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摘要
令 G 為⼀可簡約代數群、k 是⼀個特徵數為奇數的體、
ks 是 k 的分離封閉體，⽽ V 是 G 的⼀個表現。當我們
考慮 G(ks) 作⽤在 V (ks) 上的軌跡的時候，幾何不變量
理論給了我們⼀種分類這些軌跡的⽅法。然⽽當我們考
慮 G(k) 作⽤在 V (k) 上的軌跡時，我們對於這個問題並
沒有⼀個有系統的分類⽅法。在我的碩⼠論⽂裡，我研
讀了 Bhargava 跟 Gross 的論⽂，他們針對奇數維度特殊
正交群及它的⼀些表現發展了⼀套有系統的⽅法去分類
這些特殊情況的軌跡。Bhargava 與 Gross ⾸先把分類軌
跡的問題與伽羅⽡上同調理論做⼀個連結，⽽後利⽤這
個連結去發展⼀些新的觀點及⽅法分類這些特殊情況的
軌跡。
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Abstract
Let G be a reductive group , k be a field of odd characteris-

tic with a seperable closure ks, and V be a representation of
G. The geometric invariant theory deals with the classifica-
tion of G(ks)-orbits on V . In this thesis, I study the paper of
Bhargava and Gross that deals with the problem on the clas-
sification of the G(k)-orbits on V which allows us to translate
this problem into a language of Galois Cohomology. Then we
deliver several approaches to solve this problem in some special
cases.
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1. Introduction

Let k be a field with a separable closure ks, G be a reductive group defined over k,
and V be a representation of G, also defined over k. In general, the classification of
the G(ks)-orbits on V is treated by the geometric invariant theory. In this thesis, I
study the paper of Bhargava and Gross (cf. [Bhargava]) that deals with the problem
on the classification of the G(k)-orbits on V . We refer this subject as the arithmetic
invariant theory.

Let Ok and Oks denote respectively the sets of G(k)-orbits and G(ks)-orbits on
V (k) and V (ks).

1.1. Relation between Ok and Oks. Let

c : Ok −→ Oks

be the natural (forgetful) map sending a k-orbit to its ks-orbit. Let v ∈ Ok and
write c(v) = w. Our main aim is to classify the inverse image c−1(w) for each v.
We shall first relate this pre-image to some Galois cohomology. For simplicity, if A
is a group with a continuous action of Gal(ks/k) in the sense that the stabilizer of
each a ∈ A is an open subgroup, we denote the Galois cohomology H1(Gal(ks/k), A)

by H1(k,A), and also Hq(Gal(ks/k), A) by Hq(k,A) for commutative A. Let v be a
vector in V (k) representing an orbit v ∈ Oks and let Gv ⊂ G denote its stabilizer.
It is a closed subgroup of G and is defined over k.

Proposition 1.1.1. Let notation be as above. There is a bijection between c−1(w)

and the kernel of the map

γ : H1(k,Gv(k
s)) → H1(k,G(ks)).

Here the kernel of γ is defined to be the pre-image γ−1(0). Therefore, our task is
to determine the kernel γ−1(0).

Proof. We have the exact sequence of G(ks)-sets

1 −→ Gv(k
s) −→ G(ks) −→ w −→ 1

that gives rise to the long exact sequence

v → w ∩Ok
α−→ H1(k,Gv(k

s))
γ−→ H1(k,G(ks))

and then the proposition is proved by interpreting w ∩ Ok as c−1(w). Indeed, if
w ∈ w ∩ Ok is a k-rational vector in the G(ks)-orbit of v, then w = g · v for
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some g ∈ G(ks) and such g is well-defined up to right multiplication by elements
of Gv(k

s). Now ∀σ ∈ Gal(ks/k), we have a(w)σ := g−1 · gσ ∈ Gv(k
s) and the

assignment σ 7→ a(w)σ is a 1-cocycle a(w) of Gal(ks/k) with values in Gv(k
s). Then

we check that a(w) is a coboundary if and only if w ∈ v and also a(w) and a(w′)

differ by a coboundary if and only if w and w′ are in the same G(k)-orbit. □

In this thesis, we try to determine the kernel of γ for the three cases where
G = SO(W ), W is an odd dimensional orthogonal space and V = W , Λ2(W ) or
Sym2(W ). The theory turns out very rich and interesting, too, with many aspects
of arithmetic and geometry involved. The thesis is organized as follow. In §2, we
recall the basic facts on odd dimensional orthogonal spaces and set the notation.
In §3, we identify in each of the three cases the stabilizers Gv and establish the
corresponding main theorems on γ. In §4, we discuss in the third case the relation
of Gv and certain jacobian variety. In §5, we consider the cases of k being a finite
field, a local field, or a global field. Finally, for the convenience of the readers, in
the appendix we include a brief review of the Galois descent theory.

2. Setting

2.1. Orthogonal space. Let k be a field of char(k) ̸= 2 and let W be an orthogonal
space over k, by which we mean there is associated a non-degenerate bilinear from

<,>: W ×W −→ k.

Definition 2.1.1. Let A be the corresponding matrix of the bilinear from with
respect to a chosen basis so that < w,w′ >= wt · A · w′ for w,w′ ∈ W . We define
the determinant of W to be the residue class of detA modulo (k∗)2.

In the following, by abuse of language we shall simply say that the determinant of
W is d to refer that it is actually d modulo (k∗)2. As usually, by the bilinear from,
we identify the dual space W ∗ with W by the isomorphism

(1) W
∼−→ W ∗, w 7→ w∗ : w′ →< w′, w > .

Let W ′ be another orthogonal space with the bilinear form <,>′ and let T : W →
W ′ be a k-linear transformation. We define the adjoint transformation T ∗ : W ′ → W

such that
< Tv, v′ >′=< v, T ∗v′ >, for every v ∈ W, v′ ∈ W ′.

2



If B and B′ are bases of W and W ′. Then for the associate matrices [T ]B,B′ and
[T ∗]B′,B, we have

[T ∗]B′,B = [T ]tB,B′

so these two matrices have the same determinant:

det(T ∗) = det(T ).

Two orthogonal space W and W ′ are isomorphic if there is a surjective orthogonal
linear transformation g : W → W ′:

< gv, gw >′=< v,w >, v, w ∈ W.

The condition is equivalent to

< v, g∗gw >=< g∗gv, w >=< v,w >, for all v, w ∈ W.

Since <,> is non-degenerate, such g is invertible with g−1 = g∗ and

(2) det(g) = ±1.

Lemma 2.1.2. Two isomorphic orthogonal spaces have the same determinant.

Proof. Let A and A′ be the matrix of <,> and < . >′ with respect to B and B′.
Then [g]tB,B′ · A′ · [g]B,B′ = A.

□

Definition 2.1.3. An orthogonal space W of dimension 2n + 1, n ≥ 1, is split if
and only if there exists a subspace U ⊂ W of dimension n such that U ⊂ U⊥.

From now on, we assume that W is a split orthogonal space of dimension 2n+1,
n ≥ 1, with determinant (−1)n.

The proof of the following lemma can be found in [SBF].

Lemma 2.1.4. If W is a split orthogonal space of dimension 2n + 1, n ≥ 1, with
determinant (−1)n, then there is an ordered basis

B = {e1, e2, · · · , en, u, f1, f2, · · · , fn}

of W with inner product given by

< ei, ej >=< fi, fj >=< ei, u >=< fj, u >= 0,

< ei, fj >= δij.

< u, u >= 1.
3



We shall fix a basis described in the lemma and call it the standard basis.

2.2. The special orthogonal group.

Definition 2.2.1. We define the orthogonal group

O(W ) := {g ∈ GL(W ) : gg∗ = g∗g = 1}

and the special orthogonal group

SO(W ) := {g ∈ GL(W ) : gg∗ = g∗g = 1, det(g) = 1}.

2.3. Special representations of SO(W ). From now on denote G = SO(W ). We
shall consider three representations V of G over k and define the associated discrim-
inate function:

△ : V (ks) −→ ks.

In the first case, V = W with the natural action of G and

△(v) =< v, v >, for v ∈ V.

For the second and the third representation, we first take the identification:

(3) W ⊗W = W ⊗W ∗ = Hom(W,W ),

where the first identification is via (1) and the second is by taking

w ⊗ w∗(v) = w∗(v) · w, for all w ∈ W.

Let G acts on W ⊗W by g(w1⊗w2) = gw1⊗ gw2, and via (3) for T ∈ Hom(W,W ),

g · T = gTg−1.

For such T , define
△(T ) := disc(det(xI − T )),

the discriminant of the characteristic polynomial of T . Recall that a polynomial has
nonzero discriminant if and only if it’s separable.

Consider the decomposition:

W ⊗W = Λ2(W )⊕ Sym2(W )

and let the second and the third representation be the restriction of the action of
G to Λ2(W ) and Sym2(W ). Also, let the discriminant function to the restriction of
the above to these subspaces. Therefore, in the second case,

V = Λ2(W ) = {T : W → W : T = −T ∗},
4



which is of dimension 2n2 + n; while in the third case,

V = Sym2(W ) = {T : W → W : T = T ∗},

which is of dimension 2n2 + 3n+ 1.

2.4. A conventional use of notation. We shall follow the convention that if L
is a k-algebra of finite rank then L∗ also denote the algebraic group having the
same defining equation as L∗. Namely, if {e1, ., en} is a basis of L over k as vector
space and ei · ej =

∑
h ai,j,heh, ai,j,h ∈ k, under the multiplication in L and the

identity element 1 =
∑

i αiei, then L∗ is the algebraic variety with the coordinate
ring k[x1, ..., xn, y1, ..., yn] subject to the condition∑

h

∑
i.j

ai,j,hxiyjeh

(
=
∑
i

xiei ·
∑
j

yiej = 1

)
=
∑
h

αheh.

Thus, in such notation, if l is a commutative k-algebra, then the set of l-points:

L∗(l) = (l ⊗k L)
∗.

If N is a subgroup of L∗ defined by equalities of polynomials, then N also denotes
the corresponding closed subgroup of L∗.

3. Main theorems

Let V denote one of the three representation of G introduced in §2.3. In this
chapter, for each v ∈ V (k) with discriminant △(v) ̸= 0, our aim is to determine Gv,
H1(k,Gv) and the kernel of γ. Recall that B = {e1, e2, · · · , en, u, f1, f2, · · · , fn} is
chosen to be the standard basis of W .

3.1. The case V = W . For each d ∈ k∗, denote vd := e1 + (1/2)d · f1 whose
discriminant △(v) = d.

Lemma 3.1.1. Two vectors v, w ∈ V (k) are in the same orbit of G, if and only if
△(v) = △(w).

Proof. If v, w ∈ V (k) are in the same orbit of G, then △(v) = △(w). The other
direction of the proof basically follows from Witt’s extension theorem which says
that if (V1, Q) and (V2, Q

′) are isometric non-degenerate quadratic spaces, then every
injective linear map s0 : U → V2 of a subspace U of V1 such that Q′ ◦ s0 = Q can
be extended to a linear isomorphism s : V1 → V2 such that Q′ ◦ s = Q (cf. Theorem
11.15 in [ALA]). We may assume that △(w) = d and v = vd. Let Q denote the
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bilinear form <,>. Since Q(v, v) = Q(w,w), the injective linear map kv → V

defined by mapping v to w extends an isometry

s : (V,Q) → (V,Q).

Let t : V → V be the linear map such that t(e1) = −e1, t(ej) − ej, j ̸= 1,
t(u) = u, t(f1) = −f1, t(fj) − fj, j ̸= 1, and set s′ = (−s) ◦ t. Then s(v) = s′(w)

and det(s′) = − det(s). Thus, one of s and s′ belongs to G and v and w are in the
same G-orbit..

□

Lemma 3.1.2. Let v ∈ V (k) be such that △(v) ̸= 0 and U := (kv)⊥. Then the
restriction g 7→ g |

U
gives rise to an isomorphism Gv → SO(U).

Proof. Since △(v) ̸= 0, v ̸∈ U and W = kv⊕U as orthogonal space. Every element
in SO(U) can be extended in an obvious way to a unique orthogonal transformation
on W . □

Note that in the above lemma U is actually an orthogonal space of dimension
2n, since the restriction of <,> to U is non-degenerate, and its determinant equals
(−1)n △ (v).

Lemma 3.1.3. Every 2n-dimensional orthogonal subspace of W of determinant
(−1)nd ̸= 0 is isomorphic to (kvd)

⊥.

Proof. If U is a 2n-dimensional orthogonal subspace of W of determinant (−1)nd,
then its orthogonal compliment U⊥ can be expressed as kv with △(v) = d. Lemma
3.1.1 says kv is isomorphic to kvd and we have

U ⊕ kv = (kvd)
⊥ ⊕ (kvd).

Then the lemma follows from the Witt’s cancelation theorem below. □

Lemma 3.1.4 ( Witt’s cancelation theorem ). If W = W1⊕W2 and W ′ = W ′
1⊕W ′

2

and W ≃ W ′ and W1 ≃ W ′
1, as orthogonal spaces, then W2 ≃ W ′

2.

Proof. See Theorem 11.16 in [ALA] □

Theorem 1. If V = W and v ∈ V (k) is such that △(v) ̸= 0, then the map

γ : H1(k,Gv) → H1(k,G)

is injective.
6



Thus in this case the arithmetic invariant theory is the same as the geometric
invariant theory.

Proof. Denote d := △(v). By Lemma 3.1.3 and the theory of Galois descent (see
§6), we may identify H1(k,G) with

EW (ks/k) :=

{
k-isomorphism classes of 2n+ 1-dimensional orthogonal

spaces W ′ of determinant (−1)n

}
and H1(k,Gv) with

EU =:

{
k-isomorphism classes of 2n-dimensional orthogonal

spaces U ′ of determinant (−1)nd

}
.

Now in the commutative diagram

H1(k, SO(U))
γ
> H1(k, SO(W ))

∥ ∥

EU(k
s/k) > EW (ks/k),

the lower right-arrow sends each U ′ ∈ EU(k
s/k) to W ′ := U ′ ⊕ kv in EW (ks/k)

and the “identity elements” of both H1(k, SO(U)) and H1(k, SO(W )) are identified
with U and W , respectively. Hence the theorem follows from the Witt’s cancelation
theorem again.

□

3.2. The V = Λ2(W ) case. Recall that every element T of V = Λ2(W ) is viewed
as a skew self-adjoint operator on W . In this case, the characteristic polynomial is
an odd function, and hence we can write

f(x) := det(xI − T ) = x2n+1 + c2x
2n−1 + c4x

2n−3 + · · ·+ c2x = xg(x2).

Thus, △(T ) ̸= 0 if and only if f is separable.

3.2.1. the special operator.

Lemma 3.2.1. If T is a skew self-adjoint operator on W with △(T ) ̸= 0, then the
characteristic polynomial det(xI − T ) is separable, of the form xg(x2). Conversely,
for each monic separable polynomial f(x) = xg(x2), of degree 2n+1, there is a skew
self-adjoint operators T : W → W such that det(xI − T ) = f(x) .
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For a separable polynomial f(x) = xg(x2), denote L = k[x]/(f(x)), which is an
étale algebras of rank 2n+ 1. By Chinese Remainder Theorem,

L = E ⊕ k,

where E = k[x]/(g(x2)). Let K = k[y]/(g(y)). Then y 7→ x2 induce an inclusion of
K into E. Also, x 7→ −x induces an involution τ on E and L with fixed algebras K
and K

⊕
k respectively. Over ks, f(x) splits completely into the product

x
n∏

i=1

(x− ai)(x+ ai).

Write E0 = ks[x]/(x), E±
i := ks[x]/(x± ai) ∼= ks, 1 ≤ i ≤ n. Then

(4) ks ⊗k L = E+
1 × E−

1 × · · · × E+
n × E−

n × E0.

We can extend ks-linearly τ to an involution on ks ⊗k L. In view of (4), we have

(5) (x+
1 , x

−
1 , ..., x0)

τ = (x−
1 , x

+
1 , ..., x0).

Proof. It remains to prove the second assertion of the lemma. Let β ∈ L denote the
residue class of x. Then f(β) = 0, f ′(β) ∈ L∗, βτ = −β, and L = k + kβ + kβ2 +

· · ·+ kβ2n. Define the bilinear form <,> on L by setting

< λ, µ >:= the coefficient of β2n in the product (−1)nλµτ .

We can represent <,> as a matrix A with respect to the basis {1, β, · · · , β2n}. Thus

A =


(−1)n

... ∗
(−1)3n−1 ∗ ∗

(−1)3n ∗ ∗ ∗


and det(A) = (

2n∏
j=0

(−1)n+j)(−1)n+1 = (−1)n, which means <,> is non-degenerate of

determinant (−1)n. The n-dimensional subspace L0 := k + kβ + kβ2 + · · ·+ kβn−1

satisfies L0 ⊂ (L0)⊥. Hence, L is a split orthogonal space and by Lemma 2.1.4,
there is an isometry θ : L → W over k which is unique up to composition with
orthogonal transformations of W . Consider the skew self-adjoint operator t : L → L

defined by t(λ) = βλ. The characteristic polynomial of t equals to f(x). Thus
T = θtθ−1 : W → W is a skew self-adjoint operator with characteristic polynomial
equal to f(x). □
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3.2.2. The stabilizer. For the rest of this section, let T denote the specific skew self-
adjoint operator corresponding to t in the above proof. Note that the G(k)-orbit of
T is independent of the choice of θ. If θ′ = λ ◦ θ for some λ ∈ O(W )(k), then one
of λ and −λ is contained in SO(W ), it sends T to θ′tθ′−1 as the action of G is by
conjugation.

Since f is separable, T is semi-simple, and hence the centralizer of T in Endk(W )

is just k[T ], which can be identified with k[x]/(f(x)) = L by identifying T with x

modulo f(x). Similarly, if l is a field extension of k, then the centralizer of T in
Endl(W ) is l ⊗k L. Therefore, in the notation of §2.4, under the conjugate action
of GL(W ), the stabilizer of T is isomorphic to L∗. Note that for λ ∈ k[T ] its
determinant as an operator on W is the same as the determinant of the k-linear
map L → L, z 7→ λ · z. By (4), if λ = (λ+

1 , λ
−
1 , ..., λ

+
n , λ

−
n , λ0), then

(6) det(λ) = λ·
1λ

−
1 · · · · · λ+

n · λ−
n · λ0.

Lemma 3.2.2. In G = SO(W ), the stabilizer

GT = {λ ∈ L∗ : λ1+τ = 1, det(λ) = 1},

which is a maximal torus of G.

Proof. By the definition of <,>, an element λ ∈ L∗ is contained in O(W ) if and
only if λ · λτ = 1. This proves the first part of the lemma.

By (5) and (6), λ ∈ GT if and only if

(7) λ+
i λ

−
i = 1, i = 1, ..., n, and λ0 = 1.

This implies GT is a torus. That it is a maximal torus follows from the fact that the
stabilizer of every element in the adjoint representation of the compact Lie group
SO(W ) contains a maximal torus (cf. [TASM]). □

Recall that if X is a scheme over K, then the Weil restriction of scalar ResK/kX

is the scheme such that for every k algebra F ,

ResK/kX(F ) = X(F ⊗k K).

In particular, if X = SpecB the spectrum of a K-algebra B = K[x1, ..., xµ]/(f1, ..., fν)

and v1, ..., vn is a k- basis of K, then ResK/kX = SpecB′ where B′ = k[xij]/(fih),
i = 1, ..., n, j = 1, ..., µ, h = 1, ..., ν, such that if we write xj =

∑n
i=1 xijvi, then

fh =
∑n

i=1 fihvi.
9



Let U1(E/K) denote the algebraic group over K given by

{α ∈ E∗ : α1+τ = 1}

in the convention of §2.4. Then by (7), the k-algebraic group GT is nothing but the
Weil restriction of scalar of U1(E/K).

Lemma 3.2.3. We have GT
∼= ResK/kU1(E/K).

3.2.3. The ks-orbit of T . Let f(x) = xg(x2) be a separable polynomial of degree 2n

and let T be the special operator associated to f(x).

Lemma 3.2.4. Every skew self-adjoint operator S having characteristic polynomial
equal to f(x) is in the G(ks)-orbit of T , and vice versa.

Proof. Since f(x) is separable, it is the minimal polynomial of T and S. Therefore,
T and S are similar by some element u ∈ GL(W )(ks) in the sense that S = uTu−1.
Now the equalities

(uTu−1)∗ = S∗ = −S = −(uTu−1)

and
(uTu−1)∗ = (u−1)∗T ∗u∗ = (u−1)∗(−T )u∗

imply
u∗uT = Tu∗u.

Therefore, as explained in §3.2.2, u∗u ∈ L∗(ks), and since it is self-adjoint, it is
actually contained in K∗×k∗. By (5), the norm homomorphism L∗(ks) → K∗(ks)×
(ks)∗, h 7→ h1+τ is surjective. Hence we can write u∗u = h1+τ . Consider the operator
uh−1 ∈ GL(W )(ks), it is orthogonal:

(uh−1)∗ = (h−1)∗u∗ = h−τu∗ = h(u∗u)−1u∗ = hu−1 = (uh−1)−1.

Choose u0 = ±uh−1 to have det u0 = 1. Then u0 ∈ SO(ks). Since h ∈ L∗,
hTh−1 = T , and hence u0 sends T to S:

u0Tu
−1
0 = uh−1Thu−1 = uTu−1 = S.

The second assertion is obvious. □

Corollary 3.2.5. If S is skew self-adjoint operator having △(S) ̸= 0, then GS is a
maximal torus of G.
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Suppose in the above lemma S is k-rational. Let u0 be as in the above proof so
that u0 ∈ G(ks). For each σ ∈ Gal(ks/k), u0 = uσ

0ξσ, for some ξσ ∈ GT (k
s). Then

σ 7→ ξσ defines a GT (k
s)-valued 1-cocycle of Gal(ks/k) and its class in H1(k,GT ) is

exact the element of ker γ corresponding to S (see Proposition 1.1.1 and its proof).

3.2.4. k-orbits. Now we give a more precise description of ker γ other than the above
one. For each k-rational element κ ∈ K∗, denote α := ακ := (κ, 1) ∈ K∗×k∗ and let
Wκ denote the orthogonal space with the same underlying linear space as L, while
its symmetric bilinear form <,>κ defined by

< λ, µ >κ:= the coefficient of β2n in the product (−1)nαλµτ .

Thus Wκ is an orthogonal space of dimension 2n+ 1 and determent (−1)n, because
< λ, µ >κ=< α · λ, µ > and by (6), detα ∈ (k∗)2. Let N : E∗ → K∗ be the norm
map sending ξ to ξ1+τ . If κ′ = κ · h1+τ , h a k-rational element of E∗, then the
linear map L → L, z 7→ hz gives rise to an orthogonal isomorphism Wκ → Wκ′ . By
descent theory, H1(k, SO(W )) is nothing but the set of the isomorphism classes of
orthogonal spaces of determinant (−1)n. Thus, the above discussion gives rise to

γ′ : K∗/NE∗ → H1(k, SO(W ))

that maps the residue class of κ to the isomorphic class of Wκ.

Theorem 2. Let V = Λ2(W ) and let T be the specific skew self-adjoint operator
of V described in §3.2.2 so that its characteristic polynomial f(x) := xg(x2) is
separable. Then the SO(ks)-orbit of T is formed by all skew self-adjoint operators
S with characteristic polynomial equal to f(x). Furthermore, the cohomology group
H1(k,GT ) can be identified with the quotient K∗/NE∗, where K = k[y]/(g(y)), E =

k[x]/(g(x2)) and N : E∗ → K∗ is the group homomorphism induced by x 7→ −y2,
and the map γ in proposition 1.1.1 can be identified with γ′ defined above.

Proof. Apply Lemma 3.2.3 and consider the exact sequence of Gal(ks/k)-modules

1 → GT (k
s) → ResE/kGm(k

s)
N−→ ResK/kGm(k

s) → 1

which is the same as

1 → GT (k
s) → (ks ⊗k E)∗

N−→ (ks ⊗k K)∗ → 1.

It induces the long exact sequence

(8) 1 → GT (k) → E∗ N−→ K∗ δ−→ H1(k,GT (k
s)) → H1(k, (E ⊗k k

s)∗)
11



By (4) and Hilbert Theorem 90, H1(k, (E ⊗k k
s)∗) = 0, and hence

H1(k,GT (k
s)) ∼= K∗/NE∗.

Under this isomorphism, the residue class of κ ∈ K∗ modulo NE∗ corresponds to
the cohomology class of the 1-cocycle ξ : Gal(ks/k) → GT (k

s) given by ξσ = ζ−1 ·ζσ,
for each σ ∈ Gal(ks/k), where ζ ∈ E∗(ks) satisfying N(ζ) = κ. We need to show
that the descent theory also associates Wκ to the cohomology class of ξ.

Recall that Wκ is the orthogonal space with the same underlying space as L but
with <,>κ as its symmetric bi-linear form. Write

ζ1 = (ζ, 1) ∈ E(ks)∗ × (ks)∗ = L∗(ks).

Then the map u 7→ ζ1 · u gives rise to an orthogonal isomorphism ϕζ1 : Wκ → L,
and the descent theory also associates Wκ to the cohomology class represented by
the 1-cocycle η with

ησ = (ϕζ1)
−1 ◦ ϕσ

ζ1
= (ζ1)

−1 · ζσ1 = ζ−1 · ζσ = ξσ.

.
□

3.3. The V = Sym2(W ) case. In this case, we show that GT is a finite commutative
group scheme of order 22n over k and we also give an explicit description of the map
γ : H1(k,GT ) → H1(k,G) for specific T .

3.3.1. The specific T .

Lemma 3.3.1. If T is a self-adjoint operator on W with △(T ) ̸= 0, then the
characteristic polynomial det(xI − T ) is separable of degree 2n + 1. Conversely,
for each monic separable polynomial f(x) of degree 2n + 1, there is a self-adjoint
operators T : W → W such that det(xI − T ) = f(x) .

In this section (§3.3), for a monic separable polynomial f(x), let L = k[x]/(f(x))

and let β be the residue class of x in L. Let τ : L → L be the automorphism
mapping β to −β.

Proof. Define on L the symmetric bilinear form <,> by

< λ, µ >:= the coefficient of β2n in the product λµ.

This endows L the structure of a split orthogonal space of determinant (−1)n. Let
θ : L → W be an orthogonal isomorphism (by Lemma 2.1.4) over k and let t

12



denote the linear map such that t(λ) = βλ. Then t is self-adjoint of characteristic
polynomial f(x), and hence so is the operator T = θtθ−1 on W .

□

Note that here the choice of θ doesn’t affect the G(k)-orbit on T . For the rest of
this section, let T denote the specific self-adjoint operator corresponding to t in the
above proof.

3.3.2. The stabilizer. Similar to the previous case, since f is separable, T is semi-
simple, and hence the centralizer of T in Endk(W ) is just k[T ], which can be iden-
tified with k[x]/(f(x)) = L by identifying T with x modulo f(x). Under this
identification, if S ∈ L, then S∗ = S. Hence,

GT := {λ ∈ L∗ | λ2 = 1, det(λ) = 1}.

Let N : L∗ → k∗ denote the norm map that send each y ∈ L∗ to det(y) and we
extend it to a morphism

N : ResL/kGm → Gm

and by restrict it to ResL/kµ2 we get the exact sequence

(9) 1 → (ResL/kµ2)N=1 → ResL/k(µ2)
N−→ µ2 → 1.

Here (ResL/kµ2)N=1 is defined to be the kernel of the map N : ResL/kµ2 → µ2. Then
we check directly that for each commutative k-algebra F ,

GT (F ) = {λ ∈ (L⊗k F )∗ : λ2 = 1, detF (λ) = 1} = (ResL/kµ2)N=1(F )

and actually GT = (ResL/kµ2)N=1.

Lemma 3.3.2. In G = SO(W ), the stabilizer GT = (ResL/kµ2)N=1 which is a finite
étale group scheme of order 22n.

Proof. Since the characteristic of k is not 2, µ2 is an étale group scheme of order
2. Therefore, ResL/k(µ2)×Speck SpecL = (µ2)

2n+1 is an étale group scheme of order
22n+1 over L. Thus, if ResL/k(µ2) = SpecA, then A⊗k L is separable over L. Since
L is separable over k, A must be separable over k, and hence ResL/k(µ2) is étale
over k . The rest of the lemma follows from (9). □

13



3.3.3. The ks-orbit of T .

Lemma 3.3.3. Every self-adjoint operator S having characteristic polynomial equal
to f(x) is in the G(ks)-orbit of T , and vice versa.

Proof. Since f(x) is separable, T and S are similar by some element g ∈ GL(W ). Now
(gTg−1)∗ = (gTg−1) and (gTg−1)∗ = (g−1)∗T ∗g∗ = (g−1)∗Tg∗ implies g∗gT = Tg∗g,
and hence g∗g ∈ L∗. Let h ∈ (L⊗k k

s)∗ such that g∗g = h2. Choose u0 = ±gh−1 to
have u0 ∈ SO(W )(ks). We have u0Tu

−1
0 = S. □

Corollary 3.3.4. In SO(W ), the stabilizer of every self-adjoint operator S having
separable characteristic polynomial f(x) is a finite étale group scheme of order 22n.

3.3.4. The k-orbit. The norm homomorphism N : L∗ → k∗ induces the homomor-
phism L∗/L∗2 → k∗/k∗2 whose kernel we denote by (L∗/L∗2)N=1. Let α ∈ L∗ be
such that N(α) ∈ k∗2. Define the orthogonal space Wα whose underlying vector
space is L, while the symmetric bilinear form <,> is given by

< λ, µ >α:= the coefficient of β2n in the product αλµ.

The space Wα is a 2n + 1 dimensional orthogonal space over k with determinant
(−1)n, because < λ, µ >α=< α · λ, µ > and detα = N(α) ∈ (k∗)2. If α′ = λ2α, for
some λ ∈ L∗, then µ 7→ λµ gives rise to an isomorphism between Wα′ and Wα as
orthogonal spaces. Therefore, we can associate to each element [α] ∈ (L∗/L∗2)N=1

the k-isomorphic class [Wα] of Wα. By descent theory, this defines the map

(10) γ′ : (L∗/L∗2)N=1 → H1(k, SO(W )).

Theorem 3. Let V = Sym2(W ) and let T be the specific self-adjoint operator of
V described in §3.3.1 so that its characteristic polynomial f(x) is separable. Then
the SO(ks)-orbit of T is formed by all self-adjoint operators S with characteristic
polynomial equal to f(x). Furthermore, the cohomology group H1(k,GT ) can be
identified with the quotient (L∗/L∗2)N=1, where L = k[x]/(f(x)) and N : L∗ → k∗ is
the norm map, and the map γ in proposition 1.1.1 can be identified with γ′ in (10).

Proof. The exact sequence (9) induces the long exact sequence

· · · →µ2(L)
N−→ {±1} δ−→ H1(k, (ResL/kµ2)N=1)→H1(k,ResL/kµ2)

N∗−→H1(k, µ2) → · · · .
14



Since N(−1) = −1, the map µ2(L)
N−→ {±1} is surjective. Then we identify the

group H1(k, (ResL/kµ2)N=1) with (L∗/L∗2)N=1 via the commutative diagram

0 > H1(k, (ResL/kµ2)N=1) > H1(k,ResL/kµ2)
N∗

> H1(k, µ2)

∥ ∥

0 > (L∗/L∗2)N=1 > L∗/L∗2 > k∗/k∗2,

where the two equalities are by Kummer theory. Under this identification, if α ∈ L∗,
N(α) ∈ k∗2 represents the class [α] ∈ (L∗/L∗2)N=1 and h ∈ (L⊗ ks)∗, h2 = α, then
[α] corresponds to the class [ρ] ∈ H1(k, (ResL/kµ2)N=1) represented by the cocycle
ρ such that ρσ = hσ/h ∈ µ2(L⊗ ks)∗N=1. Here µ2(L⊗ ks)∗N=1 denotes the kernel of
µ2(L ⊗ ks)

N−→ {±1}. For such α and h, the map sending λ to hλ is an orthogonal
isomorphism from Wα to L. By descent theory, γ′([α]) is also represented by the
cocycle ρ.

□

4. more discussion on the representation V=Sym2(W )

In the second and the third case, we have known that for each α ∈ H1(k,GT ),
the class γ(α) is represented by the orthogonal space Wα such that α ∈ ker γ if and
only if Wα is split (Definition 2.1.3). In this section, we construct in the third case
some non-trivial α ̸= 1 such that Wα is split.

Let C be the smooth projective hyper elliptic curve of genus n over k with affine
equation y2 = f(x) where f(x) is given as in Theorem 3. Let J be the Jacobian of
C over k.

4.1. The group scheme J [2].

Lemma 4.1.1. The group scheme J [2] of 2-torsion points on the Jacobian of C is
a finite étale group schemes over k of order 22n.

Because char(k) ̸= 2, this is well known (cf. [ABV]). As before, write L =

k[x]/(f(x)) = k+kβ+ · · ·+kβ2n, wheref(β) = 0. Let π : C → P1 be the two-to-one
covering sending P := [x : y : z] (in projective coordinate) to xP := [x : z]. Let
P∞ = [0 : 1 : 0] be the k-rational Weierstrass point above [1 : 0] (the infinite point
on P1).

Each root α of f(x) in ks corresponds to a unique non-trivial k-algebra homomor-
phism η : L → ks so that α = η(β). For such η, denote Pη = [η(β) : 0 : 1], which is a
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Weierstrass point on C, and every Weierstrass point on C other than P∞ equals Pη

for a unique η. Let dη denote the divisor Pη −P∞ of degree zero and let [dη] denote
its divisor class. Since π is ramified of index 2 at each Pη and P∞, the divisor

(11) div(y) =
∑
all η

dη.

Since the divisor of the rational function x − η(β) on P1 equals [η(β) : 1] − [1 : 0],
on C the divisor

div(π∗(x− η(β)) = 2Pη − 2P∞ = 2dη

(cf. [AEC, Proposition 2.6]). Hence [dη] ∈ J [2](ks).

Lemma 4.1.2. The group J [2](ks) is generated by all [dη] associated to k-algebra
homomorphisms η : L → ks, subject to the condition∑

all η

[dη] = 0.

Proof. The condition is due to (11). Since J [2](ks) is a F2-vector space, it is sufficient
to show that if m ≤ 2n, then

m∑
i=1

[dηi ] ̸= 0.

If this were not true, then we would have
m∑
i=1

dηi = div(z)

for some z ∈ ks(C), the field of ks-rational function on C. Then z has only pole at
P∞ of order m. Let V be the ks-space of rational function on C with only pole at
P∞ of order at most 2n. Riemann-Roch theorem says that V has dimension equal
to 1−n+2n+1 = n+1, because C is of genus n. Since 1, x, · · · , xn are all in V and
are linearly independent over ks, they form a basis of V . Because z ∈ V , it must be
a linear combination of 1, x, · · · , xn. However, since the order of a polynomial of x
at every Weierstress point is even while the order of z at each Weierstress point Pηi

is 1, we have a contradiction. □

Let T be the special operator on W associated to f .

Lemma 4.1.3. The group scheme J [2] of 2-torsion points on the Jacobian of C is
isomorphic to the stabilizer GT of T in SO(W ).
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Proof. The category of commutative finite étale group schemes over k is equivalent
to the category of finite G(ks/k)-modules (cf. [AGS, §6.4]). Thus, we need to show
that J [2](ks) ∼= (ResL/k(µ2)(k

s))N=1 as G(ks/k)-modules.
By Chinese Remainder Theorem,

L⊗k k
s = ks × ks × · · · × ks︸ ︷︷ ︸

2n+1

,

and if pri : L⊗k k
s → ks is the projection onto the ith factor, then the composition

ηi : L
ι−→ L⊗k k

s pri−→ ks,

where ι denotes the natural map u 7→ u⊗1, is a non-trivial k-algebra homomorphism,
and vice versa. In particular, since every for σ ∈ Gal(ks/k), the composition

σ ◦ ηi : L → ks

is also a non-trivial k-algebra homomorphism, there is a unique j =: iσ such that

(12) σ ◦ ηi = ηiσ .

The Gal(ks/k)-module structure of L ⊗k k
s is given by the action of Gal(ks/k) on

the right factor ks. Write ti for pri(t) for t ∈ L⊗k k
s. Then we have

(13) (tσ)iσ = (ti)
σ.

Now,
ResL/k(µ2)(k

s) = µ2(L⊗k k
s) = µ2(k

s)× µ2(k
s)× · · · × µ2(k

s)︸ ︷︷ ︸
2n+1

,

where each µ(ks) = {±1} and by (13), the action of σ just send the ith factor to
the iσth. In particular, the diagonal map

{±1} ∆−→ {±1} × · · · × {±1}

identifies µ2(k
s) as a Gal(ks/k) submodule of ResL/kµ2(k

s). Moreover, since 2n +

1 is an odd integer, the restriction of the norm map ∆(µ(ks))
N−→ µ2(k

s) is an
isomorphism. Therefore, the exact sequence of Gal(ks/k)-modules

0 → (ResL/kµ2(k
s))N=1 → ResL/kµ2(k

s) → µ2(k
s) → 0

actually splits. Hence

(ResL/k(µ2)(k
s))N=1

∼= ResL/kµ2(k
s)/µ2(k

s).
17



Let A denote the 2n + 1 dimension F2-vector space with ηi, i = 1, ..., 2n + 1, as
basis and let Gal(ks/k) acts on A by (12). Then the map A → ResL/kµ2(k

s) sending∑
i aiηi to ((−1)a1 , (−1)a2 , ..., (−1)a2n+1) is an isomorphism of Gal(ks/k)-modules.

Then we complete the proof by noting that the F2-homomorphism mapping ηi to
[dηi ] identifies J [2](ks) with A/F2 which is isomorphic to ResL/kµ2(k

s)/µ2(k
s).

□

4.2. Special classes in ker γ. The exact sequence of Galois modules

0 → J [2](ks) → J(ks)
2−→ J(ks) → 0

induces the exact sequence

(14) 0 → J(k)/2J(k) → H1(k, J [2]) → H1(k, J)[2] → 0

By the lemma above we have H1(k, J [2]) ∼= H1(k,GT ).

Proposition 4.2.1. The subgroup J(k)/2J(k) of H1(k, J [2]) = H1(k,GT ) lies in
ker γ.

Proof. Recall that in §3.3.4, we associate to each class α ∈ H1(k,GT ) the orthogonal
space Wα whose underlying space is L, with symmetric bilinear form

< λ, µ >α:= the coefficient of β2n in the product αλµ.

Now we use ”left multiplication by β” to construct another symmetric bilinear form
< βλ, µ >α on L. Let M = L

⊕
k, a 2n + 2-dimensional vector space over k. We

define two bi-linear forms (or quadratic forms) on M : for (λ, a) ∈ M ,

Q(λ, a) =< λ, λ >α,

Q′(λ, a) =< βλ, λ >α +a2.

The pencil uQ− vQ′ with u, v ∈ ks has discriminant v2n+2f(u/v). Indeed, write

lβ for the matrix associated to the left multiplication by β, and
(

A 0

0 0

)
and
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(
A 0

0 1

)
·

(
lβ 0

0 1

)
for those associate to Q and Q′, respectively. Then

disc(uQ− vQ′) = det(u
(

A 0

0 0

)
− v

(
A 0

0 1

)
·

(
lβ 0

0 1

)
)

= det
(

uA− vAlβ 0

0 −v

)
= (−v) det(A) det((u/v · I − lβ)v)

= (−v)(−1)2n+1v2n+1f(u/v)

= v2n+2f(u/v).

Thus, the pencil uQ − vQ′ is non-degenerate and contains exactly 2n + 2 singular
elements over ks, which are the quadric Q, and the 2n + 1 quadrics η(β)Q − Q′

with f(η(β)) = 0. There is a Fano variety Fα whose ks-points corresponds to n-
dimensional ks-subspaces Z of M which are isotropic for all of the quadrics in the
pencil, and Fα is actually a principle homogeneous space of order 2 of the Jacobian
J , corresponding to the image of α in H1(k, J)[2] [Donagi].

If α ∈ J(k)/2J(k), then by (14), the image of α in H1(k, J)[2] is trivial, so that
the corresponding principle homogeneous space Fα has a k-rational point. Thus,
there is a n-dimensional subspace Z of M over k which is isotropic for all quadrics
in the pencil, hence isotropic for Q and Q′. Since Z is isotropic for Q′, Z contains
no elements in M of the form (0, a), a ̸= 0. Hence, the projection of Z onto L is a
n-dimensional k-subspace of L which is isotropic for Q. This implies the symmetric
bilinear form <,>α is split. Therefore, α is in the kernel of γ.

□

5. Arithmetic fields

In this section, we consider the special cases where k is a finite field, a local field,
or a global field. As before, the cases where V = W , V = Λ2(W ) and V = Sym2(W )

are respectively referred as the first, send and third case.

5.1. The finite field case. Let k be a finite field of odd order q. By Lang’s theorem
(cf. [GC, III §2.3 Theorem 1′]), H1(k, SO(W )) = 1 since SO(W ) is connected.
Thus by Galois descent theory, every orthogonal space of dimension 2n + 1 with
determinant (−1)n is split so that H1(k,GT ) ⊆ ker γ.
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5.1.1. The first case. In the notation of §3.1, for each v ∈ V with non-zero discrim-
inant, Gv = SO(U) which is also connected, hence H1(k,Gv) = 1. Thus for every
non-zero element d ∈ k∗, there is a unique orbit of vectors with △(v) = d.

5.1.2. The second case. For each S ∈ V with △(S) ̸= 0, GS is also connected
because it is a maximal torus (Corollary 3.2.5) of the connected algebraic group
SO(W ), hence has trivial cohomology. Thus for any separable polynomial f(x) =
xg(x2), there is a unique orbit of S ∈ V with characteristic polynomial f(x).

5.1.3. The third case. Let T ∈ V be the special operator with non-zero discriminant
so that GT = (ResL/kµ2)N=1. The exact sequence (9) induces the long exact sequence

(15)

· · · → µ2(L)
N−→ µ2(k) →H1(k,GT ) →H1(k,ResL/kµ2)

N∗−→H1(k, µ2)→ · · ·

∥ ∥

(L∗/L∗2)
N∗−→ (k∗/k∗2).

Let m+ 1 denotes the number of irreducible factors of f(x) ∈ k[x]. Then

|H1(k,ResL/kµ2)| = 2m+1.

Also, since 2n + 1 is an odd integer, the composition µ2(k) → µ2(L)
N−→ µ2(k)

is surjective. Hence H1(k,GT ) → H1(k,ResL/kµ2) is injective. The lemma below
asserts that

H1(k,ResL/kµ2)
N∗−→ H1(k, µ2)

is actually surjective. These together imply

|H1(k,GT )| = 2m = |(µ2(L))N=1| = |GT (k)|.

This means that there are 2m distinct G(k)-orbits with characteristic polynomial
f(x) that lie in the G(ks)-orbit with characteristic polynomial f(x). Since the order
of each orbit equals to

|SO(W )(k)|
|GT (k)|

=
|SO(W )(k)|

2m
,

the number of self-adjoint operators S ∈ V associated to a fixed separable polyno-
mial equals to |SO(W )(k)|.

Lemma 5.1.1. The map H1(k,ResL/kµ2)
N∗−→ H1(k, µ2) is surjective.
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Proof. By (15), it is sufficient to show that L∗ N−→ k∗ is surjective. By Chinese

Remainder Theorem, we can write L∗ =
m+1∏
i=1

L∗
i , where each Li is a field extension of

k, so that if t = (t1, ..., tm+1) ∈ L∗, then N(t) =
∏m+1

i=1 NLi/k(ti). Since k is a finite
field, each norm map NLi/k is surjective. Hence the lemma follows. □

By Lang’s theorem, H1(k, J) = 0,where J is the Jacobian of the smooth hyper-
elliptic curve y2 = f(x) of genus n over k. Hence J(k)/2J(k) ∼= H1(k,GT ) and every
orbit associated to f(x) comes from a k-rational point on the Jacobian.

5.2. The non-archimedean local field case. Let k be a non-archimedean local
field, with ring of integer O and finite residue field F := O/πO of odd order pα.

The simply-connected covering of SO is the spin group spin. We have an exact
sequence

1 → µ2 → spin → SO → 1.

By Kneser’s theorem (cf. [GC, III §3.1 Conjecture II(a)]) we have

H1(k, spin(W)) = 1,

and hence the injective connecting map:

δ : H1(k, SO(W)) ↪→ H2(k, µ2) ∼= Z/2Z.

5.2.1. Surjectivity of δ. We’ll prove the surjectivity of δ by using induction on di-
mension of W .

Lemma 5.2.1. Let V be a k-orthogonal space with dim(V ) = 2, then |H1(k, SO(V )| =
1 if det(V ) = −1(mod k∗2) and |H1(k, SO(V ))| = 2 if det(V ) = −d ̸= −1(mod k∗2).

Proof. (1) When det(V ) = −1(mod k∗2):
For every 2-dimensional orthogonal space (V ′, < ·, · >′) with det(V ′) =

−1(mod k∗2), the case V ′ has a nonzero isotropic vector is clearly split.
We may assume V ′ contains no nonzero isotropic vectors. By using Gram-
Schmidt’s orthogonal process, there is an orthogonal basis B = {e1, e2} such
that

[< ·, · >]B =

(
c1 0

0 c2

)
,where c1c2 = −l2 for some l ∈ k∗.

Consider v1 := (l)e1 + c1e2 , we have < v1, v1 >= 0. Thus (V ′, < ·, · >) is
split.

21



(2) When det(V ) = −d ̸= −1(mod k∗2):
For every 2-dimensional orthogonal space (V ′, < ·, · >′) with det(V ′) ̸=

−1(mod k∗2), V ′ contains no nonzero isotropic vectors. By using Gram-
schmidt’s process , there is an orthogonal basis B = {e1, e2} and the qua-
dratic form q associates to < ·, · > under this basis is of the form

q(xe1 + ye2) = ax2 − by2 where xe1 + ye2 ∈ V ′ and ab = d.

Consider the special case a = 1, b = d. This gives an orthogonal space
(V0, < ·, · >0) , and the associated quadratic form q0 is just the norm N from
k(
√
d) to k.

On the other hand, |k∗/Nk(
√
d)| = 2 by local class field theory, so we choose

c ∈ k∗ not a norm from k(
√
d), consider the orthogonal space

(V1, < ·, · >1) with associated quadratic form q1 of the form cx2−cdy2. Then
V0 and V1 have the same determinant but they are not isomorphic because
q0 and q1 represent different numbers in k. Hence |H1(k, SO(V ))| = 2.

□

Lemma 5.2.2. Let (V,< ·, · >) be a k-orthogonal space with dim(V ) = 3, then
|H1(k, SO(V )| = 2.

Proof. If there is an isotropic vector v in V . Then the quadratic form q, which
corresponds to < ·, · >, represents zero. Hence q represents every number. This
means that △(u) =< u, u > can be every number as u varies in V . If det(V ) =

a(mod k∗2), we choose v such that △(v) ̸= −a(mod k∗2) and consider V ′ = (kv)⊥.
We have det(V ′) ̸= −1(mod k∗2), thus H1(k, SO(V ′)) has 2 elements by Lemma5.2.1,
and so is H1(k, SO(V )).

If V contains no nonzero isotropic vector , then (kv)⊥ also contains no isotropic
vector, for every v ∈ V , and hence H1(k, SO(V ′)) has 2 elements by Lemma5.2.1,
and so is H1(k, SO(V )). □

Proposition 5.2.3. Let (V,< ·, · >) be a k-orthogonal space with dim(V ) ⩾ 3, then
|H1(k, SO(V )| = 2. This proves the surjectivity of δ.

Proof. We prove by induction on dim(V ). When dim(V ) = 3, the proposition holds
by Lemma 5.2.2. Assume the proposition holds for dim(V ) = l , we consider the
case dim(V ) = l + 1. By Choosing a vector v ∈ V , we have the decomposition
V = V ′ ⊕ kv where V ′ = (kv)⊥.
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Now V ′ ↪→ V induces H1(k, SO(V ′)) ↪→ H1(k, SO(V ))(the proof is similar to The-
orem 1), and the induction hypothesis asserts that |H1(k, SO(V ′))| = 2. Thus
|H1(k, SO(V )| = 2. □

5.2.2. The first case. By Lemma 5.2.1, H1(k,Gv) = H1(k, SO(U)) ∼= Z/2Z except
when dim(W ) = 3 and △(v) = 1(mod k∗2). Thus γ is bijection except in the special
case.

5.2.3. The second case. Kottwitz has shown that γ is actually a group homomor-
phism when we identify H1(k,Gv) and H1(k, SO(W )) as K∗/NE∗ and Z/2Z respec-
tively. (cf. [Kottwiz]). Let f(x) = xg(x2),K = k[x]/(g(x)) and E = k[x]/(g(x2)).
By local class field theory, |K∗/NE∗| = 2m where m is the number of irreducible
factors gi(x) of g(x) such that gi(x

2) still irreducible over k. Kottwitz also shows
that γ is surjective when m ⩾ 1. Thus when m = 0, the number of orbits with
characteristic polynomial f(x) is 1. And when m ⩾ 1, the number of such orbits is
2m−1.

5.2.4. The third case. We can view H1(k, J [2]) as a F2-vector space. Let q denote
the composition:

H1(k,Gv) = H1(k, J [2]) −→
γ

H1(k, SO(W ))
∼−→
ρ

H2(k, µ2)

and consider the bilinear map

ϕ : H1(k, J [2])×H1(k, J [2]) → H2(k, µ2)

induced from the Weil pairing e2 : J [2] × J [2] → µ2 by using cup product. Then q

is actually a quadratic refinement of ϕ [Wang, theorem 2.15] in the sense that

ϕ(a, b) = q(a+ b)− q(a)− q(b) + q(0), for all a, b ∈ H1(k, J [2]).

This implies ϕ is an even bilinear form, because for all a ∈ H1(k, J [2])

ϕ(a, a) = q(a+ a)− q(a)− q(a) + q(0) = q(2a)− 2q(a) + q(0) = 2q(0) = 0.

Moreover, q is a quadratic form since

q(0) = 0 and q(cv) = c2q(v) for all c ∈ F2 , v ∈ H1(k, J[2]).

Let m+ 1 be the number of irreducible factors of f(x) in k[x]. Then

L∗ =
m+1∏
i=1

Ki∗
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where each Ki is a field extension of k. By Theorem 3

H1(k,Gv) = (L∗/L∗2)N=1 = (
m+1∏
i=1

K∗
i /K∗2

i )N=1.

Each Ki is a local field of odd residue characteristic p. Hence, |K∗
i /K

∗2
i | = 22 and

|(
m+1∏
i=1

K∗
i /K

∗2
i )N=1| = 22m. Therefore, which implies dimF2 H1(k, J[2]) = 2m. More-

over, the Arf invariant of the quadratic form q is 0 because there is a m dimensional
F2-subspace J(k)/2J(k) which is isotropic under q (Proposition 4.2.1). Therefore,
the cardinality of ker(γ) equals 2m−1(2m + 1) (cf. [GALA, Theorem 6.2.38]) that,
by Theorem 3, is the same as the number of orbits with characteristic polynomial
equal to f(x).

5.3. The k = R case.
We begin by recalling the definition of the signature of a non-degenerate real inner

product space over R. Given a non-degenerate real inner product (non-degenerate
symmetric R-bilinear map) space (V,<,>), we can choose a suitable basis under
which the <,> correspond to the diagonal matrix D whose diagonal entries are ±1.

Definition 5.3.1. We say (V,<,>) has signature (p, q) if there are p many 1’s and
q many −1’s in the diagonal entries of D.

Thus, two real inner product spaces having the same signature are isomorphic as
orthogonal spaces. In the second and third case,H1(R,GT) isomorphic to K∗/NE∗

and (L∗/L∗2)N=1 respectively, both are elementary abelian 2-group. Here we only
consider the case where H1(k,GT) has maximal rank.

5.3.1. The first case. Recall that H1(R, SO(W)) represents the set of k-isomorphism
classes of non-degenerate orthogonal spaces W ′ of dimension 2n+1 and determinant
(−1)n ∈ R∗/R∗2. Since R∗/R∗2 = {±1},

|H1(k, SO(W))| = n + 1

because the signature associated to each class must satisfy

p+ q = 2n+ 1 and q ≡ n (mod 2).

Now H1(R,Gv) = H1(R, SO(U)) represents the set of R-isomorphism classes of
non-degenerate orthogonal spaces U ′ of dimension 2n and discriminant △(v) over
R. Because △(v) = ±1 , we separate our computation of |H1(R,Gv)| into two cases:
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(1) △(v) = (−1)n:
This forces U ′ to have positive determinant so that its signature (p, q) satisfies

p+ q = 2n and q ≡ 2 (mod 2).

Hence |H1(R,Gv)| = n + 1.
(2) △(v) = (−1)n+1:

Then U ′ has negative determinant and its signature (p, q) satisfies

p+ q = 2n and q ≡ 1 (mod 2).

Hence |H1(R,Gv)| = n.
Therefore, γ is bijective when △(v) = (−1)n and injective when △(v) = (−1)n+1.

5.3.2. The second case. To have K∗/NE∗ achieve the maximal rank, we need to
have f(x) = x

n∏
i=1

(x2 + ci) where ci ∈ R>0. Then

K∗/NE∗ ∼= (R∗/R>0)
n ∼= (Z/2Z)n.

The real orthogonal space W then decompose into n orthogonal T -invariant planes
and an orthogonal line kv′ with Tv′ = 0. Indeed, by the strict real version of
spectrum theorem, if S is a skew self adjoint operator on W , there is an orthogonal
basis A of W such that

[S]A =

 M1 O
. . .

O Ml


where M0 = 0 and Mi =

(
0 −√

cii√
ci 0

)
, for i = 1, ..., n. If the orthogonal basis

A = {v0, v11, v12, · · · , vn1, vn2}, then

W = W0 ⊕W1 ⊕ · · · ⊕Wn

where W0 = span{v0}, Wi = span{vi1, vi2} for 1 ⩽ i ⩽ n, and

W0 = kerS and Svi1 =
√
civi2 , Svi2 = −

√
civi1.

We regard this decomposition as the spectral decomposition of S.
Note that for each i,

< vi2, vi2 >=<
1

√
ci
Svi1,

1
√
ci
Svi1 >=

1

ci
< vi1,−S2vi1 >=< vi1, vi1 >,
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and

< vi1, vi2 >=
1

√
ci

< vi1, Svi1 >=
1

√
ci

< −Svi1, Si1 >= − < vi2, vi1 >,

and hence < vi1, vi2 >= 0, because <,> is symmetric. Therefore, the signature of
each Wi is either (2, 0) or (0, 2). Let the ordered set

ω(S) := {ω(W0), ω(W1), ..., ω(Wn)}

denote the signatures of W0, W1,...,Wn and call it the signature of S.
By using the standard basis B, we see that the signature of W is (n + 1, n). Let

m denote the positive integer such that n = 2m+1 or n = 2m. If n is odd, then W0

has signature (1, 0) ad there are exactly m Wi having signature (0, 2); if n is even,
then W0 has signature (0, 1) and there are exactly m Wi having signature (2, 0).

Lemma 5.3.2. Suppose S, S ′ ∈ Λ2(W ) have the same characteristic polynomial
f(x) = x

n∏
i=1

(x2 + ci). Then S and S ′ lie in the same SO(W)(R)-orbit if and only if
they have the same signature.

Proof. For each g ∈ SO(W)(R) the spectral decomposition of S ′ := gSg−1 is

W = W ′
0 ⊕W ′

1 ⊕ · · · ⊕W ′
n

where W ′
0 = span{gv0}, W ′

i = span{gvi1, gvi2} for 1 ⩽ i ⩽ n. Then since

< gu, gv >=< u, v >, for all u, v ∈ B,

we have
ω(S) := ω(S ′).

Conversely , if S, S ′ ∈ Λ2(W ) have the same signature and

W = W ′
0 ⊕W ′

1 ⊕ · · · ⊕W ′
n

is the special decomposition of S ′, then because ω(W ′
j) = ω(Wj), for j = 0, ..., n, we

can arrange to have the corresponding basis

A′ = {v′0, v′11, v′12, · · · , v′n1, v′n2}

satisfying

< v0, v0 >=< v′0, v
′
0 >, < vi1, vi1 >=< v′i1, v

′
i1 > and < vi2, vi2 >=< v′i2, v

′
i2 > .
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Choose the linear map g such gv0 = ±v′0, gvi1 = v′i1 and gvi2 = v′i2, 1 ≤ i ≤ n to
have g ∈ SO(W ). Then S ′ = gSg−1. Hence S and S ′ are in the same SO(W )(R)-
orbit. □

Proposition 5.3.3. Let m denote the positive integer such that n = 2m + 1 or
n = 2m. There are exactly

(
n
m

)
elements in ker γ.

Proof. Let S = T . For every σ in the symmetric group Sn, let gi,σ(i) : Wi → Wσ(i)

be the isomorphism sending vi1, vi2 respectively to vσ(i)1, vσ(i)2 and let
T σ denote the linear transformation such that

T σ |W0= T |W0 and T σ |Wi
= g−1

iσ(i) ◦ T |Wσ(i)
◦giσ(i).

Then T σ ∈ Λ2(W ). The above lemma says each SO(W )(R)-orbit in ker γ contains
at least one such T σ and there are exactly

(
n
m

)
SO(W )(R)-orbit among

{T σ | σ ∈ Sn}.

□

5.3.3. The third case. The 2-group H1(R, GT ) has maximal rank if and only if f(x)

factors completely over R, say f(x) =
2n+1∏
i=1

(x− ci). In this case,

H1(R, GT ) ∼= (L∗/L∗2)N=1
∼= ((R∗)2n+1/(R>0)

2n+1)N=1
∼= (Z/2Z)2n.

tBy spectrum theorem, S is a self-adjoint operator on W of characteristic poly-
nomial f(x) if and only if there is an orthogonal basis A = {v1, v2, · · · , v2n+1, } of
W such that

[S]A =

 c1
. . .

c2n+1

 .

Accordingly,
W = W1 ⊕W2 ⊕ · · · ⊕W2n+1

where Wi = span{vi} and Svi = civi for 1 ⩽ i ⩽ 2n + 1. Call this the special
decomposition of S. We define the signature of S to be the ordered set

ω(S) := {ω(W1), ..., ω(W2n+1)}

where ω(Wi) denote the signature of Wi.
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Lemma 5.3.4. Let S, S ′ be elements of Sym2(W ) having f(x) =
2n+1∏
i=1

(x − ci) as

their characteristic polynomial. Then S and S ′ lie in the same SO(W )(R)-orbit if
and only if ω(S) = ω(S ′).

Proof. If g ∈ SO(W )(R), then the decomposition of gSg−1 is

W = W ′
1 ⊕ · · · ⊕W ′

2n+1

where W ′
i = span{gvi} and gSg−1(gvi) = gvi for all i. Hence

< vi, vi >=< gvi, gvi > for all 1 ⩽ i ⩽ 2n+ 1.

Conversely , if S, S ′ ∈ Sym2(W ) have the same signature and

W = W ′
1 ⊕W ′

1 ⊕ · · · ⊕W ′
2n+1

is the special decomposition of S ′, then because ω(W ′
j) = ω(Wj), for j = 1, ..., 2n+1,

we can arrange to have the corresponding basis A′ = {v′1, · · · , v′2n+1} such that

< vi, vi >=< v′i, v
′
i > for all 1 ⩽ i ⩽ 2n+ 1.

Choose a linear operator g such that gv1 = ±v′1 and gvi = v′i, for j = 2, ..., 2n + 1,
to have g ∈ SO(W )(R). Then S = gSg−1. □

The proof of the following is similar to that of Proposition 5.3.3.

Proposition 5.3.5. There are
(
2n+1
n

)
elements in ker γ.

5.4. The Global field case. Here we only consider the case V = Sym2(W ).
The exact sequence

0 → J [2]
ι−→ J

2−→ J → 0

induces the commutative diagrams

(16)

0 > J(k)/2J(k) > H1(k, J [2])
ι∗

> H1(k, J)[2] > 0

0 >
∏
v

J(kv)/2J(kv)

a∨
δ
>
∏
v

H1(kv, J [2])

b∨
ι∗
>
∏
v

H1(kv, J)[2]

c∨
> 0

where a, b, c are localization maps. Recall that the 2-Selmer group

Sel(J/k, 2) := ker(c ◦ ι∗).

Proposition 5.4.1. The 2-Selmer group Sel(J/k, 2) ⊂ H1(k, J [2]) lies in ker γ.
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Proof. Consider the commutative diagram

H1(k, J [2])
γ
> H1(k, SO(W ))

∏
v

H1(kv, J [2])

b∨
(γv)

> H1(kv, SO(W ))

d
∨

where d is also the localization map. Suppose α ∈ Sel(J/k, 2). Then b(α) is in the
image of δ. Proposition 4.2.1 and the above diagram imply

d(γ(α)) = 0.

But Hasse-Minkowski theorem says d is injective. Hence γ(α) = 0 as desired.
□

In previous sections, we have seen that ker γ are finite in the cases where its
order cam be estimated. However, in general ker γ is not always finite. We give a
counterexample below.

Counterexample 5.4.2. Let k = Q, and f(x) = (x− 1)(x2n − 3).
For each d ∈ Q∗/Q∗2, consider the twisted hyper elliptic curve with affine equation

Cd : dy2 = f(x).

and let Jd denote the Jacobian variety. Then as Galois modules

Jd[2](Qs) = J [2](Qs),

because both are generated by dη as described in Lemma 4.1.2. Furthermore, by
Proposition 5.4.1, the 2-Selmer group Sel(Jd/k, 2) of H1(k, Jd[2]) = H1(k, J [2]) also
lies in ker γ. The 2-Selmer groups of quadratic twists of such hyper-elliptic curve
y2 = f(x) can be arbitrarily large [Chang, Theorem 5.5]. Hence ker γ does contain
infinitely many elements.

6. Appendix

6.1. Special case of Galois descent.
Let V be a vector space over a field k with a fixed non-degenerate quadratic

form x. Two pairs (V, x) and (V ′, x′) are called k-isomorphic if there is a k-linear
isomorphism

f : V → V ′
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such that f(x) = x′.
Let K/k be a finite Galois extension with Galois group G,and VK = V ⊗k K be

the vector space over K. The quadratic form x defines a quadratic form xK in the
obvious way.We say (V, x) and (V ′, x′) are K-isomorphic if (VK , xK) and (V ′

K , x
′
K)

are isomorphic. Denote by EV (K/k) the set of k-isomorphism classes of (V ′, x′) that
are K-isomorphic to (V, x).

Let AK be the group of K-automorphisms of (VK , xK). The group G acts on AK

as follows: s ∈ G acts on VK by s(x⊗λ) = x⊗ s(λ). Now if f : VK → VK is a linear
map, put s(f)(x) = s(f(s−1(x))).

So let (V ′, x′) ∈ EV (K, k) and f : VK → V ′
K be a K-isomorphism.For each

s ∈ G,put
ps = f−1 ◦ s(f) = f−1 ◦ s ◦ f ◦ s−1.

We have ps ∈ AK . The map s 7→ ps is a 1-cocycle,and changing f gives another ps

that differs from the original ps by a 1-coboundary. Hence we have defined a map

θ : EV (K/k) → H1(G,AK)

Also note that here AK is actually the orthogonal group OK(x) of the quadratic
form x over K.

Proposition 6.1.1. The map θ is bijective.

Proof. To show θ is injective. Let (V ′
1 , x

′
1) and (V ′

2 , x
′
2) correspond to the same

cocycle ps. And let f1,f2 be the corresponding K-isomorphisms. Then

f−1
1 ◦ s(f1) = f−1

2 ◦ s(f2).

Hence s(f2f
−1
1 ) = f2f

−1
1 , and the map f2f

−1
1 is a k-isomorphism from (V ′

1 , x
′
1) to

(V ′
2 , x

′
2).Thus θ is injective.

To show θ is surjective.Let ps be a 1-cocycle of G with values in AK . Because
AK ⊂ GL(VK) and H1(G,GL(VK)) = 1, there is a K-automorphism f of VK such
that

ps = f−1 ◦ s(f)

for all s ∈ G.And put x′ = f(x),x′ is defined over k. Indeed, for all s ∈ G,we have

s(x′) = s(f)(s(x)) = s(f)(x) = f ◦ ps(x) = f(x) = x′.

Hence (V, x′) ∈ EV (K/k) and θ((V, x′)) is equal to the class of ps. □
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Now we let E ′
V (K/k) be the set of k-isomorphism classes of (V ′, x′) that having the

same discriminant as (V, x) which are K-isomorphic to (V, x) and AK be SOK(x).
Then for (V ′, x′) ∈ E ′

V (K/k) and f : VK → V ′
K be a K isomorphism.We have seen

before that ps ∈ OK(x). In this case, since det(f) is defined over k,

det(ps) = det(f−1) det(s(f)) = det(f−1)[s · det(f)] = det(f−1) det(f) = 1.

Thus ps ∈ SOK(x) and we can define θ : E ′
V (K/k) → H1(G,SOK(x)) as before.

Now the proof of bijectivity of θ is almost the same as the proof of Proposition 6.1.1.
We only need to replace the statement ”AK ⊂ GLK(V )” by ”AK ⊂ SLK(V )” In the
proof of surjectivity of θ.

Hence When K = ks, U defined in Lemma 3.1.2, we have H1(k, SO(U))={k-
isomorphism classes of non-degenerate orthogonal spaces U ′ of dimension 2n with
discriminant d over k}.

And When K = ks, W defined in Section 2, we have H1(k, SO(W ))= {k-
isomorphism classes of non-degenerate orthogonal spaces of dimension 2n + 1 with
determinant (−1)n over k}.
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