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ABSTRACT
Let G be a reductive group , k be a field of odd characteris-

tic with a seperable closure £°, and V' be a representation of
(G. The geometric invariant theory deals with the classifica-
tion of G(k*)-orbits on V. In this thesis, I study the paper of
Bhargava and Gross that deals with the problem on the clas-
sification of the G(k)-orbits on V' which allows us to translate
this problem into a language of Galois Cohomology. Then we
deliver several approaches to solve this problem in some special

cases.
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1. INTRODUCTION

Let k be a field with a separable closure k°, G be a reductive group defined over k,
and V be a representation of GG, also defined over k. In general, the classification of
the G(k®)-orbits on V' is treated by the geometric invariant theory. In this thesis, I
study the paper of Bhargava and Gross (cf. [Bhargava]) that deals with the problem
on the classification of the G(k)-orbits on V. We refer this subject as the arithmetic
invariant theory.

Let ) and Oy denote respectively the sets of G(k)-orbits and G(k®)-orbits on
V (k) and V(k*).

1.1. Relation between 9, and O;s. Let

be the natural (forgetful) map sending a k-orbit to its k®-orbit. Let v € O and
write ¢(v) = to. Our main aim is to classify the inverse image ¢~!(t) for each v.
We shall first relate this pre-image to some Galois cohomology. For simplicity, if A
is a group with a continuous action of Gal(k®/k) in the sense that the stabilizer of
each a € A is an open subgroup, we denote the Galois cohomology H'(Gal(k®/k), A)
by H'(k, A), and also HY(Gal(k*/k), A) by Hi(k, A) for commutative A. Let v be a
vector in V (k) representing an orbit v € O« and let G, C G denote its stabilizer.
It is a closed subgroup of G and is defined over k.

Proposition 1.1.1. Let notation be as above. There is a bijection between ¢~ ()

and the kernel of the map
v HY(k, G, (k%)) — H' (k, G(K*)).
Here the kernel of « is defined to be the pre-image v~1(0). Therefore, our task is
to determine the kernel v~1(0).
Proof. We have the exact sequence of G(k*)-sets
1 — Gu(k°) — G(k°) — 1w — 1
that gives rise to the long exact sequence
b — wNO, S HY (K, Gy (k%) 5 H (k, G(E*))

and then the proposition is proved by interpreting to N Oy as ¢ !(tv). Indeed, if

w € o N Oy is a k-rational vector in the G(k*)-orbit of v, then w = g - v for
1



some g € G(k®) and such g is well-defined up to right multiplication by elements
of G,(k*). Now Vo € Gal(k®/k), we have a(w), := g~' - ¢° € G,(k*) and the
assignment o — a(w), is a 1-cocycle a(w) of Gal(k®/k) with values in G,,(k*). Then
we check that a(w) is a coboundary if and only if w € v and also a(w) and a(w")

differ by a coboundary if and only if w and w’ are in the same G(k)-orbit. OJ

In this thesis, we try to determine the kernel of ~ for the three cases where
G = SO(W), W is an odd dimensional orthogonal space and V = W, A?>(W) or
Sym2(W). The theory turns out very rich and interesting, too, with many aspects
of arithmetic and geometry involved. The thesis is organized as follow. In §2, we
recall the basic facts on odd dimensional orthogonal spaces and set the notation.
In §3, we identify in each of the three cases the stabilizers GG, and establish the
corresponding main theorems on 7. In §4, we discuss in the third case the relation
of G, and certain jacobian variety. In §5, we consider the cases of k being a finite
field, a local field, or a global field. Finally, for the convenience of the readers, in

the appendix we include a brief review of the Galois descent theory.

2. SETTING

2.1. Orthogonal space. Let k be a field of char(k) # 2 and let W be an orthogonal
space over k, by which we mean there is associated a non-degenerate bilinear from

<, > WxW — k.

Definition 2.1.1. Let A be the corresponding matriz of the bilinear from with
respect to a chosen basis so that < w,w' >= w'- A -w' for w,w' € W. We define
the determinant of W to be the residue class of det A modulo (k*)2.

In the following, by abuse of language we shall simply say that the determinant of
W is d to refer that it is actually d modulo (k*)2. As usually, by the bilinear from,
we identify the dual space W* with W by the isomorphism

(1) WS W w=w w =< w,w>.

Let W' be another orthogonal space with the bilinear form <, >"and let T : W —
W' be a k-linear transformation. We define the adjoint transformation 7% : W/ — W
such that

<Tv,v >'=<v, T >, for every v & W, ¢ W'.
2



If B and B’ are bases of W and W’. Then for the associate matrices [1]z 5 and
[T*]B’,Ba we have
T8 = [Tss

so these two matrices have the same determinant:
det(T™) = det(T).

Two orthogonal space W and W' are isomorphic if there is a surjective orthogonal
linear transformation g : W — W":

< gv,gw >'=<v,w >, v,we W.
The condition is equivalent to
<0, g gw >=< g*gu,w >=< v,w >, forall v,w e W.
Since <, > is non-degenerate, such g is invertible with ¢=! = ¢* and
(2) det(g) = £1.
Lemma 2.1.2. Two isomorphic orthogonal spaces have the same determinant.

Proof. Let A and A’ be the matrix of <,> and < . >’ with respect to B and B'.
Then [g];in A [9]373/ = A.
O

Definition 2.1.3. An orthogonal space W of dimension 2n + 1, n > 1, is split if
and only if there exists a subspace U C W of dimension n such that U C U™,

From now on, we assume that W is a split orthogonal space of dimension 2n+ 1,
n > 1, with determinant (—1)".

The proof of the following lemma can be found in [SBF].

Lemma 2.1.4. If W is a split orthogonal space of dimension 2n + 1, n > 1, with

determinant (—1)", then there is an ordered basis
B={ei, e, ,enu, f1,fo, + fu}
of W with inner product given by
<ene >=<fi, f; >=<e,u>=< fj,u>=0,
< e, f; >= 6iy.

<u,u>=1.
3



We shall fix a basis described in the lemma and call it the standard basis.
2.2. The special orthogonal group.

Definition 2.2.1. We define the orthogonal group
OW):={geGLW): 99" =g'g=1}
and the special orthogonal group
SOW) :={g € GL(W) : g¢g* = g*g = 1,det(g) = 1}.
2.3. Special representations of SO(IV). From now on denote G = SO(W). We
shall consider three representations V' of G over k£ and define the associated discrim-
inate function:
AN V(E®) — k°.
In the first case, V = W with the natural action of G and
Av) =<wv,v>, for veV
For the second and the third representation, we first take the identification:
(3) WeoW=W®W*"=Hom(W,W),
where the first identification is via (1) and the second is by taking
w®w (v) =w"(v) w, forall weW.
Let G acts on W & W by g(w; ® we) = gw; ® gws, and via (3) for T € Hom(W, W),
g-T=gTg"

For such T, define

A(T) = disc(det(xI —T)),
the discriminant of the characteristic polynomial of 7. Recall that a polynomial has
nonzero discriminant if and only if it’s separable.

Consider the decomposition:
W oW =A(W) @ Sym*(W)

and let the second and the third representation be the restriction of the action of
G to A*(W) and Sym?(W). Also, let the discriminant function to the restriction of

the above to these subspaces. Therefore, in the second case,

V=NW)={T:W—=>W:T=-T,
4



which is of dimension 2n? + n; while in the third case,
V=Sym*W)={T W W T =T},
which is of dimension 2n? + 3n + 1.

2.4. A conventional use of notation. We shall follow the convention that if L
is a k-algebra of finite rank then L* also denote the algebraic group having the
same defining equation as L*. Namely, if {ey,.,e,} is a basis of L over k as vector
space and €; - €; = >, @i jnen, Gi;n € k, under the multiplication in L and the
identity element 1 = ). ce;, then L* is the algebraic variety with the coordinate

ring k[xy, ..., Tpn, Y1, ..., Yn] subject to the condition

S S e (: S e 3 s - 1) Y e
ho Qg i J h
Thus, in such notation, if [ is a commutative k-algebra, then the set of [-points:
L*(l) = (I L)".

If N is a subgroup of Lx defined by equalities of polynomials, then N also denotes
the corresponding closed subgroup of L*.

3. MAIN THEOREMS

Let V' denote one of the three representation of GG introduced in §2.3. In this
chapter, for each v € V (k) with discriminant A(v) # 0, our aim is to determine G,,
H'(k,G,) and the kernel of 7. Recall that B = {ey, e, ,en,u, f1, fo, +, fn} is
chosen to be the standard basis of .

3.1. The case V = W. For each d € k*, denote vg := e; + (1/2)d - fi whose
discriminant A(v) = d.

Lemma 3.1.1. Two vectors v,w € V (k) are in the same orbit of G, if and only if

A) = Aw).

Proof. If v,w € V (k) are in the same orbit of G, then A(v) = A(w). The other
direction of the proof basically follows from Witt’s extension theorem which says
that if (V3, Q) and (V5, Q') are isometric non-degenerate quadratic spaces, then every
injective linear map sg : U — V5 of a subspace U of V; such that Q' o sg = @) can

be extended to a linear isomorphism s : V; — V5 such that Q' o s = @ (cf. Theorem

11.15 in [ALA]). We may assume that A(w) = d and v = v4. Let @) denote the
5



bilinear form <,>. Since Q(v,v) = Q(w,w), the injective linear map kv — V
defined by mapping v to w extends an isometry
s (V,Q) = (V,Q).
Let t : V. — V be the linear map such that t(e;) = —ey, t(e;) — e, j # 1,
t(u) = u, t(f1) = —f1, t(f;) — fj,  # 1, and set s’ = (—s) ot. Then s(v) = s'(w)
and det(s’) = —det(s). Thus, one of s and s’ belongs to G and v and w are in the

same G-orbit..
O

Lemma 3.1.2. Let v € V(k) be such that AN(v) # 0 and U := (kv)*. Then the

restriction g — g |, gives rise to an isomorphism G, — SO(U).

Proof. Since A(v) #0, v ¢ U and W = kv @ U as orthogonal space. Every element
in SO(U) can be extended in an obvious way to a unique orthogonal transformation
on W. H

Note that in the above lemma U is actually an orthogonal space of dimension

2n, since the restriction of <, > to U is non-degenerate, and its determinant equals

(=)™ A (v).
Lemma 3.1.3. FEvery 2n-dimensional orthogonal subspace of W of determinant

(—1)"d # 0 is isomorphic to (kvg)*t.

Proof. 1f U is a 2n-dimensional orthogonal subspace of W of determinant (—1)"d,
then its orthogonal compliment U+ can be expressed as kv with A(v) = d. Lemma

3.1.1 says kv is isomorphic to kvy; and we have
U@ kv = (kvg)t @ (kvg).
Then the lemma follows from the Witt’s cancelation theorem below. O

Lemma 3.1.4 ( Witt’s cancelation theorem ). If W = W, & Wy and W' = W] & W,
and W ~ W' and Wy ~ W], as orthogonal spaces, then Wy >~ W,.

Proof. See Theorem 11.16 in [ALA] O
Theorem 1. If V =W and v € V(k) is such that A(v) # 0, then the map
v HY(k,G,) — H'(k,G)

15 injective.



Thus in this case the arithmetic invariant theory is the same as the geometric

invariant theory.

Proof. Denote d := A(v). By Lemma 3.1.3 and the theory of Galois descent (see
§6), we may identify H'(k,G) with

k-isomorphism classes of 2n 4 1-dimensional orthogonal }

spaces W' of determinant (—1)"

and H'(k,G,) with

[ k-isomorphism classes of 2n-dimensional orthogonal
v spaces U’ of determinant (—1)"d

Now in the commutative diagram
H'(k,SO(U)) —L= H'(k,SO(W))

| |
Ey(k*/k) ———= Ew(k*/k),

the lower right-arrow sends each U’ € Ey(k®/k) to W' := U’ @ kv in Ew (k*/k)
and the “identity elements” of both H'(k,SO(U)) and H'(k,SO(W)) are identified
with U and W, respectively. Hence the theorem follows from the Witt’s cancelation
theorem again.

O

3.2. The V = A?(W) case. Recall that every element T of V = A?(W) is viewed
as a skew self-adjoint operator on W. In this case, the characteristic polynomial is
an odd function, and hence we can write

f(x) :=det(zl —=T) = 2"t + cpr® ' + 4™ + -+ + o = wg(2?).

Thus, A(T') # 0 if and only if f is separable.
3.2.1. the special operator.

Lemma 3.2.1. If T is a skew self-adjoint operator on W with A(T') # 0, then the
characteristic polynomial det(xl — T) is separable, of the form xg(x?). Conversely,
for each monic separable polynomial f(z) = xg(x?), of degree 2n+1, there is a skew
self-adjoint operators T : W — W such that det(xl —T) = f(z) .

7



For a separable polynomial f(z) = xg(z?), denote L = k[z]/(f(x)), which is an
¢tale algebras of rank 2n + 1. By Chinese Remainder Theorem,

L=EFEak,

where E = k[z]/(g(z?)). Let K = kly|/(g(y)). Then y — z? induce an inclusion of
K into E. Also, x — —x induces an involution 7 on E and L with fixed algebras K
and K @ k respectively. Over k*, f(x) splits completely into the product

mH(x —a;)(x + a;).

Write By = k*[x]/(z), Ef == k*[z]/(x £ a;) = k*, 1 < i <n. Then

(4) k@ L =EfxE x--x EfxE. x E.

We can extend k*-linearly 7 to an involution on k* ®; L. In view of (4), we have
(5) (xf 2y, x0) = (7,27, ..., w0).

Proof. 1t remains to prove the second assertion of the lemma. Let § € L denote the
residue class of z. Then f(3) =0, f/(8) € L*, 7 = =3, and L = k + kB + k3% +
.-+ + kB*. Define the bilinear form <, > on L by setting

< A\, i >:= the coefficient of 3*" in the product (—1)"Au’.

We can represent <, > as a matrix A with respect to the basis {1, 3, -+, 3%"}. Thus
(=1)"
A= *
(_1)31171 * %
(—1)3 * * *
2n
and det(A) = ([](=1)"*7)(—1)"*! = (—1)", which means <, > is non-degenerate of
5=0

determinant (—1)". The n-dimensional subspace L° := k + kB + k3% + --- + k"1
satisfies L° C (L°)t. Hence, L is a split orthogonal space and by Lemma 2.1.4,
there is an isometry 6 : L — W over k which is unique up to composition with
orthogonal transformations of W. Consider the skew self-adjoint operator ¢ : L — L
defined by t(\) = BA. The characteristic polynomial of ¢ equals to f(z). Thus
T =0t~ : W — W is a skew self-adjoint operator with characteristic polynomial

equal to f(x). O
8



3.2.2. The stabilizer. For the rest of this section, let T' denote the specific skew self-
adjoint operator corresponding to t in the above proof. Note that the G(k)-orbit of
T is independent of the choice of 6. If 8’ = X o 6 for some A € O(W)(k), then one
of A and —\ is contained in SO(W), it sends T to 6't0'~! as the action of G is by
conjugation.

Since f is separable, T' is semi-simple, and hence the centralizer of 7" in End (W)
is just k[T, which can be identified with k[z|/(f(x)) = L by identifying T" with z
modulo f(z). Similarly, if [ is a field extension of k, then the centralizer of 7" in
End;(W) is [ ® L. Therefore, in the notation of §2.4, under the conjugate action
of GL(W), the stabilizer of T is isomorphic to L*. Note that for A € k[T] its
determinant as an operator on W is the same as the determinant of the k-linear
map L — L, 2+ X-2. By (4), if A = (AT, AL, .., AT, A2, Ag), then

(6) det(A) = ANjA; -+ DRIED W Y
Lemma 3.2.2. In G = SO(W), the stabilizer

Gr={A€ L* : A" =1,det(\) = 1},
which is a mazimal torus of G.

Proof. By the definition of <,>, an element A\ € L* is contained in O(W) if and
only if A- A7 = 1. This proves the first part of the lemma.
By (5) and (6), A € G if and only if

(7) A =1, i=1,...n, and )\ = 1.

This implies Gt is a torus. That it is a maximal torus follows from the fact that the

stabilizer of every element in the adjoint representation of the compact Lie group
SO(W) contains a maximal torus (cf. [TASM]). O

Recall that if X is a scheme over K, then the Weil restriction of scalar Resg /X

is the scheme such that for every k algebra F,
Resg /i X (F) = X(F @ K).

In particular, if X = SpecB the spectrum of a K-algebra B = K{z1,...,z,|/(f1, ..., fv)
and vy, ..., v, is a k- basis of K, then Resk /X = SpecB’ where B’ = k[xz;|/(fin),
i=1,..,n,7=1..,pu h =1 ., v, such that if we write z; = > | x;;v;, then

frn="2"1, finvi.

9



Let U;(F/K) denote the algebraic group over K given by
{a€ B : a7 =1}
in the convention of §2.4. Then by (7), the k-algebraic group Gr is nothing but the
Weil restriction of scalar of Uy (E/K).
Lemma 3.2.3. We have G = Resg U1 (E/K).

3.2.3. The k*-orbit of T. Let f(x) = xg(x?) be a separable polynomial of degree 2n
and let T be the special operator associated to f(z).

Lemma 3.2.4. Fvery skew self-adjoint operator S having characteristic polynomial
equal to f(x) is in the G(k®)-orbit of T, and vice versa.

Proof. Since f(x) is separable, it is the minimal polynomial of 7" and S. Therefore,
T and S are similar by some element u € GL(W)(k®) in the sense that S = uTu™".

Now the equalities
(uTu ™) =S5 = -5 = —(uTu™")
and
(U,T’Ufl)* — (uil)*T*u* — (ufl)*(_T)u*
imply
uw'ul = Tuu.
Therefore, as explained in §3.2.2) u*u € L*(k*), and since it is self-adjoint, it is
actually contained in K* x k*. By (5), the norm homomorphism L*(k*) — K*(k®) x
(k%)*, h — R is surjective. Hence we can write u*u = h'*7. Consider the operator
uh™! € GL(W)(k®), it is orthogonal:
(uh™)* = (K )*u* = h"u* = h(u*uw) 'u* = hu™' = (uh™)~h

Choose uy = Fuh™! to have detu® = 1. Then uy € SO(k®). Since h € L*,
hTh=' =T, and hence u, sends T to S:

ugTuy' = uh ' Thu™' = uTu™' = S,
The second assertion is obvious. O

Corollary 3.2.5. If S is skew self-adjoint operator having /A(S) # 0, then Gg is a

mazximal torus of G.
10



Suppose in the above lemma S is k-rational. Let ug be as in the above proof so
that ug € G(k®). For each o € Gal(k®/k), uy = uié&,, for some &, € Gr(k®). Then
o — &, defines a Gp(k®)-valued 1-cocycle of Gal(k®/k) and its class in H'(k, Gp) is

exact the element of ker corresponding to S (see Proposition 1.1.1 and its proof).

3.2.4. k-orbits. Now we give a more precise description of ker v other than the above
one. For each k-rational element k € K*, denote a := a,, == (k,1) € K* x k* and let
W, denote the orthogonal space with the same underlying linear space as L, while

its symmetric bilinear form <, >, defined by
< A, it >,:= the coefficient of 5" in the product (—1)"a\u".

Thus W, is an orthogonal space of dimension 2n + 1 and determent (—1)", because
< M\ p >=<a-A\p>and by (6), deta € (k*)?. Let N : E* — K* be the norm
map sending £ to 7. If k¥ = k- ™7, h a k-rational element of E*, then the
linear map L — L, z — hz gives rise to an orthogonal isomorphism W, — W,,. By
descent theory, H!(k,SO(T¥)) is nothing but the set of the isomorphism classes of
orthogonal spaces of determinant (—1)". Thus, the above discussion gives rise to

7' K*/NE* — H'(k,SO(W))
that maps the residue class of k to the isomorphic class of W,.
Theorem 2. Let V.= A*(W) and let T be the specific skew self-adjoint operator
of V' described in §3.2.2 so that its characteristic polynomial f(z) := xg(x?) is
separable. Then the SO(k®)-orbit of T' is formed by all skew self-adjoint operators
S with characteristic polynomial equal to f(x). Furthermore, the cohomology group
HY(k, G7) can be identified with the quotient K* /N E*, where K = kly|/(9(y)), E =

klz]/(g(x?)) and N : E* — K* is the group homomorphism induced by x — —y?,
and the map ~ in proposition 1.1.1 can be identified with ~' defined above.

Proof. Apply Lemma 3.2.3 and consider the exact sequence of Gal(k®/k)-modules
1 — Gr(k*) = Resg G (k*) 25 Resg /xGon (k) — 1
which is the same as
1 Gr(k*) = (K @, B)* & (k° @) K)* — 1.
It induces the long exact sequence

(8) 1 — Gp(k) = E* 5 K 5 HY(k, Gr(k*)) — H(k, (E @4 k*)")
11



By (4) and Hilbert Theorem 90, H!(k, (E ®j, k*)*) = 0, and hence

H'(k,Gr(k%)) = K*/NE*.
Under this isomorphism, the residue class of kK € K* modulo NE* corresponds to
the cohomology class of the 1-cocycle £ : Gal(k® /k) — Gr(k®) given by &, = (71 (7,
for each o € Gal(k®/k), where ¢ € E*(k*) satisfying N(¢) = k. We need to show
that the descent theory also associates W, to the cohomology class of .

Recall that W, is the orthogonal space with the same underlying space as L but

with <, >, as its symmetric bi-linear form. Write
G =(¢,1) e E(k*)" x (k*)x = L*(k*).

Then the map u + (; - u gives rise to an orthogonal isomorphism ¢, : W, — L,
and the descent theory also associates W, to the cohomology class represented by

the 1-cocycle n with
No = ((bCl)il ° ¢Zl = (C1)71 G = Cil (7 =&

O

3.3. The V = Sym*(W) case. In this case, we show that G is a finite commutative
group scheme of order 22" over k and we also give an explicit description of the map
v : HY(k,Gr) — H'(k, G) for specific T'.

3.3.1. The specific T.
Lemma 3.3.1. If T is a self-adjoint operator on W with A(T) # 0, then the

characteristic polynomial det(xl — T) is separable of degree 2n + 1. Conuversely,

for each monic separable polynomial f(x) of degree 2n + 1, there is a self-adjoint
operators T : W — W such that det(z] —T) = f(x) .

In this section (§3.3), for a monic separable polynomial f(z), let L = k[z]/(f(z))
and let 8 be the residue class of x in L. Let 7 : L — L be the automorphism
mapping [ to —f.

Proof. Define on L the symmetric bilinear form <, > by

< A, p >:= the coefficient of %" in the product Apu.

This endows L the structure of a split orthogonal space of determinant (—1)". Let

0 : L — W be an orthogonal isomorphism (by Lemma 2.1.4) over k and let t
12



denote the linear map such that t(\) = SA. Then ¢ is self-adjoint of characteristic
polynomial f(x), and hence so is the operator T = 0t~ on W.
N

Note that here the choice of 6 doesn’t affect the G(k)-orbit on T'. For the rest of
this section, let T' denote the specific self-adjoint operator corresponding to t in the

above proof.

3.3.2. The stabilizer. Similar to the previous case, since f is separable, T" is semi-
simple, and hence the centralizer of 7" in Endg (W) is just k[T], which can be iden-
tified with k[z]/(f(z)) = L by identifying 7" with  modulo f(z). Under this
identification, if S € L, then S* = S. Hence,

Gr:={\e L*| N =1,det(\) = 1}.

Let N : L* — k* denote the norm map that send each y € L* to det(y) and we
extend it to a morphism

N : RGSL/ka — Gm

and by restrict it to Resy/ppo we get the exact sequence
N
(9) 1 — (Resp/ppo)n=1 — Resp/p(p2) — po — 1.

Here (ResL/k,ug)N:l is defined to be the kernel of the map N : Resy jxp2 — p2. Then
we check directly that for each commutative k-algebra F,

GT(F) = {)\ € (L R F)* . )\2 = 1,detp()\) = 1} = (RGSL/k,UQ)Nzl(F)
and actually Gp = (Resggpte) n=1-

Lemma 3.3.2. In G = SO(W), the stabilizer Gy = (Resp/xft2) n=1 which is a finite

étale group scheme of order 2",

Proof. Since the characteristic of k is not 2, us is an étale group scheme of order

)27l is an étale group scheme of order

2. Therefore, Resy/x(ft2) Xspeck SpecL = (11
221 over L. Thus, if Resy,(p2) = SpecA, then A ®; L is separable over L. Since
L is separable over k, A must be separable over k, and hence Resy ,(u2) is étale

over k . The rest of the lemma follows from (9). O
13



3.3.3. The k*-orbit of T.

Lemma 3.3.3. Every self-adjoint operator S having characteristic polynomial equal
to f(x) is in the G(k®)-orbit of T, and vice versa.

Proof. Since f(x) is separable, T"and S are similar by some element g € GL(W). Now
(gTg~")* = (gTg~") and (¢Tg~")* = (97" )*T*g* = (¢7')*Tg" implies g*¢T = Tg*g,
and hence g*g € L*. Let h € (L ®;, k*)* such that g*g = h%. Choose ug = +gh™! to
have ug € SO(W)(k?*). We have ugTu,* = S. O

Corollary 3.3.4. In SO(W), the stabilizer of every self-adjoint operator S having
separable characteristic polynomial f(x) is a finite étale group scheme of order 2%™.

3.3.4. The k-orbit. The norm homomorphism N : L* — k* induces the homomor-
phism L*/L** — k*/k** whose kernel we denote by (L*/L**)x—;. Let a € L* be
such that N(a) € k*%. Define the orthogonal space W, whose underlying vector

space is L, while the symmetric bilinear form <, > is given by
< A, jt >q:= the coefficient of %" in the product alpu.

The space W, is a 2n + 1 dimensional orthogonal space over k with determinant
(—1)™, because < A\, i >,=< a -\, u > and deta = N(a) € (k*)2. If o/ = N\q, for
some A € L*, then pu +— Au gives rise to an isomorphism between W, and W, as
orthogonal spaces. Therefore, we can associate to each element [a] € (L*/L*?*)n—
the k-isomorphic class [W,] of W,. By descent theory, this defines the map

(10) v (L*) L) y—y — HY(k, SO(W)).

Theorem 3. Let V = Sym*(W) and let T be the specific self-adjoint operator of
V' described in §3.3.1 so that its characteristic polynomial f(x) is separable. Then
the SO(k*)-orbit of T is formed by all self-adjoint operators S with characteristic
polynomial equal to f(x). Furthermore, the cohomology group H'(k,Gr) can be
identified with the quotient (L*/L**)n_1, where L = k[z]/(f(x)) and N : L* — k* is
the norm map, and the map ~y in proposition 1.1.1 can be identified with v in (10).

Proof. The exact sequence (9) induces the long exact sequence

s o ua (D) {1} 5 HY(k, (Resy jupin) n—1)—H (k, Resy jpptn) s H (k, 15) — -+ .
14



Since N(—1) = —1, the map us(L) &, {£1} is surjective. Then we identify the
group H'(k, (Resyjpp2) n=1) with (L*/L**)n—; via the commutative diagram

Ny
0——> H1<k3, (ResL/kMQ)Nzl) — Hl(l{?, RGSL/k,u2> _— Hl(l{?, /,62)

| I
0 —> (L*/L*)yoy ———> L)L ———> kK,
where the two equalities are by Kummer theory. Under this identification, if « € L*,
N(a) € k** represents the class [a] € (L*/L**)y=; and h € (L ® k*)*, h? = «, then
[a] corresponds to the class [p] € H'(k, (Resy kp2)n=1) represented by the cocycle
p such that p, = h?/h € po(L ® k*)5_;. Here po(L ® k*)%_, denotes the kernel of
w2 (L ® k*) X, {#£1}. For such a and h, the map sending A to h\ is an orthogonal
isomorphism from W, to L. By descent theory, 7'([a]) is also represented by the

cocycle p.
OJ

4. MORE DISCUSSION ON THE REPRESENTATION V=Sym?(1/)

In the second and the third case, we have known that for each o € H!(k, Gr),
the class y(«) is represented by the orthogonal space W, such that a € kery if and
only if W, is split (Definition 2.1.3). In this section, we construct in the third case
some non-trivial a # 1 such that W, is split.

Let C' be the smooth projective hyper elliptic curve of genus n over k with affine
equation y* = f(z) where f(z) is given as in Theorem 3. Let J be the Jacobian of
C over k.

4.1. The group scheme J[2].

Lemma 4.1.1. The group scheme J[2] of 2-torsion points on the Jacobian of C' is

a finite étale group schemes over k of order 2*".

Because char(k) # 2, this is well known (cf. [ABV]). As before, write L =
klz)/(f(z)) = k+kB+---+kB%", wheref(8) = 0. Let  : C' — P! be the two-to-one
covering sending P := [z : y : z] (in projective coordinate) to zp := [x : z]. Let
P, =1[0:1:0] be the k-rational Weierstrass point above [1 : 0] (the infinite point
on P1).

Each root v of f(x) in k* corresponds to a unique non-trivial k-algebra homomor-

phism 7 : L — k® so that a = (). For such n, denote P, = [n(5) : 0 : 1], which is a
15



Weierstrass point on C, and every Weierstrass point on C' other than Py equals P,
for a unique 7. Let d,, denote the divisor P, — P, of degree zero and let [d,] denote
its divisor class. Since 7 is ramified of index 2 at each P, and P, the divisor
(11) div(y) =Y _d,.

alln

Since the divisor of the rational function x — n(8) on P! equals [n(8) : 1] — [1 : 0],

on C' the divisor
div(7*(z — n(B)) = 2P, — 2P = 2d,
(cf. [AEC, Proposition 2.6]). Hence [d,] € J[2](k*).

Lemma 4.1.2. The group J[2|(k®) is generated by all [d,] associated to k-algebra

homomorphisms n : L — k*®, subject to the condition

> ldy] =0.

Proof. The condition is due to (11). Since J[2](k®) is a Fo-vector space, it is sufficient
to show that if m < 2n, then

m

> ldy] #0.

i=1
If this were not true, then we would have

> dy, = div(2)
=1

for some z € k*(C), the field of k*-rational function on C. Then z has only pole at
P, of order m. Let V be the k*-space of rational function on C' with only pole at
P, of order at most 2n. Riemann-Roch theorem says that V' has dimension equal
tol—n+2n+1=mn+1, because C' is of genus n. Since 1,x,--- , 2™ are all in V' and
are linearly independent over k°, they form a basis of V. Because z € V, it must be
a linear combination of 1,z,--- ,2". However, since the order of a polynomial of x
at every Weierstress point is even while the order of z at each Weierstress point P,
is 1, we have a contradiction. O

Let T be the special operator on W associated to f.

Lemma 4.1.3. The group scheme J[2] of 2-torsion points on the Jacobian of C is

isomorphic to the stabilizer Gp of T' in SO(W).
16



Proof. The category of commutative finite étale group schemes over k is equivalent
to the category of finite G(k*/k)-modules (cf. [AGS, §6.4]). Thus, we need to show
that J[2](k®) = (Resp ik (p2)(k*))n=1 as G(k*/k)-modules.

By Chinese Remainder Theorem,

L@pk?=Fk xk*x- - xk°

2n+1

and if pr; : L ®; k* — k* is the projection onto the ith factor, then the composition
ni: L5 Lok’ 5% ke,

where ¢ denotes the natural map v +— u®1, is a non-trivial k-algebra homomorphism,

and vice versa. In particular, since every for o € Gal(k®/k), the composition
comn;: L — k*

is also a non-trivial k-algebra homomorphism, there is a unique j =: ¢ such that

(12) 00 = Tis.

The Gal(k®/k)-module structure of L ®j k® is given by the action of Gal(k®/k) on
the right factor k. Write t; for pr;(t) for t € L ® k*. Then we have

(13) (7)o = (£:)°

Now,
Resp/i(p2)(k*) = po(L @5 k*) = Hg(ks) X (k%) X -+ X MQ(kSZ’

241
where each pu(k®) = {£1} and by (13), the action of o just send the ith factor to
the ¢?th. In particular, the diagonal map

(£1} S {£1} x - x {£1)

identifies p12(k®) as a Gal(k®/k) submodule of Resy ,p2(k®). Moreover, since 2n +
1 is an odd integer, the restriction of the norm map A(u(k®)) T po(k®) is an

isomorphism. Therefore, the exact sequence of Gal(k®/k)-modules
0— (ReSL/kILLQ(kS>>N:1 — ReSL/kMQ(kS) — ﬂg(ks) —0
actually splits. Hence

(Respk(p2)(K*)) n=1 iReSL/km(/ﬂs)/uz(/ﬂs)-



Let A denote the 2n + 1 dimension Fao-vector space with n;, ¢ = 1,...,2n + 1, as
basis and let Gal(k®/k) acts on A by (12). Then the map A — Resyppuo(k*) sending
Yosaim to ((=1)*,(=1)%2, ..., (=1)®+) is an isomorphism of Gal(k®/k)-modules.
Then we complete the proof by noting that the Fs-homomorphism mapping 7; to
d,,] identifies J[2](k®) with A/, which is isomorphic to Resy kpua(k®)/pa(k®).

OJ

4.2. Special classes in kervy. The exact sequence of Galois modules
0— J2J(K*) = J(k*) > J(k*) = 0

induces the exact sequence

(14) 0— J(k)/2J(k) — H' (K, J[2]) — H'(k,J)[2] = 0

By the lemma above we have H!(k, J[2]) = H'(k, G7).

Proposition 4.2.1. The subgroup J(k)/2J(k) of H'(k,J[2]) = H(k,Gr) lies in
ker 7.

Proof. Recall that in §3.3.4, we associate to each class o € H!(k, Gr) the orthogonal

space W, whose underlying space is L, with symmetric bilinear form
<\, 1 >q:= the coefficient of 4?" in the product a\u.

Now we use "left multiplication by 7 to construct another symmetric bilinear form
< A >qon L. Let M = Lk, a 2n + 2-dimensional vector space over k. We
define two bi-linear forms (or quadratic forms) on M: for (A, a) € M,

QA a) =< A\ A >,
Q'(\,a) =< BA )\ >, +a’.

The pencil uQ — vQ’ with u,v € k* has discriminant v*"2 f(u/v). Indeed, write

A0
s for the matrix associated to the left multiplication by 3, and 0 0 and

18



A0 lg 0O
( 0 1 ) . < g ) ) for those associate to Q and ', respectively. Then

| o A0\ (a0 (1o
disc(u@ —vQ') = det(u(o 0) U(o 1) (0 1>)
_ det<uA—vAl5 0 )
0 —v

= (—v)det(A)det((u/v-1—1Ig)v)
= (o) (=1 f (u/v)
= W22 f ().

Thus, the pencil u@ — v@’ is non-degenerate and contains exactly 2n + 2 singular
elements over k°, which are the quadric @, and the 2n + 1 quadrics n(5)Q — @’
with f(n(8)) = 0. There is a Fano variety F, whose k*-points corresponds to n-
dimensional k®-subspaces Z of M which are isotropic for all of the quadrics in the
pencil, and F,, is actually a principle homogeneous space of order 2 of the Jacobian
J, corresponding to the image of « in H!(k, J)[2] [Donagil.

If « € J(k)/2J(k), then by (14), the image of a in H!(k, J)[2] is trivial, so that
the corresponding principle homogeneous space F, has a k-rational point. Thus,
there is a n-dimensional subspace Z of M over k which is isotropic for all quadrics
in the pencil, hence isotropic for @ and @'. Since Z is isotropic for @', Z contains
no elements in M of the form (0,a), a # 0. Hence, the projection of Z onto L is a
n-dimensional k-subspace of L which is isotropic for ). This implies the symmetric
bilinear form <, >, is split. Therefore, « is in the kernel of ~.

OJ

5. ARITHMETIC FIELDS

In this section, we consider the special cases where k is a finite field, a local field,
or a global field. As before, the cases where V. =W,V = A?2(W) and V = Sym?*(W)
are respectively referred as the first, send and third case.

5.1. The finite field case. Let £ be a finite field of odd order ¢q. By Lang’s theorem
(cf. [GC, TIT §2.3 Theorem 1']), H'(k,SO(W)) = 1 since SO(W) is connected.
Thus by Galois descent theory, every orthogonal space of dimension 2n 4+ 1 with

determinant (—1)" is split so that H'(k, Gr) C ker .
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5.1.1. The first case. In the notation of §3.1, for each v € V with non-zero discrim-
inant, G, = SO(U) which is also connected, hence H'(k,G,) = 1. Thus for every
non-zero element d € k*, there is a unique orbit of vectors with A(v) = d.

5.1.2. The second case. For each S € V with A(S) # 0, Gg is also connected
because it is a maximal torus (Corollary 3.2.5) of the connected algebraic group
SO(W), hence has trivial cohomology. Thus for any separable polynomial f(x) =
zg(x?), there is a unique orbit of S € V with characteristic polynomial f(x).

5.1.3. The third case. Let T' € V be the special operator with non-zero discriminant

so that G = (Res kp2) v=1. The exact sequence (9) induces the long exact sequence
s (D) pa(k) —H (k, Gr) —H (k, Respjipin) = H (k, p12) = -

(15) I I

Let m + 1 denotes the number of irreducible factors of f(x) € k[z]. Then

|H1<l{?7 RQSL/kM2)| = 2m—|—1.

Also, since 2n + 1 is an odd integer, the composition ps(k) — pua(L) o, (k)
is surjective. Hence H'(k,Gr) — H'(k,Resp ko) is injective. The lemma below
asserts that

Hl(ka ReSL/k,UQ) L Hl(ka M2)

is actually surjective. These together imply
[0 (k, Gr)| = 2™ = |(4a(L)) n=1| = |G (k).

This means that there are 2™ distinct G(k)-orbits with characteristic polynomial
f(z) that lie in the G(k®)-orbit with characteristic polynomial f(z). Since the order
of each orbit equals to
[SOW)(K)[ _ [SOW)(K)|
|G (k)] am
the number of self-adjoint operators S € V associated to a fixed separable polyno-

mial equals to [SO(W)(k)|.

Lemma 5.1.1. The map H*(k,Resp,/xp2) Ny HY(k, po) is surjective.
20



Proof. By (15), it is sufficient to show that L* N k*is surjective. By Chinese
m+1

Remainder Theorem, we can write L* = [[ L}, where each L; is a field extension of
=1

k, so that if t = (t1,...,tme1) € L*, then N(t) = [/ Ny, k(t;). Since k is a finite
field, each norm map Ny, ., is surjective. Hence the lemma follows. 0
By Lang’s theorem, H!(k, .J) = 0,where J is the Jacobian of the smooth hyper-

elliptic curve y? = f(z) of genus n over k. Hence J(k)/2J(k) = H'(k, Gr) and every
orbit associated to f(z) comes from a k-rational point on the Jacobian.

5.2. The non-archimedean local field case. Let k be a non-archimedean local
field, with ring of integer O and finite residue field F := O /7O of odd order p*.
The simply-connected covering of SO is the spin group spin. We have an exact
sequence
1 — po — spin - SO — 1.

By Kneser’s theorem (cf. [GC, III §3.1 Conjecture II(a)]) we have
H'(k, spin(W)) = 1,
and hence the injective connecting map:
§ : H'(k, SO(W)) — H*(k, j1p) = Z/27Z.

5.2.1. Surjectivity of 9. We’ll prove the surjectivity of by using induction on di-
mension of W.

Lemma 5.2.1. Let V be a k-orthogonal space with dim(V') = 2, then |H (k, SO(V)]
1 ifdet(V) = —1(mod k**) and |H(k, SO(V))| = 2 if det(V) = —d # —1(mod k*?).

Proof. (1) When det(V) = —1(mod k*?):
For every 2-dimensional orthogonal space (V', < -, >') with det(V’) =

—1(mod k*?), the case V' has a nonzero isotropic vector is clearly split.

We may assume V' contains no nonzero isotropic vectors. By using Gram-
Schmidt’s orthogonal process, there is an orthogonal basis B = {e1, es} such
that

0
(<« >|g= ( %1 ) ,where ¢1cy = —[? for some [ € k*.
Co

Consider vy := (l)e; + c1eo , we have < vy,v; >= 0. Thus (V/, < -+ >) is

split.
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(2) When det(V) = —d # —1(mod k*?):
For every 2-dimensional orthogonal space (V/,< - - >) with det(V') #
—1(mod k*?), V' contains no nonzero isotropic vectors. By using Gram-
schmidt’s process , there is an orthogonal basis B = {ej,es} and the qua-

dratic form ¢ associates to < -,- > under this basis is of the form
q(we; + yeo) = ax® — by*  where we; +ye, € V' and ab = d.

Consider the special case a = 1, b = d. This gives an orthogonal space
(Vo, < -,- >0) , and the associated quadratic form ¢q is just the norm N from
k(V/d) to k.
On the other hand, |k*/Nk(v/d)| = 2 by local class field theory, so we choose
¢ € k* not a norm from k(v/d), consider the orthogonal space
(V1, < -,- >1) with associated quadratic form ¢; of the form cx? —cdy?. Then
Vo and V; have the same determinant but they are not isomorphic because
qo and ¢, represent different numbers in k. Hence |H'(k, SO(V))| = 2.

O

Lemma 5.2.2. Let (V,< -,- >) be a k-orthogonal space with dim(V) = 3, then
|H'(k, SO(V)| = 2.

Proof. If there is an isotropic vector v in V. Then the quadratic form ¢, which
corresponds to < -,- >, represents zero. Hence ¢ represents every number. This
means that A(u) =< u,u > can be every number as u varies in V. If det(V) =
a(mod k*?), we choose v such that A(v) # —a(mod k*?) and consider V' = (kv)*.
We have det(V') # —1(mod k*?), thus H'(k, SO(V")) has 2 elements by Lemma5.2.1,
and so is H'(k, SO(V)).

If V contains no nonzero isotropic vector , then (kv)t also contains no isotropic
vector, for every v € V, and hence H'(k, SO(V")) has 2 elements by Lemma5.2.1,
and so is H'(k, SO(V)). O

Proposition 5.2.3. Let (V, < -,- >) be a k-orthogonal space with dim(V') > 3, then
|H'(k,SO(V)| = 2. This proves the surjectivity of §.

Proof. We prove by induction on dim(V'). When dim(V') = 3, the proposition holds
by Lemma 5.2.2. Assume the proposition holds for dim (V) = [ , we consider the

case dim(V) = [ + 1. By Choosing a vector v € V, we have the decomposition

V = V' ® kv where V' = (kv)*.
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Now V' < V induces H'(k, SO(V")) — H'(k,SO(V))(the proof is similar to The-
orem 1), and the induction hypothesis asserts that |H'(k,SO(V’))| = 2. Thus
|H(k, SO(V)| = 2. O
5.2.2. The first case. By Lemma 5.2.1, HY(k,G,) = H'(k,SO(U)) = Z/27Z except
when dim(W) = 3 and A(v) = 1(mod k*?). Thus 7 is bijection except in the special

case.

5.2.3. The second case. Kottwitz has shown that ~ is actually a group homomor-
phism when we identify H*(k, G,) and H'(k, SO(W)) as K*/N E* and Z/27Z respec-
tively. (cf. [Kottwiz]). Let f(z) = zg(2?),K = k[z]/(g9(x)) and E = k[z]/(g(x?)).
By local class field theory, |K*/NE*| = 2™ where m is the number of irreducible
factors g;(x) of g(z) such that g;(z?) still irreducible over k. Kottwitz also shows
that v is surjective when m > 1. Thus when m = 0, the number of orbits with

characteristic polynomial f(x) is 1. And when m > 1, the number of such orbits is
2m-t,

5.2.4. The third case. We can view H'(k, J[2]) as a Fy-vector space. Let g denote
the composition:

H'(k,Gy) = H'(k, J[2]) — H'(k, SO(W)) — H? (K, 112)

v

and consider the bilinear map
¢+ H'(k, J[2]) x H'(k, J[2]) = H*(k, p»)

induced from the Weil pairing ey : J[2| x J[2] — pe by using cup product. Then ¢
is actually a quadratic refinement of ¢ [Wang, theorem 2.15] in the sense that

#(a,b) = q(a+b) — q(a) — q(b) + q(0), for all a,b € H'(k, J[2]).
This implies ¢ is an even bilinear form, because for all a € H(k, J[2])
¢(a,a) = q(a+a) — q(a) — q(a) + ¢(0) = ¢(2a) — 2q(a) + ¢(0) = 2¢(0) = 0.
Moreover, q is a quadratic form since
q(0) = 0 and ¢(cv) = *q(v) for all c € Fy , v € H'(k, J[2]).

Let m + 1 be the number of irreducible factors of f(x) in k[z]. Then

m—+1
L =[] K
=1
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where each K; is a field extension of k. By Theorem 3

m+1

H!(k, Gy) = (L* /L)y = <H K} /K=t

Each Kj; is a local field of odd residue characteristic p. Hence, |K;/K;?| = 2? and
m+-1

(1] K;/K;*)n=1| = 2*™. Therefore, which implies dimg, H(k, J[2]) = 2m. More-
i=1

over, the Arf invariant of the quadratic form ¢ is 0 because there is a m dimensional

[Fy-subspace J(k)/2.J(k) which is isotropic under ¢ (Proposition 4.2.1). Therefore,

the cardinality of ker(y) equals 2"71(2™ + 1) (cf. [GALA, Theorem 6.2.38]) that,

by Theorem 3, is the same as the number of orbits with characteristic polynomial
equal to f(x).

5.3. The k =R case.

We begin by recalling the definition of the signature of a non-degenerate real inner
product space over R. Given a non-degenerate real inner product (non-degenerate
symmetric R-bilinear map) space (V, <, >), we can choose a suitable basis under

which the <, > correspond to the diagonal matrix D whose diagonal entries are +1.

Definition 5.3.1. We say (V, <, >) has signature (p,q) if there are p many 1’s and

q many —1°s in the diagonal entries of D.

Thus, two real inner product spaces having the same signature are isomorphic as
orthogonal spaces. In the second and third case,H! (R, Gt) isomorphic to K*/NE*
and (L*/L*?)n—1 respectively, both are elementary abelian 2-group. Here we only
consider the case where H!(k, G) has maximal rank.

5.3.1. The first case. Recall that H' (R, SO(W)) represents the set of k-isomorphism
classes of non-degenerate orthogonal spaces W’ of dimension 2n+1 and determinant
(—1)" € R*/R*2. Since R*/R*? = {1},
IH'(k, SO(W))| =n+1
because the signature associated to each class must satisfy
p+qg=2n+1 and ¢g=n (mod 2).
Now HY(R,G,) = H'(R,SO(U)) represents the set of R-isomorphism classes of

non-degenerate orthogonal spaces U’ of dimension 2n and discriminant A(v) over

R. Because A(v) = %1, we separate our computation of |[H!(R, G, )| into two cases:
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(1) &) = (~1)*

This forces U’ to have positive determinant so that its signature (p, ¢) satisfies
p+q=2n and ¢=2 (mod 2).
Hence |[H'(R,G,)| =n + 1.
(2) A(v) = (=1)"*:

Then U’ has negative determinant and its signature (p, ¢) satisfies
p+qg=2n and ¢g=1 (mod 2).

Hence |H'(R, G,)| = n.
Therefore, v is bijective when A(v) = (—1)" and injective when A(v) = (—1)""L.

5.3.2. The second case. To have K*/NE* achieve the maximal rank, we need to

have f(z) = z [[ (2 + ¢;) where ¢; € Rsg. Then
i=1
K*/NE* 2 (R*/Rso)" & (Z/2Z)".

The real orthogonal space W then decompose into n orthogonal T-invariant planes
and an orthogonal line kv’ with 7w = 0. Indeed, by the strict real version of
spectrum theorem, if S is a skew self adjoint operator on W, there is an orthogonal
basis A of W such that
M, @)
[Sla= :
O M,

Va0

A = {vg,v11, V12, + , U1, Upa }, then

0 —\/c, 4 .
where My = 0 and M; = ( = ), for i = 1,...,n. If the orthogonal basis

W=WoeoW,&---aW,
where Wy = span{uvg}, W; = span{v;1, va} for 1 <i < n, and
WO = ker S and SU“ = \/C_Z'Uig N S/Uig = —\/C_Z"Uil.

We regard this decomposition as the spectral decomposition of S.
Note that for each i,

1 1 9
— SV, —=Sv;1 >= — < V1, =Sy >=< Vi1, Vi1 >,

\/C_z C;
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< V42, Vg >=<

1
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and

! < Svy > !

Vi1, OVl >=
va T T e
and hence < v;1,v;5 >= 0, because <, > is symmetric. Therefore, the signature of
each Wj is either (2,0) or (0,2). Let the ordered set

< Vj1, Vg >=

< =81, 501 >= — < V2, Vi1 >,

w(S) == {w(Wy),w(W1), ..., w(W,)}

denote the signatures of Wy, Wi,...,W,, and call it the signature of S.

By using the standard basis B, we see that the signature of W is (n + 1,n). Let
m denote the positive integer such that n = 2m+1 or n = 2m. If n is odd, then W,
has signature (1,0) ad there are exactly m W; having signature (0, 2); if n is even,
then W, has signature (0,1) and there are exactly m W; having signature (2,0).

Lemma 5.3.2. Suppose S,S" € A*(W) have the same characteristic polynomial
f(x)=x [ (z* +¢). Then S and S’ lie in the same SO(W)(R)-orbit if and only if
i=1

they have the same signature.
Proof. For each g € SO(W)(R) the spectral decomposition of S" := gSg~* is
W=wsoW, & --aWw,
where W/ = span{guvy}, W/ = span{guv;1, gvi2} for 1 <1i < n. Then since
< gu, gv >=< u,v >, forall u,v € B,
we have
w(S) == w(S").
Conversely , if S, 5" € A*(W) have the same signature and
W=weoWw & --eWw,

is the special decomposition of S’, then because w(W}) = w(Wj), for j =0, ...,n, we

can arrange to have the corresponding basis
!/ / / / !/ /
A" = {vp, 0115 Vg, Uty Una }
satisfying

< Ug, Vg >=< V4, Uh >, < U1, Ui >=< V), U5 > and < g, g >=< Uy, Uty > .
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Choose the linear map ¢ such gvy = £v(, gvi = v}y and gus = v}y, 1 <i < n to
have g € SO(W). Then S’ = gSg~'. Hence S and S’ are in the same SO(W)(R)-
orbit. 0]

Proposition 5.3.3. Let m denote the positive integer such that n = 2m + 1 or
n = 2m. There are exactly (::1) elements in ker .
Proof. Let S = T. For every o in the symmetric group S,, let g; ,u) : Wi — W)
be the isomorphism sending v;;, vi2 respectively to vo(i)1, Vo(i)2 and let

T denote the linear transformation such that

TU |WO: T |WO al’ld TU |W1: g_l ) o) T |Wa(z) ng(z)

io(i
Then T7 € A*(W). The above lemma says each SO(W)(R)-orbit in ker~ contains
at least one such 77 and there are exactly (") SO(W)(R)-orbit among

{T? | 0 €8,}.
O
5.3.3. The third case. The 2-group H'(R, Gr) has maximal rank if and only if f(z)
2n+1
factors completely over R, say f(x) = ][] (z — ¢;). In this case,
i=1

HY(R, Gr) 2= (L"/L™) =1 = (B)"/(Rs0)™ )y = (Z/22)™

tBy spectrum theorem, S is a self-adjoint operator on W of characteristic poly-

nomial f(z) if and only if there is an orthogonal basis A = {vy,vq, -+ ,v9,11, } of
W such that
C1
[Sla=
Con+1
Accordingly,

W=W&Wy® - ® Wapn

where W; = span{v;} and Sv; = ¢v; for 1 < i < 2n + 1. Call this the special
decomposition of S. We define the signature of S to be the ordered set

w(S) == {wW), ..., w(Wani1)}

where w(W;) denote the signature of W;.
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2n+1

Lemma 5.3.4. Let S,S" be elements of Sym*(W) having f(z) = [] (z —¢) as
i—1

their characteristic polynomial. Then S and S’ lie in the same SO(W)(R)-orbit if

and only if w(S) = w(S").
Proof. If g € SO(W)(R), then the decomposition of gSg~! is
W=W&- - - &W,, ,
where W/ = span{gv;} and ¢Sg~'(gv;) = gv; for all i. Hence
<, v >=< gui, gu; > forall 1 <i<2n+ 1.
Conversely , if S, S’ € Sym?(W) have the same signature and
W=WeW & oW,
is the special decomposition of S, then because w(WJ) = w(Wj), for j =1,...,2n+1,
we can arrange to have the corresponding basis A" = {v{,--- ,v5,,,} such that
< v, v >=< v, v, > forall 1 <i<2n+ 1.

Choose a linear operator g such that gv; = v} and gv; = v}, for j = 2,...,2n 4+ 1,
to have g € SO(W)(R). Then S = gSg~'. O

The proof of the following is similar to that of Proposition 5.3.3.

2n+1)

Proposition 5.3.5. There are ( ) elements in ker .

5.4. The Global field case. Here we only consider the case V' = Sym?(W).
The exact sequence
0 J2 5 T3 750

induces the commutative diagrams

0 ——= J(k)/2J (k) — H(k, J[2]) —— H'(k, J)[2] —= 0

» | I I

0—9HJ )/2J (k, —>HHkW] IFP%J —0
where a, b, ¢ are localization maps. Recall that the 2-Selmer group
Sel(J/k,2) := ker(co ).

Proposition 5.4.1. The 2-Selmer group Sel(J/k,2) C H'(k, J[2]) lies in ker .
28



Proof. Consider the commutative diagram

HY(k, J[2]) ——— H'(k, SO(W))

¢b !

[T 8! (k.. 712) © H' k., SO(W)

where d is also the localization map. Suppose o € Sel(J/k,2). Then b(«) is in the
image of 9. Proposition 4.2.1 and the above diagram imply

d(~(a)) = 0.

But Hasse-Minkowski theorem says d is injective. Hence v(«) = 0 as desired.
O

In previous sections, we have seen that ker~ are finite in the cases where its
order cam be estimated. However, in general ker vy is not always finite. We give a

counterexample below.

Counterexample 5.4.2. Let k = Q, and f(z) = (z — 1)(z*" — 3).
For each d € Q*/Q*?, consider the twisted hyper elliptic curve with affine equation

Cq: dy* = f(x).
and let J; denote the Jacobian variety. Then as Galois modules
Ja[2(Q%) = J[2](Q”),
because both are generated by d, as described in Lemma 4.1.2. Furthermore, by
Proposition 5.4.1, the 2-Selmer group Sel(Jy/k,2) of H!(k, J4[2]) = H'(k, J[2]) also
lies in ker~y. The 2-Selmer groups of quadratic twists of such hyper-elliptic curve

y> = f(z) can be arbitrarily large [Chang, Theorem 5.5]. Hence kery does contain

infinitely many elements.

6. APPENDIX

6.1. Special case of Galois descent.

Let V be a vector space over a field k with a fixed non-degenerate quadratic
form x. Two pairs (V,z) and (V’,2') are called k-isomorphic if there is a k-linear
isomorphism

f: V=V
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such that f(z) =2’

Let K /k be a finite Galois extension with Galois group G,and Vi = V' @, K be
the vector space over K. The quadratic form = defines a quadratic form zx in the
obvious way.We say (V,z) and (V',2') are K-isomorphic if (Vi,zx) and (Vi, 2%)
are isomorphic. Denote by Ey (K /k) the set of k-isomorphism classes of (V' z’) that
are K-isomorphic to (V,z).

Let Ak be the group of K-automorphisms of (Vi,zx). The group G acts on Ag
as follows: s € G acts on Vi by s(z®\) = x®@s(A). Now if f : Vi — Vi is a linear
map, put s(f)(z) = s(f(s7'(x))).

So let (V' 2"y € Ey(K,k) and f : Vxg — V}. be a K-isomorphism.For each
s € G,put

ps=flos(f)=f"osofosh
We have p, € Ax. The map s — p, is a 1-cocycle,and changing f gives another p;
that differs from the original p; by a 1-coboundary. Hence we have defined a map

0:Ey(K/k)— HY G, Ak)

Also note that here Ay is actually the orthogonal group Og(z) of the quadratic

form x over K.

Proposition 6.1.1. The map 0 is bijective.

Proof. To show 0 is injective. Let (V{,z}) and (V3, %) correspond to the same
cocycle ps. And let fi,fs be the corresponding K-isomorphisms. Then

fitos(fi) = fy'os(fa)

Hence s(fof; ) = fofy!, and the map fof; ' is a k-isomorphism from (V/,z}) to
(V3, x%). Thus 0 is injective.

To show @ is surjective.Let ps be a 1-cocycle of G with values in Ax. Because
A C GL(Vk) and HY(G,GL(Vk)) = 1, there is a K-automorphism f of Vi such
that

ps = fos(f)

for all s € G.And put 2’ = f(z),2’ is defined over k. Indeed, for all s € G,we have

s(z') = s(f)(s(x)) = s(f)(x) = fops(x) = f(z) =2’

Hence (V,2') € Ey(K/k) and 6((V,2")) is equal to the class of p;. O
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Now we let EY, (K /k) be the set of k-isomorphism classes of (V’, 2’) that having the
same discriminant as (V,z) which are K-isomorphic to (V,z) and Ax be SOk (z).
Then for (V' 2') € E},(K/k) and f : Vx — V}, be a K isomorphism.We have seen
before that ps; € Ok (x). In this case, since det(f) is defined over £,

det(ps) = det(f ') det(s(f)) = det(f")[s - det(f)] = det(f ") det(f) = 1.
Thus ps € SOk (x) and we can define 6 : E{,(K/k) — H'(G,SOk(z)) as before.

Now the proof of bijectivity of 6 is almost the same as the proof of Proposition 6.1.1.
We only need to replace the statement "Ax C GLi (V)" by "Ax C SLi(V)” In the
proof of surjectivity of 6.

Hence When K = k* U defined in Lemma 3.1.2, we have H'(k, SO(U))={k-
isomorphism classes of non-degenerate orthogonal spaces U’ of dimension 2n with
discriminant d over k}.

And When K = k*, W defined in Section 2, we have H'(k,SO(W))= {k-
isomorphism classes of non-degenerate orthogonal spaces of dimension 2n + 1 with

determinant (—1)" over k}.
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