the team, is different from the other POMDP
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problem, where each joint action, Ai, is composed of α individual sharing measurements

or sharing beliefs:

(4.2) {Ai}= {A1,A2, ...,Aα}

where:

• Ai represents the possible action set for ith robot including sharing measurements

and sharing beliefs.

With the team action set {Ai}, P indicates a transition probability table according to the

states and the sharing actions. P(s,{ai},s′) is the probability of transitioning from s to s′ on

taking actions {ai}. Here s,s′ ∈ S, {ai} represents the set of actions that each individual robot

is sharing measurements or sharing beliefs. R is a reward function. R(s,{ai},s′) represents

the overall performance improvement after taking the set of sharing actions {ai} from state

s and transitioning to state s′. Ωi is the set of possible observations for all robots, where each

Ωi is the set of possible observations for the ith robot including map features, other robots,

and moving objects. O is a table of observation probabilities. O(s,{ai},s′{oi}) represents the

probability of observing {oi} when taking the set of actions {ai} in state s and transiting to

state s′ as result, where {oi} represents the set of observations that are observed by each

individual robot.

However, with the formulation, there are two main challenges. The first one is how

to define the reward function. In some POMDP frameworks, the reward functions indicate

the relation of target state and the design of the reward is well studied. However, in our

problem domain, the reward function should be defined to consider the communication

conditions and the MR-SLAT problem. The other challenge is that with combining the com-

munication and MR-SLAT, the state space is large. Therefore, the complexity issue should

be tackled. To tackle these issues, the communication adaptive MR-SLAT (ComAd MR-

SLAT) is proposed to online determine the sharing mode by maximizing the uncertainty

reduction with expected value approach. In addition, the proposed ComAd MR-SLAT

should adapt different type of shared information ensuring the information would be used

exactly once. In this section, the proposed ComAd MR-SLAT algorithm is described.

4.1. Online Sharing Mode Determination

In order to explain our developed algorithm, we start from analyzing the case of two

robots. Assuming there are the ith robot and the jth robot, the reward function can be

13
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designed as following equation:

(4.3) R(s,{ai,a j},s′)∼ Ri→ j
u (s,ai,si→ j)+R j→i

u (s,a j,s j→i)

where:

• Ri→ j
u is the reward function of sharing information from the ith robot to the jth

robot indicates the expected uncertainty reduction.

• R j→i
u is the reward function of sharing information from the jth robot to the ith

robot indicates the expected uncertainty reduction.

• ai,a j are the binary variables indicating the sharing mode with 0: measurement-

sharing or 1: belief-sharing for ith robot and jth robot.

• s is composed of a tuple 〈Beli
1:t ,Bel j

1:t ,φ
i↔ j〉.

• si→ j is composed of a tuple 〈Beli
1:t ,Bel j

1:t
i→ j

,φ i↔ j ′〉.
• s j→i is composed of a tuple 〈Beli

1:t
j→i

,Bel j
1:t ,φ

i↔ j ′〉.
• Beli

1:t and Bel j
1:t are the estimation results before taking the sharing actions for ith

robot and jth robot according to the MR-SLAT problem including the distribution

of the poses and velocities for multiple robots and moving objects.

• Bel j
1:t

i→ j
is the jth robot’s estimation results after the ith robot taking the sharing

action ai.

• Beli
1:t

j→i is the ith robot’s estimation results after the jth robot taking the sharing

action a j.

• φ i↔ j represents the packet loss conditions between ith robot and jth robot.

• φ i↔ j ′ represents the packet loss conditions after taking the sharing actions.

Although the theoretical optimal decision should consider the influence on accuracy to

optimize the estimation result. However, for practical algorithms, the exact performance

improvement in accuracy cannot be determined before actual measurements are fetched

and the packages are received. Without the way to represent the performance directly, the

uncertainty reduction is introduced to indicate the reward. Because the estimation results

with the smaller uncertainty based on proper models, are statistically expected to be more

accurate.

In other words, the sharing mode is determined by maximizing the expected uncer-

tainty reduction with choosing measurement-sharing or belief-sharing respectively. With

traditional POMDPs, using the discretization approach to consider the distribution of state,

14
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the decision process could be represented:

ai∗ = argmax
ai ∑

s∈S
b(s)Ri→ j

u (s,ai,si→ j)

{
∑s∈S b(s)Ri→ j

u,m (s,si→ j) if ai = 0

∑s∈S b(s)Ri→ j
u,b (s,si→ j) if ai = 1

(4.4)

where:

• ai∗ is the decision of sharing measurements or beliefs.

• Ri→ j
u,m is the reward function of sharing measurements from the ith robot to the jth

robot indicates the expected uncertainty reduction.

• Ri→ j
u,b is the reward function of sharing beliefs from the ith robot to the jth robot

indicates the expected uncertainty reduction.

• b is the function that each state is indicated a probability according to current

estimation result.

However, with the discretization determination process, the complexity issue would be

critical. Because of the dynamics of the MR-SLAT problem and the communication con-

ditions, the decision should be made online. Nevertheless, the state space is enormous

according to the communication conditions and the MR-SLAT problem, therefore, the dis-

cretization way to summarize the reward is not feasible. To tackle the complexity issue, an

expected value approach is proposed to calculate the expected uncertainty reduction by using

the expected values of the frequency of the information receiving based on the predicted

measurements and the expected effective communication instead of using discretization

approach. With the uncertainty reduction as the reward function and the Kalman filter

assumption, the reward indicates the Gaussian distribution of states, therefore, the reward

value is possible to be calculated by evaluating the predicted covariance matrix:

ai∗ = argmax
ai

Ri→ j
u,expected(s,a

i,si→ j){
Ri→ j

u,m,expected(smean,scovariance,s
i→ j
covariance) if ai = 0

Ri→ j
u,b,expected(smean,scovariance,s

i→ j
covariance) if ai = 1

(4.5)

where:

• Ru,m,expected is the function indicates the uncertainty reduction of measurement-

sharing according to expected packet loss, predicted observations, and current

estimation uncertainty.
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• Ru,b,expected is the function indicates the uncertainty reduction of belief-sharing ac-

cording to expected packet loss, predicted observations, and current estimation

uncertainty.

• smean is the mean value of current estimation result.

• scovariance is the estimated covariance matrix based on the Kalman filter assump-

tion.

• si→ j
covariance is the predicted covariance matrix after the sharing action.

Regarding sharing measurements, Ri→ j
u,m,expected , based on the common practice that

measurements are assumed without cross correlations and are processed independently in

the measurement-based MR-SLAT, we firstly generate the predicted observations which fol-

lows the common practice in POMDP works, and then according to the Lm, measurement-

sharing loss rate, the expected uncertainty reduction of the teammate robot could be pre-

dicted. For instance, assuming that there are 2 entities in view, the recall rate of object

detection is 0.5, and the packet loss rate is 0.5, the estimated time of receiving one mea-

surement is 1/(2 ∗ 0.5 ∗ 0.5) = 2 time steps. In addition, for generating data associations

for the predicted measurements, without loss of generality we assume that the objects in

the current state are equally-likely to be observed. Based on the generation of the predicted

observations, the predicted uncertainty reduction through sharing measurements consid-

ering the packet loss effects can be estimated following the standard measurement-based

MR-SLAT procedure.

Different from sharing measurements, it would be incorrect to estimate the cases of

sharing beliefs by predicted beliefs as there are obviously strong correlations between be-

liefs to share: At time T1, once Beli
1:T1

has been successfully received by the jth robot, the

effects of Beli
1:1, Beli

1:2, ..., Beli
1:T1−1 should be ignored as their information has already been

contained in Beli
1:T1

. More specifically, considering the belief-sharing loss rate Lb, the effect

of each belief on uncertainty reduction follows the geometric distribution, and accordingly

the predicted uncertainty reduction of sharing beliefs can be estimated as:

(4.6)
T

∑
t=1

(Lb)
T−t(1−Lb)Ib(Beli

1:t ,Bel j
1:t , t,T )

where Ib is the function estimating the predicted uncertainty reduction by sharing beliefs

when the last successfully received belief occurred at time t. Similarly, Ib can be inferred by
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firstly generating the predicted observations, and then following the belief-based MR-SLAT

procedure, the predicted uncertainty reduction considering the loss rate can be estimated.

With the statistical model, the uncertainty reduction is proposed to guide the POMDP

problem as the estimation results with smaller uncertainty are statistically expected to be

more accurate. Moreover, to tackle the complexity issue according to the large state space,

we propose to use the expected communication conditions and predicted measurements

to calculate the uncertainty reduction instead of using the discretization approach to con-

sidering the state space. With the expected value approach, the uncertainty reduction of

measurement-sharing is simulated accordingly, and the geometric distribution is proposed

to describe the reward of belief-sharing. Therefore, with the expected value algorithm, we

are able to determine the sharing strategy dynamically to adapt different situations.

Fig. 4.1 shows a result of the developed mode decision for two nodes in a 300-

frame sequence. Note that because of the different communication load requirements of

measurement-sharing and belief-sharing, the measurement-sharing loss rate is less than

or equal to the belief-sharing loss rate by simple duplicated transmission under the same

communication bandwidth. It can be observed that the measurement-sharing mode is se-

lected when there is no packet loss or the packet loss rate is low while the belief-sharing

mode is selected when the packets are lost in a burst, which reflects the intuition that when

consecutive packets are lost, sharing-beliefs is preferred as the beliefs carry the information

of multiple previous lost measurements. The result also demonstrates that the proposed

expected uncertainty reduction approach is able to guide the POMDP problem online deter-

mining the sharing mode and adapt different communication situations.

In the case with two nodes, the proposed decision module resorts to the optimal solu-

tion in the probabilistic point of view by modelling the communication conditions and the

MR-SLAT problem properly. However, the consideration between two robots cannot be

extended to many robots directly. With the multi-robot POMDP formulation, the problem

of generating optimal policies for multi-agent POMDPs is known to be NEXP-complete

(Bernstein et al., 2000), so making exact solutions with the existing multi-agent POMDP

is unfeasible and necessitating the use of heuristics. In our scenario, robots communicate

with each other via broadcasting information, so their only one type of information to share

for all robots. Therefore, in order to maximize the uncertainty reduction between multiple

robots, the theoretically optimal decision is regarding all possible sharing-modes of all the
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(a) Actual packet-loss condition
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(b) Predicted measurement and belief loss rates
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(c) Decided sharing modes

Figure 4.1. The result of the developed mode decision for two nodes in a 300-frame sequence

robots, which scales poorly to many robots. To deal with the scale up issue, the summations

approach is proposed:

(4.7) ai = argmax
ai ∑

j, j �=i
Ri→ j

u,expected(smean,scovariance,s
i→ j
covariance)

With the Equation 4.7 offering a trade-off between optimality and applicability, the pro-

posed ComAd MR-SLAT can online provide satisfactory results, which is important under
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unstable environment, to adapt different communication conditions. In addition, the ef-

fectiveness of the proposed sharing mode decision process is demonstrated in our experi-

ment. Based on the decided sharing modes for multiple robot scenario, the scheme of our

adapting measurement and belief sharing algorithm is introduced in the next section.

4.2. Adapting Measurement and Belief Sharing

This section describes our adapting MR-SLAT that can dynamically alternate between

sharing measurements and beliefs given the online decided sharing modes. The main re-

quirement for the algorithm design is that in the condition of perfect communication, the

information of each measurement should be used exactly once, which means it should be

guaranteed that there is no information loss or reuse in the designed algorithm. For clar-

ity, the algorithm is explained in two different views, the sender’s view and the receiver’s

view, but note that in practice each robot plays the sender and the receiver at the same time.

In addition, the approach to deal with the data association issue is required as that ex-

act correspondence between observations and entities cannot be applied in some MR-SLAT

applications. Therefore, the algorithm for generating correspondence in our adapting MR-

SLAT scheme is proposed. The main requirement is that all information, which robot can

have, should be considered without the risk of information double-counting or loss.

4.2.1. Information Sender’s View

When the ith robot is in the measurement-sharing mode, the robot simply sends the

new measurements and odometry data to the teammate robots as in measurement-based

MR-SLAT. When the ith robot is decided to switch from the measurement-sharing mode

to the belief-sharing mode from T1 to T2, a separate local EKF is created to integrate its

measurements and odometry data between T1 and T2:

(4.8) Beli
T1:t ∼ Pr(Xi

t |Ui
T1:t ,Z

i
T1:t), for T1 ≤ t ≤ T2

The beliefs, Beli
T1:t for T1 ≤ t ≤ T2, are shared to the teammate robots between T1 and T2.

Note that these beliefs do not fuse the measurements before T1 in order to prevent the

information reuse.

In our implementation, the created local EKF is initialized with sufficiently large un-

certainty. However, one critical issue is that the uncertainty of these newly created EKFs

could be larger than those in the original measurement-based or belief-based approaches
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because less measurements are fused, so the data association gets more challenging as the

data association uncertainty is increased. Accordingly, we exploit the merged global state

to assist data association in local-belief EKFs by only applying the measurements that sat-

isfy the Mahalanobis distance gating in both of the local belief and the merged-global state.

The computation of the merged global state is explained in the information receiver’s view

in the following.

4.2.2. Information Receiver’s View

Each robot always maintains a state, BelM
1:t , which integrates the odometry data and

measurements of the robot itself and those in the measurement-sharing mode:

BelM
1:t ∼

Pr(Xt |{Ui
1:t ,Z

i
1:t ,∀i ∈ M},{U j

1:Tj
,Zi

1:Tj
,∀ j �∈ M}),

M = {i|θi = 0}
(4.9)

where M denotes the set of robots in the measurement-sharing mode, and Tj denotes the

last time from which the jth robot switched to the belief-sharing mode. At each time step

the global state is inferred by merging BelM
1:t with the other beliefs received from the robots

in belief-sharing mode:

(4.10) Bel1:t ∼ BM(BelM
1:t ,{Bel j

Tj :t |∀ j �∈ M})

For preventing the information reuse problem, the merged global state Bel1:t would not be

replaced or fed back to BelM
1:t to keep BelM

1:t containing information only from the robot itself

and those in the measurement-sharing mode.

In the proposed scheme, the global state Bel1:t is exploited during data association

gating for robustness as described in the previous section. In addition, when the jth robot

is decided to switch from the belief-sharing mode to the measurement-sharing mode at T3,

our algorithm fuses its local belief Bel j
Tj :T 3 into BelM

1:t to make sure that its odometry data

and measurements contained in Bel j
Tj :T 3 are not lost.

4.2.3. Data Association Generation

To generate the correspondence the likelihood-based approach is applied, and the ap-

pearance of observations such as color of robot, type of map feature is used. In addition,
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all information from all robots is considered to generate the global consistent correspon-

dence, besides, the differences between measurement-based and belief-based MR-SLAT

are described.

For the measurement-based MR-SLAT, the likelihood could be calculated directly be-

cause the estimation already contains all measurements. Different from the measurement-

based MR-SLAT, the local estimation of the belief-based MR-SLAT doesn’t contain all mea-

surements it can have, therefore, generating correspondence with the local estimation would

not consider the information from other robots. On the other hand, the global belief is gen-

erated by merging all local estimation at each frame instead of updating previous global

belief to prevent the information reuse, therefore, fusing the observations into the global

belief would indicate the information loss. In order to take all information into account

without the risk of information reuse or loss, the belief-based MR-SLAT should merge all

beliefs into a global estimation to generate the correspondence, and then update the obser-

vations into the local estimation according to the correspondence. With the same concept,

the algorithm for the proposed ComAd MR-SLAT to generate the correspondence is similar

to the belief-based MR-SLAT.

Although the likelihood-based approach can generate correspondence adequately, there

still has some issues according to the communication conditions. For the measurement-

based MR-SLAT, once the bursty packet loss condition is occurred, the tracking result may

drift or miss. On the other hand, the belief-based MR-SLAT can recover the information

after bursty packet loss via belief-merging to get the correspondence more robustly af-

ter bursty packet loss. However, the calculation of likelihood for belief-based MR-SLAT

would be deflected because when different teammate robots observe the same entity, the

prediction model cannot be estimated with all information accordingly. Even if the infor-

mation could be incorporated by belief-merging, the deviation comes from the prediction

step is hard to be recovered. Therefore, in general, the measurement-based MR-SLAT has

an advantage in doing data association when the communication condition is not bursty.

By comparison, the belief-based MR-SLAT has the superiority after the bursty packet loss

because the risk of track missing can be reduced by belief-merging.
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With the online decision process to combine the measurement-based MR-SLAT and

the belief-based MR-SLAT, the proposed ComAd MR-SLAT tends to share the measure-

ments when the packet loss conditions aren’t bursty then the robot can estimate the pre-

diction model with all information accordingly. On the other hand, with bursty packet

loss, the proposed ComAd MR-SLAT is likely to share the belief, and then the risk of track

missing can be reduced. Therefore, the proposed ComAd MR-SLAT could generate the

correspondence more reliable under different communication conditions.
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CHAPTER 5

Evaluation

In order to verify the effectiveness of the proposed adapting algorithm, the proposed Co-

mAd MR-SLAT is evaluated under different packet loss rates, different bursty loss lengths,

and different data association conditions. In addition, the real data experiment is also eval-

uated to verify the practicability of the proposed ComAd MR-SLAT algorithm.

5.1. Simulation Experimental Scene Setting

The experimental scene follows the RoboCup Standard Platform League (SPL) sce-

nario, in which two teams of robots move in the soccer field consisting several map fea-

tures, e.g. four goal posts, the center circle, corners, and white lines. In order to get sta-

tistically meaningful results, 80 runs of Monte Carlo simulations are conducted for each

communication setting. The algorithm is executed at the frame rate of 5 Hz. Each run lasts

60 seconds, i.e. 300 frames, and in each run, the robots are placed randomly at the begin-

ning with a random moving direction. If the robot moves outside the field, the moving

direction is randomly decided again. The odometry motion model is used for teammate

robots that can share information to each others and the constant velocity (CV) model for

opponent robots. Relative range and bearing measurements to nearby map features and

robots are extracted and the correspondence between measurements and entities is given.

The motion and sensor models follow the parameters we applied in practical RoboCup

competitions (Chang et al., 2011).

In order to evaluate the proposed ComAd MR-SLAT under different communication

conditions, packets are randomly selected to be lost in each run. Different packet loss rates

(0.0, 0.2, 0.4, 06, and 0.8) and different bursty loss lengths (1, 20, 30, and 40 frames) are

verified, where the packet loss rates denote the overall ratio of lost packets, and the bursty
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loss lengths denote the average lengths of consecutive lost packets, except that with bursty

length 1, the packet loss is simulated to occur independently for each time frame.

5.2. Five-vs.-Five with Homogeneous Communication

This experiment simulates a five-vs.-five scenario as shown in Fig. 5.1. Blue circles de-

note robots that can share information to each other, and black circles denote the moving

objects. In this experiment, homogeneous communication conditions between each paired

robots, which means the packages for all receivers would get lost at the same time, are

assumed. The homogeneous communication is to simulate the case in which communica-

tion is realized through one centralized device such as the WiFi device used in practical

RoboCup competitions.

The performance of localization accuracy averaged from 80 Monte Carlo runs under

different packet loss rates and bursty loss lengths is shown in Fig. 5.2. Firstly, regard-

ing packet loss rates, it can be seen that the measurement-based MR-SLAT outperforms

belief-based MR-SLAT when the packet loss rate is low while belief-based MR-SLAT per-

forms more stably when the packet loss rate increases, which is consistent with our un-

derstanding of the characteristics of the two approaches. Regarding bursty loss lengths, it

can be observed that as the bursty loss length increases, the advantage of sharing beliefs

approach gets more significant as when consecutive packets are lost, beliefs containing

multiple previous measurements can prevent the measurements from being permanently

lost. In the other extreme case where the bursty length is 1, in which each packet gets lost

independently, the measurement-based approach is preferred as by simply retransmission,

the measurement loss rate can be much lowered comparing to the belief-based approach

with the same communication load.

It can be seen that our proposed ComAd MR-SLAT outperforms measurement-based

and belief-based approaches. In the case with independent packet loss, ComAd MR-

SLAT correctly decides to share measurements and achieves the same performance as

the measurement-based MR-SLAT. While in the cases with other bursty lengths, ComAd

MR-SLAT achieves better results. It is also worth mentioning that ComAd MR-SLAT can

achieve more accurate results than the better one of measurement-based and belief-based

MR-SLAT as even in one sequence with the same communication condition, the opti-

mal sharing mode could be interleaved by measurement-sharing and belief-sharing, e.g.
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Figure 5.1. Setting of the multi-robot scene for evaluation. Following the motion
models and sensor models used in practical RoboCup scenes, e.g. odometry
noises, feature extraction noises, detection recall rates, various packet loss rates
and bursty loss lengths are simulated. Blue circles denote robots that can commu-
nicate with each other, and black circles denote the moving objects.

measurement-sharing in the first half and belief-sharing in the second half, which can only

be achieved by the communication adaptive algorithm. This experiment demonstrates the

effectiveness of the developed sharing mode decision module and that the proposed Co-

mAd MR-SLAT successfully combines the advantages of measurement-based and belief-

based MR-SLAT.

In addition, with different noise level of motion models and sensor models, the experi-

mental results are also discussed: With lower noise level of odometry data, the measurement-

based approach would be relatively promoted because the odometry data are applied to all

teammate robots. By comparison, for the prediction step, the belief-based approach uses

CV model instead of odometry data for teammate robots. On the other hand, with higher

detection noise, the belief-based approach would be relatively worse than the measurement-

based approach because the motion model of belief-based approach is estimated only with
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(a) Independent packet loss
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(b) Bursty loss length = 20
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(c) Bursty loss length = 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

500

600

700

800

900

1000

Packet Loss Rate

P
os

iti
on

 E
rr

or
 (m

m
)

Measurement−basd MR−SLAT
Belief−based MR−SLAT
ComAd MR−SLAT

(d) Bursty loss length = 40

Figure 5.2. Five-vs.-five with homogeneous communication. Comparison on the
localization errors of measurement-based MR-SLAT, belief-based MR-SLAT, and
the proposed ComAd MR-SLAT under different packet loss rates and different
bursty loss length.

observation results. At the same time, the recall of detection modules are also character-

ized. With lower recall of moving objects detection, the algorithm cannot estimate the

motion model well. Therefore, the influence on belief-based approach is relatively critical

because the measurement-based approach uses odometry data as the motion model for

teammate robots and only estimates the motion model for those without odometry data.

5.3. Heterogeneous Communication and Scalability

The proposed ComAd MR-SLAT is also evaluated in the case of heterogeneous com-

munication that the packet loss conditions between each pair of robots are independent,

which simulates the scenario where communication links are established in a robot-to-

robot way. The results under different packet loss rates and bursty loss lengths are shown

in Fig. 5.3. The results again demonstrate that the proposed ComAd MR-SLAT outper-

forms measurement-based and belief-based MR-SLAT, which verifies the effectiveness of
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Figure 5.3. Five-vs.-five with heterogeneous communication. Comparison on the
localization errors of measurement-based MR-SLAT, belief-based MR-SLAT, and
the proposed ComAd MR-SLAT under different packet loss rates and different
bursty loss length.

the ComAd MR-SLAT with heterogeneous communication links between robots. How-

ever, it can be observed that comparing to the homogeneous communication case, the per-

formance of the ComAd MR-SLAT is closer to the better one of the measurement-based

and the belief-based MR-SLAT, and the reason is that when the robot tries to decide the

sharing mode in the heterogeneous communication case, it is possible that some of its

teammates prefer measurement-sharing while the others prefer belief-sharing, so the per-

formance difference between the two sharing modes could be less obvious. However, the

proposed method still selects the sharing mode expected to be better and mostly achieves

the preferable performance among the three approaches under comparison.

In addition, the scalability of the ComAd MR-SLAT is also evaluated in a 10-vs.-10

scene as the setting illustrated in Fig. 5.4. The results are shown in Fig. 5.5. Due to the

page limits of the thesis, only the results of independent packet loss and bursty lengths

40 are shown, but the results of other bursty lengths are similar. In this experiment, the
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Figure 5.4. Setting for scalability evaluation: Ten-vs.-ten with heterogeneous communication.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

500

600

700

800

900

1000

Packet Loss Rate

P
os

iti
on

 E
rr

or
 (m

m
)

Measurement−basd MR−SLAT
Belief−based MR−SLAT
ComAd MR−SLAT

(a) Independent packet loss

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

500

600

700

800

900

1000

Packet Loss Rate

P
os

iti
on

 E
rr

or
 (m

m
)

Measurement−basd MR−SLAT
Belief−based MR−SLAT
ComAd MR−SLAT

(b) Bursty loss length = 40

Figure 5.5. Scalability evaluation: Ten-vs.-ten with heterogeneous communication.
Comparison on the localization errors of measurement-based MR-SLAT, belief-
based MR-SLAT, and the proposed ComAd MR-SLAT under different packet loss
rates and different bursty loss length. Robots are with heterogeneous communica-
tion conditions.

proposed adapting algorithm also works and based on the decided sharing-modes, the

ComAd MR-SLAT outperforms both measurement-based and belief-based approaches.
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Figure 5.6. Data association evaluation: Five-vs.-five with heterogeneous commu-
nication. Comparison on the false matching rate of the measurement-based MR-
SLAT, the belief-based MR-SLAT, and the proposed ComAd MR-SLAT under dif-
ferent packet loss rates.

5.4. Data Association Evaluation

In previous experiment, the algorithms are evaluated with correct correspondence for

all observations to evaluate the effectiveness of the proposed adapting algorithm. How-

ever, exact data association sometimes cannot be obtained, the influence on the capability

for generating correspondence should also be considered. For verifying the utility of the

data association module, with the same setting as previous experiment 5.1, the false match-

ing rate is evaluated under different packet loss and bursty length with the heterogeneous

condition shown in Fig. 5.6. In general, for doing data association in RoboCup scenario, the

likelihood-based approach is effective, and the result also shows that the correspondence

can be generated appropriately.

Nevertheless, it can also be observed that with independent packet loss shown in Fig.

5.6(a), the capability of doing data association for the measurement-based MR-SLAT and

the proposed ComAd MR-SLAT are better than the belief-based MR-SLAT as the likelihood

could be calculated adequately. On the other hand, with bursty packet loss shown in Fig.

5.6(b), the difference between the measurement-based MR-SLAT and the belief-based MR-

SLAT becomes much closer and the belief-based MR-SLAT outperforms the measurement-

based MR-SLAT with bursty lengths 30 and loss rate 0.8. By switching communication

mode properly to combine both benefits from the measurement-based MR-SLAT and the

belief-based MR-SLAT, the proposed ComAd MR-SLAT outperforms both measurement-

based and belief-based approaches with bursty packet loss conditions.
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In addition, the influence on the position error of correspondence is also evaluated.

The behavior of the result shown in Fig. 5.7 is similar to the result shown in Fig. 5.6 because

the estimation and data association would complement each other. The result also demon-

strate that the proposed ComAd MR-SLAT outperforms the measurement-based MR-SLAT

and the belief-based MR-SLAT in both cases of data association conditions, which exhibit

the capability of the ComAd MR-SLAT working in the real environment.

5.5. Real Experimental Evaluation

To verify the effectiveness of the proposed approach in the real environment, the real

data experiment is concluded. The experimental scene follows the RoboCup Standard Plat-

form League (SPL) scenario, in which two teams of robots move in the soccer field as the

setting illustrated in Fig. 5.8(a). In order to demonstrate the real scenario, there are two

robots configured as goal keepers. In the scenario, goal keepers would stay in the penalty

area and other robots would move back and forth, and the walking patterns of robots are

designed as Fig. 5.8(b). In the experiment, robots follow the pattern to collect the per-

ception data and then the perception algorithms would process those data under different

communication conditions to evaluate the measurement-based MR-SLAT, the belief-based

MR-SLAT, and the proposed ComAd MR-SLAT.

In order to evaluate the proposed algorithm in the real environment, two SICK LMS

100 laser scanners are placed on both sides of the field to provide the position ground truth

of the robots. These two laser scanners are circled and shown in Fig. 5.8(a), the angular

sensing ranges of SICK laser scanners is 270 degrees and the distance sensing range is 20

meters, which is sufficient to cover the whole field. The data collected from these two

laser scanners are clustered into segments and the mean positions of the clustered points

are viewed as the candidates of the ground truth locations of robots. These candidates

are then associated with the closest estimates from the result with centralized fusion and

perfect communication conditions, and the incorrect associations are re-labeled manually.

The practical performance of the ComAd MR-SLAT is evaluated in a four-vs.-four

scene as the setting of Fig. 5.8. Although the real data experiment is evaluated under four-

vs.-four instead of five-vs.-five scenario, the results shown in Fig. 5.9, are also similar to

the simulation results.
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With the results of real data evaluation, it can be seen that the proposed ComAd MR-

SLAT outperforms both the measurement-based MR-SLAT and the belief-based MR-SLAT

as the results shown in simulation evaluation. The Fig. 5.9(a) shows that with the indepen-

dent packet loss condition, the ComAd MR-SLAT correctly decides to share measurements

and achieves the same performance as the measurement-based MR-SLAT. On the other

hand, the Fig. 5.9(b) can be observed that with the increasing of bursty loss length, the

advantage of our adapting sharing scheme gets more significant. The proposed ComAd

MR-SLAT can decide the sharing mode appropriately to deal with the issue of packet loss

in the real environment.

31



5.5 REAL EXPERIMENTAL EVALUATION

0.2 0.3 0.4 0.5 0.6 0.7 0.8
400

450

500

550

600

650

700

Packet Loss Rate

P
os

iti
on

 E
rr

or
 (m

m
)

Measurement−basd with exact data association
Belief−based with exact data association
ComAd with exact data association
Measurement−basd without exact data association
Belief−based without exact data association
ComAd without exact data association

(a) Independent packet loss

0.2 0.3 0.4 0.5 0.6 0.7 0.8
450

500

550

600

650

700

750

800

850

900

Packet Loss Rate

P
os

iti
on

 E
rr

or
 (m

m
)

Measurement−basd with exact data association
Belief−based with exact data association
ComAd with exact data association
Measurement−basd without exact data association
Belief−based without exact data association
ComAd without exact data association

(b) Bursty loss length = 30

Figure 5.7. Data association evaluation: Five-vs.-five with heterogeneous commu-
nication. Comparison on the position error of the measurement-based MR-SLAT,
the belief-based MR-SLAT, and the proposed ComAd MR-SLAT under different
communication conditions.
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(b) The setting of robots for the real experiment evaluation.

Figure 5.8. Setting for real experiment evaluation: Four-vs.-four with heteroge-
neous communication.
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Figure 5.9. Real data evaluation: Four-vs.-four with heterogeneous communica-
tion. Comparison on the localization errors of measurement-based MR-SLAT,
belief-based MR-SLAT, and the proposed ComAd MR-SLAT under different
packet loss rates.
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CHAPTER 6

Conclusions

In this thesis, a communication adaptive multi-robot simultaneous localization and track-

ing (ComAd MR-SLAT) algorithm is proposed to deal with practical scenes in which the

communication condition is unknown or unstable. Motivated by the observation that shar-

ing measurements and sharing beliefs are respectively superior in different communication

conditions, an adapting approach is developed to combine the advantages of both. With

the uncertainty of the estimation, to decide sharing mode in multi-robot scenario is known

as a multi-robot partially observable Markov decision process (multi-robot POMDP) prob-

lem. To consider the influence of the communication, the uncertainty reduction is proposed

to guide the POMDP problem. However, with the communication conditions and the MR-

SLAT problem, the state space would lead to the complexity issue. Therefore, with the

expected effective communication and predicted measurements, the simulation approach

with geometric distribution is proposed to online calculate the expected uncertainty reduc-

tion. By using the expected value approach, the proposed ComAd MR-SLAT can online de-

cide the sharing mode to adapt different communication conditions by switching between

measurement-sharing and belief-sharing without information loss or reuse. Moreover, the

algorithm for generating data association is proposed to consider all measurements from

all robots without the risk of information loss or double-counting.

The proposed algorithm is evaluated in the RoboCup scenario under different packet

loss rates, bursty lengths, and correspondence conditions. Following the models used in

the practical RoboCup competitions, Monte Carlo runs are simulated. In addition, the

real data are also collected and evaluated. In the experiments, the proposed ComAd MR-

SLAT outperforms the measurement-based MR-SLAT and the belief-based MR-SLAT in



CHAPTER 6. CONCLUSIONS

both localization and data association accuracy. The experimental results demonstrate the

effectiveness of the proposed adapting algorithm and exhibit that the ComAd MR-SLAT is

robust under different communication conditions and is effective in real data experiment.
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