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Abstract

Graph represents one of the most popular abstract models in describing
complex science and engineering problems. Graph drawing refers to the
process of displaying an abstract graph in 2D or 3D, allowing the struc-
ture as well as the meaning of the graph to be understood better and easier.
As a consequence, the design of graph drawing algorithms has become an

emerging and fast growing research area in computer science.

Among problems of interest in the graph drawing community, the topic
of contact representations of graphs has received increasing attention over
the years. Given a graph, a contact representation of the graph is to map
each vertex of the graph to a geometric object in 2D or 3D so that two

vertices are adjacent iff their corresponding objects "touch".

A rectilinear dual, a classic drawing style which has found applications
in VLSI floor-planning, requires that each vertex be drawn as a rectilinear
polygon, adjacency in a graph correspond to side-contact in the drawing,

and all rectilinear polygons together form a partition of a rectangle.

In the first half of the thesis, we investigate a variety of shape con-
straints in rectilinear duals. As convex objects tend to be visually more
pleasing, the drawing style orthogonally convex drawing is proposed and
investigated. In addition, we study rectilinear duals using a restricted set
of shapes, in order to understand the power and the limitation of different
shapes in rectilinear duals. We determine the optimal polygonal complexity
of T-free rectilinear dual, justifying the intuition that T-shape is the most

useful 8-sided polygon.

v



In the second half of the thesis, we study possible extensions and gen-
eralizations of rectilinear duals beyond the 2D rectilinear setting. To ac-
commodate convex polygons, the drawing style convex polygonal dual is
proposed and investigated. We demonstrate several new techniques and
fixed-parameter tractability results to deal with this drawing style. We also
propose and investigate a new drawing style called 3D floorplan, using
rectilinear polyhedra as building blocks. We show that every chordal graph
admits a 3D-floorplan which uses only two layers and is also capable of

realizing any volume-assignment to its constituent polyhedra.

In summary, the thesis provides a variety of new techniques and new
perspectives within the framework of contact representations of graphs. We
hope that this study could lead to a better understanding of contact graph

representations - an exciting and challenging topic in graph drawing.

Keywords: graph drawing, contact representation, planar graph, cartogram,

floorplan



Contents

rELE 6T

R

¥ 3

Abstract

Contents

List of Figures

1 Introduction

2 Preliminaries

2.1
2.2
23
24
2.5
2.6

Graph Theoretic Preliminaries . . . . . . . ... ... ... ......
Tree-width and Chordal Graphs . . . . . . .. ... ... ... ....
Rectilinear Polygons . . . . . . ... ... ... .. ...,
Separation Trees . . . . . . . . . . ... ...
Sliceability and Area-universality . . . .. .. ... ... .......

Other Topics . . . . . . . . . . e

3 Orthogonally Convex Drawings

3.1
3.2
3.3
3.4
3.5
3.6

Related Works . . . . . . . . .. o
Terminologies . . . . . . . . . . . ...
Review of the Results of Rahman and Nishizeki . . . . . .. ... ...
No-bend Orthogonally Convex Drawings . . . . ... ... ......
An Alternative Condition . . . . . . . . . ... ... ... ... ...,

Flow Formulation for Bend-minimization . . . . . . . ... . ... ..

Vi

ii

iii

iv

vi

ix

11
13
16
19



3.7 Orthogonal Convexity in Rectilinear Duals . . . . . ... .. ... .. 47

4 Rectilinear Duals without T-shape 56
4.1 RelatedWorks . . . . . . . ... 57
4.2 Lower Bound of Polygonal Complexity . ... ... .......... 58
4.3 Construction of 12-sided T-free Rectilinear Duals . . . . . . ... .. 60

4.3.1 Un-contracting a Separating Triangle . . . .. ... ... ... 60
4.3.2 Transferring Concave Corners . . . . . . . . ... ....... 64
4.4 Area-universal Drawings . . . . . . . .. ... ... ..., 67
4.5 More about Staircase Polygons . . . . . .. ... ... ......... 69

5 Convex Polygonal Duals 73
5.1 RelatedWorks . . .. ... ... .. 74
5.2 Terminologies . . . . . . . . . . .. 74
5.3 Characterizing t-sided Convex Polygonal Duals . . . . . .. ... ... 76
54 Proofof TheoremS5.2 . . . . .. ... .. ... .. ... .. 80
5.5 Fixed-parameter Tractability Results . . . . . . . ... ... ... ... 88
5.6 Exact Definition of the Formula ¢-VALIDFAA . . . . . . .. ... ... 92

561 t-FAA . . . . . 93
5.6.2 t-VALIDFAA . . . . . . .. 94
5.6.3 Remaining Formulas . . . . ... ... ... ... ....... 96
5.7 Further Applications of Our Technique . . ... ... ... ...... 100

6 Area-universal Drawings of Biconnected Outerplane Graphs 104
6.1 Terminologies . . . . . . . . . . . ... 104
6.2 Drawing Biconnected Outerplane Graphs . . . . . . . ... ... ... 105

7 3D Floorplans 112
7.1 Related Works . . . . . . ... ... 112
7.2 The Drawing Algorithm . . . . . ... ... ... ... ... ..., 113

Vil



8 Conclusion and Future Perspectives 121

Bibliography 126

viii



List of Figures

1.1
1.2

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

3.10
3.11

Examples of drawing styles . . . . . . .. ... ... ... ... ... 3
Realization of different area-assignments. . . . . . . ... ... .... 3
I-shape, L-shape, T-shape and Z-shape polygons . . . . ... ... .. 11
Examples of rectilinear polygons. . . . . .. ... ... ........ 12
A non-rotated T-shape rectilinearduval. . . . ... ... ... ..... 13
Aseparationtree. . . . . . . ... 14
Rectangularduals.. . . . . . ... ... ... ... ... ... ... . 15
[lustration of inserting sub-drawing. . . . . . . . .. ... ... .... 15
Construction of a rectilinear dual. . . . . . ... ... ... .. .... 16
A rectilinear dual constructed by monotone staircase cuts. . . . . . . . 17
Sliceability and one-sidedness in triangle contact representations. . . . . 19
The 5-cycle graph and its triangle contact representations. . . . . . . . 20
Illustration of some terms about cycles and paths. . . . . ... ... .. 24
[llustration of the proof of Lemma 3.1. . . . .. ... ... ... ... 27
Case 1: The drawing w.r.t. a 3-legged cycle C;. . . . . . ... .. ... 30

Case 2: The drawing w.r.t. a 2-legged cycle C; with v; a non-corner

Case 3: The drawing w.r.t. a 2-legged cycle C; with v; a corner 2-vertex. 31

Proper and improper 2-legged cycles. . . . . . .. ... ... 32
Critical paths and S inaplane graph. . . . . . ... ... ... .... 36
An example for Corollary 3.2. . . . . .. ... ... ... ....... 39

Bend-minimized orthogonal drawings and bend-minimized orthogonally

convex drawings. . . . . . . . .. ..o 40
Illustration of the flow network Ng. . . . . . . . . . . . ... .. ... 42
[lustration of the proof of Lemma 3.4. . ... ... ... ... .... 43

1X



3.12
3.13
3.14
3.15
3.16

4.1
42
43
44
45
4.6
4.7
4.8

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59

6.1
6.2
6.3
6.4

7.1

Hlustration of the construction of N(,. . . . . . . .. ... .. ... .. 46

An example ofa Q-floorplan. . . . . . .. ... ... ... ... . .. 47
The construction of Gp,imq; and the block-cutvertex tree of Ggyar. . . . 49
[llustration of the proof of Lemma 3.6. . . ... ... ......... 51
Key concepts in Q-floorplanning. . . . . . .. ... ... .. ..... 54
Definition of H and illustration of the proof of Lemma4.1. . . . . .. 59

Location of u, v, w in the rectangular space for separating triangle {z, y, z}. 62

[lustration of un-contracting Type 1 triangles. . . . . . . ... ... .. 64
[lustration of un-contracting Type 2 triangles. . . . . . . ... ... .. 65
[lustration of transferring concave corners. . . . . . .. ... ... .. 66
[llustration of concepts in Section4.4. . . . . .. ... ... ...... 67
[lustration of the proof of Theorem4.6. . . . . . ... ... ... ... 71
Illustration of the proof of Theorem4.7. . . . . . ... ... ... ... 72
[Nlustration of concepts introduced in Section 5.3. . . . . . ... .. .. 77
Conceptsin Section 5.3. . . . . . .. .. ... .. ... ... 79

lustration of inclusion of a new segment into a set of pseudo segments. 83

Ilustration of finding S. . . . . . . . ... ... ... ... ... ... 83
[lustration of relating extremal points to free vertices. . . . . . . . . .. 85
Mlustration of proof of Lemma 5.2. . . . . . .. ... ... ... .... 86
[lustration of the proof of Theorem 5.5. . . . . . ... ... ... ... 92
[lustration of the proof of Theorem 5.6. . . . . . .. ... ... .... 102
Ilustration of the proof for Theorem 5.8. . . . . . . ... ... .. ... 103
A graph G and its convex polygonal dual. . . . . ... ... ... ... 105
The construction of an area-universal t-T4R. . . . . . . ... ... ... 107
[lustration of Procedures 1 and 2. . . . . . . ... ... ... ..... 108
Applying PROCEDURE 1 to the subtree rooted at c in Fig.6.2(2). . . . . . 110
A chordal graph G and trees 77 and 75, . . . . . .. ... ... .... 113



7.2
7.3
7.4
7.5
7.6
7.7

[lustration of a 3D floorplan. . . . . . . ... ... ... ... .... 115

[llustration of the removal operation . . . . . ... ... ... .. ... 117
[lustration of the insertion operation . . . . . . . . ... . ... .... 117
Illustration of the operation that changes the outer module . . . . . .. 117
[llustration of the merging operation . . . . . . . ... ... ...... 118
[lustration of the simplified operations for interval graphs . . . . . . . 119

X1



Chapter 1

Introduction

A graph is a mathematical structure which contains a collection of nodes and their
pairwise relations. It not only has been a prime topic of study in discrete mathematics for
years, but is also a natural model capturing lots of concepts and structures in computer
science and electrical engineering. For instance, computer networks, social networks,
circuits, and transportation routes can be modeled as graphs.

One very crucial aspect in the study of graphs is their drawings. From a practical
point of view, we are frequently asked to find the best drawing of some graph occurring
in real-world applications. In the floor-planning phase of the VLSI design, it is critical
to find a drawing of the underlying circuit that uses a small chip area while meeting
several constraints [45]; for a city having a complicated metro system, it is important to
have a nicely drawn metro map that can be read and understood easily [39].

From a theoretical point of view, the investigation of various geometric represen-
tations of graphs has led to profound impacts and consequences in graph theory and
algorithms. On the one hand, geometry representations have inspired the introduction
of some graph classes, like planar graphs and chordal graphs, among others. As they fa-
cilitate the combination of graph theoretical and discrete geometric techniques, studying
various concepts related to these graph classes has led to the birth of several successful
branches in graph theory, like geometric graph theory and graph minor theory. On the
other hand, the study of possible geometric representations of a graph class can deepen
our understanding of the structures and properties of the graph class.

Basically, drawing a graph consists of three components: an input graph, a drawing
style, and a quality measure. The goal of graph drawing is to search for an optimal

drawing of the input graph meeting the required drawing style, where the optimality is



with respect to the designated quality measure. In many occasions, we require the input
graph to be planar, as crossings are not allowed in many drawing styles.

In this thesis, we focus on one particular class of drawing styles called contact rep-
resentations, where all vertices are represented by interior-disjoint geometric objects
such that the adjacency relations correspond to contacts between objects. The study of
contact representations can be traced back to the following well-known circle packing

theorem [29]:
Every planar graph can be drawn as touching circles in the plane.

Following the above celebrated result, a variety of contact representations have been
proposed and investigated over the years. Among them, the drawing style rectilinear
dual has received quite a lot of research efforts in the past two decades:

A rectilinear dual is a contact representation of a graph in which each vertex corre-
sponds to a rectilinear polygon, adjacency in the graph corresponds to side-contact in
the drawing, and all rectilinear polygons together form a partition of a rectangle. The
definition of rectilinear duals is largely motivated by the floor-planning in VLSI design.
As a result, it has not only attracted researchers in the graph drawing community [3,4]
but has also received extensive investigation in the VLSI design community [45].

Two important quality measures for designing rectilinear duals are the following:

* Polygonal complexity: the polygonal complexity of a rectilinear dual is defined

as the maximum number of sides of polygons involved in the rectilinear dual.

* Area-universality: a rectilinear dual of a graph G is called area-universal iff it
can realize any area-assignment f : V(G) — R. in the sense that the polygon

corresponding to vertex v has area f(v),v € V(G).

The study of area-universal drawings is motivated by the need to visualize weighted
graphs. For example, a cartogram where the area of each country is scaled to its pop-
ulation size is used to visualize the population of all countries in the world. Area-

universality allows the visualization of any possible weight functions, and hence the
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comparison of different weight functions (such as the change in population over a time
period) can be visualized clearly.

A rectilinear dual can be somewhat perceived as the "dual" version of an orthogonal
drawing, which is a planar drawing such that each edge is composed of a sequence of
horizontal and vertical line segments with no crossings. The interplay between rectilin-
ear duals and orthogonal drawings turns out to be rather useful in developing various

drawing techniques, as our subsequent discussion reveals.

(1) (2) (3) (4)

Figure 1.1: Examples of drawing styles

Consider a planar graph GG (drawn as a straight line drawing) in Fig. 1.1(1). Fig. 1.1(2)
is a contact representation of G using touching circles. A rectilinear dual of G with its
polygonal complexity being 6 is displayed in Fig. 1.1(3). Fig. 1.1(4) shows an orthog-
onal drawing of GG. The duality between Fig. 1.1(3) and Fig. 1.1(4) is easy to see by

relating the four rectilinear regions of Fig. 1.1(3) to the four nodes in Fig. 1.1(4).

B B

D] D

C

(1) (2)

Figure 1.2: Realization of different area-assignments.

The rectilinear dual depicted in Fig. 1.1(3) is actually area-universal. See Fig. 1.2
for its realizations of two different area-assignments: (A < 8, B + 3,C < 4,D < 1)

and (A<« 8, B+ 4,C <+ 2,D «+ 2).



Following a series of recent results, an algorithm for constructing area-universal rec-
tilinear duals with polygonal complexity of 8 for maximal plane graphs was proposed
in [4]. This result is tight in the sense that there exists a maximal plane graph that has
polygonal complexity of at least 8 in any of its rectilinear duals. Even with such match-
ing lower and upper bounds in polygonal complexity, many interesting issues regarding
rectilinear duals of plane graphs remain unanswered or unexplored. Specifically, in the

thesis, we initiate the following two lines of research directions:

1. Imposing geometric constraints on polygons in rectilinear duals.
Most of the previous research on rectilinear duals have been focusing on the num-
ber of sides of individual rectilinear polygons. Few results are available for tack-
ling geometrical constraints such as orthogonal convexity or shape constraints.
To move a step further along this line of research, the following problem is inves-

tigated in this thesis:

Question 1.1. Given a set of available shapes and an input graph, is it possible
to design an efficient algorithm to find a rectilinear dual using only polygons of

the available shapes, if it exists?

2. Extending rectilinear duals to more general settings.
In real life, it is not uncommon to encounter objects displayed as polygons which
are not necessarily rectilinear. However, in contrast to the well-studied rectilinear
duals, only a scarcity of results and methods are available for tackling cases for
polygons that are not necessarily rectilinear. Also, motivated by the emergence
of three-dimensional integrated circuits (3D ICs), the study of floor-planning in
3D should be of great interest. In light of the above, we are also concerned with

the following problem in the thesis:

Question 1.2. Is it possible to design efficient algorithms to construct good floor-
plans using convex polygons or 3D rectilinear polyhedra, where the quality mea-

sures are area-universality and polygonal complexity?



Organization of the thesis:

Chapter 2 includes basic definitions, notations and facts that will be used throughout

this thesis. We also briefly survey some existing results related to our work.
Chapters 3 and 4 are devoted to the first research direction (Question 1.1).

In Chapter 3, we focus on orthogonal convexity in rectilinear duals. A clean condi-
tion for the existence of a rectilinear dual using orthogonally convex polygons subject to
a given orthogonally convex boundary constraint is presented. Our new finding relies on
the establishment of a close connection between the "dual" setting (i.e.,, the rectilinear
dual) and its "primal” version (i.e., the orthogonal drawing) in the study of orthogonal
convexity. We propose the drawing style orthogonally convex drawing which serves as
the orthogonal analogue of the convex drawing. To our best knowledge, our effort here
is the first time that orthogonal convexity is studied in rectilinear duals and orthogonal

drawings. Part of this chapter has appeared in [9].

Motivated by an observation that most algorithms yielding rectilinear duals of low
polygonal complexity require the use of T-shape polygons or their extensions, our aim
in Chapter 4 is to justify the intuition that T-shape polygons are more powerful than
other 8-sided ones. To this end, it is proven that the required polygonal complexity for
maximal plane graphs increases from 8 to 12 if T-shape polygons and their extensions
are not allowed. We then continue this line of research by studying other constrained

rectilinear duals. Part of this chapter has appeared in [10].
Chapters 5, 6, and 7 are devoted to the second research direction (Question 1.2).

In Chapter 5, a new drawing style called the convex polygonal dual, serving as the
convex polygonal analogue of the rectilinear dual, is proposed. We give a finite combi-
natorial characterization for plane graphs admitting such drawings. Our characterization
not only leads to some fixed-parameter tractability results, but it can also be applied to
giving quick alternate proofs for existing results and establishing relationship between

rectilinear duals and convex polygonal duals. Part of this chapter has appeared in [11].



In Chapter 6, we give a detailed study of convex polygonal duals for biconnected
outer plane graphs. Our study yields a clean condition for the existence of a drawing
for a given polygonal complexity. A simple procedure is also given for constructing an

area-universal drawing of low polygonal complexity.

In Chapter 7, rectilinear duals are generalized to 3D by representing each vertex of
a graph as an orthogonal polyhedron. This study opens the door for non-planar graphs
to be accommodated in a floorplan design. We prove that all chordal graphs admit such
3D drawings. This result parallels the well-known fact that all maximal plane graphs
admit rectilinear duals, as chordal graphs and maximal plane graphs are regarded as
the natural candidates of "triangulated graphs" in the general and the planar settings,

respectively.

Finally, Chapter 8 summarizes the results reported in this thesis. Some open prob-

lems are posted in this chapter as well.



Chapter 2

Preliminaries

The goal of this chapter is to introduce some basic notations and preliminary results
required for the subsequent discussion. We do not intend to give a comprehensive tuto-
rial for each topic we discuss, as there already exist quite a few nicely written literatures
devoted to these topics.

For a more comprehensive introduction to graph drawing, the reader is recom-
mended to have a look at the book [34] and the two PhD theses [1,43]. They not only
provide a nice introduction to the field, but they also contain materials intimately related
to the content of the thesis. Also, the reader is referred to [44] to learn more about graph

theory.

2.1 Graph Theoretic Preliminaries

Given a graph G = (V, F), we write A(G) to denote the maximum degree of G. We
write V' (G) and E(G) to denote the set of vertices and the set of edges of G, respectively.
Graph G is called a d-graph if A(G) < d.

Note that the definition of the notion G* changes in different chapters of the thesis,
and we usually do not follow the custom to use G* to denote the dual graph of 5.

A graph is simple if it contains no self-loop and no multi-edges. A multi-graph is a
graph where self-loops are disallowed while multi-edges are allowed. If not otherwise
stated, all graphs in the thesis are assumed to be simple.

A graph is k-connected if it contains at least £ + 1 vertices, and if removal of any
k—1 vertices does not render the graph disconnected. "biconnected" and "triconnected"

are synonyms for "2-connected" and "3-connected", respectively. For £ = 1, we can



simply call the graph connected. 1f not otherwise stated, all graphs in the thesis are
assumed to be connected.

A graph is planar if it can be drawn on a plane without any edge crossing. A plane
graph is a planar graph with a fixed combinatorial embedding and a designated outer
face Fp. For any vertex and edge, we call it boundary if it is located in F». Otherwise,
it is non-boundary.

An outerplanar graph is a planar graph with a planar embedding in which all ver-
tices belong to the outer face. An outerplane graph is an outerplanar graph in such an
embedding.

A graph H is a subgraph of G if V(H) C V(G),E(H) C E(G). We also write
H C @ to denote the subgraph relation.

Given a graph G, a path P is a subgraph such that V(P) = {vy,vs..., v} and
E(P) = {{vi,vix1}|]1 <i <k —1}, forsome k > 1. A cycle C is a subgraph such
that V(C') = {v1,ve,..., v} and E(C) = {{vi, vi1}1 < i < k — 1} U {{v1, v }},
for some k£ > 1. For convenience, a path (or cycle) is also written as (vq, va, ..., V).
Unless otherwise stated, repeated vertices are not allowed in paths and cycles in the
sense that v; # v; if 7 # j.

If we write H = G \ S (or equivalently, H = G — S), where S can be a subgraph
of G, a subset of V((G), or a subset of F(G), then H is the subgraph of G defined by
the following procedure: (1) V(H) + V(G)— the vertices in S; (2) E(H) <+ E(G)—
the edges in S; (3) removing the isolated vertices (those incident to no edge in £(H))
in H.

A cycle is Hamiltonian if it contains all vertices in the underlying graph. A graph
is Hamiltonian if it has a Hamiltonian cycle.

A drawing of a planar graph divides the plane into a set of connected regions, called
faces. A contour of a face F' is the cycle formed by vertices and edges along the bound-
ary of F'. Sometimes we slightly abuse the terminology to write F' to denote its contour.
Such a cycle is also called a facial cycle. The contour of the outer face Fy is also denoted

as Co.



Given a plane graph G, the inner (also known as internal or interior) region of
a cycle C' is the region enclosed by C' (containing the vertices and the edges located
interior of the cycle (), and the outer (also known as external or exterior) region of
C is the region outside of C' (containing the vertices and the edges located exterior
of the cycle C'). The inner and outer regions of C' are written as in(C') and out(C),
respectively. The edges and vertices located along C' (i.e. E(C),V (C)) are neither in
the inner region nor in the outer region of C. We use G(C') to denote the subgraph of

G that contains exactly C' and vertices and edges residing in its inner region.

2.2 Tree-width and Chordal Graphs

A tree is a connected graph without any cycle. It is a basic fact that a tree 1" has
exactly |V(T')| — 1 edges (assuming it is simple). However, other than the trees, there
are quite a few graph classes (e.g. outerplanar graphs) also having some sort of "tree
structure", and the notion tree-width formalizes this concept.

A tree decomposition of a graph G is a tree 1" such that the following properties are

satisfied:
1. V(T) = {Xi,..., Xjv(r)}- Each X represents a subset of V' (G).
2. For each edge e = {u,v} € E(G), there is an X; such that u,v € Xj.
3. For each vertex v € V(G), there is an X; such that v € Xj.
4. Ifv € X;NXj;, for all X, in the unique path linking X;, X; in 7', we have v € Xj.

We denote a vertex in V(T') as a bag instead of a vertex to avoid confusion. The
width of 7" is defined to be max{|X;| — 1|X; € V(T')}. The tree-width is then defined

as below:

Definition 2.1. 4 graph G is said to have tree-width k iff a minimum width tree decom-

position of G has width k.



As an example, each outerplanar graph has tree-width at most two.

A lot of difficult (NP-hard) problems have polynomial time solutions on trees, as it
is usually easier to design a dynamic programming algorithm on a tree structure than
on a general graph. Intuitively, graphs of bounded tree-width should share this kind of
"algorithmic advantage". The famous algorithmic meta-theorem "Courcelle's Theorem"

formalizes this intuitive idea:

Theorem 2.1 ([13,14]). Any graph property expressible in MSO; is linear time solvable

for graphs of bounded tree-width

Monadic second-order logic, a fragment of second-order logic, allows only quantifi-
cation over unary relations (i.e., sets). The monadic second-order logic on graph MSO,

includes the following ingredients:

» Variables: vertices, edges, set of vertices, and set of edges.
 Relations: €, =, edge-vertex incidence (INC), and adjacency (ADJ).
» Connectives: V, A, =, —.

* Quantifiers: V, 3 that can be applied to all kinds of variables.

Courcelle's Theorem plays an important role in Chapter 5.

For more about monadic second-order logic on graph structures, the reader is re-
ferred to [14,16].

Besides the above algorithmic application, there are still other topics in graph theory
intimately relate to tree-width. A graph is chordal if each of its cycle C' of length more
than 3 has a chord, which is an edge e = {u,v} & E(C) such that u,v € V(C). As a
result, each induced cycle in a chordal graph is necessarily a triangle.

Interestingly, chordal graphs are exactly the ones who admit a tree-decomposition
where each bag is a cligue, which is a subgraph H such that Vu,v € V(H), {u,v} €
E(H). Such a tree-decomposition is also called a clique tree. This concept is crucial in

Chapter 7.
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2.3 Rectilinear Polygons

A polygon is rectilinear if all its edges are parallel to x-axis or y-axis of the Cartesian
coordinate system. A rectilinear polygon is also known as an orthogonal polygon. In
this section we present some notations for rectilinear polygons, which are mostly applied

in Chapter 3, 4 of the thesis.

Ltk

Figure 2.1: I-shape, L-shape, T-shape and Z-shape polygons

Two rectilinear polygons are combinatorially equivalent iff they admit the same
circular order of angles. When there is no need to differentiate polygons that are com-
binatorially equivalent to each other, it is without loss of information to use circular
order of angles to represent a rectilinear polygon. For example, rectangle (or called
I-shape), L-shape, T-shape, W-shape, LI-shape, Z-shape can be represented by (V,V,
v,\V), V,v,v,C,vV,V), (V,V,C,V,V,C,V,V), (V,V,V,C,V,C,V,V), (V,V,V,
c,.c,v,v,V),(V,V,V,C,V,V,V, (), respectively, where the letters V' and C
represent convex and concave corners, respectively. See Fig. 2.1 for some illustrations.
Given a sequence P of C's and Vs, we let f(P) and fy(P) denote the numbers of
concave and convex corners, respectively.

Here we define a partial order "<" on rectilinear polygons as follows:

Definition 2.2. Let P and () be two rectilinear polygons. P < Q) iff QQ can be obtained

by iteratively inserting (C, V') or (V,C) into P.
The drawing style rectilinear dual is defined as follows:

Definition 2.3. A rectilinear dual is a contact representation of a graph meeting the

below conditions:

1. Each vertex corresponds to a rectilinear polygon.
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2. Adjacency in the graph corresponds to side-contact in the drawing.

3. All rectilinear polygons together form a partition of a rectangle.

Let R be a rectilinear dual, we call it ()-free iff for each polygon of shape P used
in R, we have ) £ P. We remark that the partial order "<" actually reflects the intu-
itive idea of degeneracy in the way that P < () indicates that () can degenerate to P.
Therefore, the notion of "()-freeness" captures the idea of "'() is not a degenerated form
of any rectilinear polygon in the drawing".

A class of rectilinear polygons called staircase is defined as follows:

Definition 2.4. Let P be a rectilinear polygon. P is monotone staircase iff P = (a, S,
b, Sa) clockwise, where a = b =V and both Sy and Ss consist of C's and V's appearing
alternatively and both start and end with V, where the two points a,b are exactly at
the most south-western (i.e., lower left-hand) and the most north-eastern (i.e., upper

right-hand) corners.

b

— i

(1 (2)

Figure 2.2: Examples of rectilinear polygons.

In other words, a monotone staircase polygon is a polygon formed by two mono-
tonically rising staircases, each of which is a sequence of horizontal and vertical line
segments from the bottom-left corner to the top-right corner of the polygon. A staircase
polygon is a rectilinear polygon resulting from rotating a monotone staircase polygon
90°, 180°, or 270°.

The following facts are easy to observe, and may be explicitly or implicitly applied

in the discussion throughout the thesis.

Fact 2.1. 8y (P) — tc(P) = 4 in any rectilinear polygon P.

12



Fact 2.2. A4 rectilinear polygon is orthogonally convex iff it does not contain consecutive

concave corners.
Fact 2.3. A rectilinear polygon P is staircase iff TA P and P is orthogonally convex.

Fact 2.4. A4 rectilinear polygon P satisfies T=< P iff P = (Si, a, Sa, b, S3, S4) such that
a=0b="V andfic(S2) = fv(S2), fc(S1) — #v(S1) = #c(S3) — v (Ss) = 1.

Fig. 2.2(1) is an example of a staircase polygon. The polygon in Fig. 2.2(2) can
degenerate to T -shape by removing the two pairs of corners (circled in the picture); the
reader can verify Fact 2.4 by considering its representation (C, V, V|V, C,C,V,V,V,V,
C,V)=(51=(C),a=V,5%=0,b=V,5=(V,C,C),S = (V,V,V,V,C, V)).

(1) (2)

Figure 2.3: A non-rotated T -shape rectilinear dual.

Sometimes there is a need to differentiate combinatorially equivalent polygons that
have different orientations. For example, Fig. 2.3(2) shows the four possible orienta-
tions of the T-shape. We use the term "non-rotated" to describe a situation that exactly
one orientation is allowed to appear in a rectilinear dual.

Fig. 2.3 (1) is a rectilinear dual using only non-rotated T-shape polygons, since all
the polygons are combinatorially equivalent to (and possibly a degenerate of) exactly
one of the four possible T-shape polygons depicted Fig. 2.3(2).

A rectilinear dual using only monotone staircase polygons can be regarded as a non-

rotated staircase rectilinear dual.

2.4 Separation Trees

In this section we describe an important technique to construct rectilinear duals.
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Figure 2.4: A separation tree.

Let A be a triangle (a cycle of length 3 in a graph). We call A a separating triangle
(also known as a complex triangle) iff G(A) # A in any planar embedding of G. Ga
is defined to be the induced subgraph of the set of vertices {v € V(G(A))| for any
triangle /A" # A in G(A\), v does not reside in the interior region of /A’}. For graph
G depicted in Fig. 2.4, G(4,¢} is the subgraph induced by {a, b, ¢, d}. The separation
tree of a maximal plane graph G is defined to be the unique rooted tree whose vertices
are separating triangles and the Cp of GG, with A being a descendant of A’ iff A is
contained in G(A'). See Fig. 2.4. The reader is referred to [43] for a more detailed
introduction to separation trees.

The contraction of a triangle /A is an operation that replaces G(A) with A; the un-
contraction of a (previously contracted) triangle /\ is an operation that replaces A with
G A. The descendants of /A remain contracted when we un-contract /\.

A rectangular dual is a rectilinear dual in which each polygon corresponding to a
vertex is a rectangle. The following theorem gives a clean characterization of graphs

admitting such a drawing [30]:

Theorem 2.2 ([30], and see also [19]). An internally triangulated plane graph G admits

a rectangular dual iff we can augment G with four vertices { N, E, S, W'} satisfying:

1. The new outer face is the quadrangle {N, E, S, W };

14



(1)

(3)

Figure 2.5: Rectangular duals.

2. Theresulting graph is internally triangulated and contains no separating triangle.

Fig. 2.5(2,3) show two rectangular duals for the graph in Fig. 2.5(1) corresponding
to the augmentation of { N, £/, S, W} depicted.

2]
=
-
i?
©n

_g
-
s

[

Figure 2.6: Illustration of inserting sub-drawing.

The tight connection between separating triangles and rectangular duals makes sep-
aration trees particularly useful in constructing rectilinear duals. A general framework

for building rectilinear duals based on separation trees is sketched as follows:

1. Let Ay, Ao, ..., A\ be alevel-order traversal of the separation tree. We let G’ =

A1 (Cop, the outer triangle).
2. Construct a rectangular dual of G’ as the initial drawing.

3. Fori = 1 to k, we un-contract A\;, and plug-in the rectangular dual of G, \ A\;

to the current drawing.

See Fig. 2.6 for a conceptual illustration of inserting rectangular dual of G, \ A;

when A; = {s,,r} is un-contracted. Note that such an insertion inevitably add some
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concave corners to nearby polygons, as a result, if a graph contains a separating triangle,
its polygonal complexity must be at least 6 in any of its rectilinear dual. The reader is
referred to [43,45] for a more comprehensive treatment to the approach. See Fig. 2.7 for
a full example of a top-down construction of a rectilinear dual based on this approach.

The above framework is adapted in Chapter 4. The "primal version" of the above

method is used in Chapter 3.

X

X

=) m)
7 y z y z_ " y
X X X [l
C
VE> CVE>V‘[VV
z z z

Figure 2.7: Construction of a rectilinear dual.

2.5 Sliceability and Area-universality

In this section we present two important aspects of rectangular duals: sliceability
and area-universality. Recall that a rectangular dual is a rectilinear dual where all its
polygons are rectangles. These concepts can be generalized or extended to other set-
tings, and this plays an important role in our later discussion.

A rectangular dual is said to be sliceable if it can be obtained by recursively cutting
a rectangle into two parts by a horizontal or a vertical line. Sliceable rectangular duals
enjoy certain nice properties, facilitating global routing by taking advantage of the hi-
erarchical structure of partitioning by the cut lines, for instance. Also see [26] for an
application of sliceable rectangular duals in graph drawing.

See Fig. 2.5(2) for an example of a sliceable rectangular dual; and see Fig. 2.5(3)
for an example of a non-sliceable rectangular dual.

As a generalization of sliceability in floor-planning, monotone staircase cuts have
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been proposed (see, e.g., [25, 32]), which are able to yield a richer set of floorplan
structures while retaining certain attractive properties enjoyed by sliceable floorplans.
In fact, floorplans using monotone staircase polygons are exactly those that can be ob-
tained using monotone staircase cuts. This kind of floorplan is investigated in Chapter 4.

See Fig. 2.8(2,3) for an example.

|

(1) ()

Figure 2.8: A rectilinear dual constructed by monotone staircase cuts.

A rectangular dual (or a rectilinear dual) is area-universal if it can realize any area-
assignment f : V(G) — R in the sense that each polygon P corresponding to vertex
v has area f(v). One seminal result regarding area-universal rectilinear duals is the

following:

Theorem 2.3 ([4]). For any maximal plane graph, there is an area-universal rectilinear

dual of polygonal complexity 8 using only non-rotated T -shape polygons.

This result is tight in the sense that there exists a maximal plane graph where all
its rectilinear duals have polygonal complexity of at least 8. However, given a recti-
linear dual, currently there is no easy way to decide whether it is area-universal or not.
Moreover, even if the rectilinear dual is known to be area-universal, there is no known
combinatorial algorithm to realize a given area-assignment.

There are a few positive results for area-universal rectangular duals in literatures.

For example, area-universality can be characterized by one-sidedness [19]:

Theorem 2.4 ( [19]). A rectangular dual is area-universal iff it is one-sided.
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A rectangular dual is one-sided iff for each straight line in the drawing, one side of
it borders exactly one polygonal region. The two rectangular duals in Fig. 2.5 are both
one-sided (and hence area-universal).

More interestingly, the aforementioned concepts seem to be able to extend to other

settings beyond rectangular duals and rectilinear duals.

Definition 2.5 ([21,28]). A proper touching triangle representation is a contact repre-

sentation of a graph meeting the below conditions:
1. Each vertex corresponds to a triangular region.
2. Adjacency in the graph corresponds to side-contact in the drawing.
3. All triangular regions together form a partition of a triangle.

Let A = {a,b,c} be a triangle. We define the following two operations which

subdivide A:

1. Adding a new point d inside of A\, followed by adding three straight lines linking

dtoa,b,c.

2. Adding a new point d dividing the line bc, followed by adding a straight line

linking a to d.

We call a proper touching triangle representation sliceable iff it can be constructed
by applying the above 2 operations to its constituent triangles recursively. A proper
touching triangle representation is one-sided iff for each straight line in the drawing,
one side of it borders exactly one polygonal region. Following basic geometry, the

following lemma is easy to observe:

Lemma 2.1. Every one-sided and sliceable proper touching triangle representation is
area-universal. Moreover, if the coordinates of the 3 boundary vertices are fixed, the

drawing realizing any given area-assignment is unique.
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(1) @) @)

Figure 2.9: Sliceability and one-sidedness in triangle contact representations.

See Fig. 2.9 for illustrations for the above concepts. Fig. 2.9(1) is one-sided but
not sliceable; Fig. 2.9(2) is one-sided and sliceable; and Fig. 2.9(3) is not one-sided but
sliceable. Note that Fig. 2.9(3) is clearly not area-universal since it cannot realize the
area-assignment: f(A) = f(C) =04, f(B) = f(D) =0.1.

See [20] for an interesting result on area-universal drawing in a non-rectilinear set-
ting. They prove the area-universality of their contact representation by refining the
drawing to triangles, which are easier to deal with.

Lemma 2.1 is applied in Chapter 6. Sliceability and area-universality are highly

relevant to Chapter 4.

2.6 Other Topics

In this section we give a very short introduction to some topics that are important but
omitted in the previous sections. For each topic, several good references are provided

for interested readers to learn more about them.

Matchings and Flows. In many situations, a graph drawing problem can be reduced
to a flow or a matching problem. In these cases, the essential information required in
constructing the desired drawing, like the number of bends in each edge and the de-
gree of the angle for each vertex in a face, can be encoded using a matching or a flow.
See Section 6.2, 8.2 of [34] for the classic applications of this technique to orthogonal
drawings and rectangular drawings, which are the "primal version" of rectilinear duals

and rectangular duals, respectively. See [12,33,40,41,45] for more. This technique is
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applied in Chapter 3.

Schnyder Labelings. Undoubtedly, Schnyder Labeling [38] is one of the most suc-
cessful techniques in graph drawing, and it is especially useful in dealing with contact
representations. Basically, a Schnyder Labeling is a labeling of corners of a maximal
plane graph to {1, 2, 3} meeting some conditions. This technique was originally used to
construct a straight line drawing in a small grid (see [38] and Chapter 4 of [34]). Since
then, it has found applications in varieties of contact representations (see [3,4,31] for

instances).

Triangular Drawings and Contact Representations. In contrast to the well-studied
rectangular duals and rectilinear duals, only a scarcity of results were available in non-
rectilinear settings, as it is mathematically easier to handle rectilinear things. Most
of the studies in non-rectilinear setting are centered on triangles. The investigation of
proper touching triangle representations has been reported in two recent articles [21,28].
Touching triangle representations without boundary constraints have been studied in
[22]. In the primal setting, straight line triangle representation was proposed and stud-
ied in [1,2]. See Fig 2.10 for a showcase of some triangle contact representations: (1)
the 5-cycle, (2) a point-side triangle contact representation, (3) a touching triangle repre-
sentation without any boundary constraint, (4) a proper touching triangle representation,

and (5) a touching triangle representation with a convex polygon boundary.

{1) (2) (3) (4) (5)

Figure 2.10: The 5-cycle graph and its triangle contact representations.
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Chapter 3

Orthogonally Convex Drawings

Both straight line drawing and orthogonal drawing are very well-studied graph
drawing styles (see Fig. 1.1); and convexity is a very important aspect in drawing
graphs [34]. However, in contrast to the well-studied convex drawing, which is a
straight line drawing plus a requirement that each face is drawn as a convex polygon,
we know very little about convexity in orthogonal drawing.

Of course, one may simply regard the so-called rectangular drawing (an orthogonal
drawing where all faces are drawn as rectangles) as the "convex drawing" for orthogonal
drawing, since the rectangles are exactly the convex orthogonal polygons. However,
this drawing style seems to be too limited. As the following theorem shows, not really

many graphs enjoy such a drawing:

Theorem 3.1 ( [42]). Given a plane graph G with four designated vertices on Co(G),
it admits a rectangular drawing with the four designated vertices being the four corner

of the outer rectangle iff:

1. every 2-legged cycle contains at least two designated vertices, and
2. every 3-legged cycle contains at least one designated vertex.

We note that 3-legged cycles are the "primal" counterpart of the separating triangles,
which we present in Section 2.4.

In a plane graph G, an edge e = {u,v} ¢ E(G(C)) is called a leg of C if at least
one of the two vertices u and v belongs to C. The vertices in V' (C) that are incident
to some leg of C' are called the legged-vertices of C. C'is k-legged if C' has exactly k
legged-vertices. In a biconnected plane 3-graph, each legged-vertex of C'is incident to

exactly one leg of C.
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As a result, we suggest that orthogonal convexity is a more suitable candidate for
studying convexity in orthogonal drawings than the traditional convexity.

In view of the above, in this chapter, we study orthogonal convexity in both orthog-
onal drawings and rectilinear duals.

To be more specific, our contributions are:

1. The drawing style orthogonally convex drawing is proposed. A necessary and
sufficient condition, along with a linear time testing algorithm, is presented for

biconnected plane 3-graphs to admit a no-bend orthogonally convex drawing.

2. We then present an alternative characterization for no-bend orthogonally convex
drawings of biconnected plane 3-graphs. It allows us to prove the following re-

sults:

* For any triconnected plane 3-graph, the minimum number of bends remains
the same regardless of whether the drawing is orthogonally convex or simply

orthogonal.

* For any subdivision of a triconnected plane 3-graph, its orthogonally convex

drawing requires at most one more bend than its orthogonal counterpart.

3. Also based on the above alternative characterization, a flow network algorithm,
running in O(n'® log® n) time, is devised for the bend-minimization problem for

biconnected plane 3-graphs.

4. Lastly, we apply our analysis of orthogonally convex drawings to characteriz-
ing internally triangulated graphs that admit the so-called ()-floorplans, which
are rectilinear duals using only orthogonally convex polygons such that the outer
boundary is an orthogonally convex polygon combinatorially equivalent to a given

orthogonally convex polygon ().
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3.1 Related Works

The bend-minimization problem, a classical optimization problem in orthogonal
drawings, is to minimize the total number of bends in the drawing. The problem is
NP-complete in the most general setting, i.e., for planar graphs of maximum degree 4
[23].

Several subclasses of graphs are known to have polynomial time algorithm to find
a bend-minimized orthogonal drawing, including planar graphs of maximum degree 3,
series-parallel graphs, and graphs with fixed embeddings [6,41].

Several attempts have been made to extend the model of orthogonal drawings to bet-
ter comply with various requirements in practical applications. For example, to improve
the readability and aesthetic feel, a new model called the slanted orthogonal drawing
was introduced in [7]. In this model, a 90° bend is replaced by two 135° bends to
smoothen the edges. To allow graphs of degree more than 4 to be drawn, the so-called
quasi-orthogonal drawing model was invented in [27].

The current approaches for computing orthogonal drawings can be roughly divided
into two categories, one uses flow or matching to model the problem (e.g., [6,12,41]),
while the other tackles the problem in a more graph-theoretic way by taking advantage
of structural properties of graphs (e.g., [35--37]). The former usually solves a more
general problem, but often requires higher time complexity. On the contrary, algorithms
in the latter focus on specific kinds of graphs, resulting in linear time complexity in many
cases.

As we shall see in our subsequent discussion, the technique used in this chapter
involves a mixture of the above two types of strategies.

For other perspectives of orthogonal drawings, the reader is referred to [18] for a

survey chapter.
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3.2 Terminologies

For any path, cycle, and face, we call it boundary iff it shares some edges with Co.
A contour path P of a cycle C' is a subpath of C' such that P includes exactly two
legged-vertices x and y of C, and x and y are the two endpoints of P. Therefore, each
k-legged cycle has exactly k contour paths. If a contour path intersects (i.e., shares some
edges with) the outer cycle, we call it boundary contour path. In fact, each boundary
contour path is a subpath of C'o. Each contour path P of C'is incident to exactly one

face, denoted as I p, in the outer region of C'.

Figure 3.1: Illustration of some terms about cycles and paths.

See Fig. 3.1 for an example. Consider two cycles C) = (s,t,u,v) and Cy =
(x,b,1,a,z,y,c) (both drawn in bold line). C} is a non-boundary 2-legged cycle, of
which two legged-vertices are ¢ and v, and two legs are (t,¢) and (v, 7). C] is also a
facial cycle, which is the contour of F;. () is a boundary 3-legged cycle, of which three
legged-vertices are z, y, and z. P, = (¢, u, v) is a contour path of C;. P, = (2, a,i,b, x)
is the boundary contour path of Cy. We have I, p, = F5 and Fg, p, = Fj.

Let D(G) be an orthogonal drawing of the plane graph G with outer cycle Cp. Given
acycle C, weuse D(C') (or equivalently D(F) if C'is the contour of a face F) to denote
the drawing of C'in D(G).

The orthogonally convex drawing is defined as follows:

Definition 3.1. D(G) is an orthogonally convex drawing of G if D(F') is an orthogo-

nally convex polygon for each face F' other than the outer one.
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In an orthogonal drawing D(G), angc(v) denotes the interior angle of v in polygon
D(C). We call v a convex corner, non-corner, and concave corner of C'if ange(v) is
90°, 180°, and 270°, respectively. A corner in the drawing D(G) is either a bend on
some edge, or a vertex v of G such that angc(v) # 180° for some C'. If v is a non-corner
of C, v is on a side of the polygon D(C').

Given a face F' surrounded by its contour cycle C' in a drawing D, we use nextp(v)
to denote the first corner after v in the counter-clockwise orientation of C'; similarly,

preve(v) is defined to be the first corner after v in the clockwise orientation.

Fact 3.1. Let v be a non-corner vertex in the common boundary of two faces F' and H

in an orthogonal drawing. If nextr(v) is concave, prevy(v) must be convex.

From Section 3.3 to Section 3.6, graphs under the name G are assumed to be bicon-

nected, A(G) < 3, and may have multi-edges.

3.3 Review of the Results of Rahman and Nishizeki

Among existing results concerning orthogonal drawings, Rahman et al. [36] gave
a necessary and sufficient condition for a biconnected plane 3-graph to admit a no-bend
orthogonal drawing, and they devised an algorithm to test the condition, and subse-

quently constructed such a drawing if one exists.

Theorem 3.2 ([36]). 4 biconnected plane 3-graph G has a no-bend orthogonal draw-

ing iff G satisfies the following three conditions:
(1) There are four or more 2-vertices (i.e., vertices of degree 2) of G on Co(G).
(2) Every 2-legged cycle contains at least two 2-vertices.
(3) Every 3-legged cycle contains at least one 2-vertex.

Theorem 3.2 obviously holds even when G has multi-edges, as such graphs do not

have no-bend orthogonal drawings.
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The drawing algorithm in [36] performs the following steps recursively: (1) reduc-
ing the original graph G into a structurally simpler graph G* by collapsing the so-called
"bad cycles", (2) drawing G* in a rectangular fashion, and (3) plugging in the orthog-
onal drawings of those bad cycles to the rectangular drawing of G* to yield a no-bend
orthogonal drawing of G.

The reader can imagine it as a "primal version" implementation of the general frame-

work for building rectilinear duals based on separation-trees described in Section 2.4.

Algorithm( [36]). No-bend-Orthogonal-Draw(G)
1. Determine four 2-vertices on Cp(G) as designated corners.
2. Find the maximal bad cycles C, Cy, ..., Cy in G.
3. For each 7, 1<:<Fk, contract cycle C; to a single vertex v;.
4. Let G* be the resulting graph.

5. Find a rectangular drawing D(G*) by Rectangular-Draw such that the four des-

ignated corners are the corners of the bounding rectangle.

6. For each i, 1<i<k, extend each v; in D(G™) to an appropriate rectangular region,
and then patch D(G(C;)) (using the outcome of calling No-bend-Orthogonal-
Draw(G(C;))) to D(G*) by identifying the four designated corners of G(C;) to

the corners of the rectangle region.
7. Return the resulting drawing as D(G).

Algorithm Rectangular-Draw computes the rectangular drawing of an input graph
meeting the conditions in Theorem 3.1.

A key in Algorithm No-bend-Orthogonal-Draw above is the identification of a
certain type of cycles called bad cycles. Bad cycles are cycles that are 2-legged or
3-legged if the four designated corner vertices in Cp are considered as leg-vertices.

Intuitively, bad cycles are cycles that violate the conditions under which a graph admits
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a rectangular drawing. For instance, consider the graph in Fig. 3.1. If {h,4, j, k} are
the 4 designated vertices, then (w, z, a,,b, x, ¢, y) (a 3-legged cycle as ¢ is considered
a legged-vertex) is a bad cycle, whereas (r, v, u, t, q, j, g, h) (a 4-legged cycle including
legged-vertices h and j) is not a bad cycle. Maximal bad cycles are bad cycles that are
not contained in G(C') for any another bad cycle C. Note that whenever Rectangular-
Draw is called for G* in procedure No-bend-Orthogonal-Draw, G* (with each of the
maximal bad cycles contracted to a single vertex) always meets the condition for the
existence of a rectangular drawing.

The reader is referred to [36] for more.

3.4 No-bend Orthogonally Convex Drawings

Our goal in this section is to give a necessary and sufficient condition for bicon-
nected plane 3-graphs to have no-bend orthogonally convex drawings, in a way similar

to Theorem 3.2.

Feope

Figure 3.2: Illustration of the proof of Lemma 3.1.

Lemma 3.1. Consider a no-bend orthogonally convex drawing D(G) of a plane graph
G. Forevery 2-legged cycle C with legged-vertices x and y and a contour path P of C,
the number of convex corners of D(C) in V(P) \ {x,y} must be at least 1 more than

that of concave corners, if either
(1) Cis a boundary cycle and P is its boundary contour path, or
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(2) C'is non-boundary and P is any of its contour paths.

Proof. The result is proven by contradiction. Suppose there exists a contour path P of
a cycle C falsifying the lemma. Let P’ be the other contour path of C'. Clearly P’ is
a non-boundary contour path, and hence F ps is an inner face. Since the number of
convex corners in V(P) \ {z,y} of D(C) is no more than that of the concave corners,
to have the total number of convex corners in C' 4 more than that of the concave corners
(in view of Fact 2.1), the number of convex corners in V' (P’) \ {z,y} of D(C') must be
at least 2 more than that of concave corners.

In other words, the number of concave corners in V(P') \ {z,y} of D(F¢ p/) is
at least 2 more than that of convex corners. Therefore, there exist consecutive con-
cave corners in the contour of F¢ pr, so D(F¢ pr) is not orthogonally convex (Due to
Fact 2.2), contradicting the assumption that D(() is orthogonally convex.

See Fig. 3.2 for an illustration. As the number of convex corners in V' (P) \ {z,y}
is no more than that of the concave corners, there are two consecutive concave corners

in F¢ pr, which are v and v in the figure. [l
We are now in a position to present the main result of the section.

Theorem 3.3. A biconnected plane 3-graph G admits a no-bend orthogonally convex
drawing iff the three conditions (1), (2) and (3) in Theorem 3.2 and the following two

additional conditions hold:

(4) every non-boundary 2-legged cycle contains at least one 2-vertex on each of its

contour paths, and

(5) every boundary 2-legged cycle contains at least one 2-vertex on its boundary

contour path.

Proof. (=) Since a convex corner in a contour path not being an endpoint must be a
2-vertex, these two conditions are met according to Lemma 3.1.
(<) The sufficiency of the two conditions in the statement of the theorem follows

from a modification to the no-bend orthogonal drawing algorithm by Rahman et al.
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[36]. The construction of D(G) in the algorithm No-bend-Orthogonal-Draw can be
seen as a series of operations on the current drawing (initially a rectangular drawing),
each of which extending a vertex to a rectangular region, followed by filling in a rect-
angular drawing.

Now we assume the input plane graph meets the conditions given in our theorem.

Suppose we reach a point at which an orthogonally convex drawing having a max-
imal bad cycle C; contracted to a single vertex v; is given. In the current drawing, no
face contains consecutive concave corners. We show how to expand v; into a rectangu-
lar region to accommodate the drawing associated with C; and its interior.

The procedure refines the strategy developed in [36] to guarantee orthogonal con-
vexity. As in [36], expansion of a vertex v; can be classified into three cases depicted

in Fig. 3.3,3.4,3.5.

Case 1: C; is a 3-legged cycle, and v; is a 3-vertex in G*. Let z, y and 2 be its 3 leg-
vertices with x, y, z and a being the 4 designated corners of G(C;). Depending on the
location of a, we have 3 sub-cases, and sub-case 3 allows two alternatives.

In sub-cases 1 and 2, the expansion is straightforward and is the same as the one used
in [36] since these sub-cases do not destroy orthogonal convexity of any faces. In sub-
case 3, however, care must be taken in order to retain orthogonal convexity. Two cases
arise depending on the convexity/concavity of the preceding and subsequent neighbors
of v;. Note that in subcase 3, for face F} the corner associated with «a is concave.

If nextp, (v;) is concave, we choose the alternative 3.2. According to Fact2.2, when-
ever nextr, (v) is concave, prevg, (v) must be convex, and hence choosing alternative
3.2 does not generate consecutive concave corners in Fy. Similarly, if prevg (v;) is
concave, we can choose the alternative 3.1. In the case both nextr, (v;) and prevg, (v;)
are convex, both two alternatives maintain the orthogonal convexity of F.

Case 2: (; is a 2-legged cycle, and v; is a non-corner 2-vertex in GG*. Let x and y be its
2 leg-vertices with x, y, a and b being the 4 designated corners of G(C;). Depending on

the locations of a and b, we have 2 sub-cases, and sub-case 2 allows two alternatives.
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Figure 3.3: Case 1: The drawing w.r.t. a 3-legged cycle C;.

The expansion of sub-case 1 is a bit tricky. Note that if F} is an inner face, orthogonal
convexity of F5, will no longer hold after the expansion. Fortunately we show that we
can always choose a and b such that whenever sub-case 1 occurs, F5 must be the outer
face. If C; is non-boundary, there must be one 2-vertex on each contour path, hence we
can choose a and b such that they are on different contour paths, so that sub-case 1 will
not occur. If C; is a boundary cycle, we must have at least one 2-vertex on its boundary
contour path, so we can choose a and b such that one of them is in the boundary contour
path, and hence we can assure that when sub-case 1 occurs, a and b are both on the
boundary contour path of C;.

Suppose that the sub-case 2 occurs. As in the subcase 3 of Case 1, if nextp, (v;) is
concave, we choose the alternative 2.2, if nextp, (v;) is concave, we choose the alter-
native 2.1, otherwise, we can choose either of them. It is easy to deduct from Fact 3.1

that our choices do not generate consecutive concave corners in both F and F5.

F, X y
. (1)
Y F1 I a I Jy X b
X b aI Iy
(2.1) (2.2)

Figure 3.4: Case 2: The drawing w.r.t. a 2-legged cycle C; with v; a non-corner 2-vertex.

Case 3: (; is a 2-legged cycle, and v; is a corner 2-vertex in G*. Let z and z be its 2
leg-vertices, y being a corner vertex of the current drawing, and z, y, z and a being the

4 designated corners of G(C;). Depending on the location of a, we have 3 sub-cases.
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All these sub-cases do not destroy orthogonal convexity of any inner faces, since
we can apply the same trick for sub-case 1 of case 2 to the sub-cases 2, 3 here, so that

F5 is always the outer one when sub-cases 2, 3 occur.

X 3 a X
X
y z y z
l F1 1) 2)
Vi
y z F2 X tzr

Figure 3.5: Case 3: The drawing w.r.t. a 2-legged cycle C; with v; a corner 2-vertex.

In view of the above, by an induction on the number of operations of expanding
a vertex to a rectangular region, we obtain a constructive proof for the sufficiency of

Theorem 3.3. Hence we conclude the proof. ]

Based on a linear time implementation of Algorithm No-bend-Orthogonal-Draw(G)

described in [36], we have the following result.

Theorem 3.4. Given a biconnected plane 3-graph G, there is a linear time algorithm

to construct a no-bend orthogonally convex drawing D(G) if G admits one.

3.5 An Alternative Condition

Now we turn our attention to the bend minimization problem w.r.t orthogonally con-
vex drawings of plane graphs. Intuitively, minimizing the number of bends in orthogo-
nal (convex) drawing can be equated with subdividing a minimum number of edges so
as to yield a graph having a no-bend orthogonal (convex) drawing.

It is known that network flows, a popular technique for analyzing graph-related
problems, are very useful in designing algorithms to minimize bends in orthogonal
drawing as reported in, e.g., [18]. It is therefore a natural attempt to see whether the
additional orthogonal convexity requirement described in the previous section (in par-

ticular, conditions (4) and (5) in Theorem 3.3) can be incorporated into flow networks.
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As one can see from Theorem 3.3, contour paths along (boundary or non-boundary)
2-legged cycles play a vital role as far as a graph having an orthogonally convex draw-
ing is concerned. Due to possible overlaps of 2-legged cycles in a plane graph, the
corresponding contour paths may intersect each other messily, resulting in difficulties
if one attempts capture the amount of convex/concave corners along contour paths by a
flow network formulation.

To ease the above problem, we identify a subset of representative paths which are
on the one hand, "simple enough" to enable a min-cost flow formulation for the bend-
minimization problem, and on the other hand, "sufficient enough" to characterize the
presence of no-bend orthogonally convex drawings. The simplicity stems from the fol-
lowing observation: for any paths P and P’, if P C P’, then having a 2-vertex in P
guarantees the presence of a 2-vertex in P’.

We are now in a position to identify two types of cycles, namely, proper and im-
proper cycles, which are later used to characterize the representative paths mentioned
above.

A contraction of a 2-vertex v with adjacent vertices x and y is to remove v and
its incident edges {v, z} and {v,y} and then add a new edge {z,y}. Let G denote
the graph resulting from contracting every 2-vertex of (G. Since we require G to have

maximum degree 3, G must be 3-regular.

Figure 3.6: Proper and improper 2-legged cycles.

A 2-legged cycle of G is called improper if its two legs correspond to the same
edge in G°. A 2-legged cycle is called proper if it is not improper. See Fig. 3.6 for
illustrations. The left one shows an improper 2-legged cycle (drawn as a bold line) with

leg-vertices x,y. The right one shows a proper 2-legged cycle (drawn as a bold line)
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with leg-vertices vy, 2.

Due to 3-regularness of G¢ and the fact that the two legs of an improper cycle C are
the same edge e in G°, there remains nothing outside G(C') except the leg e. Therefore,
an improper cycle must be a boundary cycle, or conversely, all non-boundary 2-legged
cycles are proper. It is easy to see that every inner face that intersects Cp in exactly
one path yields an improper 2-legged cycle naturally. It is because the intersecting
path, which connects the two leg-vertices of a 2-legged cycle, must be contracted into
a single edge in G°. See face [ in the left figure of Fig. 3.6. We state these simple but

useful observations as a fact.

Fact 3.2. Let C be a 2-legged cycle of G with two leg-vertices x and y, the following

Statements are equivalent:
(1) C'is improper.
(2) E(G)\ E(G(C)), form exactly one path (a subpath of Co linking = and y).
(3) The two legs correspond to the same edge in G°.

(4) C is a boundary 2-legged cycle, and boundary of Fc p intersects Co of G in

exactly I path, where P is the non-boundary contour path of C.

Consider Fig. 3.6 for examples of proper and improper cycles. Fi and F; are two
boundary faces corresponding to the F- p of the 2-legged cycles C' drawn as bold lines
and their non-boundary contour paths P in the left and right figures, respectively. The
contour of F} intersects C in exactly one path (x, y), whereas the contour of F3 inter-
sects Cp in two paths (2, a) and (y, b, ¢). Note that both left and right illustrations show
the whole graph instead of a subgraph.

Recall from Theorem 3.3 that contour paths of boundary or non-boundary 2-legged
cycles are keys to orthogonal convexity in no-bend orthogonal drawings. In what fol-
lows, we replace Conditions (4) and (5) of Theorem 3.3 with new conditions on two

sets of paths, namely, critical paths and paths in S, which are contour paths of proper
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cycles and improper cycles, respectively. As we shall see later, these two sets of rep-
resentative paths enjoy the following nice properties, which further facilitate a flow

network formulation for bend minimization:
* paths in S are mutually edge-disjoint,
* critical paths are mutually edge-disjoint, and

* any path in Sg is either contained in a critical path or contained in no critical path.
We are now in a position to give the definitions of critical paths and Sg.

Definition 3.2. 4 path P of GG is called critical if there is a proper 2-legged cycle C

such that:

(1) P is a contour path of C,
(2) if C'is a boundary 2-legged cycle, then P is the boundary contour path of C, and

(3) P does not edge-intersect any proper 2-legged cycle C' that is contained in G(C)).
To proceed further, we require the following two lemmas.

Lemma 3.2. For any biconnected plane 3-graph G, the critical paths of G are edge-
disjoint.

Proof. Assume that there exist two different critical paths P and P’ edge-intersecting
each other. Let C and C’ be two proper 2-legged cycles such that P and P’ are contour

paths of C' and C’, respectively. As a boundary contour path does not edge-intersect

any non-boundary contour path, we divide the situation into the following two cases.

Case 1: P and P’ are both non-boundary contour paths. In this case, C' and C’ are
non-boundary 2-legged cycles with E(G(C)) N E(G(C")) # 0.

In what follows, we show that either G(C') C G(C") or G(C") C G(C) is true, and
hence the condition (3) in Definition 3.2 is violated.

Suppose that G(C') € G(C’) and G(C") € G(C). Then, obviously, the two legs
eq, €9 of C' satisfies ey, e5 € E(G(C)):
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« If there is no leg of C’ contained in F(G(C)), then G(C) is disconnected, as
there is no edge in F(G(C)) connecting V(G(C)) \ V(G(C")) and V(G(C')) N
V(G(C)).

« If there is only one leg e; of C" with e; € E(G(C)), then G(C) is not bicon-
nected, as e; is the only edge in E(G(C')) connecting V(G (C)) \ V(G(C")) and
V(G(C) nV(G(C).

Similarly, the two legs of C belongs to E(G(C")). This implies that there is no path
linking vertices in V (G)\ (V(G(C))UV(G(C"))) and vertices in V (G(C))UV (G(C")),

and hence G is not connected, a contradiction.

Case 2: P and P’ are both boundary contour paths. In this case, C' and C’ are boundary
2-legged cycles with E(G(C)) N E(G(C")) # 0.

First of all, in view of our argument for Case 1, "G(C) ¢ G(C") and G(C") ¢
G(C)" requires "V (G(C)) UV (G(C")) = V(G)".

Suppose that that there isan edge e ¢ E(G(C))UE(G(C")), then it must be a leg of
both C'and C". This is impossible as the two legs of C belongs to £(G(C")). Therefore,
we can infer that £(G) \ E(G(C)) C E(G(C")).

Since C' is proper, E(G)\E(G(C)) must not be a single path. Therefore, there
exists a proper boundary 2-legged cycle C” such that E(G(C")) C E(G)\E(G(C)) C

E(G(C")). This contradicts the assumption that P’ is a critical path. ]

Lemma 3.3. Let P be a path satisfying (1) and (2) in Definition 3.2. If P is not critical,

there must be a critical path P’ such that P'CP.

Proof. Assume that there exist some non-critical paths that contradict the statement of
the lemma. We choose the path P to be the shortest among them. Let C' be the proper
2-legged cycle having P as its contour path. Since P is not critical, there must be a
proper 2-legged cycle C” that is contained in G(C'), and P edge-intersects with C’. P
must edge-intersect a contour path P’ of C’. It is easy to see that P’ satisfies (1) and (2)

of Definition 3.2, and P'CP.
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From our assumption, P’ is not critical. But according our choice of P, there must
be a critical path P” such that P”C P'C P, which is a contradiction to the choice of

P. O

Given a path P” with endpoints z and y, we write P, ) to denote the "open" version
of P, i.e., excluding « and y. That is, P, consists of V(P) \ {z,y} and E(P).
We now define S, a set of paths associated with improper 2-legged cycles in graph

G, as follows:

Sa ={Co\Pz~y) | P is aboundary contour path of C, where C' is an improper

2-legged cycle with two legged-vertices x and y in G }.

Figure 3.7: Critical paths and S¢ in a plane graph.

We note that the paths in (2) of Fact 3.2 are exactly paths in Si. Therefore, inter-
mediate vertices in paths of S are 2-vertices, and paths in S must be a subpath of
Co, and hence PeSg; iff P is a boundary contour path of a facial cycle having only one

boundary contour path. The following fact summarizes the above observations.

Fact 3.3. Let P be a path of G with two end-vertices x and vy, the following statements

are equivalent:

(1) Pisin Sg.

(2) P is the boundary contour path of a facial cycle C' that intersects Co of G in

exactly one path.
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(3) P is Co\P'(z~y), for some P’ which is the boundary contour path of some im-

proper 2-legged cycle with two legged-vertices x and y.

To have a better grasp of critical paths and S, consider Fig. 3.7 in which a no-bend
orthogonally convex drawing of a plane graph G is shown. In the left figure, the four
dotted paths are those in S¢;, which are edge-disjoint. Let C be the 2-legged cycle drawn
in bold, and P be its boundary contour path. We have Co\P,~.) = (x,y, 2). In the
right figure, the five dotted paths are critical paths, which are edge-disjoint. Let C' be
the 2-legged cycle drawn in bold. We have (1) the path (u, v, w) is one of its contour
paths, (2) C'is a non-boundary 2-legged cycle, and (3) P does not edge-intersect any
proper 2-legged cycle other than C' that is contained in G(C'). A path in Sy is either
contained in exactly one critical path or intersects with no critical path.

The following theorem, which is the main result in this section, enables us to char-

acterize no-bend orthogonally convex drawings in terms of critical paths and S¢.

Theorem 3.5. Suppose a biconnected plane 3-graph G has a no-bend orthogonal draw-
ing. G has a no-bend orthogonally convex drawing iff the following conditions are

satisfied:
(1) Every critical path of G contains at least one 2-vertex.
(2) Foreach P€Sg, V(Co)\V (P) contains at least one 2-vertex.

Proof. 1t suffices to prove that the conditions stated here imply the two additional con-
ditions stated in Theorem 3.3 since the other direction is straightforward. Condition (2)
simply means that every improper 2-legged cycle contains at least one 2-vertex on its
boundary contour path. According to Lemma 3.3, for every non-critical path P that
is a contour path of a proper 2-legged cycle, there must be a critical path P’ that is a
subpath of P. Therefore, if condition (1) is satisfied, every path that is a contour path
of a non-boundary 2-legged cycle, or a boundary contour path of a proper boundary

2-legged cycle, contains at least one 2-vertex. 0
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We note that both S and the set of all critical paths can be found easily in linear
time. Since they are edge-disjoint sets of paths, a contour edge-traversal for each face
suffices to list all of them.

In the following we demonstrate several interesting results which can be established

using Theorem 3.5.

Theorem 3.6. Given a triconnected plane 3-graph G, let SD(G) be the set of graphs
obtained by subdividing edges of G such that either (1) there are at most 3 2-vertices in
Co or (2) there is no facial cycle intersecting Co that contains all 2-vertices in Co. For
each G’ € SD(QG), suppose by (resp., by) is the minimum number of bends needed to

construct orthogonal drawing (resp., orthogonally convex drawing) of G', then by = b,.

Proof. Foreach G' € SD(G), we first construct an orthogonal drawing D(G") using b,
bends. Let G; be the graph resulting from making each bend in D(G’) a new 2-vertex.
As aresult, G; has a no-bend orthogonal drawing, and |V (G1)| = |[V(G")| + b;.

We claim that (G; contains no critical paths. Suppose not, then it must have a proper
2-legged cycle C'. According to the (3) of Fact 3.2, the two legs of C' correspond to
different edges in GG;°. Therefore, removing these two edges suffices to disconnect GG,
implying that G;“ is not 3-edge-connected. As edge-connectivity > vertex-connectivity,
(G1° 1s not triconnected, contradicting that (&, is a subdivision of triconnected plane 3-
graph.

As aresult, according to Theorem 3.5, G; has a no-bend orthogonally convex draw-
ing iff V(Co(G1))\V (P) contains at least one 2-vertex for every PESg,. As a 2-vertex
belongs to at most one path in Sg,, the above condition essentially requires that there
is no path in Sg, containing all 2-vertices in C(G1). If there is indeed no such path,
the theorem follows. Hence, in the next, we assume that there is such a path P.

In the following we construct a graph G5 which is also a subdivision of G’ with
V(Gs) = V(G') + b;. As Gy has a no-bend orthogonal drawing, there are at least
4 2-vertices in Cp((G1) (and hence in P). Apparently there is a facial cycle (which

contains P as a subpath) intersecting Co(G’) contains all 2-vertices in Co(G’), so there
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are at most 3 2-vertices in Co(G’) due to the statement of this theorem. Therefore,
there is a 2-vertex v in P which is introduced by a subdivision (i.e., v € V(Gy) but
v & V(G")). We let G5 be the resulting graph of contracting v and subdividing an edge
ein E(Co(G1)) \ E(P).

It is easy to see that (&5 satisfies Theorem 3.5 and hence admits a no-bend orthogo-
nally convex drawing D’(G5). It is immediately that D’ is also an orthogonally convex

drawing of G’ using b; bends. As by > by, we have b; = bs.

The following two results immediately follow from Theorem 3.6.

Corollary 3.1. For any triconnected plane 3-graph G, the minimum number of bends
needed to construct an orthogonally convex drawing is the same as that of an orthogonal

drawing.

Corollary 3.2. For any subdivision of a triconnected plane 3-graph G, the minimum
number of bends needed to construct an orthogonally convex drawing is at most one

more than that of an orthogonal drawing.

See Fig. 3.8 for an example of a subdivision of a triconnected plane 3-graph whose
bend-minimized orthogonally convex drawing has exactly one more bend than its bend-

minimized orthogonal drawing.

Figure 3.8: An example for Corollary 3.2.

In contrast of the above results, there are infinite number of biconnected plane 3-
graphs whose bend-minimized orthogonally convex drawings have V(G)/2 — O(1)
more bends than their bend-minimized orthogonal drawings. See Fig. 3.9 for a series
of plane graphs achieving this difference in their bend-minimized orthogonal drawings

and bend-minimized orthogonally convex drawings.
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Figure 3.9: Bend-minimized orthogonal drawings and bend-minimized orthogonally
convex drawings.

3.6 Flow Formulation for Bend-minimization

In this section, we tailor the planar min-cost flow formulation originally designed
for orthogonal drawing [41] to coping with orthogonal convexity. Our strategy is con-
siderably different to most of the previous approaches using flow networks to design
graph drawing algorithms. Instead of finding a desired drawing directly by applying
min-cost flow, our flow network solves the problem indirectly in the sense that it adds
a minimum number of new 2-vertices to the input graph to satisfy Theorem 3.5. A
bend-minimized drawing can then be constructed using Theorem 3.4.

To make our subsequent discussion clear, we use arc and node instead of edge and
vertex, respectively, in describing a flow network. A min-cost flow network is a directed
multi-graph N = (W, A) associated with four functions: lower bounds )\ : A—Z>o,
capacities |1 : A—Z>o U {o0}, costs ¢ : A—Z>q, demands b : W—Z. A map [ :

A—7Z> 1s a flow if the following constraints are met:

Yo e W, b(v)+ Y. flu,0)— > f(v,u)=0, VaeA, XNa)< f(a) < pla)

(u,w)EA (v,u)EA

The costof a flow fis c(f) = > ,ca f(a) X c¢(a). We first describe the flow network
Ng = (Wg, Ag) associated with a biconnected plane 3-graph G in which each flow in

N¢ corresponds to an orthogonal drawing of G

» We =Wy UWpg, where Wy, and Wi are the vertex set and face set (including the
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outer face) of G, respectively, Furthermore, Vu,, € Wy, b(u,) = 2 if degg(v) =
3; b(uy,) = 0if degg(v) = 2. Yup € Wg, b(up) = —4 if F is an inner face;

b(up) = 4 if F is the outer face.
o Ag= Ay U Ap, where

- AV = {(uqu)a(uF;uv)’deg(U) = 2} U {(uv,up)ldeg(v) = 3}’ where
v e V(G), F € face(G), v incident to F. Va € Ay, A(a) = 0, p(a) = 1,
and c¢(a) = 0.

— Ap = {(up,up)|F, H € face(G), and F adjacent to H} is a multi-set of
arcs between faces, and the number of (up, uy) in Ap equals the number
of shared edges in contours of /' and H. We use (up, uy), to indicate the
specific arc that corresponds to the shared edge e. Va € Ap, A(a) = 0,

p(a) = oo, and c(a) = 1.

Although our definition of N¢ is slightly different from the original one given
in [41], the validity of N is apparent as the following explains. Every flow f in Ng

corresponds to an orthogonal drawing D((), and vice versa, such that

o f(uy,up)—f(up,u,) = —1,0, 1 means v is a concave corner, non-corner, convex

corner in D(F'), respectively,

* f(up,un), is the number of bends on e that are concave corners in D(F’) and

convex corners in D(H ), and
« the total number of bends in D(G) equals ¢( f).

The reader is referred to Fig. 3.10 for an illustration of flow network N¢: The up-left
picture is the graph G, the right one is the flow network, and the down-left one is a bend-
minimized orthogonal drawing. Every bi-directed arc represents two arcs with opposite

direction. The flow f representing the drawing is defined as follows: f(Fp, F}) =

2, f(Fo, F2) = f(Fo, F3) = f(z, F2) = f(o, F3) = f(y, [1) = f(y, F3) = f(2,F1) =
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Figure 3.10: Illustration of the flow network N¢.

f(z, Fy) = f(u, Fy) = f(u, F3) =1, and f(a) = 0 for the remaining arcs a. The cost
of f is 4.

The following fact is an immediate consequence of the above discussion. It estab-
lishes a correspondence from "the difference between the numbers of convex corners
and concave corners in a portion of a contour of a face" to "the amount of flow passing

through it".

Fact 3.4. Let S, (resp., So) be any subset of edges (resp., vertices) along the contour
of a face F. For any e € 51, we write F, to denote the face incident to e other than
F. For a flow f in Ng and its corresponding orthogonal drawing D, we must have

Yeesi Lf (ur,ur), — flup, ur,) ] + Xoes, [f (U, ur) — f(ur, u,)] equaling the differ-

ence between the numbers of convex corners and concave corners in the portion S1U Sy

of D(F).

We have the following lemma, which reduces the existence of a no-bend orthog-
onally convex drawing to the existence of a no-bend orthogonal drawing plus some
constraints about numbers of convex corners and concave corners in some paths. This
lemma together with the above fact lay down the foundation for us to find bend-minimized

orthogonally convex drawings based on a modification to the above flow network Ng.

Lemma 3.4. A biconnected plane 3-graph G admits a no-bend orthogonally convex
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drawing iff there is a no-bend orthogonal drawing (not necessarily orthogonally con-

vex) such that

(1) for every critical path P along a contour path of 2-legged cycle C, #..(Pi—y))
> #eo(Po~y)) in Fop, and

(2) forevery Pin Sg, #ce(Pa—y)) < 3+ #ev(Pla—y)) in the outer face,

where P has endpoints x and y, and #.,(-) and #..(-) represent the numbers of convex

and concave corners, respectively.

Proof. (<) It is easy to see that the two conditions imply the two conditions in Theo-
rem 3.5 (In the first condition, concave corners of P, ) in Fc.p must be 2-vertices;
and the second condition implies that there must be a concave corner in Cp \ Py,
which must be a 2-vertex, too); hence, we conclude the "if" part of the lemma.

(=) Now, suppose GG admits a no-bend orthogonally convex drawing. According
to Lemma 3.1, the first condition is always satisfied for every no-bend orthogonally
convex drawing. Therefore, it suffices to show that there exists a no-bend orthogonally
convex drawing D(G) such that the second condition is satisfied. We show that if there
is a path P contradicting the second condition, we can modify the drawing in a way that
orthogonal convexity of each face is preserved. Let /' be the face incident to P other

than the outer face, and C' be its contour.

Figure 3.11: Illustration of the proof of Lemma 3.4.

Suppose the second condition of the lemma does not hold. Then, the number k& =
#co(Pz~y)) = #cc(Pa—y)) in F is more than 3. Note that a concave (resp., convex)

corner of P, ) in the outer face must be convex (resp., concave) in F.
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It is clear that & cannot be more than 5; otherwise there must be consecutive concave
corners in C'\ P in F'. If there is any concave corner v of Py~ in F, letw be its nearest
corner vertex in P, which must be convex in I'. We can make them both non-corner
in F' without introducing any consecutive concave corners. Therefore, we can assume
there are exactly 4 or 5 convex corners of ;) in F'. If the number is 4, one of z and y
must be non-corner in /', and if it is 5, then both x and y are non-corner in F'; otherwise
there must be consecutive concave corners in C'\ P in F. Note that = and y cannot be
concave in F'since they are of degree 3. Suppose x (or y) is non-corner in F', and let z be
any convex corner of P, in F'. We can make x (or y) convex in F' and z non-corner
in F' without introducing any consecutive concave corners. Hence we can reduce the
number £ to be at most 3, which concludes the proof. (We actually prove a stronger
result than the statement of lemma in the "only if" part, since the drawing constructed is
orthogonally convex.) See Fig. 3.11 for a graphical illustration of removing additional

convex corners. L]

In what follows, we show how to construct a flow network N(, from N in such
a way that a flow of N, corresponds to an orthogonal drawing meeting the conditions
stated in Lemma 3.4.

We use Fig. 3.12 as a graphical illustration of the procedure. Note that Fig. 3.12(1)
shows a portion the a graph G with Fj the outer face, P, = (x,y,2) and P, = (z,w)
the two paths in S, and P; = (z,vy, 2z, w) a critical path; Fig. 3.12(2) shows its corre-
sponding portion in Ng.

Initially we set N/, = Ng.

* VP € Si with endpoints z, y, let the outer face be F”, and let Sp 5+ denotes the

set of faces bordering F” along some edges in the path P.

— add a new node up to W(N{,), and two arcs (upr, up), (up, up ) to A(N{).

— setb(up) = 0, Nupr,up) = MNup,up) =0, p(up,up) = 3, u(up, up) =

00, and c(upr, up) = c(up,up) = 0.
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— redirect all the arcs in the current A(N/,) of the following forms: (uz, u,),
(o, upr), (upr, up), (up,up), forall v e V(P)\ {z,y}, I € Sep,

e € E(P) by replacing up with up.

See Fig. 3.12(3) for the modification to N for the two paths P, and P, in S¢, in
which the newly added arcs are drawn as dotted lines. In view of Fact 3.4, such a
modification makes the orthogonal drawing corresponding to any flow f of N,
in compliance with the condition 2 of Lemma 3.4 (view it as a no-bend drawing

by treating all bends as 2-vertices).

V critical path P with endpoints z, y, C the 2-legged cycle for which P is its

contour path, and S the set of faces in G(C') that border P,

— add a new node up to W(N;), and a new arc (ur,, ., up) to A(Ng).
— setb(up) = 0, Murg p,up) = 1, p(tur, p, up) = 00, and c(up, p, up) = 0.

— redirect all the arcs in the current A(Ng;) of the following forms: (ug,, ,, up),

(upr, ure p)s (UFe py Uo)s (Wos URe p ) (UFe py UF) 5 (UF, UFR ), fOrall P €

Sg such that P/ C P,v € V(P)\ {z,y}, F € S, e € E(P) by replacing

UFq p With up.

See Fig. 3.12(4) for the modification to N for the critical path Ps, in which the
newly added arc is drawn as a dashed line. Similarly, due to Fact 3.4, condition
1 of Lemma 3.4 holds for any orthogonal drawing corresponding to a flow f in
the modified network (view it as a no-bend drawing by treating all bends as 2-

vertices).

Since critical paths are mutually edge-disjoint according to Lemma 3.2, and since

every path in Sg is either a subpath of a critical path or intersects no critical path, the

construction process is valid and can be done in linear time, the planarity of N/, is

preserved, and the number of newly added arcs and nodes is linear in |V (G)|(= n).

Note that the maximum possible value of the minimum cost is also O(n). Therefore, an
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Figure 3.12: Illustration of the construction of N/,.

optimal solution of N/, can be solved using the O(n'® log® n) time algorithm for planar
min-cost flow with cost O(n) described in [12].

Note that since we cannot make the flow uncapacitated, a more efficient algorithm
of O(n!%) complexity also described in [12] cannot be adapted.

We are in a position to prove the main theorem in this section.

Theorem 3.7. For any biconnected plane 3-graph G, a bend-minimized orthogonally

convex drawing of G can be constructed in O(n'®log® n) time.

Proof. Consider an orthogonal drawing D of G corresponding to a min-cost flow of
N¢.. According to our construction of N(,, D satisfies Lemma 3.4 (view it as a no-
bend drawing by treating all bends as 2-vertices). Such a drawing is the one using a
minimum number of bends, say s, among all drawings of G satisfying Lemma 3.4. Let
(5, be the graph resulting from making all bends in the drawing D of G as 2-vertices.
According to Lemma 3.4, G; has a no-bend orthogonally convex drawing D; which
can be constructed in linear time according to Theorem 3.4. It is clear that D, is an
orthogonally convex drawing of G using s bends.

We claim that D; is a bend-optimal orthogonally convex drawing of G. Suppose

that there exists an orthogonally convex drawing D, of G using ¢ bends such that ¢ < s.
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Let G2 be the graph resulting from making all bends in the drawing D, of G as 2-
vertices. Then, GG has a no-bend orthogonal drawing D3 meeting the two conditions
in Lemma 3.4. Therefore, D5 corresponds to a feasible flow of N/, whose cost value
is t. This contradicts the fact that the orthogonal drawing D corresponds to an optimal
solution of N/, as t < s. Therefore, D; is indeed bend-optimal.

The time complexity of the above procedure involves (1) construction of N, (2)
calculation of min-cost flow of IV, and (3) construction of D; based on Theorem 3.4.
Both (1) and (3) take linear time. Task (2) is the bottleneck which requires O (n' log® n)

time. Hence the theorem is concluded. ]

3.7 Orthogonal Convexity in Rectilinear Duals

In this section, we study orthogonal convexity in rectilinear duals.
The graph class under investigation in this section is the class of simple, connected,
and internally triangulated plane graphs. A plane graph is internally triangulated if all

the inner faces are triangles.

Definition 3.3. Let () be an orthogonal polygon, we write (Q-floorplan to denote a rec-
tilinear dual whose outer boundary is combinatorially equivalent to () (the rectangular
boundary constraint in Definition 2.3 is relaxed). A QQ-floorplan is orthogonally convex

if its polygons are orthogonally convex.

—

Gaual Orthogonal polygon Q Q-floorplan of G
- dual

Figure 3.13: An example of a )-floorplan.

In this section, graphs under the name G 4,,; are assumed to be simple, connected,
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internally triangulated plane graphs. Our goal is to give a necessary and sufficient condi-
tion to test whether a given graph G, has an orthogonally convex )-floorplan w.r.t.
a given orthogonally convex polygon (). See Fig. 3.13 for an example. As we shall
see later, it is often the case that problems about rectilinear duals can be re-stated as
problems about orthogonal drawings. As in the last section, Theorem 3.5 and the con-
struction process of no-bend orthogonally convex drawings described in Section 3.4
play important roles in proving the desired result.

We note that the weak dual of a plane graph G is the subgraph of the dual graph that
excludes the vertex v in the dual graph that corresponds to the outer face Fp(G) and all

the edges in the dual graph incident to v.

Lemma 3.5. For any simple, connected, internally triangulated plane graph G 4,4,
there is a unique biconnected 3-regular plane multi-graph Gp,ipmq; such that G gy is

the weak dual of Gprimal, and the following properties hold.:
(1) Gprimal does not have any non-boundary 2-legged cycle, and

(2) internal faces (which are orthogonal polygons) of an orthogonal drawing of G primai

form a rectilinear dual of G 4,4

Proof. We use the following procedure to construct G, imq from a given Gyyq, and

then show that G, indeed satisfies the conditions stated in the lemma.

Input: G4, - a simple, connected and internally triangulated plane graph

Olltpllt: Gpm’mal

- Suppose Cp = (vy,va,...,vs) is the outer cycle of G 4,4, Which may have re-

peated vertices.

- Add a new vertex t in the outer face of Gy,4;, and then triangulate the outer face
by adding edge {v;, t} for 1 < i < sto construct a triangulated plane multi-graph
G/

- Take the dual of G’ to yield G imai-
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See Fig. 3.14 for examples of G4y, G’ and Gprimar-

It is clear that G ima 1s biconnected (otherwise G'gyq is not connected) and 3-
regular (otherwise (G, 1s not internally triangulated).

Suppose G)prima has a non-boundary 2-legged cycle C. Let F; and I3 be its two
neighboring faces in the outer region of C'. Let v; and v, be two vertices in Gy, that
correspond to £} and F5, respectively. Then there must be multi-edges linking v; and
vg In Ggyq since the two legs of C' both border F} and F3, which contradicts the fact
that G4, 1s a simple graph. Hence G ,iq does not have any non-boundary 2-legged
cycle. The fact that internal faces of an orthogonal drawing of G,;,q; form a rectilinear

dual of G 4,4 directly follows from the weak duality between Gipma; and G gyar- O

€4
Gprimal

Figure 3.14: The construction of G),immq and the block-cutvertex tree of G gya-

Recall that our goal is to characterize graphs Gy, that admit orthogonally convex
@-floorplans given an orthogonally convex polygon (), and subsequently realize such
floorplans. We use numSide(P) to denote the number of sides of the polygon P with
non-corner vertices neglected. As we shall see later, the number of the boundary critical

paths of Gp,imar 18 the key behind realizability of a ()-floorplan.

Lemma 3.6. Let G be a biconnected plane 3-graph (may have multi-edges) with k

boundary critical paths, and () be an orthogonally convex polygon. We have

(1) min{numSide(D(Cy)) | D is an orthogonally convex drawing of G} = max{4,
2k — 4}, and
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(2) ifnumSide(Q) > max{4, 2k—4}, there is an orthogonally convex drawing D(G)

such that D(Co) is combinatorially equivalent to ().

Proof. First, we show that for any orthogonally convex drawing D(G), numSide(
D(Cp)) > max{4,2k —4}. According to Lemma 3.1, for any boundary critical path P
of two ends x and y, the number of convex corners located in the P, ) of D(Cop) is at
least one more than that of concave corners. Since all critical paths are edge-disjoint by
Lemma 3.2, the total number of convex corners in D(Cp) must be at least k. Therefore,
the total number of corners of D(Cy) is at least k + (k — 4) = 2k — 4 (since number
of convex corners must be four more than that of concave corners in an orthogonal
polygon), and so is the number of sides. Since each orthogonal polygon must contains
at least 4 sides, we conclude that numSide(D(Cp)) > max{4, 2k — 4}.

Second, we show that for any orthogonally convex polygon @) of numSide(Q) >
max{4,2k — 4}, we can construct an orthogonally convex drawing D(G) such that
D(Cp) is combinatorially equivalent to (). Let the circular order (in counter-clockwise
orientation) of corners of ) be (vg, vy, ..., vs_1). Since the number of convex corners
is exactly four more than the number of concave corners, there exist four indices 0 <
ip < iy < 1g < i3 < s — 1 such that v;,, v(;,—1) mod s are convex corners, and s; =
(Vies -+ Vigy 11y moa 4—1) 18 @ sequence of alternation of convex and concave corners, for
0<t<3.

Now we are in a position to start the construction, which is based mainly on the
algorithm described in Section 3.4. Since the number of bends inside () is irrelevant,
we can add to G a sufficient large amount of 2-vertices by subdividing edges not in Cp.
Every 2-vertex in C is removed by contraction, and add to each boundary critical path
P a2-vertex by subdividing an edge in P.

If k < 4, 4 — k 2-vertices are added to C at arbitrary positions, as long as we do
not put all the &k 2-vertices in P, ) for any P in S whose two ends are = and y. This
is easy since all the paths in S; are edge-disjoint.

The next step is to verify that the current graph admits a no-bend orthogonally con-

vex drawing by examining the conditions in Theorems 3.2 and 3.5. Conditions in
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Figure 3.15: Illustration of the proof of Lemma 3.6.

Theorem 3.2 are automatically satisfied since an arbitrary amount of 2-vertices for
edges not in Cp can be added. Condition 1 in Theorem 3.5 is also met. Now assume
there exists a P in S¢ contradicting condition 2 in Theorem 3.5, that is, Co \ P con-
tains no 2-vertices. Since all the 2-vertices are located in P, every boundary critical
path must edge-intersect with P, and hence contain P as a subpath. Due to the fact that
critical paths are mutually edge-disjoint, G contains at most 1 boundary critical path.
According to our strategy of adding additional 2-vertices when k£ < 4, P cannot contain
all the 2-vertices in Cp, which is a contradiction to the assumption that Cy, \ P contains
no 2-vertices. Hence condition 2 in Theorem 3.5 must be met, too.

Next, we construct a desired drawing based on the drawing algorithm described in
the proof of Theorem 3.3.

Similarly, we let (ug, u1, ..., u,_1) be the circular order(in counter-clockwise ori-
entation) of 2-vertices in Cp. Four indices 0 < jy < 71 < j2 < j3 < r — 1 are chosen
such that (j;11) moaa — 1 — j¢) mod 7 is less than or equal to the number of concave
corners in sy, for 0 < t < 3. Let d; denote the difference of the number of concave
corners in s; and (J¢4+1) mod4 — 1 — j¢) mod 7.

Consider the three cases and their sub-cases in the construction detailed in the proof
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of Theorem 3.3. Let u;,, u;,, uj,, u;, be the four designated vertices of G. Since we
have a sufficient amount of 2-vertices for every non-boundary path, when case 1 occurs
for the outer face being F}, we can always forbid sub-case 3, and similarly sub-case 3
of case 3 and sub-case 1 of case 2 can be excluded.

Whenever case 2 occurs for the outer face being F', we always choose sub-case 2.2
(it is easy to see that sub-case 2.2 is always available if we never choose sub-case 2.1
whenever £ is the outer face). If the algorithm is executed in this way, it is easy to see
that when the algorithm terminates, all the 2-vertices in Cp become convex corners.

Due to the preference of sub-case 2.2 and the orthogonally convexity of D(Cp), the

a4 coONtains exactly (Ji41) moda — 1 — j¢)

portion of D(Cp) between u;, and u;,
mod r pairs of convex corners and concave corners, for 0 < ¢t < 3. Therefore, our
result follows after adding d; pairs of convex and concave corners to the portion of

D(Co) between uy, and u;,, foreach 0 <t < 3.

) mod 4°

See Fig. 3.15 for a graphical illustration for the proof. For simplicity, only the
boundary contour of G is drawn, omitting everything other than the r 2-vertices de-
scribed in the proof. The corners circled by the dotted ellipses are produced by the
extension of sub-case 2.2 of case 2; the corners circled by the dash-dotted ellipses are

added in the last, after the execution of the no-bend orthogonally convex drawing algo-

rithm. OJ

The concept of critical paths turns out to be pretty clean in the dual setting. We use
T to denote the block-cutvertex tree of G. As we shall see later in Lemma 3.7, leaves
in T¢,,., can be put into one-to-one correspondence with critical paths in Gpimai-

Let {v, u} beanedgein F(Tg,, ) such thatv is a cut-vertex. Now u must be a block.
Let V, ., be the vertex set of the component in G4, \ {v} that contains some vertices
in block u, and F;, ,, denote the corresponding face set in Gprimai. Since G gyq 1S inter-
nally triangulated, the edges in £(G 4.4 ) that link v to vertices in V,, ,, must be located
consecutively in the circular list of edges incident to v that describes the combinatorial

embedding of G,,;. We denote such an edge set as E, . According to the definition
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of duality of plane graphs and the algorithm for constructing G ima from Gy,,.;, these
edges form a path in G,imq. We write C,, ,, to denote the cycle that is the boundary of
the union of faces in F, ,. For instance, in Fig. 3.14 the set £, , is {ej, €2, €3}, which

forms the non-boundary contour path with respect to C,, ,=(e1, €2, €3, €4, €5).

Lemma 3.7. {Boundary contour path of C,,,, | wis aleafof Tg,,,,, {v,u} € E(T¢,...)}

is the set of boundary critical paths in Gpipal.

Proof. We first prove that a 2-legged cycle is proper if and only if it is C,, , for some
edge {v,u} in E(1g,,,,) such that v is a cut-vertex.

Following the respective definitions, it is easy to verify that P, , is the intersection
of C,,,, and the contour of F, (i.e. the face in G, i;mq corresponding to the vertex v in
G aual), and F,, is the only inner face that borders C, ,, in its outer region. Therefore,
Cy . 1s a boundary 2-legged cycle, with P, , being its non-boundary contour path, and
Fe

’U,’U.7P’U,’U,

being F,. Since Gguq \ {v} has more than 1 component, there must be some
face not in F;, ,, that also borders F7,, and hence the contour of F, intersects Co of Gpyimar
in more than one path. Therefore, C, ,, is proper.

Conversely, let C' be a proper 2-legged cycle in Grimqi, and P being its non-boundary
contour path. Due to the properness of C, the boundary of /¢ p intersects Cp of Gprimar
in more than one path. Let v be the vertex in Gy, to which F p corresponds, and U
be the subset of V(G yy4;) that corresponds to the faces in G(C'). It is easy to see that
v is a cut-vertex, and U is a component in G g, \ {v}, and hence C' = C,,,, for some
block u (the block neighboring v that belongs to the component).

We define a partial order < on proper 2-legged cycles in G)ima such that C; < Ch
if and only if G(C;) € G(C3). From the definition of critical paths and the fact that
Gprimar does not contain any non-boundary 2-legged cycle, a path P is a critical path
if and only if it is a boundary contour path of a proper 2-legged cycle C' such that C' is
minimal with respect to <. To conclude the proof, it suffices to show that {C,, ,, | v is a
leaf of Tg,,.,, {v,u} € E(Tg,,,,)} contains the minimal elements.

According to basic properties of block-cutvertex trees, let {v, u; }, {ve, us} be two
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edges in F(T¢,,.,) such that v, and vy are cut-vertices, is easy to see that £, ., C Flyy uy
if and only if there is a path (vy, uy, ..., v, u2) in Tg,,,,. Since G(C,,,,) is exactly the
union of faces in F,, ,,, we conclude that {C, ,, | uisaleafof T, . {v,u} € E(1¢,,.)}

contains the minimal elements. ]

In Fig. 3.14, the boundary contour paths of C,, and C, , are the paths drawn in
dashed and dotted lines, respectively. These two paths are the boundary critical paths

of Gprimai- Following Lemmas 3.5, 3.6, 3.7 and Theorem 3.4, we have

’
W»Vuﬂ'

B L’) B

()

a

(3)

Figure 3.16: Key concepts in ()-floorplanning.

Theorem 3.8. For any internally triangulated graph G 4,4 and orthogonally convex
polygon Q, let k be the number of leaves in the block-cutvertex tree of Gaua- Gaual
admits an orthogonally convex Q-floorplan iff numSide(Q) > max{4,2k — 4}. The

floorplan can be constructed in linear time.

Fig. 3.16 summarizes the key concepts presented above. Fig. 3.16(1) is a decom-

position of G4, based on the block-cutvertex tree. Fig. 3.16(2) shows the respective

54



decomposition in G'pyomai, In Which the two boundary critical paths corresponding to the
two cut vertices are clearly marked. The final ()-floorplan is displayed in Fig. 3.16(3),

where () is an L-shape polygon.
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Chapter 4

Rectilinear Duals without T-shape

Most algorithms in recent years leading to low polygonal complexity rectilinear
duals require the use of T-shape polygons or their extensions [3,4, 8].

In particular, the following theorem was proven:

Theorem 4.1 ( [4]). Every maximal plane graph admits an area-universal rectilinear

dual using only non-rotated T -shape polygons.

See Fig. 2.3 for an example of such rectilinear dual. Please refer to Section 2.3 for
the definition of non-rotated T -shape polygon.

Theorem 4.1 is tight in the sense that there exists a maximal plane graph such that
all its rectilinear duals have polygonal complexity at least 8, and we know that T-shape
has 8 sides.

This gives rise to an intriguing question whether other 8-sided polygons than T-
shape (such as Z-shape) and their degenerated cases are sufficient in constructing recti-
linear duals of any maximal plane graphs. In simple words, is T -shape really the most
powerful 8-sided polygon?

As it turns out, in this chapter, we are able to answer the question by showing that
the polygonal complexity of T-free rectilinear dual of maximal plane graph is 12 by

proving the following:

1. There exists a maximal plane graph such that all its T-free rectilinear duals have

polygonal complexity at least 12.

2. Every maximal plane graph admits a rectilinear duals using only monotone stair-

case polygons of at most 12 sides.
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As a result, indeed T-shape is the most powerful 8-sided polygons. Without its
presence, the required polygonal complexity increases by 12 — 8 = 4.

Again see Section 2.3 for the definition of T-free rectilinear duals and monotone
staircase polygons. For the sake of convenience, we restate the definition of ()-free

rectilinear duals here:

Definition 4.1. Let R be a rectilinear dual, we call it Q)-free iff for each polygon of
shape P used in R, we have (Q A P.

Recall that Theorem 2.4 gives a very clean characterization for area-universal rect-

angular duals. In contrast, we still know very little for the following problems:

1. Characterize the rectilinear duals that are area-universal.

2. Characterize the graphs that admit an area-universal rectilinear dual.

In particular, we still do not know whether every maximal plane graph admit a T-
free rectilinear dual. In other words, is T-shape really essential in constructing an area-
universal rectilinear dual for maximal plane graph?

In an attempt to (partially) solve the above problems, in this chapter we also prove

the following results:

1. There exists a maximal plane graph that does not admit any monotone staircase

area-universal rectilinear dual.

2. For Hamiltonian maximal plane graphs, we can easily construct an rectilinear

dual using only non-rotated Z-shape polygons.

4.1 Related Works

Yeap and Sarrafzadeh [45] showed that every maximal plane graph admits a recti-
linear dual using polygons of at most eight sides, which matches the lower bound. Liao

et al. [31] later improved the above result by showing that it suffices to use only I-shape,
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L-shape, and T -shape polygons, whereas in [45], Z-shape polygons are also required.
See Fig. 2.1 for these four types of polygons.

In fact, I-shape and L-shape polygons are degenerated cases of T-shape polygons,
as an I (resp., L) can be obtained from a T by chopping off two ends (resp., one end) of
the horizontal segment of the T.

In [19], rectangular duals under some constraints about relative positions between
objects were studied. In a broader sense, this work fits into the line of research on
constrained rectilinear duals, where the usable shapes or their relations are constrained.
Our characterization for orthogonally convex rectilinear duals in Section 3.7 is also

related to the line of research in this chapter.

4.2 Lower Bound of Polygonal Complexity

In this section, we prove that T-free rectilinear duals of maximal plane graphs have
polygonal complexity of at least 12, which is higher than the 8 in the general case when
T-shape polygons are allowed.

We define the plane graph Hj in Fig. 4.1, which is a key structure behind the higher
polygonal complexity of T-free rectilinear duals. The following lemma indicates that a
presence of the structure H in a graph inevitably requires two concave corners in any

of its T -free rectilinear duals.

Lemma 4.1. Let H be a subgraph of a maximal plane graph G such that H is isomor-
phic to Hy (with x,y and z being the three vertices on the outer cycle) and G(H) = H.
For any T-free rectilinear dual of G, there must be at least two concave corners in
polygons associated with x,y, and z which are located along the border between the

region {x,y, z} and the region {u, v, w, c}.

Proof. Clearly there must be at least one concave corner. If there is only one such
concave corner, without loss of generality, we let x be the one containing the concave
corner. Now, the boundary of the region of {u, v, w, ¢} must be a rectangle, as illustrated

in the upper drawings of Fig. 4.1. Since the polygon c in Fig. 4.1 touches x and since x
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Figure 4.1: Definition of H and illustration of the proof of Lemma 4.1.

borders the rectangular region {u, v, w, ¢} along its west and north sides, by symmetry,
we can assume that c touches the west boundary without loss of generality. We identify
four points pq, po, p3 and p4 on the boundary of ¢ as illustrated in Fig. 4.1. By setting
a = py,b = p3, S; = the sequence of points between p; and py, Sy = (), and S5 =
the sequence of points between ps and py, it is easy to see that if all the polygons are
drawn rectilinearly, such assignments must satisfy the statement of Fact 2.4, and hence

we must have T < ¢, which is a contradiction. ]

With the help of the above lemma, we are in a position to prove the following main

theorem of this section by a simple counting method.

Theorem 4.2. There exists a maximal plane graph G such that every T -free rectilinear

dual of G must have polygonal complexity of at least 12.

Proof. Let Gy = (V, E) be an n-node maximal plane graph with n > 10. We replace
each inner face of Gy with a copy of H, by adding new vertices and edges. Let the
resulting graph be (G, and we let R be any T-free rectilinear dual of GG;. According
to Lemma 4.1, since the number of inner faces in GG is 2n — 5, the number of concave
corners in polygons associated with vertices of V' must be at least 2 x (2n — 5) =
4n — 10 > 3n = 3|V/|. Therefore, there must be a polygon in R containing at least 4

concave corners. By Fact 2.1, such a polygon has at least 4 + (4 +4) = 12 corners. [J
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In the lower part of Fig. 4.1, we give three examples of rectilinear duals of Hj.
The left two drawings are both T-free and contain two concave corners in polygons
associated with z, y, and z; the rightmost one contains only one concave corner but the
polygon associated with c is a T-shape. These two T-free drawings serve as prototyp-

ical concepts of the algorithm presented in the next section.

4.3 Construction of 12-sided T -free Rectilinear Duals

In this section, we present an algorithm to construct 12-sided T -free rectilinear duals
for maximal plane graphs. Our construction uses only monotone staircases, which are
orthogonally convex ones that cannot degenerate to T-shape (Fact 2.3).

Our algorithm is an inductive approach based on the separation-trees described in
Section 2.4. All we need to do is to devise a method inserting the rectangular dual of
G \ A to the current rectilinear dual during the course of the construction meeting the

following:
1. Every polygon preserves the shape of a monotone staircase;

2. The total number of concave corners on the boundary of each polygon is at most

4.

4.3.1 Un-contracting a Separating Triangle

When we un-contract a triangle A = {z,y, z}, a rectangular space is allocated to
accommodate a rectangular dual of G \ A, which in turn imposes (at least) a concave
corner to one of {x,y, z}. Without loss of generality, we assume that such a concave
corner is associated with the polygon .

As observed in Section 4.2, one concave corner in {z, y, z} may not be enough in
some cases. In order to enforce the staircase constraint, we further annotate one of its
four sides as "allowed to add a concave corner”, which is indicated by an arrow in our

illustrations. See Fig. 4.2.

60



Since polygon x is a monotone staircase, « borders either the entire west and north
boundary or the entire east and south boundary of the rectangular space. Therefore,
there are eight cases in total since the arrow can point to any one of the four sides of the
rectangular boundary. It is sufficient to consider the following two cases (see the left

illustration of Fig. 4.2):

1. Polygon z borders the west and the north sides, and the arrow points to the north

side;

2. Polygon x borders the west and the north sides, and the arrow points to the east

side.

The remaining cases are symmetric to one of the above (by flipping the entire draw-
ing around the north-west to south-east line or the north-east to south-west line).

We also fix polygon y to be the one that borders the east side of the rectangular
space.

A key in our un-contracting process is to identify three special vertices associated
with each separating triangle. Consider Fig. 4.2. Let u, v, and w be the three vertices in
Ga \ {z,y, z} such that u, v, and w are adjacent to {x, y}, {y, 2}, {z, 2}, respectively.
It is easy to see that u, v, and w are uniquely determined; otherwise, there must be a
separating triangle in G o, which contradicts its definition.

Unless |V (GA)| = 4 (in this case, u = v = w), u, v and w must be different from
each other (otherwise, a separating triangle can be found in G ).

When the rectangular dual of Ga \ {x,y, 2} is constructed to fill the rectangular
space, we further assume the rectangular dual to have polygon w adjacent to the entire
west side. Such a drawing must exist since there is no separating triangle inside the
quadrangle {z,y, z, w} (See Fig. 4.2).

If we consider the children of the node associated with A = {z, y, 2z} in the separa-

tion tree, there are two types of separating triangles:

1. Separating triangles that are either {z,y,u}, {y, z,v}, or {z, z, w}. (Note that

some of these three triangles may not be separating triangles.)
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2. Separating triangles in the subgraph surrounded by vertices {x, u,y, v, z, w}. See

Fig. 4.2.

Figure 4.2: Location of u, v, w in the rectangular space for separating triangle {x, y, z}.

Now, we are in the position to present how we make a rectangular space for each

separating triangle.

Type 1 separating triangles. We first consider the Type 1 separating triangles, i.e., the
separating triangles that are either {x,y, u}, {y, z, v}, or {z, z, w}.

Depending on whether the arrow points to the north side or the east side of the
rectangular space for Gy, .}, the solutions are depicted in the upper and lower parts of
Fig. 4.3, respectively.

The rectangular regions surrounded by dashed boundaries in the rightmost figures
of Fig. 4.3 are the rectangular spaces for {z,y,u}, {y, z,v}, and {z, z, w} when we
un-contract them in later iterations, with some of which possibly be void if they are not
separating triangles.

Special attention should be given to the directions of the arrows in those regions.

The checkered regions represent those allocated for the special vertices u, v, and w.

The white spaces in Fig. 4.3 are parts of rectangular duals of the subgraph sur-

rounded by vertices {z, u, y, v, z, w}, and the white dots indicate points at which there
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may be separating triangles when Type 2 separating triangles are included.

Type 2 separating triangles. Recall from Fig. 2.6 that when a separating triangle is
un-contracted, a rectangular region is inserted at the juncture of the three polygons as-
sociated with the three vertices of the separating triangle. Depending on the orientation
of the three polygons, there are four cases as illustrated in the upper part of Fig. 4.4.
Attention should be given to the arrows in those regions, which indicate the sides
where additional concave corners are possible during the course of future un-contraction.
Although Fig. 4.4 shows the general rule for allocating spaces to accommodate Type
2 separating triangles, there is an exception. Consider the white point incident to both
u and z in the upper illustration of Fig. 4.3 (see also the lower illustration of Fig. 4.4).
One can see from Fig. 4.3 that the polygon u stretches upwards in order to make room
for the separating triangle {z, u,y} (i.e., the top-most red region in the upper illustra-
tion of Fig. 4.3). As a result, we apply rule (3) in Fig. 4.4, as opposed to rule (4), as
illustrated in the lower illustration of Fig. 4.4. Such special care prevents the creation
of an additional (undesired) concave corner to {z,y, z}. A similar situation occurs at

the juncture between u and y in the lower illustration of Fig. 4.3.

Bounding Polygonal Complexity. It is clear from the above that all operations preserve
monotone staircase shape. What remains to do is to count the number of concave corners
in each polygon s.

(Case: s ¢ {u,v,w}) In Fig. 4.4, when we make a rectangular space at point p, if
p is a non-corner of polygon s, no concave corner is imposed on s. Therefore, for any
polygon s not belonging to {u, v, w}, the number of concave corners imposed on s is
at most four since a rectangle has four corners.

(Case: s=u=v =w)Ilfs =u=v = w,itis easy to see that we also impose
at most four concave corners on s. In Fig. 4.3, we make one concave corner and three
arrows (which may potentially become concave corners) to s.

(Case: s € {u,v,w}, u,v,w are distinct vertices) For this case, the results are

summarized in the following, which can be easily observed in Fig. 4.3:
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u: 0 concave corner, 1 arrow, and 3 white dots; the total amount is 4.
v: 1 concave corner, 1 arrow, and 3 white dots; the total amount is 5.

w: 0 concave corner, 1 arrow, and 2 white dots; the total amount is 3.

So far, our algorithm can compute a monotone staircase rectilinear dual that uses
polygons of at most 14 (=2 x 5 + 4) sides, as the number of sides =2 x (the number of
concave corners) + 4. To lower the polygonal complexity from 14 to 12, our approach
is to transfer one concave corner from v to w. Our solution is presented in the following

subsection.

Figure 4.3: Illustration of un-contracting Type 1 triangles.

4.3.2 Transferring Concave Corners

Let S = V(Ga) \ {z,y, 2}, and given a rectangular dual Ry of Ga \ {z,v, 2}

meeting the conditions described in Section 4.3.1:
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Figure 4.4: Illustration of un-contracting Type 2 triangles.

1. The west and north boundaries of R, are adjacent to z, the east and south bound-

aries of R are adjacent to y and z, respectively.

2. w (the unique vertex adjacent to x and z) borders the entire west boundary of R.

We define a relation "<" on S:

Definition 4.2. Given S and Ry, "< " is a relation on S such that: s < s iff (1) the
west side of s is more west than (i.e., on the left-hand side of) the west side of s, and

(2) there is a point p in Ry such that p is a 180° corner in s and a 90° corner in s'.

Regarding the separating triangle {z, y, z} discussed in Section 4.3, the following
lemmas are easy to observe. Lemma 4.2 directly follows from the fact that w is the

unique vertex adjacent to x and z.

Lemma 4.2. w is the only vertex that touches both the north boundary and the south

boundary of Ry.

Lemma 4.3. There exists a path v = sq, Sa,...,S, = w in S such that s;;1 < s; for

1<i<k—-1

Proof. If such a path does not exist, there must exist a vertex ¢ # w such that s ¢ ¢

for all s € S. It means that the north-west corner of ¢ touches the north boundary of
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Ry and the south-west corner of ¢ touches the south boundary of R, which contradicts

Lemma 4.2. L

Let s1, s9, ..., s; be the path that satisfies Lemma 4.3. Our concave corner transfer
algorithm works as follows: For i = 1 to k, if there is a separating triangle A’ =
{si, 8i11,t} for some t € S, we re-build the rectangular space for A’ as depicted in
Fig. 4.5, which is capable of "shifting" 1 concave corner (or arrow) from s; to s; .

The procedure terminates if there is no such triangle; in this case, the number of
concave corners in s; must be smaller than four before the execution of this algorithm.
Therefore, all polygons must have at most four concave corners after the concave corner

transfer algorithm ends.

Figure 4.5: Illustration of transferring concave corners.

It is easy to see that the algorithm presented in this section for constructing monotone
staircase rectilinear duals can be implemented in linear time. As a result, we conclude

the following main theorem of the chapter:

Theorem 4.3. T -free rectilinear duals for maximal plane graphs have polygonal com-
plexity of at most 12. Moreover, there is a linear time algorithm that constructs a mono-

tone staircase rectilinear dual for any maximal plane graph.
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4.4 Area-universal Drawings

In view of our earlier discussion, it is natural to investigate how or whether area-
universal rectilinear duals can be constructed in the absence of T-shape polygons.
In this section we show that restricting usable shapes to monotone staircases is insuf-

ficient to construct area-universal rectilinear duals for maximal plane graphs in general.
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Figure 4.6: Illustration of concepts in Section 4.4.

To proceed further, we require some definitions. We denote the most south-western
point and the most north-eastern point of a monotone staircase as SW and N F, respec-
tively. Separated by these 2 points, the boundary of the polygon is divided into the
upper part and lower part naturally, which we denote as Up and Low, respectively.
See Fig. 4.6(1) for an illustration. We define relations W for X € {SW,NE},

Y € {Up, Low}, and give a condition for a rectilinear duals to be not area-universal.

Definition 4.3. For X € {SW,NE}, Y € {Up, Low}, and any two polygons s,t of
monotone staircase shape, s ! iff X(s) is located in Y (t), where X (s) and Y (t)

denote the X point of polygon s and the Y boundary of polygon t, respectively.

Lemma 4.4. For any monotone staircase rectilinear dual R, if there exist three polygons

r,s,tandY € {Up, Low} such that s r, t > r, and N E(s) is more south-
NEY SW,Y

west than SW (t), then R is not area-universal.

Proof. For any drawing of R, consider a Cartesian system formed by setting x-axis to

be the east-west line passing through N E(s) and setting y-axis to be the north-south
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line passing through ST (t), then s, ¢ must be confined in quadrant I, I1I, respectively
(see Fig. 4.6(2) for an illustration). It is easy to see that any area-assignment where
both the area of s and the area of ¢ surpass 25% of the area of the rectilinear dual is not

realizable. ]

Similar to what we have done in Section 4.2, let G be a maximal plane graph and
H be a sub-graph of GG such that H is isomorphic to Hy and G(H) = H. We consider
a monotone staircase rectilinear dual R of GG. It is easy to observe that the border be-
tween 2 monotone staircase polygons cannot intersect with both Up and Low of one of
them (otherwise, the other cannot be monotone staircase). Therefore, by the pigeonhole
principle, in H we have that two of {u, v, w} border ¢ in one of {Up(s), Low(s)}. We
denote these two vertices as s1, so, and the border between s, ¢ is more south-west than
that of s, c. Let r € {x,y, 2} be the unique vertex adjacent to both s; and s,, the next

lemma reveals a relationship between sq, so, ¢, and r.

Lemma 4.5. [f we require R to be area-universal, exactly one of the following must be

satisfied for H:

1. SW(r)is located in Up(c), sy —— r, and s —— .
NE,Up NE,Low

2. NE(r) is located in Up(c), sy —— r, and sy —— 1.
SW, Low SW.Up

3. SW(r) is located in Low(c), sy —— r, and s9 ~5o "
ow Up

)

4. NE(r) is located in Low(c), $1 e and sy —— 1.
P

) SW,Low

Proof. 1Ifboth SW (r) and N E(r) are not located in one of Up(c) and Low(c), it is easy
to see that setting (s, ¢, 7) = (s1, S9, ¢) satisfies the condition in Lemma 4.4, and hence
R is not area-universal. Therefore, the first part (which is concerned with the location
of SW(r) or NE(r)) of one of the four statements is satisfied. It remains to prove
that for each statement, the first part implies the remaining parts; By symmetry, all four
statements are inherently the same, therefore it suffices to consider statement (1) only,

that is, showing that SW (r) is located in Up(c) implies sy —— 7 and 5o ——— 7.
NE,Up NE,Low
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Let s3 be the only vertex in {u, v, w} \ {s1, s2}, and we, without loss of generality,
let x = r. Since SW(r) is located in Up(c), = cannot touch the most south-western
point of ¢ U s3, and we denote this point as p. It forces both y and 2 touch p since if it
is touched by only one of {y, z}, that one cannot remain monotone staircase. It is not
hard to see in Fig. 4.6(3) that if s; m r is not satisfied, then N E(s;) is a locally
most north-eastern point in Low(z), which makes z not monotone staircase. Similar
contradiction can be made for y when s, m r is not satisfied. Hence the lemma

follows. L

Theorem 4.4. There exists a maximal plane graph G such that every monotone stair-

case rectilinear dual of G is not area-universal.

Proof. The idea hehind this proof is similar to that of Theorem 4.2. Let GGy, G4, S, and
n be the same as what they are in the proof of Theorem 4.2. Let R be a monotone
staircase rectilinear dual of (G;. According to Lemma 4.5, for each separating triangle
A in G such that G(A) is isomorphic to Hy, we define a function f that chooses a
vertex f(A) = r € A such that there are two vertices a,b € V(G(A)) \ A satisfying
either a Wrandb mrora W r and b WT.

Since the number of A in G; such that G(A) is isomorphic to Hy is 2n — 5 > n,
we can find two such triangles A, and A’ such that f(A) = f(4'). As illustrated in
Fig. 4.6(4), the condition stated in Lemma 4.4 must be satisfied, and hence, the drawing

of (G| must not be area-universal. [l

4.5 More about Staircase Polygons

Following the impossibility result in the previous section, we study monotone stair-
case polygons in a more restricted setting. It is easy to observe that Theorem 4.4 still
holds even restricting to plane 3-trees since replacing a triangle with H preserves the
property of being a plane 3-tree. Beside plane 3-trees, Hamiltonian maximal plane
graphs, which subsume maximal outer plane graphs and 4-connected plane graphs, are

another important sub-class of maximal plane graphs.
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Contrasting the above results, the following theorem can be shown easily by a slight
modification to the LI-shape cartogram drawing algorithm described in [4] (by reversing

the construction order of the right part, we can get a non-rotated Z-shape drawing).

Theorem 4.5. All Hamiltonian maximal plane graphs admit 8-sided area-universal

monotone staircase rectilinear duals.

Combining the result in [4], we conclude that all Hamiltonian maximal plane graphs

admit rectilinear duals meeting the following requirements:

* The drawing consists of non-rotated T -shape (non-rotated LI-shape, or non-rotated

Z-shape) only.
* The drawing is area-universal.

The above gives rise to the problem of whether every Hamiltonian maximal plane
graph admits a non-rotated W-shape rectilinear dual (as W-shape is the only 8-sided
rectilinear polygon other than T-, L-, Z- shapes). See Fig. 4.7(1) for a picture of a W-
shape. We denote a monotone staircase whose Low contains exactly one convex corner
and no concave corner as a monotone strict staircase. It is easy to see that a non-rotated

W-shape is exactly the 8-sided monotone strict staircase. We prove the following result:

Theorem 4.6. For any k, there is a Hamiltonian maximal plane graph that does not

admit any k-sided monotone strict staircase rectilinear dual.

Proof. Let G be a Hamiltonian maximal plane graph, and let {x, y, 2z} be its outer cycle.
Given any monotone strict staircase rectilinear dual R for GG, without loss of general-
ity, we let the polygon associated with z be the one touching the south-east corner of
the rectangular boundary of R. The region surrounded by polygons z, y, z must be an
upside-down monotone strict staircase, as depicted in Fig. 4.7(2).

Let A = {a,b, z} be any separating triangle such that {a,b} N {z,y} = 0. Since
polygons of a, b are both monotone strict staircases, there must be at least one concave

corner of polygon z residing in the border between polygon z and the region interior
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Figure 4.7: Illustration of the proof of Theorem 4.6.

of A (otherwise, the region interior of /A cannot be enclosed by polygons {a, b, z}).
See Fig. 4.7(3). As a result, a necessary condition for R to be a k-sided monotone
strict staircase rectilinear dual is that the number of interior-disjoint separating triangles
A = {a,b, z} such that {a, b} N {x,y} = 0 is at most (k — 4)/2 (recall that the number
of convex corners of a rectilinear polygon is four plus the number of concave corners,
and that the number of sides equal the number of corners). Next, we show that for any
number ¢, there is always a Hamiltonian maximal plane graph GG in which each boundary
vertex is contained in at least ¢ such triangles. Fig. 4.7(4) showcases such an example.
In this scheme, we can have as many interior-disjoint triangles containing a boundary
vertex as we want by adding more dotted-lines linking a boundary vertex to the center
vertex c. Also, the graph remains to be Hamiltonian if we add a new vertex v inside
each triangle A in the shaded region and add an edge between each vertex in A and v

(making A a separating triangle). As a result, we conclude the proof. ]

However, if unbounded polygonal complexity is allowed (i.e., k — o0), we have

the following theorem:

Theorem 4.7. Every maximal plane graph admits a monotone strict staircase rectilin-

ear dual, having possibly unbounded polygonal complexity.

Proof. For any maximal plane graph G, we construct a desired drawing using the frame-
work of building rectilinear duals based on separation-trees described in Section 2.4. To

meet the requirement of using only monotone strict staircases, it suffices to make sure
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that during the construction, each addition of a concave corner to a polygon s preserves
the property that s is a monotone strict staircase.

We only add concave corners when a separating triangle A; is un-contracted, since
we need to make a rectangular space to plug-in the rectangular drawing of Ga, \ A; to
the current drawing (see Fig. 2.6 for an conceptual illustration). It is easy to see that if
we make rectangular space according to the rule described in Fig. 4.8, the property that

all polygons are monotone strict staircase can be preserved. ]

Figure 4.8: Illustration of the proof of Theorem 4.7.

We remark that for the special case of k = 6, a 6-sided monotone strict staircase is
exactly non-rotated L-shape, and the maximal plane graphs admitting rectilinear duals
using such shape have been characterized based on Schnyder labeling (Theorem 2.1.7

of [43]).
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Chapter 5

Convex Polygonal Duals

Recall that in Chapter 1 we mentioned that there is a lack of results and tools to deal
with contact representations of geometric objects that are not necessarily rectilinear.

The goal of the chapter is to extend the study of rectilinear dual to convex polygo-
nal objects. In particular, new tools for contact representations using convex polygons
are presented, and some links between the rectilinear setting and the convex polygonal

setting are established.

Our contributions include the followings:

» A very general drawing style called convex polygonal dual, which subsumes well-
studied drawing styles like proper touching triangle representation and rectangu-

lar dual, is proposed.

» We characterize graphs admitting straight-line convex t-gon representations and
straight-line t-gon representations, which can be regarded as a primal version of

convex polygonal duals. This greatly extends the main result of [2].

 Based on the above result, a characterization for a plane graph to admit a ¢-sided

convex polygonal dual is presented.

» Using Courcelle's theorem, we derive some useful fixed-parameter tractability

results for convex polygonal duals.

* To further demonstrate the usefulness of our approach, we give quick alternate

proofs for the following existing results based on our techniques:

— Each maximal plane graph admits a 6-sided convex polygonal dual [17].
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— Each triconnected cubic plane graph admits a proper touching triangle rep-

resentation [28].

5.1 Related Works

There are a few works on contact representations for triangles. Please refer to Sec-
tion 2.6. Also see the PhD thesis of Aerts [1].

For convex polygons beyond triangles, [17] showed an algorithm to a construct
contact representations for any plane graphs using convex polygons of at most 6 sides.
They also proved in [17] that the polygonal complexity of 6 meets the lower bound by
constructing a series of planar graphs that cannot be represented by polygons of at most
5 sides. Much different to our setting in the thesis, they allow the presence of holes in
their drawings.

It has been proved that all Hamiltonian maximal plane graphs admit contact rep-
resentations using convex polygons of at most 5 sides (Corollary 2.2.5 of [43]). As
the drawings they constructed are based on a modification to L-shape rectilinear duals,
there is no hole in their drawings.

To our best knowledge, [20] is the only work on area-universal drawing regarding
geometric objects that are not necessarily rectilinear.

From a primal point of view, the drawing style convex drawing is already well-

studied. See Chapter 5 of [34].

5.2 Terminologies

Some definitions presented below can be seen as extensions or generalizations of

the similar ones in [2].

Definition 5.1. Given a biconnected plane graph G = (V, E) such that all degree 2
vertices are in V(Fo(Q)), a t-flat angle assignment (t-FAA, for short) is a mapping
Sfrom a subset of V \ {v|v € V(Fp(G))} to inner faces of G such that:
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1. Each vertex is assigned at most once;
2. Each inner face F is assigned at least |V (F')| — t times;
3. for each mapping associating a vertex v to a face F, we have v € V(F).

Intuitively speaking, the idea behind assigning v to a face F' in a t-FAA is to capture
the presence of a 180° angle surrounding v in the face /' in a drawing. Condition (2) is
to ensure that each inner face is drawn as a convex polygon which has at most ¢ convex

corners.

Definition 5.2. A straight line ¢-gon representation (¢-SLR, for short) is a planar draw-

ing such that:
1. each inner face is a polygon of at most t sides, and
2. the outer face is a convex polygon.

A straight line convex ¢t-gon representation (t-convex-SLR, for short) is a t-SLR with an

additional constraint that each inner face is convex.

FAAs are also closely related to the so-called contact systems of pseudo-segments
[15], each of which is a set of non-crossing Jordan arcs where any two of them intersect
in at most one point, and each intersecting point is internal to at most one arc. A contact
system is stretchable if there exists a homeomorphism transforming the contact system
into a drawing where each arc is a straight line. Stretchable contact systems of pseudo-

segments were characterized in [15] based on the notion of extremal points.

Definition 5.3. 4 point p is an extremal point of a contact system S of pseudo-segments

if the following three conditions are satisfied:
1. pis an endpoint of a pseudo-segment in S.
2. pis not interior to any pseudo-segment in S.
3. pis incident to the unbounded region of S.
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Theorem 5.1 ( [15]). 4 contact system S of pseudo-segments is stretchable iff each of
its subsystems (i.e., subsets of pseudo-segments) S’ of cardinality greater than 1 has at

least 3 extremal points.

It is not difficult to see that a t-FAA of a plane graph naturally defines a contact
system of pseudo-segments in which each pseudo-segment is associated with a path

(v1, ..., v;) meeting the below conditions:

1. k> 2.
2. V1 < j < k,v;isassigned to a face containing the two edges {v;_1, v; }, {v;, vj41}.

3. vy (vg) is either unassigned or assigned to a face not containing {vy, va} ({vg—1,

v }), respectively.

Such a pseudo-segment is said to be induced by an edge {v;,v; 11}, forany 1 < j <
k — 1. Note that an edge induces exactly one pseudo-segment.

For ease of explanation, we write S to denote the set of pseudo-segments induced
by the edges in the cycle C' w.r.t. a given t-FAA.

It is clear that a graph admits a £-FAA corresponding to a stretchable contact system
of pseudo-segments iff it admits a ¢-convex-SLR. With respect to a t-FAA, we call a
corner of an inner face a combinatorial convex corner if it is not assigned to the face.

For a more detailed exposition, the reader is referred to [2].

5.3 Characterizing t-sided Convex Polygonal Duals

A t-sided convex polygonal dual is a contact representation of a plane graph defined

as follows:

Definition 5.4. A t-sided convex polygonal dual is a contact representation of a plane

graph meeting the below conditions:

1. Each vertex corresponds to a convex polygon of at most t sides.
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2. Adjacency in the graph corresponds to side-contact in the drawing.
3. All convex polygons together form a partition of a convex polygon.

The goal in this section is to give a combinatorial characterization for plane graphs

b
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Figure 5.1: Illustration of concepts introduced in Section 5.3.

admitting such drawings.

In what follows we first derive a characterization for a graph admitting a ¢-convex-

SLR based on the notion of ¢-FAAs.

Definition 5.5. Let C be a cycle in a biconnected plane graph G whose degree 2 vertices
are all in V (Fp), and let v be a vertex in C. Given a t-FAA, we call v free in C' if one

of the following conditions is satisfied:
1 v is unassigned, or

2 v is assigned to a face F in out(C'), and F' is not the only face to which v is

incident in out(C).
Moreover, v is strongly-free if Condition 1 above is replaced by

1' v is unassigned, and v is either in the outer face or incident to more than one face

in out(C')

Intuitively speaking, a free vertex (strongly-free vertex) of a cycle C indicates a
corner (convex corner) in in(C'). Fig. 5.1(2) is a cycle C'in Fig. 5.1(1), which is drawn
in 5-convex-SLR. The vertices ¢, d, and g are strongly-free vertices of the cycle C.
Fig. 5.1(3) shows the set of pseudo-segments S¢ for the cycle C'. The vertices a, d,

and ¢ are the extremal points in Sc. Fig. 5.1(4) is a 6-SLR. As we shall prove in the
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following theorem, the FAA described in Fig. 5.1(4) cannot be a convex-SLR since the
cycle (¢, d, f, g, e) only has 2 strongly-free vertices ¢ and g. Note that the vertex e is free
but not strongly-free. In any drawing realizing that FAA, e must be a concave corner in
the face interior to the cycle (a, ¢, e, g, i, h).

The following key theorem, one of the main results of this chapter, characterizes

graphs admitting ¢-SLR and ¢-convex-SLR in terms of FAAs.

Theorem 5.2. Let G be a biconnected plane graph whose degree 2 vertices are all in
V(Fo). G admits a t-convex-SLR (resp., t-SLR) iff there exists a t-FAA such that each

cycle has at least 3 strongly-free (resp., free) vertices.

Proof. (Idea) As the detailed proof is quite lengthy, we only describe the intuitive idea
here. The full proof is presented in the next section. From our previous discussion, it
is clear that a t-FAA of a plane graph naturally induces a contact system of pseudo-
segments. For deciding whether the contact system is stretchable (implying that the
plane graph admits a ¢-SLR), a direct application of Theorem 5.1 requires checking
all sub-systems of pseudo-segments for the availability of 3 extremal points. The cur-
rent theorem shows a simpler characterization, i.e., examining only subsets of pseudo-
segments of the form S for some cycle C' is sufficient. Furthermore, we are able to
relate the availability of 3 extremal points of pseudo-segments of S to the presence of
at least 3 free vertices along cycle C'. See Fig. 5.1(2, 3, 5, 6) for instance.

If each face is further required to be a convex polygon, we need to prevent a vertex
from causing a face to be a concave polygon, like the vertex e in the cycle depicted
in Fig. 5.1(5). It turns out that adding the constraint forcing each free vertex to be
incident to more than one face in out(C') (see Condition (1') in Definition 5.5) leads to

a necessary and sufficient characterization. O

It is easy to extend Theorem 5.2 to all biconnected plane graphs by modifying the
definition of FAAs to handle degree 2 inner vertices. However, as the situation would

not be encountered throughout the chapter, we omit it in order to reduce complication.
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To give a characterization of convex polygonal duals, in what follows we establish a
link between ¢-sided convex polygonal duals and its primal counterpart, t-convex-SLRs.

Given a plane graph (G, one may hope to find some sort of a "dual" graph G* such that
any t-convex-SLR of G* is also a ¢-sided convex polygonal dual of G. Unfortunately,
this kind of a reduction strategy turns out to be more complex than it appears on the
surface, as the polygon associated with a vertex v € Fp(G) may touch the boundary
of the ¢-sided convex polygonal dual of G on 0, 1, ..., t — 1 sides (see Fig. 5.2(4)). As
an attempt to resolve such a difficulty, we define the G* associated with a graph G as

follows:

Definition 5.6. Given a plane graph G and an integer t, the graph G* is defined to be

the result of the following construction steps.

1. Add a new vertex s in the unbounded face of G, and add an edge between s and

each vertex in the outer face.

2. Take the dual, and the new outer face is designated to the one corresponding to

s.
3. Subdivide each edge in the outer face to transform it to a path of t — 1 edges.
The following result is then straightforward.

Theorem 5.3. A plane graph G admits a t-sided convex polygonal dual iff there is a
graph G' that results from contracting some edges along the outer face of G*, admitting

a t-convex-SLR.

Figure 5.2: Concepts in Section 5.3.
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Theorems 5.2 and 5.3 relate the problem of finding a convex polygonal dual to find-
ing a set of boundary edges to be contracted and a corner labeling satisfying some con-
straints. In comparison with previous techniques designed for contact graph represen-
tations, the greatest advantage of Theorem 5.3 is that it turns a geometry problem to a
purely graph-theoretic one. This, in conjunction with Theorem 5.2, allows us to get rid
of any tedious and laborious geometric construction process when designing algorithms
for contact graph representations.

By offering the possibility of contracting boundary edges of G, polygons associated
with vertices in Fip(G) can touch the boundary of the convex polygonal dual of G on
0,1,...,¢t—1sides.

Fig. 5.2 illustrates the concepts presented in the section: (1) a graph G, (2) its asso-
ciated G* (for t = 3), (3) applying edge contraction to the dashed edges along the outer
face of G*, (4) a 3-convex-SLR of G* which is also a 3-sided convex polygonal dual of
G.

In Fig. 5.2(3) and Fig. 5.2(4), flat angle assignments are annotated by arrows. In
Fig. 5.2(4), faces B, C' and F’ touch the boundary on 0, 1, or 2 sides, respectively. Note
that an edge contraction has the same effect of a corner assignment in Fio(G*). There-
fore, we can assume that no assignment occurs in Fp(G*) since edge contraction already

handles it.

(Remark) Theorem 5.2 is of independent interest as it improves the main result in [2]
(i.e., Theorem 2.10 in [2]) in the following way: (i) We check only simple cycles instead
of all outline cycles; (i) the result holds for all ¢-FAAs instead of 3-FAAs only; and (iii)

we are able to deal with both polygons and convex polygons.

5.4 Proof of Theorem 5.2

In this section we give the full proof of Theorem 5.2. This section can be skipped

without loss of continuity.
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It is evident from the definition of t-FAA that, if the drawing can be straighten to
satisfy the assignment, each inner face is assured to have at most ¢ sides. Therefore,
to prove Theorem 5.2, the only two things we need to deal with are (i) stretchability

constraint and (ii) convexity constraint.

(Terminologies) We extend the graph-theoretic definitions of cycle, internal region,
and outer region to pseudo-segments. Given a plane graph G and an FAA with Y
the contact system of pseudo-segments corresponding to the FAA, a subset S’ (C YX¢)
of pseudo-segments is a cycle if there exists a cycle C' in G which induces S’ (i.e.,
Sc = S5"). Given asubset S C Y, the internal region of S, denoted by in(S), is the set
of faces in G surrounded by S. The outer region of S is the set of faces in GG excluding
the ones in in(.5).

We deal with (1) stretchability constraint first.

Lemma 5.1. Let G be a biconnected plane graph whose degree 2 vertices are all in
V(Fp). It admits a t-SLR iff there exists a t-FAA such that each cycle has at least 3 free

vertices.

Proof. Let X denotes the contact system of pseudo-segments corresponding to the
given FAA. The statement of this lemma is equivalent to "X is stretchable iff each
cycle in GG has at least 3 free vertices".

We first prove the following claim:

Claim: Let S be a set of connected pseudo-segments and s ¢ S be a segment such

that in(S) = in(SU{s}). Then SU{s} has at least as many extremal points as .S does.

Proof of Claim. Based on the location of s with respect to .S, there are two cases:

1. s is located in in(S). Certainly the claim holds as the extremal points of S and

S U {s} are identical. See Fig. 5.3(2) for an example. A new segment {g, h} is
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added to the set S = {{a,b}, {c,d},{e, f}} depicted in Fig. 5.3(1). After the

inclusion, the extremal points remain to be {a, ¢, e}.

2. sislocated in out(S). Since the inclusion of s does not enlarge in(S), s touches S
in at most 1 point; otherwise, a new cycle enlarging the internal region is formed.
Therefore, the inclusion of s can only make at most 1 extremal point in S non-
extremal, and it happens only when an extremal point in .S touches the interior
portion of s. However, since at least 1 of the 2 endpoints of s does not touch S,
a new extremal point must be generated after the inclusion of s. See Fig. 5.3(3)
for an example. The addition of the new segment s = {4, j} changes the set of

extremal points from {a, ¢, e} to {c, e,i,j}.

As we have checked all the cases, the claim holds. See also Fig. 5.3(4) for a demon-
stration of a situation that the inclusion of s lowers the number of extremal points but

increases the internal region. ]

We write m(S) to denote the number of maximal edge-connected set of faces in
in(S), and we let By, By, ..., B, be these sets of faces. We write C; to denote the
cycle enclosing B;. In view of the above claim, the following statement is true:

To search for a subset of pseudo-segments of cardinality greater than 1 that has at
most 2 extremal points, it suffices to check only candidate set X (set of set of pseudo

segments) such that, for each S € X:

1. Any proper subset of S encloses a smaller internal region than in(.S);

2. S is connected (since the number of extremal points of S is the sum of that of its

connected components).

Note that the first condition implies S' = U1, m(s) Sc;-
Our next task is to narrow down the candidate set to cycles only (i.e. the ones
satisfying m(S) = 1 in the above candidate sets). For any S € X such that m(S) > 1,

we show that it is always possible to find another set of pseudo segments S € X with
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Figure 5.3: Illustration of inclusion of a new segment into a set of pseudo segments.

Figure 5.4: Illustration of finding S.

smaller number m such that the number of extremal points in S < max(2, the number
of extremal points in 5).

Suppose that S € X, and m(S) > 1. We choose an integer & such that the set
S" = Uieq1,...m(s)},izx Sc; remains a connected set of pseudo segments. Since each
B, is chosen to be a maximal edge-connected set of faces, S’ NS¢, contains exactly 1
segment. Furthermore, if we let S’ NS¢, = {s'}, S¢, — {s'} does not touch s in both

of its two endpoints. We divide the situation into two cases:

1. There is an extremal point of S¢, located in S, — {s'}. Then, S’ contains no

more extremal points than .S does;

2. There is no extremal point of S¢, located in S¢, — {s'}. Then S¢, has at most 2

extremal points.

As a result, choosing S to be one of 9, Sc, that has smaller number of extremal
points always works. The two cases are depicted in Fig. 5.4, where white dots indicate
extremal points. Fig. 5.4(1) shows S = U,cq1,.. 33 Sc,- Fig. 5.4(2) depicts the situation
that S' = S¢, U S, is chosen to be Swhenk = 1; Fig. 5.4(3) shows the case of k = 3,
in which S is set to be Sc,.

As we have narrowed down the candidate set X to cycles only, we now know that
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only cycles matter in deciding stretchability of 2. To complete the proof, It suffices

to prove the following two statements:

1. Given a cycle C in G, the number of the extremal points in S¢ is smaller than or

equal to the number of free vertices in C.

2. Given a subset of pseudo segments .S that is a cycle, we can find a cycle C' in
G such that S = S, and that the number of the extremal points in S equals the

number of free vertices in C.

First of all, we identify three types of points p in S¢:

1. pis located in C, and p is an extremal point of S. Then, it must be also a free
vertex which is either unassigned or assigned to a face not containing any edge in

C.

2. pis located in C, and p is an endpoint of a segment s' € S and is interior to
another segment s € S. Then, it must be also a free vertex which is assigned to a

face containing an edge in C.
3. pisnotlocated in C, and p is an extremal point of S.

Take Fig. 5.5 as an example. Let C' = (b,c,e,g,h), then S¢ = {{a,c}, {b,h},
{a,g}, {d,e}, {g, f}}. The points a,b,c,d,e, f,g, h are of types 3,2,2,3,2,3,1,2,
respectively. Note that a free vertex is either of type 1 or of type 2; an extremal point is
either of type 1 or of type 3.

We define a mapping from free vertices of C' to extremal points in .S as follows:
1. For a type 1 free vertex v, we map it to itself.

2. For a type 2 free vertex v, we map it to the type 3 endpoint u of the segment s
such that v is an interior point of s and that the path (u, ..., v) along s does not

share any edge with the cycle C.
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Figure 5.5: Illustration of relating extremal points to free vertices.

Also consider the above example, the free vertices b, ¢, e, g, h are mapped to end-

points a, d, f, g, a, respectively.

Proof of Statement 1. 1t suffices to show that the above mapping is onto. Suppose that
an endpoint v is not being mapped to. It must be of type 3. Let it be an endpoint of a
segment s. We walk along the segment s from v until we reach C'. We must stop at an
junction point v’ which is interior to s and is an endpoint of another segment s’. It is

immediate that v' should have been mapped to v. ]

Proof of Statement 2. We choose C' to be the cycle that encloses in(S) (i.e. in(S) =
in(C)), It suffices to show that the above mapping is an 1-1 correspondence between
extremal points in S and free vertices in C. As we already argued that the mapping is
onto, we only need to show that it is 1-1.

The only situation that violates the 1-1 condition is that a type 3 point p is being
mapped by several type 2 points through different segments. This is not possible ac-
cording to our choice of C' since two of these segments and a portion of C' must form a
region belonging to in(S) \ in(C'). Consider again the same example, type 3 extremal
point @ is mapped to two type 2 free vertices b, h through segments {a, c}, {a, g}, and
there is a face F' surrounded by these two segments and a portion of the cycle belonging

to in(S) \ in(C). O

Hence the lemma is concluded. O

Our next task is to deal with (ii) convexity constraint. The idea of our strategy is to
construct a modified --FAA X on a modified graph G such that each vertex v € V(G)

is automatically forced to be a convex corner in any face F' it incident to.
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Figure 5.6: Illustration of proof of Lemma 5.2.

Given a biconnected plane graph G whose degree 2 vertices are all in V' (Fp), and
given its {-FAA X, we define G and X as follows. For each vertex v € V() of degree
> 2, for each inner face /' incident to v such that v is not assigned to F', let ey, e5 be the
two edges in E(F') that incident to v, we subdivide these two edges. Let the two new
vertices introduced by subdividing e, e be vy, vo, respectively. We add a new edge
¢’ = {v1,v.}, which divides F into two regions. Lastly, we force vy, v5 to be assigned
to the face that is not formerly a region of F'. See the upper part of Fig. 5.6 for an
illustration.

It can be easily seen that X can be straighten in the way that each face in G is a
convex polygon iff X is stretchable. Therefore, to complete the proof of Theorem 5.2,

it suffices to prove the following lemma:

Lemma 5.2. Let G be a biconnected plane graph whose degree 2 vertices are all in
V(Fo), and let X be a t-FAA of G. X is stretchable iff each cycle in G has at least 3

strongly-free vertices with respect to X.

Proof. (=) Regarding necessity, it suffices to prove that, for each cycle C' in G, we
can find a cycle C” in G such that the number of free vertices in €’ equals the number
of strongly-free vertices in C'. This statement implies that, when X is stretchable, all
cycles in GG has at least 3 strongly-free vertices with respect to X.

The procedure of finding C” is described as follows. Let v be an unassigned vertex
in V(C) incident to exactly one face F' in out(C'). In other word, v is a free but not

strongly-free vertex in C. Let €/, e1, €5, v1, v be the edges and vertices described in the
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construction of & (for our chosen v, F'). We first let C’ = C'. Then, for each such v, we
replace (vy, v, vy) with e = (v1,v,) in C”. Itis clear from the definition of assignment X
that both vy, vy are not free in C’. As a result, a vertex in C” is free iff it is strongly-free
in C.

(«=) For sufficiency, we prove that, when X is not stretchable, we can always find a
cycle C” in G that has at most 2 strongly-free vertices with respect to X. We first select
C to be a cycle in G of at most 2 free vertices. Among those cycles of at most 2 free
vertices, we choose C' to be the one having the least number of newly added edges (i.e.
the ¢’ described in the construction of G’).

If there is no newly added edges in C, simply setting C’ = C suffices. In the below,
we assume there are some newly added edges in C.

Let €’ the a newly added edge in C, and let ey, e, v1, v be the relevant edges and
vertices as defined before. All possible situations are enumerated in the lower part of
Fig. 5.6. For each case except the last one, we describe an modification leading to
another a cycle C' having at most 2 free vertices but not containing ¢'.

For (1),(2), we replace the portion (vq, vy, v) in C with (vy, v). For (3),(4) we replace
the portion (v1, ve) in C with (vy, v, v9). For (5), we replace the path (vq, ve, . .., v) with

(v1,v). The change of free vertices is summarized in the below table:

Case | Among {v,vy,v2}, the | Among {v, vy, v}, the
ones "must" be free in | ones "may" be free in
C. C.

1 V2 v

2 U1 v

3 None v

4 V1, Uy v

5 V1, Vo v

Note that we get two cycles after the modification for case (3). Since v may become

a new free vertex in both new cycles, and since the number of free vertices in C' is at
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most 2, the total number of free vertices in these two new cycles is at most 4. As a result,
one of them contains at most 2 free vertices. Choosing C' to be this one suffices. For
cases (1),(2),(4),(5), it is immediate from the table that the resulting cycle C contains at
most 2 free vertices.

Therefore, that the existence of configurations of cases (1-5) contradicts our choice
of C' is concluded. The following modification construct the desired cycle C’ from C'
which is free of any configuration of cases (1-5). For each newly added edges ¢’ in
C, its local structure must obey case (6). We modify the cycle by replacing (vy, vo)
with (v1, v, vy). After the modification, both vy, vy remains non-free. However, v may
become a new free vertex. As the face (v1,v,v9) is the only face v incident to in the
outer region of the resulting cycle, v is not qualified to be strongly-free. By doing so

for all ¢/ in C, we get a desired cycle C".

5.5 Fixed-parameter Tractability Results

Recall from Theorem 5.3 that a plane graph GG admitting a ¢-sided convex polygonal
dual can be characterized by the presence of a t-convex-SLR of G’ (a graph resulting
from applying some edge contraction in Fp of G*), and the latter can further be cap-
tured by ¢-FAAs (Theorem 5.2). Like many graph structures expressible in MSO», it
turns out that such a characterization can be formulated in the framework of MSO,, (See

Section 2.2). More precisely, we have:

Theorem 5.4. Given a plane graph G, one can construct a graph G along with a des-
ignated set of vertices Fy, a designated vertex Fp, and a formula p in MSO, such that

G has a t-sided convex polygonal dual iff (G, Fy, Fo) = .

Proof. First note that the parameter ¢ in a ¢-sided convex polygonal of the plane graph
G is considered a fixed constant.
The graph G is constructed from G* using the following procedure: (1) add a new

vertex for each face in G*; (2) for each newly added vertex v and its associated face
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F, for all u € V(F), add an edge {u,v}. In setting up o, we allow some designated
vertices, edges, set of vertices, and set of edges to be associated with free variables. We

use F\y to denote the designated set of vertices in V' (G) corresponding to inner faces in

G*, and Fo to denote the designated vertex in V(G) corresponding to the outer face of
G*.
We define the formula CORNER(e) which is true iff e is an edge incident to a vertex

in V(G*) and a vertex in Fy.

CornER(e) = (Ju, v)[INc(e,u) AINC(e,v) A (u € Fiy) A (v ¢ Fiy)]

We use a subset U of {¢ € E(G)|CorNER(e)} to encode a t-FAA and a subset R of
edges in the outer face of G* to encode edge contraction.

Our goal is to define ¢ as (3U, R)t-VALIDFAA (U, R), where t-VALIDFAA(U, R)
is true iff U, together with R, represents a t-FAA such that each cycle has at least 3

strongly-free vertices.

t-VALIDFAA (U, R) = t-FAA(U, R) A (VC){CycLE(C, R)
— |J [(3 = k)-BouNDARYCORNERS(C, R) A (Fv1,...,vx) N  sFreE(v;, C,U)]}

t-FAA(U, R) is used to capture Definition 5.1. CycLE(C, R) is to ensure that C
is a cycle after applying edge contraction R. i-BOUNDARYCORNERS(C', R) is true iff
the number of vertices in V(C') N V(Fp) remains at least i after applying the edge
contraction R (these vertices are strongly-free boundary vertices in C'). SFREg(v, C, U)
is true iff v is strongly-free and non-boundary in C' under the FAA U. Note that A\;_;
SFREE (v;, C, U) is vacuously true if & = 0.

We leave the detailed description of these formulas to the next section. O

We are in a position to give our main result in this section (See Section 2.2 for the

definition of tree-width and the definition of tree decomposition).
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Theorem 5.5. For any t, it can be decided in polynomial time whether a plane graph

G admits a t-sided convex polygonal dual if there is a constant k such that:
1. tree-width of G < k, or

2. Forallv € V(G) such that deg(v) > 3, there is a path linking v to the outer face
of length < k.

Proof. First of all, we can assume that every pair of vertices in G* belong to at most two
common inner faces, since otherwise those faces cannot be drawn as convex polygons
simultaneously, implying that G has no convex polygonal dual. Testing whether every
pair of vertices in G* belong to at most two inner faces can be done easily in polynomial
time.

For the first condition, according to Theorem 5.4, it suffices to show that, if the tree-
width of G is k, then the tree-width of G' is O(k?). In the construction process of G*
described in Definition 5.6, the first step increases the tree-width by at most 1 since only
1 new vertex is added to the graph. The second step also increases the tree-width by
at most 1 according to a well-known fact that the tree-widths of a graph and of its dual
differ by at most 1. The third step does not increase the tree-width since subdivision
does not increase the tree-width. Therefore, we conclude that the tree-width of G* is at
most k + 2.

The construction of G adds a new vertex v per each face F, and then links v to all

vertices in V' (F'). We make the following claim:

Claim: Let 7" be a tree-decomposition of G*, and let F' be a face in G*. We can find a
subtree T in 7" such that (1) each bag in T’ contains at least two vertices in V' (F'), and

that (2) for each edge {v, w} in E(F'), there is a bag in T containing v and w.

Proof of Claim. Let v € V(G*), we denote T, the subset of bags in VV(T") that contains
v. It is clear from the definition of tree decomposition that 7, is a subtree of 7. We de-
fine 7" to be the union of all T;, such that v € V(F'). It is clear that 7" is also a subtree

of T and that T, if exists, is a subtree of 7".
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Suppose that there is no such 7', then any subset satistfying (1) and (2) is not a
subtree of 7”. Hence we are able to find two edges e; = {uy, v1}, €0 = {ug, va} € V/(F)
and a bag X € V(71”) such that (i) X contains only one vertex in V' (F'), and that (ii)
T., NT,, and T,,, N T,,, are subtrees of different components of 7"\ { X }.

Without loss of generality, we assume, for ¢ = 1,2, v; immediately follows u; in
the clockwise circular order of vertices in F'. Therefore, there are two disjoint paths
P = (v1,...,u2) and P, = (va,...,u1) in F. Due to (ii), U,ep, T\, contains X for
1 = 1,2, which contradicts with the definition of X. This completes the proof of our

claim. ]

We then construct a tree decomposition of G based on any tree decomposition of
G*. We simply add each v € V(G) corresponding to a face F' of G* to all bags in T}.
It is an easy routine to verify that the resulting tree is a valid tree decomposition of G.

There are only O(k?) distinct pairs of vertices in each bag of tree decomposition of
G*. Due to the above claim and the assumption that every pair of vertices in G* belong
to at most two common inner faces, we can increase the size of each bag by O(k?)
during the construction of tree decomposition of G. Therefore, we conclude the proof
that tree-width of G is bounded for the case that condition 1 is met.

For the second condition, we first note that each inner vertex (i.e. not located in the
outer face) in V' (G) must have degree at least 3, since otherwise it is clear that the graph
has no convex polygonal dual. Also, it is easy to see that if this condition is satisfied,
n é, the distance between Fo and any vertex in F,y of degree at least 4 is O(k).

Let S be a subgraph corresponding to a maximal connected set of triangles in G*.
For any v € V/(.S) such that any path linking the outer boundary of .S and v has length
at least 2, it is easy to see that any cycle in G* passing v has at least 3 free vertices. It
is due to the fact that, no flat angle assignment can be made in a triangle. Let S’ be the
subgraph induced by those vertices. See Fig. 5.7 for an example. The left illustration is
a maximal connected set of triangles S. The white vertices are ones in S’. We contract
each connected component of S’ into a vertex. See the right illustration of Fig. 5.7 for

an example. Since cycles that may have less than 3 strongly-free vertices do not pass
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Figure 5.7: Illustration of the proof of Theorem 5.5.

through S’, such contraction preserves the property of having ¢-convex-SLR. Hence we
can use the G constructed from the modified G* instead of the original one. It is obvious
from the definition of S and S’ that the resulting G constructed from the modified G* has
bounded outer planarity. Therefore, we conclude the proof as bounded outer planarity

implies bounded tree-width. ]

Theorem 5.5 implies polynomial time algorithms for many important graph classes

appearing frequently in the literature [21,28]. We have:

Corollary 5.1. Deciding whether a plane graph admits a t-sided convex polygonal
dual is solvable in polynomial time for graphs of max degree 3, partial 3-trees, and

k-outerplane graphs.

5.6 Exact Definition of the Formula ¢t-VALIDFAA

In this section, we give the exact definition for the formula ¢-VALIDFAA. This sec-
tion can be skipped without loss of continuity.

We adapt the following convention: C'is an edge set intended to be a cycle. P is
an edge set intended to be a path. u, v are vertices. e is an edge. U, R are reserved for
representing FAA and edge contraction, respectively. W is reserved for set of vertices.

H, () are reserved for set of edges.
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5.6.1 t{-FAA

The two conditions in the definition of t-FAA can be expressed as follows. C1(U)
ensures that the FAA U satisfies the condition "each vertex is assigned at most once".
t-C2(U, R) ensures that each inner face F' is assigned at least |V (F')| —¢ times. In other

words, t-C2(U, R) iff each inner face has at most ¢ combinatorial convex corners.

CL(U) = (Vv € V(G) \ (Fn U {Fo}))(Ver, e5 € U)[~(INc(eq, v) A INC(eg,v))]

t-C2(U, R) = (Vv € Fy)
lJ  (a-C2-assIGNMENT(v, U) A b-C2-CONTRACTION(v, R))
0<a,ba+b<t
To define t-C2(U, R), we introduce two formulas a-C2-ASSIGNMENT(v, U ) and b-C2
- CONTRACTION(v, R) which together divide the task of ¢-C2(U, R). We assume that v
represents an inner face F. We have a-C2-AsSIGNMENT (v, U) iff the number of com-
binatorial convex corners in /' not located in the boundary of drawing is at most a.
Similarly, b-C2-CONTRACTION(v, R) iff the number of combinatorial convex corners in

Flocated in the boundary of drawing is at most b.

n-C2-ASSIGNMENT(v, U) = (—3ey, ..., ens){ N\ [e # ¢j]A

1<i<j<n+1
N\ lei ¢ UAINC(e;,v)]}
i=1,....,n+1
n-C2-CONTRACTION(v, R) = - | U 3, ..., 5

k=loontljcg <<, 308 si=ntl

DiSJOINTEDGESETS (P, . . ., Pp)A
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/\ (MAX-BOUNDARYPATH(P;, v) A ATLEAST-5;-CORNERS(P;, R))

The formula MaX-BOUNDARYPATH( P, C'), where P (C') is a set of edges representing
a path (cycle) in E(G*), expresses that P is a maximal subpath of C'N E(F(G*)).
Similarly, if v € Fy represents an inner face F' in G*, MAX-BOUNDARYPATH( P, v) is
the same as MAX-BOUNDARYPATH( P, E/(F')). The formula ATLEAST-n-CORNERS( P, R),
where P is a subpath of E(F(G*)), expresses that the number of combinatorial convex
corners (including the two endpoints) in P is at least n. DISIOINTEDGESETS( P, . .., Py,)
is true iff P, ..., P, are disjoint edge sets.

Satisfying both C1(U) and t-C2(U, R) is still not sufficient to guarantee that the cur-
rent edge contraction and assignment together form an ¢-FAA. We still need to check
that (1) each face remains a cycle after edge contraction and that (2) the corner assign-
ment only involves non-boundary vertices (i.e. those not in V' (F(G*))). The above
(1) and (2) are captured by the formula VALIDITY(U, R).

Therefore, the following formula determines whether the given U, R satisty the def-

inition of ¢t-FAA:

t-FAA(U, R) = Vauity(U, R) A C1(U) AN t-C2(U, R)

5.6.2 t-VALIDFAA

Similarly, we can express the notion of strongly-freeness in an MSO,, sentence SFREE
(v, C, U) which is true iff v, an inner vertex in G*, is a strongly-free vertex in the cycle C'
under the FAA U. To deal with corners in Fy, the formula n-BoUNDARYCORNERS(C, R)
is true iff, given the edge contraction R, the number of vertices in V' (C')NV (Fp) remains
at least n. To ensure that C' is a cycle after applying edge contraction R, we use the
formula CycLE(C, R).

Prior to the definition of SFREE(v, C, U), we define INSIDE(u, C') (OUTSIDE(u, C'))

which is true iff u is a vertex located inside (outside) of the cycle C'.
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INsIDE(u, C) = (Ve € C)—iNe(e,u) A (AW C V(G))
(Vv)[(Fe € C)(inc(e,v)) = (v g W] A (u g W)

A(Fo € W) A Vv, € V(G) \ W, vy € W)[ADI(v1, v2) — (Je € C)(Nc(e, v1))]}
OuTsIDE(u, C') = —INSIDE(u, C') A (Ve € C')—INe(e, u)

SFREE(u, C,U) = [(Je € C)iNc(e, u)] A [7ADI(Fo, u)]
N[(3e € U)(Fv)inc(e,v) A Nc(e, u) A OUTSIDE(v, C)| V [(—3e € U)iNnc(e, u)|}
A(Jvy, vy € Fiy)[OUTSIDE(vy, C') AOUTSIDE(vg, C') AADI(u, v1) AADI(w, v3) A (V1 # vs)]

The sentence of SFREE(u, C, U) is the conjunction of four components. The first
one says that v is in cycle C. The second one further ensures that « is not in V' (Fp).
The third one expresses that  is either unassigned or assigned to a face in out(C'). The
fourth one then requires u to be incident to more than one face in out(C'). It is easy to
see that this sentence exactly matches the definition of strongly-free vertex in Definition
5.5 for the case of inner vertex.

Finally, according to the Theorem 5.3, we define ¢-VALIDFAA as follows.
t-VALIDFAA (U, R) = t-FAA(U, R) A (VC){CycLE(C, R)

— |J [(3 = k)-BoUNDARYCORNERS(C, R) A (Jv1,...,v;) /\ SFREE(v;, C,U)|}

« SFREE(v;, C, U) is vacuously true if & = 0.

-----

The missing descriptions of formulas are described in the next.
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5.6.3 Remaining Formulas

We first define some useful formulas. INCEDGE(eq, e5) is true iff the two edges
share a vertex. MIDDLEEDGE(e, H) is true iff the two vertices in e are of degree 2 in H.

ENDEDGE (e, H) is true iff the two vertices in e are of degree 1,2, respectively, in H.

INCEDGE(eq, €2) = (Ju)[INC(eq, u) A INC(ez, u)]

MIDDLEEDGE(e, H) = (Jey, e2)(Juy, uz)(er € H) A (ea € H) NINC(eq, uy)

AINC (e, ug) A INC(e,u1) A INC(e,ug) A (€1 # €) A (e2 # €) A (ug # usg)

N(Ves){[(es € H) A (e3 # €) A (INCEDGE(e, e3))] — [(e3 = e1) V (e3 = e2)]}

ENDEDGE(e, H) = (Jey)(e1 € H) A (e1 # e) N INCEDGE(e, €;)

A(Vea){[(e2 € H) N (INCEDGE(e, e3)) A (ea # €)] — (e1 = ea)}

ConNNECTEDEDGES(H) = (—3Q){(Q C H) A (H # Q)

AVey € Q,es € H\ Q)(—TFu)[INC(eq,u) A INC(ez, u)]}

DisJOINTEDGESETS(H1, ..., H) = (Ve)  \  —[(e € H;) A (e € Hj)]

CycLE(C) = CoNNECTEDEDGES(C') A (Ve € C')MIDDLEEDGE(e, C)
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PaTH(P) = CONNECTEDEDGES(P) A (Jey, e2){ ENDEDGE(e1, P) A ENDEDGE(ey, P)

N(er # e2) A (Ve € P)[((e # e1) A (e # e3)) — MIDDLEEDGE(e, P)]}

Next, we deal with boundary paths (i.e. the subpaths of Fp).

BOUNDARYVERTEX(v) = ADI(v, Fo)

BOUNDARYEDGE(e) = (Ju, v)[(u # v) A BOUNDARY VERTEX ()

ABOUNDARYVERTEX(v) A INC(e, u) A INC(e, v)]

BoOUNDARYPATH(P) = PATH(P) A (Ve € P)BOUNDARYEDGE(e)

BoUNDARYPATH( P, C') = BOUNDARYPATH(P) A (P C ()

MAX-BOUNDARYPATH( P, C)
= (VP,)[(BoUuNDARYPATH( P, C') A BOUNDARYPATH( P2, C) A (P C P,)) — (P = Py)]

The following formula INNERFACE(C, v) is true iff v represents an inner face (v €

F\) corresponding to the cycle C.

INNERFACE(C, v) = CycLE(C) A (Ve € C)[(Juq, ug)ADI(ug, v) A INC(e, uy)

AADI (g, v) A INC(e, ug) A (ug # ug)]
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MAx-BOUNDARYPATH( P, v) = (3C)[INNERFACE(C, v) A MAX-BOUNDARYPATH( P, ()]

Note that v in the above formula is intended to be a vertex in Fyy (i.e. representing

an inner face).

ATMOsT-n-CORNERS(P, R) = (—3ey,...,e, € P)[ N\ (s € R)A )\ (e #¢j)]

i=1,...,n 1<i<j<n

The number of combinatorial convex corners in the boundary subpath P of any cycle
equals 1+ the number of boundary edges in P not contracted. Therefore, there are at
most n such corners iff it is impossible to find n edges on P not contracted.

The next formula n-BoUNDARYCORNERS(C, R) is intended to capture the situation
that the number of boundary combinatorial convex corners in C' after applying edge con-
traction described by R is at least n. We first define ATLEAST-n-CORNERS(P, R) which
is sort of negation of ATMosT-n-CORNERS( P, R). Then, n-BoUNDARYCORNERS(C', R)

can be defined in a way analogues to the definition of n-C2-CONTRACTION(v, R).

ATLEAST-n-CORNERS( P, R) = —~ATMOST-(n — 1)-CORNERS(P, R)

n-BouNDARYCORNERS(C, R) = | U (3P, By

F=Lloomy<s < <o, Y r | si=n
DisJOINTEDGESETS( P, . . ., Pp)A
| /\ (Max-BouNDARYPATH(P;, C') A ATLEAST-S,-CORNERS(P;, R))
The next formula CycLE(C, R) is intended to capture the situation that the cycle

C remains to be a cycle (i.e. has no repeated vertices) after the edge contraction R.
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Repeated vertices appear only when there is a boundary path P = (u, ..., v) such that
u,v € V(C), P and C share no edge, and all edges in P belong to R. Moreover, in order

to make sure that C'is a cycle in G*, we require two formulas ING*(C') and CycLE(C).

EDGESET-VERTEX-CONTAIN(H, v) = (Je)[(e € H) N INC(e, v)]

ING*(H) = (Vv)(v € Fy Vv =Fg) — (—3e)[e € H AN INC(e, v)]

Note that ING*(H) is true iff H does not contain any edge not in £(G*).

ENDPOINT(v, P)
= EDGESET-VERTEX-CONTAIN(P, v) A (Je)(Ve; € P)(INC(e,v) <> e = ¢1)

As its name suggests, ENDPOINT(v, P) is true iff v is one of the two endpoints of
the path P.

We are now in a position to define CycLE(C, R).

CycLE(C, R) = CycLE(C) A ING*(C)
A—(3P){BounDARYPATH(P) A (P C R) A DisJOINTEDGESETS( P, C')
A(Vv)[(EDGESET-VERTEX-CONTAIN(C, v) A EDGESET-VERTEX-CONTAIN( P, v))
<+ ENDPOINT(v, P)]}

We are in a position to define VALIDITY(U, R). The formula can be divided to two
sub-formulas regarding U and R, respectively. For FAA U, we need to make sure that
the flat angle assignment only involves non-boundary vertices (i.e. those in V(G*) \
V(Fo(G*))). For edge contraction R, we require that each face (including the outer

one) remains a cycle after edge-contraction.
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VALIDITY-ASSIGNMENT(U) = (Ve € U)CORNER(e)

A(Vv)[EDGESET-VERTEX-CONTAIN(U, v) — (v # Fo A —ADI(Fo, v))]

VALIDITY-CONTRACTION(R) = (Vv € Fi)(3C)[CycLE(C, R) A INNERFACE(C, v)]

A(Jer,es,e3)] /\ ((e; ¢ R) ABOUNDARYEDGE(e;)) A N\ (e; # ¢;)]

i€{1,2,3} 1<i<j<3

VALIDITY (U, R) = VALIDITY-ASSIGNMENT(U) A VALIDITY-CONTRACTION(R)

5.7 Further Applications of Our Technique

In addition to the fixed-parameter tractability results derived in the previous sec-
tions, in this section we give alternate proofs for some interesting existing results using

the technique we have developed. First, we give a simple proof for a result of [17]:

Theorem 5.6 ( [17]). Each maximal plane graph admits a 6-sided convex polygonal
dual.

Proof. Our alternative proof relies on Theorem 4.1, which guarantees that maximal
plane graphs admit rectilinear duals using only upside-down T-shapes and their degen-
erations. Fig. 5.8(1.1) lists the set of allowed shapes, while shapes listed in Fig. 5.8(1.2)
are not allowed.

Given a maximal plane graph G (see Fig. 5.8(2.1)), an FAA of G* is constructed
naturally according to a rectilinear dual as shown in Fig. 5.8(2.2). To be precise, we
make an assignment at each 180° corner not in the boundary of the drawing. Note that
the concave corners (bends) of any rectilinear polygon are not vertices in G*. As such

an FAA may not lead to a stretchable drawing, we do some adjustments by unassigning
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some vertices according to the rules specified in Fig. 5.8(3). See Fig. 5.8(2.3) for an
example of an FAA after the adjustment.

It is easy to see that the resulting FAA is a 6-FAA. Prior to the adjustment, it is a 6-
FAA since only a convex corner of a polygon can be a combinatorial convex corner, and
since each polygon has at most 6 convex corners. Though each adjustment increases
the number of combinatorial convex corner of a face by one, we can apply it only when
we have a nearby convex corner that is not a vertex in G*. Therefore, the FAA after the
adjustment is still a 6-FAA.

What is left to be done is to show that each cycle has at least 3 strongly-free vertices.
Let C' be any cycle in G*. Consider the sub-drawing, which is a rectilinear polygon, of
C in the rectilinear dual. Let ab and cd be its highest and lowest horizontal segments,
respectively, as shown in Fig. 5.8(4). It is immediate that ¢ and b are strongly-free
vertices of C'. Suppose that there is no strongly-free vertex on cd. Then, ¢ and d must
be bends in the drawing (i.e. not a vertex in G*), and no adjustment is applied on cd.
This implies that there is no line segment touching cd from out(C'), meaning that there
is a non-convex polygon F in out(C) incident to cd, which is a contradiction to the
allowed set of shapes (i.e., upside-down T-shapes and their degeneracies). Therefore,
we conclude that there is a strongly-free vertex in cd, and hence C has at least 3 strongly-

free vertices. See Fig. 5.8(2.4) for the resulting convex polygonal dual. O

As each Hamiltonian maximal plane graph admits a rectilinear dual using only L-
shape and rectangles [43], following a similar approach, our technique can also be uti-

lized to give a simple proof for the following:

Theorem 5.7 ( [43]). Each Hamiltonian maximal plane graph admits a 5-sided convex

polygonal dual.
Next, we showcase a quick proof for the main result of [28]:

Theorem 5.8 ( [28]). Each triconnected cubic plane graph admits a proper touching

triangle representation.
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Figure 5.8: Illustration of the proof of Theorem 5.6.

Proof. A proper touching triangle representation is just a 3-sided convex polygonal dual
whose boundary is a triangle.

Let G be a triconnected cubic plane graph, and we construct its associated G* as
described in Section 5.3. We let Fio(G) = (vy,va, . .., vs) be the outer face of G. Note
that we must have s > 3 since G is simple. It is easy to see that the subgraph H of G*
induced by the faces corresponding to vertices in V(G) \ V(Fo(G)) (the shaded area
in Fig. 5.9) is biconnected, since otherwise G is not triconnected.

We contract most of the boundary edges, only leaving a boundary edge for each of
Fy, F5, and F3, where F; is the face in G* corresponding to v;. We let the 3-FAA contain
only u; — Fj, 1 € {1,2,3}, where u; € V(G*) is the shared non-boundary vertex of F;
and F; ;. See Fig. 5.9 for an illustration. We claim that our edge contraction and FAA
work.

It is immediate that the assignment is a 3-FAA such that the boundary in the resulting
drawing is a triangle whose three corners are ¢y, ¢ and c3 in Fig. 5.9. What remains to

be done is to verify that each cycle C' has 3 free vertices:

* If C' contains none of ¢y, ¢ and cs, it belongs entirely to H (the shaded area).
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Figure 5.9: Illustration of the proof for Theorem 5.8.
Then, certainly all its vertices are free, as they are not assigned to in(C').

 If C contains exactly one of ¢y, co and c3, the one it contains must be c3 (since ¢y, o
have only one adjacent non-boundary vertex). Let  and y be the two neighboring
vertices of c3 in C. It is clear that x, c3 and y are 3 free vertices in C, Since x and

y are either unassigned or assigned to out(C'), and since c3 is unassigned.

* If C contains exactly two of ¢y, co and c3, as these two corners already contribute
two free vertices to C, the only situation that makes C' to have less than 3 free ver-
tices is that all vertices in C'\ {c1, c2, 3} are assigning to in(C'). However, since
only u;, us and ug are involved in our FAA (i.e. V(C) C {¢y, 2, 3, u1, ug, us}),
we can assure that it never happen by examining a small bounded amount of pos-

sibilities.
» If C contains all of ¢;, ¢ and c3, these three corners form 3 free vertices of C'.

]

Adapting our approach, the laborious process of explicitly assigning positions for
all junction points and all segments to construct a drawing, which inevitably appears in
many works on contact graph representations in non-rectilinear situation, can be pre-

vented.
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Chapter 6

Area-universal Drawings of Biconnected

Outerplane Graphs

We continue the study of convex polygonal dual in this chapter.

Polygonal complexity and area-universality are two prime quality measure in con-
tact graph representations. As a complement to the last chapter which was centered
only on polygonal complexity, in this chapter we study convex polygonal duals of bi-

connected outerplane graphs for both polygonal complexity and area-universality.
Our contributions are:

1. A clean necessary and sufficient condition for the existence of a convex polygonal

dual of a given polygonal complexity.

2. An simple algorithm for constructing an area-universal convex polygonal dual of

low polygonal complexity.

6.1 Terminologies

Our interests in this chapter are biconnected outerplane graphs having k-sided con-
vex polygonal duals with their boundary polygons being ¢-sided. We abbreviate such a
representation as t-TkR, where T stands for touching and R stands for representation.
As an example, Fig. 6.1(2) shows a 6-T4R of the plane graph depicted in Fig. 6.1(1).

Note that 3-T3R coincides with the proper touching triangle graph representation
investigated in [21,28].

We write junction points to denote the points that are endpoint of some segments in

the drawing. In Fig. 6.1(2), there are 10 junction points. Among them, a,b,c,d,e, f, g
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1)

Figure 6.1: A graph GG and its convex polygonal dual.

are the boundary ones, and i, j, k are the non-boundary ones. Note that ¢ is interior to

the side (b, d) of the boundary polygon. The arrows in the drawing indicate 180° angles.

6.2 Drawing Biconnected Outerplane Graphs

We first prove the following lemma which gives an upper bound of the number of

sides of the boundary polygon:

Lemma 6.1. Let G be a biconnected outerplane graph. If G admits a t—TkR, then
3<t< (k—-1DV(G)| - |E(G)| + 1. Moreover, the equality t = (k — 1)|V(G)| —
|E(G)| + 1 holds iff in the drawing, (1) each polygon is k—sided, and (2) each non-

boundary junction point is interior to a side of a polygon.

Proof. ltis clear that ¢ > 3 since every polygon must have at least 3 sides.

Let NV be the total number of corners of polygons representing vertices in V(G),
which is at most k|V'(G)|. Since G is a biconnected outerplane graph, each polygon
must intersect the boundary of the drawing in one connected path or a point. Otherwise,
the vertex v corresponding to the polygon will be a cut-vertex in (. Since a path of s
sides constitutes s + 1 corners, when a polygon contains s sides on the boundary of the
drawing, it has at most £ — s — 1 corners located not in the boundary of the drawing.

Let N = No + Nj, where Ny denotes the total number of corners located in the

boundary of the drawing (i.e. at boundary junction points), and where N; denotes the
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total number of corners located interior of the drawing (i.e. at non-boundary junction
points).

First, we have Np > |V (G)| 4 t: We write N, to denote the number of sides in the
boundary of the drawing intersecting the polygon corresponding to v. In view of above,
No = Xpeviey(No + 1) = Xpevig) No + [V(G)| = t + [V(G)] (a side can intersect
more than one polygon).

We write C' to denote the total number of non-boundary junction points. It is obvious
that C' is an upper bound of number of 180° angles at non-boundary junction points,
since each junction point can have at most one. Let D = summation of deg(p), for all
non-boundary junction points p. Then, clearly we have D — C' as an lower bound of
Niy.

Exact value of C, D can be expressed in terms of |V(G)| and |E(G)|. C is the
number of inner faces in G. Therefore, according to Euler's formula, C' = |E(G)| —
|[V(G)| 4+ 1. D is simply number of boundary edges plus two times of the number of
non-boundary edges in G, so we have D = 2|E(G)| — |E(Fo(G))|. Since G is an
outerplane graph, |E(Fo(G))| = |V(G)|. To sum up, N; < 2|E(G)| — |[V(G)|] —
|E(G)| = V(G)] +1] = [E(G)] = 2[V(G)] - 1.

Then, since it is clear that k|V (G)| > N, we have k|V(G)| > N = No + Ny >
V(@) +t] + [|E(G)| — 2|[V(G)| — 1]. By re-ordering the terms, we get t < (k —
DIV(G)| = |EG)] + 1.

The equality t = (k — 1)|V(G)| — |E(G)| + 1 is reached iff the two equalities
kE|lV(G)] = N, N; = |E(G)| — 2|V(G)| — 1 are met. The first one is met iff each
polygon is k—sided. The second one is met iff each non-boundary junction point has

an 180° angle (i.e. is interior to a side of a polygon). O]

The above lemma can be seen as a necessary condition for a biconnected outerplane
graph to have a t—TkR. Surprisingly, the simple condition is also sufficient when & > 4,
which we will prove later.

Some definitions are needed before proceeding further. Given a biconnected outer-
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Figure 6.2: The construction of an area-universal t-T4R.

plane graph G, the plane graph G* (not the dual graph) is defined as the graph resulting

from the following operations:

1. Start from the dual graph of Gz, and let ¢ be the vertex in the dual graph corre-

sponding to Fpp(G).

2. Divide t into | N (¢)| vertices, each of which is adjacent to a distinct vertex incident

in N(t).

3. Link all these | N(¢)| vertices together to form a cycle, which is set to the outer

cycle of the graph G*.

As an illustrating example, Fig. 6.2(2) shows the plane graph G* (the outer cycle
is depicted in a dotted-line) associating with the plane graph G depicted in Fig. 6.2(1).
The subgraph of G* that excludes the edges in the outer cycle is called the skeleton. For
the case (G is a biconnected outerplane graph, its skeleton is a tree. It is easy to see that
each non-leaf vertex in the skeleton has degree at least 3.

A skeleton can be regarded as a rooted tree by selecting any non-leaf vertex r as its
root. For any non-leaf vertex v in the skeleton, we define 7, as the sub-tree rooted at v.
We let F, be the set of faces in G* such that all their non-boundary edges are contained
in E(T,). For instance, F. = {5,6,7,8} in Fig. 6.2(2). We write P, to denote the
sub-path of Fp(G*) formed by including all boundary edges contained in some face
F € F,. See Fig. 6.2(2) for F..

We are now in a position to prove one of the main results of the chapter:
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Figure 6.3: Illustration of Procedures 1 and 2.

Theorem 6.1. Every biconnected outerplane graph admits an area-universal 3-T4R.

Proof. The basic idea is that G* can be regarded as a "sketch" of a contact representation
of G. All we have to do is to find a drawing of G* meeting the requirement of the
theorem.

The proof is based on a bottom-up approach operating on the skeleton of the input
biconnected outerplane graph. When a vertex v in the skeleton is encountered, all ver-
tices in V(7,,) \ {v} have been processed before. During each iteration, the following

invariant is kept:

* For each non-leaf vertex u # r that has been processed, the sub-graph G, of G*

induced by F), is drawn as an area-universal drawing satisfying:

1. Each face (in F},) is either a triangle or a convex quadrangle.

2. Each non-boundary vertex in V' (7;,) \ {u} is a junction point having an 180°

angle in the current sub-drawing.

3. The outer boundary of the sub-drawing of GG, is a triangle in which u is one
of its corner and P, is one of its sides (hence u is not an 180° corner in any

face in F)).

Let v be the vertex currently being processed. If v is a leaf, we do nothing. If v is

non-leaf vertex that is not the root, we do the following:

PrROCEDURE 1 (See Fig. 6.3(left))

1. Let uq,...,us be the children of v.
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2. For each u; that is not a leaf, if one of the two faces incident to the edge {v, u; }
is not contained in F,,, we make u; an 180° corner of the face (indicating by
an arrow in the illustration). If both faces are contained in F;,, the choice is

arbitrary.

3. For each face F' € F, \ U;<;<; Fu,, We contract as many its boundary edges

as possible such that F' has at least 3 sides in the drawing.

4. Straighten the path P,.

It is easy to see that the resulting drawing of G, satisfies the invariant from the
illustration (left one of Fig. 6.3). To see that the drawing is area-universal, we first divide
each quadrangle into two triangles by adding a straight line linking v to the opposite
corner on the boundary of the drawing. Then, if we treat each sub-drawing of G,,, as a
single triangle, the drawing of GG, is clearly a one-sided and sliceable 3-T3R (and hence
area-universal (Lemma 2.1)).

What remains to be done is the case when the root r is encountered.

PROCEDURE 2 (see Fig. 6.3(right))
1. Letuq,...,us be the children of r.
2. Choose a designated face F' € (F, \ Uj<i<s Fu,)-
3. Assign r to be an 180° corner of F'; remove F’ from F,.
4. Do (2),(3) of PROCEDURE 1 (with v = 7).

5. Subdivide the boundary edge {z,y} of F, resulting in two edges

{z,y},{y, 2}

6. Select 3 designated vertices on the boundary cycle such that x, z are selected,

y 1s not selected.
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7. Straighten everywhere on the boundary cycle except those 3 selected vertices

(making the boundary triangular).

Similar to PROCEDURE 1, it can be easily seen that the resulting drawing after apply-
ing PROCEDURE 2 is an area-universal drawing. The outer boundary of the drawing is
a triangle. Each inner face is drawn as a triangle or a convex quadrangle. Hence, the

theorem holds.

Figure 6.4: Applying PROCEDURE 1 to the subtree rooted at c in Fig.6.2(2).

See Fig. 6.2(1-3) for a full example of the above algorithm, and see Fig. 6.4 for a
showcase of applying PROCEDURE 1 for the subtree rooted at c in Fig. 6.2(2).

Note that Theorem 6.1 is tight in the sense that it fails in general when the underlying
graph class is changed to either biconnected 2-outerplane graphs or 1-connected outer-
plane graphs. Also, for biconnected outerplane graphs, in general, 3-sided polygons are
not sufficient to construct convex polygonal duals.

Combining the above algorithm and Lemma 6.1, we prove the other main theorem of
the chapter which provides a simple necessary and sufficient condition for a biconnected

outerplane graph G to admit a t—TkR, for k > 3:

Theorem 6.2. For a biconnected outerplane graph G, and for k > 3, G admits at—TkR
ff3<t<(k—1)|V(G)—|EG)|+ 1

Proof- We show only the "if" part as the "only-if" part follows from Lemma 6.1. The

case t = 3 is a direct result of Theorem 6.1. We observe that in the output drawing of
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the algorithm in the proof of Theorem 6.1, each non-boundary vertex in G* is assigned
to be a 180° corner for some face. Therefore, for the case of ¢ > 3, a desired drawing
can be constructed by adding sufficient number of additional corners in the boundary
of the output drawing while maintaining k—sidedness and convexity for each polygon
(in view of Lemma 6.1). It can be achieved by some slight perturbation in the boundary
(See Fig. 6.2(4)). Hence the theorem is concluded.

[

(Remark.) We note that we may use FAA and its related terminologies presented in the
last chapter to make the proofs in this chapter more formal. However, as we would like
the chapter to be more self-contained and the proofs more intuitive, we did not take this

approach.
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Chapter 7

3D Floorplans

In this chapter, we generalize rectilinear duals to 3D by allowing each object to be
an orthogonal polyhedron.
We define the 3D floorplans, which is the natural generalization of rectilinear duals

to 3D, as follows:

Definition 7.1. 4 3D floorplan R of a graph G is a contact representation in which each
vertex v € V(QG) corresponds to an axis-aligned genus 0 simple orthogonal polyhedron
such that two polyhedra have a surface contact (of non-zero area) iff their corresponding
vertices are adjacent in G. Furthermore, polyhedra in R form a partition of a box, and

hence the representation has no hole.

We show that all chordal graphs admit 3D floorplans that use only two layers. Fur-
thermore, such 3D floorplans are volume-universal.
To the best of our knowledge, this is the first attempt to investigate the 3D general-

ization of rectilinear duals.

7.1 Related Works

For recent related research in the literature, [5] is concerned with proportional con-
tact graph representations using orthogonal polyhedra in low complexity. The main
difference between our work and [5] is that in our 3D floorplans, modules associated
with vertices of a graph must fill the entire bounding box, whereas in [5], holes and/or
empty spaces are allowed as long as the contact of modules respects the adjacency of

vertices. From a combinatorial viewpoint, the work of [24] focuses on a bound on the

112



number of a specific type (including general and two-layer mosaic) of 3D floorplans

using boxes.

7.2 The Drawing Algorithm

In the two dimensional case, the graph class receiving the most attention in the study
of contact graph representations is undoubtedly the class of maximal planar graphs,
in which each of its internal faces is a triangle corresponding to a T-junction in the
rectilinear dual of the graph. As 3D allows us to capture a richer graph class in terms
of contact representations, it is natural to begin with a class of non-planar graphs with
some sort of a flavor of a "triangulation". Chordal graphs (also named as triangulated
graphs in some literature) is a good candidate for this purpose. See Section 2.2 for the

definition of the chordal graphs.

Figure 7.1: A chordal graph G and trees 7T and T5.

Chordal graphs can be characterized as intersection graphs of subtrees of a tree. The

following result is well-known.

Theorem 7.1. For a (connected) chordal graph G, we can construct a tree 11 where

each X € V(1) is a subset of V (G) such that the following conditions are met:
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1. Yv € V(Q), the set {X € V(T1)|v € X} forms a subtree of T}.
2. Yy, v € V(G), {v1, v} € E(G) iff X € V(T}) such that {vi, v} T X.

It is noted that the tree 7} in the above theorem is also known as a cligue tree of GG,
as each node of 77 corresponds to a maximal clique of GG. See graph G and tree 77 in
Fig. 7.1.

To facilitate the construction of a 3D floorplan of a chordal graph, we slightly mod-
ify the clique tree in the above theorem to yield a new tree satisfying four additional

properties, as shown in the following theorem.

Theorem 7.2. For a (connected) chordal graph G, we can construct a tree Ty where

each X € V(1) is a subset of V(G) such that the following conditions are met:
1. Yv € V(Q), the set {X € V(Ty)|v € X} forms a subtree of T,.
2. Y, v € V(G), {v1, v} € E(G) iff X € V(T3) such that {vy, v} C X.
3. Ty is of maximum degree 3.

4. If X € V(T3) is of degree 3, then Vv € V(G), V{X, X'} € E(Tz), v € X iff

ve X
5. If X € V(Ty) is of degree 1, | X| = 1.
6. V{X,X'} € B(Ty), | X \ X'| < 1.

To understand the difference between 77 and 75, first recall that a chordal graph can
be captured as the intersection graph of subtrees of a tree. See Fig. 7.1 for illustrations
of T and 75 satisfying the conditions in Theorem 7.1 and Theorem 7.2, respectively.
The vertical line segments in the lower left of Fig. 7.1 shows a portion of the subtrees
corresponding to vertices 1, 2, 3, 4, 5 within the pathes P;, P». For instance, considering
the intersection graph of subtrees of 77, {2,5} is an edge in G since line segments
associated with 2 and 5 overlap at some node, as our drawing of P, indicates. To meet

the four additional conditions in Theorem 7.2, P, is obtained from P; by stretching
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some of the line segments of P; (while introducing additional nodes in the tree) so that
the difference between two adjacent nodes in P, is exactly one, and P, exhibits exactly
the same intersection relation as P;. Adapting a similar approach for other portion of
T1, a tree ('I5) satisfying Theorem 7.2 can be constructed easily. It is not difficult to
see that 75 in Fig. 7.1 satisfies all the conditions in Theorem 7.2. In view of the above,
Theorem 7.2 should be obvious.

In what follows, we show that any chordal graph GG admits a 3D floorplan R using
only two layers. Intuitively, a 2-layer floorplan is referred to one that can be obtained
by gluing two 2D floorplans together. We write N, E, S, W U, and L to denote the
northern, eastern, southern, western, upper, and lower faces of the boundary box of R,
respectively. Each of them can be seen as a 2D floorplan of some rectilinear polygons
corresponding to some vertices in (G, where several rectilinear polygons may correspond
to the same vertex. We write R(X),X € {N,E,S,W, U, L}, to denote such a 2D
drawing. We note that a 3D floorplan R using only two layers is completely describable
by the two overlapping 2D floorplans R(U) and R(L).

See Fig. 7.2 for an illustration of a 3D floorplan consisting of a box labeled 2 lying
on two L-shape polyhedra labeled 1 and 3. R(X),X € {N,E,S, W, U, L}, are also
depicted in the figure. One can easily observe that the information provided by R(U)
and R(L) are sufficient to describe the floorplan completely as it uses only two layers.
Hence, to simplify the illustration of our algorithm, instead of giving a 3D drawing of

the floorplan, we only draw R(U) and R(L) in our subsequent discussion.

/ZN 2/‘ N N J[U J[u ] U
3 3 2 2 2
w E W FHE W E W N S
3 1 21 3 1IE S(113 1|3N
1 S S L L L L
L U N S E W

Figure 7.2: Illustration of a 3D floorplan.

Given a chordal graph GG, our approach is an inductive construction based on a tree T’

guaranteed by Theorem 7.2. We make 7" a rooted tree by designating one of its vertices
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of degree 1 as the root.

(Invariant) For any subtree 7" whose root is X, we write G x to denote the subgraph
of G induced by {v € V(G)|3X € V(T'),v € X}. The invariant (i.e., inductive
hypothesis) of our construction is described as follows:

Given any designated vertex v € X, there is a 2-layer 3D floorplan Ry, of G'x

satisfying the following requirements:

1. Each of Rx,(E) and Rx,(W) contains exactly one rectangle; and the rectangle

corresponds to v.

2. If | X| = 1, Rx,(S) contains exactly one rectangle; and the rectangle corresponds

to v.

3. If | X| > 1, Rx,(S) contains exactly | X| + 1 rectangles, each of which touches
the upper and the lower sides of the outer boundary. The west-most and the east-
most rectangles correspond to v. The remaining | X| — 1 ones correspond to the

| X'| — 1 vertices in X \ {v}, respectively.

(Base case) X is a leaf in 7. According to Theorem 7.2, | X| = 1, it is immediate that

a 3D floorplan containing exactly one box for the unique vertex v € X works.

(Induction step) Suppose X is not a leaf. Since the maximum degree of 7' is at most
3, and since the root of 7" is of degree 1, every non-leaf vertex in 7" contains either one
or two children.

We first deal with the situation when X has exactly one child X;. By induction
hypothesis, for any designated vertex v € X, there is a drawing Rx, , of G'x, satis-
fying the above requirements. If X = X, taking the drawing Rx , = Ry, , suffices.
Therefore, we assume that X # X’. In view of Theorem 7.2, we must have either
X; = XU{v'} forsome v’ € X;\ X (Case A)or X = X;U{v'} forsome v’ € X'\ X;
(Case B).

Case A: For any v € X, we must have v € X;. A desired Rx, can be constructed

by extending the southern part of Ry, , with an operation which eliminates v’ from
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Rx ,(S). Adding a bend to a module near the module corresponding to v’ suffices to
prevent the presence of v’ in Ry ,(S). See Fig. 7.3 for an illustration of such a removal

operation.

Figure 7.5: Illustration of the operation that changes the outer module

Case B: For any v € X, we must have either v € X; or v = v'. Similarly, if v €
X1, a desired Ry, can be constructed by extending the southern part of Ry, , with
an operation which introduces the new orthogonal polyhedron corresponding to v’ and
makes it appears in Ry ,(S). Such an insertion operation is illustrated in Fig. 7.4. If
v = v/, we start with Rx, ,» for any v € X;. After introducing the new orthogonal

polyhedron corresponding to v’ using the insertion operation in Fig. 7.4, we still need to
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make the module of v = v’ to be the outer one (i.e., occupying the entire Ry ,(IE) and
the entire Rx ,(W)). The operation to fulfill this task is described in Fig. 7.5. Itis easy
to verify that the resulting drawing meets all the requirements and that the drawing is a
3D floorplan of G x (the module corresponding to v’ is guaranteed to contact all other
modules of vertices in X in the upper layer).

Next, we deal with the remaining situation where X has two children X; and X5

(Case C). In view of Theorem 7.2, we always have v € X; andv € X5, Vv € X.

U, L

Figure 7.6: Illustration of the merging operation

Case C: For any v € X, a desired Rx, can be constructed by the following proce-
dure. First, we combine Ry, , and Ry, , together by gluing Rx, ,(E) with Rx, ,(W).
Then, we extend the southern boundary to link the polyhedra in Rx, , and in Ry, ,
corresponding to the same vertex. The detail of the merging operation is described in

Fig. 7.6.

By carrying out the inductive construction in a bottom up fashion, the following

main theorem of the section is obtained:
Theorem 7.3. Every (connected) chordal graph G admits a 2-layer 3D floorplan.

Before ending this section, more is said about our algorithm in the following.

First, one can easily see that the drawing produced by our algorithm is "volume-
universal" (i.e., can realize any volume assignment to the objects) by the following
reasoning. We make the lower layer to be negligibly thin enough. The added volume

introduced by any operations other than the insertion described in Fig. 7.4 is also set to
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be negligibly small. Whenever a new polyhedron corresponding to a vertex is added
to the drawing, the lengths £, and ¢, (see Fig. 7.4) are made negligibly small. As a
result, the insertion of v’ is now "equivalent" to adding a box corresponding to v gluing
to the southern face of the current 3D floorplan. These boxes are the only parts of the
entire drawing that contributes non-negligible volume. It is easy to see that the volume
of such a box can be set arbitrarily during the insertion operation. Hence, we have the

following:

Corollary 7.1. Given a (connected) chordal graph G, there is a 2-layer 3D volume-
universal floorplan that respects any weight assignment to vertices in G, in the sense
that the volume of an orthogonal polyhedron in the floorplan equals the assigned weight

of the associated vertex in G.

a|b|c|d a|b|c|d ab|c|d

UL IU_ ra1n VreTd]

Figure 7.7: Illustration of the simplified operations for interval graphs

Second, if we restrict the graph class to the interval graphs (the intersection graph
of subpaths in a path), the drawing resulting from our algorithm has width O(k) (i.e.,
the number of layers needed in the west-east direction), where k is the size of the max-
imum clique in GG. For an interval graph G, and for its corresponding 7" is a path, Case
C never occurs. As a result, the requirement in the invariant that a designated polyhe-
dron occupying the entire east and the entire west sides is redundant. Therefore, the
only operations needed are the insertion (Fig. 7.4) and the removal (Fig. 7.3). In fact,

these operations can be simplified when the aforementioned requirement is relaxed. See
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Fig. 7.7 for an illustration of the relaxed version of these operations. Since the maximum
size of X € V(T') equals the maximum size of cliques in GG, the following result easily

follows from our algorithm, with coordinates being properly adjusted and assigned.

Corollary 7.2. Every interval graph G admits a 2-layer 3D floorplan which fits in a
O(1) x O(k) x O(|V(Q)|) grid, where k is the size of the maximum clique in G.
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Chapter 8

Conclusion and Future Perspectives

At the beginning of the thesis, we studied various shape constraints in rectilinear
duals and orthogonal drawings. Next, we moved on to investigate possible extension
and generalization of rectilinear duals to other settings. In particular, a few results for
convex polygons and for rectilinear polyhedra were presented.

Our study has opened up a few exciting new research directions. In the below we
briefly describe some of them, with a few interesting and approachable open problems

highlighted.

Orthogonally Convex Drawings. In Chapter 3, our study of orthogonally convex
drawing can be seen as the first ever attempt to combine the flow network approach [6,
12,41] with the combinatorial study of orthogonal drawing by Rahman and Nishizeki [35,
36] to yield interesting consequences. We really feel that the result of Rahman and
Nishizeki should be useful in improving the current orthogonal drawing algorithms and
tackling other variants of orthogonal drawing.

A natural future work direction regarding orthogonally convex drawing is to design
polynomial time algorithms for broader graph classes (than biconnected plane 3-graphs)

or to prove that it is NP-complete to do so.

Question 8.1. What is the time complexity of constructing a bend-minimized orthogo-

nally convex drawing for a plane 4-graph?

Question 8.2. What is the time complexity of constructing a bend-minimized orthogo-

nally convex drawing for a planar 4-graph?

For orthogonal drawing, there is already an efficient flow-network based algorithm
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for plane 4-graphs [12]; however, it is NP-complete to find a bend-minimized orthogo-
nal drawing for planar 4-graphs [23].

Note that the proof of NP-completeness in [23] does not naturally carry over to
orthogonally convex drawings, so it would not be surprising if it turns out that bend-
minimization of orthogonally convex drawings for planar 4-graphs is polynomial time

solvable.

Rectilinear Duals without T-shape. At a high level, the results presented in chapter 4
increase our understanding of the power and limitation of different shapes of polygons
in constructing rectilinear duals. Our results are largely related to [4,43].

A natural direction for future research is to investigate other kinds of previously
unstudied restrictions to usable shapes.

We proved that T-free polygons suffice to construct rectilinear duals for maximal
plane graphs, and we even showed that the optimal polygonal complexity is 12. How-
ever, unlike [4], our result does not carry over to area-universal ones. In fact, the fol-

lowing question is open.

Question 8.3. Is there a maximal plane graph such that all its area-universal rectilinear

duals must contain some T-shape polygon or its extension?

Convex Polygonal Duals. In chapter 5, we proposed a new approach for tackling a
wide range of problems of contact graph representations. In addition to the facilitation
of Courcelle's Theorem in the framework of monadic second-order logic to yield some
fixed-parameter tractability results, the usefulness of this new technique is further am-
plified through several short proofs of some interesting existing results. Some intriguing
questions and open problems still remain.

In particular, though we presented some fixed-parameter tractability results for con-

vex polygonal duals, the NP-completeness proof for the general problem is still lacking.

Question 8.4. Given a plane graph G and a number k, is it NP-complete to decide

whether G admits a k-sided convex polygonal dual?
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If it turns out that the answer to Question 8.4 is NO, a lot portion of our work will be
meaningless. We conjecture that the answer is YES even for some restricted versions.

Other interesting future work directions are listed as follows:

* Is there a general approach to deal with the case when holes are allowed? Also,

how about other types of contact styles?

* As the huge constant involved in Courcelle's Theorem makes the FPT algorithm

practically unusable, it would be helpful to have a practically usable solution.

* The work of [21] showed that a special subclass of outerplanar graphs enjoys
proper touching triangle representations. Is it possible to extend the result to a

broader graph class such as the entire class of outerplanar graphs?

* In view of Theorem 5.6, 5.7, it will be interesting to see more results linking

rectilinear contact representations to non-rectilinear ones.

Area-universal Drawings of Biconnected Outerplane Graphs. In Chapter 6, we pre-
sented some very clean and quick results for convex polygonal duals of outerplane
graphs: Theorem 6.1 allows us to construct an area-universal drawing of low com-
plexity, and Theorem 6.2 gives a simple condition for us to examine whether a drawing
exists under a certain polygonal complexity requirement.

Though Theorem 6.2 only holds for k£ > 3, the case for £ = 3 has been solved in [1],
where a much different necessary and sufficient condition is given.

Theorem 6.1 implies that all biconnected outerplane graphs admit a 4-sided convex
polygonal dual. However, for the case of 3-sided convex polygonal duals, the issue

becomes much more complicated.

Question 8.5. What is the time complexity to decide whether a biconnected outerplane

graph admits an area-universal 3-sided convex polygonal dual?

Though Corollary 5.1 already carry over k-outerplane graphs, it is still of interest to

extend Theorem 6.2 to broader graph classes.
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Question 8.6. For an outerplane graph G, and for two positive integers k.1, is it pos-
sible to give a simple necessary and sufficient condition to test whether G admits a

t—TkR?

3D Floorplans. In Chapter 7, we showed that all chordal graphs admit a 3D floorplan.
However, the construction process seems to require pretty high polygonal complexity.
We feel that there is a possibility to design a better algorithm.

Future work along the line of research on 3D floorplans includes minimizing the
complexity of the drawing (measured, for instance, in terms of the size of the bounding
box or the number of faces/sides/corners in each constituent orthogonal polyhedron).
Finding a broader class of graphs admitting 3D floorplans is also of interest.

Note that we can define the polygonal complexity of a 3D floorplan naturally as
max{ the number of edges of P | P is a polyhedron corresponding to a vertex in the

drawing. }.

Question 8.7. What is the optimal polygonal complexity for 3D floorplans for chordal

graphs?

Question 8.7 remains interesting even for interval graphs.

In addition to polygonal complexity, the volume of the drawing, which can be mea-
sured by the size of the underlying grid or the number of grid planes, is another important
quality measure.

In Corollary 7.2, we showed that interval graphs admit a 2-layer 3D floorplan which
fits intoa O(1) x O(k) x O(|V(G)|) grid, where k is the size of the maximum clique in

G. In other words, it requires O(|V (G)|) grid planes. We conjecture that it is optimal.

Question 8.8. Is it possible to construct a 3D floorplan using o(|V (G)|) grid planes

for every interval graph G?
The following research directions are also interesting:

1. improving the constant behind Corollary 7.2; and
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2. reducing the number of grid planes in our algorithm for constructing 3D floorplans

of chordal graphs.
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