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中文摘要  

 

由於越來越多唾手可得的多媒體文件，促成了語音文件理解(Understanding)與組織

(Organization)在過去二十幾年來成為重要的研究議題。在各式各樣的相關研究中，

語音文件標記(Indexing)、檢索(Retrieval)以及語音摘要(Summarization)被視為是這

個領域中重要且基礎的研究題目。統計式語言模型(Statistical Language Modeling)

一直是一個有趣且極富挑戰的研究領域，其主要被用於量化一段文字在自然語言

中存在的可能性。過去許多研究致力於將語言模型運用於語音文件處理的任務之

中，多數的研究呈現了豐富且卓越的實驗成果。有鑑於語言模型對於語音文件處

理的重要性，本論文將以語言模型為主軸，繼續深究語音文件標記、檢索與摘要

等問題。 

  由於使用者所給定的查詢通常非常簡短，這是資訊檢索系統面臨的一項重要

考驗，本論文從此問題出發，除了廣泛地研究前人所提出的方法外，並針對傳統

的方法提出了一套統一化的見解，更將這項技術應用於語音文件摘要的問題之中；

接著，受到 I-vector 技術的啟發，本論文提出一個新穎的語言模型方法，並進一步

的與虛擬關聯回饋技術相結合，提升語音文件檢索的效能；我們也觀察到，雖然

語言模型已被使用於語音文件摘要任務之中，但過去所用的技術皆是以單連語模

型為主，無法考慮長距離的語意資訊，有鑑於此，本論文提出以遞迴式神經網路

語言模型搭配課程學習法的訓練方式，成功地提升了語音文件摘要的成效；最後，

語言模型的發展漸漸地由模型化轉變到向量化，本論文提出新穎的相似度評估方

式，成功地與近年來陸續提出的各式詞向量表示法相匹配，運用於語音文件摘要

的問題上，除此之外，本論文亦提出了機率式詞向量表示法，不僅繼承了傳統表

示法的優點，更可以有效地彌補現今詞向量表示法詮釋性的不足。 
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ABSTRACT 

 

The inestimable volumes of multimedia associated with spoken documents that been 

made available to the public in the past two decades have brought spoken document 

understanding and organization to the forefront as subjects of research. Among all the 

related subtasks, spoken document indexing, retrieval and summarization can be 

thought of as the cornerstones of this research area. Statistical language modeling (LM), 

which purports to quantify the acceptability of a given piece of text, has long been an 

interesting yet challenging research area. Much research shows that language modeling 

for spoken document processing has enjoyed remarkable empirical success. Motivated 

by the great importance of and interest in language modeling for various spoken 

document processing tasks (i.e., indexing, retrieval and summarization), language 

modeling is the backbone of this thesis.  

In real-world applications, a serious challenge faced by the search engine is that 

queries usually consist of only a few words to address users’ information needs. This 

thesis starts with a general survey of the practical challenge, and then not only proposes 

a principled framework which can unify the relationships among several widely-used 

approaches but also extends this school of techniques to spoken document 

summarization tasks.  

Next, inspired by the concept of the i-vector technique, an i-vector based language 

modeling framework is proposed for spoken document retrieval and reformulated to 

accurately represent users’ information needs.  

Following, we are aware that language models have shown preliminary success in 

extractive speech summarization, but a central challenge facing the LM approach is how 

 iii 



to formulate sentence models and accurately estimate their parameters for each sentence 

in the spoken document to be summarized. Thus, in this thesis we propose a framework 

which builds on the notion of recurrent neural network language models and a 

curriculum learning strategy, which shows promise in capturing not only word usage 

cues but also long-span structural information about word co-occurrence relationships 

within spoken documents, thus eliminating the need for the strict bag-of-words 

assumption made by most existing LM-based methods.  

Lastly, word embedding has been a recent popular research area due to its excellent 

performance in many natural language processing (NLP)-related tasks. However, as far 

as we are aware, there are relatively few studies that investigate its use in extractive text 

or speech summarization. First of all, this thesis focuses on building novel and efficient 

ranking models based on general word embedding methods for extractive speech 

summarization. Next, the thesis proposes a novel probabilistic modeling framework for 

learning word and sentence representations, which not only inherits the advantages of 

the original word embedding methods but also boasts a clear and rigorous probabilistic 

foundation. 
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Chapter 1 Introduction 

 

Before 2000, speech and text processing were two representative research areas, 

individually. Speech recognition [79][82], speaker identification and verification [168], 

voice synthesis [3] and so forth were important subtopics in the speech processing 

community. At the same time, information retrieval [177][179], language modeling 

[82][165], and summarization [130][131] were popular directions for text processing 

research. Since then, the rapid development of technology (especially computing 

hardware), the popularity of the Internet, and the rise of handheld devices have led to a 

considerable amount of research in spoken document processing [22][100][106]. 

 

1.1 Spoken Document Processing 

Along with the growing popularity of Internet applications, ever-increasing volumes of 

multimedia, such as broadcast radio and television programs, lecture recordings, and 

digital archives, are being made available in our daily life. Clearly, speech itself is one 

of the most important sources of information within multimedia. Users can efficiently 

listen to and digest multimedia associated with spoken documents by virtue of spoken 

content processing, which includes spoken document indexing, retrieval, and 

summarization [60][109][158]. 

A significant amount of effort has been put towards researching robust indexing (or 

representation) techniques [51][77][150] so as to extract probable spoken terms or 

phrases inherent in a spoken document that can match query words or phrases literally. 

On the other hand, spoken document retrieval (SDR), which revolves more around the 

notion of the relevance of a spoken document in response to a query, has also been a 
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prominent subject of much recent research. It is generally agreed that a document is 

relevant to a query if it addresses the stated information need of the query, but not 

merely because it happens to contain all the words in the query [132]. We have also 

witnessed a flurry of research activity aimed at the development of novel and ingenious 

methods for speech summarization, the aim of which is to generate a concise summary 

to help users efficiently review or quickly assimilate the important information 

conveyed by either a single spoken document or multiple spoken documents 

[59][125][136][151][163][206]. The dramatically growth of these studies is due in large 

part to advances in automatic speech recognition [60][157] and the ever-increasing 

volumes of multimedia associated with spoken documents made available to the public 

[109][158].  

Beginning in the late 20th century, statistical language modeling has been 

successfully applied to various NLP-related applications, such as speech recognition 

[37][79][83], information retrieval [165][186][202], document summarization 

[25][29][115], and spelling error detection and correction [33][40][118][197]. Language 

modeling (LM) provides a statistical mechanism to associate quantitative scores to 

sequences of words or tokens. By far, the most widely-used and well-practiced language 

model is the n-gram language model [37][82], because of its simplicity and moderately 

good predictive power. For instance, in speech recognition, it can be used to constrain 

the acoustic analysis, guide the search through the vast space of candidate word strings, 

and quantify the acceptability of the final output from the speech recognizer [156][200]. 

This statistical paradigm was first introduced for information retrieval (IR) problems by 

Ponte and Croft (1998) [165], Song and Croft (1999) [186] and Miller, Leek, and 

Schwartz (1999) [143], demonstrating good success, and was then extended in a number 

of publications [31][50][99][203]. 
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The n-gram language model, which determines the probability of an upcoming word 

given the previous n-1 word history, is the most commonly used language model 

because of its neat formulation and good predictive power. Nevertheless, the n-gram 

language model, as it only captures local contextual information and the lexical 

regularity of a language, is inevitably faced with two fundamental problems. On one 

hand, it is brittle across domains, since its performance is sensitive to changes in the 

genre or topic of the text on which it is trained. On the other hand, due to its limitation 

in scope, it fails to capture information (either semantic or syntactic) conveyed in the 

contextual history beyond its order (e.g., a trigram language model is limited to two 

words of context). 

Motivated by the great importance of and interest in language modeling for various 

spoken document processing tasks, language modeling is the backbone of this thesis. 

Three subtasks (spoken document indexing, retrieval and summarization) are considered, 

and several insights are shared and methods proposed to unify conventional approaches 

or make further progress in complementing spoken document processing. 

 

1.2 Organization of the Thesis 

The remainder of this thesis is organized as follows:  

Chapter 2 is a brief introduction to statistical language modeling, including 

word-regularity models, topic models, continuous language models and neural 

network-based language models. Also, spoken document indexing, retrieval and 

summarization are discussed.  

Chapter 3 presents the experimental data sets, settings, and evaluation metrics for 

spoken document retrieval and summarization, as well as the baseline results.  
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Chapter 4 focuses on analyzing pseudo-relevance feedback for query reformulation 

approaches, and then presents a continuation of this general line of research. The main 

contribution here is two-fold. First, the thesis proposes a principled framework which 

unifies the relationships among several widely-used query modeling formulations. 

Second, on top of this successfully developed framework, an extended query modeling 

formulation is introduced by incorporating critical query-specific information cues to 

guide model estimation. 

In Chapter 5 an i-vector based language modeling framework, stemming from the 

state-of-the-art i-vector framework for language identification and speaker recognition, 

is proposed and formulated to represent documents for spoken document retrieval. Also 

described in detail in this chapter are three novel methods to be applied in concert with 

i-vector based language modeling to more accurately represent user information needs. 

Chapter 6 proposes a novel and effective recurrent neural network language modeling 

framework for speech summarization, on top of which the deduced sentence models are 

able to render not only word usage cues but also long-span structural information about 

word co-occurrence relationships within spoken documents, thus eliminating the need 

for the strict bag-of-words assumption. Second, the utility of the method originated 

from the proposed framework and that of several widely-used unsupervised methods are 

analyzed and compared extensively. 

Beyond the effort made to improve word representations, Chapter 7 focuses on 

building novel and efficient ranking models based on general word embedding methods 

for extractive speech summarization. After that, the chapter also introduces a novel 

probabilistic modeling framework for learning word and sentence representations, 

which not only inherits the advantages from the original word embedding methods but 

also boasts a clear and rigorous probabilistic foundation. 
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Finally, Chapter 8 summarizes the contribution of this thesis and concludes the work. 
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Chapter 2 Overview of Related Literature 

 

2.1 Statistical Language Modeling 

Language modeling is an important component in most natural language processing 

(NLP)-related tasks today. The wide array of language modeling methods that have been 

developed so far fall roughly into four main categories: 1) word-regularity language 

models, 2) topic language models, 3) continuous language models, and 4) neural 

network language models. In this chapter, we briefly review several well-known or 

state-of-the-art language models. Figure 2.1 highlights some but not all of the 

state-of-the-art and widely-used language models year by year. 

 

2.1.1 Word-Regularity Language Modeling 

Beginning in the late 20th century, statistical language modeling has been successfully 

applied to various NLP applications, such as speech recognition [37][82], information 

retrieval [102][103][165], document summarization [25][115], and spelling correction 

[33][118][197]. The most widely-used and mature language model, by far, is the n-gram 

language model [37][82], because of its simplicity and fair predictive power. 

Quantifying the quality of a word string in a natural language is the most common task. 

Take the trigram model for example: when given a word string 𝑊𝑊1
𝐿𝐿 = 𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝐿𝐿, 

the probability of the word string is approximated by the following product of a series 

of conditional probabilities [82]: 
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In the trigram model, we make the approximation (or assumption) that the probability of 

a word depends only on the two immediately preceding words.  

The easiest way to estimate the conditional probability in Eq. (2.1) is to use the 

maximum likelihood (ML) estimation 

,
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where c(wl-2,wl-1,wl) and c(wl-2,wl-1) denote the occurrences of the word strings 

“wl-2,wl-1,wl” and “wl-2,wl-1” in a given training corpus, respectively. Without loss of 

generality, the trigram model can be extended to higher order models, such as the 

four-gram model and the five-gram model, but the high-order n-gram models usually 

suffer from data sparseness, which leads to zero conditional probabilities. To eliminate 

 

Figure 2.1 Several state-of-the-art language models. 

 

•Probability Latent Semantic Analysis(1999)
•Latent Semantic Analysis(1997)

•Latent Dirichlet Allocation(2003)

~~

•Cache-based Model(1988)

•Mixed-Order Markov Model(1997)

•Maximum Entropy Model(1994)

•Class-based Model(1992)

•Aggregate Language Model(1997)

•Skipping Model(1993)
•Trigger-based Model(1993)

•Structured Model(1997)

•N-gram Model

•Mixture-Based Language Model(1997)

•Latent Maximum Entropy Model(2001)

•Neural Probabilistic Language Model(2000)

•Gaussian Mixture Language Model(2007)
•Continuous Topic Language Model(2008)

•Tied-Mixture Language Model(2009)

•Discriminative Training Language Model(2000)

•Pseudo-conventional N-gram Model(2008)

•Minimum Word Error Training Language Model(2005)
•Global Conditional Log-linear Model(2007)

20082006200420022000 2010 2012 2014

•Recurrent Neural Network Language Model(2010)

•Relevance-based Language Model(2001)
•Simple Mixture Model(2001)

•Regularized Mixture Model(2006)

Word-Regularity
Models

Topic Models

Continuous 
Language Models

Neural Network-
based Language 

Models

•C&W Neural Network Language Model(2008)
•Log-bilinear Language Model(2007)

•Continuous Bag-of-words Representation(2013)
•Skip-gram Representation(2013)

•Global Vector(2014)

•Round-robin Discriminative Language Model(2011)

•Three Mixture Model(2002)

•Word Topic Model(2006)
•Word Vicinity Model(2006)
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zero probabilities, various smoothing techniques have been proposed, e.g., Good-Turing 

[66][88], Kneser-Ney [37][92], and Pitman-Yor [78]. The general formulation of these 

approaches is [37] 


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where 𝑓𝑓(∙) denotes a discounting probability function and 𝛽𝛽(∙) denotes a back-off 

weighting factor that makes the distribution sum to one. 

  Clearly, n-gram language modeling focuses on modeling the local contextual 

information or the lexical regularity of a language, and it is recognized as the earliest 

language model. Continuing this school of research, many successive language models 

have been proposed, such as the cache language model [95][96], the trigger model [101], 

the class-based language models [17][196] and the maximum entropy language model 

[174][175]. Interested readers are referred [176] to for thorough and entertaining 

discussions on the major methods. 

  The year 1997 can be thought as a watershed in language modeling research. On one 

hand, discriminative language modeling [41][208] is representative of the following 

research. Although this sort of research still is aimed at building n-gram models, the 

major difference between discriminative language modeling and conventional n-gram 

models is the training objective. Conventional n-gram-based language models seek a set 

of parameters by maximizing the corpus likelihood with a ML criterion, while 

discriminative language models seek parameters that reduce the speech recognition 

error rate [41], enhance the F-score for information retrieval [23], or optimize the rouge 

score for summarization [120]. The minimum word error training (MERT) [153][155], 

the global conditional log-linear model (GCLM) [170][171], and the round-robin 
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discriminative model (R2D2) [154] are representative methods. On the other hand, 

researchers are aware that many polysemic words have different meanings in different 

contexts, and that word-regularity language modeling takes into account only local 

context information, and thus cannot capture long-span semantic information embedded 

in a sentence or document. To mitigate this flaw, topic language modeling has been 

proposed [14][26][75]. We give a brief introduction to this school of research in the next 

subsection. 

 

2.1.2 Topic Language Modeling 

The n-gram language model, as it is aimed at capturing only local contextual 

information, or a language’s lexical regularities, is unable to capture information (either 

semantic or syntactic) conveyed by words before the n-1 immediately preceding words. 

To mitigate this weakness of the n-gram model, various topic language models have 

been proposed and widely used in many NLP tasks. We can roughly organize these 

topic models into two categories [30][31]: document topic models (DTMs) and word 

topic models (WTMs).  

DTMs introduce a set of latent topic variables to describe the “word-document” 

co-occurrence characteristics. The dependence between a word and its preceding words 

(regarded as a document) is not computed directly based on frequency counts as in the 

conventional n-gram model. The probability now is instead based on the frequency of 

the word in the latent topics as well as the likelihood that the preceding words together 

generate the respective topics. Probabilistic latent semantic analysis (PLSA) [75][76] 

and latent Dirichlet allocation (LDA) [12][67] are two representatives of this category. 

LDA, having a formula analogous to PLSA, can be regarded as an extension to PLSA 
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and has enjoyed much success for various NLP tasks. The major difference between 

PLSA and LDA is the inference of model parameters [12][14]. PLSA assumes that the 

model parameters are fixed and unknown while LDA places additional a priori 

constraints on model parameters by treating them as random variables that follow 

Dirichlet distributions. Since LDA has a more complex form for model optimization, 

which is not easily solved by exact inference, several approximate inference algorithms, 

including variational approximation [11][12][14], expectation propagation [145], and 

Gibbs sampling [67], have been proposed to estimate LDA parameters. 

Instead of treating the preceding word string as a document topic model, we can 

further regard each word wl of the language as a word topic model (WTM) [44][45]. 

Each WTM model M𝑤𝑤𝑙𝑙 can be trained in a data-driven manner by concatenating those 

words occurring within the vicinity of each occurrence of wl in a training corpus, which 

are postulated to be relevant to wl. To this end, a sliding window with a size of S words 

is placed on each occurrence of wl, allowing for the consequent aggregation of a 

pseudo-document associated with such vicinity information of wl. The WTM model of 

each word can be estimated using the expectation-maximization (EM) algorithm [52] by 

maximizing the total log-likelihood of words occurring in their associated “vicinity 

documents”. The word vicinity model (WVM) [30] bears a certain similarity to WTM in 

its motivation of modeling word-word co-occurrences, but has a more concise 

parameterization. WVM explores word vicinity information by directly modeling the 

joint probability of any word pair in the language. Along a similar vein, WVM is trained 

using the EM algorithm by maximizing the probabilities of all word pairs, respectively, 

that co-occur within a sliding window of S words in the training corpus. 

It is worth noting that several variations of topic language models have been 
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proposed for use with NLP-related tasks, including the supervised topic model [13], the 

labeled LDA [167], and the latent association analysis (LAA) [137]. 

 

2.1.3 Continuous Language Modeling 

The fundamental theorem of the Gaussian mixture language model (GMLM) was 

proposed in 2007 [1]. The GMLM model claims that although the n-gram has been the 

dominant and successful technology for language modeling, its two greatest weaknesses 

are clearly: generalizability and adaptability. To leverage the lessons learned in acoustic 

modeling for speech recognition, GMLM is an attempt to use Gaussian mixture models 

to model language instead of the usual multinomial distributions. Formally, GMLM 

employs singular value decomposition (SVD) [51] to project each word in the 

vocabulary to a continuous space, thus assigning to each word its own distributed 

representation. Since each history consists of a set of words of size n-1 for an n-gram 

sample, the history can be represented by concatenating the word representations 

corresponding to the words in the history. GMLM then models contextual information 

by using a Gaussian mixture model (GMM) [11] for each word respectively. 

Specifically, word wi has its own density function with which to calculate the 

probability densities for an observed history 𝑊𝑊𝑖𝑖−𝑛𝑛+1
𝑖𝑖−1 = 𝑤𝑤𝑖𝑖−𝑛𝑛+1, … ,𝑤𝑤𝑖𝑖−1: 
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where M is the number of mixtures in the GMM model of word wi, and 𝑐𝑐𝑤𝑤𝑖𝑖,𝑚𝑚, 𝜇𝜇𝑤𝑤𝑖𝑖,𝑚𝑚, 

and Σ𝑤𝑤𝑖𝑖,𝑚𝑚 are the component weight, mean vector, and covariance matrix for the m-th 

mixture in the GMM model. However, when we observe a history, what we need is the 

prediction probability. GMLM suggests using Bayes’ rule to calculate the conditional 

probability as 
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where P(wi) is the conventional unigram language model. The advantage of using the 

Gaussian mixture model as the cornerstone of the language model is that it can be easily 

adapted from a relatively small size of text corpus by utilizing well-studied techniques 

such as maximum likelihood linear regression (MLLR) [110]. Moreover, it is also 

well-suited for combination with the concept of clusters to enhance generalization 

capability. Continuing this school of research, many related language models have been 

proposed, such as the tied-mixture language modeling (TMLM) [180] and the 

continuous topic language modeling (CTLM) [46]. 

 

2.1.4 Neural Network-based Language Modeling 

The artificial neural network (ANN) can be dated back to the threshold logic which is a 

computational model for neural networks based on mathematics and algorithms [134]. 

Although several neural network-based language models have been proposed year by 

year, this school of research gained attention only after the year 2000. Feedforward 

neural network [68] and recurrent neural network [56] are two important 

representatives. 

The feedforward neural network language model (NNLM) is n-gram-based language 

modeling [7][8]. The original motivation for NNLM was to mitigate the data scantiness 

faced by conventional n-gram models. A famous example is the sentence “The cat is 

walking in the bedroom”: seeing this sentence in the training corpus, we should 

generalize such that the sentence “A dog was running in a room” is almost as likely, 

simply because dog and cat (or the and a, room and bedroom, and so on) have similar 

 13 



semantic and grammatical roles. To achieve this goal, the model learns (1) a distributed 

representation for each word along with (2) the probability function for word sequences, 

expressed in terms of these representations, simultaneously. 

The recurrent neural network language model (RNNLM) tries to project the history, 

𝑊𝑊1
𝐿𝐿−1, onto a continuous space and estimate the conditional probability in a recursive 

way by using the full information about 𝑊𝑊1
𝐿𝐿−1 [36][138]. It has recently emerged as a 

promising language modeling framework that can effectively and efficiently capture the 

long-span context relationships among words (or more precisely, the dependence 

between an upcoming word and its whole history) for use in speech recognition and 

spoken document summarization. The fundamental network of RNNLM consists of 

three main ingredients: the input layer, the hidden layer and the output layer. The most 

attractive aspect of RNNLM is that the statistical cues of previously encountered words 

retained in the hidden layer are fed back to the input layer and work in combination with 

the currently encountered word 𝑤𝑤𝐿𝐿−1 as an “augmented” input vector for predicting an 

arbitrary succeeding word 𝑤𝑤𝐿𝐿. Intuitively, the information stored in the hidden layer 

can be viewed as topic-like information similar in spirit to PLSA or LDA; the major 

difference is that RNNLM leverages a set of non-linear active functions to calculate the 

values of the latent variables while PLSA or LDA estimates the corresponding model 

parameters by using the (variational) EM algorithm. Thus doing, RNNLM naturally 

takes into account not only word usage cues but also long-span structural information 

about word co-occurrence relationships for language modeling.  

Recently, neural networks have emerged as a popular subject of research because of 

their excellent performance in many fundamental areas, including multimedia 

processing [87][94], speech processing [1][148], and natural language processing 
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[48][146][183]. In language model research, the recurrent neural network represents a 

breakthrough in building language models; recently, research trends have moved from 

modeling to vectorization. Several representation learning approaches have been 

proposed and applied to various NLP-related tasks [10][124][159][189]. 

 

2.2 Spoken Document Indexing and Retrieval 

Over the last two decades, spoken document retrieval (SDR) has become an active area 

of research and experimentation in the speech processing community. Although most 

retrieval systems participating in the TREC-SDR evaluations had claimed that speech 

recognition errors do not seem to cause much adverse effect on SDR performance when 

merely using imperfect recognition transcripts derived from one-best recognition results 

from a speech recognizer, this is probably due to the fact that the TREC-style test 

queries tend to be quite long and contain different words describing similar concepts 

that could help the queries match their relevant spoken documents. Furthermore, a query 

word (or phrase) might occur repeatedly (more than once) within a relevant spoken 

document, and it is not always the case that all of the occurrences of the word would be 

misrecognized totally as other words. Nevertheless, we believe that there are still at 

least two fundamental challenges facing SDR. On one hand, the imperfect speech 

recognition transcript carries wrong information and thus would deviate somewhat from 

representing the true theme of a spoken document. On the other hand, a query is often 

only a vague expression of an underlying information need, and there probably would 

be word usage mismatch between a query and a spoken document even if they are 

topically related to each other. 

A significant body of spoken content retrieval work has been placed on the 
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exploration of robust indexing or modeling techniques to represent spoken documents in 

order to work around (or mitigate) the problems caused by ASR [22][26][42][161][191]. 

On the contrary, very limited research has been conducted to look at the other side of 

the coin, namely, the improvement of query formulation for better reflecting the 

underlying information need of a user [27]. As for the latter problem, pseudo-relevance 

feedback [1][173] is by far the most commonly-used paradigm, which assumes that a 

small amount of top-ranked spoken documents obtained from the initial round of 

retrieval are relevant and can be utilized for query reformulation. Subsequently, the 

retrieval system can perform a second round of retrieval with the enhanced query 

representation to search for more relevant documents. 

 

2.2.1 Language Modeling for Spoken Document Retrieval 

2.2.1.1 Query-Likelihood Measure 

Recently, language modeling (LM) has emerged as a promising approach to building 

SDR systems [26][27][42]. This is due to the fact that the LM approach has inherent 

clear probabilistic foundation and excellent retrieval performance [204]. The 

fundamental formulation of the LM approach to SDR is to compute the conditional 

probability P(Q|D), i.e., the likelihood of a query Q generated by each spoken document 

D (the so-called query-likelihood measure). A spoken document D is deemed to be 

relevant with respect to the query Q if the corresponding document model is more likely 

to generate the query. If the query Q is treated as a sequence of words, Q=w1,w2,…,wL, 

where the query words are assumed to be conditionally independent given the document 

D and their order is also assumed to be of no importance (i.e., the so-called 

“bag-of-words” assumption), the similarity measure P(Q|D) can be further decomposed 
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as a product of the probabilities of the query words generated by the document [204]: 

( ) ( ) , 1∏ == L
l l DwPDQP        (2.6) 

where P(wl|D) is the likelihood of generating wl by document D (a.k.a. the document 

model). The simplest way to construct P(wl|D) is based on literal term matching [109], 

or using the unigram language model (ULM). To this end, each document D can, 

respectively, offer a unigram distribution for observing any given word w, which is 

parameterized on the basis of the empirical counts of words occurring in the document 

with the maximum likelihood (ML) estimator [82][204]: 

( ) ( ) ,,
D

DwcDwP =         (2.7) 

where c(w,D) is the number of times that word w occurs in the document D and |D| is 

the number of words in the document. The document model is further smoothed by a 

background unigram language model estimated from a large general collection to model 

the general properties of the language as well as to avoid the problem of zero 

probability [204]. However, how to strike the balance between these two probability 

distributions is actually a matter of judgment, or trial and error.  

 

2.2.1.2 Kullback-Leibler (KL)-Divergence Measure 

Another basic formulation of LM for SDR is the Kullback-Leibler (KL)-divergence 

measure [97][204]: 
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where the query and the document are, respectively, framed as a (unigram) language 

model (i.e., P(w|Q) and P(w|D)), rank
=  means equivalent in terms of being used for the 
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purpose of ranking documents, and V denotes the vocabulary. A document D has a 

smaller value (or probability distance) in terms of KL(Q||D) is deemed to be more 

relevant with respect to Q. The retrieval effectiveness of the KL-divergence measure 

depends primarily on the accurate estimation of the query modeling P(w|Q) and the 

document modeling P(w|D). In addition, it is easy to show that the KL-divergence 

measure will give the same ranking as the ULM model (cf. Eq. (2.6) and Eq. (2.7)) 

when the query language model is simply derived with the ML estimator [27]: 

( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ).|                      

|log                      
|log,                     

|log,                    

|log|

rank

rank

rank

DQP

DQP
DwPQwc

DwP
Q

Qwc 

DwPQwPDQKL

Vw

Vw

Vw

=

∑ ∈=

∑ ∈

∑ ∈=

=

=

−

      (2.9) 

In Eq. (2.9), P(w|Q) is simply estimated as c(w,Q)/|Q|, where c(w,Q) is the number of 

times w occurring in Q and |Q| is the total count of words in Q. Accordingly, the 

KL-divergence measure not only can be thought as a generalization of the 

query-likelihood measure, but also has the additional merit of being able to 

accommodate extra information cues to improve the estimation of its component models 

(especially, the query model) for better document ranking in a systematic manner 

[27][204]. 

 

2.3 Speech Summarization 

By virtue of extractive speech summarization, one can listen to and digest multimedia 

associated with spoken documents efficiently. Extractive speech summarization 

manages to select a set of indicative sentences from an original spoken document 
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according to a target summarization ratio and concatenates them together to form a 

summary accordingly [125][130][151][163]. The wide spectrum of extractive speech 

summarization methods developed so far may be split into three main categories 

[125][130]: 1) methods simply based on the sentence position or structure information, 

2) methods based on unsupervised sentence ranking, and 3) methods based on 

supervised sentence classification. 

For the first category, the important sentences can be selected from some salient parts 

of a spoken document [5]. For instance, sentences can be selected from the introductory 

and/or concluding parts of a spoken document. However, such methods can be only 

applied to some specific domains with limited document structures. On the other hand, 

unsupervised sentence ranking methods attempt to select important sentences based on 

statistical features of spoken sentences or of the words in the sentences without human 

labor involved. Statistical features, for example, can be the term (word) frequency, 

linguistic score and recognition confidence measure, as well as the prosodic information. 

The associated unsupervised methods based on these features have gained much 

attention of research. Among them, the vector space model (VSM) [65], the latent 

semantic analysis (LSA) method [65], the Markov random walk (MRW) method [192], 

the maximum marginal relevance (MMR) method [19], the sentence significant score 

method [59], the LexRank method [58], the submodularity-based method [114], and the 

integer linear programming (ILP) method [135] are the most popular approaches for 

spoken document summarization. Apart from that, a number of classification-based 

methods using various kinds of representative features also have been investigated, such 

as the Gaussian mixture models (GMM) [65], the Bayesian classifier (BC) [98], the 

support vector machine (SVM) [205] and the conditional random fields (CRFs) [61], to 

name just a few. In these methods, important sentence selection is usually formulated as 
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a binary classification problem. A sentence can either be included in a summary or not. 

These classification-based methods need a set of training documents along with their 

corresponding handcrafted summaries (or labeled data) for training the classifiers (or 

summarizers). However, manual annotation is expensive in terms of time and personnel. 

Even if the performance of unsupervised summarizers is not always comparable to that 

of supervised summarizers, their easy-to-implement and flexible property (i.e., they can 

be readily adapted and carried over to summarization tasks pertaining to different 

languages, genres or domains) still makes them attractive. Interested readers may also 

refer to [125][130][151][163] for comprehensive reviews and new insights into the 

major methods that have been developed and applied with good success to a wide range 

of text and speech summarization tasks. 

   

2.3.1 Language Modeling for Speech Summarization 

Among the aforementioned methods, one of the emerging lines of research is to employ 

the language modeling (LM) approach for important sentence selection, which has 

shown preliminary success for performing extractive speech summarization in an 

unsupervised fashion [38][116]. However, a central challenge facing the LM approach 

is how to formulate the sentence models and accurately estimate their parameters for 

each sentence in the spoken document to be summarized. 

Intuitively, extractive speech summarization could be cast as an ad-hoc information 

retrieval (IR) problem, where a spoken document to be summarized is taken as an 

information need and each sentence of the document is regarded as a candidate 

information unit to be retrieved according to its relevance (or importance) to the 

information need. As such, the ultimate goal of extractive speech summarization could 

be stated as the selection of the most representative sentences that can succinctly 
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describe the main topics of the spoken document.  

When applying the LM-based approach to extractive speech summarization, a 

principal realization is to use a probabilistic generative paradigm for ranking each 

sentence S of a spoken document D to be summarized, which can be expressed by 

P(S|D). Instead of calculating this probability directly, we can apply the Bayes’ rule and 

rewrite it as follows [82]: 

,
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)()|()|(
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SPSDPDSP =        (2.10) 

where P(D|S) is the sentence generative probability, i.e., the likelihood of D being 

generated by S, P(S) is the prior probability of the sentence S being relevant, and P(D) is 

the prior probability of the document D. P(D) in Eq. (2.10) can be eliminated because it 

is identical for all sentences and will not affect the ranking of the sentences. 

Furthermore, because the way to estimate the probability P(S) is still under active study 

[38], we may simply assume that P(S) is uniformly distributed, or identical for all 

sentences. In this way, the sentences of a spoken document to be summarized can be 

ranked by means of the probability P(D|S) instead of using the probability P(S|D): the 

higher the probability P(D|S), the more representative S is likely to be for D. If the 

document D is expressed as a sequence of words, D=w1,w2,…,wL, where words are 

further assumed to be conditionally independent given the sentence and their order is 

assumed to be of no importance (i.e., the so-called “bag-of-words” assumption), then 

P(D|S) can be approximated by 

,)|()|( 1∏ =≈ L
i i SwPSDP       (2.11) 

where L denotes the length of the document D. The sentence ranking problem has now 

been reduced to the problem of how to accurately infer the probability distribution 

P(wi|S), i.e., the corresponding sentence model for each sentence of the document. 
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Again, the simplest way is to estimate a unigram language model (ULM) on the basis of 

the frequency of each distinct word w occurring in the sentence, with the maximum 

likelihood (ML) criterion [82][204]: 

,
||
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S

SwcSwP =        (2.12) 

where c(w,S) is the number of times that word w occurs in S and |S| is the length of S. 

The ULM model can be further smoothed by a background unigram language model 

estimated from a large general collection to model the general properties of the 

language as well as to avoid the problem of zero probability. It turns out that a sentence 

S with more document words w occurring frequently in it would tend to have a higher 

probability of generating the document. 
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Chapter 3 Speech and Language Corpora & 

Evaluation Metrics 

 

3.1 Data Sets for Spoken Document Indexing and Retrieval 

The thesis uses the Mandarin Chinese collection of the TDT corpora for the 

retrospective retrieval task [23][104], such that the statistics for the entire document 

collection is obtainable. The Chinese news stories (text) from Xinhua News Agency are 

used as our test queries and training corpus for all models (excluding test query set). 

More specifically, in the following experiments, we will merely extract the tittle field 

from a news story as a test query. The Mandarin news stories (audio) from Voice of 

America news broadcasts are used as the spoken documents. All news stories are 

exhaustively tagged with event-based topic labels, which serve as the relevance 

judgments for performance evaluation. Table 3.1 describes some basic statistics about 

the corpora used in this thesis. The Dragon large-vocabulary continuous speech 

recognizer provided Chinese word transcripts for our Mandarin audio collections 

(TDT-2). To assess the performance level of the recognizer, we spot-checked a fraction 

of the TDT-2 development set (about 39.90 hours) by comparing the Dragon recognition 

hypotheses with manual transcripts, and obtained a word error rate (WER) of 35.38%. 

Since Dragon’s lexicon is not available, we augmented the LDC Mandarin Chinese 

Lexicon with 24k words extracted from Dragon’s word recognition output, and for 

computing error rates used the augmented LDC lexicon (about 51,000 words) to 

tokenize the manual transcripts. We also used this augmented LDC lexicon to tokenize 

the query sets and training corpus in the retrieval experiments. 
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3.1.1 Subword-level Index Units 

In Mandarin Chinese, there is an unknown number of words, although only some (e.g., 

80 thousands, depending on the domain) are commonly used. Each word encompasses 

one or more characters, each of which is pronounced as a monosyllable and is a 

morpheme with its own meaning. Consequently, new words are easily generated every 

day by combining a few characters. Furthermore, Mandarin Chinese is phonologically 

compact; an inventory of about 400 base syllables provides full phonological coverage 

of Mandarin audio, if the differences in tones are disregarded. Additionally, an 

inventory of about 6,000 characters almost provides full textual coverage of written 

Chinese. There is a many-to-many mapping between characters and syllables. As such, 

 
TDT-2 (Development Set) 

1998, 02~06 

# Spoken documents 
2,265 stories, 

46.03 hours of audio 

# Distinct test queries 
16 Xinhua text stories 
(Topics 20001~20096) 

# Distinct training queries 
819 Xinhua text stories 
(Topics 20001~20096) 

 Min. Max. Med. Mean 
Doc. length 

(in characters) 
23 4,841 153 287.1 

Short query length 
(in characters) 

8 27 13 14 

Long query length 
(in characters) 

183 2,623 329 532.9 

# Relevant documents  
per test query 

2 95 13 29.3 

# Relevant documents  
per training query 

2 95 87 74.4 

Table 3.1 Statistics for TDT-2 collection used for spoken document retrieval. 
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a foreign word can be translated into different Chinese words based on its pronunciation, 

where different translations usually have some syllables in common, or may have 

exactly the same syllables. 

The characteristics of the Chinese language lead to some special considerations when 

performing Mandarin Chinese speech recognition; for example, syllable recognition is 

believed to be a key problem. Mandarin Chinese speech recognition evaluation is 

usually based on syllable and character accuracy, rather than word accuracy. The 

characteristics of the Chinese language also lead to some special considerations for 

SDR. Word-level indexing features possess more semantic information than 

subword-level features; hence, word-based retrieval enhances precision. On the other 

hand, subword-level indexing features behave more robustly against the Chinese word 

tokenization ambiguity, homophone ambiguity, open vocabulary problem, and speech 

recognition errors; hence, subword-based retrieval enhances recall. Accordingly, there is 

good reason to fuse the information obtained from indexing the features of different 

levels [23]. To do this, syllable pairs are taken as the basic units for indexing besides 

words. Both the manual transcript and the recognition transcript of each spoken 

document, in form of a word stream, were automatically converted into a stream of 

overlapping syllable pairs. Then, all the distinct syllable pairs occurring in the spoken 

document collection were identified to form a vocabulary of syllable pairs for indexing. 

We can simply use syllable pairs, in replace of words, to represent the spoken 

documents, and thereby construct the associated retrieval models. 

 

3.1.2 Evaluation Metrics 

The retrieval results are expressed in terms of non-interpolated mean average precision 

(MAP) following the TREC evaluation [63], which is computed by the following 
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equation: 
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where L is the number of test queries, Ni is the total number of documents that are 

relevant to query Qi, and ri,j is the position (rank) of the j–th document that is relevant to 

query Qi, counting down from the top of the ranked list. 

 

3.1.3 Baseline Experiments 

In the first set of experiments, we compare several retrieval models, including the vector 

space model (VSM) [132][178], the latent semantic analysis (LSA) [51], the semantic 

context inference (SCI) [77], and the basic LM-based method (i.e., ULM) [202]. The 

results when using word- and subword-level index features are shown in Table 3.2. At 

first glance, ULM in general outperforms the other three methods in most cases, 

validating the applicability of the LM framework for SDR. Next, we compare two 

extensions of ULM, namely the probabilistic latent semantic analysis (PLSA) [31] and 

the latent Dirichlet allocation (LDA) [195], with ULM. The experimental results are 

also shown in Table 3.2. As expected, both PLSA and LDA outperform ULM, and they 

are almost on par with each other. The results also reveal that PLSA and LDA can give 

more accurate estimates of the document language models than the empirical ML 

 

 VSM LSA SCI ULM LDA 
Word 0.273 0.296 0.270 0.321 0.328 

Subword 0.257 0.384 0.270 0.329 0.377 

Table 3.2 Retrieval results (in MAP) of different retrieval models with word- and 

subword-level index features. 
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estimator used in ULM, and thus improve the retrieval effectiveness. On the other hand, 

if we have a close look at these results, we notice that although the word error rate 

(WER) for the spoken document collection is higher than 35%, it does not lead to 

catastrophic failures probably due to the reason that recognition errors are 

overshadowed by a large number of spoken words correctly recognized in the 

documents. 

 

3.2 Data Sets for Speech Summarization 

The summarization dataset is a broadcast news corpus collected by the Academia Sinica 

and the Public Television Service Foundation of Taiwan between November 2001 and 

April 2003 [193], which has been segmented into separate stories and transcribed 

manually. Each story contains the speech of one studio anchor, as well as several field 

reporters and interviewees. A subset of 205 broadcast news documents compiled 

between November 2001 and August 2002 was reserved for the summarization 

experiments. Since broadcast news stories often follow a relatively regular structure as 

compared to other speech materials like conversations, the positional information would 

play an important role in extractive summarization of broadcast news stories. We hence 

chose 20 documents, for which the generation of reference summaries is less correlated 

with the positional information (or the position of sentences), as the held-out test set to 

evaluate the general performance of the proposed summarization framework, while 

another subset of 100 documents the held-out development set for tuning the parameters 

of the various unsupervised summarization methods compared in the thesis. 

On the other hand, twenty-five hours of gender-balanced speech from the remaining 

speech data were used to train the acoustic models for speech recognition. The data was 
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first used to bootstrap the acoustic model training with the ML criterion. Then, the 

acoustic models were further optimized by the minimum phone error (MPE) 

discriminative training algorithm [73]. Table 3.3 shows some basic statistics about the 

spoken documents of the development and evaluation sets, where the average word 

error rate (WER) obtained for the spoken documents was about 38.1% [24]. A large 

number of text news documents collected by the Central News Agency (CNA) between 

1991 and 2002 (the Chinese Gigaword Corpus released by LDC) were used. The 

documents collected in 2000 and 2001 were used to train N-gram language models for 

speech recognition with the SRI Language Modeling Toolkit [187]. 

 

3.2.1 Performance Evaluation 

Three subjects were asked to create extractive summaries of the 205 spoken documents 

for the summarization experiments as references (the gold standard) for evaluation. The 

 

 Training Set Evaluation Set 

Recording Period 
Nov. 7, 2001 – 

Jan. 22, 2002 

Jan. 23, 2002 – 

Aug. 20, 2002 

Number of Documents 185 20 

Average Duration  
per Document (in sec.) 129.4 141.28 

Avg. Number of words  
per Document 326.0 290.3 

Avg. Number of Sentences 
per Document 20.0 23.25 

Avg. Word Error Rate (WER) 38.0% 39.4% 

Table 3.3 The statistical information of the broadcast news documents used for the 

summarization. 
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reference summaries were generated by ranking the sentences in the manual transcript 

of a spoken document by importance without assigning a score to each sentence. For the 

assessment of summarization performance, we adopted the widely-used ROUGE 

metrics [113]. It evaluates the quality of the summarization by counting the number of 

overlapping units, such as N-grams, longest common subsequences or skip-bigram, 

between the automatic summary and a set of reference summaries. Three variants of the 

ROUGE metrics were used to quantify the utility of the proposed methods. They are, 

respectively, the ROUGE-1 (unigram) metric, the ROUGE-2 (bigram) metric and the 

ROUGE-L (longest common subsequence) metric [113]. 

The summarization ratio, defined as the ratio of the number of words in the automatic 

(or manual) summary to that in the reference transcript of a spoken document, was set to 

10%, unless otherwise stated. Since increasing the summary length tends to increase the 

chance of getting higher scores in the recall rate of the various ROUGE metrics and 

might not always select the right number of informative words in the automatic 

summary as compared to the reference summary, all the experimental results reported 

hereafter are obtained by calculating the F-scores of these ROUGE metrics. Table 3.4 

shows the levels of agreement (the Kappa statistic and ROUGE metrics) between the 

three subjects for important sentence ranking. Each of these values was obtained by 

using the extractive summary created by one of the three subjects as the reference 

summary, in turn for each subject, while those of the other two subjects as the test 

summaries, and then taking their average. These observations seem to reflect the fact 

 

Kappa ROUGE-1 ROUGE-2 ROUGE-L 
0.544 0.600 0.532 0.527 

Table 3.4 The agreement among the subjects for important sentence ranking for the 

evaluation set. 
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that people may not always agree with each other in selecting the summary sentences 

for a given document. 

 

3.2.2 Baseline Experiments 

In the first place, we report on the performance level of the baseline LM-based 

summarization method (i.e., ULM) for extractive speech summarization by comparing it 

with several well-practiced or/and state-of-the-art unsupervised summarization methods, 

including the vector-space methods (i.e., VSM, LSA, and MMR), the graph-based 

methods (i.e., MRW and LexRank) and the combinational optimization methods 

(Submodularity and ILP). The corresponding summarization results of these 

unsupervised methods are illustrated in Table 3.5, where TD denotes the results 

obtained based on the manual transcripts of spoken documents and SD denotes the  

results using the speech recognition transcripts that may contain speech recognition 

errors. Several noteworthy observations can be drawn from Table 3.5. First, the two 

graph-based methods (i.e., MRW and LexRank) are quite competitive with each other 

and perform better than the various vector-space methods (i.e., VSM, LSA, and MMR) 

 

 
Method 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

ULM 0.411 0.298 0.361 0.364 0.210 0.307 
VSM 0.347 0.228 0.290 0.342 0.189 0.287 
LSA 0.362 0.233 0.316 0.345 0.201 0.301 

MMR 0.368 0.248 0.322 0.366 0.215 0.315 
MRW 0.412 0.282 0.358 0.332 0.191 0.291 

LexRank 0.413 0.309 0.363 0.305 0.146 0.254 
Submodularity 0.414 0.286 0.363 0.332 0.204 0.303 

ILP 0.442 0.337 0.401 0.348 0.209 0.306 

Table 3.5 Summarization results achieved by a few well-studied or/and state-of-the-art 

unsupervised methods. 
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for the TD case. However, for the results of the SD case, the situation is reversed. It 

reveals that imperfect speech recognition may adversely affect the performance of the 

graph-based methods as compared to vector-space methods; a possible reason for such a 

phenomenon is that the speech recognition errors may lead to inaccurate similarity 

measures between each pair of sentences. The PageRank-like procedure of the 

graph-based methods, in turn, will be performed based on these problematic measures, 

potentially leading to common results. Second, LSA representing the sentences of a 

spoken document to be summarized and the document itself in a low-dimensional 

continuous space instead of the index term (word) space, can perform slightly better 

than VSM in both of the TD and SD cases. Third, the Submodularity and ILP achieve 

the best results in the TD case, while the latter outperforms the former by a considerable 

margin. However, the superiority of these two methods seems to diminish for the SD 

case, again probably due to the effect of speech recognition errors. Fourth, the ULM 

method shows results that are competitive to those obtained by the other state-of-the-art 

unsupervised methods, which indeed justifies the viability of applying the language 

modeling approach for speech summarization [121][122]. 
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Chapter 4 A Unified Framework for 

Pseudo-Relevance Feedback 

 

“Information Need” is a key factor in information retrieval; this can be defined as “the 

reason for which the user turns to a search engine” [50][100]. As such, a good search 

engine fulfills users’ information needs. However, a critical challenge with search 

engines is that users typically provide scant information about their requests 

[18][43][173][194]. Figure 4.1 is a toy example of a user who wants to know how much 

the new Macbook is, and what the new specifications for the machine are. 

Due to that a query usually consists of only a few words, the true query model P(w|Q) 

might not be accurately estimated by the simple ML estimator [52]. With the alleviation 

of this deficiency as motivation, there are several studies devoted to estimating a more 

accurate query modeling, saying that it can be approached with the pseudo-relevance 

feedback process. Such integration seems to hold promise for query reformulation 

[20][54][102][190][203]. However, the success depends largely on the assumption that 

the set of top-ranked documents, DTop={D1,D2,...,Dr,...}, obtained from an initial round 

of retrieval, are relevant and can be used to estimate a more accurate query language 

model. 

 

4.1 Pseudo-Relevance Feedback 

In reality, since a query often consists of only a few words, the query model that is 

meant to represent the user’s information need might not be appropriately estimated by 

the ML estimator. Furthermore, merely matching words between a query and documents 
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might not be an effective approach, as the word overlaps alone could not capture the 

semantic intent of the query. To cater for this, an LM-based SDR system with the 

KL-divergence measure can adopt the idea of pseudo-relevance feedback and perform 

two rounds of retrieval to search for more relevant documents. In the first round of 

retrieval, an initial query is input into the SDR system to retrieve a number of 

top-ranked feedback documents. Subsequently, on top of these top-ranked feedback 

documents, a refined query model is constructed and a second round of retrieval is 

conducted with this new query model and the KL-divergence measure depicted in 

Figure 4.2. It is usually anticipated that the SDR system can thus retrieve more 

documents relevant to the query. 

However, an LM-based SDR system with the pseudo-relevance feedback process 

may confront two intrinsic challenges. One is how to purify the top-ranked feedback 

documents obtained from the first round of retrieval so as to remove redundant and 

non-relevant information. The other is how to effectively utilize the selected set of 

representative feedback documents for estimating a more accurate query model. For the 

latter, there are a number of studies proposing various query modeling techniques 

directly exploiting the top-ranked feedback text (or spoken) documents, such as the 

simple mixture model (SMM) [203], the relevance model (RM) [102] and their 

 

Figure 4.1 A toy example of a user goes to a search engine. 

Query: Mac price

Apple new 
Macbook spec. 

price

Information needs

Relevant 
documents
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extensions [43][190], among others. However, for the former, there is relatively little 

work done on selecting useful and representative feedback documents from the 

top-ranked ones for SDR, as far as we are aware. Recently, the so-called “Gapped Top K” 

and “Cluster Centroid” selection methods [182] have been proposed for text information 

retrieval. “Gapped Top K” selects top K documents with a ranking gap J in between any 

two top-ranked documents, while “Cluster Centroid” groups the top-ranked documents 

into K clusters and selects one representative document from each cluster to obtain 

diversified feedback documents. Another more attractive and sophisticated method 

proposed for text IR is “Active-RDD” [39][199], which takes into account the relevance, 

diversity and density cues of the top-ranked documents for feedback document 

selection.  

 

 

Figure 4.2 A schematic illustration of the SDR process with pseudo-relevance 

feedback. 

Initial Query 
Model

Document 
Models

Initial Round of Retrieval

Top-Ranked 
Documents

Representative 
Documents

Various Query 
Modeling Second Round of Retrieval

Document 
Collection

Relevant 
Documents

Query
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4.1.1 Relevance Modeling (RM) 

Under the notion of relevance modeling (RM, especially referred to as RM-1), each 

query Q is assumed to be associated with an unknown relevance class RQ, and 

documents that are relevant to the semantic content expressed in query are samples 

drawn from the relevance class RQ. However, in reality, since there is no prior 

knowledge about RQ, we may use the top-ranked documents DTop to approximate the 

relevance class RQ. The corresponding relevance model, on the grounds of a 

multinomial view of RQ, can be estimated using the following equation [102][103]: 
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where the prior probability P(Dr) of each document can be simply kept uniform, while 

the document models (such as P(w|Dr)) are estimated with the ML estimator on the 

basis of the occurrence counts of w in each document, respectively. 

 

4.1.2 Simple Mixture Model (SMM) 

Another perspective of estimating an accurate query model with the top-ranked 

documents is the simple mixture model (SMM), which assumes that words in DTop are 

drawn from a two-component mixture model: 1) One component is the query-specific 

topic model PSMM(w|Q), and 2) the other is a generic background model P(w|BG). By 

doing so, the SMM model PSMM(w|Q) can be estimated by maximizing the likelihood 

over all the top-ranked documents [43][190][203]: 
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where 𝛼𝛼 is a pre-defined weighting parameter used to control the degree of reliance 

between PSMM(w|Q) and P(w|BG). This estimation will enable more specific words (i.e., 
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words in DTop that are not well-explained by the background model) to receive more 

probability mass, thereby leading to a more discriminative query model PSMM(w|Q). 

Simply put, the SMM model is anticipated to extract useful word usage cues from DTop, 

which are not only probably relevant to the query Q, but also external to those already 

captured by the generic background model. 

 

4.1.3 Regularized Simple Mixture Model (RSMM) 

Although the SMM modeling aims to extract extra word usage cues for enhanced query 

modeling, it may confront two intrinsic problems. One is the extraction of word usage 

cues from DTop is not guided by the original query. This would lead to a concern for 

SMM to be distracted from being able to appropriately model the query of interest, 

which is probably caused by some dominant distracting (or irrelevant) documents. The 

other is that the mixing coefficient 𝛼𝛼 is fixed across all top-ranked documents albeit 

that different (either relevant or irrelevant) documents would potentially contribute 

different amounts of word usage cues to the enhanced query model. To mitigate these 

two problems, the original query model P(w|Q) can be used to define a conjugate 

Dirichlet prior for the enhanced query model to be estimated; meanwhile, a trainable 

document-specific weighting coefficient 𝛼𝛼𝐷𝐷𝑟𝑟 is introduced for each pseudo-relevant 

document Dr. The resulting model is referred to hereafter as the regularized simple 

mixture model (RSMM) and its corresponding objective likelihood function is 

expressed as [54][190]: 

( ) ,)|()1()|(    

)|(

),(
RSMM

)|(
RSMM

∏
∈

∏
∈

∏
∈

⋅

⋅−+⋅

×=

Topr

r
rrD Vw

Dwc
DD

Vw

QwP

BGwPQwP

QwPL

D
αα

µ

  (4.3) 

where 𝜇𝜇 is a weighting factor indicating the confidence on the prior information (viz. 
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the original query model). 

  

4.2 A Unified Framework 

It is obvious that the major difference among the representative query models 

mentioned above is how to capitalize on the set of top-ranked documents and the 

original query. Taking a step forward, several subtle relationships can be deduced 

through the following in-depth analysis. First of all, a direct inspiration of the LM-based 

query reformulation framework can be drawn from the celebrated Rocchio’s 

formulation, while the former can be viewed as a probabilistic counterpart of the latter 

[1][20][165][172]. The basic idea of the Rocchio’s formulation is to assign higher 

weights to those words occurring in the top-ranked documents. Building on the same 

idea, the LM-based query reformulation framework has been well studied and practiced 

in various IR tasks and shown excellent performance. Second, after some mathematical 

manipulation, the formulation of the RM model (c.f. Eq. (4.1)) can be rewritten as: 

.
)()|(

)()|()|(  )|(RM ∑
∑ ∈′′

∈ ′′′′
=

ToprD
ToprD rr

rr
r DPDQP

DPDQPDwPQwP D
D
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It becomes evident that the RM model is composed by mixing a set of document models 

P(w|Dr). The mixing coefficients are estimated by normalizing the query likelihood 

P(Q|Dr) with respect to each pseudo-relevant document Dr while the prior probability 

P(Dr) of each document Dr is simply set to be uniform. As such, the RM model bears a 

close resemblance to the Rocchio’s formulation. Furthermore, based on Eq. (4.4), we 

can recast the estimation of the RM model as an optimization problem, and the 

likelihood (or objective) function is formulated as 
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where the document models P(w|Dr) are known in advance; the probability P(Dr|Q) 

corresponding to each document Dr is unknown and leave to be estimated. Therefore, 

the parameters needed to be estimated are the set of mixing coefficients (i.e., P(Dr|Q)) 

and then the RM model can be formed by linearly interpolated the models of 

pseudo-relevant documents weighted by their corresponding coefficients. Finally, a 

principled framework can be obtained to unify all of these query models by using a 

generalized objective likelihood function: 

1)( ..

,)()|(
),(

=











=

∑
∈

∏
∈

∏
∈

∑
∈

M

E M

r

i

i

r

M
r

Vw E

Ewc

M
rr

MPts

MPMwPL
   (4.6) 

where E represents a set of observations which we want to maximize their likelihood, 

and M denotes a set of mixture components.  

Based on the proposed framework, here we highlight how to infer several query 

modeling formulations from the framework: 

 Relevance modeling: when E only consists of the user query, M comprises a set 

of document models corresponding to the top-ranked (pseudo-relevant) 

documents, and we assume the document models are known, then it can be 

deduced to the RM model (c.f. Eq. (4.5)).  

 Simple mixture modeling: if we hypothesize that M consists of two 

components: one component is a generic background model and the other is an 

unknown query-specific topic model, the weight of each component is 
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presumably fixed in advance, and the observations are those top-ranked 

documents (i.e., E=DTop), then we will derive the SMM model in response to the 

objective function (c.f. Eq. (4.2)).  

 Regularized simple mixture modeling: if the weight of each component is 

required to be estimated as well and a Dirichlet prior is placed on the enhanced 

query model, the RSMM model can be obtained herewith (c.f. Eq. (4.3)).  

 Others: without loss of generality, some other state-of-the-art query models also 

can be deduced from the proposed general objective function, such as the 

three-mixture model [207], the positional relevance model [128], the 

cluster-based methods [107][108], and among others. Furthermore, the 

well-practiced topic modeling [12][14][75][76] can also be deduced from the 

unified framework. 

As a consequence, the analysis made above reveal that all of these query models bear a 

close resemblance to each other, and can be deduced from Eq. (4.6) with different 

assumptions. In the following, we will further adopt and formalize such a framework to 

speech recognition and summarization. 

 

4.3 Query-specific Mixture Modeling (QMM) 

The SMM model and the RSMM model are intended to extract useful word usage cues 

from DTop, which are not only relevant to the original query Q but also external to those 

already captured by the generic background model. However, we argue in this thesis 

that the “generic information” should be carefully crafted for each query due mainly to 

the fact that users’ information needs may be very diverse from one another. To 

crystallize the idea, a query-specific background model PQ(w|BG) for each query Q can 
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be derived from DTop directly. Another consideration is that since the original query 

model P(w|Q) cannot be accurately estimated, it thus may not necessarily be the best 

choice for use in defining a conjugate Dirichlet prior for the enhanced query model to 

be estimated. As an alternative, we propose to use the RM model as a prior to guide the 

estimation of the enhanced query model. The enhanced query model is termed 

query-specific mixture model (QMM), and its corresponding training objective function 

can be expressed as 
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4.4 Experimental Results 

Owing to each sentence S of a spoken document D to be summarized usually consists  

of only a few words, the corresponding sentence model P(w|S) might not be  

appropriately estimated by the ML estimation. To alleviate the deficiency, we can 

leverage the merit of the above query modeling framework to estimate an accurate 

sentence model (or representation) for each sentence to enhance the summarization 

performance. 

In the first part of experiments, we evaluate the utilities of the various query models 

as applied to the speech summarization task. At the outset, we assess the performance 

level of the baseline KLM method by comparison with two well-practiced unsupervised 

methods, viz. the vector space model (VSM) [65], and its extension, maximal marginal 

relevance (MMR) [19]. The corresponding results are shown in Table 4.1 and can be 

aligned with several related literature reviews. By looking at the results, we find that 

KLM outperforms VSM by a large margin, confirming the applicability of the language 
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modeling framework for speech summarization. Furthermore, MMR that presents an 

extension of VSM performs on par with KLM for the text summarization task (TD) and 

exhibits superior performance over KLM for the speech summarization task (SD). We 

now turn to evaluate the effectiveness of the various query models (viz. RM, SMM, 

RSMM and QMM) in conjunction with the pseudo-relevance feedback process for 

enhancing the sentence model involved in the KLM method. The corresponding results 

are also shown in Table 4.1. Two noteworthy observations can be drawn from Table 4.1. 

One is that all these query models can considerably improve the summarization 

performance of the KLM method, which corroborates the advantage of using them for 

enhanced sentence representations. The other is that QMM is the best-performing one 

among all the formulations studied in this chapter for both the TD and SD cases.  

Going one step further, we explore to use extra prosodic features that are deemed 

complementary to the LM cue provided by QMM for speech summarization. To this end, 

a support vector machine (SVM) based summarization model is trained to integrate a set 

 

 
Text Documents (TD) Spoken Documents (SD) 

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 
VSM 0.347 0.228 0.290 0.342 0.189 0.287 
MMR 0.407 0.294 0.358 0.381 0.226 0.331 
KLM 0.411 0.298 0.361 0.364 0.210 0.307 
RM 0.453 0.335 0.403 0.382 0.239 0.331 

SMM 0.439 0.320 0.388 0.383 0.229 0.327 
RSMM 0.472 0.365 0.423 0.381 0.235 0.329 
QMM 0.486 0.382 0.435 0.395 0.256 0.349 
SVM 0.441 0.334 0.396 0.370 0.222 0.326 
QMM 
+SVM 

0.492 0.395 0.448 0.398 0.261 0.358 

Table 4.1 The summarization results (in F-scores(%)) achieved by various language 

models along with text and spoken documents. 
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of 28 commonly-used prosodic features [125] for representing each spoken sentence, 

since SVM is arguably one of the state-of-the-art supervised methods that can make use 

of a diversity of indicative features for text or speech summarization [29][198]. The 

sentence ranking scores derived by QMM and SVM are in turn integrated through a 

simple log-linear combination. The corresponding results are shown in Table 4.1, 

demonstrating consistent improvements with respect to all the three variants of the 

ROUGE metric as compared to that using either QMM or SVM in isolation. We also 

investigate using SVM to additionally integrate a richer set of lexical and relevance 

features to complement QMM and further enhance the summarization effectiveness. 

However, due to space limitation, we omit the details here. As a side note, there is a 

sizable gap between the TD and SD cases, indicating room for further improvements. 

We may seek remedies, such as robust indexing schemes, to compensate for imperfect 

speech recognition. 
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Chapter 5 An I-vector based Language Modeling 

Framework for Retrieval 

 

Having analyzed several widely-used query models, and having proposed a principled 

framework to unify the relationships among them, we now propose a novel and useful 

language model for spoken document retrieval. 

Recently, the i-vector based framework has become one of the state-of-the-art 

approaches for language identification (LID) [53][133][184][185] and speaker 

recognition (SR) [62][64][85]. One challenge of these tasks is the need to process and 

analyze a high-dimensional vector, which is constructed from the variable-length series 

of acoustic feature vectors of each input utterance based on some reference models. The 

i-vector framework proposed an elegant way to reduce such rough input utterance to a 

corresponding low-dimensional vector representation while retaining the most 

representative (e.g., language-specific for LID or speaker-specific for SR) information 

embedded in the original input utterance. Since a document is composed by a series of 

indexes (such as words, characters, or phonemes), our idea is to apply the i-vector 

framework to represent a document by a low-dimensional vector, which retains the most 

representative information of the document.  

 

5.1 I-vector based Language Modeling  

The i-vector framework [64][133] is a simplified variant of the joint factor analysis 

(JFA) approach [89][90], and both are well-known approaches for LID and SR. Their 

major contribution is to provide an elegant way to convert the cepstral coefficient vector 
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sequence of a variable-length utterance into a low-dimensional vector representation. To 

do so, first, a Gaussian mixture model is used to collect the Baum-Welch statistics from 

the utterance. Then, the first-order statistics from each mixture component are 

concatenated to form a high-dimensional “supervector” S, which is assumed to obey an 

affine linear model [89][90][185]:  

,SφS ⋅+= Tm                    (5.1) 

where T is a total variability matrix, 𝜑𝜑𝑆𝑆 is an utterance specific latent variable, and m 

denotes a global statistics vector. In detail, the column vectors of T form a set of bases 

spanning a subspace covering the important variability, e.g., the language-specific 

evidences for LID or the speaker-specific evidences for SR, and the utterance specific 

variable 𝜑𝜑𝑆𝑆 indicates the combination of the variability of the utterance. In this way, a 

variable-length utterance is represented by a low-dimensional vector 𝜑𝜑. Finally, the 

low-dimensional vector is applied to some well-developed post-processing techniques, 

such as PLDA, for LID and SR. Since the i-vector framework can be trained in an 

unsupervised manner while JFA must be trained along with manual annotation 

information, the former has become one of the state-of-the-art approaches for LID and 

SR recently. In this chapter, we investigate the same idea in the context of spoken 

document retrieval. 

Specifically speaking, each document D is first represented by a high-dimensional 

feature vector 𝜈𝜈𝐷𝐷 ∈ ℝ𝛽𝛽 . All of the representative (e.g., lexical-, semantic-, and 

structure-specific) statistics are encoded in the 𝛽𝛽-dimensional vector, which obeys an 

affine linear model: 

,DD ϕν ⋅+= Tm        (5.2) 

where 𝐓𝐓 ∈ ℝ𝛽𝛽×𝛾𝛾  is a total variability matrix, 𝛾𝛾  is a desired value (𝛾𝛾 ≪ 𝛽𝛽), and 
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𝐦𝐦 ∈ ℝ𝛽𝛽 denotes a global statistics vector. Similarly, the column vectors of T span a 

subspace covering the important characteristics for documents. Moreover, each 

document has a document specific variable 𝜑𝜑𝐷𝐷 ∈ ℝ𝛾𝛾, which indicates the combination 

of the variability of the document. Based on the methodology, a disengaged version is to 

characterize the representative information of a document only by words. Consequently, 

each element of the 𝛽𝛽-dimensional vector is corresponding to a distinct word, and the 

probability of a word w occurring in a document D can be defined as a log-linear 

function: 
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where Tw denotes the row vector of T corresponding to word w, mw denotes the 

statistics value of m corresponding to word w, and V denotes the vocabulary inventory 

in the language. We name this model as the i-vector based language model (IVLM). 

Based on Eqs. (5.2) and (5.3), the model parameters (i.e., T, 𝜑𝜑𝐷𝐷  and m) of the 

proposed IVLM can be estimated by maximizing the total likelihood over all training 

documents: 

,)
)exp(

)exp((
),(

'
''

Dwc

D Dw
Vw

wDw

wDwL ∏ ∏
∈ ∑

∈
+

+
=

mT
mT

ϕ
ϕ

     (5.4) 

where c(w,D) denotes the number of times the word w occurs in document D. Since 

estimating all the parameters jointly is intractable, we estimate them through an iterative 

process, i.e., we estimate T and m with fixed 𝜑𝜑𝐷𝐷, and then estimate 𝜑𝜑𝐷𝐷 with fixed T 

and m: 
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where  𝜆𝜆 is the step size, |D| is the length of document D, and 𝜏𝜏 is the iterative index. 

The Frobenius norm can be used to govern T and 𝜑𝜑𝐷𝐷 in the training process and the 

step size can be set empirically or by calculating the Hessian matrix [129][185]. 

In the retrieval phase, each document D has its own IVLM, including the document 

specific variable 𝜑𝜑𝐷𝐷  and common T and m. As such, the probability of word w 

occurring in document D computed by IVLM in Eq. (5.3) can be linearly combined 

with or used to replace P(w|D) in the query-likelihood measure to distinguish relevant 

documents from irrelevant ones.  

The concept of the proposed IVLM is similar to that of LSA, RLSI, and PLSA, but 

differences do exist among them. First, IVLM and PLSA are probabilistic models while 

LSA and RLSI are not. Second, IVLM not only has a different formulation to PLSA, but 

it does not assume that the total variability is governed by some distribution. Since the 

parameters of IVLM are real numbers rather than positive real numbers in PLSA, IVLM 

is more flexible and general than PLSA. Moreover, the parameters of IVLM can be 

solved in parallel while the parameters of PLSA have to be estimated in a batch mode. It 
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is worth noting that IVLM is a special (disengaged) case of the proposed i-vector based 

language modeling framework for SDR. We will try to discover and couple with more 

representative information in the future work. 

 

5.1.1 Experimental Results 

First, we will compare the use of inductive and transductive learning strategies [160] in 

IVLM. Inductive learning means that the models are trained from an external document 

collection. After training, T and m are used to fold-in each document d in the document 

collection to be retrieved to get the corresponding document specific variable 𝜑𝜑𝑑𝑑. 

Transductive learning uses the document collection to be retrieved to train the models. 

After training, 𝜑𝜑𝑑𝑑 for each document d is used in the retrieval phase. Table 5.1 reports 

the retrieval results of the proposed IVLM approach for both short and long queries 

with respect to two learning strategies using word- or subword-level index features. We 

use a set of Chinese news stories from Xinhua News Agency as a contemporaneous 

external document set for inductive learning. It is generally believed that transductive 

learning should be better than inductive learning. However, as can be seen from Table 2, 

inductive learning achieves slightly better performance than transductive learning in 

 

IVLM 
Inductive Transductive 

Word Subword Word Subword 

short 0.336 0.360 0.382 0.350 

long 0.582 0.584 0.563 0.574 

Table 5.1 Retrieval results (in MAP) of IVLM with word- and subword-level index 

features for short and long queries using inductive and transductive learning 

strategies. 
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most cases, except when using word-level index features with short queries for SDR. 

Since the document collection to be retrieved (2,265 documents in total) is much 

smaller than the external collection (18,461 documents in total), transductive learning 

may suffer from the data sparseness problem while inductive learning can obtain more 

robust model parameters from a larger set of contemporaneous documents. 

Next, the proposed IVLM approach is compared with several well-known 

non-probabilistic and probabilistic approaches, namely VSM, LSA, SCI, and ULM, and 

topic models such as PLSA and LDA. To bypass the impact of the data sparseness 

problem, all the approaches are trained by inductive learning. The results when using 

word- and subword-level index features are shown in Table 5.2. From the table, at first 

glance, it can be seen that the proposed IVLM framework outperforms all the 

non-probabilistic approaches (c.f. VSM, LSA, and SCI) and the probabilistic approach 

(c.f. ULM, PLSA, and LDA) in most cases. The reason why it does not perform as well 

with subword-level index features for short queries is not clear, and is worthy of further 

 

 
Word Subword 

short long short long 

VSM 0.273 0.484 0.257 0.499 

LSA 0.296 0.364 0.384 0.527 

SCI 0.270 0.413 0.270 0.349 

ULM 0.321 0.563 0.329 0.570 

PLSA 0.328 0.567 0.376 0.584 

LDA 0.328 0.566 0.377 0.584 

IVLM 0.336 0.582 0.360 0.584 

Table 5.2 Retrieval results (in MAP) of different approaches with word- and 

subword-level index features for short and long queries. 
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studying. The results indicate that the proposed IVLM approach is a novel and 

alternative way for SDR. In addition, it can also be seen that most IR approaches seem 

to benefit more from the use of subword-level index features than word-level index 

features, probably because the subword-level index units can shadow the impact of 

imperfect speech recognition results. 

Moreover, two general observations can be made from the results. First, probabilistic 

approaches in general outperform non-probabilistic approaches. The results indicate that 

probabilistic approaches are a school of simple but powerful methods for SDR, and 

there are still potential research areas for non-probabilistic approaches. It should also be 

noticed that, the frequency count of a word is weighted by using the standard IDF 

method for non-probabilistic approaches while probabilistic approaches (including 

IVLM) only take the frequency count of a word into account. Second, a topic modeling 

approach outperforms its non-topic modeling counterpart (e.g., LSA vs. VSM, IVLM vs. 

ULM). The results indicate that the relevance between a pair of query and document 

should not be estimated only based on “literal term matching,” concept information is 

useful and should be considered in SDR. 

 

5.2 Improved Query Representation with IVLM  

An obvious deficiency inherent in the i-vector technique for both LID and SR is that, 

when a given speech utterance consists of only a few acoustic (cepstral coefficient) 

feature vectors, the low-dimensional representation learned by the i-vector technique is 

understandably problematic and the performance may degrade dramatically 

[62][71][72][85][86][91][181]. In the context of SDR, a similar deficiency occurs when 

we interpret a user’s information need by a low-dimensional representation, since a 
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query usually composes of only a few words and the representative (e.g., lexical-, 

semantic-, and structure-specific) statistics would be scarce and vague. With the 

alleviation of the scarcity problem as motivation, an intuitive idea for deriving a reliable 

representation for the query is to select a set of references that are “close” to the query 

to form a conglomerate. As such, an immediate challenge is how to determine the 

closeness between a candidate reference and the query. Without loss of generality, the 

closeness score can be one of or the combination of the degrees of acoustic, topical, 

semantic, syntactic, and/or literal similarities. To conjugate with the special case of the 

proposed IVLM model, the closeness is measured by considering only the literal 

similarity score (e.g., the KLM score). Similar to the scenario of applying 

pseudo-relevance feedback for query expansion and document re-ranking in information 

retrieval [28][102][190], the references are selected from the target spoken document 

collection. In the following, we shed light on three novel methods we propose to derive 

the new query representation with a set of selected references, R={r1,…,r|R|}. 

 

5.2.1 Sample Pooling 

A straightforward way to crystallize the idea is to gather a set of selected references to 

form a conglomerate. Rich statistics can be mined from the conglomerate and rendered 

by a new 𝛽𝛽-dimensional vector 𝜈𝜈𝑄𝑄� . To do so, we pool every 𝛽𝛽-dimensional vector 𝜈𝜈𝑟𝑟𝑖𝑖, 

ri ∈R, with its closeness score to distinguish highly correlated references from less 

correlated references to yield a new representation, 𝜈𝜈𝑄𝑄� , for a given query:  

),),(()1(
||

1
ˆ ∑

=
⋅⋅−+⋅=

R

i
riQQ i

rQs ναναν      (5.8) 

where s(Q,ri) is the normalized closeness score for ri. Finally, the query representation, 
 53 



𝜑𝜑𝑄𝑄� , can be derived by performing a fold-in process with 𝜈𝜈𝑄𝑄� , T and m. As such, each 

query Q has its own IVLM model, including the query specific variable 𝜑𝜑𝑄𝑄�  and 

common T and m. We name this pooling function as the “sample pooling” method. 

 

5.2.2 I-vector Pooling 

Owing to the fact that the ultimate goal of the framework is to obtain a new query 

representation in a low-dimensional feature vector, one reasonable type of manipulation 

is to craft the representation at the feature level directly. We can first interpret each 

reference ri by its own representation 𝜑𝜑𝑟𝑟𝑖𝑖, which is derived by performing the fold-in 

process with 𝜈𝜈𝑟𝑟𝑖𝑖, T and m. Then, the query representation can be obtained by pooling 

together all 𝜑𝜑𝑟𝑟𝑖𝑖 weighted by their normalized closeness scores: 
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We term this pooling function as the “i-vector pooling” method. Comparing the sample 

pooling method and the i-vector pooling method, it is evident that the former follows 

the original idea to enrich the statistics, based on which the new query representation is 

derived, while the latter composes the new query representation at the post stage 

directly. 

 

5.2.3 Model Pooling 

In addition to the above two pooling methods, we also propose a model-level pooling 

method (hereafter named “model pooling”) to derive a distributed representation for a 

given query: 
 54 



,),,,|(),()ˆ|(
||

1
∑
=

⋅=
R

mT
i

rii i
rwPrQsQwP ϕ     (5.10) 

where 𝑃𝑃(𝑤𝑤|𝑟𝑟𝑖𝑖,𝐓𝐓,𝐦𝐦,𝜑𝜑𝑟𝑟𝑖𝑖) designates the corresponding IVLM model of reference ri. 

 

5.2.4 Experimental Results 

In the set of experiments, we evaluate the capability of IVLM to enhance query 

representation in SDR. The results when using different pooling methods (i.e., the 

sample pooling, i-vector pooling, and model pooling) and different levels of index units, 

as well as different numbers of references, are shown in Table 5.3. It is worth noting that, 

KLM is equivalent to QLM when the query model is simply estimated by an empirical 

ML estimator. Thus, the baseline performance here is equivalent to that of QLM shown 

in Table 5.2. Several observations can be drawn from Table 5.3. First, it is clear that the 

proposed framework outperforms the baseline KLM model (c.f. QLM in Table 5.2) in 

all cases. This indicates that IVLM is able to improve the estimation of the query model 

for better document ranking in SDR. Second, all the proposed pooling methods have 

comparable performance, and they outperform all of the retrieval models compared in 

 
 

|R| 
Word Subword 

Sample 
Pooling 

I-vector 
Pooling 

Model 
Pooling 

Sample 
Pooling 

I-vector 
Pooling 

Model 
Pooling 

1 0.359 0.360 0.357 0.397 0.398 0.380 
3 0.365 0.368 0.364 0.451 0.464 0.446 
5 0.372 0.373 0.375 0.448 0.459 0.440 
10 0.372 0.374 0.379 0.450 0.460 0.440 
15 0.371 0.372 0.377 0.447 0.456 0.440 

Table 5.3 Retrieval results (in MAP) of different pooling methods with word- and 

subword-level index features with respect to the number of references (|R|). 
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Table 5.2. Third, the experimental results indicate that the best setting of the number of 

references is around 5~10 for the word-level index features and 3 for the subword-level 

index features. Comparing the results in Table 3 with that of IVLM in Table 5.2, it can 

be seen that accurate query modeling seems to be more crucial to the retrieval 

performance than enhanced document modeling. A reason might be that a document is 

usually long enough for building a reliable representation while an accurate query 

representation is usually much harder to be inferred from a short query. Moreover, it can 

also be seen that most retrieval models seem to benefit from the use of subword-level 

index features, probably because the subword-level index units can shadow the impact 

of imperfect speech recognition results to some extent. 

Next, we further compare the proposed framework with two representative LM-based 

methods for query reformulation [35], namely the relevance model (RM) and the simple 

mixture model (SMM), which have been well-practiced and proved their capability in 

various text IR tasks. The number of the pseudo-relevant documents for RM and SMM 

 

Figure 5.1 Retrieval results (in MAP) of i-vector based query representation 

techniques, relevance model (RM), and simple mixture model (SMM) with word- 

and subword-level index features. 
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(and the references respectively for the proposed three IVLM-based methods) is set to 

15. The corresponding retrieval results with different levels of index units are depicted 

in Figure 5.1. The results indicate that all of these models deliver comparable 

performance when using word-level index features, while the proposed three 

IVLM-based query models outperform the two representative query models by a big 

margin when using subword-level index units. The reason might be that the model 

parameters are more accurately estimated, since the observations will increase when 

fine-grained index units are used to index queries and documents. In sum, the marked 

results have confirmed that IVLM indeed is efficient and effective for representing 

queries and documents in SDR. 
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Chapter 6 A RNNLM-based Framework for 

Summarization 

 

While the bag-of-words assumption makes ULM a clean and efficient method for 

sentence ranking, it is an oversimplification of the problem of extractive speech 

summarization. Intuitively, long-span context dependence (or word proximity) cues 

might provide an additional indication of the semantic-relatedness of a given sentence 

with regard to the document to be summarized. Although a number of studies had been 

done on extending ULM to further capture local context dependence simply based on 

n-grams of various orders (e.g., bigrams or trigram), most of them resulted in leading to 

mild gains or mixed results [38]. This is due in large part to the fact that a sentence 

usually consists of only a few words and the complexity of the n-gram model increases 

exponentially with the order n, making it difficult to obtain reliable probability 

estimates with the ML criterion. In view of such phenomena, we explore a novel 

recurrent neural network language modeling (RNNLM) framework for the formulation 

of the sentence models involved in the LM-based summarization approach. 

 

6.1 Recurrent Neural Network Language Modeling for 

Speech Summarization 

RNNLM has recently emerged as a promising modeling framework that can effectively 

and efficiently render the long-span context relationships among words (or more 

precisely, the dependence between an upcoming word and its whole history) for use in 

speech recognition [138][139][140]. The fundamental network of RMMLM is 
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schematically depicted in Figure 6.1, which consists of three main ingredients: the input 

layer, the hidden layer and the output layer. For each time index i, the input vector wi is 

in one-of-V encoding, indicating the currently encountered word wi, where the vector 

size V is set equal to the number of distinct vocabulary words; the hidden vector si 

represents the statistical cues encapsulated thus far in the network for the history (i.e., 

all preceding words) of wi; and the output layer vector yi stores the predicted likelihood 

values for each possible succeeding word (or word class) of wi. An attractive aspect of 

RNNLM is that the statistical cues of previously encountered word retained in the 

hidden layer, i.e., si-1, can be fed back to the input layer and work in combination with 

the currently encountered  word wi as an “augmented” input vector for predicting an 

arbitrary succeeding word wi+1. By doing so, RNNLM can naturally take into account 

not only word usage cues but also long-span structural information of word 

co-occurrence relationships for language modeling. A bit of terminology: the augmented 

input vector xi, the hidden vector si and the output vector yi are, respectively, 

 

Figure 6.1 A schematic depiction of the fundamental network of RNNLM. 

layerinput :iw

layeroutput :iy
layer hidden:is

VU

1−is

iw

 60 



represented or computed as follows [138][139][140]: 

,])(,)[( 1
TT

i
T

ii −= swx       (6.1) 

( ),ii f Uxs =         (6.2) 

( ),ii g Vsy =         (6.3) 

where f(·) and g(·) are pre-defined sigmoid activation functions and softmax functions, 

respectively. Finally, the model parameters (i.e., U and V) of RNNLM can be derived 

by maximizing the likelihood of the training corpus using the back-propagation through 

time (BPTT) algorithm [16][80][162] that virtually unfolds the feedback loop of 

RNNLM making its model structure bear a close resemblance to the family of so-called 

deep neural networks [112] and thereby learn to remember word usage information for 

several time steps encapsulated in the hidden layer of RNNLM [6][138]. 

As the notion of RNNLM is adopted and formalized for sentence modeling in 

extractive speech summarization, we devise a hierarchical training strategy to obtain the 

corresponding RNNLM model for each sentence of a spoken document to be 

summarized, which proceeds in three stages: 

1. First of all, a document-level RNNLM model is trained for each document to be 

summarized by using the document itself as the training data. The resulting 

RNNLM model will memorize not only word usage but also long-span word 

dependence cues inherent in the document. 

2. After that, for each sentence of the spoken document to be summarized, the 

corresponding sentence-specific RNNLM model is trained, starting from the 

document-level RNNLM model obtained in Stage 1 and using the sentence itself 

as the adaptation data for model training. That is, the parameters of RNNLM are 

optimized by maximize the likelihood of the sentence. 
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3. Consequently, the resulting sentence-specific RNNLM model can be used in 

place of, or to complement, the original sentence model (i.e., ULM). The 

RNNLM-based sentence generative probability for use in sentence ranking can 

be computed by 

.),,,|( )|( 1 11RNNLMRNNLM ∏ = −= L
i ii SwwwPSDP      (6.4) 

A schematic illustration of the proposed RNNLM-based summarization framework is 

depicted in Figure 6.2, while a highlight of the corresponding model training and 

important sentence ranking procedures is given in Table 6.1. In the following, we 

elaborate on some important steps involved in Table 6.1. 1) In the initial phase, a 

desired number of the hidden layer neurons H of each RNNLM and a set of documents 

D to be summarized, where each document Dm in D contains |Dm| sentences (each of 

which is represented by 𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚), are given. 2) Then, in the training phase, since the 

architecture of the prototype RNNLM model is a three-layer neural network, there are 

two sets of parameters (i.e., Um and Vm) for each document Dm to be summarized, which 

are estimated using the back-propagation through time (BPTT) algorithm (cf. Line 3 in 

Table 6.1). Following that, the model parameters of the sentence-level RNNLM model 

 

Figure 6.2 A sketch of the proposed RNNLM summarization framework. 
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(i.e., 𝐔𝐔𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚  and 𝐕𝐕𝑆𝑆𝑗𝑗

𝐷𝐷𝑚𝑚) for each sentence 𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚 in Dm is estimated starting from the  

document-level model parameters (i.e., Um and Vm) of Dm obtained from previous step 

(cf. Line 6 in Table 6.1). 3)  Finally, in the important sentence ranking phase, we can 

 

Input: 
H: Number of Hidden Layer Neurons 

𝐃𝐃 = {𝐷𝐷1,⋯ ,𝐷𝐷𝑚𝑚,⋯ ,𝐷𝐷𝑀𝑀} 

𝐷𝐷𝑚𝑚 = {𝑆𝑆1
𝐷𝐷𝑚𝑚 ,⋯ , 𝑆𝑆𝑗𝑗

𝐷𝐷𝑚𝑚 ,⋯ , 𝑆𝑆|𝐷𝐷𝑚𝑚|
𝐷𝐷𝑚𝑚 } 

 
Model Training & Important Sentence Ranking: 
1:      for D1 to DM do 
2:        document-level RNNLM model training 
3:        ℒ(𝐔𝐔𝑚𝑚,𝐕𝐕𝑚𝑚) = ∑ log (𝑦𝑦𝑖𝑖)

|𝐷𝐷𝑚𝑚|
𝑖𝑖=1  

4:        for 𝑆𝑆1
𝐷𝐷𝑚𝑚 to 𝑆𝑆|𝐷𝐷𝑚𝑚|

𝐷𝐷𝑚𝑚  do 
5:            sentence-level RNNLM model training 

6:            ℒ �𝐔𝐔𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚 ,𝐕𝐕𝑆𝑆𝑗𝑗

𝐷𝐷𝑚𝑚 |𝐔𝐔𝑚𝑚,𝐕𝐕𝑚𝑚� = ∑ log (𝑦𝑦𝑖𝑖)
|𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚|

𝑖𝑖=1  

7:         end for 
8:         for 𝑆𝑆1

𝐷𝐷𝑚𝑚 to 𝑆𝑆|𝐷𝐷𝑚𝑚|
𝐷𝐷𝑚𝑚  do 

9:            calculate document likelihood 

10:            𝑃𝑃�𝐷𝐷𝑚𝑚�𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚� = ∏ 𝑃𝑃�𝑤𝑤𝑖𝑖�𝑤𝑤1, … ,𝑤𝑤𝑖𝑖−1, 𝑆𝑆𝑗𝑗

𝐷𝐷𝑚𝑚�
�𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚�

𝑖𝑖=1  

11:                                 = ∏ 𝑃𝑃 �𝑤𝑤𝑖𝑖�𝐔𝐔𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚 ,𝐕𝐕𝑆𝑆𝑗𝑗

𝐷𝐷𝑚𝑚 , 𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚�

�𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚�

𝑖𝑖=1  

12:         end for 
13:         Sentence selection according to 𝑃𝑃�𝐷𝐷𝑚𝑚�𝑆𝑆𝑗𝑗

𝐷𝐷𝑚𝑚� 
14:      end for 

Table 6.1 Training of RNNLM-based sentence models and the application of them for 

important sentence ranking. 
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calculate the document likelihood score offered by each sentence 𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚 based on the 

corresponding RNNLM model of 𝑆𝑆𝑗𝑗
𝐷𝐷𝑚𝑚 (cf. Lines 10 and 11 in Table 6.1) and in turn 

select important sentences of Dm according their the document likelihood scores (cf. 

Line 13 in Table 6.1). Interested readers may also refer to [93][105][123] for more 

in-depth discussions on a number of efficient training algorithms developed for 

RNNLM. 

It should be noticed that the training strategy described above can also be viewed as 

an instantiation of curriculum learning [9][57], which seeks to apply a specific and 

well-planned ordering of the training data for estimating machine-learning models (such 

as neural networks) to be better suited for a target application. However, as far as we are 

aware, there is still not much research on leveraging RNNLM along with the 

aforementioned curriculum-learning strategy for extractive speech summarization. In 

this thesis, we also make a step further by analyzing and comparing the effectiveness of 

the RNNLM-based summarization methods with other well-practiced state-of-the-art 

methods thoroughly. 

Also worth mentioning is that there has been an alternative realization of the LM 

approach to extractive summarization that exploits the KL-divergence to measure, for 

example, the discrepancy of the word (unigram) distribution in a candidate sentence and 

that in the original document for important (summary) sentence ranking [69][116]. With 

some algebraic manipulations, it is easy to show that the effect of the KL-divergence for 

important sentence ranking is negatively equivalent to the document likelihood 

(document unigram probability) generated by the sentence P(D|S) (i.e., the ULM 

method), once the document model is estimated merely on the basis of the empirical 

frequency of words in the document. However, it seems to be more straightforward to 
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extend ULM with higher-order language modeling strategies, such as leveraging 

RNNLM to measuring the relatedness between the document to be summarized and 

each of its sentences. 

 

6.2 Experimental Results 

6.2.1 Experiments on Higher-order N-gram and Topic Language 

Modeling 

In the second set of experiments, we first investigate a simple extension of the ULM 

method by using a bigram language model smoothed with a unigram language model to 

represent each sentence involved in a document to be summarized (denoted by BLM 

hereafter). As elaborated before, the weakness of the ULM method lies in that it follows 

the strict bag-of-words assumption (an oversimplification) without considering the word 

regularity or proximity information within spoken documents. The corresponding 

summarization results achieved by the BLM method are depicted in Table 6.2. To our 

surprise, the integration of bigram and unigram cues together (i.e., BLM) for sentence 

modeling only arrives at almost the same performance level as that using the unigram 

information alone (i.e., ULM) in the SD case, but performs even worse than the latter in 

the TD case. A reasonable explanation is that the estimation of the bigram language 

model for each sentence inevitably suffers from a more serious data sparseness problem 

than the unigram model, since its number of model parameters would be at most the 

square of that of the latter. As a side note, we have also experimented on using a trigram 

language model, smoothed with both unigram and bigram language models, to represent 

each spoken sentence; however, it delivered almost negligible improvements over the 

ULM and BLM methods. 
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Instead of constructing the sentence models based on literal term information (such 

as the statistics of word unigrams or bigrams), we also exploit probabilistic topic 

models to represent sentences through a latent topic space. For example, each sentence 

of a spoken document to be summarized is interpreted as a probabilistic latent semantic 

analysis (PLSA) model [75][204] consisting of a set of K shared latent topics {T1,…, 

Tk,…,TK} with sentence-specific topic weights P(Tk|S), while each topic offers a 

unigram (multinomial) distribution P(wi|Tk) for observing an arbitrary word wi of the 

vocabulary: 

,)]|()|([)|( 1 1PLSA ∏ = ∑ == L
i

K
k kki STPTwPSDP    (6.5) 

where the probability P(wi|Tk) can be estimated beforehand based on a large set of text 

or speech documents, while the probability P(Tk|S) of each sentence can be estimated 

on-the-fly during the summarization process using the expectation-maximization (EM) 

algorithm [204]. The resulting sentence-specific PLSA model can be used in isolation 

(denoted by PLSA), or in linear combination with the unigram language model (denoted 

by PLSA+ULM), to compute the sentence generative probability for important sentence 

selection. As indicated in Table 6.2, PLSA alone cannot match the performance of ULM, 

 

 

Method 
Text Documents (TD) Spoken Documents (SD) 

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 

ULM 0.411 0.298 0.362 0.300 0.361 0.215 0.311 0.214 
BLM 0.411 0.298 0.362 0.300 0.361 0.215 0.311 0.214 
PLSA 0.382 0.260 0.350 0.266 0.327 0.188 0.284 0.189 

PLSA+ULM 0.433 0.317 0.379 0.320 0.378 0.234 0.332 0.226 
RNNLM 0.433 0.319 0.390 0.319 0.330 0.184 0.294 0.180 

RNNLM+ULM 0.533 0.439 0.483 0.430 0.439 0.304 0.393 0.289 

Table 6.2 Summarization results achieved by various LM-based methods, including 

ULM, BLM, PLSA, PLSA+ULM, RNNLM and RNNLM+ULM. 
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largely because PLSA only offers coarse-grained concept clues about the sentences at 

the expense of losing discriminative power among concept-related words in finer 

granularity. On the other hand, the combination of PLSA with ULM (PLSA+ULM) can 

lead to noticeable improvements as compared to that using either PLSA or ULM alone. 

 

6.2.2 Experiments on the Proposed RNNLM Summarizer 

In the third set of our experiments, we evaluate the effectiveness of the proposed 

RNNLM method for extractive speech summarization. The deduced sentence-specific 

RNNLM model can be used in isolation (denoted by RNNLM), or linearly combined 

with the unigram language model (denoted by RNNLM+ULM), to compute the 

sentence generative probability; the corresponding results are shown in Table 6.2 as well. 

In order to verify the utility of RNNLM and RNNLM+ULM in capturing long-distance 

word co-occurrence relationships (especially when compared to the other LM-based 

methods), we additionally include the summarization results evaluated with the 

ROUGE-SU4 (skip-bigram with maximum gap length of 4) metric in Table 6.2 [113]. 

ROUGE-SU4 is a frequently-used metric for summarization performance evaluation, 

which quantifies the degree of overlap between the reference and automatically 

 

Method Ratio 
Text Documents (TD) Spoken Documents (SD) 

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

ULM 
10% 0.411 0.298 0.361 0.364 0.210 0.307 
20% 0.483 0.368 0.420 0.428 0.255 0.355 
30% 0.551 0.432 0.481 0.471 0.304 0.399 

RNNLM 
+ULM 

10% 0.533 0.439 0.483 0.439 0.304 0.393 
20% 0.580 0.478 0.522 0.491 0.341 0.428 
30% 0.639 0.540 0.574 0.514 0.354 0.445 

Table 6.3 Summarization results respectively achieved by ULM and RNNLM+ULM 

with respect to different summarization ratios. 
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generated summaries in terms of not only unigrams but also distant skip-bigrams. 

Comparing to the existing LM-based methods (i.e., ULM BLM, PLSA and 

PLSA+ULM) or the subcategories of unsupervised methods (c.f. Table 3.5), we can find 

that RNNLM+ULM consistently and significantly surpasses all the other models in both 

the TD and SD cases; however, using RNNLM in isolation only leads to improved 

results in the TD case. Furthermore, two more particularities can be made when we look 

into the results of Table 6.2. On one hand, because RNNLM+ULM manages to 

encapsulate not only word usage cues but also long-distance word co-occurrence 

relationships for sentence modeling, it seems to perform particularly well when the 

evaluation metrics are based on counting the number of matched high-order word 

co-occurrence counts between the reference and automatically generated summaries, 

such as the ROUGE-2, ROUGE-L and ROUGE-SU4 metrics. On the other hand, 

RNNLM and ULM seem to be complementary of each other and indeed can conspire to 

obtain better sentence modeling. Furthermore, when we compare RNNLM (or 

 

 

Figure 6.3 Summarization results (in ROUGE-2) for each individual document 

(represented with either manual or speech transcript) in the test set, respectively, 

achieved by ULM and RNNLM+ULM. 
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RNNLM+ULM) with BLM, the experimental results demonstrate the obvious 

superiority of RNNLM that might be attributed to two causes. One is that RNNLM has 

the inherent advantage for capturing long-span structure information in a natural but 

systematic way. The other is that RNNLM can mitigate the data scarcity problem by 

implicitly performing clustering of words aside their histories (or preceding words) into 

a lower-dimensional continuous space, which makes the language model prediction (or 

probability calculation) based on such compact representations of words aside their 

histories become more robust [139][141]. One thing to note is that we have also tried to 

combine ULM, PLSA and RNNLM together for achieving better summarization 

accuracy; however, such an attempt only leads to roughly comparable performance as 

RNNLM+ULM. It is thus believed that the way to systemically combine these models 

is still a challenging issue and needs further in-depth investigation and proper 

experimentation. Figure 6.3 depicts the summarization results (in ROUGE-2) for each 

individual document (represented with either manual or speech transcript) in the test set, 

achieved by ULM and RNNLM+ULM. A closer look at these results also reveals that 

RNNLM+ULM can indeed boost the performance of ULM significantly for most of the 

test documents that are more difficult to be summarized (for example, Documents 6, 13, 

16 and 19 in the test set). In order to further assess the quality of the automatically 

generated summaries of our RNNLM-based methods and the other state-of-the-art 

methods compared in this thesis, we also take an additional set of abstractive summaries 

written by the same three human subjects as the ground truth for performance 

evaluation. For this purpose, the human subjects were instructed to do human 

summarization, respectively, by writing an abstract for each document with a length (in 

words) being roughly 25% of the original broadcast news story. The corresponding 

results are shown in Table 6.4, which indicate that RNNLM+ULM can provide 
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consistent and significant gains over the other methods as well, even though the 

reference summaries being used are the human-generated abstractive summaries instead 

of the human-generated extractive summaries. 

 

6.2.3 More Empirical Analysis of the RNNLM Summarizer 

To gain more insights into the merit of the RNNLM-based summarization framework, 

we additionally conduct empirical performance analysis on the RNNLM summarizer 

from three different aspects. First, we assess the statistical significance of the 

improvements that are delivered by RNNLM+ULM over ULM with the Student’s 

paired t-test, which confirms that RNNLM+ULM indeed significantly outperforms 

ULM (with the p-values smaller than 0.005 for both the TD and SD cases). Second, to 

further confirm such superiority of RNNLM+ULM over ULM, we also conduct speech 

summarization with different summarization ratios (i.e., 20% or 30%), in addition the 

default setting of 10%; the corresponding results are shown in Table 6.3. It is evident 

that RNNLM+ULM consistently leads to marked improvements over ULM for 

summarization ratios of 20% and 30%, in terms of all the three ROUGE metrics; 

significance tests, again, indicate the statistical significance of such improvements. 

Third, we turn to investigate the impact of the model complexity of RNNLM (more 

specifically, the number of hidden neurons being used) on the ultimate summarization 

performance. As revealed by results shown in Table 6.5, using a small number of hidden 

neurons (i.e., 25 or 50) seems to be adequate for the speech summarization task studied 

here. This can be attributed to the fact that since each sentence of a spoken document to 

be summarized usually consists of only a few words, the RNNLM model of each 

sentence, which has smaller complexity, tends to have more reliable estimation of its 

model parameters. Nevertheless, the way to systemically determine the optimal number 
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of hidden-layer neurons of RNNLM for each spoken document to be summarized 

remains an open issue and needs further investigation. On the other hand, we have also 

experimented on deepening the architecture of our RNNLM model to be a four-layer 

network [93], which was in turn used to couple with our proposed training strategy for 

the modeling of each spoken sentence. Unfortunately, such a deeper RNNLM 

architecture only yielded mixed summarization results as compared to the three-layer 

RNNLM architecture we adopted in this chapter. 

 

6.2.4 Further Extensions on RNNLM Summarizer 

A potential downside of our proposed RNNLM-based summarization framework is that 

the resulting summarizer performs important sentence ranking and selects the 

top-ranked sentences to form a summary simply based on (in decreasing order of) the 

 

 Text Documents (TD) Spoken Documents (SD) 
Method ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 
ULM 0.375 0.231 0.314 0.348 0.178 0.286 
VSM 0.325 0.175 0.262 0.325 0.161 0.264 
LSA 0.315 0.152 0.254 0.303 0.139 0.243 

MMR 0.344 0.193 0.289 0.348 0.182 0.285 
MRW 0.381 0.226 0.316 0.342 0.183 0.283 

LexRank 0.312 0.173 0.262 0.281 0.120 0.227 
Submodularity 0.394 0.235 0.334 0.336 0.188 0.295 

ILP 0.368 0.234 0.317 0.313 0.158 0.268 
PLSA+ULM 0.389 0.245 0.327 0.359 0.193 0.299 

RNNLM 0.337 0.218 0.297 0.337 0.218 0.297 
RNNLM+ULM 0.423 0.281 0.362 0.369 0.218 0.316 

Table 6.4 Summarization results achieved by the proposed framework and a few 

well-studied or/and state-of-the-art unsupervised methods, which were measured by 

using the abstractive summaries written by the human subjects as the ground truth. 
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relevance measure between a spoken document to be summarized and each sentence in 

the document (namely, the likelihood that the RNNLM+ULM (or RNNLM alone) 

model of each sentence generates the document), without taking into account the 

relationships among sentences. However, it is generally expected that a desirable 

summary should not only include highly topic-relevant sentences as many as possible, 

but at the same time try to reduce the redundancy among these selected sentences as 

much as possible. To remedy this situation, we further explore to integrate the relevance 

measure provided by RNNLM+ULM into other state-of-the-art unsupervised 

summarizers that simultaneously consider the issues of topic coverage and redundancy 

removal during the summarization process. Here we take MMR [19] and ILP [135] as 

two examples for the purpose of exploration. For MMR, we use the RNNLM+ULM 

based measure to replace the original cosine similarity measure involved in the iterative 

selection process of MMR (denoted by RNNLM+ULM+MMR). On the other hand, for 

ILP, the RNNLM+ULM based measure is employed not only to compute the 

importance (relevance) weights between any pair of the document to be summarized 

and one of its sentences, but also to estimate the redundancy degree involved in the 

constrained combinational optimization process of ILP (denoted by 

 

Number of  
Neurons 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

25 0.526 0.436 0.474 0.439 0.304 0.393 
50 0.533 0.439 0.483 0.432 0.296 0.385 
100 0.465 0.359 0.474 0.426 0.289 0.373 
150 0.492 0.386 0.439 0.407 0.263 0.358 
200 0.428 0.310 0.376 0.425 0.281 0.374 

Table 6.5 Summarization results achieved by RNNLM+ULM with respect to different 

numbers of hidden-layer neurons being used. 
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RNNLM+ULM+ILP). Their corresponding results are shown in Table 6.6. From these 

results, it is obvious that these two simple integrated methods can bring substantial 

gains to MMR and ILP, respectively, while they also considerably boost the 

summarization performance of using RNNLM+ULM in isolation, especially for the TD 

case. These results again corroborate the intuition that a good extractive summary 

should contain relevant and diverse sentences that cover the main topics or aspects of an 

original spoken document.  

 

6.2.5 RNNLM with Syllable-level Index Units  

In an attempt to mitigate the summarization performance degradation caused by 

imperfect speech recognition, we explore to make possible use of subword-level index 

units for the proposed RNNLM-based methods. To do this, syllable pairs are taken as 

the basic units for indexing instead of words. The recognition transcript of each spoken 

document, in form of a word stream, was automatically converted into a stream of 

overlapping syllable pairs. Then, all the distinct syllable pairs occurring in the spoken 

document collection were then identified to form a vocabulary of syllable pairs for 

indexing. We can thus use the syllable pairs (as a surrogate of words) to represent the 

spoken documents and sentences, and subsequently construct the associated 

summarization models of disparate methods based on such representations. The 

corresponding results for both the TD and SD cases, achieved by ULM, RNNLM and 

RNNLM+ULM in conjunction with syllable-level index units, are shown in Table 6.7. 

We may draw attention to two observations here. First, the results, in general, have 

consistent trends with the previous sets of experiments where the documents are 

indexed with words (c.f. Table 6.2). Second, the subword-level (syllable-level) index 

units seem to show comparable or even better performance than the word-level index 
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units (c.f. Table 6.1) when being used with the RNNLM-based methods for performing 

summarization with imperfect speech recognition transcripts (i.e., for the SD case). We 

conjecture this is because subword-level index units work more robustly against speech 

recognition errors and the out-of-vocabulary problem, thus likely leading to better 

summarization performance. 

 

6.2.6 Coupling RNNLM with Extra Acoustic Features 

In the final set of experiments, we explore the potential of extracting extra acoustic 

features inherent in spoken sentences for use in summarization. To this end, we use a set 

of sixteen indicative features crafted based on four commonly-used types of acoustic 

values, as outlined in Table 6.8, to characterize a spoken sentence. In implementation, 

the acoustic features were extracted from the spoken sentences using the Praat toolkit 

 
Method 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

RNNLM+ULM  0.533 0.439 0.483 0.439 0.304 0.393 
MMR 0.368 0.248 0.322 0.366 0.215 0.315 
ILP 0.442 0.337 0.401 0.348 0.209 0.306 

RNNLM+ULM+MMR 0.538 0.450 0.489 0.445 0.312 0.395 
RNNLM+ULM+ILP 0.554 0.465 0.505 0.444 0.312 0.399 

Table 6.6 Summarization results achieved by RNNLM+ULM, MMR, ILP and their 

combinations. 

 
Method 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

ULM  0.533 0.439 0.483 0.439 0.304 0.393 
RNNLM 0.368 0.248 0.322 0.366 0.215 0.315 

RNNLM+ULM 0.558 0.337 0.401 0.348 0.209 0.306 

Table 6.7 Summarization results achieved by ULM, RNNLM and RNNLM+ULM in 

conjunction with syllable-level index features. 
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[15]. Interested readers may refer to [117] for detailed accounts on the characteristics of 

these features and comparisons among them. Here SVM is chosen as the exemplar 

summarizer to integrate these derived acoustic features (i.e., taking them as the input 

that represents each sentence) for important spoken sentence ranking. The 

corresponding model was trained beforehand with the development set in a supervised 

manner, and the resulting SVM summarizer is denoted by SVM(AC) hereafter. 

Furthermore, we also study to take the ranking score of ULM, RNNLM and 

ULM+RNNLM implemented with syllable-level index units, respectively, as an 

additional indicative feature fed into SVM to represent each sentence (note that the 

score corresponds to the normalized document likelihood in the logarithmic domain, 

predicted by the respective sentence generative model), leading to an augmented set of 

seventeen features in total. The resulting SVM summarizers are denoted by 

1. Pitch Value (min, max, diff, avg.) 
2. Peak Normalized Cross-correlation of Pitch Value (min, max, diff, avg.) 
3. Energy Value (min, max, diff, avg.) 
4. Duration Value (min, max, diff, avg.) 

Table 6.8 Four types of acoustic features used to represent each spoken sentence. 

 Spoken Documents (SD) 
Method ROUGE-1 ROUGE-2 ROUGE-L ROUGE-SU4 

SVM(AC) 0.373 0.235 0.332 0.220 
SVM(AC+ULM) 0.378 0.236 0.335 0.224 

SVM(AC+RNNLM) 0.387 0.250 0.344 0.239 
SVM(AC+ULM+RNNLM) 0.407 0.268 0.363 0.255 

Table 6.9 Summarization results achieved by using acoustic features in isolation and its 

combination with ULM, RNNLM and ULM+RNNLM based sentence ranking scores, 

respectively. 
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SVM(AC+ULM), SVM(AC+RNNLM), and SVM(AC+ULM+RNNLM), respectively. 

Table 6.9 shows the results of these summarizers for the SD case, from which at least 

two observations can be drawn. First, SVM(AC) exhibits superior performance over all 

the unsupervised summarizers compared in this thesis, except for ULM+RNNLM and 

its variants (cf. Tables IV, V and IX). Unlike the unsupervised summarizers, SVM(AC), 

however, requires human annotation in the training phase. Second, SVM(AC+ULM), 

SVM(AC+RNNLM), and SVM(AC+ULM+RNNLM) all yield better performance than 

SVM(AC). Although SVM(AC+ULM+RNNLM) stands out in performance among 

these SVM-based summarizers, to our surprise, it does not in general operate as 

effectively as ULM+RNNLM and its variants (implemented with either word- or 

syllable-level index units). This means that the way to systemically combine the 

acoustic features with other indicative features (especially those seemingly 

superior-performing ones) for important spoken sentence selection remains a 

challenging issue and needs further in-depth investigation and proper experimentation. 
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Chapter 7 A Word Embedding Framework for 

Summarization 

 

In language model research, recurrent neural networks represent a breakthrough in 

building language models; recently, research trends have moved from modeling to 

vectorization. Several representation learning approaches have been proposed and 

applied to various NLP-related tasks. 

 

7.1 Classic Word Embedding Methods 

Perhaps one of the most-known seminal studies on developing word embedding 

methods was presented in [8]. It estimated a statistical (N-gram) language model, 

formalized as a feed-forward neural network, for predicting future words in context 

while inducing word embeddings (or representations) as the by-product. Such an 

attempt has already motivated many follow-up extensions to develop similar methods 

for probing latent semantic and syntactic regularities in various NLP applications. 

Representative methods may include, but are not limited to, the continuous bag-of-word 

(CBOW) model [141], the skip-gram (SG) model [141][144] and the global vector 

(GloVe) model [164]. However, as far as we are aware, there is little work done to 

contextualize these methods for use in speech summarization.  

 

7.1.1 Continuous Bag-of-Words (CBOW) Model 

Rather than seeking to learn a statistical language model, the continuous bag-of-word 

model manages to obtain a dense vector representation (embedding) of each word 
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directly [141]. The structure of CBOW is similar to a feed-forward neural network, with 

the exception that the non-linear hidden layer in the former is removed. By doing so, the 

model can still retain good performance and be trained on much more data efficiently 

while getting around the heavy computational burden incurred by the non-linear hidden 

layer. Formally, given a sequence of words, w1,w2,…,wT, the objective function of 

CBOW is to maximize the log-probability expressed as follows: 
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++−−T
t

ctttctt wwwwwP     (7.1) 

where c is the window size of the training context for the central word wt; T denotes the 

length of the training corpus. The conditional probability in Eq. (7.1) is defined by 
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where 𝐯𝐯𝑤𝑤𝑡𝑡  denotes the vector representation of the word w at position t; V indicates the 

size of the vocabulary; and 𝐯𝐯𝑤𝑤�𝑡𝑡  denotes the (weighted) average of the vector 

representations of the context words of wt [141][166], which can be further expressed in 

the form  

, 0,∑ ≠−= += c
jcj wjw jtt α vv       (7.3) 

where 𝛼𝛼𝑗𝑗 is a weighting factor associated with the distance between the central word wt 

and the context word wt+j. The concept of CBOW is motivated by the distributional 

hypothesis [144], which states that words with similar meanings often occur in similar 

contexts and thus suggests to look for word representations that capture their context 

distributions. 

 

7.1.2 Skip-Gram (SG) Model 

In contrast to the CBOW model, the SG model employs an inverse training objective for 
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learning word representations with a simplified feed-forward neural network [141][142]. 

Formally, given a sequence of words, w1,w2,…,wT, the objective function of SG is to 

maximize the following log-probability: 
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where c is the window size of the training context for the central word wt; and the 

conditional probability can be calculated by 

,
)exp(

)exp(
)|(

1∑ =

+
⋅

⋅
=

+

V
i ww

wwtjt

ti

tjt
wwP

vv

vv
     (7.5) 

where 𝐯𝐯𝑤𝑤𝑡𝑡+𝑗𝑗 and 𝐯𝐯𝑤𝑤𝑡𝑡  denote the word representations of words at position t+j and t, 

respectively. In implementation of CBOW and SG, the hierarchical soft-max algorithm 

(HSM) [142][149] and the negative sampling algorithm (NS) [142][147] have been 

introduced to make the training of model parameters more efficient and effective.  

 

7.1.3 Global Vector (GloVe) Model 

The GloVe model suggests that an appropriate starting point for word representation 

learning should be associated with the ratios of co-occurrence probabilities rather than 

the predict probabilities [164]. More precisely, GloVe makes use of a weighted least 

squares regression, which aims at learning word representations by preserving the 

co-occurrence frequencies between each pair of words: 

,)log)((1 1
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where 𝑋𝑋𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗 denotes the number of times word wi and wj co-occurs in a pre-defined 

sliding context window; f(·) is a monotonic smoothing function used to modulate the 

impact of each pair of words involved in the model training; and vw and bw denote the 

word representation and the bias term of word w, respectively. 
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7.1.4 Analytic Comparisons 

There are several analytic comparisons can be made among the above three word 

embedding methods. First, they have different model structures and learning strategies. 

CBOW and SG adopt an on-line learning strategy, i.e., the parameters (word 

representations) are trained sequentially. Therefore, the order that the training samples 

are used may change the resulting models dramatically. In contrast, GloVe uses a batch 

learning strategy, i.e., it accumulates the statistics over the entire training corpus and 

updates the model parameters at once. Second, it is worthy to note that SG (trained with 

the negative sampling algorithm) and GloVe have an implicit/explicit relation with the 

classic weighted matrix factorization approach, while the major difference is that SG 

and GloVe concentrate on rendering the word-by-word co-occurrence matrix but 

weighted matrix factorization is usually concerned with decomposing the 

word-by-document matrix [65][111][32].  

The observations made above on the relation between word embedding methods and 

matrix factorization bring us to the notion of leveraging the singular value 

decomposition (SVD) method as an alternative mechanism to derive the word 

embeddings in this chapter. Given a training text corpus, we have a word-by-word 

co-occurrence matrix A. Each element Aij of A is the log-frequency of times words wi 

and wj co-occur in a pre-defined sliding context window in the corpus. Subsequently, 

SVD decomposes A into three sub-matrices: 

,~T AVUA =∑≈        (7.7) 

where U and V are orthogonal matrices, and Σ is a diagonal matrix. Finally, each row 

vector of matrix U (or the column vector of matrix VT, U=V since A is a symmetric 
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matrix) designates the word embedding of a specific word in the vocabulary. It is 

worthy to note that using SVD to derive the word representations is similar in spirit to 

latent semantic analysis (LSA) but using the word-word co-occurrence matrix instead of 

the word-by-document co-occurrence matrix [1]. 

 

7.2 Leveraging Word Embeddings for Summarization 

The original goal of word embedding techniques is to represent each word by a 

continuous distributed (or distributional) vector. However, in the context of extractive 

speech summarization, the similarity between each pair of document and one of its 

sentences should be determined, and an extractive summary can thus be generated on 

top of the similarity measure being adopted. 

 

7.2.1 Cosine Similarity Measure 

The vector space model (VSM) [205] has long been the basis for many NLP-related 

tasks, including text or speech summarization. The major advantage of VSM is that it is 

simple and intuitive, while being efficient and effective. In VSM, each document (and 

sentence) is represented by a high-dimensional vector, where each dimension specifies 

the occurrence statistics associated with an index term (e.g., word, subword, or their 

n-grams) in the document (and sentence). The relevance degree between a pair of 

sentence and document is estimated by the cosine measure of their vector 

representations. 

Motivated by the idea of VSM, a straightforward way to leverage the word 

embedding methods for speech summarization is to represent a candidate summary 

sentence (and a document to be summarized) by averaging all the representations of the 

 82 



words occurring in the sentence (or the document) [84]; here we take CBOW and the 

sentence representation as an example: 

.
||
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∑ ∈= Sw wS S

Swn vv       (7.8) 

By doing so, the document D to be summarized and each sentence S of the document 

will have a fixed-length dense vector representation; their relevance degree can be 

computed by the cosine similarity measure: 
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Therefore, important sentences can be ranked in decreasing order of this measure and in 

turn be selected to form a summery to represent the original spoken document. The 

notion of pairing word embedding methods with the cosine similarity measure has 

recently attracted much attention and been applied with success to many NLP-based 

applications. However, as far as we are aware, this notion has never been extensively 

explored in extractive speech summarization. 

 

7.2.2 The Triplet Learning Model 

Inspired by the vector space model (VSM), a straightforward way to leverage the word 

embedding methods for extractive SDS is to represent a sentence Si (and a document D 

to be summarized) by averaging the vector representations of words occurring in the 

sentence Si (and the document D) [84][189]: 
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By doing so, the document D and each sentence Si of D will have a respective 

fixed-length dense vector representation, and their relevance degree can be evaluated by 
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the cosine similarity measure. 

However, such an approach ignores the inter-dimensional correlation between two 

vector representations. To mitigate the deficiency of the cosine similarity measure, we 

employ a triplet learning model to enhance the estimation of the similarity degree 

between a pair of representations [10][21][49][152]. Without loss of generality, our goal 

is to learn a similarity function, R(·, ·), which assigns higher similarity scores to 

summary sentences than to non-summary sentences, i.e., 

),(),( −+ >
ji SDSD RR vvvv        (7.11) 

where 𝐯𝐯𝑠𝑠𝑖𝑖
+ denotes the sentence representation (in the form of a column vector) for a 

summary sentence Si, while 𝐯𝐯𝑠𝑠𝑗𝑗
−  is the representation for a non-summary sentence Sj. 

The parametric ranking function has a bi-linear form as follows: 

,),( T
SDSDR Wvvvv ≡        (7.12) 

where 𝐖𝐖 ∈ ℝ𝑑𝑑×𝑑𝑑, and d is the dimension of the vector representation. By applying the 

passive-aggressive learning algorithm presented in [34], we can derive the similarity 

function R such that all triplets obey 

.),(),( δ+> −+
ji SDSD RR vvvv       (7.13) 

That is, not only the similarity function will distinguish summary and non-summary 

sentences, but also there is a safety margin of 𝛿𝛿 between them. With 𝛿𝛿, a hinge loss 

function can be defined as 

)}.,(),(,0max{),,( −+−+ +−=
jiji SDSDSSD RRloss vvvvvvv δ   (7.14) 

Then, W can be obtained by applying an efficient sequential learning algorithm 
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iteratively over the triplets [21][49]. With W, sentences can be ranked in descending 

order of similarity measure, and the top sentences will be selected and sequenced to 

form a summary according to a target summarization ratio. 

 

7.2.3 Document Likelihood Measure 

When applying the LM-based approach to extractive speech summarization, a principal 

realization is to use a probabilistic generative paradigm for ranking each sentence S of a 

spoken document D to be summarized, which can be expressed by P(S|D). Stimulated 

by the document likelihood measure adopted by the ULM method, for the various word 

representation methods studied here, we investigate to first construct a word-based 

language model for predicting the occurrence probability of other word wj. Taking 

CBOW as an example, the probability of a word wj given another word wi can be 

calculated by: 
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During the summarization process, we can linearly combine the associated word-based 

language models of the words occurring in a sentence S to form a composite 

sentence-specific language model for S. Consequently, the document likelihood measure 

can be computed by: 
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where the weighting coefficient 𝛼𝛼𝑤𝑤𝑖𝑖 is set to be in proportion to the frequency of wi 

occurring in sentence S and is summed to 1 (i.e., ∑ 𝛼𝛼𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖∈𝑆𝑆 = 1). The sentences 

offering the highest document likelihoods can be selected and sequenced to form the 
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final summary according to different summarization ratios. 

 

7.2.4 Experimental Results 

We now turn to investigate the utilities of three state-of-the-art word embedding 

methods (i.e., CBOW, SG, and GloVe) and the proposed SVD method (c.f. Section 

7.1.4), working in conjunction with the cosine similarity measure for speech 

summarization. The results are shown in Table 7.1. From the results, several 

observations can be made. First, the three state-of-the-art word embedding methods (i.e., 

CBOW, SG, and GloVe), though with disparate model structures and learning strategies, 

achieve comparable results to each other in both the TD and SD cases. Although these 

methods outperform the conventional VSM model, they only achieve almost the same 

level of performance as LSA and MMR, two improved versions of VSM, and perform 

worse than MRW, LexRank, SM, and ILP in the TD case. To our surprise, the proposed 

SVD method outperforms other word embedding methods by a substantial margin in the 

TD case and slightly in the SD case. It should be noted that the SVD method 

outperforms not only CBOW, SG, and GloVe, but also LSA and MMR. It even 

outperforms all the methods compared in Table 3.5 in the SD case. 

In the next set of experiments, we evaluate the capability of the triplet learning model 

for improving the measurement of similarity when applying word embedding methods 

in speech summarization. The results are shown in Table 7.2. From the table, two 

observations can be drawn. First, it is clear that the triplet learning model outperforms 

the baseline cosine similarity measure (c.f. Table 7.1) in all cases. This indicates that 

triplet learning is able to improve the measurement of the similarity degree for sentence 

ranking and considering the inter-dimensional correlation in the similarity measure 
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between two vector representations is indeed beneficial. Second, “CBOW with triplet 

learning” outperforms all the methods compared in Table 1 in both the TD and SD cases. 

However, we have to note that learning W has to resort to a set of documents with 

reference summaries; thus the comparison is unfair since all the methods in Table 3.5 

are unsupervised ones.  

In the last set of experiments, we pair the word embedding methods with the 

 

 
Method 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

CBOW 0.369 0.224 0.308 0.365 0.206 0.313 
SG 0.367 0.230 0.306 0.358 0.205 0.303 

GloVe 0.367 0.231 0.308 0.364 0.214 0.312 
SVD 0.409 0.265 0.342 0.374 0.215 0.319 

Table 7.1 Summarization results achieved by various word-embedding methods in 

conjunction with the cosine similarity measure. 

 
Method 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

CBOW 0.472 0.367 0.432 0.396 0.258 0.347 
SG 0.404 0.284 0.348 0.374 0.223 0.321 

GloVe 0.372 0.248 0.315 0.375 0.225 0.319 
SVD 0.422 0.303 0.364 0.376 0.223 0.323 

Table 7.2 Summarization results achieved by various word-embedding methods in 

conjunction with the triplet learning model. 

 
Method 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

CBOW 0.456 0.342 0.398 0.385 0.237 0.333 
SG 0.436 0.320 0.385 0.371 0.225 0.322 

GloVe 0.422 0.309 0.372 0.380 0.239 0.332 
SVD 0.411 0.298 0.361 0.364 0.222 0.313 

Table 7.3 Summarization results achieved by various word-embedding methods in 

conjunction with the document likelihood measure. 
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document likelihood measure for extractive spoken document summarization. The 

deduced sentence-based language models were linearly combined with ULM in 

computing the document likelihood. The results are shown in Table 7.3. Comparing the 

results to that of the word embedding methods paired with the cosine similarity measure 

(c.f. Table 7.1), it is evident that the document likelihood measure works pretty well as a 

vehicle to leverage word embedding methods for speech summarization. We also notice 

that CBOW outperforms the other three word embedding methods in both the TD and 

SD cases, just as it had done previously in Table 7.2 when combined with triplet 

learning, whereas “SVD with document likelihood measure” does not preserve the 

superiority as “SVD with triplet learning” (c.f. Table 7.2). Moreover, comparing the 

results with that of various state-of-the-art methods (c.f. Table 3.5), the word embedding 

methods with the document likelihood measure are quite competitive in most cases. 

 

7.3 Probabilistic Word Embeddings 

Although the aforementioned methods for learning representations of words have 

enjoyed success in capturing latent semantic and syntactic regularities (relationships) 

among words, the interpretation about the learned word representations, however, 

remains somewhat opaque. In view of this, we propose a novel learning framework 

instantiated with various modeling structures to infer appropriate representations of 

words for speech summarization, which has a clear and rigorous probabilistic 

interpretation. We will begin with some terminology about the framework. Let M 

denotes a 𝐷𝐷 × 𝑉𝑉 matrix, where the i-th column of the matrix M corresponds to the 

word representation for the i-th word wi in the vocabulary. Let W denotes a 𝐷𝐷 × 𝑉𝑉 

matrix, where the j-th column of the matrix W is the word representation for the target 
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word wj in the vocabulary. D is a pre-defined dimension of the word embedding. 

 

7.3.1 Probabilistic Bag-of-Words (PBOW) Model 

The first word embedding method is also stimulated by the distributional hypothesis 

[144], as stated previously in Section 7.1.1. The fundamental notion of this model is to 

learn appropriate representations of words that can facilitate better prediction of an 

arbitrary target word given that some of its surrounding context words are observed. To 

crystalize such an idea, the objective function is defined to maximize the total likelihood 

over all vocabulary words occurring in the training corpus: 
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where n(wi) is the frequency count of word wi occurring in the training corpus, Ci 

denotes the context information collected from the entire corpus for word wi, and 𝐇𝐇𝑤𝑤𝑖𝑖 

is the corresponding vector representation for Ci: 
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where I[x] is designated as an indicator function whose output value is 1 if the statement 

x is true and 0 otherwise; 𝛼𝛼𝑡𝑡,𝑘𝑘 is a weighting factor associated with the distance 

between the central word wt and its surrounding context word wt+k, and is summed to 1 

(i.e., ∑ ∑ 𝐼𝐼[𝑤𝑤𝑡𝑡 = 𝑤𝑤𝑖𝑖]𝛼𝛼𝑡𝑡,𝑘𝑘
𝑐𝑐
𝑘𝑘=−𝑐𝑐,𝑘𝑘≠0

𝑇𝑇
𝑡𝑡=1 = 1). To make the computation more efficient, we 

assume each word w corresponds to a multinomial (distributional) representation (i.e., 

each column vector of the matrix, denoted by 𝐌𝐌𝑤𝑤). In essence, we can think of such a 

distributional representation as a special case of the conventional distributed 

representation. Moreover, we further assume that each “row” vector of matrix W is a 

multinomial distribution as well. Consequently, the objective function of the model can 
 89 



be simplified as follows: 
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Obviously, such a model bears close resemblance to CBOW and can be viewed as a 

probabilistic counterpart of CBOW. Below, we refer to it as the probabilistic 

bag-of-word (PBOW) model, while its component distributions (i.e., W and M) can be 

estimated using the expectation-maximization (EM) algorithm [52]. 

 

7.3.2 Probabilistic Skip-gram (PSG) Model 

In contrast to the PBOW model, which learns the representation of each word wi 

through estimating the probability distributions of its context words that collectively 

 

Figure 7.1 A running toy example for learning disparate distributional representations 

of a specific word w5, where the training corpus contains three documents, the 

vocabulary size is 9 (i.e., having words w1,…,w9) and the context window size is 1 

(i.e., c=1). 

 

document1:  w3 w5 w8 w5 w7 w1 w9 w2 w1 w9
document2:  w1 w4 w5 w6 w2 w3 w8
document3:  w9 w4 w6 w8 w8 w3 w2 w5 w1
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generate wi, an alternative approach is to obtain an appropriate word representation by 

considering the predictive ability of a given word occurring at an arbitrary position of 

the training corpus (denoted by wt) to predict its surrounding context words. For the idea 

to go, we define the objective function of such a model as 
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Again, since we assume that each column of W is a multinomial distribution, the terms 

in the denominator will be summed to one and thus we can omit the denominator here. 

This model is similar in spirit to SG and can be regarded as a probabilistic counterpart 

of SG. As such, we will term the resulting model as the probabilistic skip-gram model 

(PSG) hereafter. Following a similar vein to PBOW, the component distributions of 

PSG can also be estimated with the EM algorithm. A running example for the proposed 

two models is schematically depicted in Figure 7.1. 

 

7.3.3 Analytic Comparisons 

CBOW, SG, GloVe, PBOW, and PSG can be analyzed from several critical perspectives. 

First, the training objectives for all of these models aim at maximizing the collection 

likelihood, but their respective update formulations are different. The model parameters 

of CBOW, SG and GloVe are updated by variants of the stochastic gradient 

descent-based (SGD) algorithm [55][142], while PBOW and PSG are estimated by the 

expectation-maximization (EM) algorithm. It is worthy to note that GloVe has a close 

relation with the classic weighted matrix factorization approach, while the major 

difference is that the former concentrates on rendering the word-by-word co-occurrence 
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matrix and the latter is concerned with decomposing the word-by-document matrix 

[32][65]. Second, since the parameters (word representations) of CBOW and SG are 

trained sequentially (i.e., the so-called on-line learning strategy), the order of the 

training corpus may affect their resulting models dramatically. On the contrary, GloVe, 

PBOW and PSG accumulate the statistics over the entire training corpus in the first 

place; the corresponding model parameters of these models are then updated based on 

such censuses at once (i.e., the so-called batch-mode learning strategy). Finally, due to 

that in our models (PBOW and PSG) we assume each row of the matrix W is designated 

as a multinomial distribution, the by-product is that the columns of W collectively can 

be thought of as forming a latent semantic space whose meaning can be explained by 

the component multinomial distributions. Therefore, word representations learned by 

our proposed models (i.e., M) can readily be realized and interpreted by referring to the 

matrix W. More formally, the word vectors learned by PBOW and PSG are 

distributional representations, while CBOW, SG and GloVe present each word by a 

distributed representation. To the best of our knowledge, this is the first study of such an 

interpretation when learning word representations. 

 

7.3.4 Experimental Results 

We now turn to investigate the utilities of three state-of-the-art word embedding 

methods (i.e., CBOW, SG and GloVe) and our proposed methods (i.e., PBOW and PSG), 

respectively working in conjunction with the cosine similarity measure for speech 

summarization. The corresponding results are shown in Table 7.4, where HSM denotes 

the condition when the model parameters were obtained based on the hierarchal 

soft-max algorithm, while NS denotes learning with the negative sampling algorithm. 

Several observations can be made from the experimental results. First, all the three 
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state-of-the-art word embedding methods, though based on disparate model structures 

and learning strategies, achieve results competitive to each other for both TD and SD 

cases. Albeit that these methods outperform the conventional VSM model, they achieve 

almost the same level of performance as LSA and MMR, which are considered to be 

two enhanced versions of VSM (c.f. Table 3.5). It should be noted that the proposed 

methods not only outperform than CBOW, SG and GloVe, but also are better than LSA 

and MMR for most of the TD and SD cases (c.f. Table 3.5).  

In the next set of experiments, we evaluate the various word embedding methods 

 

 
Method 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

GloVe 0.366 0.244 0.310 0.363 0.214 0.310 

CBOW 
HSM 0.360 0.199 0.294 0.357 0.185 0.293 
NS 0.359 0.200 0.293 0.363 0.193 0.300 

SG 
HSM 0.370 0.209 0.305 0.346 0.180 0.283 
NS 0.366 0.211 0.306 0.345 0.179 0.282 

PBOW 0.397 0.283 0.346 0.376 0.233 0.326 
PSG 0.403 0.281 0.351 0.380 0.234 0.330 

Table 7.4 Summarization results achieved by various word-embedding methods in 

conjunction with the cosine similarity measure. 

 
Method 

Text Documents (TD) Spoken Documents (SD) 
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L 

GloVe 0.422 0.309 0.372 0.380 0.239 0.332 

CBOW 
HSM 0.472 0.364 0.417 0.372 0.226 0.316 
NS 0.456 0.342 0.398 0.385 0.237 0.333 

SG 
HSM 0.436 0.323 0.385 0.372 0.223 0.323 
NS 0.436 0.320 0.385 0.371 0.225 0.322 

PBOW 0.437 0.331 0.387 0.386 0.241 0.332 
PSG 0.434 0.333 0.389 0.375 0.244 0.331 

Table 7.5 Summarization results achieved by various word-embedding methods in 

conjunction with the document likelihood measure. 
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paired with the document likelihood measure for extractive speech summarization. The 

deduced sentence-based language models were combined, respectively, with ULM for 

computing document likelihoods [202] and the corresponding results are shown in Table 

7.5. Comparing to the results of these word embedding methods paired with the cosine 

similarity measure (c.f. Table 7.4), it is evident that the document likelihood measure 

seems be a preferable vehicle to leverage word-embedding methods for speech 

summarization. As we look into the detailed results of Table 7.5, we notice two 

particularities. On one hand, CBOW seems to perform better than others in the TD case, 

whereas the superiority does not seem to preserve in the SD case. On the other hand, if 

we compare the results with that of the other state-of-the-art summarization methods (c.f. 

Table 3.5), the word embedding methods with the document likelihood measure still 

outperform them by a margin for most of the TD and SD cases. 
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Chapter 8 Conclusion and Outlook 

 

Language model research can be dated back to the n-gram language model which is 

blocked by the frequency counts of words and the multinomial distributions. The 

original goal of the n-gram language model was to determine the probability of a given 

word sequence. Following this model, several researchers then proposed a variety of 

architectures for language models that capturing fine- or coarse-grained semantic and 

syntactic regularities. The wide array of language models that have been developed so 

far fall roughly into four main categories: 1) word-regularity models, 2) topic models, 3) 

continuous language models, and 4) neural network-based language models (c.f. 

Chapter 2.1). Founded on a variety of pioneering research, this thesis has proposed 

several novel extensions, described new developments, and shared interesting findings. 

Figure 8.1 summarizes some important language models year by year, and also 

summarizes the contributions of this thesis. 

 

 The Unified Framework for Pseudo-Relevance Feedback 

Language models have been widely used for information retrieval. However, 

this approach has two major challenges: 1) a query is often a vague expression 

of the underlying information need, and 2) there can be word usage mismatch 

between a query and a document even if they are topically related to each other. 

To mitigate these problems, in Chapter 4, we reformulated the original queries 

using relevance-based language models using different objective functions, and 

then proposed a principled framework to unify the relationships among most of 

the widely-used query modeling formulations. The school of research has also 
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been introduced to extractive summarization. 

 

 The I-vector based Language Modeling Framework for Retrieval 

The i-vector technique, which reduces a series of acoustic feature vectors of a 

speech utterance to a low-dimensional vector representation, has yielded great 

performance improvements in language identification and speaker recognition. 

In Chapter 5, we adopted this concept for the i-vector based language model 

(IVLM) for information retrieval. As the major challenge of using IVLM for 

 

Figure 8.1 The important language models and the proposed frameworks are 

summarized year by year. 

•Probability Latent Semantic Analysis(1999)
•Latent Semantic Analysis(1997)

•Latent Dirichlet Allocation(2003)

~~

•Cache-based Model(1988)

•Mixed-Order Markov Model(1997)

•Maximum Entropy Model(1994)

•Class-based Model(1992)

•Aggregate Language Model(1997)

•Skipping Model(1993)
•Trigger-based Model(1993)

•Structured Model(1997)

•N-gram Model

•Mixture-Based Language Model(1997)

•Latent Maximum Entropy Model(2001)

•Neural Probabilistic Language Model(2000)

•Gaussian Mixture Language Model(2007)
•Continuous Topic Language Model(2008)

•Tied-Mixture Language Model(2009)

•Discriminative Training Language Model(2000)

•Pseudo-conventional N-gram Model(2008)

•Minimum Word Error Training Language Model(2005)
•Global Conditional Log-linear Model(2007)

20082006200420022000 2010 2012 2014

•Recurrent Neural Network Language Model(2010)

•Relevance-based Language Model(2001)
•Simple Mixture Model(2001)

•Regularized Mixture Model(2006)

Word-Regularity
Models

Topic Models

Continuous 
Language Models

Neural Network-
based Language 

Models

•C&W Neural Network Language Model(2008)
•Log-bilinear Language Model(2007)

•Continuous Bag-of-words Representation(2013)
•Skip-gram Representation(2013)

•Global Vector(2014)

•Round-robin Discriminative Language Model(2011)

•Three Mixture Model(2002)

•Word Topic Model(2006)
•Word Vicinity Model(2006)

•Unified Framework(2014)

•RNN for Summarization(2014)

•Word Embeddings for Summarization(2015)

•I-vector Technique(2009)

•I-vector based Language Modeling(2014)
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query modeling is that queries usually consist of only a few words, it is difficult 

to learn reliable representations. To more accurately represent users’ information 

needs, three novel reformulation methods were proposed for use in SDR. It is 

also expected that conventional language identification and speaker recognition 

applications can benefit from our methods. In addition, IVLM training also 

yields a useful by-product: document (or query) and word embeddings. 

 

 The RNNLM-based Framework for Summarization 

Language models have been used for unsupervised summarization. However, it 

remains challenging to formulate the sentence models and to estimate their 

parameters for each document to be summarized. We proposed a novel recurrent 

neural network language model using a curriculum learning strategy to render 

word usage cues and to capture long-span structural information of word 

co-occurrence relationships within documents in Chapter 6. In addition, we also 

explored different model complexities and combination strategies, as well as 

provided in-depth elucidations on the modeling characteristics and the 

associated summarization performance of various instantiated methods. 

 

 The Word Embedding Framework for Summarization 

Recently, word embedding has been a popular research area due to its excellent 

performance in many natural language processing (NLP)-related tasks. However, 

as far as we are aware, there has been little work investigating its use in 

extractive spoken document summarization. The common usage of leveraging 

word embeddings is to represent the document (or sentence) by averaging the 

embeddings of the words occurring in the document (or sentence). Then, 
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intuitively, the cosine similarity measure can be used to determine the degree of 

relevance between a pair of representations. Beyond the continued efforts made 

to improve word representations, in Chapter 7, we have proposed novel and 

efficient ranking models based on general word embedding methods. In 

additions, we have also presented a novel probabilistic modeling framework for 

learning word and sentence representations, which not only inherits the 

advantages of the original word embedding methods but also boasts a clear and 

rigorous probabilistic foundation. 

 

I believe this thesis will help make statistical language modeling more attractive for 

future research. Still though, there is a need for additional experiments to be conducted 

and analysis to be made, and there are plenty of related research subtopics that still 

should be investigated. It is my hope that this work will prove to be a cornerstone for 

me and others in establishing more elegant, elaborate and powerful methods in the near 

future. 
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