
國立臺灣大學電機資訊學院電機工程學系

碩士論文

Department of Electrical Engineering
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

圖的接觸表示法

Contact Representations of Graphs

張以潤

Yi-Jun Chang

指導教授：顏嗣鈞博士

Advisor: Hsu-Chun Yen, Ph.D.

中華民國 104年 6月
June, 2015

ठ謝

此篇論文記述了我大學四年級以來至今一部分的研究成果，其中

部分內容是基於發表於 GD'13、COCOA'14、及 WADS'15的三篇會
議論文。本論文之所以能夠完成，首要感謝顏嗣鈞老師的指導。最

初顏老師讓我看的兩篇關於 rectilinear duals的文章開啟了我對這個
議題的興趣，也進而造就了這一系列的研究成果。在這過程中，除

了研究上的討論與指導，顏老師也給我研究助理津貼及參加會議的

旅費，並讓我很自由地抉擇研究的方向。

我亦得感謝作為口試委員的許聞廉老師、呂學一老師、于天立老

師和陳和麟老師。老師們在口試過程中提供了許多建議與指導，讓

本篇論文更加完備。此外，我要特別感謝許聞廉老師以及張震華老

師，他們充實的圖論課程讓我培養出扎實的基礎能力。如果沒有這

些課程的練習，我的研究可能不會那麼順利。我也要特別感謝于天

立老師，因為是于老師的計算機概論課程啟發了我對於計算機科學

（特別是演算法方面）的興趣。

學術研究領域以外，我想感謝我在其他圈子的朋友及同好，你們

的存在讓我在做研究之餘也能過著充實且有趣的生活。我也必須感

謝我的家人多年來對我的關愛、支持、自由與包容。

最後，感謝正在閱讀這篇論文的你。希望此篇論文能傳達出我對

於研究的熱誠以及這領域的有趣之處。祝你閱讀愉快！

ii

中文ᄔ要

圖 (graph)是個常見的數學模型，能描述各種複雜的科學和工程
問題。圖形繪製 (Graph drawing)是將一個圖表示在二維或三維空間
的過程，讓圖的結構以易於理解的方式呈現出來。由於這議題的重

要性，圖形繪製已成為計算機科學中一個快速成長的新興領域。

在眾多圖形繪製的問題中，圖的接觸表示法 (contact representa-
tions of graphs)在近年來受到的關注不斷提升。給定一個圖，它的接
觸表示法即是將圖中的各個節點對應到二維或三維空間的幾何物件，

其中任兩個節點在圖上相鄰若且唯若他們對應的物件互相接觸。

在許多接觸表示法中，rectilinear dual是一個經典的繪製風格，能
應用於大型積體電路的布圖規劃。在該繪製風格中，圖中的各個節

點用正交多邊形來表示，多邊形的相鄰對應於節點在圖中的相鄰關

係，並且所有的多邊形合起來恰好成為一個長方形。

在本論文的前半，我們探討如何在多邊形形狀被限制的情形下設

計 rectilinear dual。因凸形 (convex shapes)傾向比非凸形來得好看且
單純，我們提出並探討一個新的圖形繪製風格 - orthogonally convex
drawing，研究如何設計 rectilinear dual的演算法使得其中的幾何物件
皆為正交凸多邊形 (orthogonally convex polygons)。另外，為了瞭解
各形狀在繪製 rectilinear dual中的功用與限制，我們探討可用形狀被
限制下的 rectilinear dual。我們算出 ⊤-free rectilinear dual的多邊形複
雜度，驗證了 ⊤形是最有用的八邊形之直覺。
在本論文的後半，我們探討如何將 rectilinear dual延伸及推廣到

二維正交以外的情境上。為了容納凸多邊形 (convex polygons)，我們
提出並探討一個新的圖形繪製風格 - convex polygonal dual。針對這
項繪製風格，我們提出一些新的技術及 fixed-parameter tractability的
結果。為了容納正交多面體 (orthogonal polyhedra)，我們提出並探討
一個新的圖形繪製風格 - 3D floorplan。我們證明了所有 chordal graph
都能畫成 3D-floorplan。我們的畫法不但只需用到兩層，也能夠實現
任意對其中多面體指定的體積。

總體來說，在圖的接觸表示法之框架下，本論文提供了許多新的

技術及觀點。希望這篇論文指引出的研究方向能讓我們對這個充滿

挑戰性的領域有更全面的認識。

關鍵詞: 圖形繪製,接觸表示法,平面圖,示意地圖,平面規劃

iii

Abstract

Graph represents one of the most popular abstract models in describing

complex science and engineering problems. Graph drawing refers to the

process of displaying an abstract graph in 2D or 3D, allowing the struc-

ture as well as the meaning of the graph to be understood better and easier.

As a consequence, the design of graph drawing algorithms has become an

emerging and fast growing research area in computer science.

Among problems of interest in the graph drawing community, the topic

of contact representations of graphs has received increasing attention over

the years. Given a graph, a contact representation of the graph is to map

each vertex of the graph to a geometric object in 2D or 3D so that two

vertices are adjacent iff their corresponding objects "touch".

A rectilinear dual, a classic drawing style which has found applications

in VLSI floor-planning, requires that each vertex be drawn as a rectilinear

polygon, adjacency in a graph correspond to side-contact in the drawing,

and all rectilinear polygons together form a partition of a rectangle.

In the first half of the thesis, we investigate a variety of shape con-

straints in rectilinear duals. As convex objects tend to be visually more

pleasing, the drawing style orthogonally convex drawing is proposed and

investigated. In addition, we study rectilinear duals using a restricted set

of shapes, in order to understand the power and the limitation of different

shapes in rectilinear duals. We determine the optimal polygonal complexity

of ⊤-free rectilinear dual, justifying the intuition that ⊤-shape is the most

useful 8-sided polygon.

iv

In the second half of the thesis, we study possible extensions and gen-

eralizations of rectilinear duals beyond the 2D rectilinear setting. To ac-

commodate convex polygons, the drawing style convex polygonal dual is

proposed and investigated. We demonstrate several new techniques and

fixed-parameter tractability results to deal with this drawing style. We also

propose and investigate a new drawing style called 3D floorplan, using

rectilinear polyhedra as building blocks. We show that every chordal graph

admits a 3D-floorplan which uses only two layers and is also capable of

realizing any volume-assignment to its constituent polyhedra.

In summary, the thesis provides a variety of new techniques and new

perspectives within the framework of contact representations of graphs. We

hope that this study could lead to a better understanding of contact graph

representations - an exciting and challenging topic in graph drawing.

Keywords: graph drawing, contact representation, planar graph, cartogram,

floorplan

v

Contents

口試委員會ቩ定ਜ i

ठ謝 ii

中文ᄔ要 iii

Abstract iv

Contents vi

List of Figures ix

1 Introduction 1

2 Preliminaries 7

2.1 Graph Theoretic Preliminaries . 7

2.2 Tree-width and Chordal Graphs . 9

2.3 Rectilinear Polygons . 11

2.4 Separation Trees . 13

2.5 Sliceability and Area-universality . 16

2.6 Other Topics . 19

3 Orthogonally Convex Drawings 21

3.1 Related Works . 23

3.2 Terminologies . 24

3.3 Review of the Results of Rahman and Nishizeki 25

3.4 No-bend Orthogonally Convex Drawings 27

3.5 An Alternative Condition . 31

3.6 Flow Formulation for Bend-minimization 40

vi

3.7 Orthogonal Convexity in Rectilinear Duals 47

4 Rectilinear Duals without T-shape 56

4.1 Related Works . 57

4.2 Lower Bound of Polygonal Complexity 58

4.3 Construction of 12-sided ⊤-free Rectilinear Duals 60

4.3.1 Un-contracting a Separating Triangle 60

4.3.2 Transferring Concave Corners 64

4.4 Area-universal Drawings . 67

4.5 More about Staircase Polygons . 69

5 Convex Polygonal Duals 73

5.1 Related Works . 74

5.2 Terminologies . 74

5.3 Characterizing t-sided Convex Polygonal Duals 76

5.4 Proof of Theorem 5.2 . 80

5.5 Fixed-parameter Tractability Results 88

5.6 Exact Definition of the Formula t-VൺඅංൽFAA 92

5.6.1 t-FAA . 93

5.6.2 t-VൺඅංൽFAA . 94

5.6.3 Remaining Formulas . 96

5.7 Further Applications of Our Technique 100

6 Area-universal Drawings of Biconnected Outerplane Graphs 104

6.1 Terminologies . 104

6.2 Drawing Biconnected Outerplane Graphs 105

7 3D Floorplans 112

7.1 Related Works . 112

7.2 The Drawing Algorithm . 113

vii

8 Conclusion and Future Perspectives 121

Bibliography 126

viii

List of Figures

1.1 Examples of drawing styles . 3

1.2 Realization of different area-assignments. 3

2.1 I-shape, �-shape, ⊤-shape and Z-shape polygons 11

2.2 Examples of rectilinear polygons. 12

2.3 A non-rotated ⊤-shape rectilinear dual. 13

2.4 A separation tree. 14

2.5 Rectangular duals. 15

2.6 Illustration of inserting sub-drawing. 15

2.7 Construction of a rectilinear dual. 16

2.8 A rectilinear dual constructed by monotone staircase cuts. 17

2.9 Sliceability and one-sidedness in triangle contact representations. 19

2.10 The 5-cycle graph and its triangle contact representations. 20

3.1 Illustration of some terms about cycles and paths. 24

3.2 Illustration of the proof of Lemma 3.1. 27

3.3 Case 1: The drawing w.r.t. a 3-legged cycle Ci. 30

3.4 Case 2: The drawing w.r.t. a 2-legged cycle Ci with vi a non-corner

2-vertex. 30

3.5 Case 3: The drawing w.r.t. a 2-legged cycle Ci with vi a corner 2-vertex. 31

3.6 Proper and improper 2-legged cycles. 32

3.7 Critical paths and SG in a plane graph. 36

3.8 An example for Corollary 3.2. 39

3.9 Bend-minimized orthogonal drawings and bend-minimized orthogonally

convex drawings. 40

3.10 Illustration of the flow network NG. 42

3.11 Illustration of the proof of Lemma 3.4. 43

ix

3.12 Illustration of the construction of N ′
G. 46

3.13 An example of a Q-floorplan. 47

3.14 The construction of Gprimal and the block-cutvertex tree of Gdual. . . . 49

3.15 Illustration of the proof of Lemma 3.6. 51

3.16 Key concepts in Q-floorplanning. 54

4.1 Definition of H0 and illustration of the proof of Lemma 4.1. 59

4.2 Location ofu, v, w in the rectangular space for separating triangle {x, y, z}. 62

4.3 Illustration of un-contracting Type 1 triangles. 64

4.4 Illustration of un-contracting Type 2 triangles. 65

4.5 Illustration of transferring concave corners. 66

4.6 Illustration of concepts in Section 4.4. 67

4.7 Illustration of the proof of Theorem 4.6. 71

4.8 Illustration of the proof of Theorem 4.7. 72

5.1 Illustration of concepts introduced in Section 5.3. 77

5.2 Concepts in Section 5.3. 79

5.3 Illustration of inclusion of a new segment into a set of pseudo segments. 83

5.4 Illustration of finding S̃. 83

5.5 Illustration of relating extremal points to free vertices. 85

5.6 Illustration of proof of Lemma 5.2. 86

5.7 Illustration of the proof of Theorem 5.5. 92

5.8 Illustration of the proof of Theorem 5.6. 102

5.9 Illustration of the proof for Theorem 5.8. 103

6.1 A graph G and its convex polygonal dual. 105

6.2 The construction of an area-universal t-T4R. 107

6.3 Illustration of Procedures 1 and 2. 108

6.4 Applying Pඋඈർൾൽඎඋൾ 1 to the subtree rooted at c in Fig.6.2(2). 110

7.1 A chordal graph G and trees T1 and T2. 113

x

7.2 Illustration of a 3D floorplan. 115

7.3 Illustration of the removal operation 117

7.4 Illustration of the insertion operation 117

7.5 Illustration of the operation that changes the outer module 117

7.6 Illustration of the merging operation 118

7.7 Illustration of the simplified operations for interval graphs 119

xi

Chapter 1

Introduction

A graph is a mathematical structure which contains a collection of nodes and their

pairwise relations. It not only has been a prime topic of study in discretemathematics for

years, but is also a natural model capturing lots of concepts and structures in computer

science and electrical engineering. For instance, computer networks, social networks,

circuits, and transportation routes can be modeled as graphs.

One very crucial aspect in the study of graphs is their drawings. From a practical

point of view, we are frequently asked to find the best drawing of some graph occurring

in real-world applications. In the floor-planning phase of the VLSI design, it is critical

to find a drawing of the underlying circuit that uses a small chip area while meeting

several constraints [45]; for a city having a complicated metro system, it is important to

have a nicely drawn metro map that can be read and understood easily [39].

From a theoretical point of view, the investigation of various geometric represen-

tations of graphs has led to profound impacts and consequences in graph theory and

algorithms. On the one hand, geometry representations have inspired the introduction

of some graph classes, like planar graphs and chordal graphs, among others. As they fa-

cilitate the combination of graph theoretical and discrete geometric techniques, studying

various concepts related to these graph classes has led to the birth of several successful

branches in graph theory, like geometric graph theory and graph minor theory. On the

other hand, the study of possible geometric representations of a graph class can deepen

our understanding of the structures and properties of the graph class.

Basically, drawing a graph consists of three components: an input graph, a drawing

style, and a quality measure. The goal of graph drawing is to search for an optimal

drawing of the input graph meeting the required drawing style, where the optimality is

1

with respect to the designated quality measure. In many occasions, we require the input

graph to be planar, as crossings are not allowed in many drawing styles.

In this thesis, we focus on one particular class of drawing styles called contact rep-

resentations, where all vertices are represented by interior-disjoint geometric objects

such that the adjacency relations correspond to contacts between objects. The study of

contact representations can be traced back to the following well-known circle packing

theorem [29]:

Every planar graph can be drawn as touching circles in the plane.

Following the above celebrated result, a variety of contact representations have been

proposed and investigated over the years. Among them, the drawing style rectilinear

dual has received quite a lot of research efforts in the past two decades:

A rectilinear dual is a contact representation of a graph in which each vertex corre-

sponds to a rectilinear polygon, adjacency in the graph corresponds to side-contact in

the drawing, and all rectilinear polygons together form a partition of a rectangle. The

definition of rectilinear duals is largely motivated by the floor-planning in VLSI design.

As a result, it has not only attracted researchers in the graph drawing community [3, 4]

but has also received extensive investigation in the VLSI design community [45].

Two important quality measures for designing rectilinear duals are the following:

• Polygonal complexity: the polygonal complexity of a rectilinear dual is defined

as the maximum number of sides of polygons involved in the rectilinear dual.

• Area-universality: a rectilinear dual of a graph G is called area-universal iff it

can realize any area-assignment f : V (G) → R>0 in the sense that the polygon

corresponding to vertex v has area f(v), v ∈ V (G).

The study of area-universal drawings is motivated by the need to visualize weighted

graphs. For example, a cartogram where the area of each country is scaled to its pop-

ulation size is used to visualize the population of all countries in the world. Area-

universality allows the visualization of any possible weight functions, and hence the

2

comparison of different weight functions (such as the change in population over a time

period) can be visualized clearly.

A rectilinear dual can be somewhat perceived as the "dual" version of an orthogonal

drawing, which is a planar drawing such that each edge is composed of a sequence of

horizontal and vertical line segments with no crossings. The interplay between rectilin-

ear duals and orthogonal drawings turns out to be rather useful in developing various

drawing techniques, as our subsequent discussion reveals.

(1) (2) (3)

(1) (2)

(4)

A A

B B

C C

D D

Figure 1.1: Examples of drawing styles

Consider a planar graphG (drawn as a straight line drawing) in Fig. 1.1(1). Fig. 1.1(2)

is a contact representation of G using touching circles. A rectilinear dual of G with its

polygonal complexity being 6 is displayed in Fig. 1.1(3). Fig. 1.1(4) shows an orthog-

onal drawing of G. The duality between Fig. 1.1(3) and Fig. 1.1(4) is easy to see by

relating the four rectilinear regions of Fig. 1.1(3) to the four nodes in Fig. 1.1(4).

(1) (2) (3)

(1) (2)

(4)

A A

B B

C C

D D

Figure 1.2: Realization of different area-assignments.

The rectilinear dual depicted in Fig. 1.1(3) is actually area-universal. See Fig. 1.2

for its realizations of two different area-assignments: (A← 8, B ← 3, C ← 4, D ← 1)

and (A← 8, B ← 4, C ← 2, D ← 2).

3

Following a series of recent results, an algorithm for constructing area-universal rec-

tilinear duals with polygonal complexity of 8 for maximal plane graphs was proposed

in [4]. This result is tight in the sense that there exists a maximal plane graph that has

polygonal complexity of at least 8 in any of its rectilinear duals. Even with such match-

ing lower and upper bounds in polygonal complexity, many interesting issues regarding

rectilinear duals of plane graphs remain unanswered or unexplored. Specifically, in the

thesis, we initiate the following two lines of research directions:

1. Imposing geometric constraints on polygons in rectilinear duals.

Most of the previous research on rectilinear duals have been focusing on the num-

ber of sides of individual rectilinear polygons. Few results are available for tack-

ling geometrical constraints such as orthogonal convexity or shape constraints.

To move a step further along this line of research, the following problem is inves-

tigated in this thesis:

Question 1.1. Given a set of available shapes and an input graph, is it possible

to design an efficient algorithm to find a rectilinear dual using only polygons of

the available shapes, if it exists?

2. Extending rectilinear duals to more general settings.

In real life, it is not uncommon to encounter objects displayed as polygons which

are not necessarily rectilinear. However, in contrast to the well-studied rectilinear

duals, only a scarcity of results and methods are available for tackling cases for

polygons that are not necessarily rectilinear. Also, motivated by the emergence

of three-dimensional integrated circuits (3D ICs), the study of floor-planning in

3D should be of great interest. In light of the above, we are also concerned with

the following problem in the thesis:

Question 1.2. Is it possible to design efficient algorithms to construct good floor-

plans using convex polygons or 3D rectilinear polyhedra, where the quality mea-

sures are area-universality and polygonal complexity?

4

Organization of the thesis:

Chapter 2 includes basic definitions, notations and facts that will be used throughout

this thesis. We also briefly survey some existing results related to our work.

Chapters 3 and 4 are devoted to the first research direction (Question 1.1).

In Chapter 3, we focus on orthogonal convexity in rectilinear duals. A clean condi-

tion for the existence of a rectilinear dual using orthogonally convex polygons subject to

a given orthogonally convex boundary constraint is presented. Our new finding relies on

the establishment of a close connection between the "dual" setting (i.e.,, the rectilinear

dual) and its "primal" version (i.e., the orthogonal drawing) in the study of orthogonal

convexity. We propose the drawing style orthogonally convex drawing which serves as

the orthogonal analogue of the convex drawing. To our best knowledge, our effort here

is the first time that orthogonal convexity is studied in rectilinear duals and orthogonal

drawings. Part of this chapter has appeared in [9].

Motivated by an observation that most algorithms yielding rectilinear duals of low

polygonal complexity require the use of ⊤-shape polygons or their extensions, our aim

in Chapter 4 is to justify the intuition that ⊤-shape polygons are more powerful than

other 8-sided ones. To this end, it is proven that the required polygonal complexity for

maximal plane graphs increases from 8 to 12 if ⊤-shape polygons and their extensions

are not allowed. We then continue this line of research by studying other constrained

rectilinear duals. Part of this chapter has appeared in [10].

Chapters 5, 6, and 7 are devoted to the second research direction (Question 1.2).

In Chapter 5, a new drawing style called the convex polygonal dual, serving as the

convex polygonal analogue of the rectilinear dual, is proposed. We give a finite combi-

natorial characterization for plane graphs admitting such drawings. Our characterization

not only leads to some fixed-parameter tractability results, but it can also be applied to

giving quick alternate proofs for existing results and establishing relationship between

rectilinear duals and convex polygonal duals. Part of this chapter has appeared in [11].

5

In Chapter 6, we give a detailed study of convex polygonal duals for biconnected

outer plane graphs. Our study yields a clean condition for the existence of a drawing

for a given polygonal complexity. A simple procedure is also given for constructing an

area-universal drawing of low polygonal complexity.

In Chapter 7, rectilinear duals are generalized to 3D by representing each vertex of

a graph as an orthogonal polyhedron. This study opens the door for non-planar graphs

to be accommodated in a floorplan design. We prove that all chordal graphs admit such

3D drawings. This result parallels the well-known fact that all maximal plane graphs

admit rectilinear duals, as chordal graphs and maximal plane graphs are regarded as

the natural candidates of "triangulated graphs" in the general and the planar settings,

respectively.

Finally, Chapter 8 summarizes the results reported in this thesis. Some open prob-

lems are posted in this chapter as well.

6

Chapter 2

Preliminaries

The goal of this chapter is to introduce some basic notations and preliminary results

required for the subsequent discussion. We do not intend to give a comprehensive tuto-

rial for each topic we discuss, as there already exist quite a few nicely written literatures

devoted to these topics.

For a more comprehensive introduction to graph drawing, the reader is recom-

mended to have a look at the book [34] and the two PhD theses [1, 43]. They not only

provide a nice introduction to the field, but they also contain materials intimately related

to the content of the thesis. Also, the reader is referred to [44] to learn more about graph

theory.

2.1 Graph Theoretic Preliminaries

Given a graphG = (V, E), we write∆(G) to denote the maximum degree ofG. We

write V (G) andE(G) to denote the set of vertices and the set of edges ofG, respectively.

Graph G is called a d-graph if ∆(G) ≤ d.

Note that the definition of the notion G∗ changes in different chapters of the thesis,

and we usually do not follow the custom to use G∗ to denote the dual graph of G.

A graph is simple if it contains no self-loop and no multi-edges. A multi-graph is a

graph where self-loops are disallowed while multi-edges are allowed. If not otherwise

stated, all graphs in the thesis are assumed to be simple.

A graph is k-connected if it contains at least k + 1 vertices, and if removal of any

k−1 vertices does not render the graph disconnected. "biconnected" and "triconnected"

are synonyms for "2-connected" and "3-connected", respectively. For k = 1, we can

7

simply call the graph connected. If not otherwise stated, all graphs in the thesis are

assumed to be connected.

A graph is planar if it can be drawn on a plane without any edge crossing. A plane

graph is a planar graph with a fixed combinatorial embedding and a designated outer

face FO. For any vertex and edge, we call it boundary if it is located in FO. Otherwise,

it is non-boundary.

An outerplanar graph is a planar graph with a planar embedding in which all ver-

tices belong to the outer face. An outerplane graph is an outerplanar graph in such an

embedding.

A graph H is a subgraph of G if V (H) ⊆ V (G), E(H) ⊆ E(G). We also write

H ⊆ G to denote the subgraph relation.

Given a graph G, a path P is a subgraph such that V (P) = {v1, v2 . . . , vk} and

E(P) = {{vi, vi+1}|1 ≤ i ≤ k − 1}, for some k > 1. A cycle C is a subgraph such

that V (C) = {v1, v2, . . . , vk} and E(C) = {{vi, vi+1}|1 ≤ i ≤ k − 1} ∪ {{v1, vk}},

for some k > 1. For convenience, a path (or cycle) is also written as (v1, v2, . . . , vk).

Unless otherwise stated, repeated vertices are not allowed in paths and cycles in the

sense that vi ̸= vj if i ̸= j.

If we write H = G \ S (or equivalently, H = G − S), where S can be a subgraph

of G, a subset of V (G), or a subset of E(G), then H is the subgraph of G defined by

the following procedure: (1) V (H)← V (G)− the vertices in S; (2) E(H)← E(G)−

the edges in S; (3) removing the isolated vertices (those incident to no edge in E(H))

in H .

A cycle is Hamiltonian if it contains all vertices in the underlying graph. A graph

is Hamiltonian if it has a Hamiltonian cycle.

A drawing of a planar graph divides the plane into a set of connected regions, called

faces. A contour of a face F is the cycle formed by vertices and edges along the bound-

ary of F . Sometimes we slightly abuse the terminology to write F to denote its contour.

Such a cycle is also called a facial cycle. The contour of the outer faceFO is also denoted

as CO.

8

Given a plane graph G, the inner (also known as internal or interior) region of

a cycle C is the region enclosed by C (containing the vertices and the edges located

interior of the cycle C), and the outer (also known as external or exterior) region of

C is the region outside of C (containing the vertices and the edges located exterior

of the cycle C). The inner and outer regions of C are written as in(C) and out(C),

respectively. The edges and vertices located along C (i.e. E(C), V (C)) are neither in

the inner region nor in the outer region of C. We use G(C) to denote the subgraph of

G that contains exactly C and vertices and edges residing in its inner region.

2.2 Tree-width and Chordal Graphs

A tree is a connected graph without any cycle. It is a basic fact that a tree T has

exactly |V (T)| − 1 edges (assuming it is simple). However, other than the trees, there

are quite a few graph classes (e.g. outerplanar graphs) also having some sort of "tree

structure", and the notion tree-width formalizes this concept.

A tree decomposition of a graph G is a tree T such that the following properties are

satisfied:

1. V (T) = {X1, . . . , X|V (T)|}. Each Xi represents a subset of V (G).

2. For each edge e = {u, v} ∈ E(G), there is an Xi such that u, v ∈ Xi.

3. For each vertex v ∈ V (G), there is an Xi such that v ∈ Xi.

4. If v ∈ Xi∩Xj , for allXk in the unique path linkingXi, Xj in T , we have v ∈ Xk.

We denote a vertex in V (T) as a bag instead of a vertex to avoid confusion. The

width of T is defined to be max{|Xi| − 1|Xi ∈ V (T)}. The tree-width is then defined

as below:

Definition 2.1. A graphG is said to have tree-width k iff a minimum width tree decom-

position of G has width k.

9

As an example, each outerplanar graph has tree-width at most two.

A lot of difficult (NP-hard) problems have polynomial time solutions on trees, as it

is usually easier to design a dynamic programming algorithm on a tree structure than

on a general graph. Intuitively, graphs of bounded tree-width should share this kind of

"algorithmic advantage". The famous algorithmicmeta-theorem "Courcelle's Theorem"

formalizes this intuitive idea:

Theorem 2.1 ([13,14]). Any graph property expressible inMSO2 is linear time solvable

for graphs of bounded tree-width

Monadic second-order logic, a fragment of second-order logic, allows only quantifi-

cation over unary relations (i.e., sets). The monadic second-order logic on graph MSO2

includes the following ingredients:

• Variables: vertices, edges, set of vertices, and set of edges.

• Relations: ∈, =, edge-vertex incidence (ංඇർ), and adjacency (ൺൽඃ).

• Connectives: ∨,∧,¬,→.

• Quantifiers: ∀, ∃ that can be applied to all kinds of variables.

Courcelle's Theorem plays an important role in Chapter 5.

For more about monadic second-order logic on graph structures, the reader is re-

ferred to [14, 16].

Besides the above algorithmic application, there are still other topics in graph theory

intimately relate to tree-width. A graph is chordal if each of its cycle C of length more

than 3 has a chord, which is an edge e = {u, v} ̸∈ E(C) such that u, v ∈ V (C). As a

result, each induced cycle in a chordal graph is necessarily a triangle.

Interestingly, chordal graphs are exactly the ones who admit a tree-decomposition

where each bag is a clique, which is a subgraph H such that ∀u, v ∈ V (H), {u, v} ∈

E(H). Such a tree-decomposition is also called a clique tree. This concept is crucial in

Chapter 7.

10

2.3 Rectilinear Polygons

Apolygon is rectilinear if all its edges are parallel to x-axis or y-axis of the Cartesian

coordinate system. A rectilinear polygon is also known as an orthogonal polygon. In

this sectionwe present some notations for rectilinear polygons, which aremostly applied

in Chapter 3, 4 of the thesis.

Figure 2.1: I-shape, �-shape, ⊤-shape and Z-shape polygons

Two rectilinear polygons are combinatorially equivalent iff they admit the same

circular order of angles. When there is no need to differentiate polygons that are com-

binatorially equivalent to each other, it is without loss of information to use circular

order of angles to represent a rectilinear polygon. For example, rectangle (or called

I-shape), �-shape, ⊤-shape, W-shape, ⊔-shape, Z-shape can be represented by (V, V ,

V, V), (V, V , V, C, V, V), (V, V , C, V , V, C, V, V), (V, V, V , C, V , C, V, V), (V, V, V ,

C, C, V , V , V), (V , V , V , C, V , V , V , C), respectively, where the letters V and C

represent convex and concave corners, respectively. See Fig. 2.1 for some illustrations.

Given a sequence P of Cs and V s, we let ♯C(P) and ♯V (P) denote the numbers of

concave and convex corners, respectively.

Here we define a partial order "≼" on rectilinear polygons as follows:

Definition 2.2. Let P andQ be two rectilinear polygons. P ≼ Q iffQ can be obtained

by iteratively inserting (C, V) or (V, C) into P .

The drawing style rectilinear dual is defined as follows:

Definition 2.3. A rectilinear dual is a contact representation of a graph meeting the

below conditions:

1. Each vertex corresponds to a rectilinear polygon.

11

2. Adjacency in the graph corresponds to side-contact in the drawing.

3. All rectilinear polygons together form a partition of a rectangle.

Let R be a rectilinear dual, we call it Q-free iff for each polygon of shape P used

in R, we have Q ̸≼ P . We remark that the partial order "≼" actually reflects the intu-

itive idea of degeneracy in the way that P ≼ Q indicates that Q can degenerate to P .

Therefore, the notion of "Q-freeness" captures the idea of "Q is not a degenerated form

of any rectilinear polygon in the drawing".

A class of rectilinear polygons called staircase is defined as follows:

Definition 2.4. Let P be a rectilinear polygon. P is monotone staircase iff P = (a, S1,

b, S2) clockwise, where a = b = V and both S1 and S2 consist of Cs and V s appearing

alternatively and both start and end with V , where the two points a, b are exactly at

the most south-western (i.e., lower left-hand) and the most north-eastern (i.e., upper

right-hand) corners.

(1) (2)

a

b

Figure 2.2: Examples of rectilinear polygons.

In other words, a monotone staircase polygon is a polygon formed by two mono-

tonically rising staircases, each of which is a sequence of horizontal and vertical line

segments from the bottom-left corner to the top-right corner of the polygon. A staircase

polygon is a rectilinear polygon resulting from rotating a monotone staircase polygon

90◦, 180◦, or 270◦.

The following facts are easy to observe, and may be explicitly or implicitly applied

in the discussion throughout the thesis.

Fact 2.1. ♯V (P)− ♯C(P) = 4 in any rectilinear polygon P .

12

Fact 2.2. A rectilinear polygon is orthogonally convex iff it does not contain consecutive

concave corners.

Fact 2.3. A rectilinear polygon P is staircase iff ⊤̸≼ P and P is orthogonally convex.

Fact 2.4. A rectilinear polygon P satisfies⊤≼ P iff P = (S1, a, S2, b, S3, S4) such that

a = b = V and ♯C(S2) = ♯V (S2), ♯C(S1)− ♯V (S1) = ♯C(S3)− ♯V (S3) = 1.

Fig. 2.2(1) is an example of a staircase polygon. The polygon in Fig. 2.2(2) can

degenerate to⊤-shape by removing the two pairs of corners (circled in the picture); the

reader can verify Fact 2.4 by considering its representation (C, V, V, V, C, C, V, V , V , V ,

C, V) = (S1 = (C), a = V, S2 = (), b = V, S3 = (V, C, C), S4 = (V, V, V, V, C, V)).

a b

c d

F

(1.1) (1.2)

(2.1) (2.2) (2.3) (2.4)

(4) (3)

(1) (2)

Figure 2.3: A non-rotated ⊤-shape rectilinear dual.

Sometimes there is a need to differentiate combinatorially equivalent polygons that

have different orientations. For example, Fig. 2.3(2) shows the four possible orienta-

tions of the ⊤-shape. We use the term "non-rotated" to describe a situation that exactly

one orientation is allowed to appear in a rectilinear dual.

Fig. 2.3 (1) is a rectilinear dual using only non-rotated ⊤-shape polygons, since all

the polygons are combinatorially equivalent to (and possibly a degenerate of) exactly

one of the four possible ⊤-shape polygons depicted Fig. 2.3(2).

A rectilinear dual using only monotone staircase polygons can be regarded as a non-

rotated staircase rectilinear dual.

2.4 Separation Trees

In this section we describe an important technique to construct rectilinear duals.

13

b

c

d

f

c

d

b

a

b

f

d
i

a

d

c

g

h

e

h

e
f

c

d
b

a

g

i

Graph G

Figure 2.4: A separation tree.

Let△ be a triangle (a cycle of length 3 in a graph). We call△ a separating triangle

(also known as a complex triangle) iff G(△) ̸= △ in any planar embedding of G. G△

is defined to be the induced subgraph of the set of vertices {v ∈ V (G(△))| for any

triangle △′ ̸= △ in G(△), v does not reside in the interior region of △′}. For graph

G depicted in Fig. 2.4, G{a,b,c} is the subgraph induced by {a, b, c, d}. The separation

tree of a maximal plane graph G is defined to be the unique rooted tree whose vertices

are separating triangles and the CO of G, with △ being a descendant of △′ iff △ is

contained in G(△′). See Fig. 2.4. The reader is referred to [43] for a more detailed

introduction to separation trees.

The contraction of a triangle△ is an operation that replaces G(△) with△; the un-

contraction of a (previously contracted) triangle△ is an operation that replaces△ with

G△. The descendants of△ remain contracted when we un-contract△.

A rectangular dual is a rectilinear dual in which each polygon corresponding to a

vertex is a rectangle. The following theorem gives a clean characterization of graphs

admitting such a drawing [30]:

Theorem 2.2 ([30], and see also [19]). An internally triangulated plane graphG admits

a rectangular dual iff we can augment G with four vertices {N, E, S, W} satisfying:

1. The new outer face is the quadrangle {N, E, S, W};

14

(1) (2) (3)

a

S

a

b b

c c

d d e e e

a
b

c
d

d e b

a

c

S

E E
W W

N N

Figure 2.5: Rectangular duals.

2. The resulting graph is internally triangulated and contains no separating triangle.

Fig. 2.5(2,3) show two rectangular duals for the graph in Fig. 2.5(1) corresponding

to the augmentation of {N, E, S, W} depicted.

s

t

r

s

t

r

Figure 2.6: Illustration of inserting sub-drawing.

The tight connection between separating triangles and rectangular duals makes sep-

aration trees particularly useful in constructing rectilinear duals. A general framework

for building rectilinear duals based on separation trees is sketched as follows:

1. Let△1,△2, . . . ,△k be a level-order traversal of the separation tree. We let G′ =

△1 (CO, the outer triangle).

2. Construct a rectangular dual of G′ as the initial drawing.

3. For i = 1 to k, we un-contract△i, and plug-in the rectangular dual of G△i
\ △i

to the current drawing.

See Fig. 2.6 for a conceptual illustration of inserting rectangular dual of G△i
\ △i

when△i = {s, t, r} is un-contracted. Note that such an insertion inevitably add some

15

concave corners to nearby polygons, as a result, if a graph contains a separating triangle,

its polygonal complexity must be at least 6 in any of its rectilinear dual. The reader is

referred to [43,45] for a more comprehensive treatment to the approach. See Fig. 2.7 for

a full example of a top-down construction of a rectilinear dual based on this approach.

The above framework is adapted in Chapter 4. The "primal version" of the above

method is used in Chapter 3.

u

v

w

x

y z

c

c
w

u

v

x

y

z

c

x

y

z

x

y

z

x

y z

c

x

y z

Figure 2.7: Construction of a rectilinear dual.

2.5 Sliceability and Area-universality

In this section we present two important aspects of rectangular duals: sliceability

and area-universality. Recall that a rectangular dual is a rectilinear dual where all its

polygons are rectangles. These concepts can be generalized or extended to other set-

tings, and this plays an important role in our later discussion.

A rectangular dual is said to be sliceable if it can be obtained by recursively cutting

a rectangle into two parts by a horizontal or a vertical line. Sliceable rectangular duals

enjoy certain nice properties, facilitating global routing by taking advantage of the hi-

erarchical structure of partitioning by the cut lines, for instance. Also see [26] for an

application of sliceable rectangular duals in graph drawing.

See Fig. 2.5(2) for an example of a sliceable rectangular dual; and see Fig. 2.5(3)

for an example of a non-sliceable rectangular dual.

As a generalization of sliceability in floor-planning, monotone staircase cuts have

16

been proposed (see, e.g., [25, 32]), which are able to yield a richer set of floorplan

structures while retaining certain attractive properties enjoyed by sliceable floorplans.

In fact, floorplans using monotone staircase polygons are exactly those that can be ob-

tained usingmonotone staircase cuts. This kind of floorplan is investigated in Chapter 4.

See Fig. 2.8(2,3) for an example.

(1) (2) (3)

Figure 2.8: A rectilinear dual constructed by monotone staircase cuts.

A rectangular dual (or a rectilinear dual) is area-universal if it can realize any area-

assignment f : V (G)→ R>0 in the sense that each polygon P corresponding to vertex

v has area f(v). One seminal result regarding area-universal rectilinear duals is the

following:

Theorem 2.3 ([4]). For anymaximal plane graph, there is an area-universal rectilinear

dual of polygonal complexity 8 using only non-rotated ⊤-shape polygons.

This result is tight in the sense that there exists a maximal plane graph where all

its rectilinear duals have polygonal complexity of at least 8. However, given a recti-

linear dual, currently there is no easy way to decide whether it is area-universal or not.

Moreover, even if the rectilinear dual is known to be area-universal, there is no known

combinatorial algorithm to realize a given area-assignment.

There are a few positive results for area-universal rectangular duals in literatures.

For example, area-universality can be characterized by one-sidedness [19]:

Theorem 2.4 ([19]). A rectangular dual is area-universal iff it is one-sided.

17

A rectangular dual is one-sided iff for each straight line in the drawing, one side of

it borders exactly one polygonal region. The two rectangular duals in Fig. 2.5 are both

one-sided (and hence area-universal).

More interestingly, the aforementioned concepts seem to be able to extend to other

settings beyond rectangular duals and rectilinear duals.

Definition 2.5 ([21,28]). A proper touching triangle representation is a contact repre-

sentation of a graph meeting the below conditions:

1. Each vertex corresponds to a triangular region.

2. Adjacency in the graph corresponds to side-contact in the drawing.

3. All triangular regions together form a partition of a triangle.

Let △ = {a, b, c} be a triangle. We define the following two operations which

subdivide△:

1. Adding a new point d inside of△, followed by adding three straight lines linking

d to a, b, c.

2. Adding a new point d dividing the line bc, followed by adding a straight line

linking a to d.

We call a proper touching triangle representation sliceable iff it can be constructed

by applying the above 2 operations to its constituent triangles recursively. A proper

touching triangle representation is one-sided iff for each straight line in the drawing,

one side of it borders exactly one polygonal region. Following basic geometry, the

following lemma is easy to observe:

Lemma 2.1. Every one-sided and sliceable proper touching triangle representation is

area-universal. Moreover, if the coordinates of the 3 boundary vertices are fixed, the

drawing realizing any given area-assignment is unique.

18

(1)

G

B

A

F

E

D

C

(2)

a

b

c

d

e
f

g

h
i

j

A C

D

E G
B

F

A

B
C

D

(1) (2) (3)

Figure 2.9: Sliceability and one-sidedness in triangle contact representations.

See Fig. 2.9 for illustrations for the above concepts. Fig. 2.9(1) is one-sided but

not sliceable; Fig. 2.9(2) is one-sided and sliceable; and Fig. 2.9(3) is not one-sided but

sliceable. Note that Fig. 2.9(3) is clearly not area-universal since it cannot realize the

area-assignment: f(A) = f(C) = 0.4, f(B) = f(D) = 0.1.

See [20] for an interesting result on area-universal drawing in a non-rectilinear set-

ting. They prove the area-universality of their contact representation by refining the

drawing to triangles, which are easier to deal with.

Lemma 2.1 is applied in Chapter 6. Sliceability and area-universality are highly

relevant to Chapter 4.

2.6 Other Topics

In this section we give a very short introduction to some topics that are important but

omitted in the previous sections. For each topic, several good references are provided

for interested readers to learn more about them.

Matchings and Flows. In many situations, a graph drawing problem can be reduced

to a flow or a matching problem. In these cases, the essential information required in

constructing the desired drawing, like the number of bends in each edge and the de-

gree of the angle for each vertex in a face, can be encoded using a matching or a flow.

See Section 6.2, 8.2 of [34] for the classic applications of this technique to orthogonal

drawings and rectangular drawings, which are the "primal version" of rectilinear duals

and rectangular duals, respectively. See [12, 33, 40, 41, 45] for more. This technique is

19

applied in Chapter 3.

Schnyder Labelings. Undoubtedly, Schnyder Labeling [38] is one of the most suc-

cessful techniques in graph drawing, and it is especially useful in dealing with contact

representations. Basically, a Schnyder Labeling is a labeling of corners of a maximal

plane graph to {1, 2, 3}meeting some conditions. This technique was originally used to

construct a straight line drawing in a small grid (see [38] and Chapter 4 of [34]). Since

then, it has found applications in varieties of contact representations (see [3, 4, 31] for

instances).

Triangular Drawings and Contact Representations. In contrast to the well-studied

rectangular duals and rectilinear duals, only a scarcity of results were available in non-

rectilinear settings, as it is mathematically easier to handle rectilinear things. Most

of the studies in non-rectilinear setting are centered on triangles. The investigation of

proper touching triangle representations has been reported in two recent articles [21,28].

Touching triangle representations without boundary constraints have been studied in

[22]. In the primal setting, straight line triangle representation was proposed and stud-

ied in [1, 2]. See Fig 2.10 for a showcase of some triangle contact representations: (1)

the 5-cycle, (2) a point-side triangle contact representation, (3) a touching triangle repre-

sentation without any boundary constraint, (4) a proper touching triangle representation,

and (5) a touching triangle representation with a convex polygon boundary.

Figure 2.10: The 5-cycle graph and its triangle contact representations.

20

Chapter 3

Orthogonally Convex Drawings

Both straight line drawing and orthogonal drawing are very well-studied graph

drawing styles (see Fig. 1.1); and convexity is a very important aspect in drawing

graphs [34]. However, in contrast to the well-studied convex drawing, which is a

straight line drawing plus a requirement that each face is drawn as a convex polygon,

we know very little about convexity in orthogonal drawing.

Of course, one may simply regard the so-called rectangular drawing (an orthogonal

drawing where all faces are drawn as rectangles) as the "convex drawing" for orthogonal

drawing, since the rectangles are exactly the convex orthogonal polygons. However,

this drawing style seems to be too limited. As the following theorem shows, not really

many graphs enjoy such a drawing:

Theorem 3.1 ([42]). Given a plane graph G with four designated vertices on CO(G),

it admits a rectangular drawing with the four designated vertices being the four corner

of the outer rectangle iff:

1. every 2-legged cycle contains at least two designated vertices, and

2. every 3-legged cycle contains at least one designated vertex.

We note that 3-legged cycles are the "primal" counterpart of the separating triangles,

which we present in Section 2.4.

In a plane graph G, an edge e = {u, v} ̸∈ E(G(C)) is called a leg of C if at least

one of the two vertices u and v belongs to C. The vertices in V (C) that are incident

to some leg of C are called the legged-vertices of C. C is k-legged if C has exactly k

legged-vertices. In a biconnected plane 3-graph, each legged-vertex of C is incident to

exactly one leg of C.

21

As a result, we suggest that orthogonal convexity is a more suitable candidate for

studying convexity in orthogonal drawings than the traditional convexity.

In view of the above, in this chapter, we study orthogonal convexity in both orthog-

onal drawings and rectilinear duals.

To be more specific, our contributions are:

1. The drawing style orthogonally convex drawing is proposed. A necessary and

sufficient condition, along with a linear time testing algorithm, is presented for

biconnected plane 3-graphs to admit a no-bend orthogonally convex drawing.

2. We then present an alternative characterization for no-bend orthogonally convex

drawings of biconnected plane 3-graphs. It allows us to prove the following re-

sults:

• For any triconnected plane 3-graph, the minimum number of bends remains

the same regardless of whether the drawing is orthogonally convex or simply

orthogonal.

• For any subdivision of a triconnected plane 3-graph, its orthogonally convex

drawing requires at most one more bend than its orthogonal counterpart.

3. Also based on the above alternative characterization, a flow network algorithm,

running in O(n1.5 log3 n) time, is devised for the bend-minimization problem for

biconnected plane 3-graphs.

4. Lastly, we apply our analysis of orthogonally convex drawings to characteriz-

ing internally triangulated graphs that admit the so-called Q-floorplans, which

are rectilinear duals using only orthogonally convex polygons such that the outer

boundary is an orthogonally convex polygon combinatorially equivalent to a given

orthogonally convex polygon Q.

22

3.1 Related Works

The bend-minimization problem, a classical optimization problem in orthogonal

drawings, is to minimize the total number of bends in the drawing. The problem is

NP-complete in the most general setting, i.e., for planar graphs of maximum degree 4

[23].

Several subclasses of graphs are known to have polynomial time algorithm to find

a bend-minimized orthogonal drawing, including planar graphs of maximum degree 3,

series-parallel graphs, and graphs with fixed embeddings [6, 41].

Several attempts have been made to extend the model of orthogonal drawings to bet-

ter comply with various requirements in practical applications. For example, to improve

the readability and aesthetic feel, a new model called the slanted orthogonal drawing

was introduced in [7]. In this model, a 90◦ bend is replaced by two 135◦ bends to

smoothen the edges. To allow graphs of degree more than 4 to be drawn, the so-called

quasi-orthogonal drawing model was invented in [27].

The current approaches for computing orthogonal drawings can be roughly divided

into two categories, one uses flow or matching to model the problem (e.g., [6,12,41]),

while the other tackles the problem in a more graph-theoretic way by taking advantage

of structural properties of graphs (e.g., [35--37]). The former usually solves a more

general problem, but often requires higher time complexity. On the contrary, algorithms

in the latter focus on specific kinds of graphs, resulting in linear time complexity inmany

cases.

As we shall see in our subsequent discussion, the technique used in this chapter

involves a mixture of the above two types of strategies.

For other perspectives of orthogonal drawings, the reader is referred to [18] for a

survey chapter.

23

3.2 Terminologies

For any path, cycle, and face, we call it boundary iff it shares some edges with CO.

A contour path P of a cycle C is a subpath of C such that P includes exactly two

legged-vertices x and y of C, and x and y are the two endpoints of P . Therefore, each

k-legged cycle has exactly k contour paths. If a contour path intersects (i.e., shares some

edges with) the outer cycle, we call it boundary contour path. In fact, each boundary

contour path is a subpath of CO. Each contour path P of C is incident to exactly one

face, denoted as FC,P , in the outer region of C.

z

y x

u

v

x

y

z

y

F
F

x

a

b

x

u

F2

F0

v

s t

y

a

b

c

q

r

F1

i

k

h

j

w

k

g

k

m

k

z

Figure 3.1: Illustration of some terms about cycles and paths.

See Fig. 3.1 for an example. Consider two cycles C1 = (s, t, u, v) and C2 =

(x, b, i, a, z, y, c) (both drawn in bold line). C1 is a non-boundary 2-legged cycle, of

which two legged-vertices are t and v, and two legs are (t, q) and (v, r). C1 is also a

facial cycle, which is the contour of F1. C2 is a boundary 3-legged cycle, of which three

legged-vertices are x, y, and z. P1 = (t, u, v) is a contour path ofC1. P2 = (z, a, i, b, x)

is the boundary contour path of C2. We have FC1,P1 = F2 and FC2,P2 = F0.

LetD(G) be an orthogonal drawing of the plane graphGwith outer cycleCO. Given

a cycleC, we useD(C) (or equivalentlyD(F) ifC is the contour of a face F) to denote

the drawing of C in D(G).

The orthogonally convex drawing is defined as follows:

Definition 3.1. D(G) is an orthogonally convex drawing of G if D(F) is an orthogo-

nally convex polygon for each face F other than the outer one.

24

In an orthogonal drawing D(G), angC(v) denotes the interior angle of v in polygon

D(C). We call v a convex corner, non-corner, and concave corner of C if angC(v) is

90◦, 180◦, and 270◦, respectively. A corner in the drawing D(G) is either a bend on

some edge, or a vertex v ofG such that angC(v) ̸= 180◦ for someC. If v is a non-corner

of C, v is on a side of the polygon D(C).

Given a face F surrounded by its contour cycle C in a drawing D, we use nextF (v)

to denote the first corner after v in the counter-clockwise orientation of C; similarly,

prevF (v) is defined to be the first corner after v in the clockwise orientation.

Fact 3.1. Let v be a non-corner vertex in the common boundary of two faces F and H

in an orthogonal drawing. If nextF (v) is concave, prevH(v) must be convex.

From Section 3.3 to Section 3.6, graphs under the name G are assumed to be bicon-

nected,△(G) ≤ 3, and may have multi-edges.

3.3 Review of the Results of Rahman and Nishizeki

Among existing results concerning orthogonal drawings, Rahman et al. [36] gave

a necessary and sufficient condition for a biconnected plane 3-graph to admit a no-bend

orthogonal drawing, and they devised an algorithm to test the condition, and subse-

quently constructed such a drawing if one exists.

Theorem 3.2 ([36]). A biconnected plane 3-graph G has a no-bend orthogonal draw-

ing iff G satisfies the following three conditions:

(1) There are four or more 2-vertices (i.e., vertices of degree 2) of G on CO(G).

(2) Every 2-legged cycle contains at least two 2-vertices.

(3) Every 3-legged cycle contains at least one 2-vertex.

Theorem 3.2 obviously holds even when G has multi-edges, as such graphs do not

have no-bend orthogonal drawings.

25

The drawing algorithm in [36] performs the following steps recursively: (1) reduc-

ing the original graph G into a structurally simpler graph G∗ by collapsing the so-called

"bad cycles", (2) drawing G∗ in a rectangular fashion, and (3) plugging in the orthog-

onal drawings of those bad cycles to the rectangular drawing of G∗ to yield a no-bend

orthogonal drawing of G.

The reader can imagine it as a "primal version" implementation of the general frame-

work for building rectilinear duals based on separation-trees described in Section 2.4.

Algorithm([36]). No-bend-Orthogonal-Draw(G)

1. Determine four 2-vertices on CO(G) as designated corners.

2. Find the maximal bad cycles C1, C2, ..., Ck in G.

3. For each i, 1≤i≤k, contract cycle Ci to a single vertex vi.

4. Let G∗ be the resulting graph.

5. Find a rectangular drawing D(G∗) by Rectangular-Draw such that the four des-

ignated corners are the corners of the bounding rectangle.

6. For each i, 1≤i≤k, extend each vi in D(G∗) to an appropriate rectangular region,

and then patch D(G(Ci)) (using the outcome of calling No-bend-Orthogonal-

Draw(G(Ci))) to D(G∗) by identifying the four designated corners of G(Ci) to

the corners of the rectangle region.

7. Return the resulting drawing as D(G).

Algorithm Rectangular-Draw computes the rectangular drawing of an input graph

meeting the conditions in Theorem 3.1.

A key in Algorithm No-bend-Orthogonal-Draw above is the identification of a

certain type of cycles called bad cycles. Bad cycles are cycles that are 2-legged or

3-legged if the four designated corner vertices in CO are considered as leg-vertices.

Intuitively, bad cycles are cycles that violate the conditions under which a graph admits

26

a rectangular drawing. For instance, consider the graph in Fig. 3.1. If {h, i, j, k} are

the 4 designated vertices, then (w, z, a, i, b, x, c, y) (a 3-legged cycle as i is considered

a legged-vertex) is a bad cycle, whereas (r, v, u, t, q, j, g, h) (a 4-legged cycle including

legged-vertices h and j) is not a bad cycle. Maximal bad cycles are bad cycles that are

not contained in G(C) for any another bad cycle C. Note that whenever Rectangular-

Draw is called for G∗ in procedure No-bend-Orthogonal-Draw, G∗ (with each of the

maximal bad cycles contracted to a single vertex) always meets the condition for the

existence of a rectangular drawing.

The reader is referred to [36] for more.

3.4 No-bend Orthogonally Convex Drawings

Our goal in this section is to give a necessary and sufficient condition for bicon-

nected plane 3-graphs to have no-bend orthogonally convex drawings, in a way similar

to Theorem 3.2.

Figure 3.2: Illustration of the proof of Lemma 3.1.

Lemma 3.1. Consider a no-bend orthogonally convex drawingD(G) of a plane graph

G. For every 2-legged cycle C with legged-vertices x and y and a contour path P of C,

the number of convex corners of D(C) in V (P) \ {x, y} must be at least 1 more than

that of concave corners, if either

(1) C is a boundary cycle and P is its boundary contour path, or

27

(2) C is non-boundary and P is any of its contour paths.

Proof. The result is proven by contradiction. Suppose there exists a contour path P of

a cycle C falsifying the lemma. Let P ′ be the other contour path of C. Clearly P ′ is

a non-boundary contour path, and hence FC,P ′ is an inner face. Since the number of

convex corners in V (P) \ {x, y} of D(C) is no more than that of the concave corners,

to have the total number of convex corners in C 4 more than that of the concave corners

(in view of Fact 2.1), the number of convex corners in V (P ′) \ {x, y} of D(C) must be

at least 2 more than that of concave corners.

In other words, the number of concave corners in V (P ′) \ {x, y} of D(FC,P ′) is

at least 2 more than that of convex corners. Therefore, there exist consecutive con-

cave corners in the contour of FC,P ′ , so D(FC,P ′) is not orthogonally convex (Due to

Fact 2.2), contradicting the assumption that D(G) is orthogonally convex.

See Fig. 3.2 for an illustration. As the number of convex corners in V (P) \ {x, y}

is no more than that of the concave corners, there are two consecutive concave corners

in FC,P ′ , which are u and v in the figure.

We are now in a position to present the main result of the section.

Theorem 3.3. A biconnected plane 3-graph G admits a no-bend orthogonally convex

drawing iff the three conditions (1), (2) and (3) in Theorem 3.2 and the following two

additional conditions hold:

(4) every non-boundary 2-legged cycle contains at least one 2-vertex on each of its

contour paths, and

(5) every boundary 2-legged cycle contains at least one 2-vertex on its boundary

contour path.

Proof. (⇒) Since a convex corner in a contour path not being an endpoint must be a

2-vertex, these two conditions are met according to Lemma 3.1.

(⇐) The sufficiency of the two conditions in the statement of the theorem follows

from a modification to the no-bend orthogonal drawing algorithm by Rahman et al.

28

[36]. The construction of D(G) in the algorithm No-bend-Orthogonal-Draw can be

seen as a series of operations on the current drawing (initially a rectangular drawing),

each of which extending a vertex to a rectangular region, followed by filling in a rect-

angular drawing.

Now we assume the input plane graph meets the conditions given in our theorem.

Suppose we reach a point at which an orthogonally convex drawing having a max-

imal bad cycle Ci contracted to a single vertex vi is given. In the current drawing, no

face contains consecutive concave corners. We show how to expand vi into a rectangu-

lar region to accommodate the drawing associated with Ci and its interior.

The procedure refines the strategy developed in [36] to guarantee orthogonal con-

vexity. As in [36], expansion of a vertex vi can be classified into three cases depicted

in Fig. 3.3, 3.4, 3.5.

Case 1: Ci is a 3-legged cycle, and vi is a 3-vertex in G∗. Let x, y and z be its 3 leg-

vertices with x, y, z and a being the 4 designated corners of G(Ci). Depending on the

location of a, we have 3 sub-cases, and sub-case 3 allows two alternatives.

In sub-cases 1 and 2, the expansion is straightforward and is the same as the one used

in [36] since these sub-cases do not destroy orthogonal convexity of any faces. In sub-

case 3, however, care must be taken in order to retain orthogonal convexity. Two cases

arise depending on the convexity/concavity of the preceding and subsequent neighbors

of vi. Note that in subcase 3, for face F1 the corner associated with a is concave.

IfnextF1(vi) is concave, we choose the alternative 3.2. According to Fact 2.2, when-

ever nextF1(v) is concave, prevF1(v) must be convex, and hence choosing alternative

3.2 does not generate consecutive concave corners in F1. Similarly, if prevF1(vi) is

concave, we can choose the alternative 3.1. In the case both nextF1(vi) and prevF1(vi)

are convex, both two alternatives maintain the orthogonal convexity of F1.

Case 2: Ci is a 2-legged cycle, and vi is a non-corner 2-vertex in G∗. Let x and y be its

2 leg-vertices with x, y, a and b being the 4 designated corners of G(Ci). Depending on

the locations of a and b, we have 2 sub-cases, and sub-case 2 allows two alternatives.

29

x

y

C
vi

a

x y

b

a

x

y

b

x

a

b

y

(1)

(2.1) (2.2)

F

F

x

y z

Ci
vi

x

y z

a

y z

a

x

y

z

a

y

a

x

z

x

(1) (2)

(3.1) (3.2)

F1

F2 F3

Figure 3.3: Case 1: The drawing w.r.t. a 3-legged cycle Ci.

The expansion of sub-case 1 is a bit tricky. Note that ifF2 is an inner face, orthogonal

convexity of F2 will no longer hold after the expansion. Fortunately we show that we

can always choose a and b such that whenever sub-case 1 occurs, F2 must be the outer

face. If Ci is non-boundary, there must be one 2-vertex on each contour path, hence we

can choose a and b such that they are on different contour paths, so that sub-case 1 will

not occur. If Ci is a boundary cycle, we must have at least one 2-vertex on its boundary

contour path, so we can choose a and b such that one of them is in the boundary contour

path, and hence we can assure that when sub-case 1 occurs, a and b are both on the

boundary contour path of Ci.

Suppose that the sub-case 2 occurs. As in the subcase 3 of Case 1, if nextF1(vi) is

concave, we choose the alternative 2.2, if nextF2(vi) is concave, we choose the alter-

native 2.1, otherwise, we can choose either of them. It is easy to deduct from Fact 3.1

that our choices do not generate consecutive concave corners in both F1 and F2.

x

y

Ci
vi

a

a
x y

b

a

x

y

b

x

a

b

y

(1)

(2.1) (2.2)

F2

F1

Figure 3.4: Case 2: The drawingw.r.t. a 2-legged cycleCi with vi a non-corner 2-vertex.

Case 3: Ci is a 2-legged cycle, and vi is a corner 2-vertex in G∗. Let x and z be its 2

leg-vertices, y being a corner vertex of the current drawing, and x, y, z and a being the

4 designated corners of G(Ci). Depending on the location of a, we have 3 sub-cases.

30

All these sub-cases do not destroy orthogonal convexity of any inner faces, since

we can apply the same trick for sub-case 1 of case 2 to the sub-cases 2, 3 here, so that

F2 is always the outer one when sub-cases 2, 3 occur.

x

y

z

u

v

F1

F2

F

F0

x

y

z

u v

F1

F0

F3

F2

x

y z u v

F1

F2 F3

F0

x

y z

Ci
vi

x

y z

a

y z

a

x

y

z

a

x

(1) (2)

(3)

F1

F2

e

e

e

F

F

e

e

Figure 3.5: Case 3: The drawing w.r.t. a 2-legged cycle Ci with vi a corner 2-vertex.

In view of the above, by an induction on the number of operations of expanding

a vertex to a rectangular region, we obtain a constructive proof for the sufficiency of

Theorem 3.3. Hence we conclude the proof.

Based on a linear time implementation ofAlgorithmNo-bend-Orthogonal-Draw(G)

described in [36], we have the following result.

Theorem 3.4. Given a biconnected plane 3-graph G, there is a linear time algorithm

to construct a no-bend orthogonally convex drawing D(G) if G admits one.

3.5 An Alternative Condition

Nowwe turn our attention to the bend minimization problem w.r.t orthogonally con-

vex drawings of plane graphs. Intuitively, minimizing the number of bends in orthogo-

nal (convex) drawing can be equated with subdividing a minimum number of edges so

as to yield a graph having a no-bend orthogonal (convex) drawing.

It is known that network flows, a popular technique for analyzing graph-related

problems, are very useful in designing algorithms to minimize bends in orthogonal

drawing as reported in, e.g., [18]. It is therefore a natural attempt to see whether the

additional orthogonal convexity requirement described in the previous section (in par-

ticular, conditions (4) and (5) in Theorem 3.3) can be incorporated into flow networks.

31

As one can see from Theorem 3.3, contour paths along (boundary or non-boundary)

2-legged cycles play a vital role as far as a graph having an orthogonally convex draw-

ing is concerned. Due to possible overlaps of 2-legged cycles in a plane graph, the

corresponding contour paths may intersect each other messily, resulting in difficulties

if one attempts capture the amount of convex/concave corners along contour paths by a

flow network formulation.

To ease the above problem, we identify a subset of representative paths which are

on the one hand, "simple enough" to enable a min-cost flow formulation for the bend-

minimization problem, and on the other hand, "sufficient enough" to characterize the

presence of no-bend orthogonally convex drawings. The simplicity stems from the fol-

lowing observation: for any paths P and P ′, if P ⊂ P ′, then having a 2-vertex in P

guarantees the presence of a 2-vertex in P ′.

We are now in a position to identify two types of cycles, namely, proper and im-

proper cycles, which are later used to characterize the representative paths mentioned

above.

A contraction of a 2-vertex v with adjacent vertices x and y is to remove v and

its incident edges {v, x} and {v, y} and then add a new edge {x, y}. Let Gc denote

the graph resulting from contracting every 2-vertex of G. Since we require G to have

maximum degree 3, Gc must be 3-regular.

x

y

z

y

F1

F2

x

a

b

c

Figure 3.6: Proper and improper 2-legged cycles.

A 2-legged cycle of G is called improper if its two legs correspond to the same

edge in Gc. A 2-legged cycle is called proper if it is not improper. See Fig. 3.6 for

illustrations. The left one shows an improper 2-legged cycle (drawn as a bold line) with

leg-vertices x, y. The right one shows a proper 2-legged cycle (drawn as a bold line)

32

with leg-vertices y, z.

Due to 3-regularness of Gc and the fact that the two legs of an improper cycle C are

the same edge e in Gc, there remains nothing outside G(C) except the leg e. Therefore,

an improper cycle must be a boundary cycle, or conversely, all non-boundary 2-legged

cycles are proper. It is easy to see that every inner face that intersects CO in exactly

one path yields an improper 2-legged cycle naturally. It is because the intersecting

path, which connects the two leg-vertices of a 2-legged cycle, must be contracted into

a single edge in Gc. See face F1 in the left figure of Fig. 3.6. We state these simple but

useful observations as a fact.

Fact 3.2. Let C be a 2-legged cycle of G with two leg-vertices x and y, the following

statements are equivalent:

(1) C is improper.

(2) E(G) \ E(G(C)), form exactly one path (a subpath of CO linking x and y).

(3) The two legs correspond to the same edge in Gc.

(4) C is a boundary 2-legged cycle, and boundary of FC,P intersects CO of G in

exactly 1 path, where P is the non-boundary contour path of C.

Consider Fig. 3.6 for examples of proper and improper cycles. F1 and F2 are two

boundary faces corresponding to the FC,P of the 2-legged cycles C drawn as bold lines

and their non-boundary contour paths P in the left and right figures, respectively. The

contour of F1 intersects CO in exactly one path (x, y), whereas the contour of F2 inter-

sects CO in two paths (z, a) and (y, b, c). Note that both left and right illustrations show

the whole graph instead of a subgraph.

Recall from Theorem 3.3 that contour paths of boundary or non-boundary 2-legged

cycles are keys to orthogonal convexity in no-bend orthogonal drawings. In what fol-

lows, we replace Conditions (4) and (5) of Theorem 3.3 with new conditions on two

sets of paths, namely, critical paths and paths in SG, which are contour paths of proper

33

cycles and improper cycles, respectively. As we shall see later, these two sets of rep-

resentative paths enjoy the following nice properties, which further facilitate a flow

network formulation for bend minimization:

• paths in SG are mutually edge-disjoint,

• critical paths are mutually edge-disjoint, and

• any path in SG is either contained in a critical path or contained in no critical path.

We are now in a position to give the definitions of critical paths and SG.

Definition 3.2. A path P of G is called critical if there is a proper 2-legged cycle C

such that:

(1) P is a contour path of C,

(2) if C is a boundary 2-legged cycle, then P is the boundary contour path of C, and

(3) P does not edge-intersect any proper 2-legged cycleC ′ that is contained inG(C).

To proceed further, we require the following two lemmas.

Lemma 3.2. For any biconnected plane 3-graph G, the critical paths of G are edge-

disjoint.

Proof. Assume that there exist two different critical paths P and P ′ edge-intersecting

each other. Let C and C ′ be two proper 2-legged cycles such that P and P ′ are contour

paths of C and C ′, respectively. As a boundary contour path does not edge-intersect

any non-boundary contour path, we divide the situation into the following two cases.

Case 1: P and P ′ are both non-boundary contour paths. In this case, C and C ′ are

non-boundary 2-legged cycles with E(G(C)) ∩ E(G(C ′)) ̸= ∅.

In what follows, we show that either G(C) ⊆ G(C ′) or G(C ′) ⊆ G(C) is true, and

hence the condition (3) in Definition 3.2 is violated.

Suppose that G(C) ̸⊆ G(C ′) and G(C ′) ̸⊆ G(C). Then, obviously, the two legs

e1, e2 of C ′ satisfies e1, e2 ∈ E(G(C)):

34

• If there is no leg of C ′ contained in E(G(C)), then G(C) is disconnected, as

there is no edge in E(G(C)) connecting V (G(C)) \ V (G(C ′)) and V (G(C)) ∩

V (G(C ′)).

• If there is only one leg e1 of C ′ with e1 ∈ E(G(C)), then G(C) is not bicon-

nected, as e1 is the only edge in E(G(C)) connecting V (G(C)) \ V (G(C ′)) and

V (G(C)) ∩ V (G(C ′)).

Similarly, the two legs of C belongs to E(G(C ′)). This implies that there is no path

linking vertices in V (G)\(V (G(C))∪V (G(C ′))) and vertices in V (G(C))∪V (G(C ′)),

and hence G is not connected, a contradiction.

Case 2: P and P ′ are both boundary contour paths. In this case, C and C ′ are boundary

2-legged cycles with E(G(C)) ∩ E(G(C ′)) ̸= ∅.

First of all, in view of our argument for Case 1, "G(C) ̸⊆ G(C ′) and G(C ′) ̸⊆

G(C)" requires "V (G(C)) ∪ V (G(C ′)) = V (G)".

Suppose that that there is an edge e /∈ E(G(C))∪E(G(C ′)), then it must be a leg of

bothC andC ′. This is impossible as the two legs ofC belongs toE(G(C ′)). Therefore,

we can infer that E(G) \ E(G(C)) ⊆ E(G(C ′)).

Since C is proper, E(G)\E(G(C)) must not be a single path. Therefore, there

exists a proper boundary 2-legged cycle C ′′ such that E(G(C ′′)) ⊆ E(G)\E(G(C)) ⊆

E(G(C ′)). This contradicts the assumption that P ′ is a critical path.

Lemma 3.3. Let P be a path satisfying (1) and (2) in Definition 3.2. If P is not critical,

there must be a critical path P ′ such that P ′⊂P .

Proof. Assume that there exist some non-critical paths that contradict the statement of

the lemma. We choose the path P to be the shortest among them. Let C be the proper

2-legged cycle having P as its contour path. Since P is not critical, there must be a

proper 2-legged cycle C ′ that is contained in G(C), and P edge-intersects with C ′. P

must edge-intersect a contour path P ′ of C ′. It is easy to see that P ′ satisfies (1) and (2)

of Definition 3.2, and P ′⊂P .

35

From our assumption, P ′ is not critical. But according our choice of P , there must

be a critical path P ′′ such that P ′′⊂P ′⊂P , which is a contradiction to the choice of

P .

Given a path P with endpoints x and y, we write P(x⌢y) to denote the "open" version

of P , i.e., excluding x and y. That is, P(x⌢y) consists of V (P) \ {x, y} and E(P).

We now define SG, a set of paths associated with improper 2-legged cycles in graph

G, as follows:

SG = { CO\P(x⌢y) | P is a boundary contour path of C, where C is an improper

2-legged cycle with two legged-vertices x and y in G }.

z

y x

u

v

w

Figure 3.7: Critical paths and SG in a plane graph.

We note that the paths in (2) of Fact 3.2 are exactly paths in SG. Therefore, inter-

mediate vertices in paths of SG are 2-vertices, and paths in SG must be a subpath of

CO, and hence P∈SG iff P is a boundary contour path of a facial cycle having only one

boundary contour path. The following fact summarizes the above observations.

Fact 3.3. Let P be a path of G with two end-vertices x and y, the following statements

are equivalent:

(1) P is in SG.

(2) P is the boundary contour path of a facial cycle C that intersects CO of G in

exactly one path.

36

(3) P is CO\P ′
(x⌢y), for some P ′ which is the boundary contour path of some im-

proper 2-legged cycle with two legged-vertices x and y.

To have a better grasp of critical paths and SG, consider Fig. 3.7 in which a no-bend

orthogonally convex drawing of a plane graph G is shown. In the left figure, the four

dotted paths are those in SG, which are edge-disjoint. LetC be the 2-legged cycle drawn

in bold, and P be its boundary contour path. We have CO\P(x⌢z) = (x, y, z). In the

right figure, the five dotted paths are critical paths, which are edge-disjoint. Let C be

the 2-legged cycle drawn in bold. We have (1) the path (u, v, w) is one of its contour

paths, (2) C is a non-boundary 2-legged cycle, and (3) P does not edge-intersect any

proper 2-legged cycle other than C that is contained in G(C). A path in SG is either

contained in exactly one critical path or intersects with no critical path.

The following theorem, which is the main result in this section, enables us to char-

acterize no-bend orthogonally convex drawings in terms of critical paths and SG.

Theorem 3.5. Suppose a biconnected plane 3-graphG has a no-bend orthogonal draw-

ing. G has a no-bend orthogonally convex drawing iff the following conditions are

satisfied:

(1) Every critical path of G contains at least one 2-vertex.

(2) For each P∈SG, V (CO)\V (P) contains at least one 2-vertex.

Proof. It suffices to prove that the conditions stated here imply the two additional con-

ditions stated in Theorem 3.3 since the other direction is straightforward. Condition (2)

simply means that every improper 2-legged cycle contains at least one 2-vertex on its

boundary contour path. According to Lemma 3.3, for every non-critical path P that

is a contour path of a proper 2-legged cycle, there must be a critical path P ′ that is a

subpath of P . Therefore, if condition (1) is satisfied, every path that is a contour path

of a non-boundary 2-legged cycle, or a boundary contour path of a proper boundary

2-legged cycle, contains at least one 2-vertex.

37

We note that both SG and the set of all critical paths can be found easily in linear

time. Since they are edge-disjoint sets of paths, a contour edge-traversal for each face

suffices to list all of them.

In the following we demonstrate several interesting results which can be established

using Theorem 3.5.

Theorem 3.6. Given a triconnected plane 3-graph G, let SD(G) be the set of graphs

obtained by subdividing edges ofG such that either (1) there are at most 3 2-vertices in

CO or (2) there is no facial cycle intersectingCO that contains all 2-vertices inCO. For

each G′ ∈ SD(G), suppose b1 (resp., b2) is the minimum number of bends needed to

construct orthogonal drawing (resp., orthogonally convex drawing) ofG′, then b1 = b2.

Proof. For eachG′ ∈ SD(G), we first construct an orthogonal drawingD(G′) using b1

bends. Let G1 be the graph resulting from making each bend in D(G′) a new 2-vertex.

As a result, G1 has a no-bend orthogonal drawing, and |V (G1)| = |V (G′)|+ b1.

We claim that G1 contains no critical paths. Suppose not, then it must have a proper

2-legged cycle C. According to the (3) of Fact 3.2, the two legs of C correspond to

different edges inG1
c. Therefore, removing these two edges suffices to disconnectG1

c,

implying thatG1
c is not 3-edge-connected. As edge-connectivity≥ vertex-connectivity,

G1
c is not triconnected, contradicting that G1 is a subdivision of triconnected plane 3-

graph.

As a result, according to Theorem 3.5, G1 has a no-bend orthogonally convex draw-

ing iff V (CO(G1))\V (P) contains at least one 2-vertex for every P∈SG1 . As a 2-vertex

belongs to at most one path in SG1 , the above condition essentially requires that there

is no path in SG1 containing all 2-vertices in CO(G1). If there is indeed no such path,

the theorem follows. Hence, in the next, we assume that there is such a path P .

In the following we construct a graph G2 which is also a subdivision of G′ with

V (G2) = V (G′) + b1. As G1 has a no-bend orthogonal drawing, there are at least

4 2-vertices in CO(G1) (and hence in P). Apparently there is a facial cycle (which

contains P as a subpath) intersecting CO(G′) contains all 2-vertices in CO(G′), so there

38

are at most 3 2-vertices in CO(G′) due to the statement of this theorem. Therefore,

there is a 2-vertex v in P which is introduced by a subdivision (i.e., v ∈ V (G1) but

v ̸∈ V (G′)). We let G2 be the resulting graph of contracting v and subdividing an edge

e in E(CO(G1)) \ E(P).

It is easy to see that G2 satisfies Theorem 3.5 and hence admits a no-bend orthogo-

nally convex drawing D′(G2). It is immediately that D′ is also an orthogonally convex

drawing of G′ using b1 bends. As b2 ≥ b1, we have b1 = b2.

The following two results immediately follow from Theorem 3.6.

Corollary 3.1. For any triconnected plane 3-graph G, the minimum number of bends

needed to construct an orthogonally convex drawing is the same as that of an orthogonal

drawing.

Corollary 3.2. For any subdivision of a triconnected plane 3-graph G, the minimum

number of bends needed to construct an orthogonally convex drawing is at most one

more than that of an orthogonal drawing.

See Fig. 3.8 for an example of a subdivision of a triconnected plane 3-graph whose

bend-minimized orthogonally convex drawing has exactly one more bend than its bend-

minimized orthogonal drawing.

Figure 3.8: An example for Corollary 3.2.

In contrast of the above results, there are infinite number of biconnected plane 3-

graphs whose bend-minimized orthogonally convex drawings have V (G)/2 − O(1)

more bends than their bend-minimized orthogonal drawings. See Fig. 3.9 for a series

of plane graphs achieving this difference in their bend-minimized orthogonal drawings

and bend-minimized orthogonally convex drawings.

39

Figure 3.9: Bend-minimized orthogonal drawings and bend-minimized orthogonally
convex drawings.

3.6 Flow Formulation for Bend-minimization

In this section, we tailor the planar min-cost flow formulation originally designed

for orthogonal drawing [41] to coping with orthogonal convexity. Our strategy is con-

siderably different to most of the previous approaches using flow networks to design

graph drawing algorithms. Instead of finding a desired drawing directly by applying

min-cost flow, our flow network solves the problem indirectly in the sense that it adds

a minimum number of new 2-vertices to the input graph to satisfy Theorem 3.5. A

bend-minimized drawing can then be constructed using Theorem 3.4.

To make our subsequent discussion clear, we use arc and node instead of edge and

vertex, respectively, in describing a flow network. Amin-cost flow network is a directed

multi-graph N = (W, A) associated with four functions: lower bounds λ : A→Z≥0,

capacities µ : A→Z≥0 ∪ {∞}, costs c : A→Z≥0, demands b : W→Z. A map f :

A→Z≥0 is a flow if the following constraints are met:

∀v ∈ W, b(v) +
∑

(u,v)∈A

f(u, v)−
∑

(v,u)∈A

f(v, u) = 0, ∀a ∈ A, λ(a) ≤ f(a) ≤ µ(a)

The cost of a flow f is c(f) = ∑
a∈A f(a)×c(a). We first describe the flow network

NG = (WG, AG) associated with a biconnected plane 3-graph G in which each flow in

NG corresponds to an orthogonal drawing of G:

• WG =WV ∪WF , whereWV andWF are the vertex set and face set (including the

40

outer face) of G, respectively, Furthermore, ∀uv ∈ WV , b(uv) = 2 if degG(v) =

3; b(uv) = 0 if degG(v) = 2. ∀uF ∈ WF , b(uF) = −4 if F is an inner face;

b(uF) = 4 if F is the outer face.

• AG = AV ∪ AF , where

– AV = {(uv, uF), (uF , uv)|deg(v) = 2} ∪ {(uv, uF)|deg(v) = 3}, where

v ∈ V (G), F ∈ face(G), v incident to F . ∀a ∈ AV , λ(a) = 0, µ(a) = 1,

and c(a) = 0.

– AF = {(uF , uH)|F, H ∈ face(G), and F adjacent to H} is a multi-set of

arcs between faces, and the number of (uF , uH) in AF equals the number

of shared edges in contours of F and H . We use (uF , uH)e to indicate the

specific arc that corresponds to the shared edge e. ∀a ∈ AF , λ(a) = 0,

µ(a) =∞, and c(a) = 1.

Although our definition of NG is slightly different from the original one given

in [41], the validity of NG is apparent as the following explains. Every flow f in NG

corresponds to an orthogonal drawing D(G), and vice versa, such that

• f(uv, uF)−f(uF , uv) = −1, 0, 1means v is a concave corner, non-corner, convex

corner in D(F), respectively,

• f(uF , uH)e is the number of bends on e that are concave corners in D(F) and

convex corners in D(H), and

• the total number of bends in D(G) equals c(f).

The reader is referred to Fig. 3.10 for an illustration of flow networkNG: The up-left

picture is the graph G, the right one is the flow network, and the down-left one is a bend-

minimized orthogonal drawing. Every bi-directed arc represents two arcs with opposite

direction. The flow f representing the drawing is defined as follows: f(F0, F1) =

2, f(F0, F2) = f(F0, F3) = f(x, F2) = f(x, F3) = f(y, F1) = f(y, F3) = f(z, F1) =

41

x

y

z

u

v

F1

F2

F3

F0

x

y

z

u v

F1

F0

F3

F2

x

y z u v

F1

F2 F3

F0

Figure 3.10: Illustration of the flow network NG.

f(z, F2) = f(u, F2) = f(u, F3) = 1, and f(a) = 0 for the remaining arcs a. The cost

of f is 4.

The following fact is an immediate consequence of the above discussion. It estab-

lishes a correspondence from "the difference between the numbers of convex corners

and concave corners in a portion of a contour of a face" to "the amount of flow passing

through it".

Fact 3.4. Let S1 (resp., S2) be any subset of edges (resp., vertices) along the contour

of a face F . For any e ∈ S1, we write Fe to denote the face incident to e other than

F . For a flow f in NG and its corresponding orthogonal drawing D, we must have∑
e∈S1 [f(uFe , uF)e− f(uF , uFe)e] + ∑

v∈S2 [f(uv, uF)− f(uF , uv)] equaling the differ-

ence between the numbers of convex corners and concave corners in the portion S1∪S2

of D(F).

We have the following lemma, which reduces the existence of a no-bend orthog-

onally convex drawing to the existence of a no-bend orthogonal drawing plus some

constraints about numbers of convex corners and concave corners in some paths. This

lemma together with the above fact lay down the foundation for us to find bend-minimized

orthogonally convex drawings based on a modification to the above flow network NG.

Lemma 3.4. A biconnected plane 3-graph G admits a no-bend orthogonally convex

42

drawing iff there is a no-bend orthogonal drawing (not necessarily orthogonally con-

vex) such that

(1) for every critical path P along a contour path of 2-legged cycle C, #cc(P(x⌢y))

> #cv(P(x⌢y)) in FC,P , and

(2) for every P in SG, #cc(P(x⌢y)) ≤ 3 + #cv(P(x⌢y)) in the outer face,

where P has endpoints x and y, and#cv(·) and#cc(·) represent the numbers of convex

and concave corners, respectively.

Proof. (⇐) It is easy to see that the two conditions imply the two conditions in Theo-

rem 3.5 (In the first condition, concave corners of P(x⌢y) in FC,P must be 2-vertices;

and the second condition implies that there must be a concave corner in CO \ P(x⌢y),

which must be a 2-vertex, too); hence, we conclude the "if" part of the lemma.

(⇒) Now, suppose G admits a no-bend orthogonally convex drawing. According

to Lemma 3.1, the first condition is always satisfied for every no-bend orthogonally

convex drawing. Therefore, it suffices to show that there exists a no-bend orthogonally

convex drawing D(G) such that the second condition is satisfied. We show that if there

is a path P contradicting the second condition, we can modify the drawing in a way that

orthogonal convexity of each face is preserved. Let F be the face incident to P other

than the outer face, and C be its contour.

x

y
F

x

y

F

x

y

F

Figure 3.11: Illustration of the proof of Lemma 3.4.

Suppose the second condition of the lemma does not hold. Then, the number k =

#cv(P(x⌢y)) = #cc(P(x⌢y)) in F is more than 3. Note that a concave (resp., convex)

corner of P(x⌢y) in the outer face must be convex (resp., concave) in F .

43

It is clear that k cannot be more than 5; otherwise there must be consecutive concave

corners inC\P in F . If there is any concave corner v of P(x⌢y) in F , letw be its nearest

corner vertex in P , which must be convex in F . We can make them both non-corner

in F without introducing any consecutive concave corners. Therefore, we can assume

there are exactly 4 or 5 convex corners of P(x⌢y) in F . If the number is 4, one of x and y

must be non-corner in F , and if it is 5, then both x and y are non-corner in F ; otherwise

there must be consecutive concave corners in C \ P in F . Note that x and y cannot be

concave inF since they are of degree 3. Suppose x (or y) is non-corner inF , and let z be

any convex corner of P(x⌢y) in F . We can make x (or y) convex in F and z non-corner

in F without introducing any consecutive concave corners. Hence we can reduce the

number k to be at most 3, which concludes the proof. (We actually prove a stronger

result than the statement of lemma in the "only if" part, since the drawing constructed is

orthogonally convex.) See Fig. 3.11 for a graphical illustration of removing additional

convex corners.

In what follows, we show how to construct a flow network N ′
G from NG in such

a way that a flow of N ′
G corresponds to an orthogonal drawing meeting the conditions

stated in Lemma 3.4.

We use Fig. 3.12 as a graphical illustration of the procedure. Note that Fig. 3.12(1)

shows a portion the a graph G with F0 the outer face, P1 = (x, y, z) and P2 = (z, w)

the two paths in SG, and P3 = (x, y, z, w) a critical path; Fig. 3.12(2) shows its corre-

sponding portion in NG.

Initially we set N ′
G = NG.

• ∀P ∈ SG with endpoints x, y, let the outer face be F ′, and let SP,F ′ denotes the

set of faces bordering F ′ along some edges in the path P .

– add a new node uP to W (N ′
G), and two arcs (uF ′ , uP), (uP , uF ′) to A(N ′

G).

– set b(uP) = 0, λ(uF ′ , uP) = λ(uP , uF ′) = 0, µ(uF ′ , uP) = 3, µ(uP , uF ′) =

∞, and c(uF ′ , uP) = c(uP , uF ′) = 0.

44

– redirect all the arcs in the current A(N ′
G) of the following forms: (uF ′ , uv),

(uv, uF ′), (uF ′ , uF)e, (uF , uF ′)e for all v ∈ V (P) \ {x, y}, F ∈ SP,F ′ ,

e ∈ E(P) by replacing uF ′ with uP .

See Fig. 3.12(3) for the modification to NG for the two paths P1 and P2 in SG, in

which the newly added arcs are drawn as dotted lines. In view of Fact 3.4, such a

modification makes the orthogonal drawing corresponding to any flow f of N ′
G

in compliance with the condition 2 of Lemma 3.4 (view it as a no-bend drawing

by treating all bends as 2-vertices).

• ∀ critical path P with endpoints x, y, C the 2-legged cycle for which P is its

contour path, and S the set of faces in G(C) that border P ,

– add a new node uP to W (N ′
G), and a new arc (uFC,P

, uP) to A(N ′
G).

– set b(uP) = 0, λ(uFC,P
, uP) = 1, µ(uFC,P

, uP) =∞, and c(uFC,P
, uP) = 0.

– redirect all the arcs in the currentA(N ′
G) of the following forms: (uFC,P

, uP ′),

(uP ′ , uFC,P
), (uFC,P

, uv), (uv, uFC,P
), (uFC,P

, uF)
e
, (uF , uFC,P

)
e
for all P ′ ∈

SG such that P ′ ⊆ P , v ∈ V (P) \ {x, y}, F ∈ S, e ∈ E(P) by replacing

uFC,P
with uP .

See Fig. 3.12(4) for the modification to NG for the critical path P3, in which the

newly added arc is drawn as a dashed line. Similarly, due to Fact 3.4, condition

1 of Lemma 3.4 holds for any orthogonal drawing corresponding to a flow f in

the modified network (view it as a no-bend drawing by treating all bends as 2-

vertices).

Since critical paths are mutually edge-disjoint according to Lemma 3.2, and since

every path in SG is either a subpath of a critical path or intersects no critical path, the

construction process is valid and can be done in linear time, the planarity of N ′
G is

preserved, and the number of newly added arcs and nodes is linear in |V (G)|(= n).

Note that the maximum possible value of the minimum cost is alsoO(n). Therefore, an

45

F1 F2

F0

x

y
z w

F1

F1

F1

F2

F2

F2

F0

F0

F0

x

x

x

y

y

y

z

z

z

w

w

w

P1

P1

P2

P2

P3

(1) (2)

(3) (4)

Figure 3.12: Illustration of the construction of N ′
G.

optimal solution of N ′
G can be solved using the O(n1.5 log3 n) time algorithm for planar

min-cost flow with cost O(n) described in [12].

Note that since we cannot make the flow uncapacitated, a more efficient algorithm

of O(n1.5) complexity also described in [12] cannot be adapted.

We are in a position to prove the main theorem in this section.

Theorem 3.7. For any biconnected plane 3-graph G, a bend-minimized orthogonally

convex drawing of G can be constructed in O(n1.5 log3 n) time.

Proof. Consider an orthogonal drawing D of G corresponding to a min-cost flow of

N ′
G. According to our construction of N ′

G, D satisfies Lemma 3.4 (view it as a no-

bend drawing by treating all bends as 2-vertices). Such a drawing is the one using a

minimum number of bends, say s, among all drawings of G satisfying Lemma 3.4. Let

G1 be the graph resulting from making all bends in the drawing D of G as 2-vertices.

According to Lemma 3.4, G1 has a no-bend orthogonally convex drawing D1 which

can be constructed in linear time according to Theorem 3.4. It is clear that D1 is an

orthogonally convex drawing of G using s bends.

We claim that D1 is a bend-optimal orthogonally convex drawing of G. Suppose

that there exists an orthogonally convex drawing D2 of G using t bends such that t < s.

46

Let G2 be the graph resulting from making all bends in the drawing D2 of G as 2-

vertices. Then, G2 has a no-bend orthogonal drawing D3 meeting the two conditions

in Lemma 3.4. Therefore, D3 corresponds to a feasible flow of N ′
G whose cost value

is t. This contradicts the fact that the orthogonal drawing D corresponds to an optimal

solution of N ′
G as t < s. Therefore, D1 is indeed bend-optimal.

The time complexity of the above procedure involves (1) construction of N ′
G, (2)

calculation of min-cost flow of N ′
G, and (3) construction of D1 based on Theorem 3.4.

Both (1) and (3) take linear time. Task (2) is the bottleneckwhich requiresO(n1.5 log3 n)

time. Hence the theorem is concluded.

3.7 Orthogonal Convexity in Rectilinear Duals

In this section, we study orthogonal convexity in rectilinear duals.

The graph class under investigation in this section is the class of simple, connected,

and internally triangulated plane graphs. A plane graph is internally triangulated if all

the inner faces are triangles.

Definition 3.3. Let Q be an orthogonal polygon, we write Q-floorplan to denote a rec-

tilinear dual whose outer boundary is combinatorially equivalent toQ (the rectangular

boundary constraint in Definition 2.3 is relaxed). AQ-floorplan is orthogonally convex

if its polygons are orthogonally convex.

Gdual Orthogonal polygon Q
Q-floorplan of Gdual

Figure 3.13: An example of a Q-floorplan.

In this section, graphs under the name Gdual are assumed to be simple, connected,

47

internally triangulated plane graphs. Our goal is to give a necessary and sufficient condi-

tion to test whether a given graph Gdual has an orthogonally convex Q-floorplan w.r.t.

a given orthogonally convex polygon Q. See Fig. 3.13 for an example. As we shall

see later, it is often the case that problems about rectilinear duals can be re-stated as

problems about orthogonal drawings. As in the last section, Theorem 3.5 and the con-

struction process of no-bend orthogonally convex drawings described in Section 3.4

play important roles in proving the desired result.

We note that the weak dual of a plane graph G is the subgraph of the dual graph that

excludes the vertex v in the dual graph that corresponds to the outer face FO(G) and all

the edges in the dual graph incident to v.

Lemma 3.5. For any simple, connected, internally triangulated plane graph Gdual,

there is a unique biconnected 3-regular plane multi-graph Gprimal such that Gdual is

the weak dual of Gprimal, and the following properties hold:

(1) Gprimal does not have any non-boundary 2-legged cycle, and

(2) internal faces (which are orthogonal polygons) of an orthogonal drawing ofGprimal

form a rectilinear dual of Gdual.

Proof. We use the following procedure to construct Gprimal from a given Gdual, and

then show that Gprimal indeed satisfies the conditions stated in the lemma.

Input: Gdual - a simple, connected and internally triangulated plane graph

Output: Gprimal

- Suppose CO = (v1, v2, . . . , vs) is the outer cycle of Gdual, which may have re-

peated vertices.

- Add a new vertex t in the outer face of Gdual, and then triangulate the outer face

by adding edge {vi, t} for 1 ≤ i ≤ s to construct a triangulated plane multi-graph

G′

- Take the dual of G′ to yield Gprimal.

48

See Fig. 3.14 for examples of Gdual, G′ and Gprimal.

It is clear that Gprimal is biconnected (otherwise Gdual is not connected) and 3-

regular (otherwise Gdual is not internally triangulated).

Suppose Gprimal has a non-boundary 2-legged cycle C. Let F1 and F2 be its two

neighboring faces in the outer region of C. Let v1 and v2 be two vertices in Gdual that

correspond to F1 and F2, respectively. Then there must be multi-edges linking v1 and

v2 in Gdual since the two legs of C both border F1 and F2, which contradicts the fact

that Gdual is a simple graph. Hence Gprimal does not have any non-boundary 2-legged

cycle. The fact that internal faces of an orthogonal drawing ofGprimal form a rectilinear

dual of Gdual directly follows from the weak duality between Gprimal and Gdual.

e5

e4

t

Gdual

Gprimal

G’
T

u

v
w

x y

e1

e1

e2

e2

e3

e3 e4

e1

e2

e3

e5

Figure 3.14: The construction of Gprimal and the block-cutvertex tree of Gdual.

Recall that our goal is to characterize graphs Gdual that admit orthogonally convex

Q-floorplans given an orthogonally convex polygon Q, and subsequently realize such

floorplans. We use numSide(P) to denote the number of sides of the polygon P with

non-corner vertices neglected. As we shall see later, the number of the boundary critical

paths of Gprimal is the key behind realizability of a Q-floorplan.

Lemma 3.6. Let G be a biconnected plane 3-graph (may have multi-edges) with k

boundary critical paths, and Q be an orthogonally convex polygon. We have

(1) min{numSide(D(CO)) | D is an orthogonally convex drawing of G} = max{4,

2k − 4}, and

49

(2) if numSide(Q)≥max{4, 2k−4}, there is an orthogonally convex drawingD(G)

such that D(CO) is combinatorially equivalent to Q.

Proof. First, we show that for any orthogonally convex drawing D(G), numSide(

D(CO)) ≥ max{4, 2k−4}. According to Lemma 3.1, for any boundary critical path P

of two ends x and y, the number of convex corners located in the P(x⌢y) of D(CO) is at

least one more than that of concave corners. Since all critical paths are edge-disjoint by

Lemma 3.2, the total number of convex corners inD(CO)must be at least k. Therefore,

the total number of corners of D(CO) is at least k + (k − 4) = 2k − 4 (since number

of convex corners must be four more than that of concave corners in an orthogonal

polygon), and so is the number of sides. Since each orthogonal polygon must contains

at least 4 sides, we conclude that numSide(D(CO)) ≥ max{4, 2k − 4}.

Second, we show that for any orthogonally convex polygon Q of numSide(Q) ≥

max{4, 2k − 4}, we can construct an orthogonally convex drawing D(G) such that

D(CO) is combinatorially equivalent to Q. Let the circular order (in counter-clockwise

orientation) of corners of Q be (v0, v1, . . . , vs−1). Since the number of convex corners

is exactly four more than the number of concave corners, there exist four indices 0 ≤

i0 < i1 < i2 < i3 ≤ s − 1 such that vit , v(it−1) mod s are convex corners, and st =

(vit , . . . , vi(t+1) mod 4−1) is a sequence of alternation of convex and concave corners, for

0 ≤ t ≤ 3.

Now we are in a position to start the construction, which is based mainly on the

algorithm described in Section 3.4. Since the number of bends inside Q is irrelevant,

we can add to G a sufficient large amount of 2-vertices by subdividing edges not in CO.

Every 2-vertex in CO is removed by contraction, and add to each boundary critical path

P a 2-vertex by subdividing an edge in P .

If k < 4, 4 − k 2-vertices are added to CO at arbitrary positions, as long as we do

not put all the k 2-vertices in P(x⌢y) for any P in SG whose two ends are x and y. This

is easy since all the paths in SG are edge-disjoint.

The next step is to verify that the current graph admits a no-bend orthogonally con-

vex drawing by examining the conditions in Theorems 3.2 and 3.5. Conditions in

50

i1

i2

i3

i0

j1 j2

j3

j0

Q

j0

j0

j3

j3
j1

j1

j2

j2

G

Figure 3.15: Illustration of the proof of Lemma 3.6.

Theorem 3.2 are automatically satisfied since an arbitrary amount of 2-vertices for

edges not in CO can be added. Condition 1 in Theorem 3.5 is also met. Now assume

there exists a P in SG contradicting condition 2 in Theorem 3.5, that is, CO \ P con-

tains no 2-vertices. Since all the 2-vertices are located in P , every boundary critical

path must edge-intersect with P , and hence contain P as a subpath. Due to the fact that

critical paths are mutually edge-disjoint, G contains at most 1 boundary critical path.

According to our strategy of adding additional 2-vertices when k < 4, P cannot contain

all the 2-vertices in CO, which is a contradiction to the assumption that CO \P contains

no 2-vertices. Hence condition 2 in Theorem 3.5 must be met, too.

Next, we construct a desired drawing based on the drawing algorithm described in

the proof of Theorem 3.3.

Similarly, we let (u0, u1, . . . , ur−1) be the circular order(in counter-clockwise ori-

entation) of 2-vertices in CO. Four indices 0 ≤ j0 < j1 < j2 < j3 ≤ r − 1 are chosen

such that (j(t+1) mod 4 − 1− jt) mod r is less than or equal to the number of concave

corners in st, for 0 ≤ t ≤ 3. Let dt denote the difference of the number of concave

corners in st and (j(t+1) mod 4 − 1− jt) mod r.

Consider the three cases and their sub-cases in the construction detailed in the proof

51

of Theorem 3.3. Let uj0 , uj1 , uj2 , uj3 be the four designated vertices of G. Since we

have a sufficient amount of 2-vertices for every non-boundary path, when case 1 occurs

for the outer face being F1, we can always forbid sub-case 3, and similarly sub-case 3

of case 3 and sub-case 1 of case 2 can be excluded.

Whenever case 2 occurs for the outer face being F1, we always choose sub-case 2.2

(it is easy to see that sub-case 2.2 is always available if we never choose sub-case 2.1

whenever F1 is the outer face). If the algorithm is executed in this way, it is easy to see

that when the algorithm terminates, all the 2-vertices in CO become convex corners.

Due to the preference of sub-case 2.2 and the orthogonally convexity of D(CO), the

portion of D(CO) between ujt and uj(t+1) mod 4 contains exactly (j(t+1) mod 4 − 1− jt)

mod r pairs of convex corners and concave corners, for 0 ≤ t ≤ 3. Therefore, our

result follows after adding dt pairs of convex and concave corners to the portion of

D(CO) between ujt and uj(t+1) mod 4 , for each 0 ≤ t ≤ 3.

See Fig. 3.15 for a graphical illustration for the proof. For simplicity, only the

boundary contour of G is drawn, omitting everything other than the r 2-vertices de-

scribed in the proof. The corners circled by the dotted ellipses are produced by the

extension of sub-case 2.2 of case 2; the corners circled by the dash-dotted ellipses are

added in the last, after the execution of the no-bend orthogonally convex drawing algo-

rithm.

The concept of critical paths turns out to be pretty clean in the dual setting. We use

TG to denote the block-cutvertex tree of G. As we shall see later in Lemma 3.7, leaves

in TGdual
can be put into one-to-one correspondence with critical paths in Gprimal.

Let {v, u} be an edge inE(TGdual
) such that v is a cut-vertex. Now umust be a block.

Let Vv,u be the vertex set of the component in Gdual \ {v} that contains some vertices

in block u, and Fv,u denote the corresponding face set in Gprimal. Since Gdual is inter-

nally triangulated, the edges in E(Gdual) that link v to vertices in Vv,u must be located

consecutively in the circular list of edges incident to v that describes the combinatorial

embedding of Gdual. We denote such an edge set as Ev,u. According to the definition

52

of duality of plane graphs and the algorithm for constructing Gprimal from Gdual, these

edges form a path in Gprimal. We write Cv,u to denote the cycle that is the boundary of

the union of faces in Fv,u. For instance, in Fig. 3.14 the set Ev,u is {e1, e2, e3}, which

forms the non-boundary contour path with respect to Cv,u=(e1, e2, e3, e4, e5).

Lemma 3.7. {Boundary contour path ofCv,u | u is a leaf of TGdual
, {v, u} ∈ E(TGdual

)}

is the set of boundary critical paths in Gprimal.

Proof. We first prove that a 2-legged cycle is proper if and only if it is Cv,u for some

edge {v, u} in E(TGdual
) such that v is a cut-vertex.

Following the respective definitions, it is easy to verify that Pv,u is the intersection

of Cv,u and the contour of Fv (i.e. the face in Gprimal corresponding to the vertex v in

Gdual), and Fv is the only inner face that borders Cv,u in its outer region. Therefore,

Cv,u is a boundary 2-legged cycle, with Pv,u being its non-boundary contour path, and

FCv,u,Pv,u being Fv. Since Gdual \ {v} has more than 1 component, there must be some

face not inFv,u that also bordersFv, and hence the contour ofFv intersectsCO ofGprimal

in more than one path. Therefore, Cv,u is proper.

Conversely, letC be a proper 2-legged cycle inGprimal, andP being its non-boundary

contour path. Due to the properness ofC, the boundary of FC,P intersectsCO ofGprimal

in more than one path. Let v be the vertex in Gdual to which FC,P corresponds, and U

be the subset of V (Gdual) that corresponds to the faces in G(C). It is easy to see that

v is a cut-vertex, and U is a component in Gdual \ {v}, and hence C = Cv,u for some

block u (the block neighboring v that belongs to the component).

We define a partial order≺ on proper 2-legged cycles in Gprimal such that C1 ≺ C2

if and only if G(C1) ⊆ G(C2). From the definition of critical paths and the fact that

Gprimal does not contain any non-boundary 2-legged cycle, a path P is a critical path

if and only if it is a boundary contour path of a proper 2-legged cycle C such that C is

minimal with respect to ≺. To conclude the proof, it suffices to show that {Cv,u | u is a

leaf of TGdual
, {v, u} ∈ E(TGdual

)} contains the minimal elements.

According to basic properties of block-cutvertex trees, let {v1, u1}, {v2, u2} be two

53

edges inE(TGdual
) such that v1 and v2 are cut-vertices, is easy to see that Fv1,u1 ⊂ Fv2,u2

if and only if there is a path (v1, u1, . . . , v2, u2) in TGdual
. Since G(Cv,u) is exactly the

union of faces in Fv,u, we conclude that {Cv,u | u is a leaf of TGdual
, {v, u} ∈ E(TGdual

)}

contains the minimal elements.

In Fig. 3.14, the boundary contour paths of Cv,u and Cx,y are the paths drawn in

dashed and dotted lines, respectively. These two paths are the boundary critical paths

of Gprimal. Following Lemmas 3.5, 3.6, 3.7 and Theorem 3.4, we have

(1)

(2)

(3)

a b

a

b

Figure 3.16: Key concepts in Q-floorplanning.

Theorem 3.8. For any internally triangulated graph Gdual and orthogonally convex

polygon Q, let k be the number of leaves in the block-cutvertex tree of Gdual. Gdual

admits an orthogonally convex Q-floorplan iff numSide(Q) ≥ max{4, 2k − 4}. The

floorplan can be constructed in linear time.

Fig. 3.16 summarizes the key concepts presented above. Fig. 3.16(1) is a decom-

position of Gdual based on the block-cutvertex tree. Fig. 3.16(2) shows the respective

54

decomposition inGpromal, in which the two boundary critical paths corresponding to the

two cut vertices are clearly marked. The final Q-floorplan is displayed in Fig. 3.16(3),

where Q is an L-shape polygon.

55

Chapter 4

Rectilinear Duals without T-shape

Most algorithms in recent years leading to low polygonal complexity rectilinear

duals require the use of ⊤-shape polygons or their extensions [3, 4, 8].

In particular, the following theorem was proven:

Theorem 4.1 ([4]). Every maximal plane graph admits an area-universal rectilinear

dual using only non-rotated ⊤-shape polygons.

See Fig. 2.3 for an example of such rectilinear dual. Please refer to Section 2.3 for

the definition of non-rotated ⊤-shape polygon.

Theorem 4.1 is tight in the sense that there exists a maximal plane graph such that

all its rectilinear duals have polygonal complexity at least 8, and we know that⊤-shape

has 8 sides.

This gives rise to an intriguing question whether other 8-sided polygons than ⊤-

shape (such as Z-shape) and their degenerated cases are sufficient in constructing recti-

linear duals of any maximal plane graphs. In simple words, is ⊤-shape really the most

powerful 8-sided polygon?

As it turns out, in this chapter, we are able to answer the question by showing that

the polygonal complexity of ⊤-free rectilinear dual of maximal plane graph is 12 by

proving the following:

1. There exists a maximal plane graph such that all its ⊤-free rectilinear duals have

polygonal complexity at least 12.

2. Every maximal plane graph admits a rectilinear duals using only monotone stair-

case polygons of at most 12 sides.

56

As a result, indeed ⊤-shape is the most powerful 8-sided polygons. Without its

presence, the required polygonal complexity increases by 12− 8 = 4.

Again see Section 2.3 for the definition of ⊤-free rectilinear duals and monotone

staircase polygons. For the sake of convenience, we restate the definition of Q-free

rectilinear duals here:

Definition 4.1. Let R be a rectilinear dual, we call it Q-free iff for each polygon of

shape P used in R, we have Q ̸≼ P .

Recall that Theorem 2.4 gives a very clean characterization for area-universal rect-

angular duals. In contrast, we still know very little for the following problems:

1. Characterize the rectilinear duals that are area-universal.

2. Characterize the graphs that admit an area-universal rectilinear dual.

In particular, we still do not know whether every maximal plane graph admit a ⊤-

free rectilinear dual. In other words, is⊤-shape really essential in constructing an area-

universal rectilinear dual for maximal plane graph?

In an attempt to (partially) solve the above problems, in this chapter we also prove

the following results:

1. There exists a maximal plane graph that does not admit any monotone staircase

area-universal rectilinear dual.

2. For Hamiltonian maximal plane graphs, we can easily construct an rectilinear

dual using only non-rotated Z-shape polygons.

4.1 Related Works

Yeap and Sarrafzadeh [45] showed that every maximal plane graph admits a recti-

linear dual using polygons of at most eight sides, which matches the lower bound. Liao

et al. [31] later improved the above result by showing that it suffices to use only I-shape,

57

�-shape, and ⊤-shape polygons, whereas in [45], Z-shape polygons are also required.

See Fig. 2.1 for these four types of polygons.

In fact, I-shape and �-shape polygons are degenerated cases of ⊤-shape polygons,

as an I (resp., �) can be obtained from a ⊤ by chopping off two ends (resp., one end) of

the horizontal segment of the ⊤.

In [19], rectangular duals under some constraints about relative positions between

objects were studied. In a broader sense, this work fits into the line of research on

constrained rectilinear duals, where the usable shapes or their relations are constrained.

Our characterization for orthogonally convex rectilinear duals in Section 3.7 is also

related to the line of research in this chapter.

4.2 Lower Bound of Polygonal Complexity

In this section, we prove that⊤-free rectilinear duals of maximal plane graphs have

polygonal complexity of at least 12, which is higher than the 8 in the general case when

⊤-shape polygons are allowed.

We define the plane graph H0 in Fig. 4.1, which is a key structure behind the higher

polygonal complexity of⊤-free rectilinear duals. The following lemma indicates that a

presence of the structure H0 in a graph inevitably requires two concave corners in any

of its ⊤-free rectilinear duals.

Lemma 4.1. Let H be a subgraph of a maximal plane graph G such that H is isomor-

phic toH0 (with x, y and z being the three vertices on the outer cycle) andG(H) = H .

For any ⊤-free rectilinear dual of G, there must be at least two concave corners in

polygons associated with x, y, and z which are located along the border between the

region {x, y, z} and the region {u, v, w, c}.

Proof. Clearly there must be at least one concave corner. If there is only one such

concave corner, without loss of generality, we let x be the one containing the concave

corner. Now, the boundary of the region of {u, v, w, c}must be a rectangle, as illustrated

in the upper drawings of Fig. 4.1. Since the polygon c in Fig. 4.1 touches x and since x

58

u

v

w

x

y
z

c

H0

x

y

z

c

u

vw

p1

p2 p3

p4

c c c w w w
uu

u

v v v

xxx

y

y

y

z z z

Figure 4.1: Definition of H0 and illustration of the proof of Lemma 4.1.

borders the rectangular region {u, v, w, c} along its west and north sides, by symmetry,

we can assume that c touches the west boundary without loss of generality. We identify

four points p1, p2, p3 and p4 on the boundary of c as illustrated in Fig. 4.1. By setting

a = p2, b = p3, S1 = the sequence of points between p1 and p2, S2 = (), and S3 =

the sequence of points between p3 and p4, it is easy to see that if all the polygons are

drawn rectilinearly, such assignments must satisfy the statement of Fact 2.4, and hence

we must have ⊤≼ c, which is a contradiction.

With the help of the above lemma, we are in a position to prove the following main

theorem of this section by a simple counting method.

Theorem 4.2. There exists a maximal plane graphG such that every⊤-free rectilinear

dual of G must have polygonal complexity of at least 12.

Proof. Let G0 = (V, E) be an n-node maximal plane graph with n > 10. We replace

each inner face of G0 with a copy of H0 by adding new vertices and edges. Let the

resulting graph be G1, and we let R be any ⊤-free rectilinear dual of G1. According

to Lemma 4.1, since the number of inner faces in G0 is 2n− 5, the number of concave

corners in polygons associated with vertices of V must be at least 2 × (2n − 5) =

4n − 10 > 3n = 3|V |. Therefore, there must be a polygon in R containing at least 4

concave corners. By Fact 2.1, such a polygon has at least 4+(4+4) = 12 corners.

59

In the lower part of Fig. 4.1, we give three examples of rectilinear duals of H0.

The left two drawings are both ⊤-free and contain two concave corners in polygons

associated with x, y, and z; the rightmost one contains only one concave corner but the

polygon associated with c is a ⊤-shape. These two ⊤-free drawings serve as prototyp-

ical concepts of the algorithm presented in the next section.

4.3 Construction of 12-sided ⊤-free Rectilinear Duals

In this section, we present an algorithm to construct 12-sided⊤-free rectilinear duals

for maximal plane graphs. Our construction uses only monotone staircases, which are

orthogonally convex ones that cannot degenerate to ⊤-shape (Fact 2.3).

Our algorithm is an inductive approach based on the separation-trees described in

Section 2.4. All we need to do is to devise a method inserting the rectangular dual of

G△ \△ to the current rectilinear dual during the course of the construction meeting the

following:

1. Every polygon preserves the shape of a monotone staircase;

2. The total number of concave corners on the boundary of each polygon is at most

4.

4.3.1 Un-contracting a Separating Triangle

When we un-contract a triangle △ = {x, y, z}, a rectangular space is allocated to

accommodate a rectangular dual of G△ \△, which in turn imposes (at least) a concave

corner to one of {x, y, z}. Without loss of generality, we assume that such a concave

corner is associated with the polygon x.

As observed in Section 4.2, one concave corner in {x, y, z} may not be enough in

some cases. In order to enforce the staircase constraint, we further annotate one of its

four sides as "allowed to add a concave corner", which is indicated by an arrow in our

illustrations. See Fig. 4.2.

60

Since polygon x is a monotone staircase, x borders either the entire west and north

boundary or the entire east and south boundary of the rectangular space. Therefore,

there are eight cases in total since the arrow can point to any one of the four sides of the

rectangular boundary. It is sufficient to consider the following two cases (see the left

illustration of Fig. 4.2):

1. Polygon x borders the west and the north sides, and the arrow points to the north

side;

2. Polygon x borders the west and the north sides, and the arrow points to the east

side.

The remaining cases are symmetric to one of the above (by flipping the entire draw-

ing around the north-west to south-east line or the north-east to south-west line).

We also fix polygon y to be the one that borders the east side of the rectangular

space.

A key in our un-contracting process is to identify three special vertices associated

with each separating triangle. Consider Fig. 4.2. Let u, v, and w be the three vertices in

G△ \ {x, y, z} such that u, v, and w are adjacent to {x, y}, {y, z}, {x, z}, respectively.

It is easy to see that u, v, and w are uniquely determined; otherwise, there must be a

separating triangle in G△, which contradicts its definition.

Unless |V (G△)| = 4 (in this case, u = v = w), u, v and w must be different from

each other (otherwise, a separating triangle can be found in G△).

When the rectangular dual of G△ \ {x, y, z} is constructed to fill the rectangular

space, we further assume the rectangular dual to have polygon w adjacent to the entire

west side. Such a drawing must exist since there is no separating triangle inside the

quadrangle {x, y, z, w} (See Fig. 4.2).

If we consider the children of the node associated with△ = {x, y, z} in the separa-

tion tree, there are two types of separating triangles:

1. Separating triangles that are either {x, y, u}, {y, z, v}, or {x, z, w}. (Note that

some of these three triangles may not be separating triangles.)

61

2. Separating triangles in the subgraph surrounded by vertices {x, u, y, v, z, w}. See

Fig. 4.2.

x

y

z

x

y

z

u

v

w

x

y
z

x

yz
u=v=w

u

v

w

u=v=w

Figure 4.2: Location of u, v, w in the rectangular space for separating triangle {x, y, z}.

Now, we are in the position to present how we make a rectangular space for each

separating triangle.

Type 1 separating triangles. We first consider the Type 1 separating triangles, i.e., the

separating triangles that are either {x, y, u}, {y, z, v}, or {x, z, w}.

Depending on whether the arrow points to the north side or the east side of the

rectangular space for G{x,y,z}, the solutions are depicted in the upper and lower parts of

Fig. 4.3, respectively.

The rectangular regions surrounded by dashed boundaries in the rightmost figures

of Fig. 4.3 are the rectangular spaces for {x, y, u}, {y, z, v}, and {x, z, w} when we

un-contract them in later iterations, with some of which possibly be void if they are not

separating triangles.

Special attention should be given to the directions of the arrows in those regions.

The checkered regions represent those allocated for the special vertices u, v, and w.

The white spaces in Fig. 4.3 are parts of rectangular duals of the subgraph sur-

rounded by vertices {x, u, y, v, z, w}, and the white dots indicate points at which there

62

may be separating triangles when Type 2 separating triangles are included.

Type 2 separating triangles. Recall from Fig. 2.6 that when a separating triangle is

un-contracted, a rectangular region is inserted at the juncture of the three polygons as-

sociated with the three vertices of the separating triangle. Depending on the orientation

of the three polygons, there are four cases as illustrated in the upper part of Fig. 4.4.

Attention should be given to the arrows in those regions, which indicate the sides

where additional concave corners are possible during the course of future un-contraction.

Although Fig. 4.4 shows the general rule for allocating spaces to accommodate Type

2 separating triangles, there is an exception. Consider the white point incident to both

u and x in the upper illustration of Fig. 4.3 (see also the lower illustration of Fig. 4.4).

One can see from Fig. 4.3 that the polygon u stretches upwards in order to make room

for the separating triangle {x, u, y} (i.e., the top-most red region in the upper illustra-

tion of Fig. 4.3). As a result, we apply rule (3) in Fig. 4.4, as opposed to rule (4), as

illustrated in the lower illustration of Fig. 4.4. Such special care prevents the creation

of an additional (undesired) concave corner to {x, y, z}. A similar situation occurs at

the juncture between u and y in the lower illustration of Fig. 4.3.

Bounding Polygonal Complexity. It is clear from the above that all operations preserve

monotone staircase shape. What remains to do is to count the number of concave corners

in each polygon s.

(Case: s /∈ {u, v, w}) In Fig. 4.4, when we make a rectangular space at point p, if

p is a non-corner of polygon s, no concave corner is imposed on s. Therefore, for any

polygon s not belonging to {u, v, w}, the number of concave corners imposed on s is

at most four since a rectangle has four corners.

(Case: s = u = v = w) If s = u = v = w, it is easy to see that we also impose

at most four concave corners on s. In Fig. 4.3, we make one concave corner and three

arrows (which may potentially become concave corners) to s.

(Case: s ∈ {u, v, w}, u, v, w are distinct vertices) For this case, the results are

summarized in the following, which can be easily observed in Fig. 4.3:

63

u: 0 concave corner, 1 arrow, and 3 white dots; the total amount is 4.

v: 1 concave corner, 1 arrow, and 3 white dots; the total amount is 5.

w: 0 concave corner, 1 arrow, and 2 white dots; the total amount is 3.

So far, our algorithm can compute a monotone staircase rectilinear dual that uses

polygons of at most 14 (=2 × 5 + 4) sides, as the number of sides = 2 × (the number of

concave corners) + 4. To lower the polygonal complexity from 14 to 12, our approach

is to transfer one concave corner from v to w. Our solution is presented in the following

subsection.

x

y

z

x

y

z

u

v

w

u=v=w

u

v

w

u=v=w

Figure 4.3: Illustration of un-contracting Type 1 triangles.

4.3.2 Transferring Concave Corners

Let S = V (G△) \ {x, y, z}, and given a rectangular dual R0 of G△ \ {x, y, z}

meeting the conditions described in Section 4.3.1:

64

(1) (2) (3) (4)

x

u
u

x x

u

Figure 4.4: Illustration of un-contracting Type 2 triangles.

1. The west and north boundaries of R0 are adjacent to x, the east and south bound-

aries of R0 are adjacent to y and z, respectively.

2. w (the unique vertex adjacent to x and z) borders the entire west boundary of R0.

We define a relation "←" on S:

Definition 4.2. Given S and R0, "←" is a relation on S such that: s ← s′ iff (1) the

west side of s is more west than (i.e., on the left-hand side of) the west side of s′, and

(2) there is a point p in R0 such that p is a 180◦ corner in s and a 90◦ corner in s′.

Regarding the separating triangle {x, y, z} discussed in Section 4.3, the following

lemmas are easy to observe. Lemma 4.2 directly follows from the fact that w is the

unique vertex adjacent to x and z.

Lemma 4.2. w is the only vertex that touches both the north boundary and the south

boundary of R0.

Lemma 4.3. There exists a path v = s1, s2, . . . , sk = w in S such that si+1 ← si for

1 ≤ i ≤ k − 1.

Proof. If such a path does not exist, there must exist a vertex t ̸= w such that s ̸← t

for all s ∈ S. It means that the north-west corner of t touches the north boundary of

65

R0 and the south-west corner of t touches the south boundary of R0, which contradicts

Lemma 4.2.

Let s1, s2, . . . , sk be the path that satisfies Lemma 4.3. Our concave corner transfer

algorithm works as follows: For i = 1 to k, if there is a separating triangle △′ =

{si, si+1, t} for some t ∈ S, we re-build the rectangular space for △′ as depicted in

Fig. 4.5, which is capable of "shifting" 1 concave corner (or arrow) from si to si+1.

The procedure terminates if there is no such triangle; in this case, the number of

concave corners in si must be smaller than four before the execution of this algorithm.

Therefore, all polygons must have at most four concave corners after the concave corner

transfer algorithm ends.

Fig.6.

Fig.7.

Fig.8.

SW

NE

Low

Up

r

s

t

(1)

(2)

c

s3

x=r s2

s1

 y

z

(3)

r
a1

b1

a2

b2

∆

∆′

(4)

si

si+1

t

si

si+1

t

si

si+1

t

si

si+1

t

si

si+1

t

si

si+1

t

si

si+1

t

si

si+1

t

(1) (2) (3) (4)

x

u
u

x x

u

Figure 4.5: Illustration of transferring concave corners.

It is easy to see that the algorithm presented in this section for constructingmonotone

staircase rectilinear duals can be implemented in linear time. As a result, we conclude

the following main theorem of the chapter:

Theorem 4.3. ⊤-free rectilinear duals for maximal plane graphs have polygonal com-

plexity of at most 12. Moreover, there is a linear time algorithm that constructs a mono-

tone staircase rectilinear dual for any maximal plane graph.

66

4.4 Area-universal Drawings

In view of our earlier discussion, it is natural to investigate how or whether area-

universal rectilinear duals can be constructed in the absence of ⊤-shape polygons.

In this section we show that restricting usable shapes to monotone staircases is insuf-

ficient to construct area-universal rectilinear duals for maximal plane graphs in general.

SW

NE

Low

Up

r

s

t

(1)

(2)

c

s3

x=r s2

s1

 y

z

(3)

r
a1

b1

a2

b2

 !

(4)

Figure 4.6: Illustration of concepts in Section 4.4.

To proceed further, we require some definitions. We denote the most south-western

point and the most north-eastern point of a monotone staircase as SW and NE, respec-

tively. Separated by these 2 points, the boundary of the polygon is divided into the

upper part and lower part naturally, which we denote as Up and Low, respectively.

See Fig. 4.6(1) for an illustration. We define relations −−→
X,Y

for X ∈ {SW, NE},

Y ∈ {Up, Low}, and give a condition for a rectilinear duals to be not area-universal.

Definition 4.3. For X ∈ {SW, NE}, Y ∈ {Up, Low}, and any two polygons s, t of

monotone staircase shape, s −−→
X,Y

t iff X(s) is located in Y (t), where X(s) and Y (t)

denote the X point of polygon s and the Y boundary of polygon t, respectively.

Lemma4.4. For anymonotone staircase rectilinear dualR, if there exist three polygons

r, s, t and Y ∈ {Up, Low} such that s −−−→
NE,Y

r, t −−−→
SW,Y

r, and NE(s) is more south-

west than SW (t), then R is not area-universal.

Proof. For any drawing of R, consider a Cartesian system formed by setting x-axis to

be the east-west line passing through NE(s) and setting y-axis to be the north-south

67

line passing through SW (t), then s, t must be confined in quadrant I, III, respectively

(see Fig. 4.6(2) for an illustration). It is easy to see that any area-assignment where

both the area of s and the area of t surpass 25% of the area of the rectilinear dual is not

realizable.

Similar to what we have done in Section 4.2, let G be a maximal plane graph and

H be a sub-graph of G such that H is isomorphic to H0 and G(H) = H . We consider

a monotone staircase rectilinear dual R of G. It is easy to observe that the border be-

tween 2 monotone staircase polygons cannot intersect with both Up and Low of one of

them (otherwise, the other cannot be monotone staircase). Therefore, by the pigeonhole

principle, in H we have that two of {u, v, w} border c in one of {Up(s), Low(s)}. We

denote these two vertices as s1, s2, and the border between s1, c is more south-west than

that of s2, c. Let r ∈ {x, y, z} be the unique vertex adjacent to both s1 and s2, the next

lemma reveals a relationship between s1, s2, c, and r.

Lemma 4.5. If we require R to be area-universal, exactly one of the following must be

satisfied for H:

1. SW (r) is located in Up(c), s1 −−−−→
NE,Up

r, and s2 −−−−−→
NE,Low

r.

2. NE(r) is located in Up(c), s1 −−−−→
SW,Low

r, and s2 −−−−→
SW,Up

r.

3. SW (r) is located in Low(c), s1 −−−−−→
NE,Low

r, and s2 −−−−→
NE,Up

r.

4. NE(r) is located in Low(c), s1 −−−−→
SW,Up

r, and s2 −−−−→
SW,Low

r.

Proof. If both SW (r) andNE(r) are not located in one of Up(c) and Low(c), it is easy

to see that setting (s, t, r) = (s1, s2, c) satisfies the condition in Lemma 4.4, and hence

R is not area-universal. Therefore, the first part (which is concerned with the location

of SW (r) or NE(r)) of one of the four statements is satisfied. It remains to prove

that for each statement, the first part implies the remaining parts; By symmetry, all four

statements are inherently the same, therefore it suffices to consider statement (1) only,

that is, showing that SW (r) is located in Up(c) implies s1 −−−−→
NE,Up

r and s2 −−−−−→
NE,Low

r.

68

Let s3 be the only vertex in {u, v, w} \ {s1, s2}, and we, without loss of generality,

let x = r. Since SW (r) is located in Up(c), x cannot touch the most south-western

point of c ∪ s3, and we denote this point as p. It forces both y and z touch p since if it

is touched by only one of {y, z}, that one cannot remain monotone staircase. It is not

hard to see in Fig. 4.6(3) that if s1 −−−−→
NE,Up

r is not satisfied, then NE(s1) is a locally

most north-eastern point in Low(z), which makes z not monotone staircase. Similar

contradiction can be made for y when s2 −−−−−→
NE,Low

r is not satisfied. Hence the lemma

follows.

Theorem 4.4. There exists a maximal plane graph G such that every monotone stair-

case rectilinear dual of G is not area-universal.

Proof. The idea hehind this proof is similar to that of Theorem 4.2. Let G0, G1, S, and

n be the same as what they are in the proof of Theorem 4.2. Let R be a monotone

staircase rectilinear dual of G1. According to Lemma 4.5, for each separating triangle

△ in G1 such that G(△) is isomorphic to H0, we define a function f that chooses a

vertex f(△) = r ∈ △ such that there are two vertices a, b ∈ V (G(△)) \ △ satisfying

either a −−−−→
NE,Up

r and b −−−−−→
NE,Low

r or a −−−−→
SW,Up

r and b −−−−→
SW,Low

r.

Since the number of △ in G1 such that G(△) is isomorphic to H0 is 2n − 5 > n,

we can find two such triangles △, and △′ such that f(△) = f(△′). As illustrated in

Fig. 4.6(4), the condition stated in Lemma 4.4 must be satisfied, and hence, the drawing

of G1 must not be area-universal.

4.5 More about Staircase Polygons

Following the impossibility result in the previous section, we study monotone stair-

case polygons in a more restricted setting. It is easy to observe that Theorem 4.4 still

holds even restricting to plane 3-trees since replacing a triangle with H0 preserves the

property of being a plane 3-tree. Beside plane 3-trees, Hamiltonian maximal plane

graphs, which subsume maximal outer plane graphs and 4-connected plane graphs, are

another important sub-class of maximal plane graphs.

69

Contrasting the above results, the following theorem can be shown easily by a slight

modification to the⊔-shape cartogram drawing algorithm described in [4] (by reversing

the construction order of the right part, we can get a non-rotated Z-shape drawing).

Theorem 4.5. All Hamiltonian maximal plane graphs admit 8-sided area-universal

monotone staircase rectilinear duals.

Combining the result in [4], we conclude that all Hamiltonian maximal plane graphs

admit rectilinear duals meeting the following requirements:

• The drawing consists of non-rotated⊤-shape (non-rotated⊔-shape, or non-rotated

Z-shape) only.

• The drawing is area-universal.

The above gives rise to the problem of whether every Hamiltonian maximal plane

graph admits a non-rotated W-shape rectilinear dual (as W-shape is the only 8-sided

rectilinear polygon other than ⊤-, ⊔-, Z- shapes). See Fig. 4.7(1) for a picture of a W-

shape. We denote a monotone staircase whose Low contains exactly one convex corner

and no concave corner as a monotone strict staircase. It is easy to see that a non-rotated

W-shape is exactly the 8-sided monotone strict staircase. We prove the following result:

Theorem 4.6. For any k, there is a Hamiltonian maximal plane graph that does not

admit any k-sided monotone strict staircase rectilinear dual.

Proof. LetG be a Hamiltonian maximal plane graph, and let {x, y, z} be its outer cycle.

Given any monotone strict staircase rectilinear dual R for G, without loss of general-

ity, we let the polygon associated with z be the one touching the south-east corner of

the rectangular boundary of R. The region surrounded by polygons x, y, z must be an

upside-down monotone strict staircase, as depicted in Fig. 4.7(2).

Let △ = {a, b, z} be any separating triangle such that {a, b} ∩ {x, y} = ∅. Since

polygons of a, b are both monotone strict staircases, there must be at least one concave

corner of polygon z residing in the border between polygon z and the region interior

70

(4) (2)

c

x

y

z
b

a

z

(3) (1)

Figure 4.7: Illustration of the proof of Theorem 4.6.

of △ (otherwise, the region interior of △ cannot be enclosed by polygons {a, b, z}).

See Fig. 4.7(3). As a result, a necessary condition for R to be a k-sided monotone

strict staircase rectilinear dual is that the number of interior-disjoint separating triangles

△ = {a, b, z} such that {a, b}∩ {x, y} = ∅ is at most (k− 4)/2 (recall that the number

of convex corners of a rectilinear polygon is four plus the number of concave corners,

and that the number of sides equal the number of corners). Next, we show that for any

number t, there is always a Hamiltonianmaximal plane graphG in which each boundary

vertex is contained in at least t such triangles. Fig. 4.7(4) showcases such an example.

In this scheme, we can have as many interior-disjoint triangles containing a boundary

vertex as we want by adding more dotted-lines linking a boundary vertex to the center

vertex c. Also, the graph remains to be Hamiltonian if we add a new vertex v inside

each triangle△ in the shaded region and add an edge between each vertex in△ and v

(making△ a separating triangle). As a result, we conclude the proof.

However, if unbounded polygonal complexity is allowed (i.e., k → ∞), we have

the following theorem:

Theorem 4.7. Every maximal plane graph admits a monotone strict staircase rectilin-

ear dual, having possibly unbounded polygonal complexity.

Proof. For anymaximal plane graphG, we construct a desired drawing using the frame-

work of building rectilinear duals based on separation-trees described in Section 2.4. To

meet the requirement of using only monotone strict staircases, it suffices to make sure

71

that during the construction, each addition of a concave corner to a polygon s preserves

the property that s is a monotone strict staircase.

We only add concave corners when a separating triangle△i is un-contracted, since

we need to make a rectangular space to plug-in the rectangular drawing of G△i
\△i to

the current drawing (see Fig. 2.6 for an conceptual illustration). It is easy to see that if

we make rectangular space according to the rule described in Fig. 4.8, the property that

all polygons are monotone strict staircase can be preserved.

v

x

y

z

(2) (1)

c

Figure 4.8: Illustration of the proof of Theorem 4.7.

We remark that for the special case of k = 6, a 6-sided monotone strict staircase is

exactly non-rotated �-shape, and the maximal plane graphs admitting rectilinear duals

using such shape have been characterized based on Schnyder labeling (Theorem 2.1.7

of [43]).

72

Chapter 5

Convex Polygonal Duals

Recall that in Chapter 1 we mentioned that there is a lack of results and tools to deal

with contact representations of geometric objects that are not necessarily rectilinear.

The goal of the chapter is to extend the study of rectilinear dual to convex polygo-

nal objects. In particular, new tools for contact representations using convex polygons

are presented, and some links between the rectilinear setting and the convex polygonal

setting are established.

Our contributions include the followings:

• A very general drawing style called convex polygonal dual, which subsumes well-

studied drawing styles like proper touching triangle representation and rectangu-

lar dual, is proposed.

• We characterize graphs admitting straight-line convex t-gon representations and

straight-line t-gon representations, which can be regarded as a primal version of

convex polygonal duals. This greatly extends the main result of [2].

• Based on the above result, a characterization for a plane graph to admit a t-sided

convex polygonal dual is presented.

• Using Courcelle's theorem, we derive some useful fixed-parameter tractability

results for convex polygonal duals.

• To further demonstrate the usefulness of our approach, we give quick alternate

proofs for the following existing results based on our techniques:

– Each maximal plane graph admits a 6-sided convex polygonal dual [17].

73

– Each triconnected cubic plane graph admits a proper touching triangle rep-

resentation [28].

5.1 Related Works

There are a few works on contact representations for triangles. Please refer to Sec-

tion 2.6. Also see the PhD thesis of Aerts [1].

For convex polygons beyond triangles, [17] showed an algorithm to a construct

contact representations for any plane graphs using convex polygons of at most 6 sides.

They also proved in [17] that the polygonal complexity of 6 meets the lower bound by

constructing a series of planar graphs that cannot be represented by polygons of at most

5 sides. Much different to our setting in the thesis, they allow the presence of holes in

their drawings.

It has been proved that all Hamiltonian maximal plane graphs admit contact rep-

resentations using convex polygons of at most 5 sides (Corollary 2.2.5 of [43]). As

the drawings they constructed are based on a modification to L-shape rectilinear duals,

there is no hole in their drawings.

To our best knowledge, [20] is the only work on area-universal drawing regarding

geometric objects that are not necessarily rectilinear.

From a primal point of view, the drawing style convex drawing is already well-

studied. See Chapter 5 of [34].

5.2 Terminologies

Some definitions presented below can be seen as extensions or generalizations of

the similar ones in [2].

Definition 5.1. Given a biconnected plane graph G = (V, E) such that all degree 2

vertices are in V (FO(G)), a t-flat angle assignment (t-FAA, for short) is a mapping

from a subset of V \ {v|v ∈ V (FO(G))} to inner faces of G such that:

74

1. Each vertex is assigned at most once;

2. Each inner face F is assigned at least |V (F)| − t times;

3. for each mapping associating a vertex v to a face F , we have v ∈ V (F).

Intuitively speaking, the idea behind assigning v to a face F in a t-FAA is to capture

the presence of a 180o angle surrounding v in the face F in a drawing. Condition (2) is

to ensure that each inner face is drawn as a convex polygon which has at most t convex

corners.

Definition 5.2. A straight line t-gon representation (t-SLR, for short) is a planar draw-

ing such that:

1. each inner face is a polygon of at most t sides, and

2. the outer face is a convex polygon.

A straight line convex t-gon representation (t-convex-SLR, for short) is a t-SLR with an

additional constraint that each inner face is convex.

FAAs are also closely related to the so-called contact systems of pseudo-segments

[15], each of which is a set of non-crossing Jordan arcs where any two of them intersect

in at most one point, and each intersecting point is internal to at most one arc. A contact

system is stretchable if there exists a homeomorphism transforming the contact system

into a drawing where each arc is a straight line. Stretchable contact systems of pseudo-

segments were characterized in [15] based on the notion of extremal points.

Definition 5.3. A point p is an extremal point of a contact system S of pseudo-segments

if the following three conditions are satisfied:

1. p is an endpoint of a pseudo-segment in S.

2. p is not interior to any pseudo-segment in S.

3. p is incident to the unbounded region of S.

75

Theorem 5.1 ([15]). A contact system S of pseudo-segments is stretchable iff each of

its subsystems (i.e., subsets of pseudo-segments) S ′ of cardinality greater than 1 has at

least 3 extremal points.

It is not difficult to see that a t-FAA of a plane graph naturally defines a contact

system of pseudo-segments in which each pseudo-segment is associated with a path

(v1, . . . , vk) meeting the below conditions:

1. k ≥ 2.

2. ∀1 < j < k, vj is assigned to a face containing the two edges {vj−1, vj}, {vj, vj+1}.

3. v1 (vk) is either unassigned or assigned to a face not containing {v1, v2} ({vk−1,

vk}), respectively.

Such a pseudo-segment is said to be induced by an edge {vj, vj+1}, for any 1 ≤ j ≤

k − 1. Note that an edge induces exactly one pseudo-segment.

For ease of explanation, we write SC to denote the set of pseudo-segments induced

by the edges in the cycle C w.r.t. a given t-FAA.

It is clear that a graph admits a t-FAA corresponding to a stretchable contact system

of pseudo-segments iff it admits a t-convex-SLR. With respect to a t-FAA, we call a

corner of an inner face a combinatorial convex corner if it is not assigned to the face.

For a more detailed exposition, the reader is referred to [2].

5.3 Characterizing t-sided Convex Polygonal Duals

A t-sided convex polygonal dual is a contact representation of a plane graph defined

as follows:

Definition 5.4. A t-sided convex polygonal dual is a contact representation of a plane

graph meeting the below conditions:

1. Each vertex corresponds to a convex polygon of at most t sides.

76

2. Adjacency in the graph corresponds to side-contact in the drawing.

3. All convex polygons together form a partition of a convex polygon.

The goal in this section is to give a combinatorial characterization for plane graphs

admitting such drawings.

b
a

c
d

e

f

g h

i

a

d

i

g

c

g

e

c
d

f

i h

a
b

d c

e
g

f

g
e

c
d

f

i e
f

c

a

(1) (2) (3) (4) (5) (6)

’

Figure 5.1: Illustration of concepts introduced in Section 5.3.

In what follows we first derive a characterization for a graph admitting a t-convex-

SLR based on the notion of t-FAAs.

Definition 5.5. LetC be a cycle in a biconnected plane graphGwhose degree 2 vertices

are all in V (FO), and let v be a vertex in C. Given a t-FAA, we call v free in C if one

of the following conditions is satisfied:

1 v is unassigned, or

2 v is assigned to a face F in out(C), and F is not the only face to which v is

incident in out(C).

Moreover, v is strongly-free if Condition 1 above is replaced by

1' v is unassigned, and v is either in the outer face or incident to more than one face

in out(C)

Intuitively speaking, a free vertex (strongly-free vertex) of a cycle C indicates a

corner (convex corner) in in(C). Fig. 5.1(2) is a cycle C in Fig. 5.1(1), which is drawn

in 5-convex-SLR. The vertices c, d, and g are strongly-free vertices of the cycle C.

Fig. 5.1(3) shows the set of pseudo-segments SC for the cycle C. The vertices a, d,

and i are the extremal points in SC . Fig. 5.1(4) is a 6-SLR. As we shall prove in the

77

following theorem, the FAA described in Fig. 5.1(4) cannot be a convex-SLR since the

cycle (c, d, f, g, e) only has 2 strongly-free vertices c and g. Note that the vertex e is free

but not strongly-free. In any drawing realizing that FAA, e must be a concave corner in

the face interior to the cycle (a, c, e, g, i, h).

The following key theorem, one of the main results of this chapter, characterizes

graphs admitting t-SLR and t-convex-SLR in terms of FAAs.

Theorem 5.2. Let G be a biconnected plane graph whose degree 2 vertices are all in

V (FO). G admits a t-convex-SLR (resp., t-SLR) iff there exists a t-FAA such that each

cycle has at least 3 strongly-free (resp., free) vertices.

Proof. (Idea) As the detailed proof is quite lengthy, we only describe the intuitive idea

here. The full proof is presented in the next section. From our previous discussion, it

is clear that a t-FAA of a plane graph naturally induces a contact system of pseudo-

segments. For deciding whether the contact system is stretchable (implying that the

plane graph admits a t-SLR), a direct application of Theorem 5.1 requires checking

all sub-systems of pseudo-segments for the availability of 3 extremal points. The cur-

rent theorem shows a simpler characterization, i.e., examining only subsets of pseudo-

segments of the form SC for some cycle C is sufficient. Furthermore, we are able to

relate the availability of 3 extremal points of pseudo-segments of SC to the presence of

at least 3 free vertices along cycle C. See Fig. 5.1(2, 3, 5, 6) for instance.

If each face is further required to be a convex polygon, we need to prevent a vertex

from causing a face to be a concave polygon, like the vertex e in the cycle depicted

in Fig. 5.1(5). It turns out that adding the constraint forcing each free vertex to be

incident to more than one face in out(C) (see Condition (1') in Definition 5.5) leads to

a necessary and sufficient characterization.

It is easy to extend Theorem 5.2 to all biconnected plane graphs by modifying the

definition of FAAs to handle degree 2 inner vertices. However, as the situation would

not be encountered throughout the chapter, we omit it in order to reduce complication.

78

To give a characterization of convex polygonal duals, in what follows we establish a

link between t-sided convex polygonal duals and its primal counterpart, t-convex-SLRs.

Given a plane graphG, onemay hope to find some sort of a "dual" graphG∗ such that

any t-convex-SLR of G∗ is also a t-sided convex polygonal dual of G. Unfortunately,

this kind of a reduction strategy turns out to be more complex than it appears on the

surface, as the polygon associated with a vertex v ∈ FO(G) may touch the boundary

of the t-sided convex polygonal dual of G on 0, 1, …, t− 1 sides (see Fig. 5.2(4)). As

an attempt to resolve such a difficulty, we define the G∗ associated with a graph G as

follows:

Definition 5.6. Given a plane graph G and an integer t, the graph G∗ is defined to be

the result of the following construction steps:

1. Add a new vertex s in the unbounded face of G, and add an edge between s and

each vertex in the outer face.

2. Take the dual, and the new outer face is designated to the one corresponding to

s.

3. Subdivide each edge in the outer face to transform it to a path of t− 1 edges.

The following result is then straightforward.

Theorem 5.3. A plane graph G admits a t-sided convex polygonal dual iff there is a

graphG′ that results from contracting some edges along the outer face ofG∗, admitting

a t-convex-SLR.

(1) (2) (3)

A
B C

D

E
F G

G

B
A

F E

D
C

A
B C

D

E
F G

(4)

Figure 5.2: Concepts in Section 5.3.

79

Theorems 5.2 and 5.3 relate the problem of finding a convex polygonal dual to find-

ing a set of boundary edges to be contracted and a corner labeling satisfying some con-

straints. In comparison with previous techniques designed for contact graph represen-

tations, the greatest advantage of Theorem 5.3 is that it turns a geometry problem to a

purely graph-theoretic one. This, in conjunction with Theorem 5.2, allows us to get rid

of any tedious and laborious geometric construction process when designing algorithms

for contact graph representations.

By offering the possibility of contracting boundary edges ofG∗, polygons associated

with vertices in FO(G) can touch the boundary of the convex polygonal dual of G on

0, 1, …, t− 1 sides.

Fig. 5.2 illustrates the concepts presented in the section: (1) a graph G, (2) its asso-

ciated G∗ (for t = 3), (3) applying edge contraction to the dashed edges along the outer

face of G∗, (4) a 3-convex-SLR of G∗ which is also a 3-sided convex polygonal dual of

G.

In Fig. 5.2(3) and Fig. 5.2(4), flat angle assignments are annotated by arrows. In

Fig. 5.2(4), faces B, C and F touch the boundary on 0, 1, or 2 sides, respectively. Note

that an edge contraction has the same effect of a corner assignment in FO(G∗). There-

fore, we can assume that no assignment occurs inFO(G∗) since edge contraction already

handles it.

(Remark) Theorem 5.2 is of independent interest as it improves the main result in [2]

(i.e., Theorem 2.10 in [2]) in the following way: (i) We check only simple cycles instead

of all outline cycles; (ii) the result holds for all t-FAAs instead of 3-FAAs only; and (iii)

we are able to deal with both polygons and convex polygons.

5.4 Proof of Theorem 5.2

In this section we give the full proof of Theorem 5.2. This section can be skipped

without loss of continuity.

80

It is evident from the definition of t-FAA that, if the drawing can be straighten to

satisfy the assignment, each inner face is assured to have at most t sides. Therefore,

to prove Theorem 5.2, the only two things we need to deal with are (i) stretchability

constraint and (ii) convexity constraint.

(Terminologies) We extend the graph-theoretic definitions of cycle, internal region,

and outer region to pseudo-segments. Given a plane graph G and an FAA with ΣG

the contact system of pseudo-segments corresponding to the FAA, a subset S ′ (⊆ ΣG)

of pseudo-segments is a cycle if there exists a cycle C in G which induces S ′ (i.e.,

SC = S ′). Given a subset S ⊆ ΣG, the internal region of S, denoted by in(S), is the set

of faces in G surrounded by S. The outer region of S is the set of faces in G excluding

the ones in in(S).

We deal with (i) stretchability constraint first.

Lemma 5.1. Let G be a biconnected plane graph whose degree 2 vertices are all in

V (FO). It admits a t-SLR iff there exists a t-FAA such that each cycle has at least 3 free

vertices.

Proof. Let ΣG denotes the contact system of pseudo-segments corresponding to the

given FAA. The statement of this lemma is equivalent to "ΣG is stretchable iff each

cycle in G has at least 3 free vertices".

We first prove the following claim:

Claim: Let S be a set of connected pseudo-segments and s /∈ S be a segment such

that in(S) = in(S∪{s}). Then S∪{s} has at least as many extremal points as S does.

Proof of Claim. Based on the location of s with respect to S, there are two cases:

1. s is located in in(S). Certainly the claim holds as the extremal points of S and

S ∪ {s} are identical. See Fig. 5.3(2) for an example. A new segment {g, h} is

81

added to the set S = {{a, b}, {c, d}, {e, f}} depicted in Fig. 5.3(1). After the

inclusion, the extremal points remain to be {a, c, e}.

2. s is located in out(S). Since the inclusion of s does not enlarge in(S), s touches S

in at most 1 point; otherwise, a new cycle enlarging the internal region is formed.

Therefore, the inclusion of s can only make at most 1 extremal point in S non-

extremal, and it happens only when an extremal point in S touches the interior

portion of s. However, since at least 1 of the 2 endpoints of s does not touch S,

a new extremal point must be generated after the inclusion of s. See Fig. 5.3(3)

for an example. The addition of the new segment s = {i, j} changes the set of

extremal points from {a, c, e} to {c, e, i, j}.

As we have checked all the cases, the claim holds. See also Fig. 5.3(4) for a demon-

stration of a situation that the inclusion of s lowers the number of extremal points but

increases the internal region.

We write m(S) to denote the number of maximal edge-connected set of faces in

in(S), and we let B1, B2, . . . , Bm be these sets of faces. We write Ci to denote the

cycle enclosing Bi. In view of the above claim, the following statement is true:

To search for a subset of pseudo-segments of cardinality greater than 1 that has at

most 2 extremal points, it suffices to check only candidate set X (set of set of pseudo

segments) such that, for each S ∈ X:

1. Any proper subset of S encloses a smaller internal region than in(S);

2. S is connected (since the number of extremal points of S is the sum of that of its

connected components).

Note that the first condition implies S = ∪
i∈{1,...,m(S)} SCi

.

Our next task is to narrow down the candidate set to cycles only (i.e. the ones

satisfying m(S) = 1 in the above candidate sets). For any S ∈ X such that m(S) > 1,

we show that it is always possible to find another set of pseudo segments S̃ ∈ X with

82

b

x

F

v v

r

r F

y

z

l

k
j

i

a

b

c

d e

f

g

h

(1) (2) (3) (4)

Figure 5.3: Illustration of inclusion of a new segment into a set of pseudo segments.

b

l

k
j

i

a

b

c

d e

f

g

h

(1) (2) (3) (4)

B1 B2

B3

(1) (2) (3)

Figure 5.4: Illustration of finding S̃.

smaller number m such that the number of extremal points in S̃ ≤ max(2, the number

of extremal points in S).

Suppose that S ∈ X , and m(S) > 1. We choose an integer k such that the set

S ′ = ∪
i∈{1,...,m(S)},i̸=k SCi

remains a connected set of pseudo segments. Since each

Bi is chosen to be a maximal edge-connected set of faces, S ′ ∩ SCk
contains exactly 1

segment. Furthermore, if we let S ′ ∩ SCk
= {s′}, SCk

− {s′} does not touch s′ in both

of its two endpoints. We divide the situation into two cases:

1. There is an extremal point of SCk
located in SCk

− {s′}. Then, S ′ contains no

more extremal points than S does;

2. There is no extremal point of SCk
located in SCk

− {s′}. Then SCk
has at most 2

extremal points.

As a result, choosing S̃ to be one of S ′, SCk
that has smaller number of extremal

points always works. The two cases are depicted in Fig. 5.4, where white dots indicate

extremal points. Fig. 5.4(1) shows S = ∪
i∈{1,...,3} SCi

. Fig. 5.4(2) depicts the situation

that S ′ = SC2 ∪SC3 is chosen to be S̃ when k = 1; Fig. 5.4(3) shows the case of k = 3,

in which S̃ is set to be SC3 .

As we have narrowed down the candidate set X to cycles only, we now know that

83

only cycles matter in deciding stretchability of ΣG. To complete the proof, It suffices

to prove the following two statements:

1. Given a cycle C in G, the number of the extremal points in SC is smaller than or

equal to the number of free vertices in C.

2. Given a subset of pseudo segments S that is a cycle, we can find a cycle C in

G such that S = SC , and that the number of the extremal points in S equals the

number of free vertices in C.

First of all, we identify three types of points p in SC :

1. p is located in C, and p is an extremal point of S. Then, it must be also a free

vertex which is either unassigned or assigned to a face not containing any edge in

C.

2. p is located in C, and p is an endpoint of a segment s′ ∈ S and is interior to

another segment s ∈ S. Then, it must be also a free vertex which is assigned to a

face containing an edge in C.

3. p is not located in C, and p is an extremal point of S.

Take Fig. 5.5 as an example. Let C = (b, c, e, g, h), then SC = {{a, c}, {b, h},

{a, g}, {d, e}, {g, f}}. The points a, b, c, d, e, f, g, h are of types 3, 2, 2, 3, 2, 3, 1, 2,

respectively. Note that a free vertex is either of type 1 or of type 2; an extremal point is

either of type 1 or of type 3.

We define a mapping from free vertices of C to extremal points in S as follows:

1. For a type 1 free vertex v, we map it to itself.

2. For a type 2 free vertex v, we map it to the type 3 endpoint u of the segment s

such that v is an interior point of s and that the path (u, . . . , v) along s does not

share any edge with the cycle C.

84

b

l

k
j

i

a

b

c

d e

f

g

h

(1) (2) (3) (4)

B1 B2

B3

(1) (2) (3)

F
a

b

c
d

e f

g

h

Figure 5.5: Illustration of relating extremal points to free vertices.

Also consider the above example, the free vertices b, c, e, g, h are mapped to end-

points a, d, f, g, a, respectively.

Proof of Statement 1. It suffices to show that the above mapping is onto. Suppose that

an endpoint v is not being mapped to. It must be of type 3. Let it be an endpoint of a

segment s. We walk along the segment s from v until we reach C. We must stop at an

junction point v′ which is interior to s and is an endpoint of another segment s′. It is

immediate that v′ should have been mapped to v.

Proof of Statement 2. We choose C to be the cycle that encloses in(S) (i.e. in(S) =

in(C)), It suffices to show that the above mapping is an 1-1 correspondence between

extremal points in S and free vertices in C. As we already argued that the mapping is

onto, we only need to show that it is 1-1.

The only situation that violates the 1-1 condition is that a type 3 point p is being

mapped by several type 2 points through different segments. This is not possible ac-

cording to our choice of C since two of these segments and a portion of C must form a

region belonging to in(S) \ in(C). Consider again the same example, type 3 extremal

point a is mapped to two type 2 free vertices b, h through segments {a, c}, {a, g}, and

there is a face F surrounded by these two segments and a portion of the cycle belonging

to in(S) \ in(C).

Hence the lemma is concluded.

Our next task is to deal with (ii) convexity constraint. The idea of our strategy is to

construct a modified t-FAA X̂ on a modified graph Ĝ such that each vertex v ∈ V (G)

is automatically forced to be a convex corner in any face F it incident to.

85

F

e1 e2 v v1 v2
e’

(1) (3) (4)

v1 v2

v

v1 v2

v

v1 v2

v

(2)

v1 v2

v

v1 v2

v

(5)

v1 v2

v

(6)

Figure 5.6: Illustration of proof of Lemma 5.2.

Given a biconnected plane graph G whose degree 2 vertices are all in V (FO), and

given its t-FAA X , we define Ĝ and X̂ as follows. For each vertex v ∈ V (G) of degree

> 2, for each inner face F incident to v such that v is not assigned to F , let e1, e2 be the

two edges in E(F) that incident to v, we subdivide these two edges. Let the two new

vertices introduced by subdividing e1, e2 be v1, v2, respectively. We add a new edge

e′ = {v1, v2}, which divides F into two regions. Lastly, we force v1, v2 to be assigned

to the face that is not formerly a region of F . See the upper part of Fig. 5.6 for an

illustration.

It can be easily seen that X can be straighten in the way that each face in G is a

convex polygon iff X̂ is stretchable. Therefore, to complete the proof of Theorem 5.2,

it suffices to prove the following lemma:

Lemma 5.2. Let G be a biconnected plane graph whose degree 2 vertices are all in

V (FO), and let X be a t-FAA of G. X̂ is stretchable iff each cycle in G has at least 3

strongly-free vertices with respect to X .

Proof. (⇒) Regarding necessity, it suffices to prove that, for each cycle C in G, we

can find a cycle C ′ in Ĝ such that the number of free vertices in C ′ equals the number

of strongly-free vertices in C. This statement implies that, when X̂ is stretchable, all

cycles in G has at least 3 strongly-free vertices with respect to X .

The procedure of finding C ′ is described as follows. Let v be an unassigned vertex

in V (C) incident to exactly one face F in out(C). In other word, v is a free but not

strongly-free vertex in C. Let e′, e1, e2, v1, v2 be the edges and vertices described in the

86

construction of Ĝ (for our chosen v, F). We first let C ′ = C. Then, for each such v, we

replace (v1, v, v2)with e = (v1, v2) inC ′. It is clear from the definition of assignment X̂

that both v1, v2 are not free in C ′. As a result, a vertex in C ′ is free iff it is strongly-free

in C.

(⇐) For sufficiency, we prove that, when X̂ is not stretchable, we can always find a

cycle C ′ in G that has at most 2 strongly-free vertices with respect to X . We first select

C to be a cycle in Ĝ of at most 2 free vertices. Among those cycles of at most 2 free

vertices, we choose C to be the one having the least number of newly added edges (i.e.

the e′ described in the construction of Ĝ).

If there is no newly added edges in C, simply setting C ′ = C suffices. In the below,

we assume there are some newly added edges in C.

Let e′ the a newly added edge in C, and let e1, e2, v1, v2 be the relevant edges and

vertices as defined before. All possible situations are enumerated in the lower part of

Fig. 5.6. For each case except the last one, we describe an modification leading to

another a cycle C̃ having at most 2 free vertices but not containing e′.

For (1),(2), we replace the portion (v1, v2, v) inC with (v1, v). For (3),(4) we replace

the portion (v1, v2) inC with (v1, v, v2). For (5), we replace the path (v1, v2, . . . , v)with

(v1, v). The change of free vertices is summarized in the below table:

Case Among {v, v1, v2}, the

ones "must" be free in

C.

Among {v, v1, v2}, the

ones "may" be free in

C̃.

1 v2 v

2 v1 v

3 None v

4 v1, v2 v

5 v1, v2 v

Note that we get two cycles after the modification for case (3). Since v may become

a new free vertex in both new cycles, and since the number of free vertices in C is at

87

most 2, the total number of free vertices in these two new cycles is at most 4. As a result,

one of them contains at most 2 free vertices. Choosing C̃ to be this one suffices. For

cases (1),(2),(4),(5), it is immediate from the table that the resulting cycle C̃ contains at

most 2 free vertices.

Therefore, that the existence of configurations of cases (1-5) contradicts our choice

of C is concluded. The following modification construct the desired cycle C ′ from C

which is free of any configuration of cases (1-5). For each newly added edges e′ in

C, its local structure must obey case (6). We modify the cycle by replacing (v1, v2)

with (v1, v, v2). After the modification, both v1, v2 remains non-free. However, v may

become a new free vertex. As the face (v1, v, v2) is the only face v incident to in the

outer region of the resulting cycle, v is not qualified to be strongly-free. By doing so

for all e′ in C, we get a desired cycle C ′.

5.5 Fixed-parameter Tractability Results

Recall from Theorem 5.3 that a plane graphG admitting a t-sided convex polygonal

dual can be characterized by the presence of a t-convex-SLR of G′ (a graph resulting

from applying some edge contraction in FO of G∗), and the latter can further be cap-

tured by t-FAAs (Theorem 5.2). Like many graph structures expressible in MSO2, it

turns out that such a characterization can be formulated in the framework of MSO2 (See

Section 2.2). More precisely, we have:

Theorem 5.4. Given a plane graph G, one can construct a graph G̃ along with a des-

ignated set of vertices Fਉ਎, a designated vertex ਆO, and a formula φ in MSO2 such that

G has a t-sided convex polygonal dual iff (G̃,Fਉ਎, ਆO) |= φ.

Proof. First note that the parameter t in a t-sided convex polygonal of the plane graph

G is considered a fixed constant.

The graph G̃ is constructed from G∗ using the following procedure: (1) add a new

vertex for each face in G∗; (2) for each newly added vertex v and its associated face

88

F , for all u ∈ V (F), add an edge {u, v}. In setting up φ, we allow some designated

vertices, edges, set of vertices, and set of edges to be associated with free variables. We

use Fංඇ to denote the designated set of vertices in V (G̃) corresponding to inner faces in

G∗, and ൿO to denote the designated vertex in V (G̃) corresponding to the outer face of

G∗.

We define the formula Cඈඋඇൾඋ(e) which is true iff e is an edge incident to a vertex

in V (G∗) and a vertex in Fංඇ.

Cඈඋඇൾඋ(e) ≡ (∃u, v)[ංඇർ(e, u) ∧ ංඇർ(e, v) ∧ (u ∈ Fංඇ) ∧ (v /∈ Fංඇ)]

We use a subset U of {e ∈ E(G̃)|Cඈඋඇൾඋ(e)} to encode a t-FAA and a subset R of

edges in the outer face of G∗ to encode edge contraction.

Our goal is to define φ as (∃U, R)t-VൺඅංൽFAA(U, R), where t-VൺඅංൽFAA(U, R)

is true iff U , together with R, represents a t-FAA such that each cycle has at least 3

strongly-free vertices.

t-VൺඅංൽFAA(U, R) ≡ t-FAA(U, R) ∧ (∀C){Cඒർඅൾ(C, R)

→
∪

k=0,...,3
[(3− k)-BඈඎඇൽൺඋඒCඈඋඇൾඋඌ(C, R) ∧ (∃v1, . . . , vk)

∧
i=1,...,k

ඌFඋൾൾ(vi, C, U)]}

t-FAA(U, R) is used to capture Definition 5.1. Cඒർඅൾ(C, R) is to ensure that C

is a cycle after applying edge contraction R. i-BඈඎඇൽൺඋඒCඈඋඇൾඋඌ(C, R) is true iff

the number of vertices in V (C) ∩ V (FO) remains at least i after applying the edge

contraction R (these vertices are strongly-free boundary vertices in C). ඌFඋൾൾ(v, C, U)

is true iff v is strongly-free and non-boundary inC under the FAA U . Note that ∧
i=1,...,k

ඌFඋൾൾ (vi, C, U) is vacuously true if k = 0.

We leave the detailed description of these formulas to the next section.

We are in a position to give our main result in this section (See Section 2.2 for the

definition of tree-width and the definition of tree decomposition).

89

Theorem 5.5. For any t, it can be decided in polynomial time whether a plane graph

G admits a t-sided convex polygonal dual if there is a constant k such that:

1. tree-width of G ≤ k, or

2. For all v ∈ V (G) such that deg(v) > 3, there is a path linking v to the outer face

of length ≤ k.

Proof. First of all, we can assume that every pair of vertices inG∗ belong to at most two

common inner faces, since otherwise those faces cannot be drawn as convex polygons

simultaneously, implying that G has no convex polygonal dual. Testing whether every

pair of vertices inG∗ belong to at most two inner faces can be done easily in polynomial

time.

For the first condition, according to Theorem 5.4, it suffices to show that, if the tree-

width of G is k, then the tree-width of G̃ is O(k2). In the construction process of G∗

described in Definition 5.6, the first step increases the tree-width by at most 1 since only

1 new vertex is added to the graph. The second step also increases the tree-width by

at most 1 according to a well-known fact that the tree-widths of a graph and of its dual

differ by at most 1. The third step does not increase the tree-width since subdivision

does not increase the tree-width. Therefore, we conclude that the tree-width of G∗ is at

most k + 2.

The construction of G̃ adds a new vertex v per each face F , and then links v to all

vertices in V (F). We make the following claim:

Claim: Let T be a tree-decomposition of G∗, and let F be a face in G∗. We can find a

subtree TF in T such that (1) each bag in TF contains at least two vertices in V (F), and

that (2) for each edge {v, w} in E(F), there is a bag in TF containing v and w.

Proof of Claim. Let v ∈ V (G∗), we denote Tv the subset of bags in V (T) that contains

v. It is clear from the definition of tree decomposition that Tv is a subtree of T . We de-

fine T ′ to be the union of all Tv such that v ∈ V (F). It is clear that T ′ is also a subtree

of T and that TF , if exists, is a subtree of T ′.

90

Suppose that there is no such TF , then any subset satisfying (1) and (2) is not a

subtree of T ′. Hence we are able to find two edges e1 = {u1, v1}, e2 = {u2, v2} ∈ V (F)

and a bag X ∈ V (T ′) such that (i) X contains only one vertex in V (F), and that (ii)

Tu1 ∩ Tv1 and Tu2 ∩ Tv2 are subtrees of different components of T ′\{X}.

Without loss of generality, we assume, for i = 1, 2, vi immediately follows ui in

the clockwise circular order of vertices in F . Therefore, there are two disjoint paths

P1 = (v1, . . . , u2) and P2 = (v2, . . . , u1) in F . Due to (ii), ∪
v∈Pi

Tv contains X for

i = 1, 2, which contradicts with the definition of X . This completes the proof of our

claim.

We then construct a tree decomposition of G̃ based on any tree decomposition of

G∗. We simply add each v ∈ V (G̃) corresponding to a face F of G∗ to all bags in TF .

It is an easy routine to verify that the resulting tree is a valid tree decomposition of G̃.

There are only O(k2) distinct pairs of vertices in each bag of tree decomposition of

G∗. Due to the above claim and the assumption that every pair of vertices in G∗ belong

to at most two common inner faces, we can increase the size of each bag by O(k2)

during the construction of tree decomposition of G̃. Therefore, we conclude the proof

that tree-width of G̃ is bounded for the case that condition 1 is met.

For the second condition, we first note that each inner vertex (i.e. not located in the

outer face) in V (G)must have degree at least 3, since otherwise it is clear that the graph

has no convex polygonal dual. Also, it is easy to see that if this condition is satisfied,

in G̃, the distance between ൿO and any vertex in Fංඇ of degree at least 4 is O(k).

Let S be a subgraph corresponding to a maximal connected set of triangles in G∗.

For any v ∈ V (S) such that any path linking the outer boundary of S and v has length

at least 2, it is easy to see that any cycle in G∗ passing v has at least 3 free vertices. It

is due to the fact that, no flat angle assignment can be made in a triangle. Let S ′ be the

subgraph induced by those vertices. See Fig. 5.7 for an example. The left illustration is

a maximal connected set of triangles S. The white vertices are ones in S ′. We contract

each connected component of S ′ into a vertex. See the right illustration of Fig. 5.7 for

an example. Since cycles that may have less than 3 strongly-free vertices do not pass

91

’

Figure 5.7: Illustration of the proof of Theorem 5.5.

through S ′, such contraction preserves the property of having t-convex-SLR. Hence we

can use the G̃ constructed from the modifiedG∗ instead of the original one. It is obvious

from the definition ofS andS ′ that the resulting G̃ constructed from themodifiedG∗ has

bounded outer planarity. Therefore, we conclude the proof as bounded outer planarity

implies bounded tree-width.

Theorem 5.5 implies polynomial time algorithms for many important graph classes

appearing frequently in the literature [21, 28]. We have:

Corollary 5.1. Deciding whether a plane graph admits a t-sided convex polygonal

dual is solvable in polynomial time for graphs of max degree 3, partial 3-trees, and

k-outerplane graphs.

5.6 Exact Definition of the Formula t-VൺඅංൽFAA

In this section, we give the exact definition for the formula t-VൺඅංൽFAA. This sec-

tion can be skipped without loss of continuity.

We adapt the following convention: C is an edge set intended to be a cycle. P is

an edge set intended to be a path. u, v are vertices. e is an edge. U, R are reserved for

representing FAA and edge contraction, respectively. W is reserved for set of vertices.

H, Q are reserved for set of edges.

92

5.6.1 t-FAA

The two conditions in the definition of t-FAA can be expressed as follows. C1(U)

ensures that the FAA U satisfies the condition "each vertex is assigned at most once".

t-C2(U, R) ensures that each inner face F is assigned at least |V (F)|− t times. In other

words, t-C2(U, R) iff each inner face has at most t combinatorial convex corners.

C1(U) ≡ (∀v ∈ V (G̃) \ (Fංඇ ∪ {ൿO}))(∀e1, e2 ∈ U)[¬(ංඇർ(e1, v) ∧ ංඇർ(e2, v))]

t-C2(U, R) ≡ (∀v ∈ Fංඇ)

∪
0≤a,b;a+b≤t

(a-C2-ൺඌඌං඀ඇආൾඇඍ(v, U) ∧ b-C2-ർඈඇඍඋൺർඍංඈඇ(v, R))

To define t-C2(U, R), we introduce two formulas a-C2-ൺඌඌං඀ඇආൾඇඍ(v, U) and b-C2

- ർඈඇඍඋൺർඍංඈඇ(v, R) which together divide the task of t-C2(U, R). We assume that v

represents an inner face F . We have a-C2-ൺඌඌං඀ඇආൾඇඍ(v, U) iff the number of com-

binatorial convex corners in F not located in the boundary of drawing is at most a.

Similarly, b-C2-ർඈඇඍඋൺർඍංඈඇ(v, R) iff the number of combinatorial convex corners in

F located in the boundary of drawing is at most b.

n-C2-ൺඌඌං඀ඇආൾඇඍ(v, U) ≡ (¬∃e1, . . . , en+1){
∧

1≤i<j≤n+1
[ei ̸= ej]∧

∧
i=1,...,n+1

[ei /∈ U ∧ ංඇർ(ei, v)]}

n-C2-ർඈඇඍඋൺർඍංඈඇ(v, R) ≡ ¬
∪

k=1,...,n+1

∪
1≤s1≤...≤sk,

∑k

i=1 si=n+1

(∃P1, . . . , Pk)

DංඌඃඈංඇඍEൽ඀ൾSൾඍඌ(P1, . . . , Pk)∧

93

∧
j=1,...,k

(Mൺඑ-BඈඎඇൽൺඋඒPൺඍඁ(Pj, v) ∧ AඍLൾൺඌඍ-sj-Cඈඋඇൾඋඌ(Pj, R))

The formulaMൺඑ-BඈඎඇൽൺඋඒPൺඍඁ(P, C), whereP (C) is a set of edges representing

a path (cycle) in E(G∗), expresses that P is a maximal subpath of C ∩ E(FO(G∗)).

Similarly, if v ∈ Fංඇ represents an inner face F in G∗, Mൺඑ-BඈඎඇൽൺඋඒPൺඍඁ(P, v) is

the same as Mൺඑ-BඈඎඇൽൺඋඒPൺඍඁ(P, E(F)). The formula AඍLൾൺඌඍ-n-Cඈඋඇൾඋඌ(P, R),

where P is a subpath ofE(FO(G∗)), expresses that the number of combinatorial convex

corners (including the two endpoints) in P is at least n. DංඌඃඈංඇඍEൽ඀ൾSൾඍඌ(P1, . . . , Pn)

is true iff P1, . . . , Pn are disjoint edge sets.

Satisfying both C1(U) and t-C2(U, R) is still not sufficient to guarantee that the cur-

rent edge contraction and assignment together form an t-FAA. We still need to check

that (1) each face remains a cycle after edge contraction and that (2) the corner assign-

ment only involves non-boundary vertices (i.e. those not in V (FO(G∗))). The above

(1) and (2) are captured by the formula Vൺඅංൽංඍඒ(U, R).

Therefore, the following formula determines whether the given U, R satisfy the def-

inition of t-FAA:

t-FAA(U, R) ≡ Vൺඅංൽංඍඒ(U, R) ∧ C1(U) ∧ t-C2(U, R)

5.6.2 t-VൺඅංൽFAA

Similarly, we can express the notion of strongly-freeness in anMSO2 sentence ඌFඋൾൾ

(v, C, U)which is true iff v, an inner vertex inG∗, is a strongly-free vertex in the cycleC

under the FAAU . To deal with corners inFO, the formula n-BඈඎඇൽൺඋඒCඈඋඇൾඋඌ(C, R)

is true iff, given the edge contractionR, the number of vertices inV (C)∩V (FO) remains

at least n. To ensure that C is a cycle after applying edge contraction R, we use the

formula Cඒർඅൾ(C, R).

Prior to the definition of ඌFඋൾൾ(v, C, U), we define Iඇඌංൽൾ(u, C) (Oඎඍඌංൽൾ(u, C))

which is true iff u is a vertex located inside (outside) of the cycle C.

94

Iඇඌංൽൾ(u, C) ≡ (∀e ∈ C)¬ංඇർ(e, u) ∧ (∃W ⊆ V (G̃)){

(∀v)[(∃e ∈ C)(ංඇർ(e, v))→ (v /∈ W)] ∧ (u /∈ W)

∧(ൿO ∈ W) ∧ (∀v1 ∈ V (G̃) \W, v2 ∈ W)[ൺൽඃ(v1, v2)→ (∃e ∈ C)(ංඇർ(e, v1))]}

Oඎඍඌංൽൾ(u, C) ≡ ¬Iඇඌංൽൾ(u, C) ∧ (∀e ∈ C)¬ංඇർ(e, u)

ඌFඋൾൾ(u, C, U) ≡ [(∃e ∈ C)ංඇർ(e, u)] ∧ [¬ൺൽඃ(ൿO, u)]

∧{[(∃e ∈ U)(∃v)ංඇർ(e, v) ∧ ංඇർ(e, u) ∧ Oඎඍඌංൽൾ(v, C)] ∨ [(¬∃e ∈ U)ංඇർ(e, u)]}

∧(∃v1, v2 ∈ Fංඇ)[Oඎඍඌංൽൾ(v1, C)∧Oඎඍඌංൽൾ(v2, C)∧ൺൽඃ(u, v1)∧ൺൽඃ(u, v2)∧(v1 ̸= v2)]

The sentence of ඌFඋൾൾ(u, C, U) is the conjunction of four components. The first

one says that u is in cycle C. The second one further ensures that u is not in V (FO).

The third one expresses that u is either unassigned or assigned to a face in out(C). The

fourth one then requires u to be incident to more than one face in out(C). It is easy to

see that this sentence exactly matches the definition of strongly-free vertex in Definition

5.5 for the case of inner vertex.

Finally, according to the Theorem 5.3, we define t-VൺඅංൽFAA as follows.

t-VൺඅංൽFAA(U, R) ≡ t-FAA(U, R) ∧ (∀C){Cඒർඅൾ(C, R)

→
∪

k=0,...,3
[(3− k)-BඈඎඇൽൺඋඒCඈඋඇൾඋඌ(C, R) ∧ (∃v1, . . . , vk)

∧
i=1,...,k

ඌFඋൾൾ(vi, C, U)]}

Note that ∧
i=1,...,k ඌFඋൾൾ(vi, C, U) is vacuously true if k = 0.

The missing descriptions of formulas are described in the next.

95

5.6.3 Remaining Formulas

We first define some useful formulas. ංඇർEൽ඀ൾ(e1, e2) is true iff the two edges

share a vertex. MංൽൽඅൾEൽ඀ൾ(e, H) is true iff the two vertices in e are of degree 2 in H .

EඇൽEൽ඀ൾ (e, H) is true iff the two vertices in e are of degree 1,2, respectively, in H .

ංඇർEൽ඀ൾ(e1, e2) ≡ (∃u)[ංඇർ(e1, u) ∧ ංඇർ(e2, u)]

MංൽൽඅൾEൽ඀ൾ(e, H) ≡ (∃e1, e2)(∃u1, u2)(e1 ∈ H) ∧ (e2 ∈ H) ∧ ංඇർ(e1, u1)

∧ංඇർ(e2, u2) ∧ ංඇർ(e, u1) ∧ ංඇർ(e, u2) ∧ (e1 ̸= e) ∧ (e2 ̸= e) ∧ (u1 ̸= u2)

∧(∀e3){[(e3 ∈ H) ∧ (e3 ̸= e) ∧ (ංඇർEൽ඀ൾ(e, e3))]→ [(e3 = e1) ∨ (e3 = e2)]}

EඇൽEൽ඀ൾ(e, H) ≡ (∃e1)(e1 ∈ H) ∧ (e1 ̸= e) ∧ ංඇർEൽ඀ൾ(e, e1)

∧(∀e2){[(e2 ∈ H) ∧ (ංඇർEൽ඀ൾ(e, e2)) ∧ (e2 ̸= e)]→ (e1 = e2)}

CඈඇඇൾർඍൾൽEൽ඀ൾඌ(H) ≡ (¬∃Q){(Q ⊆ H) ∧ (H ̸= Q)

∧(∀e1 ∈ Q, e2 ∈ H \Q)(¬∃u)[ංඇർ(e1, u) ∧ ංඇർ(e2, u)]}

DංඌඃඈංඇඍEൽ඀ൾSൾඍඌ(H1, . . . , Hk) ≡ (∀e)
∧

1≤i<j≤k

¬[(e ∈ Hi) ∧ (e ∈ Hj)]

Cඒർඅൾ(C) ≡ CඈඇඇൾർඍൾൽEൽ඀ൾඌ(C) ∧ (∀e ∈ C)MංൽൽඅൾEൽ඀ൾ(e, C)

96

Pൺඍඁ(P) ≡ CඈඇඇൾർඍൾൽEൽ඀ൾඌ(P) ∧ (∃e1, e2){EඇൽEൽ඀ൾ(e1, P) ∧ EඇൽEൽ඀ൾ(e2, P)

∧(e1 ̸= e2) ∧ (∀e ∈ P)[((e ̸= e1) ∧ (e ̸= e2))→ MංൽൽඅൾEൽ඀ൾ(e, P)]}

Next, we deal with boundary paths (i.e. the subpaths of FO).

BඈඎඇൽൺඋඒVൾඋඍൾඑ(v) ≡ ൺൽඃ(v, ൿO)

BඈඎඇൽൺඋඒEൽ඀ൾ(e) ≡ (∃u, v)[(u ̸= v) ∧ BඈඎඇൽൺඋඒVൾඋඍൾඑ(u)

∧BඈඎඇൽൺඋඒVൾඋඍൾඑ(v) ∧ ංඇർ(e, u) ∧ ංඇർ(e, v)]

BඈඎඇൽൺඋඒPൺඍඁ(P) ≡ Pൺඍඁ(P) ∧ (∀e ∈ P)BඈඎඇൽൺඋඒEൽ඀ൾ(e)

BඈඎඇൽൺඋඒPൺඍඁ(P, C) ≡ BඈඎඇൽൺඋඒPൺඍඁ(P) ∧ (P ⊆ C)

Mൺඑ-BඈඎඇൽൺඋඒPൺඍඁ(P, C)

≡ (∀P2)[(BඈඎඇൽൺඋඒPൺඍඁ(P, C) ∧ BඈඎඇൽൺඋඒPൺඍඁ(P2, C) ∧ (P ⊆ P2))→ (P = P2)]

The following formula IඇඇൾඋFൺർൾ(C, v) is true iff v represents an inner face (v ∈

Fංඇ) corresponding to the cycle C.

IඇඇൾඋFൺർൾ(C, v) ≡ Cඒർඅൾ(C) ∧ (∀e ∈ C)[(∃u1, u2)ൺൽඃ(u1, v) ∧ ංඇർ(e, u1)

∧ൺൽඃ(u2, v) ∧ ංඇർ(e, u2) ∧ (u1 ̸= u2)]

97

Mൺඑ-BඈඎඇൽൺඋඒPൺඍඁ(P, v) ≡ (∃C)[IඇඇൾඋFൺർൾ(C, v) ∧Mൺඑ-BඈඎඇൽൺඋඒPൺඍඁ(P, C)]

Note that v in the above formula is intended to be a vertex in Fංඇ (i.e. representing

an inner face).

AඍMඈඌඍ-n-Cඈඋඇൾඋඌ(P, R) ≡ (¬∃e1, . . . , en ∈ P)[
∧

i=1,...,n

(ei /∈ R) ∧
∧

1≤i<j≤n

(ei ̸= ej)]

The number of combinatorial convex corners in the boundary subpathP of any cycle

equals 1+ the number of boundary edges in P not contracted. Therefore, there are at

most n such corners iff it is impossible to find n edges on P not contracted.

The next formula n-BඈඎඇൽൺඋඒCඈඋඇൾඋඌ(C, R) is intended to capture the situation

that the number of boundary combinatorial convex corners inC after applying edge con-

traction described by R is at least n. We first define AඍLൾൺඌඍ-n-Cඈඋඇൾඋඌ(P, R) which

is sort of negation of AඍMඈඌඍ-n-Cඈඋඇൾඋඌ(P, R). Then, n-BඈඎඇൽൺඋඒCඈඋඇൾඋඌ(C, R)

can be defined in a way analogues to the definition of n-C2-ർඈඇඍඋൺർඍංඈඇ(v, R).

AඍLൾൺඌඍ-n-Cඈඋඇൾඋඌ(P, R) ≡ ¬AඍMඈඌඍ-(n− 1)-Cඈඋඇൾඋඌ(P, R)

n-BඈඎඇൽൺඋඒCඈඋඇൾඋඌ(C, R) ≡
∪

k=1,...,n

∪
1≤s1≤...≤sk,

∑k

i=1 si=n

(∃P1, . . . , Pk)

DංඌඃඈංඇඍEൽ඀ൾSൾඍඌ(P1, . . . , Pk)∧

∧
j=1,...,k

(Mൺඑ-BඈඎඇൽൺඋඒPൺඍඁ(Pj, C) ∧ AඍLൾൺඌඍ-ඌඃ-Cඈඋඇൾඋඌ(Pj, R))

The next formula Cඒർඅൾ(C, R) is intended to capture the situation that the cycle

C remains to be a cycle (i.e. has no repeated vertices) after the edge contraction R.

98

Repeated vertices appear only when there is a boundary path P = (u, . . . , v) such that

u, v ∈ V (C), P andC share no edge, and all edges inP belong toR. Moreover, in order

to make sure that C is a cycle in G∗, we require two formulas IඇG*(C) and Cඒർඅൾ(C).

Eൽ඀ൾSൾඍ-Vൾඋඍൾඑ-ർඈඇඍൺංඇ(H, v) ≡ (∃e)[(e ∈ H) ∧ ංඇർ(e, v)]

IඇG*(H) ≡ (∀v)(v ∈ Fංඇ ∨ v = ൿO)→ (¬∃e)[e ∈ H ∧ ංඇർ(e, v)]

Note that IඇG*(H) is true iff H does not contain any edge not in E(G∗).

EඇൽPඈංඇඍ(v, P)

≡ Eൽ඀ൾSൾඍ-Vൾඋඍൾඑ-ർඈඇඍൺංඇ(P, v) ∧ (∃e)(∀e1 ∈ P)(ංඇർ(e, v)↔ e = e1)

As its name suggests, EඇൽPඈංඇඍ(v, P) is true iff v is one of the two endpoints of

the path P .

We are now in a position to define Cඒർඅൾ(C, R).

Cඒർඅൾ(C, R) ≡ Cඒർඅൾ(C) ∧ IඇG*(C)

∧¬(∃P){BඈඎඇൽൺඋඒPൺඍඁ(P) ∧ (P ⊆ R) ∧ DංඌඃඈංඇඍEൽ඀ൾSൾඍඌ(P, C)

∧(∀v)[(Eൽ඀ൾSൾඍ-Vൾඋඍൾඑ-ർඈඇඍൺංඇ(C, v) ∧ Eൽ඀ൾSൾඍ-Vൾඋඍൾඑ-ർඈඇඍൺංඇ(P, v))

↔ EඇൽPඈංඇඍ(v, P)]}

We are in a position to define Vൺඅංൽංඍඒ(U, R). The formula can be divided to two

sub-formulas regarding U and R, respectively. For FAA U , we need to make sure that

the flat angle assignment only involves non-boundary vertices (i.e. those in V (G∗) \

V (FO(G∗))). For edge contraction R, we require that each face (including the outer

one) remains a cycle after edge-contraction.

99

Vൺඅංൽංඍඒ-ൺඌඌං඀ඇආൾඇඍ(U) ≡ (∀e ∈ U)Cඈඋඇൾඋ(e)

∧(∀v)[Eൽ඀ൾSൾඍ-Vൾඋඍൾඑ-ർඈඇඍൺංඇ(U, v)→ (v ̸= ൿO ∧ ¬ൺൽඃ(ൿO, v))]

Vൺඅංൽංඍඒ-ർඈඇඍඋൺർඍංඈඇ(R) ≡ (∀v ∈ Fංඇ)(∃C)[Cඒർඅൾ(C, R) ∧ IඇඇൾඋFൺർൾ(C, v)]

∧(∃e1, e2, e3)[
∧

i∈{1,2,3}
((ei /∈ R) ∧ BඈඎඇൽൺඋඒEൽ඀ൾ(ei)) ∧

∧
1≤i<j≤3

(ei ̸= ej)]

Vൺඅංൽංඍඒ(U, R) ≡ Vൺඅංൽංඍඒ-ൺඌඌං඀ඇආൾඇඍ(U) ∧ Vൺඅංൽංඍඒ-ർඈඇඍඋൺർඍංඈඇ(R)

5.7 Further Applications of Our Technique

In addition to the fixed-parameter tractability results derived in the previous sec-

tions, in this section we give alternate proofs for some interesting existing results using

the technique we have developed. First, we give a simple proof for a result of [17]:

Theorem 5.6 ([17]). Each maximal plane graph admits a 6-sided convex polygonal

dual.

Proof. Our alternative proof relies on Theorem 4.1, which guarantees that maximal

plane graphs admit rectilinear duals using only upside-down T-shapes and their degen-

erations. Fig. 5.8(1.1) lists the set of allowed shapes, while shapes listed in Fig. 5.8(1.2)

are not allowed.

Given a maximal plane graph G (see Fig. 5.8(2.1)), an FAA of G∗ is constructed

naturally according to a rectilinear dual as shown in Fig. 5.8(2.2). To be precise, we

make an assignment at each 180◦ corner not in the boundary of the drawing. Note that

the concave corners (bends) of any rectilinear polygon are not vertices in G∗. As such

an FAA may not lead to a stretchable drawing, we do some adjustments by unassigning

100

some vertices according to the rules specified in Fig. 5.8(3). See Fig. 5.8(2.3) for an

example of an FAA after the adjustment.

It is easy to see that the resulting FAA is a 6-FAA. Prior to the adjustment, it is a 6-

FAA since only a convex corner of a polygon can be a combinatorial convex corner, and

since each polygon has at most 6 convex corners. Though each adjustment increases

the number of combinatorial convex corner of a face by one, we can apply it only when

we have a nearby convex corner that is not a vertex in G∗. Therefore, the FAA after the

adjustment is still a 6-FAA.

What is left to be done is to show that each cycle has at least 3 strongly-free vertices.

Let C be any cycle in G∗. Consider the sub-drawing, which is a rectilinear polygon, of

C in the rectilinear dual. Let ab and cd be its highest and lowest horizontal segments,

respectively, as shown in Fig. 5.8(4). It is immediate that a and b are strongly-free

vertices of C. Suppose that there is no strongly-free vertex on cd. Then, c and d must

be bends in the drawing (i.e. not a vertex in G∗), and no adjustment is applied on cd.

This implies that there is no line segment touching cd from out(C), meaning that there

is a non-convex polygon F in out(C) incident to cd, which is a contradiction to the

allowed set of shapes (i.e., upside-down T-shapes and their degeneracies). Therefore,

we conclude that there is a strongly-free vertex in cd, and henceC has at least 3 strongly-

free vertices. See Fig. 5.8(2.4) for the resulting convex polygonal dual.

As each Hamiltonian maximal plane graph admits a rectilinear dual using only L-

shape and rectangles [43], following a similar approach, our technique can also be uti-

lized to give a simple proof for the following:

Theorem 5.7 ([43]). Each Hamiltonian maximal plane graph admits a 5-sided convex

polygonal dual.

Next, we showcase a quick proof for the main result of [28]:

Theorem 5.8 ([28]). Each triconnected cubic plane graph admits a proper touching

triangle representation.

101

a b

c d

F

(1.1) (1.2)

(2.1) (2.2) (2.3) (2.4)

(4) (3)

Figure 5.8: Illustration of the proof of Theorem 5.6.

Proof. Aproper touching triangle representation is just a 3-sided convex polygonal dual

whose boundary is a triangle.

Let G be a triconnected cubic plane graph, and we construct its associated G∗ as

described in Section 5.3. We let FO(G) = (v1, v2, . . . , vs) be the outer face of G. Note

that we must have s ≥ 3 since G is simple. It is easy to see that the subgraph H of G∗

induced by the faces corresponding to vertices in V (G) \ V (FO(G)) (the shaded area

in Fig. 5.9) is biconnected, since otherwise G is not triconnected.

We contract most of the boundary edges, only leaving a boundary edge for each of

F1, F2, and F3, where Fi is the face inG∗ corresponding to vi. We let the 3-FAA contain

only ui → Fi, i ∈ {1, 2, 3}, where ui ∈ V (G∗) is the shared non-boundary vertex of Fi

and Fi+1. See Fig. 5.9 for an illustration. We claim that our edge contraction and FAA

work.

It is immediate that the assignment is a 3-FAA such that the boundary in the resulting

drawing is a triangle whose three corners are c1, c2 and c3 in Fig. 5.9. What remains to

be done is to verify that each cycle C has 3 free vertices:

• If C contains none of c1, c2 and c3, it belongs entirely to H (the shaded area).

102

v1

v2

v3

v4

v5
F1

F2

F3

F4

F5
u1

u2
u3

c1

c2 c3

G G* D(G)

Figure 5.9: Illustration of the proof for Theorem 5.8.

Then, certainly all its vertices are free, as they are not assigned to in(C).

• IfC contains exactly one of c1, c2 and c3, the one it containsmust be c3 (since c1, c2

have only one adjacent non-boundary vertex). Let x and y be the two neighboring

vertices of c3 in C. It is clear that x, c3 and y are 3 free vertices in C, Since x and

y are either unassigned or assigned to out(C), and since c3 is unassigned.

• If C contains exactly two of c1, c2 and c3, as these two corners already contribute

two free vertices toC, the only situation that makesC to have less than 3 free ver-

tices is that all vertices in C \ {c1, c2, c3} are assigning to in(C). However, since

only u1, u2 and u3 are involved in our FAA (i.e. V (C) ⊆ {c1, c2, c3, u1, u2, u3}),

we can assure that it never happen by examining a small bounded amount of pos-

sibilities.

• If C contains all of c1, c2 and c3, these three corners form 3 free vertices of C.

Adapting our approach, the laborious process of explicitly assigning positions for

all junction points and all segments to construct a drawing, which inevitably appears in

many works on contact graph representations in non-rectilinear situation, can be pre-

vented.

103

Chapter 6

Area-universal Drawings of Biconnected

Outerplane Graphs

We continue the study of convex polygonal dual in this chapter.

Polygonal complexity and area-universality are two prime quality measure in con-

tact graph representations. As a complement to the last chapter which was centered

only on polygonal complexity, in this chapter we study convex polygonal duals of bi-

connected outerplane graphs for both polygonal complexity and area-universality.

Our contributions are:

1. A clean necessary and sufficient condition for the existence of a convex polygonal

dual of a given polygonal complexity.

2. An simple algorithm for constructing an area-universal convex polygonal dual of

low polygonal complexity.

6.1 Terminologies

Our interests in this chapter are biconnected outerplane graphs having k-sided con-

vex polygonal duals with their boundary polygons being t-sided. We abbreviate such a

representation as t-TkR, where T stands for touching and R stands for representation.

As an example, Fig. 6.1(2) shows a 6-T4R of the plane graph depicted in Fig. 6.1(1).

Note that 3-T3R coincides with the proper touching triangle graph representation

investigated in [21, 28].

We write junction points to denote the points that are endpoint of some segments in

the drawing. In Fig. 6.1(2), there are 10 junction points. Among them, a, b, c, d, e, f, g

104

(1)

G

B

A

F

E

D

C

(2)

a

b

c

d

e
f

g

h
i

j

A C

D

E G
B

F

Figure 6.1: A graph G and its convex polygonal dual.

are the boundary ones, and i, j, k are the non-boundary ones. Note that c is interior to

the side (b, d) of the boundary polygon. The arrows in the drawing indicate 180◦ angles.

6.2 Drawing Biconnected Outerplane Graphs

We first prove the following lemma which gives an upper bound of the number of

sides of the boundary polygon:

Lemma 6.1. Let G be a biconnected outerplane graph. If G admits a t−TkR, then

3 ≤ t ≤ (k − 1)|V (G)| − |E(G)| + 1. Moreover, the equality t = (k − 1)|V (G)| −

|E(G)| + 1 holds iff in the drawing, (1) each polygon is k−sided, and (2) each non-

boundary junction point is interior to a side of a polygon.

Proof. It is clear that t ≥ 3 since every polygon must have at least 3 sides.

Let N be the total number of corners of polygons representing vertices in V (G),

which is at most k|V (G)|. Since G is a biconnected outerplane graph, each polygon

must intersect the boundary of the drawing in one connected path or a point. Otherwise,

the vertex v corresponding to the polygon will be a cut-vertex in G. Since a path of s

sides constitutes s + 1 corners, when a polygon contains s sides on the boundary of the

drawing, it has at most k − s− 1 corners located not in the boundary of the drawing.

Let N = NO + NI , where NO denotes the total number of corners located in the

boundary of the drawing (i.e. at boundary junction points), and where NI denotes the

105

total number of corners located interior of the drawing (i.e. at non-boundary junction

points).

First, we have NO ≥ |V (G)|+ t: We write Nv to denote the number of sides in the

boundary of the drawing intersecting the polygon corresponding to v. In view of above,

NO = ∑
v∈V (G)(Nv + 1) = ∑

v∈V (G) Nv + |V (G)| ≥ t + |V (G)| (a side can intersect

more than one polygon).

WewriteC to denote the total number of non-boundary junction points. It is obvious

that C is an upper bound of number of 180◦ angles at non-boundary junction points,

since each junction point can have at most one. Let D = summation of deg(p), for all

non-boundary junction points p. Then, clearly we have D − C as an lower bound of

NI .

Exact value of C, D can be expressed in terms of |V (G)| and |E(G)|. C is the

number of inner faces in G. Therefore, according to Euler's formula, C = |E(G)| −

|V (G)| + 1. D is simply number of boundary edges plus two times of the number of

non-boundary edges in G, so we have D = 2|E(G)| − |E(FO(G))|. Since G is an

outerplane graph, |E(FO(G))| = |V (G)|. To sum up, NI ≤ [2|E(G)| − |V (G)|] −

[|E(G)| − |V (G)|+ 1] = |E(G)| − 2|V (G)| − 1.

Then, since it is clear that k|V (G)| ≥ N , we have k|V (G)| ≥ N = NO + NI ≥

[|V (G)| + t] + [|E(G)| − 2|V (G)| − 1]. By re-ordering the terms, we get t ≤ (k −

1)|V (G)| − |E(G)|+ 1.

The equality t = (k − 1)|V (G)| − |E(G)| + 1 is reached iff the two equalities

k|V (G)| = N , NI = |E(G)| − 2|V (G)| − 1 are met. The first one is met iff each

polygon is k−sided. The second one is met iff each non-boundary junction point has

an 180◦ angle (i.e. is interior to a side of a polygon).

The above lemma can be seen as a necessary condition for a biconnected outerplane

graph to have a t−TkR. Surprisingly, the simple condition is also sufficient when k ≥ 4,

which we will prove later.

Some definitions are needed before proceeding further. Given a biconnected outer-

106

3

c
a

b

r
d

1
2

3

4

5

6

7
8 9

7

6

5

4
3

2
1

8 9 5 7

a b

7 5

6 8

c

1 2

d

r

2

3 4 5
6

7 8

9

1 2

1 9 8
7

6

5
4

(1) (2) (3) (4)

Pc

Figure 6.2: The construction of an area-universal t-T4R.

plane graph G, the plane graph G∗ (not the dual graph) is defined as the graph resulting

from the following operations:

1. Start from the dual graph of G, and let t be the vertex in the dual graph corre-

sponding to FO(G).

2. Divide t into |N(t)| vertices, each of which is adjacent to a distinct vertex incident

in N(t).

3. Link all these |N(t)| vertices together to form a cycle, which is set to the outer

cycle of the graph G∗.

As an illustrating example, Fig. 6.2(2) shows the plane graph G∗ (the outer cycle

is depicted in a dotted-line) associating with the plane graph G depicted in Fig. 6.2(1).

The subgraph of G∗ that excludes the edges in the outer cycle is called the skeleton. For

the case G is a biconnected outerplane graph, its skeleton is a tree. It is easy to see that

each non-leaf vertex in the skeleton has degree at least 3.

A skeleton can be regarded as a rooted tree by selecting any non-leaf vertex r as its

root. For any non-leaf vertex v in the skeleton, we define Tv as the sub-tree rooted at v.

We let Fv be the set of faces in G∗ such that all their non-boundary edges are contained

in E(Tv). For instance, Fc = {5, 6, 7, 8} in Fig. 6.2(2). We write Pv to denote the

sub-path of FO(G∗) formed by including all boundary edges contained in some face

F ∈ Fv. See Fig. 6.2(2) for Pc.

We are now in a position to prove one of the main results of the chapter:

107

x

F

v v

r

r F

y

z

Figure 6.3: Illustration of Procedures 1 and 2.

Theorem 6.1. Every biconnected outerplane graph admits an area-universal 3-T4R.

Proof. The basic idea is thatG∗ can be regarded as a "sketch" of a contact representation

of G. All we have to do is to find a drawing of G∗ meeting the requirement of the

theorem.

The proof is based on a bottom-up approach operating on the skeleton of the input

biconnected outerplane graph. When a vertex v in the skeleton is encountered, all ver-

tices in V (Tv) \ {v} have been processed before. During each iteration, the following

invariant is kept:

• For each non-leaf vertex u ̸= r that has been processed, the sub-graph Gu of G∗

induced by Fu is drawn as an area-universal drawing satisfying:

1. Each face (in Fu) is either a triangle or a convex quadrangle.

2. Each non-boundary vertex in V (Tu)\{u} is a junction point having an 180◦

angle in the current sub-drawing.

3. The outer boundary of the sub-drawing of Gu is a triangle in which u is one

of its corner and Pu is one of its sides (hence u is not an 180◦ corner in any

face in Fu).

Let v be the vertex currently being processed. If v is a leaf, we do nothing. If v is

non-leaf vertex that is not the root, we do the following:

Pඋඈർൾൽඎඋൾ 1 (See Fig. 6.3(left))

1. Let u1, . . . , us be the children of v.

108

2. For each ui that is not a leaf, if one of the two faces incident to the edge {v, ui}

is not contained in Fv, we make ui an 180◦ corner of the face (indicating by

an arrow in the illustration). If both faces are contained in Fv, the choice is

arbitrary.

3. For each face F ∈ Fv \
∪

1≤i≤s Fui
, we contract as many its boundary edges

as possible such that F has at least 3 sides in the drawing.

4. Straighten the path Pv.

It is easy to see that the resulting drawing of Gv satisfies the invariant from the

illustration (left one of Fig. 6.3). To see that the drawing is area-universal, we first divide

each quadrangle into two triangles by adding a straight line linking v to the opposite

corner on the boundary of the drawing. Then, if we treat each sub-drawing of Gui
as a

single triangle, the drawing of Gv is clearly a one-sided and sliceable 3-T3R (and hence

area-universal (Lemma 2.1)).

What remains to be done is the case when the root r is encountered.

Pඋඈർൾൽඎඋൾ 2 (see Fig. 6.3(right))

1. Let u1, . . . , us be the children of r.

2. Choose a designated face F ∈ (Fr \
∪

1≤i≤s Fui
).

3. Assign r to be an 180◦ corner of F ; remove F from Fr.

4. Do (2),(3) of Pඋඈർൾൽඎඋൾ 1 (with v = r).

5. Subdivide the boundary edge {x, y} of F , resulting in two edges

{x, y}, {y, z}.

6. Select 3 designated vertices on the boundary cycle such that x, z are selected,

y is not selected.

109

7. Straighten everywhere on the boundary cycle except those 3 selected vertices

(making the boundary triangular).

Similar to Pඋඈർൾൽඎඋൾ 1, it can be easily seen that the resulting drawing after apply-

ing Pඋඈർൾൽඎඋൾ 2 is an area-universal drawing. The outer boundary of the drawing is

a triangle. Each inner face is drawn as a triangle or a convex quadrangle. Hence, the

theorem holds.

3

c
a

b

r
d

1
2

3

4

5

6

7
8 9

7

6

5

4
3

2
1

8 9 5 7

a b

7 5

6 8

c

1 2

d

r

2

3 4 5
6

7 8

9

1 2

1 9 8
7

6

5
4

Pc

(1) (2)

(3) (4)

7 5

6 8

c

7 5

6 8

c

c
a

b

5

6

7
8

Pc

Figure 6.4: Applying Pඋඈർൾൽඎඋൾ 1 to the subtree rooted at c in Fig.6.2(2).

See Fig. 6.2(1-3) for a full example of the above algorithm, and see Fig. 6.4 for a

showcase of applying Pඋඈർൾൽඎඋൾ 1 for the subtree rooted at c in Fig. 6.2(2).

Note that Theorem 6.1 is tight in the sense that it fails in general when the underlying

graph class is changed to either biconnected 2-outerplane graphs or 1-connected outer-

plane graphs. Also, for biconnected outerplane graphs, in general, 3-sided polygons are

not sufficient to construct convex polygonal duals.

Combining the above algorithm and Lemma 6.1, we prove the other main theorem of

the chapter which provides a simple necessary and sufficient condition for a biconnected

outerplane graph G to admit a t−TkR, for k > 3:

Theorem 6.2. For a biconnected outerplane graphG, and for k > 3,G admits a t−TkR

iff 3 ≤ t ≤ (k − 1)|V (G)| − |E(G)|+ 1.

Proof. We show only the "if" part as the "only-if" part follows from Lemma 6.1. The

case t = 3 is a direct result of Theorem 6.1. We observe that in the output drawing of

110

the algorithm in the proof of Theorem 6.1, each non-boundary vertex in G∗ is assigned

to be a 180◦ corner for some face. Therefore, for the case of t > 3, a desired drawing

can be constructed by adding sufficient number of additional corners in the boundary

of the output drawing while maintaining k−sidedness and convexity for each polygon

(in view of Lemma 6.1). It can be achieved by some slight perturbation in the boundary

(See Fig. 6.2(4)). Hence the theorem is concluded.

(Remark.) We note that we may use FAA and its related terminologies presented in the

last chapter to make the proofs in this chapter more formal. However, as we would like

the chapter to be more self-contained and the proofs more intuitive, we did not take this

approach.

111

Chapter 7

3D Floorplans

In this chapter, we generalize rectilinear duals to 3D by allowing each object to be

an orthogonal polyhedron.

We define the 3D floorplans, which is the natural generalization of rectilinear duals

to 3D, as follows:

Definition 7.1. A 3D floorplanR of a graphG is a contact representation in which each

vertex v ∈ V (G) corresponds to an axis-aligned genus 0 simple orthogonal polyhedron

such that two polyhedra have a surface contact (of non-zero area) iff their corresponding

vertices are adjacent in G. Furthermore, polyhedra in R form a partition of a box, and

hence the representation has no hole.

We show that all chordal graphs admit 3D floorplans that use only two layers. Fur-

thermore, such 3D floorplans are volume-universal.

To the best of our knowledge, this is the first attempt to investigate the 3D general-

ization of rectilinear duals.

7.1 Related Works

For recent related research in the literature, [5] is concerned with proportional con-

tact graph representations using orthogonal polyhedra in low complexity. The main

difference between our work and [5] is that in our 3D floorplans, modules associated

with vertices of a graph must fill the entire bounding box, whereas in [5], holes and/or

empty spaces are allowed as long as the contact of modules respects the adjacency of

vertices. From a combinatorial viewpoint, the work of [24] focuses on a bound on the

112

number of a specific type (including general and two-layer mosaic) of 3D floorplans

using boxes.

7.2 The Drawing Algorithm

In the two dimensional case, the graph class receiving the most attention in the study

of contact graph representations is undoubtedly the class of maximal planar graphs,

in which each of its internal faces is a triangle corresponding to a T-junction in the

rectilinear dual of the graph. As 3D allows us to capture a richer graph class in terms

of contact representations, it is natural to begin with a class of non-planar graphs with

some sort of a flavor of a "triangulation". Chordal graphs (also named as triangulated

graphs in some literature) is a good candidate for this purpose. See Section 2.2 for the

definition of the chordal graphs.

G

1

2

3

4

5 6

7

8 1,2,3,4

1,6

1,7

1,8

2,5

T1

P1

1 2 3 4 1 2 3 4

5

5

P1 P2

1,2

1,2,3,4

1,2,3
1,2,3

1,2 2

2,5

5

1

1
1

1

1
1,8

1,6

1,7 8 7

6

T2

P2

1

Figure 7.1: A chordal graph G and trees T1 and T2.

Chordal graphs can be characterized as intersection graphs of subtrees of a tree. The

following result is well-known.

Theorem 7.1. For a (connected) chordal graph G, we can construct a tree T1 where

each X ∈ V (T1) is a subset of V (G) such that the following conditions are met:

113

1. ∀v ∈ V (G), the set {X ∈ V (T1)|v ∈ X} forms a subtree of T1.

2. ∀v1, v2 ∈ V (G), {v1, v2} ∈ E(G) iff ∃X ∈ V (T1) such that {v1, v2} ⊆ X .

It is noted that the tree T1 in the above theorem is also known as a clique tree of G,

as each node of T1 corresponds to a maximal clique of G. See graph G and tree T1 in

Fig. 7.1.

To facilitate the construction of a 3D floorplan of a chordal graph, we slightly mod-

ify the clique tree in the above theorem to yield a new tree satisfying four additional

properties, as shown in the following theorem.

Theorem 7.2. For a (connected) chordal graph G, we can construct a tree T2 where

each X ∈ V (T2) is a subset of V (G) such that the following conditions are met:

1. ∀v ∈ V (G), the set {X ∈ V (T2)|v ∈ X} forms a subtree of T2.

2. ∀v1, v2 ∈ V (G), {v1, v2} ∈ E(G) iff ∃X ∈ V (T2) such that {v1, v2} ⊆ X .

3. T2 is of maximum degree 3.

4. If X ∈ V (T2) is of degree 3, then ∀v ∈ V (G), ∀{X, X ′} ∈ E(T2), v ∈ X iff

v ∈ X ′.

5. If X ∈ V (T2) is of degree 1, |X| = 1.

6. ∀{X, X ′} ∈ E(T2), |X \X ′| ≤ 1.

To understand the difference between T1 and T2, first recall that a chordal graph can

be captured as the intersection graph of subtrees of a tree. See Fig. 7.1 for illustrations

of T1 and T2 satisfying the conditions in Theorem 7.1 and Theorem 7.2, respectively.

The vertical line segments in the lower left of Fig. 7.1 shows a portion of the subtrees

corresponding to vertices 1, 2, 3, 4, 5within the pathes P1, P2. For instance, considering

the intersection graph of subtrees of T1, {2, 5} is an edge in G since line segments

associated with 2 and 5 overlap at some node, as our drawing of P1 indicates. To meet

the four additional conditions in Theorem 7.2, P2 is obtained from P1 by stretching

114

some of the line segments of P1 (while introducing additional nodes in the tree) so that

the difference between two adjacent nodes in P2 is exactly one, and P2 exhibits exactly

the same intersection relation as P1. Adapting a similar approach for other portion of

T1, a tree (T2) satisfying Theorem 7.2 can be constructed easily. It is not difficult to

see that T2 in Fig. 7.1 satisfies all the conditions in Theorem 7.2. In view of the above,

Theorem 7.2 should be obvious.

In what follows, we show that any chordal graph G admits a 3D floorplan R using

only two layers. Intuitively, a 2-layer floorplan is referred to one that can be obtained

by gluing two 2D floorplans together. We write N,E,S,W,U, and L to denote the

northern, eastern, southern, western, upper, and lower faces of the boundary box of R,

respectively. Each of them can be seen as a 2D floorplan of some rectilinear polygons

corresponding to some vertices inG, where several rectilinear polygonsmay correspond

to the same vertex. We write R(X), X ∈ {N,E, S,W,U,L}, to denote such a 2D

drawing. We note that a 3D floorplanR using only two layers is completely describable

by the two overlapping 2D floorplans R(U) and R(L).

See Fig. 7.2 for an illustration of a 3D floorplan consisting of a box labeled 2 lying

on two L-shape polyhedra labeled 1 and 3. R(X), X ∈ {N,E, S,W,U,L}, are also

depicted in the figure. One can easily observe that the information provided by R(U)

and R(L) are sufficient to describe the floorplan completely as it uses only two layers.

Hence, to simplify the illustration of our algorithm, instead of giving a 3D drawing of

the floorplan, we only draw R(U) and R(L) in our subsequent discussion.

𝑣′

𝑣 𝑣

𝕊 ℕ 𝔼 𝕎 𝕃 𝕌

1

2

3 1 1 1
1 3

2

2 2 3 3

3
3

1

2

ℕ

𝔼 𝕎

𝕊

ℕ 𝕊

ℕ

𝔼 𝕎

𝕊

𝕌

𝕃

𝔼 𝕎 𝔼 𝕎

𝕌

𝕃 𝕃 𝕃

𝕌 𝕌

𝕊 ℕ

ℕ

𝑣′

𝑣 𝑣

𝑣′

𝑣 𝑣 𝑣 𝑣

𝑎 𝑎 𝑏 𝑐 𝑑 𝑏 𝑐 𝑑

𝑣 𝑣

𝑣′

𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐 𝑑

𝕌, 𝕃
𝕌, 𝕃

𝕌, 𝕃

𝕌 𝕃

𝜀1

𝜀2

Figure 7.2: Illustration of a 3D floorplan.

Given a chordal graphG, our approach is an inductive construction based on a tree T

guaranteed by Theorem 7.2. We make T a rooted tree by designating one of its vertices

115

of degree 1 as the root.

(Invariant) For any subtree T ′ whose root is X , we write GX to denote the subgraph

of G induced by {v ∈ V (G)|∃X ∈ V (T ′), v ∈ X}. The invariant (i.e., inductive

hypothesis) of our construction is described as follows:

Given any designated vertex v ∈ X , there is a 2-layer 3D floorplan RX,v of GX

satisfying the following requirements:

1. Each of RX,v(E) and RX,v(W) contains exactly one rectangle; and the rectangle

corresponds to v.

2. If |X| = 1,RX,v(S) contains exactly one rectangle; and the rectangle corresponds

to v.

3. If |X| > 1, RX,v(S) contains exactly |X| + 1 rectangles, each of which touches

the upper and the lower sides of the outer boundary. The west-most and the east-

most rectangles correspond to v. The remaining |X| − 1 ones correspond to the

|X| − 1 vertices in X \ {v}, respectively.

(Base case) X is a leaf in T . According to Theorem 7.2, |X| = 1, it is immediate that

a 3D floorplan containing exactly one box for the unique vertex v ∈ X works.

(Induction step) Suppose X is not a leaf. Since the maximum degree of T is at most

3, and since the root of T is of degree 1, every non-leaf vertex in T contains either one

or two children.

We first deal with the situation when X has exactly one child X1. By induction

hypothesis, for any designated vertex v ∈ X1, there is a drawing RX1,v of GX1 satis-

fying the above requirements. If X = X1, taking the drawing RX,v = RX1,v suffices.

Therefore, we assume that X ̸= X ′. In view of Theorem 7.2, we must have either

X1 = X ∪{v′} for some v′ ∈ X1 \X (Case A) or X = X1∪{v′} for some v′ ∈ X \X1

(Case B).

Case A: For any v ∈ X , we must have v ∈ X1. A desired RX,v can be constructed

by extending the southern part of RX1,v with an operation which eliminates v′ from

116

RX,v(S). Adding a bend to a module near the module corresponding to v′ suffices to

prevent the presence of v′ in RX,v(S). See Fig. 7.3 for an illustration of such a removal

operation.

𝑣′

𝑣 𝑣

𝕊 ℕ 𝔼 𝕎 𝕃 𝕌

1

2

3 1 1 1
1 3

2

2 2 3 3

3
3

1

2

ℕ

𝔼 𝕎

𝕊

ℕ 𝕊

ℕ

𝔼 𝕎

𝕊

𝕌

𝕃

𝔼 𝕎 𝔼 𝕎

𝕌

𝕃 𝕃 𝕃

𝕌 𝕌

𝕊 ℕ

ℕ

𝑣′

𝑣 𝑣

𝑣′

𝑣 𝑣 𝑣 𝑣

𝑎 𝑎 𝑏 𝑐 𝑑 𝑏 𝑐 𝑑

𝑣 𝑣

𝑣′

𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐 𝑑

𝕌, 𝕃
𝕌, 𝕃

𝕌, 𝕃

𝕌 𝕃

𝜀1

𝜀2

Figure 7.3: Illustration of the removal operation

𝑣′

𝑣 𝑣

𝕊 ℕ 𝔼 𝕎 𝕃 𝕌

1

2

3 1 1 1
1 3

2

2 2 3 3

3
3

1

2

ℕ

𝔼 𝕎

𝕊

ℕ 𝕊

ℕ

𝔼 𝕎

𝕊

𝕌

𝕃

𝔼 𝕎 𝔼 𝕎

𝕌

𝕃 𝕃 𝕃

𝕌 𝕌

𝕊 ℕ

ℕ

𝑣′

𝑣 𝑣

𝑣′

𝑣 𝑣 𝑣 𝑣

𝑎 𝑎 𝑏 𝑐 𝑑 𝑏 𝑐 𝑑

𝑣 𝑣

𝑣′

𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐 𝑑

𝕌, 𝕃
𝕌, 𝕃

𝕌, 𝕃

𝕌 𝕃

𝜀1

𝜀2

Figure 7.4: Illustration of the insertion operation

𝑣

𝑣′′

𝑏 𝑐 𝑑

𝑣′′

𝑣

𝑣′′

 𝑣′′

𝑣′′

𝑏

𝑏

𝑐 𝑑

𝑐 𝑑

𝑣 𝑣

𝑎 𝑏 𝑐 𝑑

𝑣 𝑣

𝑐 𝑎 𝑑 𝑏

𝑣

𝑣

𝑣

𝑣′′

𝑣′′

𝑏
𝑐 𝑑

𝑣 𝑣

𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑑 𝑏

𝑣 𝑣 𝑣

𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑑 𝑏

𝑣

𝑎 𝑏 𝑐 𝑑

𝑏

𝑐

𝕌, 𝕃

𝕌, 𝕃

𝕃 𝕌

𝕌 𝕃

𝜀1

𝜀2

Figure 7.5: Illustration of the operation that changes the outer module

Case B: For any v ∈ X , we must have either v ∈ X1 or v = v′. Similarly, if v ∈

X1, a desired RX,v can be constructed by extending the southern part of RX1,v with

an operation which introduces the new orthogonal polyhedron corresponding to v′ and

makes it appears in RX,v(S). Such an insertion operation is illustrated in Fig. 7.4. If

v = v′, we start with RX1,v′′ for any v′′ ∈ X1. After introducing the new orthogonal

polyhedron corresponding to v′ using the insertion operation in Fig. 7.4, we still need to

117

make the module of v = v′ to be the outer one (i.e., occupying the entire RX,v(E) and

the entire RX,v(W)). The operation to fulfill this task is described in Fig. 7.5. It is easy

to verify that the resulting drawing meets all the requirements and that the drawing is a

3D floorplan of GX (the module corresponding to v′ is guaranteed to contact all other

modules of vertices in X in the upper layer).

Next, we deal with the remaining situation where X has two children X1 and X2

(Case C). In view of Theorem 7.2, we always have v ∈ X1 and v ∈ X2, ∀v ∈ X .

𝑣

𝑎

𝑏 𝑐 𝑑

𝑎

𝑣

𝑎 𝑎

𝑎

𝑏

𝑏

𝑐 𝑑

𝑐 𝑑

𝑣 𝑣

𝑎 𝑏 𝑐 𝑑

𝑣 𝑣

𝑐 𝑎 𝑑 𝑏

𝑣

𝑣

𝑣

𝑎 𝑎

𝑏
𝑐 𝑑

𝑣 𝑣

𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑑 𝑏

𝑣 𝑣 𝑣

𝑎 𝑏 𝑐 𝑑 𝑐 𝑎 𝑑 𝑏

𝑣

𝑎 𝑏 𝑐 𝑑

𝑏

𝑐

𝕌, 𝕃

𝕌, 𝕃

𝕃 𝕌

𝕌 𝕃

𝜀1

𝜀2

Figure 7.6: Illustration of the merging operation

Case C: For any v ∈ X , a desired RX,v can be constructed by the following proce-

dure. First, we combine RX1,v and RX2,v together by gluing RX1,v(E) with RX2,v(W).

Then, we extend the southern boundary to link the polyhedra in RX1,v and in RX2,v

corresponding to the same vertex. The detail of the merging operation is described in

Fig. 7.6.

By carrying out the inductive construction in a bottom up fashion, the following

main theorem of the section is obtained:

Theorem 7.3. Every (connected) chordal graph G admits a 2-layer 3D floorplan.

Before ending this section, more is said about our algorithm in the following.

First, one can easily see that the drawing produced by our algorithm is "volume-

universal" (i.e., can realize any volume assignment to the objects) by the following

reasoning. We make the lower layer to be negligibly thin enough. The added volume

introduced by any operations other than the insertion described in Fig. 7.4 is also set to

118

be negligibly small. Whenever a new polyhedron corresponding to a vertex is added

to the drawing, the lengths ε1 and ε2 (see Fig. 7.4) are made negligibly small. As a

result, the insertion of v′ is now "equivalent" to adding a box corresponding to v′ gluing

to the southern face of the current 3D floorplan. These boxes are the only parts of the

entire drawing that contributes non-negligible volume. It is easy to see that the volume

of such a box can be set arbitrarily during the insertion operation. Hence, we have the

following:

Corollary 7.1. Given a (connected) chordal graph G, there is a 2-layer 3D volume-

universal floorplan that respects any weight assignment to vertices in G, in the sense

that the volume of an orthogonal polyhedron in the floorplan equals the assigned weight

of the associated vertex in G.

𝑣′ 𝑣′

𝑣′

𝑎 𝑎 𝑏 𝑐 𝑑 𝑏 𝑐 𝑑

𝑣′

𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐 𝑑

𝕌, 𝕃
𝕌, 𝕃

𝕌, 𝕃

𝕌 𝕃

Figure 7.7: Illustration of the simplified operations for interval graphs

Second, if we restrict the graph class to the interval graphs (the intersection graph

of subpaths in a path), the drawing resulting from our algorithm has width O(k) (i.e.,

the number of layers needed in the west-east direction), where k is the size of the max-

imum clique in G. For an interval graph G, and for its corresponding T is a path, Case

C never occurs. As a result, the requirement in the invariant that a designated polyhe-

dron occupying the entire east and the entire west sides is redundant. Therefore, the

only operations needed are the insertion (Fig. 7.4) and the removal (Fig. 7.3). In fact,

these operations can be simplified when the aforementioned requirement is relaxed. See

119

Fig. 7.7 for an illustration of the relaxed version of these operations. Since themaximum

size of X ∈ V (T) equals the maximum size of cliques in G, the following result easily

follows from our algorithm, with coordinates being properly adjusted and assigned.

Corollary 7.2. Every interval graph G admits a 2-layer 3D floorplan which fits in a

O(1)×O(k)×O(|V (G)|) grid, where k is the size of the maximum clique in G.

120

Chapter 8

Conclusion and Future Perspectives

At the beginning of the thesis, we studied various shape constraints in rectilinear

duals and orthogonal drawings. Next, we moved on to investigate possible extension

and generalization of rectilinear duals to other settings. In particular, a few results for

convex polygons and for rectilinear polyhedra were presented.

Our study has opened up a few exciting new research directions. In the below we

briefly describe some of them, with a few interesting and approachable open problems

highlighted.

Orthogonally Convex Drawings. In Chapter 3, our study of orthogonally convex

drawing can be seen as the first ever attempt to combine the flow network approach [6,

12,41]with the combinatorial study of orthogonal drawing byRahman andNishizeki [35,

36] to yield interesting consequences. We really feel that the result of Rahman and

Nishizeki should be useful in improving the current orthogonal drawing algorithms and

tackling other variants of orthogonal drawing.

A natural future work direction regarding orthogonally convex drawing is to design

polynomial time algorithms for broader graph classes (than biconnected plane 3-graphs)

or to prove that it is NP-complete to do so.

Question 8.1. What is the time complexity of constructing a bend-minimized orthogo-

nally convex drawing for a plane 4-graph?

Question 8.2. What is the time complexity of constructing a bend-minimized orthogo-

nally convex drawing for a planar 4-graph?

For orthogonal drawing, there is already an efficient flow-network based algorithm

121

for plane 4-graphs [12]; however, it is NP-complete to find a bend-minimized orthogo-

nal drawing for planar 4-graphs [23].

Note that the proof of NP-completeness in [23] does not naturally carry over to

orthogonally convex drawings, so it would not be surprising if it turns out that bend-

minimization of orthogonally convex drawings for planar 4-graphs is polynomial time

solvable.

Rectilinear Duals without T-shape. At a high level, the results presented in chapter 4

increase our understanding of the power and limitation of different shapes of polygons

in constructing rectilinear duals. Our results are largely related to [4, 43].

A natural direction for future research is to investigate other kinds of previously

unstudied restrictions to usable shapes.

We proved that ⊤-free polygons suffice to construct rectilinear duals for maximal

plane graphs, and we even showed that the optimal polygonal complexity is 12. How-

ever, unlike [4], our result does not carry over to area-universal ones. In fact, the fol-

lowing question is open.

Question 8.3. Is there a maximal plane graph such that all its area-universal rectilinear

duals must contain some ⊤-shape polygon or its extension?

Convex Polygonal Duals. In chapter 5, we proposed a new approach for tackling a

wide range of problems of contact graph representations. In addition to the facilitation

of Courcelle's Theorem in the framework of monadic second-order logic to yield some

fixed-parameter tractability results, the usefulness of this new technique is further am-

plified through several short proofs of some interesting existing results. Some intriguing

questions and open problems still remain.

In particular, though we presented some fixed-parameter tractability results for con-

vex polygonal duals, the NP-completeness proof for the general problem is still lacking.

Question 8.4. Given a plane graph G and a number k, is it NP-complete to decide

whether G admits a k-sided convex polygonal dual?

122

If it turns out that the answer to Question 8.4 is NO, a lot portion of our work will be

meaningless. We conjecture that the answer is YES even for some restricted versions.

Other interesting future work directions are listed as follows:

• Is there a general approach to deal with the case when holes are allowed? Also,

how about other types of contact styles?

• As the huge constant involved in Courcelle's Theorem makes the FPT algorithm

practically unusable, it would be helpful to have a practically usable solution.

• The work of [21] showed that a special subclass of outerplanar graphs enjoys

proper touching triangle representations. Is it possible to extend the result to a

broader graph class such as the entire class of outerplanar graphs?

• In view of Theorem 5.6, 5.7, it will be interesting to see more results linking

rectilinear contact representations to non-rectilinear ones.

Area-universal Drawings of Biconnected Outerplane Graphs. In Chapter 6, we pre-

sented some very clean and quick results for convex polygonal duals of outerplane

graphs: Theorem 6.1 allows us to construct an area-universal drawing of low com-

plexity, and Theorem 6.2 gives a simple condition for us to examine whether a drawing

exists under a certain polygonal complexity requirement.

Though Theorem 6.2 only holds for k > 3, the case for k = 3 has been solved in [1],

where a much different necessary and sufficient condition is given.

Theorem 6.1 implies that all biconnected outerplane graphs admit a 4-sided convex

polygonal dual. However, for the case of 3-sided convex polygonal duals, the issue

becomes much more complicated.

Question 8.5. What is the time complexity to decide whether a biconnected outerplane

graph admits an area-universal 3-sided convex polygonal dual?

Though Corollary 5.1 already carry over k-outerplane graphs, it is still of interest to

extend Theorem 6.2 to broader graph classes.

123

Question 8.6. For an outerplane graph G, and for two positive integers k, t, is it pos-

sible to give a simple necessary and sufficient condition to test whether G admits a

t−TkR?

3D Floorplans. In Chapter 7, we showed that all chordal graphs admit a 3D floorplan.

However, the construction process seems to require pretty high polygonal complexity.

We feel that there is a possibility to design a better algorithm.

Future work along the line of research on 3D floorplans includes minimizing the

complexity of the drawing (measured, for instance, in terms of the size of the bounding

box or the number of faces/sides/corners in each constituent orthogonal polyhedron).

Finding a broader class of graphs admitting 3D floorplans is also of interest.

Note that we can define the polygonal complexity of a 3D floorplan naturally as

max{ the number of edges of P | P is a polyhedron corresponding to a vertex in the

drawing. }.

Question 8.7. What is the optimal polygonal complexity for 3D floorplans for chordal

graphs?

Question 8.7 remains interesting even for interval graphs.

In addition to polygonal complexity, the volume of the drawing, which can be mea-

sured by the size of the underlying grid or the number of grid planes, is another important

quality measure.

In Corollary 7.2, we showed that interval graphs admit a 2-layer 3D floorplan which

fits into a O(1)×O(k)×O(|V (G)|) grid, where k is the size of the maximum clique in

G. In other words, it requires O(|V (G)|) grid planes. We conjecture that it is optimal.

Question 8.8. Is it possible to construct a 3D floorplan using o(|V (G)|) grid planes

for every interval graph G?

The following research directions are also interesting:

1. improving the constant behind Corollary 7.2; and

124

2. reducing the number of grid planes in our algorithm for constructing 3D floorplans

of chordal graphs.

125

Bibliography

[1] Nieke Aerts. Geometric Representations of Planar Graphs. PhD thesis, Technis-

chen Universität Berlin, 2015.

[2] Nieke Aerts and Stefan Felsner. Straight line triangle representations. In Stephen

Wismath and Alexander Wolff, editors, Graph Drawing, volume 8242 of Lecture

Notes in Computer Science, pages 119--130. Springer International Publishing,

2013.

[3] Md. Jawaherul Alam, Therese Biedl, Stefan Felsner, Andreas Gerasch, Michael

Kaufmann, and Stephen G. Kobourov. Linear-time algorithms for hole-free rec-

tilinear proportional contact graph representations. Algorithmica, 67(1):3--22,

2013.

[4] Md. Jawaherul Alam, Therese Biedl, Stefan Felsner, Michael Kaufmann,

Stephen G. Kobourov, and Torsten Ueckerdt. Computing cartograms with optimal

complexity. Discrete & Computational Geometry, 50(3):784--810, 2013.

[5] Md. Jawaherul Alam, Stephen G. Kobourov, Giuseppe Liotta, Sergey Pupyrev,

and Sankar Veeramoni. 3d proportional contact representations of graphs. In The

5th International Conference on Information, Intelligence, Systems and Applica-

tions (IISA 2014), pages 27--32, 2014.

[6] Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and opti-

mal orthogonal drawings. SIAM Journal on Computing, 27(6):1764--1811, 1998.

[7] Michael A. Bekos, Michael Kaufmann, Robert Krug, Stefan Näher, and Vincenzo

Roselli. Slanted orthogonal drawings. In Stephen Wismath and Alexander Wolff,

editors, Graph Drawing, volume 8242 of Lecture Notes in Computer Science,

pages 424--435. Springer International Publishing, 2013.

126

[8] Therese Biedl and Lesvia Elena Ruiz Velázquez. Orthogonal cartograms with few

corners per face. In Frank Dehne, John Iacono, and Jörg-Rüdiger Sack, editors,

Algorithms and Data Structures, volume 6844 of Lecture Notes in Computer Sci-

ence, pages 98--109. Springer Berlin Heidelberg, 2011.

[9] Yi-Jun Chang and Hsu-Chun Yen. On orthogonally convex drawings of plane

graphs. In Stephen Wismath and Alexander Wolff, editors, Graph Drawing, vol-

ume 8242 of Lecture Notes in Computer Science, pages 400--411. Springer Inter-

national Publishing, 2013.

[10] Yi-Jun Chang and Hsu-Chun Yen. Rectilinear duals using monotone staircase

polygons. In Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, editors, Com-

binatorial Optimization and Applications, volume 8881 of Lecture Notes in Com-

puter Science, pages 86--100. Springer International Publishing, 2014.

[11] Yi-Jun Chang and Hsu-Chun Yen. A new approach for contact graph represen-

tations and its applications. To be presented in the 14th Algorithms and Data

Structures Symposium (WADS'15), LNCS 9214, 2015.

[12] Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization. In

Marc van Kreveld and Bettina Speckmann, editors,Graph Drawing, volume 7034

of Lecture Notes in Computer Science, pages 111--122. Springer Berlin Heidel-

berg, 2012.

[13] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets

of finite graphs. Information and Computation, 85(1):12--75, 1990.

[14] Bruno Courcelle and Engelfriet Joost. Graph Structure and Monadic Second-

Order Logic: A Language-Theoretic Approach. Cambridge University Press,

2012.

[15] Hubert de Fraysseix and Patrice Ossona de Mendez. Barycentric systems and

stretchability. Discrete Applied Mathematics, 155(9):1079 -- 1095, 2007.

127

[16] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized

Complexity. Springer-Verlag London, 2013.

[17] Christian A. Duncan, Emden R. Gansner, Yifan Hu, Michael Kaufmann, and

Stephen G. Kobourov. Optimal polygonal representation of planar graphs. Al-

gorithmica, 63(3):672--691, 2012.

[18] Christian A. Duncan and Michael T. Goodrich. Planar orthogonal and polyline

drawing algorithms. InHandbook of Graph Drawing and Visualization, chapter 7.

CRC Press.

[19] David Eppstein, Elena Mumford, Bettina Speckmann, and Kevin Verbeek. Area-

universal and constrained rectangular layouts. SIAM Journal onComputing, 41(3):

537--564, 2012.

[20] William Evans, Stefan Felsner, Michael Kaufmann, Stephen G. Kobourov, De-

bajyoti Mondal, Rahnuma Islam Nishat, and Kevin Verbeek. Table cartograms.

In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms – ESA 2013,

volume 8125 of Lecture Notes in Computer Science, pages 421--432. Springer

Berlin Heidelberg, 2013.

[21] J. Joseph Fowler. Strongly-connected outerplanar graphs with proper touching

triangle representations. In StephenWismath and AlexanderWolff, editors,Graph

Drawing, volume 8242 of Lecture Notes in Computer Science, pages 155--160.

Springer International Publishing, 2013.

[22] Emden R. Gansner, Yifan Hu, and Stephen G. Kobourov. On touching triangle

graphs. In Ulrik Brandes and Sabine Cornelsen, editors, Graph Drawing, vol-

ume 6502 of Lecture Notes in Computer Science, pages 250--261. Springer Berlin

Heidelberg, 2011.

128

[23] Ashim Garg and Roberto Tamassia. On the computational complexity of upward

and rectilinear planarity testing. SIAM Journal on Computing, 31(2):601--625,

2001.

[24] Paul Horn andGabor Lippner. Two layer 3d floor planning. The Electronic Journal

of Combinatorics, 20(4):P16, 2013.

[25] Bapi Kar, Susmita Sur-Kolay, Sridhar H. Rangarajan, and Chittaranjan R. Man-

dal. A faster hierarchical balanced bipartitioner for vlsi floorplans using monotone

staircase cuts. In Hafizur Rahaman, Sanatan Chattopadhyay, and Santanu Chat-

topadhyay, editors, Progress in VLSI Design and Test, volume 7373 of Lecture

Notes in Computer Science, pages 327--336. Springer Berlin Heidelberg, 2012.

[26] Akifumi Kawaguchi and Hiroshi Nagamochi. Drawing slicing graphs with face

areas. Theoretical Computer Science, 410(11):1061--1072, 2009.

[27] Gunnar W. Klau and Petra Mutzel. Quasi–orthogonal drawing of planar graphs.

Technical Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Saar-

brücken, 1998.

[28] Stephen G. Kobourov, Debajyoti Mondal, and Rahnuma Islam Nishat. Touch-

ing triangle representations for 3-connected planar graphs. In Walter Didimo and

Maurizio Patrignani, editors, Graph Drawing, volume 7704 of Lecture Notes in

Computer Science, pages 199--210. Springer Berlin Heidelberg, 2013.

[29] Paul Koebe. Kontaktprobleme der konformen abbildung. Ber. Verh. Sächs.

Akademie der Wissenschaften Leipzig, Math.-Phys., Klasse 88:141--164, 1936.

[30] Krzysztof Koźmiński and Edwin Kinnen. Rectangular duals of planar graphs.

Networks, 15(2):145--157, 1985.

[31] Chien-Chih Liao, Hsueh-I Lu, and Hsu-Chun Yen. Compact floor-planning via

orderly spanning trees. J. Algorithms, 48(2):441--451, 2003.

129

[32] Subhashis Majumder, Susmita Sur-Kolay, Bhargab B. Bhattacharya, and

Swarup Kumar Das. Hierarchical partitioning of vlsi floorplans by staircases.

ACM Trans. Des. Autom. Electron. Syst., 12(1):7:1--7:19, 2007.

[33] KazuyukiMiura, Hiroki Haga, and TakaoNishizeki. Inner rectangular drawings of

plane graphs. International Journal of Computational Geometry & Applications,

16(02n03):249--270, 2006.

[34] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, Lecture Notes

Series on Computing 12. World Scientific, 2004.

[35] Md. Saidur Rahman, Shinichi Nakano, and TakaoNishizeki. A linear algorithm for

bend-optimal orthogonal drawings of triconnected cubic plane graphs. J. Graph

Algorithms Appl, 3:31--62, 1999.

[36] Md. Saidur Rahman, Takao Nishizeki, and Mahmuda Naznin. Orthogonal draw-

ings of plane graphs without bends. Journal of Graph Algorithms and Applica-

tions, 7(4):335--362, 2003.

[37] Md.Saidur Rahman, Noritsugu Egi, and Takao Nishizeki. No-bend orthogonal

drawings of series-parallel graphs. In PatrickHealy andNikola S. Nikolov, editors,

Graph Drawing, volume 3843 of Lecture Notes in Computer Science, pages 409-

-420. Springer Berlin Heidelberg, 2006.

[38] Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the

First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'90, pages

138--148, Philadelphia, PA, USA, 1990. Society for Industrial and Applied Math-

ematics.

[39] Jonathan Stott, Peter Rodgers, Juan Carlos Martínez-Ovando, and Stephen G.

Walker. Automatic metro map layout using multicriteria optimization. Visual-

ization and Computer Graphics, IEEE Transactions on, 17(1):101--114, 2011.

130

[40] Yachyang Sun and Majid Sarrafzadeh. Floorplanning by graph dualization: L-

shaped modules. In IEEE International Symposium on Circuits and Systems, vol-

ume 4, pages 2845--2848, 1990.

[41] Roberto Tamassia. On embedding a graph in the grid with the minimum number

of bends. SIAM Journal on Computing, 16(3):421--444, 1987.

[42] Carsten Thomassen. Plane representations of graphs. In J.A. Bondy and U.S.R.

Murty, editors, Progress in Graph Theory, pages 43--69. Academic Press, Toronto,

1984.

[43] Torsten Ueckerdt. Geometric Representations of Graphs with Low Polygonal

Complexity. PhD thesis, Technischen Universität Berlin, 2011.

[44] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.

[45] Kok-Hoo Yeap and Majid Sarrafzadeh. Floor-planning by graph dualization: 2-

concave rectilinear modules. SIAM Journal on Computing, 22(3):500--526, 1993.

131

