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中文 要

Dynamic Adaptive Streaming over HTTP (DASH)於現在已經成為一
個越來越重要的應用。影響 HTTP上串流影音品質最重要的關鍵，就
在於如何選擇適當的影片速率調節機制。之前的一些相關論文提出

一些可以根據目前網路狀態的變化，來動態調整下載影片速率的方

法；但是會影響到影片速率選擇的因素有許多種，而這些方法一般都

只考慮其中少數的幾個重要因素，像是預測的頻寬或是目前緩衝影

片的長度。但是頻寬預測不僅相當困難，同時容易有很大誤差可能，

而這導致了其可能嚴重影響到速率選擇的效果。為了解決這個問題，

我們提出了於 HTTP上基於機器學習的速率調節機制（MLASH）。利
用 classification 的方法，MLASH 不僅可以有彈性的將所有可能影響
到速率調節的因素都考慮進來，還可以避開頻寬預測的困難。同時，

MLASH還可以與之前的其他速率調節方法進行整合，並且利用大數
據的特性，來進一步提升速率調節之效果。我們根據原始資料來進行

模擬實驗，以證明我們的方法不僅效果良好，同時於不同的使用者體

驗衡量標準上，表現也比之前其他的速率調節方法更加優秀。

關鍵字：HTTP串流，速率調節，機器學習
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Abstract

Dynamic Adaptive Streaming over HTTP (DASH) has become an emerg-

ing application nowadays. Video rate adaptation is a key to determine the

video quality of HTTP-based media streaming. Recent works have proposed

several algorithms that allow a DASH client to adapt its video encoding rate to

network dynamics. While network conditions are typically affected by many

different factors, these algorithms however usually consider only a few rep-

resentative information, e.g., predicted available bandwidth or fullness of its

playback buffer. In addition, the error in bandwidth estimation could signif-

icantly degrade their performance. Therefore, this paper presents Machine-

Learning-based Adaptive Streaming over HTTP (MLASH), an elastic frame-

work that exploits a wide range of useful network-related features to train

a rate classification model. The distinct properties of MLASH are that its

machine-learning-based framework can be incorporatedwith any existing adap-

tation algorithm and utilize big data characteristics to improve prediction ac-

curacy. We show via trace-based simulations that machine-learning-based

adaptation can achieve a better performance than traditional adaptation algo-

rithms in terms of their target quality of experience (QoE) metrics.

Key words: HTTP Streaming, Rate Adaptation, Machine Learning
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Chapter 1

Introduction

Dynamic Adaptive Streaming over HTTP (DASH) is an adaptive bitrate streaming tech-

nique that enablesmedia streaming over the Internet delivered from theHTTPweb servers.

In DASH, amedia content object is partitioned into a sequence of small file segments. This

partition allows a client to adaptively change the video encoding rate of each segment ac-

cording to dynamic network conditions. Such an adaptive design can hence handle varying

bandwidth conditions and provide smooth streaming during a streaming session.

While DASH provides the flexibility of video encoding rate adaptation, how to select

an appropriate rate for each video segment is still a challenging problem to ensure a good

quality of experience. The problem is especially difficult because the video quality ex-

perienced by a client is determined by many conflicting performance metrics [1], such as

the video rate, the rebuffer rate1 or video rate smoothness. As a result, it is unlikely to

find a universal adaptation algorithm that can optimize all the performance metrics. Thus,

several recent works [2–5] have been proposed to either optimize certain metrics or make

a trade-off between those diverse objectives.

Even regardless of the difficulty of optimizing different metrics, existing rate adapta-

tion algorithms still experience some common deficiencies. First, most of the previous

works rely on the information about the available bandwidth. The efficiency of these al-

gorithms is closely determined by the accuracy of bandwidth estimation. However, it is
1The rebuffer rate is defined as the ratio of the number of rebuffer events to the total number of video

segments.
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inherently hard to forecast the future bandwidth based on the historical bandwidth mea-

surements. Second, in general, network conditions can be evaluated by many different

factors, such as current bandwidth, average bandwidth, latency, variation, playback buffer

size, etc. However, existing algorithms usually select the video rate based on some condi-

tional expressions. Since these expressions are derived according to high-level intuition,

they do not take all those comprehensive factors into account, yet only use one or a few

information as their input.

To cope with the above two issues, this paper introduces Machine-Learning-based

Adaptive Streaming overHTTP (MLASH), a flexible learning-based rate adaptation frame-

work. Instead of proposing a new adaptation algorithm, our design principle is to exploit

the machine learning technique to train a rate classification model for any existing rate

adaptation algorithm. By elastically taking a wide range of useful information as fea-

tures, we can build a classifier that helps improve prediction accuracy of the incorporated

adaptation algorithm. In addition, the classification model is trained using a large number

of transaction logs, and hence also benefits from big data characteristics. To the best of

our knowledge, this work is the first to apply the machine learning approach to perform

video rate adaptation. The trace-based simulations show that MLASH improves the per-

formance of different incorporated algorithms in terms of their target quality of experience

metrics.

The rest of paper is organized as follows. We give some related works in chapter 2.

chapter 3 introduces the system architecture and design of MLASH, and chapter 4 evalu-

ates its performance. Finally, chapter 5 concludes this work.
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Chapter 2

Related Work and Background

2.1 QoE Metrics and Rate adaptation algorithm

There are lots of previous works about rate adaptation algorithm. Their approaches

focus on selecting the most suitable quality level for users during video playback. Yet,

traditional metrics such as Peak Signal-to-Noise Ratio (PSNR) won’t be important any-

more in DASH scenario [1]. Metrics that capture delivery-related effects such as video

bitrate, rebuffer rate, video switching rate and join time are much more important. How-

ever, those metrics are usually conflicting with each other, and are hardly optimized at the

same time. For example, in order to avoid rebuffering, which is referred to as the problem

of draining out the buffer before new video segments arrive, a client should select a more

conservative video rate, which is usually lower than the actual available bandwidth and

thus underutilizes the bandwidth.

Due to the reason above, we can’t design an optimal rate adaptation algorithm which

optimizes all the metrics at the same time. Previous rate adaptation algorithms usually

focus on a few metrics according to their design principle. [2] [6] try to design rate adap-

tation algorithms that guarantee higher average bitrate and low rebuffer rate at the same

time. [3] [4] propose rate adaptation approaches which focus on minimizing video switch-

ing rate. Huang et al. argue in [7] [8] [9] that the root of inefficiency of previous rate adap-

tation algorithms is the difficulty of bandwidth estimation, and hence propose to avoid
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rebuffer events and rate switching only based on the buffer size. A utility function that

jointly considers diverse metrics is then proposed in [5], which aims at enhancing the

overall quality of experience of a client. Our MLASH differs from the above ones in that

it exploits the machine learning technique to utilize the comprehensive network-related

features and improve prediction accuracy.

There are other works designing their rate adaptation algorithms according to their

requirement or system architecture [10] [11] [12] [13] [14]. Besides these works, there

are some works centralized manage all clients and perform rate adaptation on the server

side [15] [16], and some works [6, 17–19] investigating video rate adaptation in cellular

systems. The works [17] [6] allocate bandwidth resources to different streaming clients

in order to optimize their video rates.

Another work [18] further takes wireless link quality into account in its joint rate

scheduling and resource allocation algorithm. Cicalo et al. [19] then propose to deliver

fair video quality to multiple clients.

2.2 TCP throughput / bandwidth prediction

Lots of previous works try to predict TCP throughput. There are two kinds of TCP

throughput prediction methods: (i) Formula-based (FB) approach, (ii) History-based (HB)

approach. Formula-based approaches try to construct mathematical models. They express

TCP throughput as a function of the characteristics of the network path [20] [21] [22].

However, FB prediction does not perform well in some cases because it constructs the

model according to priori characteristics before the flow starts. If there are significant

changes of the characteristics during flow transfer, the prediction error could be unaccept-

ably large. In addition, the network delays and losses are hard to be predicted accurately,

which also increase the prediction error.

In contrast, History-based approaches use history of previous TCP transaction logs to

predict TCP throughput on the same path [23] [24] [25]. It is proved to be more accurate

than FB approaches in most cases, even when there is only a few previous transaction

logs given [26]. However, HB approaches are highly path-dependent. That is, the load on
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the path and the degree of multiplexing will influence the accuracy of the prediction very

much.

Except the FB and HB approaches, Mirza et al. [27] proposes a machine learning ap-

proach to predict bandwidth. They apply support vector regression (SVR) method, using

available bandwidth, queuing delays and packet loss as features, to perform prediction.

However, they prove that simple HB approaches can achieve better performance than

complicate SVR approach in their case.

2.3 Resource allocation

There are some works discussing centralized resource allocation for streaming video.

[28] tries to optimize prefetching policies by using parallel TCP connections to achieve

effective buffer management of prefetched data, while [29] proposes a download schedul-

ing algorithm based on crowd-sourced video viewing statistics to perform the right amount

of prefetching. Besides, [30] proposes a Quality-of-Service (QoS)-aware video stream-

ing architecture in order to improve user experience while reducing the waste of network

resources.
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Chapter 3

MLASH Design

3.1 System Architecture

MLASH’s design consists of two main components: a) model training and b) video rate

prediction, as shown in Figure 3.1. Unlike previous algorithms that utilize the estimated

information, e.g., estimated bandwidth, to find the video rate, our machine-learning-based

framework instead exploits the true information to train a rate classification model. In

particular, we partition a video into several segments, each with an interval of T seconds.

We use 1) a set of historical network-related information measured from the first (k−1)

segments as the feature set, denoted by Fk−1, and 2) the true best video rate r∗
k of the

k-th segment as the corresponding label to train a classification model R(F), as shown in

Figure 3.2. The label of a training data, i.e., true best rate, is identified based on the true

information observed in the k-th segment, e.g., true bandwidth. As a result, the trained

classification model R() can find the explicit relationship between the measured features

F and their corresponding best rate r∗.

More specifically, once a service provider collects a number of requests for different

segments of various videos from the clients, it can use their feature sets and the corre-

sponding labels to train a classification model R(F). We then use this classifier R(F) to

predict the best rate r̃ of any new video request based on its feature set F. Two things are

worth noting here. First, this classification model can be offline trained using a number

of previous requests, or online updated using streaming data. Second, as we mentioned in

6
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Figure 3.2: Procedure of training the streaming classifier

chapter 2, since the quality of experience for video streaming depends on many different

metrics, it is hard to have a universal algorithm that identifies the “optimal” video rate,

even when all the true information is exactly known. Hence, we keep our design flexi-

ble, and enable any service provider to determine the label (namely its expected best rate)

based on its preferable rate labeling algorithm, i.e., component c) in Figure 3.1.

When a client requests for the (k+1)-th segment of a video, it also sends the measured

historical information in order for the server to extract the feature set Fk. The server

then feeds Fk into its classifier, predicts the best rate r̃k+1 = R(Fk), and forwards the

video segment of the selected rate r̃k+1 to that client. If the server enables streaming

classification, it further asks the client to report the label, i.e., true best rate, of the k-th

video segment, r∗
k. Thus, the server can use this label r∗

k and the feature set Fk−1 reported

in the last request to update the model, and improve prediction accuracy over time.

In this work, we mainly focus on rate adaptation for constant bitrate video, and leave

addressing the issue of variable bitrate video as our future work. We will describe in the

next two sections how we train our rate classification model.
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3.2 Feature Selection

Existing algorithms usually use a series of conditional expressions to predict the video rate.

Since those expressions are found according to some high-level intuition, they can only

take one or a few features as the input. However, in general, network performance can be

evaluated from many different perspectives. The goal of MLASH is hence to leverage all

these features to find a more comprehensive model. The features considered in our model

are categorized as follows.

a) Bandwidth: Available bandwidth is the most common factor used for rate prediction.

However, there exist many different ways to measure the bandwidth of a client. Most

expression-based algorithms, e.g., [2, 5], however can only take one of these different

measures as the input of the expressions. This is also why the recent work [7] adopts a pure

buffer-based algorithm, without worrying about the difficulty of bandwidth estimation.

Different from the above two types of solutions, we instead take all different forms of

bandwidth estimates as the features, including

• Last segment bandwidth (LSB), which measures the available bandwidth of the last

video segment.

• Session average bandwidth (SAB), which measures the available bandwidth of the

whole video session.

• Moving window average bandwidth (WAB), which measures the average bandwidth

of the last k segments.

• Variation, which represents the variation of the bandwidth measured in different seg-

ments.

b) Buffer size: The buffer size is another important factor that affects the rebuffer rate. We

hence further consider the following features.

• Current buffer length, which is the length of video segments (in seconds) currently

cached in the buffer.

• Maximal buffer length, which equals L ∗ rmax seconds, where L is the buffer size (in

bits) maintained by a client and rmax is the maximal video rate.

8



c) Round-trip time (RTT), which is the total time for a request to be sent to and responded

from the server.

d) Current video rate, which is the video rate currently watched by the client. This feature

might affect the decision of the model as we consider video rate smoothness.

3.3 Model Training

It is fairly difficult to find expressions that represent the complex relationship between

the wide range of features and the corresponding best rate. Therefore, we build our rate

adaptation model using a decision-tree-based random forest classification [31] approach,

which maps a given set of features to an output label. Note that a content provider could

store their video objects in different content delivery networks (CDNs), whichmight expe-

rience different network conditions. Hence, to improve model accuracy, we train a distinct

model for those video servers with the same IP prefix.

Though our model can be built based on the existing decision tree learning algorithms,

there however still exists a challenging problem unsolved. That is, given a set of features

F, how can we find its corresponding label for model training? Ideally, the label of a

training data should be the expected best video rate, which could be found based on the true

information, e.g., true bandwidth or the event of rebuffering and rate switching. However,

it is hard to distinguish which rate is the best one, even given those true information.

For example, the video rate that is closest to the true available bandwidth might not cause

rebuffering, but might be different from the currently-used one, resulting in rate switching.

Fortunately, many previous works have proposed different rate adaptation algorithms,

each of which targets to optimize one or a few performance metrics. These algorithms

might not be efficient due to bandwidth estimation errors, but should fundamentally work

if the true information, e.g., the real bandwidth, is perfectly known. Therefore, instead

of using those algorithms to predict the rate, we alternatively incorporate them with our

machine-learning-based framework and utilize them to “label the best rate” of a feature

set F. In other words, our MLASH leaves the labeling procedure flexible, and enables the

9



service provider to choose a labeling algorithm that optimizes its favorable performance

metrics. We will show in chapter 4 that combining those algorithms with MLASH can

improve their performance because the trained classifier can filter out the effect of esti-

mation errors. We give some example algorithms as follows, and use them as the labeling

algorithms in our evaluation.

a) Bandwidth-based rate adaptation: This naïve algorithm is used to maximize the video

rate. It always picks a video rate that is closest to but not above the actual available

bandwidth, which can be expressed by

r∗ = arg max
r∈Vr

r ≤ bw, (3.1)

where Vr is the set of all available video rates and bw is the true available bandwidth.

b) Buffer-considered rate adaptation [2]: This algorithm is designed to avoid rebuffering

by taking both the bandwidth and current buffer length into account. It picks an aggressive

rate when the buffer is nearly full, while picking a conservative rate when the buffer is

nearly empty. The selected rate is given by

r∗ = arg max
r∈Vr

r ≤ bw′,where

bw′ =



bw ∗ 0.3, if 0.00 ≤ bl < 0.15

bw ∗ 0.5, if 0.15 ≤ bl < 0.35

bw, if 0.35 ≤ bl < 0.50

bw ∗ (1 + 0.5 ∗ bl), otherwise,

(3.2)

and bw is the true bandwidth and bl is the ratio of the current buffer length to the maximal

buffer length.

c) Smooth rate adaptation [3]: This algorithm tries to minimize the number of video rate

switching and ensure video playback smoothness at the same time. It chooses the rate

with consideration of the currently-used video rate, and avoids rate oscillation when the

bandwidth fluctuates. To ensure playback smoothness, when the bandwidth is decreasing,

10



it immediately decreases the video rate to fit the current bandwidth. The algorithm intro-

duces a knob m to tune the smoothness. Thus, we also use this knob m as the feature in

our model training. We refer the readers to [3] for the detailed algorithm.

11



Chapter 4

Trace-based Evaluation

Weuse the trace ofHTTP streaming provided by [32] to check the performance ofMLASH.

The trace records the results of 10,000 tests everyday. The requests are from more than

1,000 hosts (IP addresses), which locate in about 100 different countries and 1,000 au-

tonomous systems. Each test lasts for 30 seconds, in which the client periodically requests

for a video segment of two seconds. The clients in the trace simply apply the bandwidth-

based rate adaptation based on the measure of last segment bandwidth (LSB). The trace

logs the information, including the video rate of each segment, time required for down-

loading a segment, and monitored RTT. Since the trace does not give any information

about the buffer, unless otherwise specified, we set the default maximal buffer length to

10 seconds in our simulations.

The true available bandwidth of each segment is calculated by the number of bits of a

video segment divided by the required downloading time. Since we apply some other rate

adaptation schemes on top of this trace, the selected rate might be different from the one

logged in the trace. We can use this true bandwidth to estimate the required downloading

time of the newly selected video rate by 2r/bw, where r is the video rate of a 2-second

segment and bw is the true bandwidth. In addition, this true bandwidth is also used to find

the label of the training data. We use all the tests logged in December 2013 as our training

data, and use data in January 2014 as our testing data. The available video encoding rates

used in our simulations include 100, 150, 200, 250, 300, 400, 500, 700, 900, 1200, 1500,

2000, 2500, 3000, 4000, 5000, 6000, 7000, 10000, 20000 kb/s.

12



We compare our MLASH design with the following schemes:

• Bandwidth-based adaptation, which selects the video rate based on Equation 3.1.

• Buffer-considered adaptation [2], which selects the video rate based on Equation 3.2.

• Rate smoothness-based adaptation [3], which tries to improve video rate smoothness.

• Buffer-based adaptation (d sec) [7], which selects the rate purely based on the current

buffer length when the maximal buffer length is set to d seconds.

Since the first three schemes all require the information about estimated bandwidth, we use

three different measures, i.e., SAB, LSB and WAB, as the estimate of the bandwidth, and

further use the true bandwidth to find the upper bound of those algorithms, i.e., without

any estimation error.

4.1 Performance Comparison

We check the performance of MLASH by using the first three algorithms to find the la-

bel of training data. We do not use the buffer-based algorithm as the labeling algorithm

because the performance of this algorithm is not affected by bandwidth estimation error.

Thus, combining the buffer-based algorithm with our machine-learning-based framework

does not improve its performance.

MLASH with bandwidth-based rate labeling: We first check whether our machine-

learning-based approach can improve the performance of bandwidth-based adaptation.

Figure 4.1(a) plots the selected video rate of different comparison schemes. The results

show that using estimated average bandwidth to select the video rate cannot adapt to net-

work dynamics and is very likely to pick a more conservative rate. The pure buffer-based

algorithm does not consider the bandwidth, and could select a rate either much lower or

higher than the available bandwidth. Amore important issue is that the performance of the

buffer-based algorithm highly depends on the maximal buffer length, and it is quite diffi-

cult to determine the optimal buffer length for a video of any length. In contrast, MLASH

can predict a video rate that is fairly close to the optimal rate chosen based on the true

13
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buffer−based(10s)
buffer−based(30s)

(a) Video rate over time

Algorithm BW-
based
(SAB)

BW-
based
(LSB)

BW-
based
(WAB)

Buffer-
based(10)

Learning-
based

BW-
based
(true)

Average
Rate(kb/s) 2760 3554 3157 3560 3945 3845

Average
Error(kb/s) 1417 731 1160 1600 560 0

Rebuffer
Rate(%) 8.9 9.1 9.2 8.6 12.8 6.1

OverEst.
Rate(%) 4.2 4.2 4.5 3.7 8.4 0

(b) Prediction errors and other performance

Figure 4.1: Performance of MLASH with bandwidth-based labeling

bandwidth. This means that our machine-learning-based adaptation can effectively avoid

performance degradation due to bandwidth estimation errors, and hence improve network

utilization.

We also show in Figure 4.1(b) the prediction error, which is defined as |r̃ − rtrue|,

where r̃ is the predicted video rate and rtrue is the rate selected based on the true band-

width. The results verify that MLASH can improve the accuracy of bandwidth estimation,

and hence select a rate close to the actual bandwidth. Figure 4.1(b) also summarizes the

rebuffer rate of the comparison schemes, which is defined as the number of segments ex-
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(a) Video rate over time

Algorithm Buffer
+SAB

Buffer
+LSB

Buffer
+WAB

Buffer-
based(10)

Learning-
based

Buffer
+true

Average
Rate(kb/s) 3012 3827 3427 3560 4138 4014

Average
Error(kb/s) 1438 688 1155 1332 532 0

Rebuffer
Rate(%) 4.9 4.5 5.1 4.3 4.5 3.8

OverEst.
Rate(%) 1.24 0.78 1.38 0.57 1.17 0

(b) Prediction errors and other performance

Figure 4.2: Performance of MLASH with buffer-considered labeling

periencing a rebuffer event divided by the total number of video segments. We note that

some rebuffer events are not caused by bandwidth overestimation, yet are inevitable when

the available bandwidth is lower than the lowest video rate. We hence also show the rate

of rebuffer events that are mainly caused by bandwidth overestimation, i.e., r̃ > rtrue. We

can see from the statistics that, since, as incorporated with bandwidth-based labeling, our

classifier aims at maximizing network utilization without considering the rebuffer issue,

the expected price it has to pay is a slightly higher rebuffer rate.

MLASHwith buffer-considered rate labeling: Wenext check howMLASHperforms as
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Algorithm Smooth
(SAB)

Smooth
(LSB)

Smooth
(WAB)

Buffer-
based(10)

Learning-
based

Smooth
(true)

Average
Rate(kb/s) 470 459 479 3560 2472 2468

Average
Error(kb/s) 2167 2160 2161 2028 160 0

Rebuffer
Rate(%) 5.4 5.5 5.4 4.3 5.4 4.2

OverEst.
Rate(%) 1.39 1.45 1.39 0.57 1.42 0

Switching
Rate(%) 13.2 13.1 13.2 57.9 26.4 23.1

(b) Prediction errors and other performance

Figure 4.3: Performance of MLASH with smoothness-based labeling

it is incorporated with the buffer-considered adaptation algorithm. Figure 4.2(a) compares

the video rate of the traditional buffer-considered algorithm to our design with buffer-

considered labeling. The results follow a trend similar to that shown in Figure 4.1(a). Our

approach again can select a video rate close to the optimal rate chosen based on the true

bandwidth. Figure 4.2(b) summarizes the prediction errors and the rebuffer rate. Interest-

ingly, we find that, as incorporated with buffer-considered labeling, our machine-learning-

based adaptation has a pretty low rebuffer rate, while achieving a much higher video rate
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than other schemes. The rebuffer rate of our design is close to that of the buffer-based

algorithm, which is especially designed to eliminate rebuffering. This implies that, with

a proper labeling scheme, MLASH can efficiently utilize the available bandwidth, while

avoiding rebuffering at the same time.

MLASHwith smoothness-based rate labeling: Wenext show the performance ofMLASH

with smoothness-based labeling in Figure 4.3. Since the smoothness-based adaptation

algorithm is designed to prevent unexpected rate switching, we hence also show in Fig-

ure 4.3(b) the switching rate, which is defined as the ratio of the number of switching

events to the total number of video segments. The statistics show thatMLASH can achieve

a similar switching rate, as compared to the traditional smoothness-based algorithm using

the true bandwidth information. The traditional smoothness-based algorithm has a much

smaller switching rate when it uses the estimated bandwidth. This is because the estimated

bandwidth is the average bandwidth of a duration, and is naturally smoother than the true

bandwidth. We can however observe that the video rate selected based on estimated band-

width is much lower than the ideal video rate. On the other hand, the performance of the

pure buffer-based algorithm is fairly sensitive to the buffer length. Therefore, an improper

buffer length could lead to frequent rate switching.

4.2 Variable bitrate scenario

Varaible bitrate (VBR) encoding technique is commonly used on sound or video encoding.

Videos encoded in VBR vary the amount of output data per time segment, thus the rate

adaptation become more difficult due to the fluctuation of the video segment size. We

try to explore the performance of MLASH under VBR scenario. Due to the fact that

our dataset only provides constant bitrate encoding, we add fluctuations for the size of

each video segment randomly to simulate the varaible bitrate scenario. We use normal

distribution to add a multiplier for each segment size of the video, the mean of the normal

distribution is set as the current video encoding rate and the variance is set as 0.3 of the

current video encoding rate, which is close to video segment size distribution with VBR
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Algorithm BW-
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(SAB)

BW-
based
(LSB)

BW-
based
(WAB)

Buffer-
based(10)

Learning-
based

BW-
based
(true)

Average
Rate(kb/s) 2714 3498 3109 3545 3868 3785

Average
Error(kb/s) 1384 716 1138 2022 607 0

Rebuffer
Rate(%) 9.1 9.1 9.4 10.8 18.0 6.3

OverEst.
Rate(%) 4.4 4.2 4.6 6.0 13.9 0

(b) Prediction errors and other performance

Figure 4.4: Performance of MLASH with bandwidth-based labeling under VBR scenario

encoding.

Due to the fact that adding a multiplier will influence the selection of optimal video

encoding rate, we reselect the optimal video rate according to the new video segment size

on each timeslot. In addition, because the muitiplier ratio will influence the selected rate,

we take it as an additional feature for each of the rate adaptation approach to incorporate

the influence into our model.

We then observe the results comparing with traditional history-based appoaches under

the simulated variable bitrate scenario.
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Algorithm Buffer
+SAB

Buffer
+LSB

Buffer
+WAB

Buffer-
based(10)

Learning-
based

Buffer
+true

Average
Rate(kb/s) 3290 3926 3654 3545 4070 3954

Average
Error(kb/s) 1076 739 1005 1769 633 0

Rebuffer
Rate(%) 5.0 4.6 5.1 4.9 6.8 3.9

OverEst.
Rate(%) 1.26 0.78 1.41 1.18 3.44 0

(b) Prediction errors and other performance

Figure 4.5: Performance of MLASH with buffer-considered labeling under VBR scenario

MLASH with bandwidth-based rate labeling under VBR scenario:

We first check whether our machine-learning-based approach can improve the perfor-

mance of bandwidth-based adaptation under variable bitrate scenario. Figure 4.4(a) plots

the selected video rate of different comparison schemes.

We also show in Figure 4.4(b) the prediction error. The results show that under VBR

scenario, MLASH can still improve the accuracy of bandwidth estimation, and select a

rate close to the actual bandwidth. Figure 4.4(b) also summarizes the rebuffer rate and rate

of rebuffer events that are mainly caused by bandwidth overestimation of the comparison
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Algorithm Smooth
(SAB)

Smooth
(LSB)

Smooth
(WAB)

Buffer-
based(10)
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Smooth
(true)

Average
Rate(kb/s) 537 2653 599 3545 2493 2528

Average
Error(kb/s) 2166 2122 2139 2192 229 0

Rebuffer
Rate(%) 5.8 7.3 5.8 6.0 10.1 4.4

OverEst.
Rate(%) 1.65 1.75 1.69 1.80 4.62 0

Switching
Rate(%) 14.7 18.8 14.8 65.7 29.4 26.5

(b) Prediction errors and other performance

Figure 4.6: Performance ofMLASHwith smoothness-based labeling under VBR scenario

schemes. We can see from the statistics that, our classifier still has high network utilization

while having higher rebuffer rate.

MLASH with buffer-considered rate labeling under VBR scenario: We next check

how MLASH performs as it is incorporated with the buffer-considered adaptation algo-

rithm under variable bitrate scenario. Figure 4.5(a) compares the video rate of the tradi-

tional buffer-considered algorithm to our design with buffer-considered labeling. We find

that comparing to Figure 4.4(a) and Figure 4.2, although MLASH can select a video rate
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close to the optimal rate chosen based on the true bandwidth, the performance of buffer-

considered algorithm with last segment bandwidth is close to MLASH in average rate,

and is better than our approach in rebuffer rate. It might due to the reason that the variable

bitrate makes the rate selection more difficult, and because MLASH takes a more aggres-

sive strategy compared to history-based bandwidth estimation approaches, it’s easier to

cause rebuffer event while selecting a relatively high video rate on average.

MLASHwith smoothness-based rate labeling under VBR scenario: We next show the

performance of MLASH with smoothness-based labeling under varaible bitrate scenario

in Figure 4.6. The statistics show that just like Figure 4.5, MLASH can achieve a sim-

ilar switching rate, as compared to the traditional smoothness-based algorithm using the

true bandwidth information, but it still get a very high rebuffer rate compared to other ap-

proaches. It’s also worth noting that, while traditional smoothness-based algorithms, with

session average or moving window average as estimated bandwidth, still have a very low

average selected video rate, the average rate of using last segment bandwidth as estimated

bandwidth is very close to optimal rate selection. It means that, with a lower rebuffer rate

and switching rate compared to MLASH , simple smoothness-based algorithm with last

segment bandwidth as input will be a better choice than our MLASH under this scenario.

From the results above, we can get that the performance of MLASH under variable

scenario isn’t as good as the performance under constant bitrate scenario. It’s more diffi-

cult for MLASH predictor to choose an aggressive rate, while keeping a low rebuffer rate

at the same time. We would try to improve the performance under VBR scenario with a

more specified method in our future work.

4.3 Convergence of Model Training

Our MLASH can use either the offline classification model or streaming classification

model. The streaming model can not only use accumulated transaction logs to improve

prediction accuracy, but also adapt to network dynamics. We hence check howmany train-

ing data are required to obtain a stable and reliable classification model. Figure 4.7 plots
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Figure 4.7: Prediction error of the streaming model over time

the prediction error of the streaming classification model for different labeling algorithms

as the number of training data grows over time. The figure shows that the accuracy be-

comes quite stable when the classifier is trained by using about 100,000 records of training

data.
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Chapter 5

Conclusion

This paper presents a machine-learning-based adaptive streaming framework over HTTP

(MLASH). Instead of designing a completely new adaptation algorithm, our goal is to

combine the machine learning technique with different existing rate adaptation algorithms

designed for optimizing different QoE metrics. We train a classification model to de-

scribe the explicit relationships between a wide range of network-related features and the

label found by any preferable rate adaptation algorithm based on true information. This

machine-learning-based approach can hence elastically utilize comprehensive features,

and, more importantly, avoids the difficulty of bandwidth estimation faced by many exist-

ing adaptation algorithms. We demonstrate via trace-based simulations that, by leveraging

existing adaptation algorithms as the labeling scheme, our MLASH can improve predic-

tion accuracy of those algorithms, and hence their target performance metrics.
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