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ABSTRACT

In computer vision and image processing, image segmentation is always an
important fundamental work. Though this topic has been researched for many years, it is
still a challenging task to well segment most of the natural images automatically without
adjusting any parameter. Recently, the researches of superpixels have great improvement.
This new technique makes the traditional segmentation algorithms more efficient and has
better performances. In this thesis, an automatic image segmentation algorithm based on
superpixels and many other techniques is proposed. It can accurately segment almost all
of the natural images without parameter adjustment.

In our algorithm, the techniques of entropy rate superpixels (ERSs), edge detection,
saliency detection, and computing texture feature are adopted. With the aid of ERSs, the
proposed algorithm can be implemented very efficiently. To prevent over-merge of
superpixels, modified edge detection which computes the gradient information of the
contours and the interiors of superpixels is used. Saliency detection and the texture
features of an image are also used to prevent over-segmentation. Moreover, an adaptive
threshold is also used for superpixel merging. These techniques make the segmentation
result more consistent with human perception without adjusting any parameter.
Simulations show that our proposed method can well segment most of natural images and

outperform state-of-the-art methods.

Index terms: Image segmentation; ERS superpixels; edge detection; saliency detection;

computer vision
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Chapter 1  Introduction

1.1 Motivation

Image segmentation is to partition a single image into non-overlapping regions, and
then extract the objects of interest under the complex background environment. It has
been found, with a great potential in applications, to be not only a fundamental low-level
vision problem but also the key problem in the research of image analysis, pattern
recognition, computer vision, medical image processing, and even image understanding.

In natural images, many problems make segmentation difficult, such as determining
faint object boundaries and separating highly cluttered backgrounds. While human can
parse a natural image into coherent regions easily, it is found rather difficult for automatic
vision systems. Despite a variety of segmentation techniques have been proposed, it
remains challenging for any single method to do segmentation successfully due to the
broad diversity and ambiguity of visual patterns in a natural image.

In the last two decades, the researches of superpixel segmentation have great
improvement. The major advantage of using superpixels is computational efficiency. A
superpixel representation greatly reduces the number of image primitives compared to
the pixel representation. On the other hand, the saliency detection is a new topic of image
processing. The task of saliency detection is to identify the most important and
informative part of a scene.

Therefore, in this thesis, we aim at utilizing the techniques of superpixel, saliency
detection and edge detection to construct a high accuracy and high robust natural image

segmentation algorithm without parameter adjusting.



1.2 Main Contribution

Our main contributions are summarized as follows.

1. We review the researches in image segmentation, recent works of superpixels and
superpixel-based segmentation algorithms.

2. We propose a segmentation framework which combines superpixel technique,
saliency detection, texture feature oriented clustering and modified edge detection
which computes the gradient information of the contours and the interiors of
superpixels

3. Experimental results show that our method has higher accuracy in natural image

segmentation compared to the existing methods.

1.3 Organization

This thesis is organized as follows. An overview of recent image segmentation
approaches is presented in Chapter 2. In Chapter 3, the fundamental knowledge of
superpixel is illustrated and some superpixel-based segmentation algorithms are
introduced. The proposed image segmentation framework as well as algorithms will be
presented in Chapter 4. Experimental results for natural image segmentation and

discussion are given in Chapter 5. Finally, the thesis would be concluded in Chapter 6.



Fig. 1.1 Natural image segmentation based on our method.



Chapter 2 Reviews of Segmentation Algorithms

Image segmentation algorithms can usually be categorized into two kinds of
methods; one is graph-based methods and the other is gradient ascent methods.

Starting from a rough initial clustering of pixels, gradient ascent methods iteratively
refine the clusters until some convergence criterion is met to form segmentation result. In
Section 2.1-2.2, we review two classic image segmentation algorithms based on gradient
ascent methods.

The Graph-based approaches treat each pixel as a node in a graph. Edge weights
between two nodes are proportional to the similarity between neighboring pixels. The
segmentation result is created by minimizing a cost function defined over the graph. In
Section 2.3-2.4, we introduce segmentation image algorithms which are the graph-based

approaches.

21 Mean Shift

2.1.1 About Mean Shift

Mean shift, a simple iterative procedure that shifts each data point to the average of
data points in its neighborhood.

The generalization of mean shift makes some k-means like clustering algorithms its
special cases. It is shown that mean shift is a mode-seeking process on a surface
constructed with a “shadow” kernel. For Gaussian kernels, mean shift is a gradient
mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a

deterministic problem of finding a fixed point of mean shift that characterizes the data.



For the application of the superpixel, Mean shift [4], an iterative mode-seeking
procedure for locating local maxima of a density function, is applied to find modes in the
color or intensity feature space of an image. Pixels that converge to the same mode define

the superpixels.

2.1.2  The Algorithm

Let xi and zi, i=1,...,n, be the d-dimensional input and filtered image pixels in the
joint spatial-range domain and Li the label of the i ™ pixel in the segmented image.

1. Run the mean shift filtering procedure for the image and store all the information
about the d-dimensional convergence point in zi, i.e., i = yi,c.

2. Delineate in the joint domain the clusters {Cp}p=1...m by grouping together all zi
which are closer than /s in the spatial domain and /4r in the range domain, i.e., concatenate
the basins of attraction of the corresponding convergence points.

3. For each i=1,...,n, assign Li= {p | zie Cp }.

4. Optional: Eliminate spatial regions containing less than M pixels.

2.1.3 Simulation Results

S

=




Fig. 2.1 Segmentation examples based on the mean shift approach.

2.2 Watershed Approach

2.2.1 About Watershed Approach

The watershed approach [6] performs a gradient ascent starting from local minima
to produce watersheds, lines that separate catchment basins. The resulting superpixels are
often highly irregular in size and shape, and do not exhibit good boundary adherence.

The watershed transform is one of the classic methods for image segmentation, and
has been studied for three decades. The basic idea of watershed segmentation is to
consider the regions to be extracted as catchment basins in topology. The watershed lines,
S, are the boundaries of catchment basins. Starting from the minima of lowest altitude,
the water will progressively fill up all the different catchment basins. At some point the

water one basin will start to merge with water from neighboring regions. This merging



can be prevented by constructing dams at high altitude.

Another thought that is close to watershed is Toboggan contrast enhancement,
proposed by Fairfield in 1990. An image is first applied the toboggan contrast
enhancement and then a contrast segmentation. The concept is later used to implement
watershed segmentation. Conceptually, we can view the original watershed segmentation
as an approach that starts from low altitude to high altitude, and the toboggan approach
as an approach that starts from high altitude to low altitude. In the toboggan approach,
the algorithm tries to find a downstream path from each pixel. Pixels that slide into the
same local minimum can then be grouped together into a catchment basin.

The segmentation produced by a naive application of the watershed algorithm is
often inadequate: the image is usually over-segmented into a large number of minuscule
regions. As a result, several post-processing steps have been proposed to produce results
that match human eye. The most common method is to use markers for identifying
relevant minima. However, finding markers can be problematic and produce inadequate

results.

2.2.2  The Algorithm

1. Asetof markers, pixels where the flooding shall start, are chosen. Each is given
a different label.

2. The neighboring pixels of each marked area are inserted into a priority queue
with a priority level corresponding to the gray level of the pixel.

3. The pixel with the highest priority level is extracted from the priority queue. If
the neighbors of the extracted pixel that have already been labeled all have the same label,
then the pixel is labeled with their label. All non-marked neighbors that are not yet in the

priority queue are put into the priority queue.
7



4. Redo step 3 until the priority queue is empty. The non-labeled pixels are the

watershed lines.

2.2.3  Simulation Results
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Fig. 2.2 Segmentation examples based on the watershed approach.



2.3 Normalized Cut

2.3.1 About Normalized Cut

The Normalized cuts algorithm [1] recursively partitions a graph of all pixels in the
image using contour and texture clues, globally minimizing a cost function defined on the
edges at the partition boundaries. It produces very regular, visually pleasing superpixels.
However, the boundary adherence of this algorithm is relatively poor and it is the slowest
among the methods (particularly for large images), although there are some method
attempting to speed up the algorithm, the problem of complexity is still exist.

This approach avoids trivial partitions of the affinity weighed graph with the use of

the normalized cut criterion. Based on the spectral graph theory, given a graph
G=(V,E) ,itcanbe partitioned into two disjoint sets, 4,B, AUB=V,4nB=¢,by

simply removing edges connecting the two parts. The degree of dissimilarity between

these two pieces called as cut is as follows

cut(A,B) = Z w(u,v) (2.1)

uc A,ve B
where w(u,V) is the similarity between node u and v. The traditional optimal
bipartitioning of a graph is the one that minimizes this cut value. Finding the minimum
cut is a well-studied problem and there exist efficient algorithms for solving it. However,

the minimum cut criteria favors cutting small sets of isolated nodes in the graph, and gives

bad partition in some cases such as Fig. 2.3.
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Fig. 2.3 A case where minimum cut gives a bad partition.

This criterion has some unnatural bias for partitioning out small sets of points. To
avoid it, a new measure of disassociation between two groups is proposed. Instead of
looking at the value of total edge weight connecting the two partitions, the measure
computes the cut cost as a fraction of the total edge connections to all the nodes in the
graph. This disassociation measure is called as the normalized cut (Ncut).

cut(A,B) N cut(A,B)

, (2.2)
assoc(A4,V) assoc(B,V)

Ncut(A,B)=

where assoc(4,V)= Z w(u,t) is the total connection from node 4 to all nodes

ue AteV

in the graph and sss0c(8,7) is similarly defined.
To obtain the optimal bipartitioning of a graph is equal to minimize the criterion
mentioned above. Let d(i)= zjw(i, J) be the total connection from node i to all other

nodes. Let Dbe an NxN diagonal matrix with d on its diagonal, D, = Z,- w(i,j), W be

an NXN symmetric affinity matrix whose entries encode the similarity between pixels,
W (i, ) = W(i, J). Shi and Malik proved that is equivalent to the discrete optimization

problem.

v (D-W)y

23
y' Dy @3

min  Neut (x)=min
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If y is relaxed to take real values, the above criterion can be approximated by solving the

generalized eigenvalue system.
(D-W)y=ADy, (2.4)

Amazingly, the second smallest eigenvector y gives the solution of the normalized cut

problem.

2.3.2 The Grouping Algorithm

Given an image or image sequence |, set up a weighted graph G = (V,E ) , the node

V are pixels of the image | and the edge E is the weight on connecting two nodes to be a
measure of the similarity between the two nodes. Let N be the number of nodes (pixels),
ie., |V|.

Step 1

Construct an N x N symmetric similarity matrix W as:

e r(f | AxO-xOE
wlif)=emp I ()GZF () ey o Ltpro-x 0l < es

0 otherwise

where X(7) is the spatial location of node i, i.e., the coordinates in the original image I,
and F(i) is a feature vector defined as:

+ F(i) =1 for segmenting point sets,
+ F(i) = 1(i), the intensity value, for segmenting brightness (gray scale) images,
« F)=[v,u s sin(h),v-s - cos(h)](i), where h, s, v are the HSV values, for color

segmentation,

« F@) =l *fi], ..., |l * fa|]](i), where the fi are DOOG filters at various scales and

orientations, for texture segmentation.

11



Note that the weight (i, j)=0 for any pair of nodes i and j that are more than r pixels
apart.

Let d(i)= Z,- w(i,j) be the total connection from node i to all other nodes. Construct

an N x N diagonal matrix D with d on its diagonal.
Step 2
Solve a generalized eigensystem,
(D-W)y=ADy (2.6)
and get an eigenvector with the second smallest eigenvalue.
Step 3
Use the eigenvector to bipartition the graph. In the ideal case, the eigenvector should only

take on two discrete values, and the signs tell us exactly how to partition the graph
(A={V]y, >0}.B={V |y, <=0}).
However, y is relaxed to take real values, therefore, we need to choose a splitting point.

There are several ways such as

+ Take 0
+ Take median
+ Search a splitting point which results in that Ncut(A, B) is minimized.

The splitting point which minimizes Ncut value also minimizes

yT(D—W)y

2.7
»'Dy @D

Z odi
where y=(1+x)—b(1—x), b=k/(1—k) k i

’ ) Zidi

where x is an N dimensional indicator, X =1 ifnode i is in A and -1, otherwise.

12



To find the minimal Ncut, we need to try different values of splitting points. The optimal
splitting point is generally around the mean value of the obtained eigenvector.

Step 4

Repeat bipartition recursively. Stop if Ncut value is larger than a pre-specified threshold
value (Large Ncut value means that there is no clear partition point any more).
Furthermore, stop if the total number of nodes in the partition (Area) is smaller than a

pre-specified threshold value (this is another criteria added newly to the paper’s

algorithm.)

(@) (b)

adiff)y,

(e) (f) (@ (h)

Fig. 2.4 (a) shows an image of a zebra. The remaining images show the major components

of the partition. The texture features used correspond to convolutions with DOOG filters

at six orientations and five scales.

13



2.3.4 Multiscale Normalized Cut (MNCut)

Cour et al. proposed MNCut [9], which is a multiscale spectral image segmentation
algorithm, to segment large images. In contrast to most multiscale image processing, this
algorithm works on multiple scales of the image in parallel, without iteration, to capture
both coarse and fine level details. The algorithm is computationally efficient, allowing to
segment large images. It use the Normalized Cut graph partitioning framework of image
segmentation and construct a graph encoding pairwise pixel affinity, and partition the
graph for image segmentation. They demonstrate that large image graphs can be
compressed into multiple scales capturing image structure at increasingly large
neighborhood. They also show that the decomposition of the image segmentation graph
into different scales can be determined by ecological statistics on the image grouping cues.
Images that previously could not be processed because of their size have been accurately

segmented thanks to this method.

14



2.4  Efficient Graph-based Segmentation

2.4.1 About Efficient Graph-based Segmentation

Felzenszwalb and Huttenlocher [2] propose an alternative graph-based approach that
has been applied to generate superpixels. It performs an agglomerative clustering of pixels
as nodes on a graph such that each superpixel is the minimum spanning tree of the
constituent pixels. This algorithm adheres well to image boundaries in practice, but
produces superpixels with very irregular sizes and shapes. It is fast in practice. However,
it does not offer an explicit control over the amount of superpixels or their compactness.

Their goal is to develop computational approaches to image segmentation that are
broadly useful, much in the way that other low-level techniques such as edge detection
are used in a wide range of computer vision tasks. In order to achieve such broad utility,
it is important that a segmentation method have the following properties:

1. Capture perceptually important groupings or regions, which often reflect global aspects
of the image. Two central issues are to provide precise characterizations of what is
perceptually important, and to be able to specify what a given segmentation technique
does. There should be precise definitions of the properties of a resulting segmentation, in
order to better understand the method as well as to facilitate the comparison of different
approaches.

2. Be highly efficient, running in time nearly linear in the number of image pixels. In
order to be of practical use, the segmentation methods should run at speeds similar to
edge detection or other low-level visual processing techniques, meaning nearly linear
time and with low constant factors. For example, a segmentation technique that runs at

several frames per second can be used in video processing applications.
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For the first property, they want the segmentation to be neither too coarse nor too
fine. In other words, it means the ability to preserve detail in low-variability image regions
while ignoring detail in high-variability regions. This is achieved by an adaptive threshold
which considers not only the differences between other regions but also the internal local
variation.

For the second property, they introduce a simple but effective modification of
Kruskal’s algorithm. As in Kruskal’s algorithm,

« it begins with the completely disconnect graph,
+ edges are added one at a time in increasing order of their weight,
+ if maintains a forest of MSTs for its current components.

Combining the two properties mentioned above, the segmentation process is as
follows. Given a graph in which pixels are nodes and edges weights measure the

dissimilarity between nodes, each node is initially placed in its own component. Define
the internal difference of a component Int(C) as the largest weight in the minimum

spanning tree of C. Considering edges in non-decreasing order by weight , each step of
the algorithm merges components C; and C2 connected by the current edge if the weight

1s less than:

min(Int(C,)+7(C,), Int(C,)+7(C,)) (2.8)

where 7(C)=k/ |C| k is a scale parameter that can be used to set a preference for

component size. The merging criteria in Eq. 2.8 allows efficient graph-based clustering
to be sensitive to edges in areas of low variability, and less sensitive to them in areas of
high variability. This is intuitively the property we would like to see in a clustering

algorithm.
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2.42 The Algorithm

Given a graph G = (V, E ) be fully undirected connected, with # vertices and m edges.
Each vertex is a pixel, x, represented in the feature space. The final segmentation of
willbe S =<C1,...,Cr) where Ci is a cluster. The algorithm is:

Step 1

Sort E=(e,,....e,) such that |¢|<|e|Vr<t".

Step 2

Let S'= ({xl} ,...,{xn}> , in other words each initial cluster contains exactly one vertex.
Step 3

For r=1,....m

(a) Letx; and x; be the vertices connected by e:.

(b) Let Ci__l be the connected component containing point x; on iteration -1,
and [ =max C;_l be the longest edge in the minimum spanning tree of C;_l.

Likewise for /;.

(c) Merge C;_I and CCI if

le,| < min LI (2.9)
! t—1 J C[_l

X

where k is a constant.
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Step 4
Return §=5".

There are two parameters used to adjust the result of segmentation, » and k. In the
author’s implementation, the input image is first smoothed using a Gaussian filter to
remove some artifact. The parameter O is the standard difference of the Gaussian filter,

usually set as 0.8. The parameter k is used to compute the threshold function 7 . The
function 7(C)=k/ |C| where |C| is the number of elements in C. Thus k effectively

sets a scale of observation, in that a larger & causes a preference for larger components.

On the other hand, the author provides two approaches to define the initial graph
G= (V,E ) . One is the Grid Graphs approach, where each image pixel p; has a
corresponding vertex v, € V. The edge set E is constructed by connecting pairs of pixels
that are neighbors in an 8-connected sense (any other local neighborhood could be used).
This yields a graph where m=38- (n) , 5o the running time of the segmentation algorithm
is O(nlogn) for n image pixels. The other is the Nearest Neighbor Graphs approach,

where the edges are defined by connecting pairs of feature points that are nearby in the
feature space, rather than using neighboring pixels in the image grid. Each point is

connected to a fixed number of nearest neighbors or all the neighbors within some fixed

distance d. In any event, it is desirable to avoid considering all O (nz) pairs of feature

points.
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2.4.3 Simulation Results

Fig. 2.5 Segmentation using the nearest neighbor graph can capture spatially non-local

regions (g = 0.8, k=300).
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Chapter 3 Reviews of Superpixels and Superpixel-

based Segmentation Algorithms

We first introduce the concept and possible applications of superpixels in Section
3.1. Then, two kinds of superpixel methods which perform well nowadays are reviewed
in Section 3.2 and Section 3.3. Finally, we introduce superpixel-based segmentation

algorithms in Section 3.4.

3.1 Introduction of Superpixe

A superpixel is commonly defined as a perceptually uniform region in the image.
The major advantage of using superpixels is computational efficiency—a superpixel
representation greatly reduces the number of image primitives compared to the pixel
representation. It has been proved useful for applications such as depth estimation, image
segmentation, body model estimation and object localization.

Generally, superpixel contains the following properties:

e  Every superpixel should overlap with only one object.

e  The set of superpixel boundaries should be a superset of object boundaries.

e The mapping from pixels to superpixels should not reduce the achievable
performance of the intended application.

e  The above properties should be obtained with as few superpixels as possible.
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3.2 SimpleLinear Iterative Clustering Superpixels

3.2.1 About Simple Linear Iterative Clustering Superpixels

Computer vision applications have come to rely increasingly on superpixels in recent
years. Achanta et al. believes that an ideal approach of generating superpixels should have
the following properties:

1. Superpixels should adhere well to image boundaries.

2. When used to reduce computational complexity as a pre-processing step, superpixels
should be fast to compute, memory efficient, and simple to use.

3. When used to for segmentation purposes, superpixels should both increase the speed
and improve the quality of the results.

They propose a new method for generating superpixels, Simple linear iterative clustering
(SLIC) [15], which is faster than existing methods, more memory efficient, exhibits state-
of-the-art boundary adherence, and improve the performance of segmentation algorithms.
It is an adaptation of k-means for superpixels generation, with two important distinctions:
1. The number of distance calculations in the optimization is dramatically reduced by
limiting the search space to a region proportional to superpixel size. This reduces the
complexity to be linear in the number of pixels N and independent of the number of
superpixels K.

2. A weighted distance measure combines color and spatial proximity while
simultaneously providing control over the size and compactness of the superpixels.
SLIC is simple to use and understand. By default, the only parameter of the algorithm is
K, the desired number of approximately equally sized superpixels. For a color image in

the CIELAB color space, the clustering procedure begins with an

21



(a) (b)
Fig. 3.1 Reducing the superpixel search regions. (a) standard k-means searches the entire
image. (b) SLIC searches a limit region.

initialization step where K initial cluster centers C, =[/, 4, b, x, y,]| with k=[LK] are

sampled on a regular grid spaced S pixels apart. To produce roughly equally sized
superpixels, the grid interval is §=+/N/K , so the approximate size of each superpixel is
therefore N/K pixels for an image with N pixels. The centers are moved to seed
locations corresponding to the lowest gradient position in a 3x3 neighborhood. This is
done to avoid centering a superpixel on an edge and to reduce the chance of seeding a
superpixel with a noisy pixel.

Next, in the assignment step, each pixel i is associated with the nearest cluster center
whose search region overlaps its location, as depicted in Fig. 3.1. This is the key to
speeding up our algorithm because limiting the size of the search region significantly
reduces the number of distance calculations, and results in a significant speed advantage
over conventional k&~-means clustering where each pixel must be compared with all cluster
centers. Since the expected spatial extent of a superpixel is a region of approximate size
SxS, the search for similar pixels is done in a region 2S5x2S around the superpixel

center.
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There is a problem that how to define the distance measure D. While the maximum
possible distance between two colors in the CIELAB space is limited, the spatial distance
in the xy plane depends on the image size. It is not possible to simply use the Euclidean
distance in this 5D space without normalizing the spatial distances. In order to cluster
pixels in this 5D space, therefore a new distance measure that considers superpixel size
is introduced. Using it enforce color similarity as well as pixel proximity in this 5D space
such that the expected cluster sizes and their spatial extent are approximately equal. The
measure is defined by combining the color proximity and spatial proximity normalized

by their respective maximum distances within a cluster, N and Ns, as follows

a. :\/(l-/‘_lf)z+(a./_ai)2+(bj_bi)2 (3.1

dsz\/(xj—x,.)2+(yj—yi)2 (3.2)

LG e

where d. and ds are distances in color and spatial space, respectively. The parameter m is

a constant to represent the respective maximum color distance N, and the maximum
spatial distance expected within a given cluster should correspond to the sampling interval,

therefore N, =S.

In practice, the distance measure D is defined as
s (dY
D=, ld =+ ? m- . (3.4)

By defining D in this manner, m can be adjusted to weigh the relative importance between
color similarity and spatial proximity. When m is large, spatial proximity is more
important and the resulting superpixels are more compact (i.e., they have a lower area to

perimeter ratio). When m is small, the resulting superpixels adhere more tightly to image
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boundaries, but have less regular size and shape. When using the CIELAB color space,
m can be in the range [1,40].

Once each pixel has been associated to the nearest cluster center, an update step
adjusts the cluster centers to be the mean [/ a bxy] vector of all the pixels belonging to
the cluster. The L2 norm is used to compute a residual error £ between the new cluster
center locations and previous cluster center locations. The assignment and update steps
can be repeated iteratively until the error converges, but in most of time that 10 iterations
suffices for most images, and report all results in this paper using this criteria.

Finally, a post-processing step enforces connectivity by reassigning disjoint pixels

to nearby largest superpixels.

3.2.2 The Algorithm

Given an image with N pixels, define the number of superpixels K and compactness
control parameter m, the algorithm is as follows:
Step 1
Initialize K cluster centers C, =[/, a, b, x, yk]T by sampling pixels at regular grid step
S, S=JN/K.
Move cluster centers to the lowest gradient position in a 3x3 neighborhood.

Set label of pixel i, /(i)=—1 for each pixel.

Set distance between nearest cluster center and pixel i, d (i ) =co for each pixel.

Step 2
For each cluster center Cx do

For each pixel iina 2S5x2S region around Cx do
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Compute the distance D between Crand i, D =

If D<d(i) then
Set distance between nearest cluster center and pixel i, d (i ) =D
Set label of pixel i, [(i)=k
End if
End for
End for
Step 3
Compute new cluster centers using the mean value of pixels in each cluster.
Compute residual error E, the L2 distance between previous centers and recomputed
centers.
If E <threshold then return to Step 2.
Step 4
Enforce connectivity by reassigning disjoint pixels.

3.2.3 Simulation Results and Discussion

GS04 NCO5 TP0O9 QS09 GCal0 GCbl10 SLIC

Fig. 3.2 The superpixel result of SLIC superpixels and other state-of-the-art superpixel

methods.
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3.3 Entropy Rate Super pixel Segmentation

3.3.1 About Entropy Rate Superpixel Segmentation

Liu et al. propose solving the superpixel segmentation problem by maximizing an
objective function on the graph topology [16]. The objective function consists of an
entropy rate and a balancing term for obtaining superpixels with similar sizes. They also
present a greedy optimization scheme to reduce the complexity of the algorithm to
O(NlogN) . Entropy Rate Superpixel (ERS) offers control over the amount of superpixels
and also their compactness.

This method present a new clustering objective function which consists of two terms:

(1) the entropy rate of a random walk on a graph.

(2) a balancing term on the cluster distribution.

The entropy rate favors compact and homogeneous clusters—encouraging division of
images on perceptual boundaries and favoring superpixels overlapping with only a single
object; whereas the balancing term encourages clusters with similar sizes— reducing the
number of unbalanced superpixels.

The clustering formulation leads to an efficient algorithm with a provable bound on
the optimality of the solution. The objective function is a monotonically increasing
submodular function. Submodularity is the discrete analogue of convexity in continuous
domains. Knowing whether a function is submodular is better to understand the
underlying optimization problem. In general, maximization of submodular functions
leads to NP-hard problems, for which the global optimum is difficult to obtain.
Nevertheless, by using a greedy algorithm and exploiting the matroid structure present in

the formulation, it can obtain a bound of 1/2 on the optimality of the solution.
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3.3.2 Preliminaries of this Method

(1) Graph representation:

G = (V, E) denotes an undirected graph where V is the vertex set and E is the edge set.
The vertices and edges are denoted by v: and e, respectively. The similarity between
vertices is given by the weight function w. In an undirected graph, the edge weights are
symmetric, that is wi;= wji.

(2) Graph partition:

A graph partition S refers to a division of the vertex set V into disjoint subsets

S ={Si, Sa,..., Sk} such that SiN S;=@ fori # j.

(3) Entropy:

The uncertainty of a random variable is measured by entropy H. Entropy of a discrete

random variable X with a probability mass function pxis defined by

H(X)=—prx(x)logpx(X) (3.5)
(4) Entropy rate:
The entropy rate quantifies the uncertainty of a stochastic process X = {Xt |t € T } where
T is some index set. For a discrete random process, the entropy rate is defined as an
asymptotic measure:
H(X)=}i_{EH(Xt|XH,XH,...,X1), (3.6)
which measures the remaining uncertainty of the random process after observing the past

trajectory.
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(5) Random walks on graphs:

Let X = {X{t € T, Xt€V } be a random walk on the graph G = (V,E) with a nonnegative
similarity measure w. A random walk model described in the transition probability is
defined as pij= Pr(Xe1 = vj|Xt= vi) = wij/wi, where wi is the sum of incident weights of

the vertex vi, and the stationary distribution is given by

W
W, 4
yeres

W,
1= s s )" = L ) (3.7)
T

Wr Wr
where wr =is the normalization constant. For a disconnected graph, the stationary

distribution is not unique. However, x in (4) is always a stationary distribution.

3.3.3 Problem Formulation and Algorithm

This method considers clustering as a graph partitioning problem. To partition the
image into K superpixels, the method searches for a graph topology that has K connected
subgraphs and maximizes the proposed objective function.

(1) Graph Construction

The algorithm maps an image to a graph G = (V,E) with vertices denoting the pixels and
the edge weights denoting the pairwise similarities given in the form of a similarity matrix.
The goal is to select a subset of edges 4 € E such that the resulting graph, G = (V,4),
contains exactly K connected subgraphs.

(2) Entropy Rate

The algorithm uses the entropy rate of the random walk on the constructed graph as a

criterion to obtain compact and homogeneous clusters.

Consequently, the entropy rate of the random walk on G = (V,4) can be written as a set

function :
H(A)==2 1,3 p, ;(A)log(p, ,(4) (3.8)
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Fig. 3.3 The role of entropy rate in obtaining compact and homogeneous clustering.

(3) Balancing Function

The balancing function encourages clusters with similar sizes. Let 4 be the selected edge
set, Nais the number of connected components in the graph, and Z4be the distribution of
the cluster membership. For instance, let the graph partitioning for the edge set 4 be

Sa={S1, S, ..., Svi}. Then the distribution of Zais equal to

S,
Py, (i):||7',i={1,...,NA} (3.9)

and the balancing term is given by

B(4)=H(Z,)~-N,= —ZPZA (Dlog(p,, ()=-N, (3.10)

The entropy H(Z4) favors clusters with similar sizes; whereas N4 favors fewer number of

clusters.
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Fig. 3.4 The role of the balancing function is to obtain clusters of similar sizes.

(4) Objective Function

The objective function combines the entropy rate and the balancing function and therefore
favors compact, homogeneous, and balanced clusters. The clustering is achieved via
optimizing the objective function with respect to the edge set:

max H(A)+AB(A)
4 (3.11)

subjectto Ac Eand N, 2K,
where 4 > 0 is the weight of the balancing term. Linear combination with nonnegative
coefficients preserves submodularity and monotonicity, therefore the objective function
is also submodular and monotonically increasing. The additional constraint on the number
of connected subgraphs enforces exactly K clusters since the objective function is

monotonically increasing.

3.3.4 Conclusion and Simulation Results

This paper formulated the superpixel segmentation problem as an optimization
problem on graph topology. They proposed a novel objective function based on the
entropy rate of a random walk on the graph and derived an efficient algorithm with a

bound on the optimality of the solution.
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Fig. 3.5 Superpixel segmentation examples. The images contain 100 superpixels. The

ground truth segments are color-coded and blendedon the images. The superpixels
(boundaries shown in white) respect object boundaries and tend to divide an image into

similar-sized regions.
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3.4 Segmentation by Aggregating Super pixels (SAS)

3.4.1 About Segmentation by Aggregating Superpixels

Li et al. propose a novel graph-based segmentation framework [17] which is able to
efficiently integrate cues from multi-layer superpixels simultaneously. They rely on two

simple observations:

1. Pixels within one superpixels tend to belong to one coherent region.
(superpixel cues).
2. Neighboring pixels which are close in feature space tend to belong to one coherent
region. (smoothness cues).
They show that both cues can be effectively encoded using one bipartite graph, and further
develop an efficient algorithm for unbalanced bipartite graph partitioning.

A bipartite graph is constructed over pixels and superpixels collectively, as shown in
Fig. 3.6. To enforce superpixel cues, a pixel is connected to a superpixel if the pixel is
included in that superpixel. To enforce smoothness cues, it can be done simply connecting
neighboring pixels weighted by similarity, but this would end up with redundancy because
the smoothness regarding neighboring pixels within superpixels were incorporated when
enforcing superpixel cues. It may also incur complex graph partitioning due to denser
connections on the graph. To compensate for the smoothness on the neighboring pixels
across superpixels, the neighboring superpixels which are close in feature space are
connected.

Formally, denote S a set of (multi-layer) superpixels over an image /, and let

G={X,Y,B} be a bipartite graph with node set X UY , where X :=/uUS ={xl.}:i’1‘

and ¥i=5={y}" with N,=|l]+[s| and N, =[S

, the number of nodes in X and
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Over-segmentation 1 Over-segmentation K

Fig. 3.6 The proposed bipartite graph model with K over-segmentations of an image. A
black dot denotes a pixel while a red square denotes a superpixel. For the graph, each
pixel is connected to the superpixels containing it and each superpixel is connected to
itself and its nearest neighbor in the feature space among its spatially adjacent superpixels .

Each superpixel is represented by the average LAB color of the pixels within it.

Y, respectively. The across-affinity matrix B = (bu )N . between X and Y is constructed
X Y

as follows:

b.=«, ifxieyj,xl,e Ly, €S,

b,=e™, ifx,~y, xS,y eS; (3.12)
=0, otherwise,

where dj; denotes the distance between the features of superpixels x; and y;, ~ denotes a
certain neighborhood between superpixels, >0 and f>0 are free parameters
controlling the balance between the superpixel cues and the smoothness cues, respectively.
By this construction, a pixel and the superpixels containing it are likely to be grouped
together due to the connections between them. Two neighboring (defined by ~)

superpixels are more likely to be grouped together if they are closer in feature space.
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Particularly, superpixels are included in both parts of the graph to enforce the smoothness

over superpixels.

Given the above bipartite graph G={X,Y,B} , the task is to partition it into &

groups, where & is manually specified. Each group includes a subset of pixels and/or
superpixels, and the pixels from one group form a segment. The spectral clustering is used
since it has been successfully applied to a variety of applications including image
segmentation. Spectral clustering captures essential cluster structure of a graph using the
spectrum of graph Laplacian. Mathematically, it solves the generalized eigen-problem:
Lf =yDf (3.13)

where L=D-W isthe graph Laplacian and D=diag(W1) is the degree matrix with

W denoting the affinity matrix of the graph and 1 a vector of ones of appropriate size. For
a k-way partition, the bottom k& eigenvectors are computed. Clustering is performed by
applying k-means [20] or certain discretization technique [21].

To solve (3.13), one can simply treat the bipartite graph constructed above as a
general sparse graph and apply the Lanczos method [29] to W =D"WD™"* | the
normalized affinity matrix, which takes O(k(N v+ N, )3/2) running time empirically.

Alternatively, it was shown, in the literature of document clustering, that the bottom

k eigenvectors of (3.13) can be derived from the top k left and right singular vectors of
the normalized across-affinity matrix B=D,"’BD;"*, where D, =diag(B1) and

D, = diag(BTl) are the degree matrices of X and Y , respectively. This partial SVD,

done typically by an iterative process alternating between matrix-vector multiplications

Bv and B'u, is essentially equivalent to the Lanczos method on W. It does not bring
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substantial benefit on solving (3.13) and is still subject to a complexity of
O(k(Ny+N,)"7).

However, the above methods do not exploit the structure that the bipartite graph can
be unbalanced, i.e., N, #N, . In this case, N, =NY+|I | This unbalance can be
translated into the efficiency of partial SVDs without losing accuracy. One way is by
using the dual property of SVD that a left singular vector can be derived from its right
counterpart, and vice versa.

An essential equivalence between the eigen-problem (3.13) on the original bipartite

graph and the one on a much smaller graph over superpixels is revealed as follows.

Lv=AD,v, (3.14)
where L, =D,-W, , D, =diag (BTl) ,and W, =B'D}'B. Lyis exactly the Laplacian
of the graph G, ={Y,W,} because D, = diag(BTl) = diag (W, 1). It should be noted

that this analysis can be applied to spectral clustering on any bipartite graph.
The result states that the bottom £ eigenvectors of (3.13) can be obtained from the
bottom k& eigenvectors of (3.14), which can be computed efficiently given the much

smaller scale of (3.14). Formally, we have the following Theorem 1.

Theorem 1. Let {(l,vi)}; be the bottom £ eigenpairs of the eigen-problem (3.14) on

1

: _ T -1 _ 1
the superpixel graph G, _{Y,B D)(B},O_/l1 <...<4, <1. Then {(}/i,f,.)J . are the

i=

bottom k eigenpairs of the eigen-problem (1.13) on the bipartite graph G ={X .Y, B} ,

where 0<y <1, 7%(2-%)=4 , and f;Z(uiT,V,.T)T with uiz%Pvi. Here
~7

P=D,'B is the transition probability matrix from X to Y.
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By Theorem 1, computing fi from vineeds 2N,d, +2N, operations, following the

execution order

(D;(1 (Bv, )) ,where d, isthe average number of edges connected

to each node in X. So it takes 2k (1+d X)N v operations for computing f,....f, from
Vis-.sVy » plusacostof O(kNy?) for deriving v,,...,v, with the Lanczos method. The

complexity is a linear time (w.r.t. Nx ) with a small constant.

3.4.2 The Algorithm
The approach to bipartite graph partitioning is summarized in Algorithm 1, which is

called as Transfer Cuts (Tcut) since it transfers the eigen-operation from the original graph

to a smaller one. In step 5, one may employ the discretization technique which is tailored

to Ncut, or apply k-means to the rows of the matrix F=(f,,....f,) after each row is being

normalized to unit length, which is justified by stability analysis.

Algorithm 1 Transfer cuts (Tcut)

Input: A bipartite graph G ={X,Y,B} and a number k.

Output: A k-way partition of G.

Step 1

Form D, =diag(Bl) , D, =diag(B"1), W, =B'Dy'B,and L, =D,-W, .

Step 2

k

Compute the bottom k& eigenpairs {(ﬂf, v, )} 1

i=

of L,v=AD,v .

Step 3

Obtain ¥, suchthat 0<y <1 andy(2-y)=4,i=1....k
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Step 4

1
Compute f, :(uf,vf)T , with u, =1—D;BV,., i=L..,k.

Step 5

Derive k groups of X UY from f,....f, .

The segmentation procedures are listed in Algorithm 2, which is called as
Segmentation by Aggregating Superpixels(SAS). The main cost of SAS is in collecting
superpixels (step 1) and bipartite graph partitioning (step 3). The cost of step 3 is linear
in the number of pixels in the image with a small constant, and is negligible compared to
that of step 1.

Algorithm 2 Segmentation by Aggregating Superpixels (SAS)
Input: An image / and a number of segments «.

Output: A k-way partition of /.

Step 1

Collect a bag of superpixels S for /.

Step 2

Construct a bipartite graph G={X,Y,B} with X=/US ,Y=S§
Step 3

Apply Teut in Algorithm 1 to derive k group of G.

Step 4

Treat pixels from the same group as a segment.
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3.4.3 Simulation Results and Discussion

Fig. 3.7 shows the segmentation result of SAS method and other state-of-the-art
superpixel methods.

It can be seen that the algorithm still has the property of normalized cut that tends to
partition the image into regions with regular sizes. The performance of this method is

better than most of the existing segmentation algorithms, it is the main target for

comparison in this thesis.

(b) (c) (d) (e) (6 (2 (h)

Fig. 3.7 Segmentation examples on Berkeley Segmentation Database.

(a) Input images. (b) Mean Shift. (¢) FH. (d) TBES. (e) Ncut. (f) MNcut. (g) MLSS.

(h) SAS.
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35 Learning Full Pairwise Affinities for Spectral

Segmentation (ML SS)

3.5.1 About MLSS (Multi-Layer Spectral Segmentation)

In recent years, spectral segmentation has become a major trend in image
segmentation. It typically starts from local information encoded in a graph-based
representation of a given image, and partitions that image according to the global
information embedded in the spectrum of the graph affinity matrix. Kim et al. design and
use a full range affinity model in the spectral segmentation framework [18] so that they
can obtain high-quality segmentation results efficiently by using the proposed affinity

model.

3.5.2 The Algorithm

They introduce a new affinity model for spectral segmentation and then use the
relevance scores between all pairs of pixels, estimated by semisupervised learning (SSL)
[22], as affinities is proposed.

1. A multi-layer graph whose nodes consist of the over-segmented regions by MShift as
well as the pixels is first constructed. Then, the affinities between each node and other
nodes are estimated by applying the SSL strategy to this graph through assuming the
current node as labeled data and the others as unlabeled data.

2. Spectral analysis of our full affinity matrix is done efficiently. In general, performing
spectral analysis of a full large matrix requires a prohibitively expensive computation.
However, since our full affinity matrix is expressed as the inverse of a sparse matrix,

its eigen-decomposition is very efficient using the basics of matrix computation.
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3. Two types of spectral segmentation algorithms based on our affinity matrix are
constructed:
(1) K-way segmentation [1], [7], [19]:
They borrow the basic idea of Normalized Cuts [1], which associates with each pixel
a length K descriptor formed from entries of the K eigenvectors and uses a clustering
algorithm such as K-means to create a hard partition of the image.
The algorithm FNCut clusters all pixels and regions simultaneously into the K
visually coherent groups in a single multilayer framework of Normalized Cuts.
(2) Herarchical segmentation [8]:
They transform the contour signals, produced by combining contour information in
different eigenvectors, into a hierarchy regions.
The algorithm fPb-OWTUCM produces a hierarchy of regions from the contour
signals in the eigenvectors using a sequence of two transformations: the Oriented

Watershed Transform (OWT) [10] and the Ultrametric Contour Map (UCM) [23].

3.5.3 Simulation Results




(a) (b)

Fig. 3.8 Segmentation examples using MLSS.

(a) Input images. (b) MLSS.
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Chapter 4 Proposed Algorithm

We have discussed the recent trend of image segmentation and techniques of
superpixels in the chapter 2 and chapter 3. In this chapter, the proposed segmentation
algorithm will be presented.

This chapter is organized as follows. In Section 4.1, the framework of the proposed
natural image segmentation is introduced. In Section 4.2, we describe the generation of
superpixels and review the saliency detection algorithm used in our method. In Section
4.3, we propose modified edge detection and show how to get texture features from an
image. In Section 4.4, the proposed segmentation algorithm which is consisted of two
main steps, clustering superpixels according to their texture features and saliency-
oriented region merging, will be described in details. In Section 4.5, the new techniques
of our proposed algorithm will be compared with the state-of-the-art segmentation

methods.

4.1 Introduction

In superpixel-based segmentation algorithms, the main problem we want to prevent
is over-merge, which cluster the superpixels improperly. For example, parts of foreground
and background are clustered into the same region. In order to deal with this problem, we
propose modified edge detection which computes the gradient information of the contours
and the interiors of superpixels. By using the modified edge detection, our experimental
results has higher accuracy compared with other segmentation methods. The flow chart

is illustrated in Fig. 4.1 and the overview of our framework is shown in Fig. 4.2.
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Fig. 4.1 The overall flow chart of our framework.
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Fig. 4.2 The overview of our framework.
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4.2  Superpixel Generation and Saliency Detection

4.2.1 Superpixel Generation

In our case, we look for superpixel methods having the following properties:
e  Produce superpixels which have similar sizes:
If superpixels have similar sizes, they would likely to be in more regular
arrangement. For instance, every superpixel tends to have similar numbers of
neighbors, which is close to the original arrangement of pixels.
e  Short processing time:
Although we do not have to choose the fastest superpixel method, we still hope
to restrict the processing time of generating superpixels under several seconds.
In our algorithm, we use the technique of our proposed modified edge detection, so
the generated superpixels should adhere well to image boundaries. We found that the
Entropy Rate Superpixels (ERS) [16] meet our requirements and this approach is
sufficiently efficient as a pre-processing step.
ERS is simple to use and understand. By default, the only parameter of the algorithm
is N, the desired number of approximately equally sized superpixels. Here we set the
number of sulperpixels N to N= 200, because it could balance the complexity of the

proposed algorithm and the accuracy of the segmentation results.

Fig. 4.3 An example of the processed result generated by ERS superpixel method.
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4.2.2 Saliency Detection

Saliency regions are those parts of an image to which a human pays more attention,
and the task of saliency detection is to identify the most important and informative part
of a scene. Salient object detection algorithms usually generate bounding boxes, binary
foreground and background segmentation, or saliency maps.

Since the saliency map can indicate the saliency likelihood of each pixel, in our
segmentation framework, we use saliency-oriented region merging algorithm according
to saliency maps of images. We apply the saliency detection method [24] (Saliency
Detection via Graph-Based Manifold Ranking) proposed by Yang et a/, and the following
is brief introduction of this method.

There are two types of computational models for saliency detection: top-down
saliency models that use high-level features based on knowledge from the neurosciences,
biology, computer vision, and other fields, the selection of which depends on the specific
task; and bottom-up saliency models that use low-level stimulus such as intensity, color
contrast, orientation, and motion.

Most existing bottom-up methods measure the foreground saliency of a pixel or
region based on its contrast within a local context or the entire image, whereas a few
methods focus on segmenting out background regions and thereby salient objects. Instead
of considering the contrast between the salient objects and their surrounding regions,
Yang et al consider both foreground and background cues in a different way. They rank
the similarity of the image elements (pixels or regions) with foreground cues or
background cues via graph-based manifold ranking. The saliency of the image elements
is defined based on their relevances to the given seeds or queries. They represent the
image as a close-loop graph with superpixels as nodes. These nodes are ranked based on

the similarity to background and foreground queries, based on affinity matrices. Saliency
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detection is carried out in a two-stage scheme to extract background regions and
foreground salient objects efficiently. In short, they model saliency detection as a

manifold ranking problem and propose a two-stage scheme for graph labelling.

rank & inverse

Y . o .

the first stage the second stage

Fig. 4.4 Diagram of the saliency detection model.

Figure 4.4 shows the main steps of the saliency detection algorithm. In the first stage,
Yang et al exploit the boundary prior [25] by using the nodes on each side of image as
labelled background queries. From each labelled result, they compute the saliency of
nodes based on their relevances (i.e, ranking) to those queries as background labels. The
four labelled maps are then integrated to generate a saliency map. In the second stage,
they apply binary segmentation on the resulted saliency map from the first stage, and take
the labelled foreground nodes as salient queries. The saliency of each node is computed

based on its relevance to foreground queries for the final map.
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4.3 Modified Edge Detection and Texture Features

4.3.1 Modified Edge Detection

Edge detection is a very important field [26] in image processing and image
segmentation. Edges in digital images are areas with strong intensity contrasts and a jump
in intensity from one pixel to the next can create major variation in the picture quality.
For those reasons edges form the outline of an object and also indicate the boundary
between overlapping objects. As discontinuities in intensity values of an image form the
edges of objects, so it is essential to detect accurate discontinuities in intensity levels for
accurate edge detection. Such discontinuities are detected by using first- and second-
order derivatives.

With the help of first-order and second-order derivatives such discontinuities are
detected. The first-order derivative of choice in image processing is the gradient. An
image gradient is a directional change in the intensity or color in an image. Image
gradients may be used to extract information from images. The gradient of a 2-D function,

Ax,y), is defined as the vector

af
g,
sz[gjz g—jﬁ (4.1)
dy

The magnitude of this vector is

w1 =mae¥ [+ =| (V4] +(% ayﬂ; 42

This quantity is approximated sometimes by omitting the square root operation,
Vi=g +g, (4.3)

Or by using absolute values,

Vf =|gi|+|ei| (4.4)
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These approximations still behave as derivatives; that is, they are zero in areas is
contrast intensity and their values are related to the degree of intensity change in areas of
variable intensity. It is common practice to refer the magnitude of the gradient or its
approximations simply as “gradients”.

Several edge detector operators [27] are there for generating gradient images like
sobel, prewitt, laplacian and Laplacian of Gaussian (LOG). These edge detectors work
better under different conditions. In our modified edge detection algorithm, we adopt
sobel and Laplacian of Gaussian (LOG) operators to construct our gradient maps.

(1) Sobel edge detector

The sobel edge detector computes the gradient by using the discrete differences
between rows and columns of a 3X3 neighborhood. The sobel operator is based on
convolving the image with a small, separable, and integer valued filter. In below a sobel
edge detection mask is given which is used to compute the gradient in the x (vertical) and

y (horizontal) directions.

-1 -2 -1 -1 0

0 0 0 -2 0 2
2 -1 0
G G

Fig. 4.5 A sobel edge detection mask
(2) Laplacian of Gaussian edge detector

The Laplacian of Gaussian edge detector finds edges by looking for zero crossings
after filtering f(x,y) with a Laplacian of Gaussian filter. In this method, the Gaussian
filtering is combined with Laplacian to break down the image where the intensity varies
to detect the edges effectively. It finds the correct place of edges and testing wider area
around the pixel. In below a 5x5 standard Laplacian of Gaussian edge detection mask is

given.
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Fig. 4.6 A 5x5 standard Laplacian of Gaussian edge detection mask

With the gradient map of an image, each pixel in an image has its gradient value.
Here we propose the modified edge detection:
(1) Define the complexity level CL of a superpixel:

CL = Number of pixels with high gradient value in a superpixel

—— . (4.5)
Number of pixels in a superpixel

where “a pixel with high gradient value in a superpixel” means that the gradient value of
this pixel is higher than the mean gradient value of the superpixel where this pixel locates.

Note: CL(i) is the complexity level of the superpixel i.

(2) Define the edge E and the edge rate ER:
For the superpixel i, the superpixel j, and the border B(i,j) between i and j,

Number of pixels with high gradient value in B(i, j)

e B(L 1) 4.6

ge E(i, j) Nunber of pixels in B(i, /) o
.. E i’ .

edge rate ER(i, j) = CL(1)+(JL‘)L(/) D

where “a pixel with high gradient value in the border” means that the gradient value of
this pixel is higher than the mean gradient value of the border where this pixel locates.
We consider edge rate ER as our modified edge detection between adjacent

superpixels, and it will be used in our proposed clustering algorithm. (Section 4.4)
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4.3.2 Texture Features

We choose Log-Gabor Filter [28] to extract the texture feature of each superpixel.
The Log-Gabor function is an alternative to the Gabor function proposed by Field. Gabor
function represents a minimum in terms of the spread of uncertainty in space and spatial
frequency. However, its mathematical property is only pure in Cartesian coordinates
where the channels are the same size respectively in frequency and space. The relative
spread and overlap of neighboring units would be altered if changed to polar distribution.

Log-Gabor function can restore some destructive effects of such polar mapping with

f 2
loo(—
("g(fo]

2| log(Z
["g(fo)}

Thus, a very important aspect of Log-Gabor function is that its frequency response

frequency response

G(f)=exp| - (4.8)

, which is a Gaussian on log frequency axis.

is symmetric on a log axis, which is the standard method for representing the spatial-
frequency response of visual neurons. Though not the best-fitting function, Log-Gabor
function is a better model for suiting the visual system than Gabor function.

Another advantage of Log-Gabor is that its bandwidth increases with frequency,
meaning that the bandwidths are constant in octaves. As displayed in Fig. 4.7, Log-Gabor
function spreads the information equally in each channel while Gabor function

overrepresents the low frequencies.
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Fig. 4.7 Comparison of Gabor and Log-Gabor on both linear and logarithmic spatial
frequency scales.
For the consideration in the algorithm, we choose Log-Gabor functions with scale =
2 and orientation = 4 as our texture feature (eight dimensions in total). For each superpixel
i, we compute its mean texture T(i). Here we define the texture distance dT(i,j) from the
superpixel i to the superpixel j as
dT, ) =[T()~T()) (4.9)
We consider the texture distance dT as our indicative similarity between adjacent

superpixels, and it will be used in our proposed clustering algorithm. (Section 4.4)
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4.4  Proposed Segmentation Algorithm

In this section, the main steps of our proposed segmentation algorithm are

described in Stage 1 and Stage 2.

Stage 1

Clustering superpixels according to their texture features
I nput: Image |.

Output: labels L 1.

Step 1:

Segment | with selected superpixel method and store the result in S. Here we adopt ERS

superpixel method to generate superpixels. We set the number of sutperpixels N to N=200.

Fig. 4.8 Segment image with ERS superpixel method.

Step 2:
Store color values of | in CIELAB color space instead of RGB color space, each pixel

has a color vector /ab (3-dimensional: the L space, the A space and the B space).

Step 3:
Classify | into normal natural image or medical image according to the variance of the

A space and the B space in |.

Step 4:
Apply the Log-Gabor filter to | and store the response, which can measure texture

distance dT between any two superpixels which are adjacent.
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Step 5:
Apply Sobel filter and LOG filter to | and store the responses, which are our gradient
maps G1(Sobel) and G2(LOG).

Step 6:
(D
Use G1 to compute the complexity level CL of each superpixel, and then use G1 in
normal case or G2 in shadow-detected case to measure the edge E between any two
superpixels which are adjacent.
(2)
For any two superpixels(the superpixel i and the superpixel j) which are adjacent and the
border B(i,j) between i and j, we use our proposed modified edge detection in Eq. (4.7)
to measure edge rate between i and |

ERG, /)= CL(i(:é)L( 7
where E(i,j) denotes the edge E between i and j; CL(i) denotes the complexity level CL
of the superpixel i.
(We have defined the complexity level CL and the edge E in Eq. (4.5) and Eq. (4.6))

Step 7:
Compute the number of the segments N1 in |. (Before clustering)
for each superpixel i in Sdo
for the superpixel j which is an adjacent superpixel of i do
if ER(i,j) <50% then
measure the texture distance dT(i,j) in Eq. (4.9) between i and |
dr (i, /) =|T@)-T())|
where T(i) denotes the mean texture of'i.
end if
end for
Cluster i and one of its adjacent superpixels, which has the minimum texture distance
to .
end for

Compute the number of the segments N2 in |. (After clustering)
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If N1-N2>0 then return to Step 7.

Step 8:
Each cluster of superpixels from step 6 will be labeled, and outputs labels L 1.

Fig. 4.9 The segmentation result from Stage 1.
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Stage 2

Saliency-oriented region merging

Input: Image |, labels L 1.
Output: labels L 2.
Step 1:

Use | to construct the saliency map SM.

( Saliency Detection via Graph-Based Manifold Ranking in Section 4.2.2)

Fig. 4.10 The saliency map of an image.

Step 2:
According to the saliency map, compute the mean saliency value in each region which

has the same label, and that mean value will represent the saliency value of the region.

Step 3:
Cluster regions with high saliency values by using the “revised edge rate”.

(“High” saliency value means that the value is higher than the mean value of SM.)

Step 4:
Cluster regions with low saliency values by using the “revised edge rate”.

(“Low” saliency value means that the value is lower than the mean value of SM.)

(The revised edge rate will be described in the next section.)

Step 5:
Combine the Step3 and the Step4, and then output labels L2, which is our final natural

image segmentation result.
56



Fig. 4.11 The segmentation result from Stage 2.
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4.5 Analysisof Our Algorithm

Compared to state-of-the-art methods [1], [2], [4], [17], and [18], we summarize the

advantages and the uniqueness of our algorithm.

A. Superpixel-based segmentation algorithms:

Because there are significantly fewer superpixels than pixels, the computational
complexity of the proposed algorithm is much lower than that of algorithms not
based on superpixels. In addition, the superpixel method [16] we employ in our
framework can preserve the object boundary effectively and prevent local noise from
interfering with the segmentation result. Therefore, the proposed algorithm provides

better segmentation results than algorithms not based on superpixels.

B. Image Classification

Users may need to segment medical images such as MRI(magnetic resonance
imaging)s, CT(computed tomography) scans, and PET(positron emission
tomography) scans. For this purpose, we classify input images before executing our
main algorithm. In our framework, each image will first be stored in CIELAB color
space; we then measure the variance of the A space and B space in the images. If the
variance of the A space and B space in the image is lower than 5, which indicates
the image is almost in black-and-white, it would be considered a medical image.
Medical images typically do not contain the colors found in normal, natural images,
owing to processing that occurs after MRIs, CT scans, and PET scans are obtained.
When our classification system classifies an image as a medical image, the main

segmentation algorithm focuses on the image’s light variations.
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Modified Edge Detection:

Other superpixel-based algorithms consider all superpixel information, such as
color and lightness. In our modified edge detection algorithm, we focus on
information related the “border” between superpixels. First, for any two adjacent
superpixels, we compute the gradient values on the border between them, and find
the edge E in Eq. (4.6). We then define the edge rate ER in Eq. (4.7) as the threshold
required by the algorithm that merges two adjacent superpixels. When the edge rate
is lower than 50%, we will merge two adjacent superpixels if the texture distance
between them is small (the texture distance should be smaller than 0.25). When the
edge rate is higher than 50%, we will not merge the superpixels, even if the texture
distance between them is small.

We also define the complexity level CL of each superpixel in Eq. (4.5); it
decides the edge rate ER. When the sum of the complexity levels of two adjacent
superpixels is relatively high, the edge rate of the superpixels will be relatively low,
which allows them to merge easily. For example, the superpixels generated from
grass or animal fur have a high complexity level; therefore, the edge rate between
them will be low, which allows them to merge easily. We can state that our modified
edge detection algorithm has more perceptual meaning than other region-merging
methods, because we consider the borders between superpixels and the complexity

in superpixels simultaneously.
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EG,)j) _ 074
CL(i)+CL(j) 0.85+0.71

edge rate ER(i, j) = =047<0.5

Fig. 4.12 An example of merging two superpixels with high complexity levels.

EG,j) _ 042

edge rate ER(i, j) = =0.69>0.5

CL(i)+CL(j) 0.23+0.38

Fig. 4.13 Due to two superpixels with low complexity levels, the proposed algorithm

would not merge them.
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Clustering superpixels according to their texture features:

Spectral clustering algorithms have proved to be more effective at finding
clusters than some traditional algorithms such as k-means, and they have been
utilized in many segmentation algorithms. However, spectral clustering algorithms
may break a large homogeneous region into smaller segments. To solve this problem,
in our framework, we cluster superpixels according to their texture features instead
of using spectral clustering algorithms, because large homogeneous regions will
have nearly the same texture features. Furthermore, our proposed texture-based
clustering algorithm can prevent overmerging between the foreground and
background, because foreground texture features and background texture features

typically have significant differences.

Recording merge times

After clustering superpixels in Stage 1, we record the merge times of each
region; the recording method steps are as follows.
Step 1.

Record the central coordinate of each superpixel generated by the ERS
superpixel method during the first step of Stage 1.

Step 2:

After clustering superpixels in Stage 1, the image is segmented into regions;
we then count the central coordinates in each region. These counting results
determine the regions’ merge times.

If the merge times of a region is less than two times and the average saliency
value of the region is small, we would merge this region to its adjacent region,

because it might be noise from the background of the image.
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Shadow Detection

Shading and highlights caused by uneven illumination can trigger image
measurement problems. These phenomena may cause an object and its shadow to be
segmented into different regions.

We found that the main differences between an object and the shadows in a
portion of the object are as follows:

1. When we observe the object and its shadow in the CIELAB color space,
they have a large variance in the L space but little variance in the A space
and B space. In other words, their illumination levels vary significantly but
their color is nearly the same.

2. In general, the texture features in the object and its shadow should be very
close, because the shadow represents a portion of the object. In our
framework, we adopt Log-Gabor functions to measure texture distance in
Eq. (4.9), and the results demonstrate that the texture distance between the
object and its shadow is close to zero. That is to say, their texture features
are very similar.

If any two adjacent superpixels meet the aforementioned conditions (large
differences in lightness, nearly the same color, and similar texture features), we use
a LOG filter to measure the edge E between them in Eq. (4.6). Because LOG filters
are based on second-order derivatives, the gradient values on the border between
adjacent superpixels will be small, because the difference in illumination between
the object and its shadow is analogous to a step. Because of the small gradient values
on the border, the edge rate ER in Eq. (4.7) will also be small, which allows the

adjacent superpixels to be clustered more easily.
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Briefly speaking, our shadow detection algorithm uses CIELAB color space
and texture features to detect shadows, and then measures the gradient values on the
border using a LOG filter; this causes a significant reduction in the edge rate,

allowing the object and its shadow to be segmented into the same region.

Saliency-oriented region merging

To make our segmentation result more perceptual, we propose saliency-
oriented region merging to cluster the superpixel regions into specific areas. In each
superpixel region, we average the pixel saliency values to obtain the region saliency,
which ensures that each superpixel region shares the same saliency value. We then
merge the regions that have high and low saliency values, because the regions with
high and low saliency values usually represent the foreground and background in an
image; moreover, the regions in the foreground and background should be labeled
into the same area respectively.

Unlike Stage 1, the proposed saliency-oriented region merging algorithm uses
the “revised edge rate” to cluster regions. For any two adjacent regions, the revised
edge rate can be obtained from the following table.

Table 4.1 The revised edge rate in Stage 2.

saliency values > 225 Revised ER=FER /1.9
200 < saliency values <225 | Revised ER=ER /1.5
50 < saliency values <200 Revised ER = ER
10 < saliency values <50 | Revised ER=ER/1.5
saliency values < 10 Revised ER=ER /1.9
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According to the Table 4.1, when the saliency values for any two adjacent
regions are relatively high or relatively low, the revised edge rate between them will
be lower. For example, if we find two regions with very high saliency values, we
should merge them together because these two regions might be the foreground, and
the lower revised edge rate would allow them be merged more easily. This is the

reason we adopt the revised edge rate instead of the edge rate in Stage 2.
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Chapter 5 Simulations

51 Compared with the state-of-the-art methods

5.1.1 Database




(u) ) W)

@

Fig. 5.1 Our image database
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Among the test images used, some images are taken from the Berkeley Segmentation
Database and the Microsoft Research Cambridge object recognition database, and some
images are from classic images in the field of image processing, and the others are
collected online and include natural scenery images, astronomical images, and biomedical
images.

The sources of the test images are as follows:

(a)~(k): From the Berkeley Segmentation Database.
(I)~(n): Common images for image processing.
(0): From the Microsoft Research Cambridge object recognition database.

(p): From http://web.shs.kyushu-u.ac.jp/~arimura/research-1/pg57.html

(q): From http://hk.apple.nextmedia.com/realtime/international/20120731/51026523

(r): From http://www.ppdl.purdue.edu/ppdl/weeklypics/Weekly Picture6-25-01-1.html

(s): From http://www.zhibeifw.com/fjgc/zbfy_list.php?id=7462

(t): From http://utome.asia/pin/12997/

(u): From http://okgo.tw/butyview.html?id=2897

(v): From http://www.indonetwork.co.id/ud_barokah co/1196034

(w): From http://acea.nmns.edu.tw/x_games/ap0817.html

(x): From http://www.hopemap.net/HopeDetail.php?hid=116

(y): From http://blog.xuite.net/rita5031/blog
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5.1.2 Visual Comparison

We use Watershed [6], Fast Scanning, Unseeded Region Growing [11], K-means
[20], Mean Shift [4], Normalized Cut [1], MLSS [18], and SAS [17] for the visual

comparison shown in Fig. 5.2.

i i e d e et

Original Image Waterghed Fast Scanning Unseeded Region Growing K -meany
| Mean Shift Meamalized Cut MLSS SAS Oury
(2)
W %
|
Original Image Waterahed Fasl Scanning Unseeded Region Growing K-meana
_—

e

Mean Shih Normalized Cut

Watershed Unsteded Region Growing

Mean Shill Normalized Cut

Watershed Fagl Scanning Unaeeded Region Growing

Ourx

Mean Shift Normalized Cut MLSS

(d)

68



Unzeeded Region Growing

Unseeded Region Growing

Crigianal Image Watershed Fazl Scanning Ungeeded Region Growing K -meant

Mean Shift Nommnalized Cut I(I ss

Fast Scanning

Mean Shift Normalized Cut MLSS SAS Ours

(h)

Ourx

Origianal Image Watershed Unseeded Region Growing K-means




Origianal Image Watershed Fast Scanning Unseeded Region Growing

Mean Shift Normalized Cut SAS Ours

Origianal Image Watershed Fast Scanning Unseeded Region Growing K-means

Mean Shift Normalized Cut

Fasl Scanning

Mean Shift Normalized Cm MLSS

(k)

70



Unseeded kegion Growing

e

Mean Shift Nosmalized Cut

Watershed Fast Scanning Unseeded Region Ciowing K means

Fasl Scanning

r—— — u
MLSE Oury

(n)

Hormalized Cut

Walershed

Original lmage Unseeded Region Growing K-means

Mean Shill Normalized Cut A5 Ours

Fast Scanning K -means

Mean Shift Normalized Cut ML5S

71 (p)



Unsteded Regioa Giowing K -means

Mean Shift Nosmalued Cut MLSS SAS Ours

(@

Fast Scanning Unseeded le|n Lao-|

Mean Shift Meamalized Cup uLsE SAS

(1)

Chiginal (ma

Fagl Scanning

Ungecded le||.l Gomi!
Mean Shill HNormalized Cat MLES SAS Ours

(s)

72



Mean Shift

Original Image Unseeded Region Growing E-means

(‘M I ‘ H

Original Image Watershed Fazl Scanning Ungeeded Region Growing K -means

SAS Ours

Mean Shift Normalized Cut ML5S

Fast Scanning K -means

Osiginal Im:

Mean Shift Mormalized Cut MLSS SAS Ourg

(W)

73



Fuxl Seanning

Mean Shift Normalized Cut MLSS

(%)

Ourx

Fast Scanning K-means

Mean Shift Normalized Cut MLSS SAS Ours

)

Fig. 5.2 The visual comparison between our proposed method and the other state-of-the-
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art methods.
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We select many different image segmentation algorithms and compare them with the
proposed method. These algorithms include time-honored but classical segmentation
algorithms (such as watershed and unseeded region growing), and algorithms that have
been commonly used for image segmentation over the last ten years (such as k-means,
mean shift, and normalized cut). Finally, we also compare the proposed algorithm with
segmentation algorithms (such as MLSS and SAS) that have been shown to deliver
excellent performance over the last few years (Note that the number of regions to be
segmented must be set for MLSS and SAS. In the comparison figures in Fig. 5.2, this

parameter is set to 20.).

From Fig. 5.2, we can infer that for any natural image, the proposed natural image
segmentation algorithm performs better than most of the other segmentation algorithms.
The following are the advantages of the proposed method for image segmentation over

the other methods:

1. By selecting different edge detectors according to specific conditions, the proposed
method effectively solves the over-segmentation problem due to the shadow of the
objects and the difference in the brightness of the objects. The results are shown in

Figs. 5.2 (a) and (u).

2. Even if the foreground and the background in an image have an unclear boundary or
similar color, the proposed method can completely segment the foreground from the
background because the proposed method focuses particularly on boundary

information. The results are shown in Figs. 5.2 (b), (f), (s), and (u).
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3. Early segmentation methods normally fail to properly process complicated textures
in images, such as animal fur, grassland, and ocean waves, and cause the over-
segmentation problem. The proposed method takes image complexity into account so
as to gain significant improvement. The results are shown in Figs. 5.2 (¢), (g), (k),

(m), (n), and (v).

4. The sensory system of the human eyes segments excessively disordered or unclear
backgrounds into the same region. The proposed method is integrated with saliency
detection to detect the background regions in the image and merges these regions

together. The results are shown in Figs. 5.2 (d), (f), and (1).

5. The proposed method can be used for processing various types of images. For
example, Fig. 5.2 (w) represents biomedical images, (x) represents astronomical
images, and (y) represents satellite cloud images. Further, the proposed method can

obtain excellent segmentation results for different types of images.
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52 Compared with the ML SS method and the SAS method

Since the MLSS method and the SAS method have better performance in image
segmentation nowadays, we will focus on comparing our algorithm with them in
parameter adjustment.

Both of the MLSS method and the SAS method need the parameter K, which decides
the final number of regions in an image. For example, we adopt the MLSS method with
parameter K and K = 5, therefore the image will be segmented into five regions. Fig. 5.3
and Fig. 5.4 show that the segmentation result of the MLSS method and the SAS method

with parameter K =5, K= 10, K= 15, and K = 20.
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Input Image

The MLSS method with K=35

The MLSS method with K=10

The MLSS method with K=15

The MLSS method with K= 20

Our method !



The MLSS method with K=35

The MLSS method with K= 10

The MLSS method with K= 15




The MLSS method with K =20

Our method

Fig. 5.3 Compare our segmentation method with the MLSS method.
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Input Image

The SAS method with =35

The SAS method with K= 15

The SAS method with K= 20

Our method



The SAS method with K=35

The SAS method with K=10

The SAS method with K=15



The SAS method with K= 20

Our method

Fig. 5.4 Compare our segmentation method with the SAS method.

From Fig. 5.3 and Fig. 5.4, we can observe that

1. For the MLSS method and the SAS method, parameter K plays an important role in
the performance of segmentation result.

2. For each different kind of natural image, when we adopt the MLSS method or the
SAS method, we should choose an appropriate parameter K to make the segmentation

result perform well.

Compared with the MLSS method and the SAS method, our proposed method do not

need any parameter adjustment and perform more accurately in natural image

segmentation.
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Chapter 6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we provide an overview of some important works of image
segmentation and superpixel-based segmentation algorithms in recent years.

We propose a natural image segmentation framework with highly accurate
performance and without any parameter adjustment. Our framework is based on ERS
superpixels, modified edge detection, Log-Gabor texture clustering and saliency-oriented
region merging. Constructing the graph representation using ERS superpixel makes our
algorithm become efficient. Moreover, the borders of ERS superpixels match the true
edges of the objects very well. In our stage 1, Clustering superpixels according to their
texture features applying Log-Gabor filter and the proposed modified edge detection
which combines the Sobel filter and LOG filter make the segmentation result more
accurate. In our stage 2, we use saliency detection to merge regions in the foreground and
background, which would match human perception much more.

The simulations on the database of natural images show that the proposed algorithm
outperforms the state-of-the-art segmentation methods because of its parameterless

adjustment and highly accurate segmentation result.
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6.2 FutureWork

1. Efficiency

Because of a lot of calculation based on loops, we could further speed up the program
by implementing the code fully by C++. (We implement the code by MATLAB now.)
Additionally, since we apply the same measure (gradient values and texture features) to
all superpixels, the process can be implemented in parallel computing.

2. Specular-free image

Although we propose an algorithm to solve over-segmentation due to shadow problem,
there are some challenges of image segmentation caused by illumination, such as
highlights or specular reflections.

In image segmentation, the areas with highlights or specular reflections might be
segmented to a lot of single regions, which is not perceptual, because highlights or
specular reflections are still the portions of an object. Specular-free image is a concept
first proposed by Tan et a/ [30], and they want to remove the specular reflections in the
images. Therefore, if we can adopt the concept of specular-free image to remove the
specular reflections in the input images, the segmentation results might be more

perceptual.

() (b)
Fig. 6.1 (a) Original image. (b) Specular-free image.
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