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中文摘要  

 

在電腦視覺和影像處理的領域中，影像分割一直是重要的基礎工作。雖然本主

題已經被研究了許多年，然而，要如何在全自動、無需調整參數的前提下，仍然可

以將大部分的自然影像精準的分割，仍然是一項具有挑戰性的任務。此外，近年來

關於超像素(superpixel) 的研究有很大的進展，這種新技術使傳統的影像分割演算

法具有更高的效率和更好的性能。在這篇論文中，我們將提出一種運用超像素等多

項技術的「全自動」影像分割方法，使用者無需輸入參數或是調整參數即可得到高

精確度的影像分割結果。 

我們的演算法採用了基於熵率的超像素(ERSs)、邊緣偵測、顯著影像偵測以及

計算紋理特徵等技術。將原始影像轉為基於熵率的超像素表示，使得演算法效率大

幅提高。透過計算超像素周邊以及內部的梯度資訊，傳統的邊緣偵測得以修正，進

一步防止超像素過度合併。利用顯著影像偵測與計算紋理特徵，超像素合併的門檻

值可根據影像作自適應調整，避免影像過度分割。模擬結果顯示，對於任意自然影

像的分割處理，我們方法表現的分割結果相當符合人類感知，且不需要額外的參數

調整，而這也超越了其他現有已知最先進的方法的模擬結果。 

 

關鍵字 : 影像分割、基於熵率的超像素、邊緣偵測、顯著影像偵測、電腦視覺。 
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ABSTRACT 

 

In computer vision and image processing, image segmentation is always an 

important fundamental work. Though this topic has been researched for many years, it is 

still a challenging task to well segment most of the natural images automatically without 

adjusting any parameter. Recently, the researches of superpixels have great improvement. 

This new technique makes the traditional segmentation algorithms more efficient and has 

better performances. In this thesis, an automatic image segmentation algorithm based on 

superpixels and many other techniques is proposed. It can accurately segment almost all 

of the natural images without parameter adjustment. 

In our algorithm, the techniques of entropy rate superpixels (ERSs), edge detection, 

saliency detection, and computing texture feature are adopted. With the aid of ERSs, the 

proposed algorithm can be implemented very efficiently. To prevent over-merge of 

superpixels, modified edge detection which computes the gradient information of the 

contours and the interiors of superpixels is used. Saliency detection and the texture 

features of an image are also used to prevent over-segmentation. Moreover, an adaptive 

threshold is also used for superpixel merging. These techniques make the segmentation 

result more consistent with human perception without adjusting any parameter. 

Simulations show that our proposed method can well segment most of natural images and 

outperform state-of-the-art methods. 

  

Index terms: Image segmentation; ERS superpixels; edge detection; saliency detection; 

computer vision  
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Chapter 1 Introduction 

 

1.1 Motivation 

Image segmentation is to partition a single image into non-overlapping regions, and 

then extract the objects of interest under the complex background environment. It has 

been found, with a great potential in applications, to be not only a fundamental low-level 

vision problem but also the key problem in the research of image analysis, pattern 

recognition, computer vision, medical image processing, and even image understanding. 

In natural images, many problems make segmentation difficult, such as determining 

faint object boundaries and separating highly cluttered backgrounds. While human can 

parse a natural image into coherent regions easily, it is found rather difficult for automatic 

vision systems. Despite a variety of segmentation techniques have been proposed, it 

remains challenging for any single method to do segmentation successfully due to the 

broad diversity and ambiguity of visual patterns in a natural image. 

In the last two decades, the researches of superpixel segmentation have great 

improvement. The major advantage of using superpixels is computational efficiency. A 

superpixel representation greatly reduces the number of image primitives compared to 

the pixel representation. On the other hand, the saliency detection is a new topic of image 

processing. The task of saliency detection is to identify the most important and 

informative part of a scene. 

Therefore, in this thesis, we aim at utilizing the techniques of superpixel, saliency 

detection and edge detection to construct a high accuracy and high robust natural image 

segmentation algorithm without parameter adjusting.  
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1.2 Main Contribution 

Our main contributions are summarized as follows. 

1. We review the researches in image segmentation, recent works of superpixels and 

superpixel-based segmentation algorithms. 

2. We propose a segmentation framework which combines superpixel technique, 

saliency detection, texture feature oriented clustering and modified edge detection 

which computes the gradient information of the contours and the interiors of 

superpixels 

3. Experimental results show that our method has higher accuracy in natural image 

segmentation compared to the existing methods. 

 

1.3 Organization 

This thesis is organized as follows. An overview of recent image segmentation 

approaches is presented in Chapter 2. In Chapter 3, the fundamental knowledge of 

superpixel is illustrated and some superpixel-based segmentation algorithms are 

introduced. The proposed image segmentation framework as well as algorithms will be 

presented in Chapter 4. Experimental results for natural image segmentation and 

discussion are given in Chapter 5. Finally, the thesis would be concluded in Chapter 6. 
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Fig. 1.1 Natural image segmentation based on our method. 
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Chapter 2 Reviews of Segmentation Algorithms 

  

Image segmentation algorithms can usually be categorized into two kinds of 

methods; one is graph-based methods and the other is gradient ascent methods.  

Starting from a rough initial clustering of pixels, gradient ascent methods iteratively 

refine the clusters until some convergence criterion is met to form segmentation result. In 

Section 2.1-2.2, we review two classic image segmentation algorithms based on gradient 

ascent methods. 

The Graph-based approaches treat each pixel as a node in a graph. Edge weights 

between two nodes are proportional to the similarity between neighboring pixels. The 

segmentation result is created by minimizing a cost function defined over the graph. In 

Section 2.3-2.4, we introduce segmentation image algorithms which are the graph-based 

approaches.  

 

2.1 Mean Shift  

2.1.1 About Mean Shift 

Mean shift, a simple iterative procedure that shifts each data point to the average of 

data points in its neighborhood. 

The generalization of mean shift makes some k-means like clustering algorithms its 

special cases. It is shown that mean shift is a mode-seeking process on a surface 

constructed with a “shadow” kernel. For Gaussian kernels, mean shift is a gradient 

mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a 

deterministic problem of finding a fixed point of mean shift that characterizes the data. 
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For the application of the superpixel, Mean shift [4], an iterative mode-seeking 

procedure for locating local maxima of a density function, is applied to find modes in the 

color or intensity feature space of an image. Pixels that converge to the same mode define 

the superpixels.  

 

2.1.2 The Algorithm 

 Let xi and zi, i=1,…,n, be the d-dimensional input and filtered image pixels in the 

joint spatial-range domain and Li the label of the i th pixel in the segmented image. 

 1. Run the mean shift filtering procedure for the image and store all the information 

about the d-dimensional convergence point in zi, i.e., zi = yi,c. 

 2. Delineate in the joint domain the clusters {Cp}p=1…m by grouping together all zi 

which are closer than hs in the spatial domain and hr in the range domain, i.e., concatenate 

the basins of attraction of the corresponding convergence points. 

 3. For each i=1,…,n, assign Li = {p | zi	∈	Cp }. 

 4. Optional: Eliminate spatial regions containing less than M pixels. 

 

2.1.3 Simulation Results 
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Fig. 2.1 Segmentation examples based on the mean shift approach. 

 

2.2 Watershed Approach 

2.2.1 About Watershed Approach 

The watershed approach [6] performs a gradient ascent starting from local minima 

to produce watersheds, lines that separate catchment basins. The resulting superpixels are 

often highly irregular in size and shape, and do not exhibit good boundary adherence. 

 The watershed transform is one of the classic methods for image segmentation, and 

has been studied for three decades. The basic idea of watershed segmentation is to 

consider the regions to be extracted as catchment basins in topology. The watershed lines, 

S, are the boundaries of catchment basins. Starting from the minima of lowest altitude, 

the water will progressively fill up all the different catchment basins. At some point the 

water one basin will start to merge with water from neighboring regions. This merging 
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can be prevented by constructing dams at high altitude. 

Another thought that is close to watershed is Toboggan contrast enhancement, 

proposed by Fairfield in 1990. An image is first applied the toboggan contrast 

enhancement and then a contrast segmentation. The concept is later used to implement 

watershed segmentation. Conceptually, we can view the original watershed segmentation 

as an approach that starts from low altitude to high altitude, and the toboggan approach 

as an approach that starts from high altitude to low altitude. In the toboggan approach, 

the algorithm tries to find a downstream path from each pixel. Pixels that slide into the 

same local minimum can then be grouped together into a catchment basin. 

The segmentation produced by a naive application of the watershed algorithm is 

often inadequate: the image is usually over-segmented into a large number of minuscule 

regions. As a result, several post-processing steps have been proposed to produce results 

that match human eye. The most common method is to use markers for identifying 

relevant minima. However, finding markers can be problematic and produce inadequate 

results. 

 

2.2.2 The Algorithm 

1. A set of markers, pixels where the flooding shall start, are chosen. Each is given 

a different label. 

2. The neighboring pixels of each marked area are inserted into a priority queue 

with a priority level corresponding to the gray level of the pixel. 

3. The pixel with the highest priority level is extracted from the priority queue. If 

the neighbors of the extracted pixel that have already been labeled all have the same label, 

then the pixel is labeled with their label. All non-marked neighbors that are not yet in the 

priority queue are put into the priority queue. 
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4. Redo step 3 until the priority queue is empty. The non-labeled pixels are the 

watershed lines. 

 

2.2.3 Simulation Results 

 

 

 

 

 

 

 

Fig. 2.2 Segmentation examples based on the watershed approach. 
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2.3 Normalized Cut 

2.3.1 About Normalized Cut 

The Normalized cuts algorithm [1] recursively partitions a graph of all pixels in the 

image using contour and texture clues, globally minimizing a cost function defined on the 

edges at the partition boundaries. It produces very regular, visually pleasing superpixels. 

However, the boundary adherence of this algorithm is relatively poor and it is the slowest 

among the methods (particularly for large images), although there are some method 

attempting to speed up the algorithm, the problem of complexity is still exist. 

This approach avoids trivial partitions of the affinity weighed graph with the use of 

the normalized cut criterion. Based on the spectral graph theory, given a graph 

( ),G V E=  , it can be partitioned into two disjoint sets, A,B , ,A B V A B φ∪ = ∩ = , by 

simply removing edges connecting the two parts. The degree of dissimilarity between 

these two pieces called as cut is as follows 

 ( ) ( )
,

, ,
u A v B

cut A B w u v
∈ ∈

=     (2.1) 

where ( ),w u v  is the similarity between node u and v. The traditional optimal 

bipartitioning of a graph is the one that minimizes this cut value. Finding the minimum 

cut is a well-studied problem and there exist efficient algorithms for solving it. However, 

the minimum cut criteria favors cutting small sets of isolated nodes in the graph, and gives 

bad partition in some cases such as Fig. 2.3. 
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Fig. 2.3 A case where minimum cut gives a bad partition. 

This criterion has some unnatural bias for partitioning out small sets of points. To 

avoid it, a new measure of disassociation between two groups is proposed. Instead of 

looking at the value of total edge weight connecting the two partitions, the measure 

computes the cut cost as a fraction of the total edge connections to all the nodes in the 

graph. This disassociation measure is called as the normalized cut (Ncut). 

 ( ) ( )
( )

( )
( )

, ,
,

, ,

cut A B cut A B
Ncut A B

assoc A V assoc B V
= + ,  (2.2) 

where ( ) ( )
,

, ,
u A t V

assoc A V w u t
∈ ∈

=  is the total connection from node A to all nodes 

in the graph and ( ),assoc B V  is similarly defined. 

 To obtain the optimal bipartitioning of a graph is equal to minimize the criterion 

mentioned above. Let ( ) ( ),
j

i w i j=d  be the total connection from node i to all other 

nodes. Let D be an N N×  diagonal matrix with d on its diagonal, ( ),ii j
D w i j= , W be 

an N N×  symmetric affinity matrix whose entries encode the similarity between pixels,

( ) ( ), ,i j w i j=W . Shi and Malik proved that is equivalent to the discrete optimization 

problem. 

 ( ) ( )
min min

T

x y T

y D W y
Ncut x

y Dy

−
=   (2.3) 



 11

If y is relaxed to take real values, the above criterion can be approximated by solving the 

generalized eigenvalue system. 

 ( )D W y Dyλ− = ,  (2.4) 

Amazingly, the second smallest eigenvector y gives the solution of the normalized cut 

problem. 

 

2.3.2 The Grouping Algorithm 

Given an image or image sequence I, set up a weighted graph ( ),G V E= , the node 

V are pixels of the image I and the edge E is the weight on connecting two nodes to be a 

measure of the similarity between the two nodes. Let N be the number of nodes (pixels), 

i.e., |V|. 

Step 1 

Construct an N × N symmetric similarity matrix W as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2
2

2 2 2
2

   if *

0               otherwis

,

e
X

I

w i
X i X jF i F j exp X i X j rexpj σσ

 − −− −  − <
=



  (2.5) 

where X(i) is the spatial location of node i, i.e., the coordinates in the original image I, 

and F(i) is a feature vector defined as: 

• F(i) = 1 for segmenting point sets, 

• F(i) = I(i), the intensity value, for segmenting brightness (gray scale) images, 

• F(i) = [v, u · s · sin(h), v · s · cos(h)](i), where h, s, v are the HSV values, for color 

segmentation, 

• F(i) = [|I ∗ f1|, ...., |I ∗ fn|](i), where the fi are DOOG filters at various scales and 

orientations, for texture segmentation. 
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Note that the weight ( ), 0w i j =  for any pair of nodes i and j that are more than r pixels 

apart. 

Let ( ) ( )d ,
j

i w i j=  be the total connection from node i to all other nodes. Construct 

an N × N diagonal matrix D with d on its diagonal. 

Step 2 

Solve a generalized eigensystem, 

 ( )D W y Dyλ− =   (2.6) 

and get an eigenvector with the second smallest eigenvalue. 

Step 3 

Use the eigenvector to bipartition the graph. In the ideal case, the eigenvector should only 

take on two discrete values, and the signs tell us exactly how to partition the graph

{ } { }( )A V 0 ,B V 0i i i iy y= > = <= .  

However, y is relaxed to take real values, therefore, we need to choose a splitting point. 

There are several ways such as 

• Take 0 

• Take median 

• Search a splitting point which results in that Ncut(A, B) is minimized. 

The splitting point which minimizes Ncut value also minimizes 

 
( )D W

D

T

T

y y

y y

−
  (2.7) 

where ( ) ( )1 1y x b x= + − − , ( )/ 1b k k= −  , 
0i

ix

ii

d
k

d
>=




  

where x is an N dimensional indicator, 1ix =  if node i is in A and -1, otherwise. 
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To find the minimal Ncut, we need to try different values of splitting points. The optimal 

splitting point is generally around the mean value of the obtained eigenvector. 

Step 4 

Repeat bipartition recursively. Stop if Ncut value is larger than a pre-specified threshold 

value (Large Ncut value means that there is no clear partition point any more). 

Furthermore, stop if the total number of nodes in the partition (Area) is smaller than a 

pre-specified threshold value (this is another criteria added newly to the paper’s 

algorithm.) 

 

2.3.3 Simulation Results 

 

 

 

 

 

 

Fig. 2.4 (a) shows an image of a zebra. The remaining images show the major components 

of the partition. The texture features used correspond to convolutions with DOOG filters 

at six orientations and five scales. 
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2.3.4 Multiscale Normalized Cut (MNCut) 

Cour et al. proposed MNCut [9], which is a multiscale spectral image segmentation 

algorithm, to segment large images. In contrast to most multiscale image processing, this 

algorithm works on multiple scales of the image in parallel, without iteration, to capture 

both coarse and fine level details. The algorithm is computationally efficient, allowing to 

segment large images. It use the Normalized Cut graph partitioning framework of image 

segmentation and construct a graph encoding pairwise pixel affinity, and partition the 

graph for image segmentation. They demonstrate that large image graphs can be 

compressed into multiple scales capturing image structure at increasingly large 

neighborhood. They also show that the decomposition of the image segmentation graph 

into different scales can be determined by ecological statistics on the image grouping cues. 

Images that previously could not be processed because of their size have been accurately 

segmented thanks to this method. 
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2.4 Efficient Graph-based Segmentation 

2.4.1 About Efficient Graph-based Segmentation 

Felzenszwalb and Huttenlocher [2] propose an alternative graph-based approach that 

has been applied to generate superpixels. It performs an agglomerative clustering of pixels 

as nodes on a graph such that each superpixel is the minimum spanning tree of the 

constituent pixels. This algorithm adheres well to image boundaries in practice, but 

produces superpixels with very irregular sizes and shapes. It is fast in practice. However, 

it does not offer an explicit control over the amount of superpixels or their compactness. 

Their goal is to develop computational approaches to image segmentation that are 

broadly useful, much in the way that other low-level techniques such as edge detection 

are used in a wide range of computer vision tasks. In order to achieve such broad utility, 

it is important that a segmentation method have the following properties: 

1. Capture perceptually important groupings or regions, which often reflect global aspects 

of the image. Two central issues are to provide precise characterizations of what is 

perceptually important, and to be able to specify what a given segmentation technique 

does. There should be precise definitions of the properties of a resulting segmentation, in 

order to better understand the method as well as to facilitate the comparison of different 

approaches. 

2. Be highly efficient, running in time nearly linear in the number of image pixels. In 

order to be of practical use, the segmentation methods should run at speeds similar to 

edge detection or other low-level visual processing techniques, meaning nearly linear 

time and with low constant factors. For example, a segmentation technique that runs at 

several frames per second can be used in video processing applications. 
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For the first property, they want the segmentation to be neither too coarse nor too 

fine. In other words, it means the ability to preserve detail in low-variability image regions 

while ignoring detail in high-variability regions. This is achieved by an adaptive threshold 

which considers not only the differences between other regions but also the internal local 

variation.  

For the second property, they introduce a simple but effective modification of 

Kruskal’s algorithm. As in Kruskal’s algorithm, 

• it begins with the completely disconnect graph, 

• edges are added one at a time in increasing order of their weight, 

• if maintains a forest of MSTs for its current components. 

Combining the two properties mentioned above, the segmentation process is as 

follows. Given a graph in which pixels are nodes and edges weights measure the 

dissimilarity between nodes, each node is initially placed in its own component. Define 

the internal difference of a component ( )Int C  as the largest weight in the minimum 

spanning tree of C. Considering edges in non-decreasing order by weight , each step of 

the algorithm merges components C1 and C2 connected by the current edge if the weight 

is less than: 

 ( ) ( ) ( ) ( )( )1 1 2 2min ,Int C C Int C Cτ τ+ +   (2.8) 

where ( ) /C k Cτ = . k is a scale parameter that can be used to set a preference for 

component size. The merging criteria in Eq. 2.8 allows efficient graph-based clustering 

to be sensitive to edges in areas of low variability, and less sensitive to them in areas of 

high variability. This is intuitively the property we would like to see in a clustering 

algorithm. 

 



 17

2.4.2 The Algorithm 

Given a graph ( ),G V E= be fully undirected connected, with n vertices and m edges. 

Each vertex is a pixel, x, represented in the feature space. The final segmentation of V 

will be ( )1,..., rS C C=  where Ci is a cluster. The algorithm is:  

Step 1 

Sort ( )1,..., mE e e=  such that ' 't te e t t≤ ∀ < . 

Step 2 

Let { } { }( )0
1 ,..., nS x x= , in other words each initial cluster contains exactly one vertex. 

Step 3 

For 1, ...,t m=   

 (a) Let xi and xj be the vertices connected by et. 

 (b) Let 1

i

t
xC −  be the connected component containing point xi on iteration 1t − , 

and 1max
i

t
i mst xl C −=  be the longest edge in the minimum spanning tree of 1

i

t
xC − . 

Likewise for lj. 

 (c) Merge 1

i

t
xC −  and 1

j

t
xC −  if 

 
1 1

min ,
i j

t i jt t
x x

k k
e l l

C C− −

  < + + 
  

  (2.9) 

where k is a constant. 
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Step 4 

Return mS S= . 

There are two parameters used to adjust the result of segmentation, σ  and k. In the 

author’s implementation, the input image is first smoothed using a Gaussian filter to 

remove some artifact. The parameter σ  is the standard difference of the Gaussian filter, 

usually set as 0.8. The parameter k is used to compute the threshold function τ . The 

function ( ) /C k Cτ =  where C  is the number of elements in C. Thus k effectively 

sets a scale of observation, in that a larger k causes a preference for larger components. 

On the other hand, the author provides two approaches to define the initial graph 

( ),G V E= . One is the Grid Graphs approach, where each image pixel pi has a 

corresponding vertex iv V∈ . The edge set E is constructed by connecting pairs of pixels 

that are neighbors in an 8-connected sense (any other local neighborhood could be used). 

This yields a graph where ( )8m n= ⋅  , so the running time of the segmentation algorithm 

is ( )logO n n  for n image pixels. The other is the Nearest Neighbor Graphs approach, 

where the edges are defined by connecting pairs of feature points that are nearby in the 

feature space, rather than using neighboring pixels in the image grid. Each point is 

connected to a fixed number of nearest neighbors or all the neighbors within some fixed 

distance d. In any event, it is desirable to avoid considering all ( )2O n  pairs of feature 

points. 
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2.4.3 Simulation Results 

 

 

 

 

 

 

Fig. 2.5 Segmentation using the nearest neighbor graph can capture spatially non-local 

regions (σ = 0.8, k = 300). 
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Chapter 3 Reviews of Superpixels and Superpixel-

based Segmentation Algorithms 

 

  We first introduce the concept and possible applications of superpixels in Section 

3.1. Then, two kinds of superpixel methods which perform well nowadays are reviewed 

in Section 3.2 and Section 3.3. Finally, we introduce superpixel-based segmentation 

algorithms in Section 3.4.  

 

3.1 Introduction of Superpixel 

A superpixel is commonly defined as a perceptually uniform region in the image. 

The major advantage of using superpixels is computational efficiency—a superpixel 

representation greatly reduces the number of image primitives compared to the pixel 

representation. It has been proved useful for applications such as depth estimation, image 

segmentation, body model estimation and object localization. 

Generally, superpixel contains the following properties: 

 

• Every superpixel should overlap with only one object.  

• The set of superpixel boundaries should be a superset of object boundaries.  

• The mapping from pixels to superpixels should not reduce the achievable 

performance of the intended application.  

• The above properties should be obtained with as few superpixels as possible.  
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3.2 Simple Linear Iterative Clustering Superpixels 

3.2.1 About Simple Linear Iterative Clustering Superpixels 

Computer vision applications have come to rely increasingly on superpixels in recent 

years. Achanta et al. believes that an ideal approach of generating superpixels should have 

the following properties: 

1. Superpixels should adhere well to image boundaries. 

2. When used to reduce computational complexity as a pre-processing step, superpixels 

should be fast to compute, memory efficient, and simple to use. 

3. When used to for segmentation purposes, superpixels should both increase the speed 

and improve the quality of the results. 

They propose a new method for generating superpixels, Simple linear iterative clustering 

(SLIC) [15], which is faster than existing methods, more memory efficient, exhibits state-

of-the-art boundary adherence, and improve the performance of segmentation algorithms. 

It is an adaptation of k-means for superpixels generation, with two important distinctions: 

1. The number of distance calculations in the optimization is dramatically reduced by 

limiting the search space to a region proportional to superpixel size. This reduces the 

complexity to be linear in the number of pixels N and independent of the number of 

superpixels K. 

2. A weighted distance measure combines color and spatial proximity while 

simultaneously providing control over the size and compactness of the superpixels. 

SLIC is simple to use and understand. By default, the only parameter of the algorithm is 

K, the desired number of approximately equally sized superpixels. For a color image in 

the CIELAB color space, the clustering procedure begins with an 
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(a)                                (b) 

Fig. 3.1 Reducing the superpixel search regions. (a) standard k-means searches the entire 

image. (b) SLIC searches a limit region. 

initialization step where K initial cluster centers [ ]    
T

k k k k k kC l a b x y=  with [ ]1,k K=  are 

sampled on a regular grid spaced S pixels apart. To produce roughly equally sized 

superpixels, the grid interval is /S N K= , so the approximate size of each superpixel is 

therefore /N K  pixels for an image with N pixels. The centers are moved to seed 

locations corresponding to the lowest gradient position in a 3 3×  neighborhood. This is 

done to avoid centering a superpixel on an edge and to reduce the chance of seeding a 

superpixel with a noisy pixel. 

Next, in the assignment step, each pixel i is associated with the nearest cluster center 

whose search region overlaps its location, as depicted in Fig. 3.1. This is the key to 

speeding up our algorithm because limiting the size of the search region significantly 

reduces the number of distance calculations, and results in a significant speed advantage 

over conventional k-means clustering where each pixel must be compared with all cluster 

centers. Since the expected spatial extent of a superpixel is a region of approximate size 

S S× , the search for similar pixels is done in a region 2 2S S×  around the superpixel 

center. 
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There is a problem that how to define the distance measure D. While the maximum 

possible distance between two colors in the CIELAB space is limited, the spatial distance 

in the xy plane depends on the image size. It is not possible to simply use the Euclidean 

distance in this 5D space without normalizing the spatial distances. In order to cluster 

pixels in this 5D space, therefore a new distance measure that considers superpixel size 

is introduced. Using it enforce color similarity as well as pixel proximity in this 5D space 

such that the expected cluster sizes and their spatial extent are approximately equal. The 

measure is defined by combining the color proximity and spatial proximity normalized 

by their respective maximum distances within a cluster, Nc and Ns, as follows 

 ( ) ( ) ( )2 2 2

c j i j i j id l l a a b b= − + − + −   (3.1) 

 ( ) ( )2 2

s j i j id x x y y= − + −   (3.2) 

 
2 2 2 2

' c s c s

c s

d d d d
D

N N m S

       = + = +       
      

  (3.3) 

where dc and ds are distances in color and spatial space, respectively. The parameter m is 

a constant to represent the respective maximum color distance Nc, and the maximum 

spatial distance expected within a given cluster should correspond to the sampling interval, 

therefore sN S= . 

In practice, the distance measure D is defined as 

 
2

2 2s
c

d
D d m

S
 = +  
 

.  (3.4) 

By defining D in this manner, m can be adjusted to weigh the relative importance between 

color similarity and spatial proximity. When m is large, spatial proximity is more 

important and the resulting superpixels are more compact (i.e., they have a lower area to 

perimeter ratio). When m is small, the resulting superpixels adhere more tightly to image 
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boundaries, but have less regular size and shape. When using the CIELAB color space, 

m can be in the range [1,40]. 

Once each pixel has been associated to the nearest cluster center, an update step 

adjusts the cluster centers to be the mean [ ]   
T

l a b x y  vector of all the pixels belonging to 

the cluster. The L2 norm is used to compute a residual error E between the new cluster 

center locations and previous cluster center locations. The assignment and update steps 

can be repeated iteratively until the error converges, but in most of time that 10 iterations 

suffices for most images, and report all results in this paper using this criteria. 

Finally, a post-processing step enforces connectivity by reassigning disjoint pixels 

to nearby largest superpixels. 

 

3.2.2 The Algorithm 

Given an image with N pixels, define the number of superpixels K and compactness 

control parameter m, the algorithm is as follows: 

Step 1 

Initialize K cluster centers [ ]    
T

k k k k k kC l a b x y=  by sampling pixels at regular grid step 

S, /S N K= .  

Move cluster centers to the lowest gradient position in a 3 3×  neighborhood. 

Set label of pixel i, ( ) 1l i = −  for each pixel. 

Set distance between nearest cluster center and pixel i, ( )d i = ∞  for each pixel. 

Step 2 

For each cluster center Ck do 

 For each pixel i in a 2 2S S×  region around Ck do 
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  Compute the distance D between Ck and i, 
2

2 2s
c

d
D d m

S
 = +  
 

 

  If ( )D d i<  then 

   Set distance between nearest cluster center and pixel i, ( )d i D=   

   Set label of pixel i, ( )l i k=   

  End if 

 End for 

End for 

Step 3 

Compute new cluster centers using the mean value of pixels in each cluster. 

Compute residual error E, the L2 distance between previous centers and recomputed 

centers. 

If thresholdE ≤  then return to Step 2. 

Step 4 

Enforce connectivity by reassigning disjoint pixels. 

3.2.3 Simulation Results and Discussion 

 

 

 

 

 

 

Fig. 3.2 The superpixel result of SLIC superpixels and other state-of-the-art superpixel 

methods. 
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3.3 Entropy Rate Superpixel Segmentation 

3.3.1 About Entropy Rate Superpixel Segmentation 

Liu et al. propose solving the superpixel segmentation problem by maximizing an 

objective function on the graph topology [16]. The objective function consists of an 

entropy rate and a balancing term for obtaining superpixels with similar sizes. They also 

present a greedy optimization scheme to reduce the complexity of the algorithm to 

O(NlogN) . Entropy Rate Superpixel (ERS) offers control over the amount of superpixels 

and also their compactness. 

This method present a new clustering objective function which consists of two terms: 

(1) the entropy rate of a random walk on a graph.  

(2) a balancing term on the cluster distribution. 

The entropy rate favors compact and homogeneous clusters—encouraging division of 

images on perceptual boundaries and favoring superpixels overlapping with only a single 

object; whereas the balancing term encourages clusters with similar sizes— reducing the 

number of unbalanced superpixels. 

 The clustering formulation leads to an efficient algorithm with a provable bound on 

the optimality of the solution. The objective function is a monotonically increasing 

submodular function. Submodularity is the discrete analogue of convexity in continuous 

domains. Knowing whether a function is submodular is better to understand the 

underlying optimization problem. In general, maximization of submodular functions 

leads to NP-hard problems, for which the global optimum is difficult to obtain. 

Nevertheless, by using a greedy algorithm and exploiting the matroid structure present in 

the formulation, it can obtain a bound of 1/2 on the optimality of the solution. 
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( ) ( ) log ( )X X
x X

H X p x p x
∈

= −

1 2 1( ) lim ( | , ,..., ),t t tt
H X H X X X X− −→∞

=

3.3.2 Preliminaries of this Method 

 

(1) Graph representation:  

G = (V, E) denotes an undirected graph where V is the vertex set and E is the edge set. 

The vertices and edges are denoted by vi and ei,j respectively. The similarity between 

vertices is given by the weight function w. In an undirected graph, the edge weights are 

symmetric, that is wi,j = wj,i. 

(2) Graph partition:  

A graph partition S refers to a division of the vertex set V into disjoint subsets  

S ={S1, S2,..., SK} such that Si ∩ Sj = Ø for i ≠ j. 

(3) Entropy:  

The uncertainty of a random variable is measured by entropy H. Entropy of a discrete 

random variable X with a probability mass function pX is defined by 

 

(3.5) 

 

(4) Entropy rate:  

The entropy rate quantifies the uncertainty of a stochastic process X = {Xt | t ∈ T } where 

T is some index set. For a discrete random process, the entropy rate is defined as an 

asymptotic measure: 

(3.6) 

which measures the remaining uncertainty of the random process after observing the past 

trajectory. 
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1 2( , ,..., ) ( , ,..., )
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μ μ μ μ= =

, ,( ) ( ) log( ( ))i i j i j
i j

H A p A p Aμ= − 

(5) Random walks on graphs: 

Let X = {Xt|t ∈ T, Xt ∈V } be a random walk on the graph G = (V,E) with a nonnegative 

similarity measure w. A random walk model described in the transition probability is 

defined as pi,j = Pr(Xt+1 = vj |Xt = vi) = wi,j/wi, where wi  is the sum of incident weights of 

the vertex vi, and the stationary distribution is given by 

 

(3.7) 

 
where wT =is the normalization constant. For a disconnected graph, the stationary 

distribution is not unique. However, μ in (4) is always a stationary distribution. 

 

3.3.3 Problem Formulation and Algorithm 

This method considers clustering as a graph partitioning problem. To partition the 

image into K superpixels, the method searches for a graph topology that has K connected 

subgraphs and maximizes the proposed objective function. 

(1) Graph Construction 

The algorithm maps an image to a graph G = (V,E) with vertices denoting the pixels and 

the edge weights denoting the pairwise similarities given in the form of a similarity matrix. 

The goal is to select a subset of edges A ⊆ E such that the resulting graph, G = (V,A), 

contains exactly K connected subgraphs. 

(2) Entropy Rate 

The algorithm uses the entropy rate of the random walk on the constructed graph as a 

criterion to obtain compact and homogeneous clusters. 

Consequently, the entropy rate of the random walk on G = (V,A) can be written as a set 

function : 

(3.8) 
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Fig. 3.3 The role of entropy rate in obtaining compact and homogeneous clustering. 

 

(3) Balancing Function 

The balancing function encourages clusters with similar sizes. Let A be the selected edge 

set, NA is the number of connected components in the graph, and ZA be the distribution of 

the cluster membership. For instance, let the graph partitioning for the edge set A be  

SA = {S1, S2, ..., SNA}. Then the distribution of ZA is equal to 

 

(3.9) 
 

and the balancing term is given by 

 
(3.10) 

 

The entropy H(ZA) favors clusters with similar sizes; whereas NA favors fewer number of 

clusters. 
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Fig. 3.4 The role of the balancing function is to obtain clusters of similar sizes. 

 

(4) Objective Function 

The objective function combines the entropy rate and the balancing function and therefore 

favors compact, homogeneous, and balanced clusters. The clustering is achieved via 

optimizing the objective function with respect to the edge set: 

 

(3.11) 

 

where λ ≥ 0 is the weight of the balancing term. Linear combination with nonnegative 

coefficients preserves submodularity and monotonicity, therefore the objective function 

is also submodular and monotonically increasing. The additional constraint on the number 

of connected subgraphs enforces exactly K clusters since the objective function is 

monotonically increasing. 

 

3.3.4 Conclusion and Simulation Results 

This paper formulated the superpixel segmentation problem as an optimization 

problem on graph topology. They proposed a novel objective function based on the 

entropy rate of a random walk on the graph and derived an efficient algorithm with a 

bound on the optimality of the solution.  
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Fig. 3.5 Superpixel segmentation examples. The images contain 100 superpixels. The 

ground truth segments are color-coded and blendedon the images. The superpixels 

(boundaries shown in white) respect object boundaries and tend to divide an image into 

similar-sized regions. 
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3.4 Segmentation by Aggregating Superpixels (SAS) 

3.4.1 About Segmentation by Aggregating Superpixels 

Li et al. propose a novel graph-based segmentation framework [17] which is able to 

efficiently integrate cues from multi-layer superpixels simultaneously. They rely on two 

simple observations: 

1. Pixels within one superpixels tend to belong to one coherent region. 

(superpixel cues).   

2. Neighboring pixels which are close in feature space tend to belong to one coherent 

region. (smoothness cues). 

They show that both cues can be effectively encoded using one bipartite graph, and further 

develop an efficient algorithm for unbalanced bipartite graph partitioning. 

A bipartite graph is constructed over pixels and superpixels collectively, as shown in 

Fig. 3.6. To enforce superpixel cues, a pixel is connected to a superpixel if the pixel is 

included in that superpixel. To enforce smoothness cues, it can be done simply connecting 

neighboring pixels weighted by similarity, but this would end up with redundancy because 

the smoothness regarding neighboring pixels within superpixels were incorporated when 

enforcing superpixel cues. It may also incur complex graph partitioning due to denser 

connections on the graph. To compensate for the smoothness on the neighboring pixels 

across superpixels, the neighboring superpixels which are close in feature space are 

connected. 

Formally, denote S a set of (multi-layer) superpixels over an image I, and let 

{ }, ,G X Y B=  be a bipartite graph with node set X Y∪  , where { } 1
: XN

i i
X I S x

=
= ∪ =  

and { }
1

:
YN

j j
Y S y

=
= =  with XN I S= +  and YN S=  , the number of nodes in X and  
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Fig. 3.6 The proposed bipartite graph model with K over-segmentations of an image. A 

black dot denotes a pixel while a red square denotes a superpixel. For the graph, each 

pixel is connected to the superpixels containing it and each superpixel is connected to 

itself and its nearest neighbor in the feature space among its spatially adjacent superpixels . 

Each superpixel is represented by the average LAB color of the pixels within it. 

 

Y, respectively. The across-affinity matrix ( )
X Y

ij N N
B b

×
=  between X and Y is constructed 

as follows: 

                     

,          if , , ;

,     if ~ , , ;

0,           otherwise,

ij

ij i j i j

d

ij i j i j

ij

b x y x I y S

b e x y x S y S

b

β

α
−

= ∈ ∈ ∈

= ∈ ∈

=
               (3.12) 

where dij denotes the distance between the features of superpixels xi and yj, ~ denotes a 

certain neighborhood between superpixels, 0α >  and 0β >  are free parameters 

controlling the balance between the superpixel cues and the smoothness cues, respectively. 

By this construction, a pixel and the superpixels containing it are likely to be grouped 

together due to the connections between them. Two neighboring (defined by ∼) 

superpixels are more likely to be grouped together if they are closer in feature space. 
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Particularly, superpixels are included in both parts of the graph to enforce the smoothness 

over superpixels. 

 

Given the above bipartite graph { }, ,G X Y B=  , the task is to partition it into k 

groups, where k is manually specified. Each group includes a subset of pixels and/or 

superpixels, and the pixels from one group form a segment. The spectral clustering is used 

since it has been successfully applied to a variety of applications including image 

segmentation. Spectral clustering captures essential cluster structure of a graph using the 

spectrum of graph Laplacian. Mathematically, it solves the generalized eigen-problem: 

 f fL Dγ=   (3.13) 

where L D W= −  is the graph Laplacian and ( )diagD W= 1  is the degree matrix with 

W denoting the affinity matrix of the graph and 1 a vector of ones of appropriate size. For 

a k-way partition, the bottom k eigenvectors are computed. Clustering is performed by 

applying k-means [20] or certain discretization technique [21]. 

To solve (3.13), one can simply treat the bipartite graph constructed above as a 

general sparse graph and apply the Lanczos method [29] to 
_

1/2 1/2W D WD− −=  , the 

normalized affinity matrix, which takes ( )( )3/2

X YO k N N+  running time empirically. 

Alternatively, it was shown, in the literature of document clustering, that the bottom 

k eigenvectors of (3.13) can be derived from the top k left and right singular vectors of 

the normalized across-affinity matrix 
_

1/2 1/2
X YB D BD− −= , where ( )diagX BD = 1  and 

( )TdiagYD B= 1  are the degree matrices of X and Y , respectively. This partial SVD, 

done typically by an iterative process alternating between matrix-vector multiplications 

Bv  and TB u , is essentially equivalent to the Lanczos method on W. It does not bring 
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substantial benefit on solving (3.13) and is still subject to a complexity of 

( )( )3/2

X YO k N N+ . 

However, the above methods do not exploit the structure that the bipartite graph can 

be unbalanced, i.e., X YN N≠ . In this case, X YN N I= + . This unbalance can be 

translated into the efficiency of partial SVDs without losing accuracy. One way is by 

using the dual property of SVD that a left singular vector can be derived from its right 

counterpart, and vice versa.  

An essential equivalence between the eigen-problem (3.13) on the original bipartite 

graph and the one on a much smaller graph over superpixels is revealed as follows. 

 v vY YL Dλ= , (3.14) 

where Y Y YL D W= −  , ( )TdiagYD B= 1 , and T 1
Y XW B D B−= . LY is exactly the Laplacian 

of the graph { },Y YG Y W=  because ( ) ( )Tdiag diag YY WD B= =1 1 . It should be noted 

that this analysis can be applied to spectral clustering on any bipartite graph. 

The result states that the bottom k eigenvectors of (3.13) can be obtained from the 

bottom k eigenvectors of (3.14), which can be computed efficiently given the much 

smaller scale of (3.14). Formally, we have the following Theorem 1. 

Theorem 1. Let ( ){ }
1

, v
k

i i i
λ

=
 be the bottom k eigenpairs of the eigen-problem (3.14) on 

the superpixel graph { }T 1
1, , 0 1Y X kG Y B D B λ λ−= = ≤ ≤ < . Then ( ){ }

1
, f

k

i i i
γ

=
 are the 

bottom k eigenpairs of the eigen-problem (1.13) on the bipartite graph { }, ,G X Y B= , 

where 0 1iγ≤ < , ( )2i i iγ γ λ− = , and ( )TT Tf u ,vi i i=  with 
1

u v
1i i

i

P
γ

=
−

. Here 

1
XP D B−=  is the transition probability matrix from X to Y. 
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By Theorem 1, computing fi from vi needs 2 2X X XN d N+  operations, following the 

execution order ( )( )11
v

1 X i
i

D B
γ

−

−
, where Xd  is the average number of edges connected 

to each node in X. So it takes ( )2 1 X Xk d N+  operations for computing 1f , , fk  from 

1v , , vk , plus a cost of ( )3/2
YO kN  for deriving 1v , , vk with the Lanczos method. The 

complexity is a linear time (w.r.t. NX ) with a small constant. 

 

3.4.2 The Algorithm 

The approach to bipartite graph partitioning is summarized in Algorithm 1, which is 

called as Transfer Cuts (Tcut) since it transfers the eigen-operation from the original graph 

to a smaller one. In step 5, one may employ the discretization technique which is tailored 

to Ncut, or apply k-means to the rows of the matrix ( )1f , , fkF =    after each row is being 

normalized to unit length, which is justified by stability analysis. 

Algorithm 1 Transfer cuts (Tcut) 

Input: A bipartite graph { }, ,G X Y B=  and a number k. 

Output: A k-way partition of G. 

Step 1 

Form ( )diagXD B= 1  , ( )TdiagYD B= 1 , T 1
Y XW B D B−= , and Y Y YL D W= −  . 

Step 2 

Compute the bottom k eigenpairs ( ){ }
1

, v
k

i i i
λ

=
 of v vY YL Dλ=  . 

Step 3 

Obtain iγ  such that 0 1iγ≤ <  and ( )2 ,  1, , .i i i i kγ γ λ− = =    
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Step 4 

Compute ( )TT Tf u , vi i i=  , with 11
u v ,  1,..., .

1i X i
i

D B i k
γ

−= =
−

  

Step 5 

Derive k groups of X Y∪  from 1f , , fk  . 

The segmentation procedures are listed in Algorithm 2, which is called as 

Segmentation by Aggregating Superpixels (SAS). The main cost of SAS is in collecting 

superpixels (step 1) and bipartite graph partitioning (step 3). The cost of step 3 is linear 

in the number of pixels in the image with a small constant, and is negligible compared to 

that of step 1. 

Algorithm 2 Segmentation by Aggregating Superpixels (SAS) 

Input: An image I and a number of segments k. 

Output: A k-way partition of I. 

Step 1 

Collect a bag of superpixels S for I. 

Step 2 

Construct a bipartite graph { }, ,G X Y B=  with X I S= ∪  ,Y S=   

Step 3 

Apply Tcut in Algorithm 1 to derive k group of G. 

Step 4 

Treat pixels from the same group as a segment. 
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3.4.3 Simulation Results and Discussion 

Fig. 3.7 shows the segmentation result of SAS method and other state-of-the-art 

superpixel methods.  

It can be seen that the algorithm still has the property of normalized cut that tends to 

partition the image into regions with regular sizes. The performance of this method is 

better than most of the existing segmentation algorithms, it is the main target for 

comparison in this thesis. 

 

 

 

 

 

 

 

 

Fig. 3.7 Segmentation examples on Berkeley Segmentation Database.  

(a) Input images. (b) Mean Shift. (c) FH. (d) TBES. (e) Ncut. (f) MNcut. (g) MLSS.  

(h) SAS. 
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3.5 Learning Full Pairwise Affinities for Spectral 

Segmentation (MLSS) 

3.5.1 About MLSS (Multi-Layer Spectral Segmentation) 

In recent years, spectral segmentation has become a major trend in image 

segmentation. It typically starts from local information encoded in a graph-based 

representation of a given image, and partitions that image according to the global 

information embedded in the spectrum of the graph affinity matrix. Kim et al. design and 

use a full range affinity model in the spectral segmentation framework [18] so that they 

can obtain high-quality segmentation results efficiently by using the proposed affinity 

model. 

 

3.5.2 The Algorithm 

They introduce a new affinity model for spectral segmentation and then use the 

relevance scores between all pairs of pixels, estimated by semisupervised learning (SSL) 

[22], as affinities is proposed. 

1. A multi-layer graph whose nodes consist of the over-segmented regions by MShift as 

well as the pixels is first constructed. Then, the affinities between each node and other 

nodes are estimated by applying the SSL strategy to this graph through assuming the 

current node as labeled data and the others as unlabeled data. 

2. Spectral analysis of our full affinity matrix is done efficiently. In general, performing 

spectral analysis of a full large matrix requires a prohibitively expensive computation. 

However, since our full affinity matrix is expressed as the inverse of a sparse matrix, 

its eigen-decomposition is very efficient using the basics of matrix computation. 
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3. Two types of spectral segmentation algorithms based on our affinity matrix are 

constructed:  

(1) K-way segmentation [1], [7], [19]: 

They borrow the basic idea of Normalized Cuts [1], which associates with each pixel 

a length K descriptor formed from entries of the K eigenvectors and uses a clustering 

algorithm such as K-means to create a hard partition of the image. 

The algorithm FNCut clusters all pixels and regions simultaneously into the K 

visually coherent groups in a single multilayer framework of Normalized Cuts.  

(2) Herarchical segmentation [8]: 

They transform the contour signals, produced by combining contour information in 

different eigenvectors, into a hierarchy regions. 

The algorithm fPb-OWTUCM produces a hierarchy of regions from the contour 

signals in the eigenvectors using a sequence of two transformations: the Oriented 

Watershed Transform (OWT) [10] and the Ultrametric Contour Map (UCM) [23]. 

3.5.3 Simulation Results 
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(a)                                  (b) 

Fig. 3.8 Segmentation examples using MLSS. 

(a) Input images. (b) MLSS. 
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Chapter 4 Proposed Algorithm 

 

 We have discussed the recent trend of image segmentation and techniques of 

superpixels in the chapter 2 and chapter 3. In this chapter, the proposed segmentation 

algorithm will be presented.  

This chapter is organized as follows. In Section 4.1, the framework of the proposed 

natural image segmentation is introduced. In Section 4.2, we describe the generation of 

superpixels and review the saliency detection algorithm used in our method. In Section 

4.3, we propose modified edge detection and show how to get texture features from an 

image. In Section 4.4, the proposed segmentation algorithm which is consisted of two 

main steps, clustering superpixels according to their texture features and saliency-

oriented region merging, will be described in details. In Section 4.5, the new techniques 

of our proposed algorithm will be compared with the state-of-the-art segmentation 

methods. 

 

 

4.1 Introduction 

In superpixel-based segmentation algorithms, the main problem we want to prevent 

is over-merge, which cluster the superpixels improperly. For example, parts of foreground 

and background are clustered into the same region. In order to deal with this problem, we 

propose modified edge detection which computes the gradient information of the contours 

and the interiors of superpixels. By using the modified edge detection, our experimental 

results has higher accuracy compared with other segmentation methods. The flow chart 

is illustrated in Fig. 4.1 and the overview of our framework is shown in Fig. 4.2.  
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Fig. 4.1 The overall flow chart of our framework. 
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Fig. 4.2 The overview of our framework. 
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4.2 Superpixel Generation and Saliency Detection 

4.2.1 Superpixel Generation 

In our case, we look for superpixel methods having the following properties: 

• Produce superpixels which have similar sizes:  

If superpixels have similar sizes, they would likely to be in more regular 

arrangement. For instance, every superpixel tends to have similar numbers of 

neighbors, which is close to the original arrangement of pixels.  

• Short processing time:  

Although we do not have to choose the fastest superpixel method, we still hope 

to restrict the processing time of generating superpixels under several seconds. 

In our algorithm, we use the technique of our proposed modified edge detection, so 

the generated superpixels should adhere well to image boundaries. We found that the 

Entropy Rate Superpixels (ERS) [16] meet our requirements and this approach is 

sufficiently efficient as a pre-processing step.  

ERS is simple to use and understand. By default, the only parameter of the algorithm 

is N, the desired number of approximately equally sized superpixels. Here we set the 

number of su perpixels N to N= 200, because it could balance the complexity of the 

proposed algorithm and the accuracy of the segmentation results. 

 

 

 

 

 

Fig. 4.3 An example of the processed result generated by ERS superpixel method. 
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4.2.2 Saliency Detection 

Saliency regions are those parts of an image to which a human pays more attention, 

and the task of saliency detection is to identify the most important and informative part 

of a scene. Salient object detection algorithms usually generate bounding boxes, binary 

foreground and background segmentation, or saliency maps. 

Since the saliency map can indicate the saliency likelihood of each pixel, in our 

segmentation framework, we use saliency-oriented region merging algorithm according 

to saliency maps of images. We apply the saliency detection method [24] (Saliency 

Detection via Graph-Based Manifold Ranking) proposed by Yang et al, and the following 

is brief introduction of this method. 

There are two types of computational models for saliency detection: top-down 

saliency models that use high-level features based on knowledge from the neurosciences, 

biology, computer vision, and other fields, the selection of which depends on the specific 

task; and bottom-up saliency models that use low-level stimulus such as intensity, color 

contrast, orientation, and motion. 

Most existing bottom-up methods measure the foreground saliency of a pixel or 

region based on its contrast within a local context or the entire image, whereas a few 

methods focus on segmenting out background regions and thereby salient objects. Instead 

of considering the contrast between the salient objects and their surrounding regions, 

Yang et al consider both foreground and background cues in a different way. They rank 

the similarity of the image elements (pixels or regions) with foreground cues or 

background cues via graph-based manifold ranking. The saliency of the image elements 

is defined based on their relevances to the given seeds or queries. They represent the 

image as a close-loop graph with superpixels as nodes. These nodes are ranked based on 

the similarity to background and foreground queries, based on affinity matrices. Saliency 
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detection is carried out in a two-stage scheme to extract background regions and 

foreground salient objects efficiently. In short, they model saliency detection as a 

manifold ranking problem and propose a two-stage scheme for graph labelling. 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Diagram of the saliency detection model. 

Figure 4.4 shows the main steps of the saliency detection algorithm. In the first stage, 

Yang et al exploit the boundary prior [25] by using the nodes on each side of image as 

labelled background queries. From each labelled result, they compute the saliency of 

nodes based on their relevances (i.e, ranking) to those queries as background labels. The 

four labelled maps are then integrated to generate a saliency map. In the second stage, 

they apply binary segmentation on the resulted saliency map from the first stage, and take 

the labelled foreground nodes as salient queries. The saliency of each node is computed 

based on its relevance to foreground queries for the final map. 
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4.3 Modified Edge Detection and Texture Features 

4.3.1 Modified Edge Detection 

Edge detection is a very important field [26] in image processing and image 

segmentation. Edges in digital images are areas with strong intensity contrasts and a jump 

in intensity from one pixel to the next can create major variation in the picture quality. 

For those reasons edges form the outline of an object and also indicate the boundary 

between overlapping objects. As discontinuities in intensity values of an image form the 

edges of objects, so it is essential to detect accurate discontinuities in intensity levels for 

accurate edge detection. Such discontinuities are detected by using first- and second- 

order derivatives.  

With the help of first-order and second-order derivatives such discontinuities are 

detected. The first-order derivative of choice in image processing is the gradient. An 

image gradient is a directional change in the intensity or color in an image. Image 

gradients may be used to extract information from images. The gradient of a 2-D function, 

f(x,y), is defined as the vector 

 

              (4.1) 

 

The magnitude of this vector is 

 (4.2) 

This quantity is approximated sometimes by omitting the square root operation, 

(4.3) 

Or by using absolute values, 

(4.4) 
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XG YG

These approximations still behave as derivatives; that is, they are zero in areas is 

contrast intensity and their values are related to the degree of intensity change in areas of 

variable intensity. It is common practice to refer the magnitude of the gradient or its 

approximations simply as “gradients”. 

Several edge detector operators [27] are there for generating gradient images like 

sobel, prewitt, laplacian and Laplacian of Gaussian (LOG). These edge detectors work 

better under different conditions. In our modified edge detection algorithm, we adopt 

sobel and Laplacian of Gaussian (LOG) operators to construct our gradient maps. 

(1) Sobel edge detector 

The sobel edge detector computes the gradient by using the discrete differences 

between rows and columns of a 3X3 neighborhood. The sobel operator is based on 

convolving the image with a small, separable, and integer valued filter. In below a sobel 

edge detection mask is given which is used to compute the gradient in the x (vertical) and 

y (horizontal) directions. 

 

 

 

Fig. 4.5 A sobel edge detection mask 

(2) Laplacian of Gaussian edge detector 

The Laplacian of Gaussian edge detector finds edges by looking for zero crossings 

after filtering f(x,y) with a Laplacian of Gaussian filter. In this method, the Gaussian 

filtering is combined with Laplacian to break down the image where the intensity varies 

to detect the edges effectively. It finds the correct place of edges and testing wider area 

around the pixel. In below a 5x5 standard Laplacian of Gaussian edge detection mask is 

given. 

-1 -2 -1 

0 0 0 

1 2 1 

-1 0 1 

-2 0 2 

-1 0 1 
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Fig. 4.6 A 5x5 standard Laplacian of Gaussian edge detection mask 

 With the gradient map of an image, each pixel in an image has its gradient value. 

Here we propose the modified edge detection: 

(1) Define the complexity level CL of a superpixel: 

  
Number of pixels with high gradient value in a superpixel 

Number of pixels in a superpixel
CL =      (4.5) 

where “a pixel with high gradient value in a superpixel” means that the gradient value of 

this pixel is higher than the mean gradient value of the superpixel where this pixel locates. 

Note: CL(i) is the complexity level of the superpixel i. 

 

(2) Define the edge E and the edge rate ER: 

For the superpixel i, the superpixel j, and the border B(i,j) between i and j, 

Number of pixels with high gradient value in ( , )
edge ( , )

Nunber of pixels in ( , )

B i j
E i j

B i j
=       (4.6) 

 
( , )

edge rate ( , )
( ) ( )

E i j
ER i j

CL i CL j
=

+
                  (4.7) 

where “a pixel with high gradient value in the border” means that the gradient value of 

this pixel is higher than the mean gradient value of the border where this pixel locates. 

 We consider edge rate ER as our modified edge detection between adjacent 

superpixels, and it will be used in our proposed clustering algorithm. (Section 4.4) 

0 0 -1 0 0 

0 -1 -2 -1 0 

-1 -2 16 -2 -1 

0 -1 -2 -1 0 

0 0 -1 0 0 
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4.3.2 Texture Features 

We choose Log-Gabor Filter [28] to extract the texture feature of each superpixel. 

The Log-Gabor function is an alternative to the Gabor function proposed by Field. Gabor 

function represents a minimum in terms of the spread of uncertainty in space and spatial 

frequency. However, its mathematical property is only pure in Cartesian coordinates 

where the channels are the same size respectively in frequency and space. The relative 

spread and overlap of neighboring units would be altered if changed to polar distribution. 

Log-Gabor function can restore some destructive effects of such polar mapping with 

frequency response 
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  (4.8) 

, which is a Gaussian on log frequency axis. 

Thus, a very important aspect of Log-Gabor function is that its frequency response 

is symmetric on a log axis, which is the standard method for representing the spatial-

frequency response of visual neurons. Though not the best-fitting function, Log-Gabor 

function is a better model for suiting the visual system than Gabor function. 

Another advantage of Log-Gabor is that its bandwidth increases with frequency, 

meaning that the bandwidths are constant in octaves. As displayed in Fig. 4.7, Log-Gabor 

function spreads the information equally in each channel while Gabor function 

overrepresents the low frequencies. 
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Fig. 4.7 Comparison of Gabor and Log-Gabor on both linear and logarithmic spatial 

frequency scales. 

 For the consideration in the algorithm, we choose Log-Gabor functions with scale = 

2 and orientation = 4 as our texture feature (eight dimensions in total). For each superpixel 

i, we compute its mean texture T(i). Here we define the texture distance dT(i,j) from the 

superpixel i to the superpixel j as  

 ( , ) ( ) ( )dT i j T i T j= −                        (4.9) 

We consider the texture distance dT as our indicative similarity between adjacent 

superpixels, and it will be used in our proposed clustering algorithm. (Section 4.4) 
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4.4 Proposed Segmentation Algorithm 

In this section, the main steps of our proposed segmentation algorithm are 

described in Stage 1 and Stage 2. 

 

Stage 1 

Clustering superpixels according to their texture features  

Input:  Image I. 

Output: labels L1. 

 

Step 1:   

Segment I with selected superpixel method and store the result in S. Here we adopt ERS 

superpixel method to generate superpixels. We set the number of su perpixels N to N= 200. 

 

 

 

 

 

 

Fig. 4.8 Segment image with ERS superpixel method. 

 

Step 2:  

Store color values of I in CIELAB color space instead of RGB color space, each pixel 

has a color vector lab (3-dimensional: the L space, the A space and the B space). 

 

Step 3: 

Classify I into normal natural image or medical image according to the variance of the 

A space and the B space in I. 

 

Step 4: 

Apply the Log-Gabor filter to I and store the response, which can measure texture 

distance dT between any two superpixels which are adjacent. 
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Step 5:  

Apply Sobel filter and LOG filter to I and store the responses, which are our gradient 

maps G1(Sobel) and G2(LOG). 

 

Step 6: 

(1)  

Use G1 to compute the complexity level CL of each superpixel, and then use G1 in 

normal case or G2 in shadow-detected case to measure the edge E between any two 

superpixels which are adjacent. 

(2)  

For any two superpixels(the superpixel i and the superpixel j) which are adjacent and the 

border B(i,j) between i and j, we use our proposed modified edge detection in Eq. (4.7) 

to measure edge rate between i and j 

( , )
( , )

( ) ( )

E i j
ER i j

CL i CL j
=

+
                         

where E(i,j) denotes the edge E between i and j; CL(i) denotes the complexity level CL 

of the superpixel i. 

(We have defined the complexity level CL and the edge E in Eq. (4.5) and Eq. (4.6)) 

 

Step 7: 

Compute the number of the segments N1 in I. (Before clustering) 

for each superpixel i in S do 

 for the superpixel j which is an adjacent superpixel of i do 

if ER(i,j) ≤ 50% then 

  measure the texture distance dT(i,j) in Eq. (4.9) between i and j 

( , ) ( ) ( )dT i j T i T j= −                          

where T(i) denotes the mean texture of i. 

  end if 

 end for 

Cluster i and one of its adjacent superpixels, which has the minimum texture distance 

to i. 

end for 

Compute the number of the segments N2 in I. (After clustering) 
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If 1 2 0N N− >  then return to Step 7. 

 

Step 8: 

Each cluster of superpixels from step 6 will be labeled, and outputs labels L1. 

 

 

 

 

 

 

 

Fig. 4.9 The segmentation result from Stage 1. 
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Stage 2 

Saliency-oriented region merging  

Input:  Image I, labels L1. 

Output: labels L2. 

 

Step 1:   

Use I to construct the saliency map SM. 

( Saliency Detection via Graph-Based Manifold Ranking in Section 4.2.2) 

 

 

 

 

 

 

Fig. 4.10 The saliency map of an image. 

 

Step 2:  

According to the saliency map, compute the mean saliency value in each region which 

has the same label, and that mean value will represent the saliency value of the region. 

 

Step 3: 

Cluster regions with high saliency values by using the “revised edge rate”. 

(“High” saliency value means that the value is higher than the mean value of SM.) 

 

Step 4: 

Cluster regions with low saliency values by using the “revised edge rate”. 

(“Low” saliency value means that the value is lower than the mean value of SM.) 

 

(The revised edge rate will be described in the next section.) 

 

Step 5: 

Combine the Step3 and the Step4, and then output labels L2, which is our final natural 

image segmentation result. 
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Fig. 4.11 The segmentation result from Stage 2. 
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4.5 Analysis of Our Algorithm 

Compared to state-of-the-art methods [1], [2], [4], [17], and [18], we summarize the 

advantages and the uniqueness of our algorithm. 

 

A. Superpixel-based segmentation algorithms: 

Because there are significantly fewer superpixels than pixels, the computational 

complexity of the proposed algorithm is much lower than that of algorithms not 

based on superpixels. In addition, the superpixel method [16] we employ in our 

framework can preserve the object boundary effectively and prevent local noise from 

interfering with the segmentation result. Therefore, the proposed algorithm provides 

better segmentation results than algorithms not based on superpixels. 

 

B. Image Classification 

Users may need to segment medical images such as MRI(magnetic resonance 

imaging)s, CT(computed tomography) scans, and PET(positron emission 

tomography) scans. For this purpose, we classify input images before executing our 

main algorithm. In our framework, each image will first be stored in CIELAB color 

space; we then measure the variance of the A space and B space in the images. If the 

variance of the A space and B space in the image is lower than 5, which indicates 

the image is almost in black-and-white, it would be considered a medical image. 

Medical images typically do not contain the colors found in normal, natural images, 

owing to processing that occurs after MRIs, CT scans, and PET scans are obtained. 

When our classification system classifies an image as a medical image, the main 

segmentation algorithm focuses on the image’s light variations. 
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C. Modified Edge Detection: 

Other superpixel-based algorithms consider all superpixel information, such as 

color and lightness. In our modified edge detection algorithm, we focus on 

information related the “border” between superpixels. First, for any two adjacent 

superpixels, we compute the gradient values on the border between them, and find 

the edge E in Eq. (4.6). We then define the edge rate ER in Eq. (4.7) as the threshold 

required by the algorithm that merges two adjacent superpixels. When the edge rate 

is lower than 50%, we will merge two adjacent superpixels if the texture distance 

between them is small (the texture distance should be smaller than 0.25). When the 

edge rate is higher than 50%, we will not merge the superpixels, even if the texture 

distance between them is small.  

 We also define the complexity level CL of each superpixel in Eq. (4.5); it 

decides the edge rate ER. When the sum of the complexity levels of two adjacent 

superpixels is relatively high, the edge rate of the superpixels will be relatively low, 

which allows them to merge easily. For example, the superpixels generated from 

grass or animal fur have a high complexity level; therefore, the edge rate between 

them will be low, which allows them to merge easily. We can state that our modified 

edge detection algorithm has more perceptual meaning than other region-merging 

methods, because we consider the borders between superpixels and the complexity 

in superpixels simultaneously. 
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Fig. 4.12 An example of merging two superpixels with high complexity levels. 
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Fig. 4.13 Due to two superpixels with low complexity levels, the proposed algorithm 

would not merge them. 
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D. Clustering superpixels according to their texture features: 

Spectral clustering algorithms have proved to be more effective at finding 

clusters than some traditional algorithms such as k-means, and they have been 

utilized in many segmentation algorithms. However, spectral clustering algorithms 

may break a large homogeneous region into smaller segments. To solve this problem, 

in our framework, we cluster superpixels according to their texture features instead 

of using spectral clustering algorithms, because large homogeneous regions will 

have nearly the same texture features. Furthermore, our proposed texture-based 

clustering algorithm can prevent overmerging between the foreground and 

background, because foreground texture features and background texture features 

typically have significant differences. 

  

E. Recording merge times 

After clustering superpixels in Stage 1, we record the merge times of each 

region; the recording method steps are as follows. 

Step 1:  

Record the central coordinate of each superpixel generated by the ERS 

superpixel method during the first step of Stage 1. 

Step 2:  

After clustering superpixels in Stage 1, the image is segmented into regions; 

we then count the central coordinates in each region. These counting results 

determine the regions’ merge times. 

If the merge times of a region is less than two times and the average saliency 

value of the region is small, we would merge this region to its adjacent region, 

because it might be noise from the background of the image. 
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F. Shadow Detection 

Shading and highlights caused by uneven illumination can trigger image 

measurement problems. These phenomena may cause an object and its shadow to be 

segmented into different regions. 

We found that the main differences between an object and the shadows in a 

portion of the object are as follows: 

1. When we observe the object and its shadow in the CIELAB color space, 

they have a large variance in the L space but little variance in the A space 

and B space. In other words, their illumination levels vary significantly but 

their color is nearly the same.  

2. In general, the texture features in the object and its shadow should be very 

close, because the shadow represents a portion of the object. In our 

framework, we adopt Log-Gabor functions to measure texture distance in 

Eq. (4.9), and the results demonstrate that the texture distance between the 

object and its shadow is close to zero. That is to say, their texture features 

are very similar. 

If any two adjacent superpixels meet the aforementioned conditions (large 

differences in lightness, nearly the same color, and similar texture features), we use 

a LOG filter to measure the edge E between them in Eq. (4.6). Because LOG filters 

are based on second-order derivatives, the gradient values on the border between 

adjacent superpixels will be small, because the difference in illumination between 

the object and its shadow is analogous to a step. Because of the small gradient values 

on the border, the edge rate ER in Eq. (4.7) will also be small, which allows the 

adjacent superpixels to be clustered more easily.  
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Briefly speaking, our shadow detection algorithm uses CIELAB color space 

and texture features to detect shadows, and then measures the gradient values on the 

border using a LOG filter; this causes a significant reduction in the edge rate, 

allowing the object and its shadow to be segmented into the same region. 

 

G. Saliency-oriented region merging 

To make our segmentation result more perceptual, we propose saliency-

oriented region merging to cluster the superpixel regions into specific areas. In each 

superpixel region, we average the pixel saliency values to obtain the region saliency, 

which ensures that each superpixel region shares the same saliency value. We then 

merge the regions that have high and low saliency values, because the regions with 

high and low saliency values usually represent the foreground and background in an 

image; moreover, the regions in the foreground and background should be labeled 

into the same area respectively. 

Unlike Stage 1, the proposed saliency-oriented region merging algorithm uses 

the “revised edge rate” to cluster regions. For any two adjacent regions, the revised 

edge rate can be obtained from the following table. 

Table 4.1 The revised edge rate in Stage 2. 
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According to the Table 4.1, when the saliency values for any two adjacent 

regions are relatively high or relatively low, the revised edge rate between them will 

be lower. For example, if we find two regions with very high saliency values, we 

should merge them together because these two regions might be the foreground, and 

the lower revised edge rate would allow them be merged more easily. This is the 

reason we adopt the revised edge rate instead of the edge rate in Stage 2. 
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Chapter 5 Simulations 

5.1 Compared with the state-of-the-art methods 

5.1.1 Database 
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Fig. 5.1 Our image database 
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 Among the test images used, some images are taken from the Berkeley Segmentation 

Database and the Microsoft Research Cambridge object recognition database, and some 

images are from classic images in the field of image processing, and the others are 

collected online and include natural scenery images, astronomical images, and biomedical 

images. 

 The sources of the test images are as follows:  

(a)~(k): From the Berkeley Segmentation Database. 

(l)~(n): Common images for image processing. 

(o): From the Microsoft Research Cambridge object recognition database. 

(p): From http://web.shs.kyushu-u.ac.jp/~arimura/research-1/pg57.html 

(q): From http://hk.apple.nextmedia.com/realtime/international/20120731/51026523 

(r): From http://www.ppdl.purdue.edu/ppdl/weeklypics/Weekly_Picture6-25-01-1.html 

(s): From http://www.zhibeifw.com/fjgc/zbfy_list.php?id=7462 

(t): From http://utome.asia/pin/12997/ 

(u): From http://okgo.tw/butyview.html?id=2897 

(v): From http://www.indonetwork.co.id/ud_barokah_co/1196034 

(w): From http://aeea.nmns.edu.tw/x_games/ap0817.html 

(x): From http://www.hopemap.net/HopeDetail.php?hid=116 

(y): From http://blog.xuite.net/rita5031/blog 
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5.1.2 Visual Comparison 

We use Watershed [6], Fast Scanning, Unseeded Region Growing [11], K-means 

[20], Mean Shift [4], Normalized Cut [1], MLSS [18], and SAS [17] for the visual 

comparison shown in Fig. 5.2. 
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Fig. 5.2 The visual comparison between our proposed method and the other state-of-the-

art methods. 

  

(x) 

(y) 
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 We select many different image segmentation algorithms and compare them with the 

proposed method. These algorithms include time-honored but classical segmentation 

algorithms (such as watershed and unseeded region growing), and algorithms that have 

been commonly used for image segmentation over the last ten years (such as k-means, 

mean shift, and normalized cut). Finally, we also compare the proposed algorithm with 

segmentation algorithms (such as MLSS and SAS) that have been shown to deliver 

excellent performance over the last few years (Note that the number of regions to be 

segmented must be set for MLSS and SAS. In the comparison figures in Fig. 5.2, this 

parameter is set to 20.). 

 

 From Fig. 5.2, we can infer that for any natural image, the proposed natural image 

segmentation algorithm performs better than most of the other segmentation algorithms. 

The following are the advantages of the proposed method for image segmentation over 

the other methods: 

 

1. By selecting different edge detectors according to specific conditions, the proposed 

method effectively solves the over-segmentation problem due to the shadow of the 

objects and the difference in the brightness of the objects. The results are shown in 

Figs. 5.2 (a) and (u). 

 

2. Even if the foreground and the background in an image have an unclear boundary or 

similar color, the proposed method can completely segment the foreground from the 

background because the proposed method focuses particularly on boundary 

information. The results are shown in Figs. 5.2 (b), (f), (s), and (u). 
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3. Early segmentation methods normally fail to properly process complicated textures 

in images, such as animal fur, grassland, and ocean waves, and cause the over-

segmentation problem. The proposed method takes image complexity into account so 

as to gain significant improvement. The results are shown in Figs. 5.2 (c), (g), (k), 

(m), (n), and (v).  

 

4. The sensory system of the human eyes segments excessively disordered or unclear 

backgrounds into the same region. The proposed method is integrated with saliency 

detection to detect the background regions in the image and merges these regions 

together. The results are shown in Figs. 5.2 (d), (f), and (i). 

 

5. The proposed method can be used for processing various types of images. For 

example, Fig. 5.2 (w) represents biomedical images, (x) represents astronomical 

images, and (y) represents satellite cloud images. Further, the proposed method can 

obtain excellent segmentation results for different types of images. 
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5.2 Compared with the MLSS method and the SAS method 

Since the MLSS method and the SAS method have better performance in image 

segmentation nowadays, we will focus on comparing our algorithm with them in 

parameter adjustment.  

Both of the MLSS method and the SAS method need the parameter K, which decides 

the final number of regions in an image. For example, we adopt the MLSS method with 

parameter K and K = 5, therefore the image will be segmented into five regions. Fig. 5.3 

and Fig. 5.4 show that the segmentation result of the MLSS method and the SAS method 

with parameter K = 5, K = 10, K = 15, and K = 20. 
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Fig. 5.3 Compare our segmentation method with the MLSS method.  
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Fig. 5.4 Compare our segmentation method with the SAS method. 

 

From Fig. 5.3 and Fig. 5.4, we can observe that 

1. For the MLSS method and the SAS method, parameter K plays an important role in 

the performance of segmentation result. 

2. For each different kind of natural image, when we adopt the MLSS method or the 

SAS method, we should choose an appropriate parameter K to make the segmentation 

result perform well.  

 

Compared with the MLSS method and the SAS method, our proposed method do not 

need any parameter adjustment and perform more accurately in natural image 

segmentation. 
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Chapter 6 Conclusion and Future Work 

 

6.1 Conclusion 

In this thesis, we provide an overview of some important works of image 

segmentation and superpixel-based segmentation algorithms in recent years.  

We propose a natural image segmentation framework with highly accurate 

performance and without any parameter adjustment. Our framework is based on ERS 

superpixels, modified edge detection, Log-Gabor texture clustering and saliency-oriented 

region merging. Constructing the graph representation using ERS superpixel makes our 

algorithm become efficient. Moreover, the borders of ERS superpixels match the true 

edges of the objects very well. In our stage 1, Clustering superpixels according to their 

texture features applying Log-Gabor filter and the proposed modified edge detection 

which combines the Sobel filter and LOG filter make the segmentation result more 

accurate. In our stage 2, we use saliency detection to merge regions in the foreground and 

background, which would match human perception much more. 

The simulations on the database of natural images show that the proposed algorithm 

outperforms the state-of-the-art segmentation methods because of its parameterless 

adjustment and highly accurate segmentation result.  
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(a) (b) 

6.2 Future Work 

1. Efficiency 

Because of a lot of calculation based on loops, we could further speed up the program 

by implementing the code fully by C++. (We implement the code by MATLAB now.) 

Additionally, since we apply the same measure (gradient values and texture features) to 

all superpixels, the process can be implemented in parallel computing. 

2. Specular-free image 

Although we propose an algorithm to solve over-segmentation due to shadow problem, 

there are some challenges of image segmentation caused by illumination, such as 

highlights or specular reflections. 

In image segmentation, the areas with highlights or specular reflections might be 

segmented to a lot of single regions, which is not perceptual, because highlights or 

specular reflections are still the portions of an object. Specular-free image is a concept 

first proposed by Tan et al [30], and they want to remove the specular reflections in the 

images. Therefore, if we can adopt the concept of specular-free image to remove the 

specular reflections in the input images, the segmentation results might be more 

perceptual. 

 

 

 

 

 

 

Fig. 6.1 (a) Original image. (b) Specular-free image. 
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