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Abstract

Hepatocel lular carcinoma (HCC) is the fifth most commonly occurring cancer and

the third most common cause of cancer death worldwide. The progression of HCC relies

on the formation of new blood vessels, and VEGF is critical in this process.

Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known

to beinvolved in lipid metabolism. Overexpression of L-FABP has been reported in

various cancers; however, itsrole in hepatocellular carcinoma (HCC) remains unclear.

In this study, we investigated L-FABP and its association with vascular endothelia

growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly

expressed in their HCC tissues, and its expression level was positively correlated with

that of VEGF-A. Additionaly, L-FABP significantly promoted tumor growth and

metastasis in axenograft mouse model. We also studied the mechanisms of L-FABP

activity in tumorigenesis: L-FABP was found to be associated with VEGFR2 on

membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and

Src/FAK/cdc42 pathways. This resulted in up-regulation of VEGF-A expression

accompanied by an increase in both angiogenic potential and migration activity. Taken

together, our results suggest that L-FABP may be a potentia target for HCC

chemotherapy.

Inhibition of VEGFR2 activity has been proposed as an important strategy for the



clinical treatment of hepatocellular carcinoma (HCC). In this study, we identified
corosolic acid (CA), which existsin the root of Actinidia chinensis (% 4{), as having a
significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase
activity by directly interacting with the ATP binding pocket. CA down-regulates the
VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and
migratory activity of Huh7 cellsin vitro. In anin vivo model, CA exhibites an effective
dose (5 mg/kg/day) on tumor growth, and we further demonstrate that CA has a
synergistic effect with sorafenib within awide range of concentrations. In conclusion,
we elucidate the effects and molecular mechanism for CA on HCC cells and suggest
that CA could serve as a therapeutic or adjuvant target for patients with aggressive

HCC.

Keywords:
Hepatocel lular carcinoma, angiogenesis, liver fatty acid-binding protein, vascular
endothelial growth factor, corosolic acid, migration, vascular endothelial growth factor

receptor-2 (VEGFR2)



I ntroduction
Hepatocellular carcinoma

Hepatocel lular carcinoma (HCC), the most common type of liver cancer, is
notoriously resistant to systematic therapies, and often accompanied by high recurrence.
Because of its poor prognosis, HCC causes more than 700,000 deaths annually and
becomes the third leading cause of cancer-related death worldwide[1, 2]. Previous
studies have implicated severa emerging pathwaysin HCC, such as HGF/MET,
Whnt/B-catenin, and VEGF/VEGFR, can serve as novel molecular targets for developing

anti-HCC therapies [3-5].

Vascular endothelial growth factor and HCC

Angiogenesisis known to play an important role in progression and metastasis of
HCC. Vascular endothelial growth factor (VEGF) isacritical driver to stimulate new
blood vessel formation to supply sufficient nutrients and oxygen for sustained tumor
growth [1]. VEGF can bind to three similar receptor tyrosine kinases, including
VEGFR1 (FLT1), VEGFR2 (KDR) and VEGFR3 (FLT4) by different affinities, yet
VEGFR2 isthe major receptor for VEGF-induced signaling, and serves as the main
therapeutic target [6]. Previous studies also suggested a strong correlation of VEGFR2

expression with HCC malignance and liver cirrhosis[7, 8]. However, since HCC



patients are often diagnosed at an advanced stage accompani ed with tumor angiogenesis

and metastasis, VEGF-targeted therapies were seemed to have apparent therapeutic

benefits[2, 9].

Liver fatty acid-binding protein (L-FABP)

Liver fatty acid-binding proteins (L-FABP) isamember of the FABP family, which

expresses abundantly in cytoplasm and is capable of binding hydrophobic lipid ligands

with ahigh specificity. The FABP family proteins (~15 kDa) show moderate amino acid

sequence homology, but highly similar tertiary structures, which are formed in a

[-barrel shape. L-FABP can uniquely bind two ligand molecules (long chain fatty acids),

or avarious hydrophobic molecules, such as cholesterol and bile acids [10].

Furthermore, L-FABP can interact with plasma membrane to enhance cholesterol

transfer or participate in membrane microdomains alteration [11], but its detailed

mechanisms are less known.

Overexpression of L-FABP was observed in various cancer types, including liver

[12], lung [13], gastric [14], pancresatic [15] and breast cancers[16, 17]. Although some

studies have yielded contradictory findings that L-FABP expression is decreased in

HCC [18], severa reports showed that L-FABP expression was correlated with VEGF

expression in HCC [12] and breast cancer [19], and the precise mechanisms remain to



be studied.

Lipid rafts, receptor tyrosine kinases (RTK's) and non-receptor tyrosine kinases

Lipid rafts are ordered structures of membrane microdomains, characterized by

high concentration of cholesterol and glycosphingolipids, and are involved in

fundamental cellular functions such as endocytosis, protein trafficking, and signal

transduction [20]. A prominent feature of lipid raftsistheir insolubility in neutral

detergents such as Triton X-100, areason for which they are often referred to as

detergent-insoluble membranes (DIMs). The ability of lipid rafts to enhance receptor

signaling has led to the concept of a signalosome- aregion where proteins are localized

together to facilitate receptor signaling. For example, rafts may contain incomplete

signaling pathways that are activated when areceptor and/or other required molecules

arerecruited into the raft [21].

Receptor tyrosine kinases are a prominent example of the proteinsinvolved in cell

signaling that are enriched in lipid rafts. The EGF receptor, the insulin receptor, the

PDGF receptor, the VEGF receptor and the NGF receptor among others have been

shown to be localized to low density, cholesterol-rich membrane domains [22]. In &l

cases, signaling by these receptors is modulated by changesin cellular cholesterol

content. Thus, raft localization appears to be of functional importance to the receptors.



Non-receptor tyrosine kinases in lipid rafts

Lipid rafts are also thought to play a central rolein facilitating signal transduction

from non-receptor tyrosine kinases. Signaling molecules such as Src family protein

tyrosine kinases and small GTP-binding proteins of the Ras superfamily can localize to

rafts by virtue of lipid modification [23]. Other signaling enzymes such as PI3K aso

localize to rafts, but the mechanism of their recruitment to these microdomainsis

unclear. Disruption of lipid rafts by cholesterol depletion agent:

methyl-beta-cyclodextrin (MBCD), could inhibit multiple downstream signals of RTKSs,

including Src, FAK and Akt [24]. Mutation of the myristate or pal mitate modification

sitesin Src kinases inhibits their partitioning into lipid rafts and blocks downstream

signaling [25].

Chinese herbal medicines and Actinidia chinensis

Chinese herbal medicines (CHMs) have been used as potentia therapies for a

variety of human diseases, including hypertension, inflammation, and cancer [26].

Recent studies suggest that CHM s can be used to improve the efficiency of

conventional cancer therapies and relieve the side effects of chemotherapies[27].

Anti-cancer effects of A. chinensis on cell proliferation, apoptosis, and

angiogenesis have been noted in previous studies [28, 29]. In our study, A. chinensis

10



was found to exhibit a significant anti-migratory effect to Huh7 cells, and the ICsg

migration of A. chinensiswas identified as 0.2 mg/ ml. The cytotoxic effect of A.

chinensis to Huh7 cells was between 0.5-4 mg/ml (Figure 27, A and B).

Corosolic acid (CA)

Corosolic acid (CA) is an ursane-type triterpenoid, and is known to be a STAT3

inhibitor in macrophages, myeloid cells, and ovarian cancer cells[30-32]. CA dso hasa

significant inhibitory effect on endothelial angiogenic tube formation [29], and tumor

growth in lung and ovarian cancer cells[31, 33]. In the above mentioned study, we

observed that A. chinensis water extracts had an anti-migration effect in Huh7 cells.

Therefore, we performed HPLC analysis and identified the active component of A.

chinensis; corosolic acid (CA), which comprised about 8.4% of the dry weight of A.

chinensis (Figure 28), was suggested to be a novel anti-HCC compound in our studies.

11



M aterials and methods

SPart |

Antibodies used for western blot analysis and chemical inhibitors

Antibodies specific to L-FABP, VEGF-A, Flatillin-2, Lamin A/C, a-tubulin and

[-actin were purchased from Santa Cruz Biotechnology, USA. Antibodies specific to

VEGFR2, phospho-VEGFR2, Src, phospho-Src, FAK, phospho-FAK, PI3K (p85), Akt,

phospho-Akt, mTOR, phospho-mTOR, phospho-4EBP1, 4EBP1 and HIF-1a were

obtained from Cell Signaling Technology, USA. The chemical inhibitor Src inhibitor |

was from Calbiochem, and Sorafenib was obtained from Sdlleckchem, USA.

Tissue microarray construction and immunohistochemistry

The tumor and adjacent normal tissues array (HLiv-HCC180Sur-02) were

purchased from US Biomax, Inc. The microarray sections were immunestained with

specific antibodies against L-FABP (1:100) and VEGF-A (1:100), respectively. The

staining results were interpreted by pathologists of GenDiscovery Biotechnology,

Taiwan. The staining results were emerged for intensity and percentage of staining area,

respectively, and calculated by Quick-score analysis which scored by multiplying the

percentage of positive cells (P) by the intensity (1). Formula: Q = P x |; Maximum = 300.

The results were then graded according to the following criteria: 1 for score 0-99, weak

12



staining; 2 for score 100-199, moderate staining; 3 for score 200-299, strong staining; 4

for score 300, very strong staining.

Cell culture

Huh?7 cells were obtained from Japanese Collection of Research Bioresources

(Nationa Institute of Health Sciences; Japan, JCRB), and maintained in Dulbecco’s

modified Eagle’s medium (DMEM) with 10% FBS. The immortalized cell line derived

from human primary hepatocytes, Hus-E/2 (Hus), was cultured in PH. medium (DMEM

which contains 20 mM HEPES, 15 pg/ml L-proline, 0.25 pg/ml insulin, 50 nM

dexamethasone, 44 mM sodium bicarbonate, 10 mM nicotinamide, 5 ng/ml EGF, 0.1

mM ascorbic acid). All of these cell lines were incubated in 5% CO, atmosphere at

37°C.

Creation and culture of L-FABP overexpressed stable clones

The pcDNAS3.1/L-FABP was constructed by inserting full-length L-FABP cDNA

fragment (1-121 aa) in the pcDNA3.1 Vector via TOPO PCR cloning system (Life

technologies, USA), which was cloned by cDNA of Huh7 cells, and the construct was

checked by nucleotide sequencing. Hus cells were transfected with pcDNA3.1/L-FABP

using the Lipofectamine 2000 (Invitrogen, USA). Stable clones were selected by

13



medium containing 1 mg/ml G418 (Sigma-Aldrich, USA) for 2-4 weeks. Each of the

clones was checked for L-FABP expression twice per month by western blot analysis.

Western blot analysis and immunopr ecipitation

Purified proteins (50 pg) were resolved by 10% sodium dodecy! sulfate

(SDS)-polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride

(PVDF) membranes (Millipore, Bedford, MA, USA). The membrane was incubated

with primary antibodies followed by horseradish peroxidase-conjugated secondary

antibodies (Chemicon International, USA). Signals were visualized using enhanced

chemiluminescence detection reagent from Millipore, and the images were obtained

using a Luminescence/Fluorescence Imaging System (LA S-4000, Fuji).

For immunoprecipitation, cell lysates (500 pg protein) were pre-cleared by protein

A/G Sepharose beads (Millipore), and then incubated with anti-L-FABP or

anti-VEGFR2 antibody overnight at 4°C. The immunoprecipitated complexes were

washed three times by ice-cold PBS, and captured by protein A/G Sepharose beads, and

then the immunoprecipitated proteins were subjected to western blot analysis.

Cell migration assay

Transwell Boyden chambers (Millipore) were applied to cell migration and

invasion assays. For migration assay, cells were maintained in serum-free medium for

14



24 h and then seeded into the chambers, and followed by incubation in complete

medium with 10% fetal bovine serum at 37°C for 16 h. The cells on the bottom side of
the membrane were fixed with 1% formal dehyde/phosphate buffered saline for 15 min,
stained with 0.1% crystal violet for 40 min and counted using an inverted contrast light

mi croscope.

Angiogenesis activity assay
1. Cdl culture

Primary HUVEC (Sciencell, California, USA) were grown in M199 medium
containing with Endothelial Cell Growth Supplement (ECGS) (100 pg/ml), 10 ng/ml
heparin, and 5% fetal bovine serum (FBS) and cultured in 5% CO, atmosphere at 37°C.
2. Invitro tube formation assay

A 24-well plate was coated with 100 pl of Matrigel (1 mg/ml; BD Biosciences),
which was allowed to solidify at 37°C for 1 h. HUVEC (1x10” cells per well) were
seeded on Matrigel and incubated with the conditioned medium collected from the
indicated cultured cells (L-FABP overexpressed Hus cells or L-FABP stable knockdown
Huh7 cells) for 8~12 h, whereas the VEGF group was used to check the angiogenic
activity of HUVEC cells. Photographs from random fields were taken using a

microscope (Olympus, DP-50, Tokyo, Japan), and the quantification of each images was
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followed by the following formula[34],

Angiogenic score=[(No. of sprouting cells) x1 + (No. of connected cells) x2 + (No. of
polygons) x3)] / Total number of cells+ [0, 1 or 2]

The definition of cell types and parameters 0, 1 or 2 can be found in the above
mentioned studies.

3. Invivo Matrigd plug assay and CD31 IHC staining

Matrigels (phenol red-free, BD Biosciences) were mixed with L-FABP overexpressed
or L-FABP-knockdown stable clones (2 x 10° cells/ matrigel/ mouse). The Matrigel
plugs were subcutaneously injected into 4-week-old male NOD/SCID mice, and then
recovered on day 10 for following analysis. We performed CD31 IHC staining to
determine the angiogenic activity of thesetissues, since CD31 isused to serveasa
superior marker for angiogenesis [35]. For detail, samples were fixed in 10%
paraformaldehyde, embedded in paraffin, sectioned, and then subjected to
immunohistochemical staining with the Novolink Polymer Detection System (Leica
Biosystems). The sections were stained for CD31 (Santa Cruz Biotechnology), and the

nuclel were counterstained with hematoxylin.

Short interference RNA (SSRNA) and Short hairpin RNA (shRNA)

The modified oligonucleotides used as sSIRNA for L-FABP and the control sSiRNA
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were obtained from Invitrogen. The shRNA clones were purchased from National RNAI
Core Facility Platform, Taiwan. For transfection, 1 x10° of Hus/L-FABP or Huh7 cells
were plated in asix-well plate for 24 h, and sSIRNA or shRNA transfection was
performed using the Lipofectamine 2000 (Invireogen) to knockdown mRNA expression

[36].

Lipid raftsisolation

Raft microdomains were purified by method described previously [37]. Briefly,
cells were washed and applied to 700 ul 1% Triton X-100 lysis buffer, and the cell
membrane was disrupted by using a Teflon-coated dounce homogenizer (20-30 strokes).
The lysate (4 mg) was then incubated at 4°C for 30 min, and mixed with the same
volume of 80% sucrose solution to yield amixture at afinal of 40% sucrose gradient
and then transferred into a 12 ml polyallomer ultracentrifuge tube (for an SW41 roter,
Beckman Instruments). Then, 6.5 ml of 30% and 3.5 ml of 5% sucrose cushion was
overlaid on the top of sample and applied to ultracentrifugation at 187,813 g, 20 h, 4°C
using SW41 rotor. The floating opaque band corresponding to the detergent-resi stant

lipid rafts was collected and used for western blot analysis.
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Confocal microscopy analysis

L-FABP stable expressed Hus cells were seeded on the 22 x 22 cover slide, washed,
fixed, and permeabilized with 0.25% Triton X-100 for 10 min. For double staining, the
slides were first incubated with L-FABP and VEGFR2 primary antibody O/N, and then
stained with Alexa488 (anti-mouse) and Alexa568 (anti-rabbit) (20 mU/mL) for 1 hin
darkness, followed by counter-staining for nuclei with DAPI (10 ng/mL) for 10 min. By
using Leica TCS SP5 Spectral Confocal System, the images were captured and

analyzed.

Small GTPase binding assay

The small GTPase binding assay was referred to previous study [38]. For detall,
1x10’ cells were seeded and collected in 0.4 ml of ice-cold lysis buffer (50 mM
Tris-HCI, pH 7.5, 10 mM MgCl2, 500 mM NaCl, 1% Triton X-100, and protease
inhibitor cocktail). After lysisfor 20 min on ice, cell debris was removed by
centrifugation at 300 g for 10 min at 4°C. Half of each lysate (100 pg protein) was
mixed with 15 pl of GST-PBD or GST-RBD beads (50 pg of protein) and incubated for
1 h at 4°C with rotation. Samples were then centrifuged (5,000 rpm for 1 min at 4°C)
and washed twice in ice-cold wash buffer (25 mM Tris-HCI, pH 7.5, 30 mM MgCl2,

and 40 mM NacCl), finally resuspended in 30 pul SDS sample buffer and heated at 100°C
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for 5 min, and then processed for western blot analysis.

Construction of human VEGF-A promoter

The VEGF-A promoter (full-length, bp -1127 to +73, total 1190 bps) was

synthesized by ShineGene Molecular Biotech Inc, and constructed into puc57 vector.

By cutting with Sacl and Hindll1 restriction enzymes, the full length promoter was

cloned into pGL4.22 luciferase reporter vector. The 5’ serial deletion constructs of

VEGF-A promoter were generated and named as follows: D1: bp -901 to +73; D2: bp

-782t0 +73; D3: bp -199 to +73. The primers used in the above cloning werelisted in

supplementary data, Table 1, and all constructs were checked by nucleotide sequencing.

Luciferase reporter assay

Luciferase activities were determined using Dual-L uciferase Reporter Assay

System (Promega, USA). L-FABP overexpressed Hus cells were transfected with

constructed pGL4.22/ VEGF-A promoter plasmids and pGL4-Renillaluciferase control

reporter plasmid as an internal control. For 24 h incubation after transfection with

lipofectamine 2000, the cells were lysed and the luciferase activities were examined by

using the above assay system following the technical manua (Promega) and measured

by SpectraMax L luminometer.
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Animals

All animal experiments were carried out according to regulations approved by the
Institutional Animal Care and Use Committee of College of Medicine, Nationa Taiwan
University. Male NOD-SCID mice (4 weeks old) were obtained from the LASCO
Taiwan Co., Ltd. For xenograft experiments, Hus/L-FABP or Hus/Vector cell lines (2 x
10° cells each) were suspended in 200 pl of OPTI-MEM (Invitrogen) and inocul ated
into the right hind limb of each mice (n=6 for each group). Tumor size was measured
twice per week with calipers, and the tumor volume was estimated using the formula:
(width)? x length/ 2. After 8 weeks, the mice were anesthetized by Zoletil 50 (Virbac
Animal Health) and sacrificed by CO, euthanasia, and the tumors were removed,
measured, and processed for immunohistochemistry.

For metastasis assay, we used lung metastasis model according to previous studies
[39]. For detail, Hus/L-FABP or Hus/Vector cell lines (4 x 10° cells each) were
suspended in 100 pl of OPTI-MEM, and inoculated i.v. into the tail vein of male
NOD/SCID mice (n=6 for each group). The experimental mice were anesthetized by
Zoletil 50 (Virbac Animal Health) and sacrificed by CO, euthanasia after 10 weeks; the
metastatic colonies in lungs of each mice were counted and photographed, and all the
lungs were removed, fixed, and embedded in paraffin for immunohi stochemical

analysis.
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Cloning of L-FABP mutants

The amino acid substitution of wild-type L-FABP protein was carried out as

follows. L-FABP point-mutation clones were generated by QuickChange

Site-Directed mutagenesis kit (Stratagene), including Phe3 to Trp (F3W), Lys31 to Glu

(K31E), and Thr94 to Ala(T94A). The primers for PCR reaction and subsequent

treatment with Dpnl to eliminate the template DNA were listed in supplementary data,

Table 1, and all constructs were checked by nucleotide sequencing.

Statistical analysis

Relationships between protein expression and categorical variables (sex, grade,

invasion depth, lymph node metastasis and TNM stage) were compared using

Chi-sguare tests. For multivariate analysis, independent prognostic factors were

determined using Cox’s proportional hazard model. Survival curves were calculated by

the Kaplan-Meier method and compared by log-rank tests. Thein vitro and in vivo

experiments were analyzed by GraphPad Prism 5, with the data presented as the mean

standard error of the mean (SEM). Statistical significance was defined as a p value <

0.05.
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Plant extracts

Water extracts from A. chinensis were supplied by the Sun Ten Pharmaceutical

Company (Taipei, Taiwan). The plant materials were boiled in water and concentrated to

1 g/ml with an evaporator, and the stock solutions were stored at —20°C until use.

HPL C analysis

We analyzed the constituent distribution and content in the water extracts of A.

chinensis by high-performance liquid chromatography-diode array

(HPLC-DAD)/evaporative light scattering detector (ELSD) chromatography under the

following conditions: alinear gradient of ddH20O to methanol for 60 minutes, and 100%

methanol for another 10 minutes at aflow rate of 1ImL/minute with DAD/ELSD.

Reagents

Corosolic acid (CA), ursalic acid, 3-(4,5-Dimethylthiazol-2-yl)-2,5-dipheny

Itetrazoliumbromide (MTT), and sulphorhodamine (SRB) were obtained from

Sigma-Aldrich. Sorafenib was purchased from Santa Cruz Biotechnology.

Lipofectamine 2000, VEGFR2 (KDR) siRNA, phalloidin, and Alexa Flour Dyes were

obtained from Invitrogen Life Technologies. The primary antibodies against VEGFR?2,

22



p-VEGFR2 (Tyr1054), p-VEGFR2 (Tyr951), Src, p-Src (Tyr416), FAK and p-FAK
(Tyr397) were purchased from Cell Signaling Technology. The Matrigel Matrix was

obtained from BD Biosciences.

Cell culture

The HCC céll lines: Huh7, HepG2 and Hep3B were obtained from Japanese
Collection of Research Bioresources (National Institute of Health Sciences; Japan,
JCRB) and maintained in Dulbecco’s Modified Eagle Medium-High Glucose
(Invitrogen) medium with 10% fetal bovine serum (FBS), 2mM L-glutamine
(Invitrogen), and 100 pg/mL penicillin-streptomycin (Invitrogen). Cells were cultured in

ahumidified atmosphere in 5% CO; at 37°C.

Cytotoxicity assay

To study the cytotoxicity of CA, the MTT assay was performed as described
previously [40]. Huh7 cells were seeded at 5 x 10 cells/well in 96-well plates and
treated with 0.1% DM SO (control) or various concentrations of CA for 24 h. The
number of viable cells was estimated by measuring the conversion of tetrazolium salt
MTT to formazan crystals. After incubation with MTT for 6 h, the formazan crystals

were solubilized with an SDS solution (10% SDS and 0.01M HCI) and quantified by
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measuring the absorbance at 590 nm with a reference wavelength of 650 nm.

Migration assay

In the upper chamber, Huh7 cells (5 x 10* cells) were starved overnight, and
resuspended in 300 pL serum-free DMEM medium with 0.1% DM SO (control) or
various concentrations of CA, and seeded into Transwell inserts (8 um pore; BD
Biosciences). The complete DMEM medium was added to the lower chamber, and then
incubated for 16 h; the migrated cells were fixed, stained with crystal violet, and

quantified in 3 random fields (40x magnification) per insert [40].

I mmunoprecipitation

For immunoprecipitation, Huh7 cells were treated with 0.1% DM SO (control) or
CA for 15 min and lysed in RIPA buffer. The lysates were then sonicated and
centrifuged, and the supernatant was incubated with anti-VEGFR1, R2, and R3
antibody (Santa Cruz Biotechnology, Inc.) overnight at 4°C. The immune-complexes
were then incubated with PureProteome magnetic beads (Millipore) for 1 h at 4°C,

washed and eluted with protein sample buffer, and analyzed by western blotting.
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Western blot analysis

Cellswere collected at the indicated time points and protein was extracted with
RIPA buffer. Proteins samples were analyzed by SDS-PAGE, transferred to PVDF
membrane, and blocked with 5% milk in TBST. Membranes were then incubated with
the following primary antibodies against VEGFR2, p-VEGFR2 (Tyr1054), p-VEGFR2
(Tyr951), Src, p-Src (Tyr416), FAK and p-FAK (Tyr397). After incubation with an
HRP-conjugated secondary antibody (Santa Cruz Biotechnology), membranes were
developed with ECL reagent (Millipore). Signals were captured with an LAS-3000

image capture system (Fuji) and quantified with ImageJ software [41].

Kinase activity assay

The experiment was performed with the ADP-Glo kinase assay kit (Promega, WI,
USA). Briefly, CA wasfirst diluted with kinase reaction buffer at a1:2 dilution ratio in
different tubes (starting from 1 mM). Three nanograms of KDR (#V 2681, Promega)
were added to each tube and incubated for 10 min. Then, 0.1 pg/uL substrate and 10 uM
ATP were added to each tube and incubated for 1h at room temperature. Next, 25 puL
ADP-Glo reagent was added to the mixture and incubated at room temperature for 40
min. Finally, 50 pL kinase detection reagent was added to introduce luciferase and

samples were measured with a SpectraMax L Microplate reader (Molecular Device, CA,
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USA).

Rho GTPase activity assay

Huh7 cells were treated with 0.1% DM SO (control) or CA for 6 h and collected in

RIPA buffer. Whole cell lysates (500 pg) were combined with purified GST fusion

protein conjugated with Racl, RhoA, or cdc42 binding domain (PAK-PBD for Racl and

cdc42, Raf-RBD for RhoA) and incubated with head-to-head rotation at 4°C overnight

[42]. MagneGST beads (Promega, WI, USA) were then added to the mixture to pull

down the immune-complex. Samples were centrifuged at 14,000 rpm for 30 min,

washed with RIPA buffer 5 times, boiled with SDS sample buffer, and analyzed by

western blot analysis.

G-actin/F-actin activity assay

The assay was performed as previously described [43]. To summarize, Huh7 cells

were treated with 0.1% DM SO (control) or CA for 6 h and incubated in stabilizing

buffer (1% Triton X-100, 1 pg phalloidin, and protease inhibitor cocktail) at room

temperature for 5 min. Cell lysates were collected, followed by centrifugation at

100,000 g for 1 h at 37°C. The supernatant was removed and saved as the G-actin

fraction. The pellets were washed twice with PBS and dissolved in 200 pL dissolving
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buffer (1% Triton X-100, 2% SDS, and protease inhibitor cocktail) by sonication twice,

put onicefor 1 h, and saved as the F-actin fraction. Both fractions were then analyzed

by western blotting.

Confocal microscopy analysis

Huh7 cells were seeded on a22 x 22 cover side and treated with 0.1% DM SO

(control) or CA for 6 h. At the indicated time, the cells were washed, fixed, and

permeabilized with 0.25% Triton X-100 for 10 min. For double staining, the slides were

first incubated with p-FAK (Tyr397) primary antibody overnight, and then stained with

Alexad88 (anti-rabbit) and Alexa568-phallodin (20 mU/mL) for 1 hin darkness [44].

Finally, the samples were counter-stained for nuclei with DAPI (10 ng/mL) for 10 min.

The images were captured and analyzed using the Leica TCS SP5 Spectral Confocal

System. The actin filament intensity was measured by ImageJ (NIH) and calculated by

the following formula [45]:

Corrected total cell fluorescence (CTCF) = Integrated Density — (Area of selected cell

x Mean fluorescence of background readings)

Animal modd

All animal experiments were conducted according to the guidelines approved by
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the Institutional Animal Care and Use Committee of the College of Medicine, National
Taiwan University, and the study were approved by the Animal Care and Use
Committee at National Taiwan University. The male NOD/SCID mice (4—6 weeks old)
were obtained from BioLASCO Taiwan Co., Ltd, and kept in Laboratory Animal Center
of the College of Medicine, National Taiwan University. The experimental mice were
housed into individually-ventilated cages (1VC), and free accessed to food and drinking
water. For studying the anti-tumor effect of CA alone, Huh7 cells (2 x 10° cells) were
suspended in 200 pL of Opti-MEM (Invitrogen) and injected subcutaneously into the
flanks of each mouse. After one week, the mice were treated with 50 pL DMSO (control)
or CA (5 mg/kg/day) by intraperitoneal injection (n =5 for each group) for 21 days. To
study the combinatorial effect of CA and sorafenib, Huh7 cells (5 x 10° cells) were
suspended in 100 pL of Opti-MEM with matrigel-matrix (1:1 mix ratio), and injected
subcutaneoudly into the flanks of each mouse. After one week, the mice were treated
with 50 uL. DMSO (control) and compounds by intraperitoneal injection (n = 5 for each
group) for 20 days. The tumor volume was cal culated by the following formula: tumor
volume [mm?] = (length [mm]) x (width [mm] ?) x 0.5. At the end of the experiment,
the mice were anesthetized by Zoletil 50 (Virbac Animal Health) and sacrificed by CO,

euthanasia. The tumors were excised, weighed, and fixed for further studies.
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I mmunohistochemistry

Samples for these experiments were obtained from the xenograft experiment and

fixed in 10% paraformal dehyde, embedded in paraffin, and sectioned. The tissue

sections were then subjected to immunohistochemical staining with the Novolink

Polymer Detection System (Leica Biosystems). The sections were stained for

p-VEGFR2 (Tyr951, Cell Signaling Technology), Ki-67 and p-FAK (Tyr397) (Santa

Cruz Biotechnology), and the nuclei were counterstained with hematoxylin.

Synergistic analysis

The synergistic analysis was analyzed by the Compusyn software, which was

developed by Chou and Martin [46]. The software was used to estimate the combination

index (CI) and fa (fraction affected by drugs) to study the combined effect of drugs. A

Cl<1,Cl=1,and Cl > 1indicates synergistic, additive, and antagonistic effects,

respectively.

Molecular docking

The interaction of CA and the ATP-binding site in VEGFR2 was studied by

Discovery Studio Modeling 4.0 and displayed by PyMOL (ver. 1.6.0b1). The structure

of CA was obtained from ZINC (code: 08829484), and the crystal structure of VEGFR2
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was obtained from Protein Data Bank (PDB id: 1YWN).

SRB cell growth assay

Huh7, HepG2, and Hep3B cells were seeded into 96-well plates (5 x 10° cells/well)
and treated with 0.1% DM SO (control) or various concentrations of CA and sorafenib.
After 24 hours, cells were fixed with 10% TCA and stained with SRB at 0.4% (w/v) in
1% acetic acid. The cells were then washed by 1% acetic acid, solubilized with 10 mM

Tris base solution, and measured the absorbance by ELISA reader (515 nm wavelength).

Statistical analysis

Data were presented as means with standard errors (SE) and analyzed with Prism 6
(GraphPad Software, Inc.) and Sigmaplot version 10 (Systat Software Inc.). One-way
ANOVA was used to compare results with more than one treatment, and the Student’s
t-test was performed to compare differences between two groups. P < 0.05 was

considered statistically significant.
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Results

SPart |

1. Up-regulation of L-FABP expression in HCC tissuesis correlated with VEGF-A

overexpression

First, we performed IHC staining for the tissues from total 90 patients, including

12 females and 78 males, with average age 53.5 = 10.0 years (Table 2). The expression

level of L-FABPin 90 pairs of HCC tumor (T)/ normal adjacent tissue (NAT) were

classified into different expression levelsincluding weak, moderate and strong, and the

related photographs were represented in Figure 1A. L-FABP showed a significantly

higher expression level in tumor part compared with that of NAT part among all tissue

types of HCC tissues (NAT, HCC with cirrhosis, HCC without cirrhosis) (Table 1,

p=0.012). In addition, the level of VEGF-A revealed a strongly positive correlation to

the level of L-FABP (r=0.737, p<0.01, n=90) (Figure 1B). Taken together, these clinical

results indicate that L-FABP up-regulation is associated with VEGF-A expression in

HCC.

2. L-FABPinduces VEGF-A expression and angiogenic potential in immortalized

Hus and Huh7 cdlls

The functiona role of L-FABP in HCC was studied by analyzing the expression
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level of L-FABPin various cell lines, including immortalized normal hepatocyte (Hus)

and HCC (HepG2, Hep3B, Huh7 and PLC/PRF/5) cells. As shown in Figure 2A,

L-FABPwas highly expressed in HepG2 and Huh7 cells, and VEGF was also highly

expressed in these cells; angiogenic potential was higher in these cells than in those

with lower L-FABP expression level (Hus, Hep3B and PLC/PRF/5) (Figure 2B).

Accordingly, to examine the effects of L-FABP on VEGF-A expression, we generated

Hus cells that stably express L-FABP, as well as Huh7 cellsthat L-FABP was

knockdown by shRNA. Figure 3 showing that Hus/L-FABP cells exhibited a higher

VEGF-A expression level including mRNA, cytosolic protein, and protein secreted to

cultured medium than that of control cells (Figure 3), whereas the expression levels of

VEGF-A were decreased in Huh7/L-FABP shRNA cells (Figure 24). The Hus/L-FABP

cells aso exhibited higher angiogenesis activity than the control cells (Figure 4A),

whereas angiogenic activity was down-regulated in Huh7/L-FABP shRNA cells (Figure

24B). To further examine whether L-FABP promotes angiogenesis in vivo, we

performed matrigel plug-in assay in NOD/SCID mice by using Hus/L-FABP (Figure 4,

B and C) or Huh7/L-FABP shRNA cells (Figure 24C), and the results showed that

L-FABP over-expressed cells promoted angiogenesis activity by inducing neovascular

formation in matrigel as shown by anti-CD31 IHC staining.
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3. Association of L-FABP with VEGFR2 in membranerafts

Previous studies reported that some FABPs, such H-FABP or B-FABRP, could

interacts with membrane associated receptors, including integrin or dopamine D2

receptor [47-49]. It aso suggested that L-FABP possibly associated with cell membrane

or membrane proteins [10, 50]. Thus, we proposed that L-FABP could be aso

associated with membrane receptors, and by the alignment of FABP interacted amino

acid sequence in previous studies, we found that the consensus sequence-

WKIGFXKRLXXVXXXI (Figure 5) of membrane receptors is most likely as

interaction site with L-FABP. By comparing the consensus sequence to other membrane

receptors, we observed that the kinase domain of VEGFR2 showed a possibility of

interacting to L-FABP. Thus, we performed co-immunoprecipitation by using primary

antibodies against VEGFR2 or L-FABP, followed by western blotting with L-FABP, or

VEGFR2. Both experiments showed that L-FABP could interact with VEGFR2 (Figure

6). Furthermore, we used confocal microscopy analysis revealed that L-FABP located in

both membrane and cytosol, whereas VEGFR2 was located mainly on membrane.

Notably, the co-localization of L-FABP and VEGFR2 in apical membrane was

demonstrated in Hus/L-FABP célls (Figure 7, indicated by arrows). Furthermore,

isolation of membrane by sucrose gradient ultra-centrifugation also showed

co-localization of L-FABP and VEGFR2 in membrane. As shown in Figure 8, fractions
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with lipid rafts of Hus/L-FABP cells were identified by lipid raft marker, flotillin-2;

interestingly, not only L-FABP and VEGFR2, membrane associated signal transduction

proteinsincluding PI3K (p85), p-Akt/Akt, p-Src/Src, p-FAK/FAK were also detected

the increasing distribution levels in membrane rafts. Taken together, these results

indicated that overexpressed L-FABP not only associated with membrane VEGFR2, but

may also activate its downstream signal transduction signals including PI3K/Akt and

Src/FAK.

4. L-FABPincreases VEGFR2/ Src phosphorylation and cell migration by

FAK/cdc42 pathway

Previous reports indicated that VEGFR2/Src pathway is associated with cancer cell

migration by activating FAK and Rho-GTPase [51-53]. In Hus/L-FABP cells, the

phosphorylation of VEGFR2, Src and FAK was increased significantly (Figure 9 and

10), and by small GTPase binding assay, the activity of cdc42 was significantly

up-regulated in Hus/L-FABP cells (Figure 11). By performing wound-healing assay for

studying 2D migration activity (Figure 12A), and Boyden chamber based migration

assay for studying 3D migration activity (Figure 12B), Hus/L-FABP cells had higher

migration activity than that the control cells. Furthermore, L-FABP knockdown resulted

in asignificant decrease in 3D migration activity in Huh7 cells. (Figure 24D).
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Additionally, by treating Hus/L-FABP cells with Sorafenib (VEGFR2 inhibitor) or PP1

(Srcinhibitor), significant inhibitory effects on migration activity were found (Figure

13). Moreover, knockdown of L-FABPin Hus/L-FABP cells reversely down-regulated

its 3D migration activity (Figure 23C). These results suggest that VEGFR2/

Src/FAK/cdc42 signaling is participated in L-FABP induced migration activity.

5. L-FABPinduced VEGF-A expression by Akt/mTOR/P70S6K/4EBP1 in

trandation leve

According to our above-mentioned resultsin Figure 8, we proposed that the signal

transduction of L-FABP mediated VEGF-A expression was activated through Akt

pathway. Since Akt signaling has been reported to be the major pathway to increase

VEGF-A expression level in previous reports [54, 55]. Therefore, we performed western

blot analysis, and the results showed that the L-FABP activated Akt/mTOR/

P70S6K/4EBPL pathway in Hus/L-FABP cells (Figure 14). Previous results have

suggested that VEGF-A mRNA expression level could be regulated by HIF-1a

dependent or independent manner [54, 56]. In our studies, we found that the mMRNA

expression level of VEGF-A was significantly up-regulated in L-FABP overexpressed

cells as showed in Figure 3, and HIF-1a, which serves as the major transcription factor

to regulate VEGF-A expression, was also shown an increased level in the nucleus
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fraction of Hus/L-FABP cells (Figure 15). To further confirm this observation, the

full-length construct and a serial of successive 5’ deletions (D1-D3 constructs) of

VEGF-A gene promoter were cloned into pGL4.22 |uciferase reporter vector, and the

luciferase reporter assay was performed to measure the transcriptiona activity of

VEGF-A promoter and its deletion mutants in L-FABP overexpressed Hus cells. The

results revea ed that the VEGF-A transcriptional activity was elevated ~16.5-fold as

compared with that of control cells, whereas the deletion of HIF-1a binding site (D1-D3)

clearly abolished its activity to ~2.5 fold of control group (Figure. 16).

To further discuss the regulation of VEGF-A expression in post-transcription level,

Hus/L-FABP cells were treated with Rapamycin (mTOR inhibitor) or Cyclohexamide

(translation inhibitor), and a dose-dependent decreased of VEGF-A expression level or

its angiogenic potential was found (Figure 17, A and C). The effects of proteasome

inhibitor, MG132, on Hus/Vector cells were investigated, and the results indicated that

L-FABPinduced VEGF-A expression was not viathe inhibition of protein degradation

(Figure 17B). Taken together, these data suggested that the induction of VEGF-A

expression by L-FABP was regulated both in transcription and transglation levels.

6. L-FABP promotes tumor growth and metastasisin vivo

Therole of L-FABP in tumorigenesis was examined in immune-deficient

36



NOD/SCID mice, and the results indicated that tumor weight was significantly

enhanced in the group injected with Hus/L-FABP cells as measured on day-50. (Figure

18A). Thelevels of VEGF-A in mice serum were also up-regulated 2.8-fold in

Hus/L-FABP group than that of control group (Figure 18B), and the

immunohistochemistry staining of CD31 also indicated that L-FABP induced

angiogenesisin vivo (Figure 18C). We further investigated the role of L-FABP in tumor

metastasis in vivo, and the Hus/L-FABP cells or control cellswere injected i.v. into the

tail vein of NOD/SCID mice. After 60 days, the number of metastatic nodules formed in

lung was 3.9-fold higher in Hus/L-FABP group than that of control group (Figure 19A),

the increase of angiogenic vessel formation in these nodules was also demonstrated

(Figure 19B). These in vivo experiments further supported the correlation of L-FABP

and VEGF-A expression in present clinical tissue analysis.

7. Cholesterol associating and membraneinteracting activities are essential for

L-FABPinduced cell migration and angiogenesis

Previous studies suggested that L-FABP mutations result in the ablation of fatty

acid or cholesterol uptake, even the membrane structure [57-61]. Thus, to examine how

L-FABP interacts with membrane in overexpressed cells, we used site-directed

mutagenesis to generate L-FABP mutant stable clones with the substitution of different
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functional amino acids expressed in Hus cells. As showed in Figure 20A, three mutants

including F3W, K31E, and T94A showed areduced VEGF-A expression level and a

significantly decreased angiogenic activity than that of wild type group (Figure 20B).

However, the migration level down-regulated significantly only in K31E and T94A

mutants, but not in F3W mutant which exhibited minor effect (Figure 21). T94A isthe

most common mutation occurred in Europeans and has been found to affect fatty acid

and cholesterol uptake as aloss-of-function mutation [61]. Thus, to verify this result, we

reduced membrane cholesterol content with MBCD (cholesterol depletion reagent) in

Hus/L-FABP cells, and the result suggested that the VEGF expression, migration

activity, and their related signalsin Hus/L-FABP cells were all down-regulated

significantly (Figure 22, A and B). Taken together, the oncogenic activity of L-FABP

showed a certain degree of correlation to its membrane-binding property.
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8. Corosolic acid significantly decreases the migration activity of Huh7 cells

To study anti-migration effects of corosolic acid (CA) on Huh7 cellsin vitro, we

first treated Huh7 cells with various concentrations of CA for 24 h. Cell viability was

then measured with an MTT assay, and as shown in Figure 29A, CA decreased the

survival rate of Huh7 cells; the 1Cs of cytotoxicity was determined to be 50 uM. Then,
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we performed atranswell assay with Huh7 cells, CA inhibited Huh7 cell migrationina

dose-dependent manner, and the | Csp for migration was found to be 2.5 uM (Figure

29B). Theresultsindicate that CA has arelatively higher inhibitory effect on Huh7 cell

migration than cell viability. (1Cso cytotoxicity/I Cso migration = 20).

9. Corosolic acid inhibits VEGFR2 kinase activity

Previous studies suggest that VEGF/VEGFR signaling can facilitate cancer cell

metastasis [62], and inhibition of VEGFR can reduce HCC cell migration [63]. Thus, to

investigate whether CA inhibits VEGFR activation, we performed immunoprecipitation

to pull down three key VEGFRs in Huh? cells, including VEGFR1, R2, and RS,

followed by blotting with phospho-tyrosine antibody. The results suggest that CA

significantly reduced phosphorylation of VEGFR2 by 70% without affecting total

VEGFR2 expression, while CA exhibited weaker effect to VEGFR1 & R3 (Figure 30).

With a VEGFR2 kinase activity assay, 0.95 uM CA was also found to inhibit VEGFR2

kinase activity by 50% (Figure 31). To examine whether the anti-migration effect of CA

ismediated by VEGFR2, we attenuated endogenous VEGFR2 of Huh7 cells by sSIRNA.

The knockdown cells lost sensitivity to CA-induced inhibition of migration (Figure 32).

Taken together, these results suggest that CA inhibits Huh7 cell migration by inhibiting

VEGFR2 activation.
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10. Corosolic acid decreases cell motility by inhibiting VEGFR2/Src/FAK /cdc42

activity and actin rearrangement

To further elucidate the mechanism underlying the anti-migration effect of CA, we

performed western blot analysis. Treatment with CA decreased the phosphorylation

level of VEGFR2 (Tyr1058), and the phosphorylation level of non-receptor tyrosine

kinase, Src (Tyr416), and focal adhesion kinase, FAK (Tyr397), were also

down-regulated by CA (Figure 33). It was reported previously that focal adhesion

kinase (FAK) is activated by membrane receptors such as RTKs or integrins, then the

Src/FAK complex modulates cell migration and actin rearrangement via Rho-GTPase

pathways. Therefore, using a Rho-GTPase activity assay, we found that active cdc42,

but not active Racl, or active RhoA, is significantly down-regulated by CA treatment

(Figure 34). Recent studies have revealed that cdc42 may play an important role in the

dynamic change of actin and the formation of filopodia during cell migration. To study

whether CA disrupts actin rearrangement in Huh7 cells, we performed a G-actin/F-actin

assay. The results demonstrated that CA treatment reduces the ratio of F-actin/G-actin

(polymer/monomer) by about 50% compared to that of control group (Figure 35A). By

confocal microscopy analysis, we aso found that CA decreases the co-localization of

phospho-FAK (Tyr397) and F-actin on the filopodium (leading edge) in Huh7 cells
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(Figure 35B). Taken together, these results indicate that CA inhibits Huh7 cell migration

by suppressing the VEGFR2/Src/FAK/cdc42 pathway and actin rearrangement.

11. Corosolic acid exhibits anti-tumor effectsin vivo

The effects of CA on tumor growth were investigated in vivo using a xenograft
model. Mice were given daily i.p. injection of CA (5 mg/kg/day). CA had significant
inhibitory effects on tumor growth in NOD/SCID mice injected with Huh7 cells (2 x
10° cells/mice) (Figure 36A). After 21 days of treatment, the mice were sacrificed and
the volume of tumorsin CA-treated group (63 £19 mm3) were much smaller than that
of control group (669 £67 mm3). In addition, the CA-treated group (5 mg/kg/day)
showed 85% reduction in tumor mass compared to that of the control group (Figure
36B). Body weight of mice treated with CA were similar to that of control group
(Figure 36C), suggesting that the dosage of CA administered had no significant toxic
effects to the mice. The levels of Ki-67, phospho-VEGFR2 and phospho-FAK in tumor
lesions were examined by immunohistochemistry; CA reduced the expression level of
Ki-67, and the phosphorylation of both VEGFR2 and FAK significantly in HCC

xenograft mice (Figure 36D).
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12. Synergistic effects of corosolic acid and sorafenib on HCC cells

Sorafenib (Nexavar), a multi-kinase inhibitor including VEGFR2/3, PDGFRf, and

Flt-3, has been used to treat HCC patients and has a significant migration-inhibitory

effect on HCC cells [64]. We performed a transwell assay with both CA and sorafenib

treatment; CA exhibited a migration inhibitory activity comparable with that of

sorafenib (Figure 37A). Ursolic acid (3-hydroxyurs-12-ursen-28-ic acid) (UA) shares a

similar chemical structure with CA and has been implicated in cancer prevention [65].

However, in the transwell assay, UA exhibited no significant anti-migration activity on

Huh7 cells compared to that of CA. We demonstrated that CA has an inhibitory effect

on migration comparable to sorafenib in HCC.

Then, to explore the effects of CA when used in combination with

chemotherapeutic agents for HCC, we studied the combinatoria effects of CA and

sorafenib on migration activity of Huh7 cells. The results of transwell assay

demonstrated that CA has a synergistic effect with sorafenib on cell migration at awide

range of doses (Figure 37B). Moreover, to verify this, we performed a western blot

analysis, and found that CA enhances sorafenib-mediated inhibition of phosphorylation

of VEGFR2, Src, and FAK (Figure 38). Finally, the xenograft model indicated that

combined treatment with CA and sorafenib showed a synergistic effect on tumor growth

(CA 2.5 mg/kg/day with sorafenib 10 or 20 mg/kg/day) (Figure 39). These results
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demonstrate a synergistic interaction between CA and sorafenib in the treatment of HCC

cells.

13. Corosolic acid interacts with the AT P-binding site of VEGFR2 kinase domain
by molecular docking

To further study whether CA decreases phosphorylation of VEGFR2, we used
molecular docking software to analyze the interaction between CA and the kinase
domain of VEGFR2. This analysis suggests that CA may bind to the ATP-binding cavity
of the VEGFR2 kinase domain (Figure 41A). Previous studies suggested that GIn883,
Cys917, and Asp1044 of VEGFR2 are involved in ligand binding through H-bond
interactions [66]. As shown in Figure 41B, CA potentially interacts with GIn883 at a
distance of 2.67A. It also interacts with \Val846, Lys866, Val897, Val914, and Cys1043.
These interactions between CA and the VEGFR2 kinase domain could result in

inhibition of VEGFR2 and subsequent downstream intracellular signaling.

14. Corosolic acid does not exhibit significant inhibitory effectson Huh7 cell
invasion
The matrix metalloproteinases (MMPs) are very important factors on cancer

migration or metastasis [67]. To examine whether corosolic acid (CA) could inhibit
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invasion activity of Huh7 cells, studies on the effects of CA for MM Ps and NF- kappa B

pathway, which is an important event to regulate the MMPs activity were eval uated.

However, in our model, corosolic acid (CA) had no significant inhibitory effect on

Huh7 cell invasion (Figure 46A). The expression level of MMP2 and MMP9 and the

activity of MMP1, MMP2, and MM P9 were not affected by CA treatment (Figure 46B).

The level of phosphorylated kB, IkB, and NFxB was maintained at a stable level

(Figure 47) which suggested that NFkB pathway may not participate in CA effect.
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Discussion

SPart |

Role of L-FABPin hepatocellular carcinoma

HCC is characterized by the high aggressive and angiogenic capacities, and the

angiogenic factor, VEGF, has been considered as one of investigated targets for cancer

therapy in HCC [1, 6]. We reported here for the first time that L-FABP overexpression

plays an important role in VEGF-A expression and cell migration in HCC, and

demonstrates that L-FABP associates with VEGFR2 in cell membrane, following by the

activation of VEGFR2 related signaling, including Src/ FAK/cdc42 and

Akt/mMTOR/HIF-1a. T94A mutation of L-FABP, which was related to the chol esterol

binding activity, significantly decreased the angiogenic potential and migration activity

of L-FABP overexpressed cells.

It has been suggested that L-FABP promotes growth of hepatocyte and protects

cells from ROS by its anti-oxidative activity, which was related to the methionine and

cysteine [68, 69]. Other studies aso found the severa lines of evidencesin correlation

of L-FABPand VEGF [12, 19]. However, the link of L-FABP and tumor malignance

still remains unclear. In the present study, we found a significant increase of L-FABP

expression in tumor part versus their NAT part in 90 HCC patients (p=0.012) by IHC

staining. The well correlation between the expression level of L-FABPand VEGF-A in
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90 clinical tissue pairs of HCC patients was also demonstrated (r=0.737, p<0.01). By

screening of liver cell lines of, we also found that L-FABP expressed higher in

malignant HCC cell lines, HepG2 and Huh7, but lower expressed in immortalized

normal hepatocyte, Hus cells, and the tendency was consistent with that of VEGF-A

expression level. Thus, it strongly suggests that L-FABP may regulate VEGF expression

in HCC. Furthermore, it was suggested that we generated stable clones of Hus/L-FABP

cells, and that the up-regulated VEGF-A expression level and angiogenic potential of

Hus/L-FABP cells were observed by in vitro and in vivo studies. These observations

were aso further proofed by L-FABP knockdown in Huh7 cells and Hus/L-FABP cells

(Figure, 24C and 23B). Previous study has suggested that VEGF is essential for HCC

cell migration [63], therefore, we have observed that the migration activity of

Hus/L-FABP cellsincreased significantly than that of control cells. Knockdown of

L-FABPin Huh7 cells or L-FABP stably expressed Hus cells also showed a decreased

migration activity compared with that of control group (Figure, 24D and 23C). Taken

together, these results suggested that L-FABP overexpression plays a critical rolesin the

angiogenic potential and migration activity of HCC cells, which could be reversely

regulated by RNA knockdown technol ogy.

In previous study, L-FABP has been suggested to be interacted with cell membrane
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[11], however, most studies focused on its biological function in transport fatty acids

and the regulation to lipid metabolism [70]. However, in this study, we found that

L-FABP co-localized with VEGFR2 on membrane rafts of L-FABP overexpressed cells.

Previous study has reported that L-FABP co-expressed with VEGF in cell membrane

[19]. Other studies aso suggested that lipid rafts seemed to be capable of acting in

signaling platform [71-73]. Comply with this, our confocal microscopy analysis

suggested the co-localization of L-FABP and VEGFR2 on apical membrane of

Hus/L-FABP and Huh7 cells (Figure 7 and Figure 25). The downstream signal proteins

including Src/ FAK and PI3K/Akt showed an increased level in membrane fraction.

Knockdown of VEGFR2 in Hus/L-FABP cells decreased the phosphorylation level of

these downstream signal molecules (Supplementary, Figure 1). Moreover, by protein

docking software, we predicted two possible interacting model of L-FABP and

VEGFR2 kinase domain (Supplementary, Figure 2). As aresult, our observation

provides a possible mechanism of how L-FABP activates VEGFR2 signaling.

The regulation of VEGF in HCC has been highlighted since its related pathway

plays an important role in cancer progression [2]. In fact, only the anti-VEGFR2 therapy

revealed a significant benefit on clinical HCC patients, and was approved by FDA [9].

In our experiment, we found that the increased VEGF-A expression was via transation
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regulation of PI3K/Akt and its downstream mTOR/P70S6K/4EBP1 pathway. Since
VEGF-A could be regulated by HIF-1a in transcription level of cancer cells, in our
model, both MRNA level and transcriptiona activity of VEGF-A showed a significant
up-regulation by L-FABP overexpression. Interestingly, previous study also showed that
L-FABPrevealed a positive correlation with VEGF-A in mRNA level [12]. Taken
together, these data suggested the possible mechanism which regulates VEGF-A

expression in HCC cells.

L-FABPisthe only member of mammalian FABP family to transfer fatty acidsto
membranes by agueous diffusion [74], furthermore, direct interaction of L-FABP and
PPARGa has also been reported for ligand trafficking to nucleus [75]. Therefore, the
studies on ablation or mutation of L-FABP protein in normal hepatocyte has been
studied for along time. In L-FABP knockout mice, it showed decreased lipid
metabolism and exacerbated obese phenotype with high-fat diet [70, 76]. For the
mutation studies, L-FABP (F3W) and (K31E) mutants showed a significance decreased
binding ability to phospholipid [57, 58]. Moreover, L-FABP (T94A) mutant altered
structure and stability of L-FABP and caused aloss-of-function [59-61]. In present
studies, we have mutated four amino acids which located in different domains of

L-FABP protein (Supplementary, Figure 3): F3to W ( sheet A, N-terminal), K20 to E
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(a-helix 1), K30 to E (a-helix I1), T94 to A (B sheet G, C-terminal) to examine the

functional amino acids of L-FABP in L-FABP induced angiogenesis and migration. The

results demonstrated that a decreased level of VEGF in L-FABP K31E and T94A

mutants, and a significant down-regulation in migration activity. The treatment of

MPBCD, a membrane cholesterol depletion agent [77] with Hus/L-FABP cells also

support the above-mentioned observation, and it suggests that the cholesterol-binding

activity of L-FABPisindispensable to its function. Taken together, the function of

L-FABPin cell membrane not only for metabolism, but also for its oncogenic role in

HCC timorigenesis.

Previous studies reported that L-FABP promoted diet induced fatty liver disease

and hepatic steatosis [78]. It aso suggested that VEGF level was correlated with HCC

malignance and poor prognosis [79]. In the present study of clinical sample data, we

found that L-FABP up-regulated significantly in HCC patients, with and without

cirrhosis. Moreover, in the cirrhosis patients, high L-FABP expression indicated high

risk and poor survival time (Figure 26). Previous study suggested that it needs

“angiogenic switch” to become a solid HCC tumor [80], and VEGF showed an

autocrine feed-forward loop to trigger angiogenesis [55, 81], Since the correlation of

L-FABP expression and HCC progression remains unclear, and there was no appropriate
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prognosis marker in HCC with cirrhosis [82], L-FABP may serve as a potential research

target Pr further sudies.

SPart 11

Effects of corosolic acid on hepatocellular carcinoma

CA isan ursane-type triterpenoid, and is known to be a STAT3 inhibitor in

macrophages, myeloid cells, and ovarian cancer cells [30-32]. CA aso has a significant

inhibitory effect on endothelial angiogenic tube formation [29], and tumor growth in

lung and ovarian cancer cells[31, 33]. In this study, we found that CA significantly

reduced the migration activity of HCC cells, including Huh7, HepG2 and Hep3B at a

low-cytotoxicity dosage. When combined with sorafenib, CA showed synergistic effects

on HCC cell growth and migration. An in vivo xenograft mouse model was used to

verify the anti-HCC activity of CA, which showed significant inhibitory effects on

Huh7 cells at 5 mg/kg/day.

VEGFR2 isthe mgjor receptor in the VEGF signaling pathway that regulates cell

migration, proliferation, and angiogenesis. This study revealed that CA reduces the

tyrosine phosphorylation level of VEGFR2, with an ICsg of kinase activity of 0.95 uM.

Further studies aso found that CA suppressed the activation of Src, FAK, and cdc42.
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These results provide a potential mechanism for the anti-migration effects of CA on

Huh7 cellsin HCC.

The inhibition of VEGFR2 has been proposed as a novel therapeutic strategy for

HCC patients. Various VEGFR2 kinase inhibitors such as sorafenib, sunitinib, and

linifanib were developed and used in clinical trials. Recently, anti-HCC therapy with

sorafenib has been approved by FDA [9, 64]. To further investigate how CA inhibits

VEGFR2, a structure-based interaction model between CA and VEGFR2 was devel oped

by molecular docking analysis. The results suggest that the ATP binding pocket in the

VEGFR2 catalytic domain binds CA with lower binding energy than ATP (-15.2

kcal/mol versus -12.3 kcal/mol). Moreover, the surface charge distribution of VEGFR2

demonstrated that the OH groups of CA showed stable interactions with the ATP

binding pocket. It aso revealed that most uncharged areas of CA could generate

hydrophobic forces with valine and cysteine resulting in stabilizing the binding affinity.

This strongly suggests that the binding of CA to the ATP-binding pocket of VEGFR2

mediates the down-regulation of VEGFR2 phosphorylation and subsequent signals.

Furthermore, the combination of CA and sorafenib had significant synergistic effects on

Huh7 cell migration and VEGFR2 phosphorylation. The in vivo combinatorial

experiment further verified that CA combined with sorafenib shows potential for HCC
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treatment without toxic effects to mice (data not shown). We also observed that CA
down-regulated the phosphorylation level of Src and FAK kinases when combined with
sorafenib, since sorafenib aone did not show any inhibitory effect to the activation of
FAK kinase in the xenograft model. Collectively, these results indicate that CA shows
potential as anovel VEGFR2 inhibitor or an adjuvant therapy to be used with existing

anti-cancer drugs.

Previous studies have discussed the pharmacophore modeling of different VEGFR2
inhibitors [66]. These inhibitors could be divided in two types, sunitinib-like or
sorafenib-like, depending on the interacting hydrogen bonds. The binding of type |
inhibitor (sunitinib) formed hydrogen bonds with Asp1044, Cys917, and Asn921 near
the protein surface. On the other hand, the type Il inhibitor (sorafenib) could interact
with Asp1044, Cys917, and Glu883. By docking analysis, we found that CA formed
hydrogen bond and relatively closed to Glug83 than Asn921 (2.67 A versus9.2 A,
Figure 42). Although the interaction model of CA with VEGFR2 are likely to sorafenib,
however, the chemical structure of CA varied widely with both two types of VEGFR2
inhibitor. Thus, it could be interesting to explore and design novel VEGFR2 inhibitors

based on present findings.
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Summary

We have been focusing on finding out novel oncogenic mechanisms and therapeutic
agents of HCC, and the first study reveals for the first time that L-FABP potently
induces the up-regulation of VEGF-A and increases angiogenic potential and migration
activity in HCC cells. The results also suggest that the function of L-FABPin HCC
could be influenced by mutationsin its cholesterol interaction sites. When considered
alongside previous studies, our findings indicate that L-FABPis a potential therapeutic
target in HCC therapy. Next, we demonstrates that corosolic acid could be a potential
anti-HCC agent. We provide evidence that CA’'s anti-cancer effects stem from its
anti-migratory effect, by blocking the VEGFR2 ATP binding pocket and
down-regulating the downstream Src/FAK/cdc42 signaling axis. This study further
demonstrates that the combination of CA and sorafenib may have potential asa

chemotherapy for HCC.

53



L-FABP staining VEGF-A staining

(A) Tumor NAT Tumor NAT
: b f | L) ,‘::',;: t ;: 4 ' ; f ?r"?-‘."- 28 A
'\‘:‘;’ i -4 .l » 7.-.‘1:'# :
Lo w \ 2 é ' 2
Ny g e ‘\__‘ Hoym ARY - 0
‘ 5%
c N aff w g R | &
Py 1 ~ Ll g ﬂi.:".‘j
: [~ o7
Lo 2} 4 v Ek
3 ¥
oo b m o
: ? + »F
gk i P
25 B v
£ }J;’ gj - ¢
p— oy g & 5
(B)
T, without cirrhosis
T, with cirrthosis
250
200+ ‘
< ®
& 150 c ‘() i
8 o®
>
100+
Fox
50
p<001
U T T T T
50 100 150 200 250 300
L-FABP

Figure 1. Correlation between the expression levels of L-FABPand VEGF-A
L-FABPand VEGF-A expression in 90 cases of HCC patients (normal and tumor paired
tissue) was examined by IHC staining. (A) Representative images of different
expression levels of HCC tissue pairs. a-d: Staining of L-FABP was observed in tumor
parts (aand ¢) and their normal adjacent tissues (b and d). a: Strong staining; b and c:
moderate staining; d: weak staining of L-FABP IHC results. e-h: Staining of VEGF-A
was observed in tumor parts (e and g) and their normal adjacent tissues (f and h). e
Strong staining; f and g: moderate staining; h: weak staining of VEGF-A IHC results. (B)
Correlation between L-FABP and VEGF-A expression in 90 HCC tissues (with and
without cirrhosis). L-FABP exhibited a positive correlation with VEGF-A by the

Pearson correlation coefficient (r = 0.737, **p < 0.01).
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Figure 2. L-FABP expression is associated with VEGF-A expression of HCC cells.
(A) Western blot analysis for L-FABP expression in normal immortalized hepatocyte
(Hus) and hepatocellular carcinoma cell lines (HepG2, Hep3B, Huh7 and PLC/PRF/5).
(B) Angiogeic potentia of Hus, HepG2, Hep3B, Huh7 and PLC/PRF/5 cells was
assessed by HUVEC endothelial cell tube formation assay. *p < 0.05, **p < 0.01 versus

control group (Hus cells).
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Figure 3. Expression level of VEGF-A isup-regulated Hus cells stably expressed

L-FABP.

L-FABP was stably expressed in Hus cell using pcDNAS3.1 expression system. The
vector only cells were used as control group. (A)The protein expression level of
L-FABPand VEGF-A was analyzed by western blotting. (B) The mRNA expression

level of VEGF-A was determined by qRT-PCR. *p < 0.05, versus control group

(Hus/Vector cells).
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Figure4. L-FABP promotes in vitro and in vivo angiogenic activity of Hus cells.
(A) Thein vitro angiogenic activity was studied by tube formation assay which
performed by HUVEC endothelial cellsto determine angiogenesis activities of
Hus/Vector and Hus/L-FABP cells. Angiogenic vascular tube was imaged at 8 h. The
guantification of S.CORE tube formation was shown as pandl bar. ***p < 0.001 versus
control group (Hus/Vector cells). (B) The in vivo angiogenic activity was studied by
matrigel plug in assay. Left: Macroscopic view of matrigel plugs recovered from mice
injected with Hus/Vector and Hus/L-FABP cells, and the infiltration of blood vessels
wereindicated by arrows. (C) Immunohistochemical staining of CD31 (angiogenesis
marker) in matrigel plugs were presented and quantified. n=3, *p < 0.05 versus control

group (Hus/Vector cells).
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Figure5. Sequence aliment of L-FABP interacting domains

Amino acid sequence alignment of L-FABP interacting domains, including: CD36 TSP
binding domain, DSLR cytoplasmic domain, integrin al cytoplasmic domain, and
integrin a2 cytoplasmic domain. Strictly conserved residues are highlighted in blue;

residues with similar property are highlighted in green, respectively.
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Figure 6. Co- immunoprecipitation of L-FABP and VEGFR2 in Hus/L-FABP cells
(A) The cell lysates of Hus/Vector and Hus/L-FABP cells were subjected to
immunoprecipitation (IP) with VEGFR2 antibody, followed by blotting with L-FABP,
or L-FABP antibody, followed by blotting with VEGFR2. (B) Cell lysates (50 ng) were

immunobl otted as input control.
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Figure7. L-FABP associates with VEGFR2 in apical membrane of Hug/L-FABP
cells

(A) Cellswerefixed and stained with antibodies against to VEGFR2 and L-FABP.
Three-color confocal images were acquired on a ZEISS, LSM 510 META Confocal
Microscope (Magnification, 63 x). (B) Red or green lines showed the X-Z or Y-Z
optical section of Hus/Vector and Hus/L-FABP cells, respectively. The co-localization

of VEGFR2 and L-FABP on the upside of cellswas indicated by red arrows.
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Figure 8. Localization of L-FABP and signaling moleculesin lipid rafts
Membrane localization of L-FABP, VEGFR2, PI3K (p85), phospho-Akt (Ser473), Akt,

phosho-Src (Tyr416), Src, FAK and phosho-FAK (Tyr397) in Hus/L-FABP or control

cells. Membrane rafts were obtained by sucrose gradient based ultra-centrifugation and

analyzed by western blot analysis (Fraction #3~#5).
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Figure9. L-FABP increasesthe phosphorylation level of VEGFR2 in Hus cells
Phosphorylated levels of VEGFR2 in Hus/Vector and Hus/L-FABP cells were analyzed
by immunoprecipitation (1P) of VEGFR2 antibody and blotted with phospho-tyrosine

antibody. *p < 0.05 versus control group (Hus/Vector cells).
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Figure 10. L-FABP increasesthe phosphorylation level of Src and FAK kinasesin

Huscdls

Phosphorylated level of Src (Tyr416) and FAK (Tyr397) in Hus/Vector and

Hus/L-FABP cells were analyzed by western blot analysis. **p < 0.01 versus control

group (Hus/Vector cells).
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Figure 11. L-FABP promotes cdc42 activity of Hus cells
Small GTPase binding assay was carried out to Hus/L-FABP or control cells. Active
cdc42 and Racl were detected by western blot analysis, however, active RhoA was not

detectablein this study. For cdc42 activity, ***p < 0.001 versus control group

(Hus/Vector cells).
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Figure 12. Analysis of migration activity of L-FABP stably expressed Hus cells

(A) Wound-healing migration assay of Hus/Vector and Hus/L-FABP were performed to
examine two-dimensional migration activity and the migrated distance during the
designated period was quantified. ***p < 0.001 versus control group (Hus/Vector cells).
(B) For studying three-dimensional migration activity, Hus/Vector and Hus/L-FABP
were seeded onto Boyden chambers and allowed to migrate toward 10% serum

containing medium for 16 h. ***p < 0.001 versus control group (Hus/Vector cells).
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Figure 13. L-FABP up-regulates migration activity through VEGFR2/ Src pathway
Hus/L-FABP cells were treated with PP1 (Src inhibitor; 5, 10 uM, respectively) or
Sorafenib (VEGFR2 inhibitor; 1, 2, 4 uM, respectively) for 16 h and analyzed by

transwell assay. ***p < 0.001 versus control group (DM SO only treated cells).
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Figure 14. L-FABPactivatesAkt/ mTOR/ P70S6K/ 4EBP1 signaling
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The phosphorylation level of Akt (Ser473), mTOR (Ser2448), P70S6K (Thr421/Ser424)

and 4EBPL (Thr37/46) in Hus/Vector and Hus/L-FABP cells were studied by western

blot analysis. *p < 0.05, **p < 0.01 versus control group (Hus/Vector cells).
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Figure 15. HIF-1a significantly increases in the nucleus of L -FABP overexpressed
cells

Nucleus and cytoplasmic localization of HIF-1a in Hus/L-FABP cells was studied, and
a-tubulin and lamin A/C were represented as |oading controls for cytoplasmic and
nucleus, respectively. Note that HIF-1a level wasincreased in Hus/L-FABP cells 1.7
fold higher than that of control group as the bar graph. *p < 0.05 versus control group

(Hus/Vector cells).
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Figure 16. Role of HIF-1a in VEGF-A transcriptional activity of L-FABP
overexpressed cells

The diagrams of the receptor constructs of full length and various del etion mutants of
VEGF-A promoter (D1-D3) were showed as the graph. The luciferase activity of cell
extracts was analyzed by luciferase reporter assay, and the data were presented as bar
graph. For comparing full length activity, ***p < 0.001 versus control group
(Hus/Vector cells); for deletion experiments, ***p < 0.001 versus control group
(Hus/L-FABP cells); for adding HIF-1a inhibitor, ***p < 0.001 versus control group

(Hus/L-FABP cells).
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Figure 17. Post-transcriptional regulation of VEGF-A in L-FABP stably expressed
Huscélls

(A) Hus/L-FABP cells were treated with Rapamycin (mTOR inhibitor) or
cyclohexamide for 12 h and analyzed by western blot analysis. (B) On the other hand,
Hus/Vector cells were treated with MG132 (proteasome inhibitor) for 24 h and analyzed
by western blot analysis. (C) Cells were treated with Rapamycin or cyclohexamide for
12 h and the conditioned medium were subjected to tube formation assay to measure the
in vitro angiogenic activity. Angiogenic vascular tube wasimaged at 12 h and the
guantification of S.CORE tube formation was shown as pandl bar. ***p < 0.001 versus

control group (DM SO only treated Hus/L-FABP cells).
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Figure 18. L-FABP promotestumor growth in vivo

To study the effect of L-FABP on tumor growth, 2 x 10° of Hus/L-FABP or control cells
were subcutaneously injected into the hind limb of NOD/SCID mice, and the resulting
in situ tumors were removed 8 weeks later for analysis. (A) Representative photograph
and average weight of tumors are presented. (n=5 per group). (B) VEGF-A contentsin
serum of the above mice were measured and presented in the bar graph. (C) The tumor
sections analyzed by H& E staining (a & b) or anti-CD31 antibody IHC staining (¢ & d)
indicated the strong angiogenesis activity in Hus/L-FABP mice group. Imagea & ¢

indicated Hus/Vector group; b & d indicated Hus/L-FABP group.
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Figure 19. L-FABP promotesin vivo metastasis by lung metastasis model

The metastatic activity of Hus/L-FABP cells was carried out by lung metastasis model.
5 x 10° of Hus/L-FABP or control cells were intravenously injected into the |ateral tail
vein of NOD/SCID mice. After 10 weeks, the lungs were excised from each mice for
analysis. (A) Metastatic nodul es were presented and counted (n=5 per group). (B) The
immunohistochemistry analysis by H& E staining (a, b, d and e) or anti-CD31 antibody
IHC staining (c and f) were also studied. Image a— c indicated Hus/Vector group; d —f
indicated Hus/L-FABP group. **P < 0.01 versus control group (mice injected with

Hus/Vector cells).
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Figure 20. Effects of L-FABP mutantsin VEGF-A expression

(A) Different mutant types of L-FABP stable expressed cells were generated by site

directed mutagenesis, and the expression levels of L-FABP and VEGF-A (both

intracellular level and extracellular level) were analyzed by western blotting. (B) Thein

vitro angiogenic activity of these mutants was studied by tube formation assay. ***P <

0.001 versus control group (L-FABP/WT cells). Amino acids substitution: afor L-FABP

(wild type), b for L-FABP (F3 to W), c for L-FABP (K20 to E), d for L-FABP (K31 to

E), and efor L-FABP (T94t0A)
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Figure 21. Effects of L-FABP mutantsin migration activity

Migration activity of these mutants was carried out by transwell assay. **P < 0.01, ***P
< 0.001 versus control group (L-FABP/WT cells). Amino acids substitution: afor
L-FABP (wild type), b for L-FABP (F3 to W), c for L-FABP (K20 to E), d for L-FABP

(K31toE), and efor L-FABP(T94t0A)
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Figure 22. Cholesterol associating properties are essential for L-FABP induced cell
migration and angiogenesis.

Hus/L-FABP cells were treated with MBCD (cholesterol depletion agent; 5, 10, 20 mM,
respectively) for 12 h and analyzed by (A) transwell migration assay and (B) western
blot analysis. *p < 0.05, **p < 0.01, ***p < 0.001 versus control group (DMSO only

treated cells).
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Figure 23. Knockdown of L-FABPin Hus/L-FABP cellsrever sely decreases
VEGF-A expression and migration activity

(A) Hus/L-FABP cells were transfected with control or L-FABP targeting siRNA for 24
h, and the expression levels of L-FABP and VEGF-A were examined by western blot
analysis. **p < 0.01, ***p < 0.001 versus control group. (B) The L-FABP siRNA
treated cells were performed to tube formation assay to study in vitro angiogenic
activity. Angiogenic vascular tube wasimaged at 12 h. ***p < 0.001 versus control
group. (C) The L-FABP siRNA treated cells were seeded onto Boyden chambers and

allowed to migrate for 16 h. ***p < 0.001 versus control group.
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Figure 24. Knockdown of L-FABPin Huh7 cellsdown-regulates VEGF-A
expression and migration activity

(A) Huh? cells were transfected with control or L-FABP targeting shRNA plasmid, and
screened with puromycin for L-FABP stably knockdown clones. The expression levels
of L-FABP and VEGF-A in selected two clones were examined by western blot analysis.
(B) Thein vitro angiogenic activity was studied by tube formation assay which
performed by HUVEC endothelial cellsto determine angiogenesis activities of L-FABP
stably knockdown Huh7 cells. Angiogenic vascular tube was imaged at 8 h. The
guantification of S.CORE tube formation was shown as panel bar. ***p < 0.001 versus
control group. (C) Thein vivo angiogenic activity was studied by matrigel plug in assay.
Left: Macroscopic view of matrigel plugs recovered from mice injected with
Huh7/shRNA control cells or Huh7/L-FABP shRNA cells, and the infiltration of blood
vessels was indicated by arrows. Right: Immunohistochemical staining of CD31
(angiogenesis marker) in matrigel plugs were presented and quantified. n=3, p=0.067.
(D) The Huh7/L-FABP shRNA stable clones were seeded onto Boyden chambers and

allowed to migrate for 16 h to study 3D migration activity. ***p < 0.001 versus control

group.
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Figure 25. Reduction of L-FABP and VEGFR2 co-localization on membraneis

(A)

Huh?/
shRNA control

Huh7/
L-FABP shRNA #3

(B)

observed in Huh7 L-FABP stably knockdown cells

(A) Huh7 L-FABP stably knockdown cells were fixed and stained with antibodies
against to VEGFR2 and L-FABP. Three-color confocal images were acquired on a
confocal microscope (Magnification, 63%). (B) Red or green lines showed the X-Z or
Y-Z optical section of Huh7/shRNA control and Huh7/L-FABP shRNA cells,
respectively. The co-localization of VEGFR2 and L-FABP on the upside of cellswas
indicated by arrows. The Signals of upper images were presented by different colors:

L-FABP-Alexa 488 (green); VEGFR2-Alexa 568 (red); and DAPI (blue).
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Figure 26. Aberrant overexpression of L-FABPin HCC tissues (with cirrhosis) is

associated with wor se outcome
Kaplan-Meier survival curves demonstrate that L-FABP high group (n=3) has a

shortened survival time compared with that of the L-FABP low group (n=30). ***p <

0.001.
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Figure 27. Cytotoxicity and migration inhibitory effect of Actinidia chinensis on
Huh7 cells

(A) Huh7 cells were treated with 0.1% DM SO (control) or various concentrations of A.
chinensis (AC) for 24 h and cell viability was determined with an MTT assay. Results
are presented as mean value £ SE. (**P < 0.01, ***P < 0.001 compared with the DM SO
treated group). (B) Migration activity of Huh7 cells was inhibited by A. chinensis. The
control cells were treated with 100 uLL ddH2O, and the migration activity of Huh7 cells
was inhibited by A. chinensis in a dose-dependent manner. Results are presented as

mean value = SE. (***P < 0.001 compared with the water treated group)
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Figure 28. HPL C analysis of Actinidia chinensis
High-Performance liquid chromatographydiode array (HPLC-DAD)/ELSD

chromatography was used to examine compounds in A. chinensis. The conditions for

analysis are described in the methods section.
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Figure 29. Migration activity of Huh7 cellsisinhibited by corosolic acid without

cytotoxicity

(A) Huh7 cells were treated with 0.1% DM SO (control) or various concentrations of

corosolic acid for 24 h and cell viability was determined with an MTT assay. (B) The

migration activity of Huh7 cells was inhibited by corosolic acid in a dose-dependent

manner. (n=3, **P<0.01, ***P < 0.001 compared with the DM SO treated group)
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Figure 30. Corosolic acid reduces phosphorylation level of VEGFR2

Huh7 cells were treated with 0.1% DM SO (control) or corosolic acid for 15 min and
lysates were immunoprecipitated with anti-VEGFR1, VEGFR2, and VEGFR3 Ab,
followed by blotting with anti-phospho-tyrosine Ab. (For VEGFR2, n = 3, ***P < 0.001

compared with the DM SO treated group)
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Figure 31. Corosolic acid reduces VEGFR2 kinase activity
ADP-Glo Kinase Assay (Promega, Madison, USA) was performed to assess the
inhibitory effect of corosolic acid on VEGFR2 kinase activity. (n = 3, RLU datawere

normalized to the control group and shown as percentages)
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Figure 32. CA-induced inhibition of migration activity in Huh7 cellsisVEGFR2

dependent

Huh7 cells were transfected with 100 nM KDR siRNA or control s RNA, recovered for

24 h, and treated with 0.1% DM SO (control) or CA. Migration activity was assessed

with atranswell assay. (n =3, **P < 0.01, ***P < 0.001 compared with the DM SO

treated cellsin Huh7 control SsIRNA group)
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Figure 33. Corosolic acid down-regulates VEGFR2 downstream signals

Huh7 cells were treated with 0.1% DM SO (control) or corosolic acid for 30 min, and

the phosphorylation level of VEGFR2 (Tyr1058), Src (Tyr416), and FAK (Tyr397) were

analyzed by western blot. (n =3, *P < 0.05, **P < 0.01 compared with the DM SO

treated group)
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Figure 34. Corosolic acid inhibits cdc42 activity
Huh7 cells were treated with 0.1% DM SO (control) or corosolic acid for 6 h, and
Rho-GTPase activity was examined with a GST pull-down assay and western blot

analysis. (For cdc42, n = 3, **P < 0.01 compared with the DM SO treated group)
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Figure 35. Effect of corosolic acid on actin rearrangement

(A) Huh? cells were treated with 0.1% DM SO (control) or corosolic acid for 6 h, and
fractions containing either F-actin or G-actin were separated by procedures outlined in
materials and methods. The ratio of F-actin and G-actin were then calculated. (n = 3,
***P < (0.001 compared with the DM SO treated group) (B) Huh7 cells were treated with
0.1% DM SO (control) or corosolic acid for 6 h followed by immunocytochemistry
staining. The phalloidin-stained Factin (red) and p-FAK (green) co-localized at the

leading edge of control cells.
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Figure 36. Corosolic acid exhibits significant anti-tumor effectson Huh7 cellsin
Vivo

2 x 10° of Huh7 cells were subcutaneously injected into the hind limb of NOD/SCID
mice (n =5). Corosolic acid (5 mg/kg/day) was administered by intraperitoneal
injection for 21 days. (A) Representative appearance of excised tumor, and tumor
volume was measured every 5 days. (*P < 0.05, **P< 0.01, ***P < 0.001 compared
with the DM SO treated control group) (B) Weight of tumor mass. (*P < 0.05, compared
with the DM SO treated control group) (C) Body weight between mice treated with and
without corosolic acid. (D) Immunostaining of Ki-67, pVEGFR2

(Tyr951) and p-FAK (Tyr397) in excised tumor in mice. Single staining was done on

several sections.
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Figure 37. Combinatorial effects of corosolic acid and sorafenib on migration
activity of Huh7 cells (A) Dose dependent migration inhibitory effects of corosolic acid
and sorafenib on Huh7 cells. The control group was treated with 0.1% DM SO and the
experimental groups were treated with indicated compounds. (n = 3,

**P<0.01, ***P < 0.001 compared with the DM SO treated group) (B) Transwell assay
were performed to determine anti-migration effect of corosolic acid and sorafenib. The
combination index (Cl) values were examined at different levels of migration inhibition
effect (fa), and the effective combination treatments between corosolic acid and

sorafenib (Cl < 1) were displayed.
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Figure 38. Combinatorial effects of corosolic acid and sorafenib on signaling
molecules of Huh7 cells

Huh7 cells were treated with 0.1% DM SO (control), corosolic acid, sorafenib, or
combination of corosolic acid and sorafenib for 30 min, and the lysates were analyzed

by western blot. (n=3)

93



CA (mg/kg/day) O 25 50 0 0 25 25 50 50 e Control (DMSO)

Sorafenib (mg/ kg/ day) 0 0 0 10 20 10 20 10 20 —6— CA2.5 mg/kg/day
—w— CA5.0 mg/ kg/ day

—a&— Sorafenib 10 mg/ kg/ day
o= . —m— Sorafenib 20 mg/ kg/ day

—0— CA 2.5 (mg/ kg/ day) + Sorafenib (10 mg/ kg/ day)

: e , s . ® & e 1250 —+— CA 2.5 (mg/ kg/ day) + Sorafenib (20 mg/ kg/ day)

i —O— CA5.0 (mg/ kg/ day) + Sorafenib (10 mg/ kg/ day)

= . —a— CA5.0 (mg/ kg/ day) + Sorafenib (20 mg/ kg/ day)

1cm

1000

750

CA  Sorafenib (Fa) (cn
(mg/ kg/ day)(mg/ kg/ day)
25 10.0 0.82 0.92
25 20.0 0.96 0.66
5.0 10.0 0.89 1.20
5.0 20.0 0.88 1.52

500 t

Tumor volume (mm3)

250

Time (days)

-
(8]
1

Control (DMSQ)

CA 2.5 mg/ kg/ day

CA 5.0 mg/ kg/ day

Sorafenib 10 mg/ kg/ day

Sorafenib 20 mg/ kg/ day

CA 2.5 (mg/ kg/ day) +Sorafenib 10 (mg/ kg/ day)

. CA 2.5 (mg/ kg/ day) +Sorafenib 20 (mg/ kg/ day)

. CA 5.0 (mg/ kg/ day) +Sorafenib 10 (mg/ kg/ day)
CA 5.0 (mg/ kg/ day) +Sorafenib 20 (mg/ kg/ day)

—

o

T
©COENOO AN =

o
NN
T

ok

- [] ﬁ;mm
5 6 7 8 9

1 2 3 4

Tumor weight (g)
o o
[42] o]
—
b

o
N
T
*
*
*

Figure 39. Combinatorial effects of corosolic acid and sorafenib on Huh7 cells by
in vivo xenogr aft model

For thein vivo combinatorial study, Huh7 cells (5 x 10°) were subcutaneously injected
into each mouse. After 7 days, when the tumors reached 50 mm?, the mice were
randomized into different groups. CA (2.5, 5 mg/kg), sorafenib (10, 20 mg/kg), or a
combination of the two was administrated daily viaintraperitoneal injection for 20 days
the tumor volume was recorded every 3 to 4 days. Weight of tumor mass (n=5, **P<
0.01, ***P < 0.001 compared with the DM SO treated control group) and synergistic

effects (Cl < 1) between different combination group.
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Figure 40. Inhibitory effects of corosolic acid combined with sorafenib on Src and

FAK kinasesin vivo

Xenograft tumors excised from mice were homogenized in RIPA buffer and analyzed by

western blotting. (n = 4 for each group, *P < 0.05, **P < 0.01 compared with the

DM SO treated control group)
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(A)

(B) N 883

Figure4l. Corosolic acid interacts with the AT P-binding site of VEGFR2 kinase
domain by molecular docking analysis

(A) Thethree-dimensional diagram displays the interaction of corosolic acid to the ATP
binding site of VEGFR2 (PDB code: 1YWN). (B) Theinteraction of corosolic acid with
the amino acid residues in the ATP-binding site; Glu883 significantly contributes to

binding.
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(A)

Figure 42. Analysis of relative distance and surface charge distribution between
corosolic acid and VEGFR2 ATP binding pocket

(A) The Glu883 residue was represented by cyan color, and Asn921 residue was showed
by pink color. The yellow dotted line means the distance between corosolic acid with
these two residues. (B) The surface charge distribution was displayed by PyMOL
software. The negative charge, positive charge, and hydrophobic area were represented

by red, blue, and white color, respectively.
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Figure 43. Corosolic acid inhibits growth of Huh7, HepG2, and Hep3B cells
Cellswere treated with 0.1% DM SO (control) or varying concentrations of corosolic
acid for 24 h, and the growth inhibition effect of corosolic acid was determined by SRB
assay. Results are presented as mean value = SE. (**P < 0.01, ***P < 0.001 compared
with the DM SO treated group); combinatorial effects of corosolic acid and sorafenib on

HCC cell growth are displayed on the right side of each chart.
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Figure 44. Cytotoxicity and migration-inhibitory effects of corosolic acid on HepG2
cells
(A) HepG2 cells were treated with 0.1% DM SO (control) or various concentrations of
corosolic acid for 24 h and cell viability was determined with an MTT assay. Results are
presented as mean value + SE. (*P < 0.05, ***P < 0.001 compared with the DM SO
treated group) (B) The migration activity of HepG2 cells was inhibited by corosolic acid
in a dose-dependent manner. Results are presented as mean value + SE. (***P < 0.001
compared with the DM SO treated group) (C) Combinatorial effects of corosolic acid

and sorafenib on HepG2 cell migration are displayed by CI value.
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Figure 45. Cytotoxicity and migration-inhibitory effects of corosolic acid on Hep3B
cells

(A) Hep3B cells were treated with 0.1% DM SO (control) or various concentrations of
corosolic acid for 24 h and cell viability was determined with an MTT assay. Results are
presented as mean value £ SE. (***P < 0.001 compared with the DM SO treated group)
(B) The migration activity of Hep3B cells was inhibited by corosolic acidin a
dose-dependent manner. Results are presented as mean value + SE. (**P < 0.01, ***P<
0.001 compared with the DM SO treated group) (C) Combinatoria effects of corosolic

acid and sorafenib on Hep3B cell migration are displayed by ClI value.
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Figure 46. Corosolic acid doesn’t exhibit significant inhibitory effect on invasion
activity of Huh7 cells

(A) Matrigel invasion assay was used to analyze the invasion activity of Huh7 cells. (B)
Expression levels of MMP-2 and MM P-9 were carried out by western blot anaysis. (C)

Zymography assay was used to examine the activity of MMP-1, MMP-2 and MM P-9.
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Figure 47. Corosolic acid shows no inhibitory effect on NFkB signaling
Huh7 cells were treated with 0.1% DM SO (control) or corosolic acid for 12 h, and

The lysates were examined by western blot analysis.
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Table 1. Correlation between L-FABP and VEGF-A protein expression in tissue
pairsfrom 90 HCC patients

Intensity NAT, N HCC HCC with Pvalue®  Pvalue © P value ¢ P value © P value f
a (%) without cirrhosis,
cirrhosis, N N (%)
(%0)
L-FABP 1 15(44.1) 8(23.5) 11 (32.4) 0.012 0.028 0.027 0.040 0.086
2 72(55.0) 40 (305) 19 (14.5)
3 3(20.0) 9 (60.0) 3(20.0)
VEGF-A 1 25(48.1) 12 (23.1) 15 (28.8) 0.025 0.563 0.360 0.037 0.017
2 65(512) 45(354)  17(13.4)
4 0(00) 0 (0.0) 1 (100.0)

Abbreviations: HCC, hepatocellular carcinoma; OR, odds ratios; CI, confidence interval; N, number.
2 Intensity: 0, negative; 1, weak positive; 2, moderate positive; 3, strong positive.

b Chi-square test, NAT vs HCC without cirthosis vs HCC with cirrhosis.

¢ Chi-square test, NAT vs HCC with or without cirrthosis.

4 Chi-square test, NAT vs HCC without cirrhosis.

¢ Chi-square test, NAT vs HCC with cirrhosis.

 Chi-square test, HCC without cirrhosis vs HCC with cirrhosis.

Table 2. Clinical characteristics of the casesincluded in analyses of L-FABP
protein expression evaluated by immunohistochemistry

Characteristics NAT, N=90 HCC without cirthosis, HCC with cirrhosis, P value
N=57 N=33

Age (years), Mean + SD 53.5+£10.0 542 +103 522+£96 0.650 2

Sex, N (%)

Female 8 (13.3) 6 (10.5) 6 (18.2) 0.589 b

Male 78 (86.7) 51 (89.5) 27 (81.8)

Abbreviations: HCC, hepatocellular carcinoma; N, number.
a.  ANOVA test.

b. Chi-square test.

c. One age miss data.
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Table 3. Association of L-FABP protein expression with clinical pathologic

characteristicsin patientswith HCC

Characteristics Low (1) Intermediate (2) High (3) P value
Age (vears) Mean +SD 532 %85 5241106 59382 0.089 @
Age >=53.5 9 (47.4) 30 (51.7) 8 (66.7) 0.555°®
Sex

Female 4(21.1) 7(11.9) 1(8.3) 0.509 ®
Male 15 (78.9) 52 (88.1) 11 (91.7)

Grade 0.484°
Gl 2 (10.5) 3(5.1) 1(8.3)

G2 15 (78.5) 46 (78.0) 7(38.3)

G3 2 (10.9) 10 (16.9) 4(33.3)

pT (invasion depth) 0.169 ®
T1 2 (10.5) 8 (14.3) 2 (16.7)

T2 9(47.4) 20 (35.7) 2 (16.7)

T3 6 (31.6) 28 (50.0) 7 (38.3)

T4 2 (10.5) 0(0.0) 1(8.3)

pN (Iymph node metastasis) 0.759 b
NO 19 (100.0) 54 (98.2) 11 (100.0)

N1 0 (0.0) 1(1.8) 0 (0.0)

pM (distant metastasis) 0.578 ®
MO 19 (100.0) 54 (96.4) 11 (100.0)

M1 0 (0.0) 2 (3.6) 0 (0.0)

TNM stage 0546 °
I 2 (10.5) 8 (14.3) 2(16.7)

I 9 (47.4) 20 (35.7) 2(16.7)

II1 8 (42.1) 25 (44.0) 8 (60.7)

v 0 (0.0) 3(5.4) 0 (0.0)

Abbreviations: HCC, hepatocellular carcinoma; N, number.

a.  ANOVA test.
b. Chi-square test.
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Supplementary data, Table 1.

Primers (5 to3):

pcDNA 3.1/L-FABP cloning:

1. L-FABPTOPO PCR primer (Forward): CAC CAT GAGTTT CTC CGG CAA G
2. L-FABPTOPO PCR primer (Reverse): AAT TCT CTT GCT GATTCT C

gRT-PCR:

L-FABP primer (Forward): ATGAGT TTC TCC GGCAAG TAC
L-FABP primer (Reverse): TCCTTC CCCTTC TGGATGAGC
VEGF-A primer (Forward): CAT GAACTT TCT GCT GTCTTG G
VEGF-A primer (Reverse): CCT GGT GAGAGA TCT GGT TCC

18S rRNA primer (Forward): GCT TAATTT GAC TCA ACA CGG GA
18S rRNA primer (Reverse): AGC TAT CAATCT GTCAAT CCT GTC

o ok~ wbdrE

VEGF-A promoter cloning:

1. D1 primer (Forward): GGG GTA CCC CGC TCCACAAACTTGGTG CC
2. D2 primer (Forward): GGG GTA CCC CGA GGG CTC CAGATG GCA

3. D3 primer (Forward): GGG GTA CCC CGT CGA GCTTCCCCTTCATTG
4. Reverse primer(~+73): CCC TCGAGG GCG CCT CCC GACAGA GCG CT

Site-directed mutagenesis cloning:
1. L-FABPF3W primer (Forward):

ATGAGT TGG TCC GGCAAG TGG CAACTG CAG
2. L-FABPF3W primer (Reverse):

CTGCAGTTG CCACTT GCC GGA CCAACT CAT
3. L-FABPK3LE primer (Forward):

GAG CTCATC CAG GAG GGG GAG GAT ATCAAG
4. L-FABPK3I1E primer (Reverse):

CTT GATATCCTCCCCCTC CTG GAT GAG CTC
5. L-FABPT94A primer (Forward):

CTGGTGACAGCTTTCAAAAACATC
6. L-FABPT94A primer (Reverse):

GAT GTTTTT GAAAGC TGT CAC CAG
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SIRNA & shRNA (5'to 3')

L-FABP siRNA (Invitrogen, FABP1HSS141976)

Primer number: 228624A01

(RNA)-GGU UCA GUU GGA AGG UGA CAA UAAA
Primer number: 228624A 02

(RNA)-UUU AUU GUCACCUUC CAACUGAACC

L-FABP shRNA (Acdemia Sinica, RNAI Core Lab)

Clone ID: TRCN0000059643

NM ID: NM_001443

Vector: pLKO.1

Target sequence: GTG ACAATAAACTGG TGA CAA

Hairpin sequence:
CCGG-GTGACAATAAACTGGTGACAA-CTCGAG-TTGTCACCAGTTTATTGTCA
C-TTTTTG
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Supplementary data, Figure 1.
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Figure S1. Knockdown of VEGFR2 in Hus/L -FABP cells decreased the activation

of down-stream signaling molecules.

Western blot analysis of the phosphorylation level of signaling molecules including Akt,

MTOR, Src and FAK in Hug/L-FABP cdlls transfected with control siRNA or

VEGFR2-targeting sSSRNA for 24 h.
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Supplementary data, Figure 2.

Figure S2. Prediction of theinteraction models of L-FABP and VEGFR2 kinase

domain
The predicted docking models of L-FABP and VEGFR2 kinase domain were performed
by MEGADOCK 3.0 software. L-FABP protein was showed by sheet form, and

VEGFR2 kinase domain was exhibited by 3D structure in blue color.
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Supplementary data, Figure 3.
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Figure S3. Amino acid substitution of L-FABP in present studies

The position of substituted amino acids in mutant L-FABP were presented in secondary
and tertiary structure. We substituted four different amino acidsincluding F3 to W (B
sheet A, N-terminal), K20 to E (a-helix I), K30 to E (a-helix II), T94 to A (B sheet G,

C-terminal) to examine the mechanisms of L-FABP in its oncogenic role.
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