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中文摘要 

本篇論文中，我們首先提出一能得到對流項的最小波數誤差，且能增進對流

項之穩定性之流線上風有限元素模型。為了驗證論文中所提出的有限元素模

型，本論文測試了許多具實解及典型的純量傳輸方程及高雷諾數及高瑞利數

的黏性不可壓縮流 Navier-Stokes方程的測試問題。由結果可知，本文所提出

之模型，在所有的測試問題中均能有相當好的精確度及收斂斜率。 

    在使用迭代法求解經由有限元素方法離散三維空間架構下不可壓縮流

Navier-Stokes 方程後所得到的非對稱非正定矩陣方程時，為了避免 Lanczos

及選主元(pivoting)過程而導致求解發散或者求解不收斂問題，我們提出了避

免求解原始矩陣方程，改以求解經由在原始矩陣方程兩側乘上其轉置矩陣所

得到的正規矩陣方程的策略。正規矩陣方程為一對稱且正定的型式，因此可

利用具求解效率高及無條件收斂特性的共軛梯度(CG)迭代法來求解以得到無

條件穩定收斂的答案。本文亦提出了兩種基於多項式型式的預條件子來降低

因正規化過程中而大幅提高的條件數以加快收斂速度。由數值測試結果，顯

示本文所提出的求解策略效率比起傳統使用 BICGSTAB及 GMRES迭代法求

解原始矩陣方程還更來得穩定且更有效率。 

    為了加速計算成本繁重的有限元素方法用以求解不可壓縮流

Navier-Stokes 方程，本文遂將所發展的有限元素計算程式執行在比起中央處

理器(CPU)有更高的浮點數運算效能及更大的記憶體帶寬的圖形處理器(GPU)

上。此外，本文提出了一些最佳化策略以最佳化其計算效能。對於測試的典

型拉穴流問題，本論文所提出的 CPU/GPU異構平行計算方法的計算加速比及

效能比均具相當良好的結果。 

    最後，本論文將所發展的三維有限元素不可壓縮流體求解器用以求解九

十度彎管流及後向階梯流體問題，其計算結果與前人所模擬與實驗之結果均

相當的吻合。顯示本文所發展的基於 GPU的有限元素流體求解器為一精準且

可信賴的計算工具。 

 

關鍵字 : 波數 ; 有限元素 ; 流線上風 ; CUDA ; 圖形處理器 



Abstract 

In this dissertation, a new streamline upwind finite element model which 

accommodates a minimum wavenumber error for convection terms shown in the 

transport equation, is presented to enhance convective stability. The validity of the 

proposed finite element model is justified by solving several problems amenable 

to analytical and benchmark solutions at high Reynolds and Rayleigh numbers. 

The results with good accuracy and spatial rate of convergence are demonstrated 

for all the investigated problems. 

  To avoid Lanczos or pivoting breakdown while solving the resulting 

large-scaled un-symmetric and indefinite matrix equations using the mixed finite 

element formulation, the matrix equations have been modified by pre-multiplying 

matrix with its transpose counterpart. The resulting normalized matrix system 

becomes symmetric and positive-definite. A computationally efficient conjugate 

gradient Krylov iterative solver can be therefore applied to get the unconditionally 

convergent solution. To improve the slow convergence behavior arising from the 

increased condition number, the two polynomial-based pre-conditioners are 

adopted. The numerical results show that the performance of the pre-conditioned 

conjugate-gradient solver for the normalized system is better than the two 

common used BICGSTAB and GMRES solvers for the original matrix equations.  

  In order to accelerate the time-consuming finite element calculations for the 

incompressible Navier-Stokes equations, the developed finite element program has 

been implemented on a hybrid CPU/GPU platform endowed with its high 

floating-points arithmetic operation performance and large memory bandwidth 

compared to that implemented in CPU. Moreover, some optimization strategies 

are introduced in order to optimize the speedup performance. The resulting 

speedup and efficiency are good for the simulation of benchmark lid-driven cavity 

flow problem. 

  Finally, the proposed GPU-based finite element fluid solver was used to 

investigate the three-dimensional 90 bend curved flow and three-dimensional 

backward-facing step flow problems. The results simulated from the proposed 

GPU-based finite element flow solver agree well with other numerical and 

experimental results. It shows that the proposed GPU-based finite element solver 

is accurate and reliable for use.  

 

Keywords : wavenumber ; finite element ; streamline upwind ; CUDA ; GPU 
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Chapter 1

Introduction

Some physical fluid flow phenomena such as pipe flow, blood flow in vessels, flow

around airfoils, can be usually modeled by the three physical conservation laws : (1)

mass conservation ; (2) momentum conservation and (3) energy conservation. These

physical laws can be formulated in terms of mathematical equations, which in most gen-

eral form are partial differential equations [1–3]. To investigate the fluid flow system, one

can use the theoretical or experimental method. In the theoretical method, the closed-

form analytical solution of the fluid flow equations is sought under some assumptions and

simplifications in order to make the problem solvable. A closed-form solution is highly

desired because the variation of flow phenomena with change in the controlling param-

eter is explicitly displayed. Unfortunately, the general closed-form analytical solution

for most flow problem is still not available, even for a relatively idealized physical fluid

dynamics system.

Use of experimental methods involve equivalent setup, often scaled down from the

real physical problem to investigate the flow phenomena. The primary advantage of ex-

perimental methods is that it represents a true reality. It, therefore, is expensive to conduct

measurement. The wind tunnel, for example, as a piece of experimental equipment, pro-

vides an effective way to investigate the real flow phenomena in aerodynamics. Tradition-

ally, this has provided a cost effective alternative to full-scaled measurement. However,

the design and construction of measurement equivalent that depends critically on the flow

behavior, e.g. the design of airplane, full- scaled measurement as part of the design pro-

cess is economically impractical [4].
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With the advent of ever improving digital computers since 1950s and progress in ad-

vanced numerical analysis, numerical methods for the analysis of fluid flows, referred

to as Computational Fluid Dynamics (CFD) [5] has reached a level of maturity and is

now accepted as an useful tool to simulate fluid flow phenomena on digital computers.

It replaces the governing equations of fluid flow in a discrete, digital form, and advances

these discrete representations in space and/or time to obtain a final numerical description

of the complete flow field of interest. This branch of fluid mechanics complements the

experimental and theoretical method. It provides an alternative cost-effective means of

simulating the real flow behavior. It has been used for the basic study of fluid dynamics,

for engineering designs in complex flow configuration, for understanding and predicting

fluid-structure interaction behavior, for interpreting and analyzing experimental data, and

for extrapolation into parameter regimes that are relatively inaccessible or very costly

to study experimentally. Each of these three methods has its own inherent strength and

weakness, none of them can be dispensable for getting a complete understanding of the

real physical flow system. The theoretical method is still practical and the experimental

method will continue to be conducted.

The fundamental idea of CFD is to partition the spatial domain into a finite number

of non-overlapping sub-domains which are called control volumes or elements. Time

is also divided into small discrete lengths called time steps. The governing fluid equa-

tions are then replaced with the algebraic equations which in turn are solved to obtain the

time-dependent or steady-state solutions on these subdomains. Underlying this idea, var-

ious numerical techniques such as finite difference method (FDM), finite element method

(FEM), finite volume method (FVM) and Lattice Boltzmann method (LBM) have been

developed by engineers and mathematicians in the past three decades. The finite element

method, which can be tracked back to the 1940s [6], is recognized as an important numeri-

cal method for solving incompressible viscous flow and heat transfer problems because of

its appealing advantages in treating complicated geometry and implementation of natural

boundary condition. It is also mathematically rich in providing the analysis of conver-
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gence proof [7, 8]. Furthermore, the clear structure and versatility of the finite element

method make it possible to construct a general purpose computer program for simulating

various flow problems. The disadvantages arise from its increased programming com-

plexity and more memory demands in large-sized problems. Moreover, the solution of

associated algebraic system is the most prohibitively computationally intensive and par-

allel computation [9] is therefore required to accelerate the computation. The main goal

of this dissertation is to address the calculation of the finite element method for the in-

compressible Navier-Stokes equations. This chapter includes reviews of finite element

method, the implementation of parallel computation, the objectives, and the outline of

this dissertation.

1.1 Finite element method

The finite element method is a numerical method for seeking the approximate solutions of

partial differential equations in science and engineering. This method was originally in-

troduced by engineers in the 1940s and now it is widely used in different areas in science

and engineering, including the mechanical engineering, structural design, biomechanics,

electromagnetic and fluid dynamics and other areas. The underlying ideas of the finite el-

ement method are variational principle and piecewise interpolation approximations [10].

The discretization process of the finite element method starts from the reformulation of

the given differential equation as an equivalent variational problem. Then, the problem

domain is divided into the several non-overlapping elements. These elements can be cho-

sen as triangle/quadrilateral or tetrahedral/hexahedral, depending on the problem dimen-

sions. The solution of differential equations is approximated on each element by using

the locally defined interpolation functions. Thus, the finite element method differs from

the traditional weighted-residuals methods (e.g. Rayleigh-Ritz, least-square, collocation)

in the manner in which the interpolation functions are chosen globally on entire problem

domain. The reader can refer to some introductory textbooks [11, 12].

In the beginning, the finite element method was applied to solve the solid mechanics
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and heat transfer problems. The first finite element modeling of incompressible viscous

flow can be tracked back to the 1970s. However, the early success with this technique was

only limited to the low-Reynolds number problem. In the high Reynolds number flow

problem in which the convection effect becomes dominated, some notorious instabilities

problems are encountered. To overcome this difficulty, a series of the so-called stabilized

finite element models [13, 14] have been developed in the past three decades.

1.2 Parallel computation

The traditional way of executing computer program to solve differential equations is

known as serial computing. Several tasks are performed sequentially, thus one task can

start at the end of the previous one. An alternative to this mode is to perform several

tasks simultaneously by using several processor units, which is known as parallel compu-

tation [9]. Large-sized problem can be therefore divided into many smaller ones, which

are then executed in parallel. Currently, parallel computation is a common strategy for

compute-intensive simulations

The two major computer configurations which execute the parallel computation are

the shared memory and the distributed memory configurations. In computer science,

the shared memory configuration refers to multiprocessing computer system and the dis-

tributed memory configuration refers to multiple-processors computer system.

For the shared memory configuration, each processor can save/load the same memory

space, and the data passing can be done just in memory. Shared memory can be accessed

simultaneously by one or multiple programs. The advantage of this configuration is its

relative ease to program since all processors shared the same data and the communications

between processors can be done within a very short time. However, the bottleneck is its

scalability because the memory and processor can not be easily extended.

For the distributed memory configuration, each processor has its own private mem-

ory space. Computational tasks can be only executed on local data and the data passing

is performed through high-speed network. Comparing with the shared memory config-
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uration, the scalability in distributed memory configuration is much better since we can

easily add a new processor to distributed memory configuration. However, data passing

speed is much slower than the shared memory configuration since the data passing speed

of network is always slower than the memory passing. The bottleneck for the distributed

memory configuration is the data passing speed of network.

Over the last decade, a new alternative for parallel computation has emerged, known

as Graphic Processing Unit (GPU). The availability of both the GPU hardware and pro-

grammable software has attracted the attention of researcher. Executing computer pro-

gram on GPU is current practice nowadays, but depending on the data parallelism.

Parallel computations can be mainly implemented in three different ways : (i) MPI for

shared and distributed memory configurations (ii) OpenMP for shared memory configu-

ration and (iii) CUDA for NVIDIA’s graphic processing units (GPUs).

MPI (Message Passing Interface) is a library which consists of a set of message pass-

ing routines. It is based on the consensus of the MPI Forum, which has over 40 par-

ticipating organizations, including vendors, researchers, software library developers, and

users. The goals of the MPI is to establish a portable, effective and flexible standard for

programming the message passing program in Fortran, C/C++ programming languages.

The MPI program is executed by the high level API (Application Passing Interface) that

allows programmers to transparently make use of multiple processors on both shared or

distributed memory configurations. The programmer does not need to know with the

details of the communication protocol between processors.

OpenMP (Open Multi-Processor) was first released in 1997 and has been a standard

API that supports shared memory parallel programming in Fortran, C and C++. It consists

of a set of complier directives and library routines that affect run-time behavior. The

significant advantages of OpenMP are its portable, scalable and easy implementation on

the existing computer codes. It also has the advantages of being widely used and ideally

suited to multi-core architectures. The reader can refer to MPI and OpenMP programm

guide for more details [15]
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CUDA (Compute Unified Device Architecture) [16] stands for a parallel programming

model released by NVIDIA in 2007 and is executed only on NVIDIA’s GPU. It makes

programmer directly access to the virtual instruction set and memory of the parallel com-

putational cores in GPU. CUDA programming model is based on Single Instruction Mul-

tiple Data (SIMD) framework and provides a set of parallel instructions such that each

core works on different data but executes the same instruction. The significant feature

of the CUDA is that it always involves two different computation platforms : the serial

code on CPU and the parallel code on GPU. GPU usually takes over the most expensive

computational tasks. In this dissertation, the CUDA parallel computation approach will

be chosen to accelerate finite element computations.

1.3 Objectives

The convection term in the absence of strong physical diffusion effect is the most difficult

problem to simulate and this is pacing limitation in CFD techniques. The attempts to

circumvent this primary instability difficulty have spawned the extensive development of

CFD.

In many physical problems, ability of predicting the transport field variable is a very

important and sometimes is even a crucial issue in many processing industries. Thus,

the study of the transport equation is the subject of fundamental importance because this

equation has been viewed as the linearized form of Navier-Stokes equations in the de-

velopment of numerical scheme to solve the fluid, mass and heat transfer problem. This

equation is also of considerable academic interest because of the available analytical so-

lution, which provides a convenient verification for verifying the developed numerical

scheme. For the all investigated transport equation and incompressible Navier-Stokes

equations, the first-order derivative term is appeared in these equations. The minimum

of wavenumber error idea can be adopted to preserve the dispersive nature for all the

calculations.

When solving the primitive variable form of incompressible Navier-Stokes equations,
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the resulting matrix equations discretized from the mixed finite element formulation is,

in general, unsymmetric and indefinite. The direct or iterative solvers can be chosen to

solve the matrix equations. However, the cost of direct solver for large-scaled three-

dimensional problem is prohibitive due to its large amount of memory requirements and

the iterative solver is thus adopted [17]. However, the poor convergence behavior or even

divergence is often an unavoidable outcome when using the iterative solver. This problem

is particularly severe at high Reynolds number. To circumvent this difficulty, one can

consider solving the equivalent symmetric and positive definite normal matrix equations

by using the robust iterative solver. This strategy, however, results in the increase of

condition number and the pre-conditioning can be used to reduce the condition number.

The objective of this dissertation is to effectively solve the 2D/3D high Reynolds in-

compressible Navier-Stokes equations. To this end, we will develop a new streamline up-

wind finite element model. This model minimizes the wavenumber error of the convection

term and eliminates the oscillatory velocity solutions in the convection-dominated prob-

lem. In order to get the unconditionally convergent solutio from the finite element matrix

equations, we will solve the equivalent symmetric and positive normal matrix equations.

The pre-conditioners are also presented to reduce the condition number.

It is known that the finite element calculation is a time-consuming computational task.

This is particularly siginficant for three-dimensional problem. To accelerate the calcula-

tion, we will execute the finite element calculation on a hybrid CPU/GPU platform and

evaluate the advantages of its implementation on a GPU over that of its CPU sibling.

1.4 Outlines of this study

The present work is focused on developing the finite element model and executing the

finite element calculations on a hybrid CPU/GPU platform. In Chapter 2, some different

theoretical formulations of the governing incompressible Navier-Stokes equations, solu-

tion algorithm and computation challenges are introduced. The use of the developed finite

element model for solving the scalar transport equation and incompressible Navier-Stokes
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equations will be presented in Chapters 3-4. Chapter 5 assesses the performance of iter-

ative solver for three-dimensional incompressible Navier-Stokes equations. To accelerate

the finite element calculations, the CUDA parallel computation and some implementation

details are presented in Chapter 6. In Chapter 7, the developed finite element CPU/GPU

fluid solver was applied to investigated some practical flow problems. Finally, some re-

marks are concluded in Chapter 8.
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Chapter 2

Incompressible Navier-Stokes equations

The Navier-Stokes equations developed by Navier [18] and Stokes [19] have been in-

vestigated rather extensively over the last few decades because they can be applicable to

model fluid flow in numerous scientific and engineering applications. These equations

arise from applying Newton’s second law to fluid motion, together with the assumption

that the stress in the fluid is the sum of a diffusive viscous term and a pressure. According

to the chosen working variables, the incompressible Navier-Stokes equations can be cast

into the primitive and non-primitive variable formulations. Each of these formulations

has its own advantages and disadvantages. In this chapter, the introduction of three differ-

ent mathematical formulations, including the primitive velocity-pressure, non-primitive

vorticity-streamfunction and velocity-vorticity formulations, are shortly given. In addi-

tion, some common solution algorithms are also introduced.

2.1 Velocity-pressure variables formulation

Let Ω be an open and a bounded domain in Rn (spatial dimension n = 2,3) and ∂Ω = Γ

denotes its boundary. The incompressible Navier-Stokes equations cast in primitive veloc-

ity vector u and scalar pressure field p consist of the momentum conservation equations

which are the mathematical expressions of the Newton’s second law in motion

ρ
∂u
∂t

+ρu ·∇u=−∇p+µ∇2u+f (2.1)
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and the continuity equation which represents the conservation of mass

∇ ·u= 0 (2.2)

In the above, ρ is the density and µ is the dynamic viscosity. The details of the derivation

of these equations can be found in [1–3]. Note that the continuity equation or called the

incompressible constrain condition becomes a constraint on the velocity field u, and the

pressure p is treated implicitly as the gradient form.

In general, it is convenient to rewrite the Eqs. (2.1)-(2.2) as a dimensionless form by

defining the following dimensionless variables

x∗ =
x

L
, y∗ =

y

L
, u∗ =

u

u∞
, p∗ =

p

ρu2
∞
, f∗ =

fL
u2

∞
, t∗ =

u∞t
L

(2.3)

where L and u∞ are the user-specific characteristic length and velocity. Substituting

Eq. (2.3) into Eqs. (2.1)-(2.2) and omitting the asterisk symbol, the dimensionless form

of incompressible Navier-Stokes equations is obtained

∂u
∂t

+u · (∇u)+∇p− 1
Re

∇2u= f (2.4)

∇ ·u= 0 (2.5)

In Eq. (2.4), the Reynolds number
(
Re = ρu∞L/µ

)
represents a ratio between the inertia

and viscous forces. The set of variables (u,p) is called the primitive variables since they

can be measured directly in experiments. Moreover, other variables in a fluid flow such

as streamfunction or vorticity can be calculated from these primitive variables.

In order to make the partial differential equations Eqs. (2.1)-(2.2) be well posed, it is

necessary to prescribe the boundary condition on the boundary of physical domain. For

this reason, either the Dirichlet-type boundary condition on ΓD

u= g

where ∫
ΓD

n ·gdΓD = 0
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or the Neumann-type boundary condition on an open boundary ΓN is specified with an

unit outer normal vector n

−pn+
1

Re
n ·∇u= h

The h denotes an external traction boundary force. The boundary subdomains ΓD and

ΓN , which are assumed to be non-overlapping, span the whole boundary in the following

sense

Γ = ΓD ∪ ΓN

ΓD ∩ ΓN = /0

When the fluid is in contact with the wall boundary, the velocity boundary value of

fluid is equal to the velocity of wall. The conditions on the tangent components of velocity

is known as no-slip condition. Note that no pressure boundary condition is required on

no-slip boundary. This means that it would be incorrect to impose pressure value together

with the velocity boundary condition. On the other hand, in some problem, such as on the

inflow or outflow boundary, the velocity conditions different from Dirichlet type. In these

situations, the pressure can be supplemented by Dirichlet of Neumann type condition

A fundamental observation associated with Eq. (2.1) is that the momentum equations

should be used to approximate the velocity field while the continuity equation models

the equation for the pressure. It seems rather natural since Eq. (2.1) is solved for the

velocity components, and this leaves only Eq. (2.2) to obtain the pressure solution. This

formulation, however, encounters a serious problem because the absence of the pressure

term in Eq. (2.2) will destabilize the partial differential system from the computational

standpoint.

2.2 Streamfunction-vorticity formulation

The absence of pressure term in Eq. (2.4) and the divergence-free constraint condition

prompted researchers to seek another formulation which contains no pressure variable

and can automatically satisfy the Eq. (2.5). The first and probably the most successful
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one is the use of vorticity-streamfunction formulation.

Consider the velocity field u= (u,v) in two-dimensions and the divergence-free con-

straint condition

ux + vy = 0 (2.6)

The streamfunction ψ is defined as follows

u = ψy, and v =−ψx (2.7)

It is clear that the Eq. (2.7) automatically satisfies the Eq. (2.6). Thus, if we find a gov-

erning equation for the ψ, we can obtain the divergence-free velocity field via Eq. (2.7).

Recall the definition of vorticity

ω = ∇×u , (2.8)

Note that Eq. (2.8) only has a single non-zero component in two-dimensions given below

ω = vx−uy (2.9)

Substituting Eq. (2.7) into Eq. (2.9), one can obtain the Poisson equation for streamfunc-

tion ψ

∇2ψ =−ω

To find the governing equation for the ω, one can take the curf of Eq. (2.4) to get

∇× ∂u
∂t

+∇×
[∂u

∂t
+(u ·∇)u− 1

Re
∇2u+∇p

]
= ∇×f (2.10)

Now, the following identities are used

(u ·∇)u=
1
2

∇|u|2−u× (∇×u) (2.11)

∇×∇|u|2 = 0 (2.12)

∇×∇p= 0 (2.13)

∇× (∇×u) = ∇(∇ ·u)− (∇ ·∇)u= ∇(∇ ·u)−∇2u=−∇2u (2.14)
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In Eq. (2.14), the divergence-free constrain condition ∇ ·u= 0 has been applied

Substituting Eqs. (2.11)-(2.14) into Eq. (2.10) yields

∇×u t−∇×
[
u× (∇×u)

]
− 1

Re
∇×∇× (∇×u) = ∇×f (2.15)

Using Eq. (2.8), one can get

∇× ∂u
∂t
−∇× (u×ω)− 1

Re
∇×∇×ω = ∇×f (2.16)

The vorticity transport equation (2.16) can be simplified via Eq. (2.14)

∂ω
∂t

+(u ·∇)ω− (ω ·∇)u− 1
Re

∇2ω = ∇×f (2.17)

In the above, the third vorticity stretching term represents the generation or destruction

of vorticity due to the stretching or compression of vortex lines. In two-dimensional

problem, the vortex stretching term vanishes and the resulting vorticity transport equation

is reduced to a scalar convection-diffusion equation for the vorticity component

∂ω
∂t

+(u ·∇)ω− 1
Re

∇2ω = ∇×f (2.18)

The Eq. (2.18) is the desired governing equation for the ω. The two-dimensional incom-

pressible Navier-Stokes equations can be then rewritten into the following set of coupled

scalar transport equations

∂ω
∂t

+(u ·∇)ω− 1
Re

∇2ω = ∇×f (2.19)

∇2ψ =−ω (2.20)

The above (ω,ψ) formulation offers the advantages of reducing the number of un-

knowns and eliminating the divergence-free constraint condition which is difficult to be

preserved numerically. Moreover, the pressure term is eliminated in the Eqs. (2.19)-(2.20)

and we do not need to prescribe the pressure boundary.

The (ω,ψ) formulation, however, still encounters some difficulties. Firstly, this for-

mulation can not be applied to three-dimensional problem since the streamfunction ψ is

only available in two-dimensions. Secondly, there is no available explicit boundary condi-
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tion for the vorticity ω since the no-slip condition for the velocity can not be reformulated

in equivalent condition of boundary value type for the vorticity. Quartapelle [20] pointed

out that to satisfy the no-slip boundary condition for the velocity, the vorticity should be

subject to an integral constraint equation.

2.3 Velocity-vorticity formulation

The third representation of the incompressible Navier-Stokes equations involves the prim-

itive velocity variable u and the non-primitive vorticity variable ω. By taking the curf of

both sides of Eq. (2.4) and using Eqs. (2.11)-(2.14), we can obtain vorticity transport

equation as follows

∂ω
∂t

+(u ·∇)ω− (ω ·∇)u− 1
Re

∇2ω = ∇×f (2.21)

By taking the curf of Eq. (2.8) and using Eq. (2.2), we get

∇2u=−∇×ω (2.22)

which is the vector form of Poisson equation for the velocity u. Eqs (2.21)-(2.22), with u

and ω as velocity and vorticity vectors, are known as the velocity-vorticity formulation of

the incompressible Navier-Stokes equations. The proper boundary condition for vorticity

is also required to be prescribed to get the unique solution of coupled system. Note that the

boundary and integral conditions enable the velocity-vorticity formulation to be adopted

in two and three dimensions.

The two-dimensional incompressible Navier-Stokes equations can be expressed in

terms of (1) primitive variable (u,p) formulation ; (2) Non-primitive variables (ψ,ω)

formulation and (3) hybrid variables (u,ω) formulation. In this dissertation, we advocate

adopting the primitive (u,p) formulation hereafter in the incompressible flow calcula-

tions. The great advantage of this formulation over other formulations is that the variable

setting resolves an ambiguity in specifying legitimate boundary condition. In addition,

no artificial boundary condition needs to be prescribed. Eqs. (2.4) -(2.5) are subject only

to boundary velocities. Specification of pressure conditions at the physical boundary will
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overdetermine the differential system. Moreover, the primitive (u,p) formulation is the

simplest and has the potential of extending it to three-dimensional flow simulation.

2.4 Solution algorithms

The methods for solving the primitive variable form of the incompressible Navier-Stokes

equations can be mainly categorized into two groups, depending on how the primitive

variables (u,p) are treated. They are the mixed coupling and the segregated uncoupling

approaches. In the mixed coupling approach, the discretized Eqs. (2.4)-(2.5) are solved

simultaneously, treating all the dependent variables (u,p) as the unknowns. This is cor-

rect and easy to implement. Moreover, the coupling between the velocity and pressure can

be retained, a small number of nonlinear iterations is required to obtain the convergent so-

lution. However, this approach is rather time consuming and demands a large amount of

memory requirement.

To improve the computational efficiency, the segregated uncoupling approach, such as

the SIMPLE-family methods [21–24], projection-family methods [25, 26], characteristic

based splitting (CBS) methods [27, 28], were presented in the past three decades. The

distinguish feature of this approach is the use of a derived equation to determine the

pressure field. Typically, the momentum equations for the velocity components are solved

separately, using the available values of other variables. The resulting velocity solution

does not, in general, satisfy the divergence-free constrain condition Eq. (2.5) and it is

necessary to be corrected. Then the governing equation for pressure field derived from

Eq. (2.4) is solved to get the pressure solution. Finally, the velocity field is corrected

using the pressure solution. This procedure is repeated until the user specific convergence

criterion is satisfied.

The mixed and segregated approaches have emerged as being among the most popular

classes of methods to solve Eqs. (2.4)-(2.5). The mixed approach has found some appli-

cations in two-dimensional problems. An extension of this approach to three-dimensional

problem suffers from the calculation of large-scaled matrix equations. This presents ob-
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stacles to extend the application scope. Even so, the mixed approach still outperforms the

segregated counterpart because the divergence-free constraint condition can be uncondi-

tionally satisfied. This is an appealing advantage and we concentrate in this dissertation

on the mixed approach, even through it is memory intensive compared with the segregated

approach.

2.5 Computation challenges

As for the incompressible Navier-Stokes equations, we encounter the dilemma of having

to reconcile solution accuracy and numerical stability. It is often the case that a gain

in solution accuracy usually accompanies with a lose in stability. In the high Reynolds

number problem, the upwinding scheme serves as a common cure for the enhancement

of instability arising from the convection term, they are accompanied with a deteriorated

accuracy.

Aside from the suppression of the oscillatory velocity solutions, three other notorious

difficulties commonly encountered are : (i) The absence of pressure term in the mo-

mentum equations ; (ii) The elimination of the node-to-node decoupling of the pressure

solution and (iii) The satisfaction of divergence-free constrain condition to preserve the

mass conservation.

As mentioned in previous section, we advocate adopting the mixed coupling approach

to solve Eqs. (2.4)-(2.5) due to its unconditional satisfaction of continuity equation. The

approach, in general, results in an unsymmetric and indefinite matrix equations. These

properties pose an another challenge. The Gaussian elimination-based direct solver has

long been considered to be the only means of resolving these difficulties. However, the

demands for a continued fill-in the course of finding a three-dimensional solution us-

ing direct solver is beyond the scope of computer memory. The cost of direct solver is

too expensive to be applied and one has to use the iterative solver for large-sized three-

dimensional problem. Poor convergence or divergence is, therefore, an unavoidable out-

come when using the iterative solver. This problem is associated particularly with the
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mixed finite element formulation, owing its direct handling of continuity equation.

In this dissertation, we will present the means of resolving the above numerical diffi-

culties. Furthermore, many of these results will be presented in the following chapter.

17



Chapter 3

Finite element model for the transport
equation

3.1 Introduction

In many physical problems, such as the pollutant dispersal in a river estuary or the con-

centration of electrons in modeling semiconductor devices, involve a combination of con-

vective and diffusive processes [29]. Such a transport is a very important and sometimes

is even a crucial process for designers. Thus, the partial differential equation which gov-

erns the convective and diffusive transport processes is of great importance in the fields

of fluid mechanics and heat/mass transfer. This equation is even regarded as important

itself from the numerical scheme point of view. The real importance lies in its resem-

blance to the linearized form of Navier-Stokes equations. Simply stated, this equation

can be viewed as the simplified Navier-Stokes equations and is thus the subject of inter-

est, academically as well as practically. Moreover, it is amenable to analytical solution

and provides a convenient validation feat bed for benchmarking the developed numerical

discretization scheme.

3.2 Governing equation

Let Ω be an open and bounded domain, the following transport equation is investigated

∂ϕ
∂t
− ε△ϕ+u ·∇ϕ = f in Ω (3.1)
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The Eq. (3.1) is called the convection-diffusion or scalar transport equation, in which ϕ

represents some physical quantities be transported (e.g., chemical concentration, temper-

ature or velocity). Here ε > 0 is a constant diffusion coefficient, u is a given velocity-

valued convection field with ∇ ·u = 0, and f is a given source term. The essential and

natural boundary conditions are given by

ϕ = g1 on ΓD (3.2)

ε∇ϕ ·n= g2 on ΓN (3.3)

where ΓD and ΓN represent the Dirichlet and Neumann parts of the boundary ∂Ω = Γ(=

ΓD∪ΓN), g1 and g2 are the prescribed values and n is the unit outward normal vector.

In general, the diffusion coefficient is relatively small compared with the magnitude of

convection field u. For example, for a smoke ejecting from a chimney moves following

the direction of wind and spreading due to molecular diffusion which is relative small.

This implies that for most practical situations, ε≪ |u|.

To characterize the relative importance of the convective and diffusive effects, the

dimensionless mesh Peclet number defined as Pe = |u|H
2ε , where H represents the element

length, is adopted to express the ratio of convective to diffusive effect. Provided that

Eq. (3.1) is convection-dominated, the mesh Peclet number is larger than 2. Under this

situation, the classical Galerkin finite element model, in which the trial and weighting

function are chosen from the same functional space, performed very poorly since large

node-to-node oscillations exhibit not only near the boundary or in interior layers but also

in other regions. These oscillations seriously reduce the solution accuracy and can even

make the computed results to be meaningless. To overcome this difficulty, a large class of

the so-called stabilized finite element models has been developed and intensively studied

in the past three decades [13].
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3.3 Weak formulation

As mentioned before, the first step of finding the finite element solution is to derive the

weak formulation of the targeted partial differential equation. To introduce a weak for-

mulation, the standard notations for the L2(Ω) space and its associated innerproduct (·, ·)

and norm || · || are given below.

L2(Ω) = {u |
∫

Ω
u2dΩ < ∞}

(p,q) =
∫

Ω
pqdΩ , ||p||= (p,p)1/2

The L2(Ω) denotes the space of scalar valued functions that are square-integrable on Ω.

In addition, the H 1(Ω), which denotes the space of vector-valued functions with square-

integrable derivative on Ω, is also given

H k(Ω) = {q ∈ L2(Ω) ; Dsq ∈ L2(Ω), s = 1, ...,k} (3.4)

where Ds denotes the derivative of order s. As usual, L(Ω) =H 0(Ω) and H 1(Ω) is called

the Sobolev space. For the boundary valued problem, the constrained functional spaces

are defined below

H 1
0 (Ω) = {u

∣∣ u ∈H 1(Ω),u= 0 on Γ }

L2
0 (Ω) = {u

∣∣ u ∈ L2(Ω),
∫

Ω
udΩ = 0 }

Given the above functional spaces, the weak formulation of Eq. (3.1) is derived by mul-

tiplying the Eq. (3.1) by the weighting function w ∈ H 1
0 (Ω) and then integrating the

equation over the domain Ω to obtain∫
Ω

∂ϕ
∂ t

wdΩ−
∫

Ω
ε△ϕwdΩ+

∫
Ω
(u ·∇ϕ)wdΩ =

∫
Ω
fwdΩ (3.5)

Applying the Green’s theorem [10], one can get∫
Ω

∂ϕ
∂ t

wdΩ+ ε
∫

Ω
∇ϕ ·∇wdΩ− ε

∫
Γ
w

∂ϕ
∂n

ds+
∫

Ω
(u ·∇ϕ)wdΩ =

∫
Ω
fwdΩ (3.6)
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Note that the third integral term over the boundary in Eq. (3.6) will vanish and the final

weak formulation of Eq. (3.1) reads as : Find ϕ ∈H 1
0 (Ω) such that

a(ϕ,w) = (f ,w) ∀ w ∈H 1
0 (Ω) (3.7)

where the bilinear form a(·, ·) is defined as

a(ϕ,w) = (
∂ϕ
∂ t

+u ·∇ϕ,w)+(ε∇ϕ,∇w) (3.8)

Let {ϑh} be a partition of domain Ω. This partition {ϑh} of Ω consists of quadrilateral

element K is constructed in the usual way : the intersection of any two elements is a

vortex, or an edge or empty, and Ω = ∪K∈{ϑh}K. In particular, the mesh size h is defined

as h = max{hK ; K ∈ ϑh}

Let S h ⊆ H 1
0 (Ω),V h ⊆ H 1

0 (Ω) be the finite element subspace for trial and weight-

ing function, respectively. The finite element solution ϕh is sought from the following

statement : Find ϕh ∈ S h such that

a(ϕh,wh) = (fh,wh) ∀wh ∈ V h (3.9)

Substituting the finite element approximation ϕh = ∑ j ϕ jN j, where N j denote the in-

terpolation functions, and the weighting function wh into Eq. (3.9), the elementary finite

element matrix equations can be calculated on each element K. These equations are then

assembled to form a global algebraic linear system. By applying a proper boundary con-

dition, the nodal values of ϕh are determined from the solution of matrix equations.

3.4 Finite element model
3.4.1 Literature review

The Galerkin finite element model has been proven eminently successful in problems of

solid/structural mechanics and in other situations such as the heat conduction which is

governed by diffusion-type equation. However, the computational difficulty is perceived

by the Galerkin finite element model in fluid mechanics. The solutions of convection

dominated problem are usually corrupted by non-physical node-to-node oscillations and
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these oscillations become even worse when high Peclet number problem is considered.

The above difficulty was blamed on the central difference approximation generated

by the Galerkin model and its inability to account for the upwind effect of the convection

term. The descretization of the convection term by Galerkin model produces a set of

equations that involve the adjacent nodes, and it results in node-to-node oscillations. That

is, the best approximation property in the energy norm of the Galerkin model, which

is the basis for success in symmetric operator, is lost when convection dominates the

diffusion [14].

In principle, these oscillations can be suppressed by a successive refinement of the

mesh to make the mesh Peclet number to be less than 2. However, the necessary degree of

the mesh refinement is always economically impracticable. This computational difficulty

and perceived shortcomings of the Galerkin model have motivated the development of the

so-called Petrov-Galerkin models, in which the trial function and weighting function are

chosen from the different functional spaces.

Inspired by the upwind operator in finite difference context [5], Christie [30] and Hein-

rich [31, 32] developed the early upwind finite element models for the steady-state one-

and two-dimensional convection-diffusion equation, respectively. The weighting func-

tions they proposed are equal to the weighting function of Galerkin model plus a high

order polynomial in order to place more weight on the upwind side. Later, Hughes [33],

in a different manner, modified the numerical quadrature rule for the convection term

to achieve the upwind effect. Unfortunately, the success of these early Petrov-Galerkin

models was only limited to one-dimensional problem because they produced in general

excessive crosswind diffusion which reduces the solution accuracy in multi-dimensional

problem. This problem is particularly significant in cases when mesh lines and flow di-

rections are not in good alignment. In addition, these models are only first-order accurate

and its extension to the unsteady cases or for the case of non-zero source term would not

give a consistent formulation.
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3.4.2 Streamline Upwind Petrov-Galerkin model

The drawbacks of the early Petrov-Galerkin models [30–33] revealed that the flow-oriented

convection discretization scheme should be a better strategy to enhance convective sta-

bility without sacrificing solution accuracy. In the beginning of the 1980s, Hughes and

Brook pointed out that to enhance convective stability and reduce the crosswind diffusion,

it is necessary to add a proper amount of artificial damping along the direction of primary

flow. The introduced stabilization term was added to the Galerkin weighting function and

it is called the streamline upwind Petrov-Galerkin (SUPG) model [34]. It is also known as

a perturbation method since the added stabilization term (or called the artificial damping)

can be viewed as a perturbation to the Galerkin weighting function. That is, the weighting

function of SUPG model is given below :

wSUPG =wGalerkin + τSUPGBi (3.10)

Bi = u ·∇ϕ (3.11)

where Bi denotes the biased part. Later, Mizukami and Hughes extended the application

range of SUPG to flow problem containing a sharp layer by demanding that the discrete

system underlying the streamline upwind scheme ensures the satisfying of the maximum

principle [35]. In the presence of a boundary and an internal sharp layers, the predicted

SUPG solution quality was deteriorated further. To overcome this shortcoming, Hughes

and his colleagues improved the SUPG model by adding the discontinuity-capturing term

to the SUPG weighting function so as to produce a smooth solution in the boundary or

interior layer problem [36].

In Eq. (3.10), the stabilization parameter τSUPG has the significant effect on the sup-

pression of the oscillations and the solution accuracy. The parameter τSUPG in [37] is

defined as

τSUPG =
δSUPGuH

2|u|2

where H and δSUPG represent the element characteristic length (H = 2h) and the upwind
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coefficient, respectively. In this study, the quadratic element is adopted in two- and three-

dimensional problem. The upwind coefficient δSUPG will be, therefore, determined at the

center and the corner node, respectively. One way to determine the coefficient δSUPG is

to impose one-dimensional exactness of the homogeneous and steady-state convection

diffusion equation given below [37].

δSUPG(γ) =


2− cosh(γ)− (4/γ) tanh(γ/2)+(1/γ)sinh(γ)

4tanh(γ/2)− sinh(γ)− (6/γ)sinh(γ) tanh(γ/2)
at corner node

1
2

coth(
γ
2
)− 1

γ
at center node

(3.12)

where γ = |u|H
2ε represents the element Peclet number.

In this study, in the different manner, the upwind coefficient will be derived by mini-

mizing the wavenumber error of the convection term in next section.

3.4.3 Modified wavenumber error optimizing model

Since the numerical instability is generated from the Galerkine finite element model treat-

ment of the convection term, one way to enhance convective stability is to take the dis-

persive nature of the investigated convection (or first-order derivative) term into consider-

ation.

A scheme for approximating the convection term can be regarded to be optimized

if the error between the exact and numerical wavenumbers is minimized. This can be

achieved by applying the Fourier transform ϕ̃(k) = 1
2π

∫ ∞
−∞ ϕ(x)exp(−ikx)dx and its in-

verse ϕ(x) =
∫ ∞
−∞ ϕ̃(k)exp(ikx)dk, where i =

√
−1, to the convection term. In this study,

the stabilization parameter in modified wavenumber error (MWE) model τMWE is chosen

as

τMWE =
δm

MWE
H

2|u|
(3.13)

Following the work of Tam and Webb [38], derivation of the upwind coefficient δm
MWE

is to

minimize the wavenumber error of the convection term. As mentioned before, the nodal

point in a quadratic element can be divided into the center and corner nodes, respectively.
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The superscript m in Eq. (3.13) is α or β depending on the nodal classification within a

quadratic element.

To minimize the wavenumber error, we take the convection term ϕx in one-dimensional

equation as an example to determine τMWE . Substituting the trial function approximation

ϕ = ∑3
j=1 ϕ jN j and the weighting function wi = Ni + τu∂Ni

∂x , where Ni (i = 1 ∼ 3) rep-

resent the quadratic interpolation functions, into the weighted residuals statement for ϕx,

the discretized equation at the center and corner nodes can be derived as follows :

ϕx|center ≈
1
h
(a1ϕi−1 +a2ϕi +a3ϕi+1) (3.14)

ϕx|corner ≈
1
h
(b1ϕi−2 +b2ϕi−1 +b3ϕi +b4ϕi+1 +b5ϕi+2) (3.15)

In the above, a1 =−1
2−δ α

MWE
, a2 = 2δ α

MWE
, a3 =

1
2 +δ α

MWE
, b1 =

1
4 +

1
4δ β

MWE
, b2 =−1−

2δ β
MWE

, b3 =
7
2δ β

MWE
, b4 = 1−2δ β

MWE
and b5 =−1

4 +
1
4δ β

MWE
. By conducting Fourier and

its inverse transformation on each term shown in Eqs. (3.14), the numerical wavenumber

k at the center node can be derived as k≈ −i
h (a1 exp(−ikh)+a2+a3 exp(ikh)). The exact

wavenumber k̃ is regarded as the right hand side of the above relation, thereby leading to

k̃ =
−i
h
(a1 exp(−ikh)+a2 +a3 exp(ikh)).

To demand k be close to k̃, the integral quantity E(k) defined below should be a very small

and positive value

E(k) =
∫ π/2

−π/2
|kh− k̃h|2d(kh)

To get the smallest value of E from the above equation, the limiting condition ∂E/∂a1 is

applied to get the coefficient δα
MWE

. The coefficient δβ
MWE

can be derived similarly. The

derived upwinding coefficients are summarized below

δ MWE =


1
2

; at center node

8−3π
−22+6π

; at corner node

(3.16)

Comparing the upwind coefficients in Eq. (3.12) and Eq. (3.16), the main difference is

25



that the proposed stabilization parameter is a constant and the computational cost can be

therefore reduced when evaluating the stabilization parameter τMWE . Another difference is

that the parameter τMWE is independent of the convection term. Such a difference becomes

significant when solving the nonlinear incompressible Navier-Stokes equations, where

the convection velocity field will be updated in each nonlinear iteration. For the sake of

clarify, the weighting functions of different finite element model are plotted in Fig. 3.1. It

is clearly seen from Fig. 3.1 that the proposed MWE model gives more weight to upstream

nodes than the Galerkin and SUPG model.

The extension of the above Petrov-Galerkin formulations to multi-dimensional prob-

lem is, however, obtained at the cost of accuracy. The reason is due to the use of con-

vectional Petrov-Galerkin model which has a tendency to add a false diffusion to regions

normal to the streamline as the angle between the grid line and the flow direction is large.

To improve this situation, the weighting function should accommodate a streamline oper-

ator so as to provide a natural mechanism for adding the artificial damping to the weight-

ing function along the direction of primary flow. In a quadratic element, the stabilization

parameters are assigned at the center and corner nodes to stabilize the discrete system [39]

τMWE =
∑n

i=1 δi
MWE

H i

2|u|
,(n = 2 or 3) (3.17)

In the above, δMWE is obtained by Eq. (3.16)

3.5 Numerical studies

A finite element featured with minimized wavenumber error will be verified through the

problem amenable to the analytical solution. For completeness, problems with/without

interior/boundary layers are selected for use in the present study.

26



3.5.1 Verification study

The following steady-state transport equation for ϕ is considered first in a square domain

(0≤ x,y ≤ 1) for the sake of code verification

u
∂ϕ
∂x

+v
∂ϕ
∂y
− 1

Re
(
∂2ϕ
∂x2

+
∂2ϕ
∂y2

) = S. (3.18)

In the above, Re and S denote the Reynolds number and the source term in each element,

respectively. The solution ϕ is sought subject to the following analytical solutions [40].

u(x,y)=
−2(1+y)

(1+x)2+(1+y)2
(3.19)

v(x,y)=
2(1+x)

(1+x)2+(1+y)2
(3.20)

The analytical solution for ϕ has the same form as u given in Eq. (3.19) provided that

S =−∂p
∂x , where

p(x,y)=− 2

(1+x)2+(1+y)2
(3.21)

All the calculations are carried out with different uniform mesh sizes to get the rate of

convergence. The rate of convergence for ϕ considered at Re = 100 and 1000 are com-

puted from C = log(Err1/Err2)
log(h1/h2)

, where Erri (i = 1,2) denotes the L2 error norm with the

mesh sizes h1 and h2. The predicted solutions at different mesh sizes are shown in Table

3.2. Good agreement between the solutions and the predicted rate of convergence can be

seen in the result.

3.5.2 Skew problem

The benchmark skewed flow transport problem is investigated. The aim of investigating

this problem is to show the effectiveness of applying the proposed finite element model to

resolve high-gradient solution in the flow. The problem schematic shown in Fig. 3.2, there

is a straight line, with the angle of θ = tan−1(v/u), which divides the problem domain

into two subdomains. The convection field (u,v) which is parallel to the dividing line for

the problem with S = 0 in Eq. (3.18) is considered. Subject to the boundary condition

setting for ϕ given in Fig. 3.2, a shear layer of high-gradient or discontinuity with the
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width of O(
√

Re) [10] is expected when crossing the dividing line.

The finite element solutions of the proposed MWE finite element model at Re=100 and

1000 are obtained at △x =△y = 1
60 . It is clearly seen from Fig. 3.3 that no oscillatory

solution is found to occur in regions near and apart from the interior layer for the two

investigated cases.

3.5.3 Smith & Hutton problem

The second benchmark Smith & Hutton problem [41] is of some importance, for it amounts

of determining whether the finite element solution is sensitive to sharply varying inlet

working variable. The problem schematic shown in Fig. 3.4 will be investigated under the

prescribed divergence-free convection field given by (u,v) = (2y(1−x2),−2x(1−

y2)) and the zero source S = 0. The inlet condition ϕ is prescribed by ϕ(−1 ≤ x ≤

0,y = 0) = 1+ tan [10(2x+1)]. On the left and right boundaries, ϕ is prescribed as

1− tanh(10). Along the outlet boundary given by (0 ≤ x ≤ 1,y = 0), a zero gradient

condition for ϕ is imposed. The finite element solutions at Re = 108,1010 and 1012 are

obtained at △x =△y = 1
60 . It is clearly seen from Fig. 3.6 that no oscillatory solution

is found. The applicability of the proposed MWE finite element model for resolving the

high-gradient solution is therefore confirmed.

3.5.4 Rotation shaped cone problem

The transient convection-diffusion problem schematic in Fig. 3.7(a) is then considered.

For the temporal derivative term, the backward Euler scheme is employed. In the domain

-0.5 ≤ x,y ≤ 0.5, the problem investigated at (u,v) = (−4y,4x) is amenable to the

analytical solution given by

ϕ(x,y, t) =
2σ2

2σ2 +4εt
exp

[
− (x̄−xc)

2 +(ȳ−yc)
2

2σ2 +4εt

]
, (3.22)

where (x̄, ȳ)= (xcos4t+y cos4t,−xsin4t+y cos4t),σ2 = 2×10−3,ε= 0 and (xc,yc)=

(−0.25,0). The initial condition plotted in Fig. 3.7(b) is obtained from Eq. (3.22) at t = 0.

All the solutions computed at△t = π
3200 and△x=△y = 1

100 are plotted in Fig. 3.8. It is
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clearly seen from the time-evolving contours at t = π
2 ,π,

3π
2 and 2π that good agreement

between the predicted and the analytical solutions is obtained. The solution symmetry

can be well retained irrespective of the specified rotation convection field.

3.5.5 Mixing of warm and cold fluids problem

The transient mixing of warm and cold fluids problem schematic in Fig. 3.9(a) is investi-

gated. In domain −4≤ x,y ≤ 4, this problem has the following analytical solution at the

limiting case ε = 0 [42]

ϕ(x,y,t) =− tanh
[y
2

cos(ω t)− x

2
sin(ω t)

]
, (3.23)

where ϕ is the temperature field and ω = vt/v̄t denotes the rotation frequency. The vt =

sech2(r) tanh(r) is the tangential velocity at the location that is distant from (0,0) with

a length r and v̄t(= 0.385) is the maximum of vt. The initial condition ϕ(x,y,t = 0)

is plotted in Fig. 3.9(b). An initially narrow region of high gradient will be twisted by a

fixed rotational velocity field (u,v) = (−ωy,ωx). The predicted solutions are obtained

at △x =△y = 1
60 and △t = 10−2. The time-evolving contours take a spiral form and

change sharply near the interface of warm and cold fluids at different times shown in

Fig. 3.10. For the sake of comparison, the predicted profiles at t = 4 are plotted together

with the analytical solution in Fig. 3.11. Good agreement of the solutions at different

values of θ has been demonstrated.
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SUPG-FEM model MWE-FEM model
grid sizes L2-error norms R.O.C. L2-error norms R.O.C.
21×21 4.195E-6 — 7.338E-6 —
41×41 7.544E-6 2.475 1.526E-6 2.265
61×61 2.396E-7 2.828 4.626E-7 2.943
81×81 9.931E-8 3.061 2.080E-7 2.778

Table 3.1: The computed L2-error norms and the corresponding spatial rates of conver-

gence (R.O.C.) for the calculations carried out at four chosen meshes using the proposed

SUPG-FEM and MWE-FEM model for Re = 100.

SUPG-FEM model MWE-FEM model
grid sizes L2-error norms R.O.C. L2-error norms R.O.C.
21×21 8.599E-6 — 3.567E-6 —
41×41 1.937E-6 2.150 4.287E-7 3.056
61×61 8.097E-7 2.151 1.433E-7 2.702
81×81 4.238E-7 2.250 7.738E-8 2.141

Table 3.2: The computed L2-error norms and the corresponding spatial rates of conver-

gence (R.O.C.) for the calculations carried out at four chosen meshes using the proposed

SUPG-FEM and MWE-FEM model for Re = 1000.
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Figure 3.1: One-dimensional weighting functions plots for the different finite element

model. (a) Galerkin model ; (b) SUPG model ; (c) MWE model
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Figure 3.3: The predicted two- and three-dimensional contours of ϕ for the skew problem

considered in Sec. 3.5.2. (a)-(b) Re = 100 ; (c)-(d) Re = 1000.
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Figure 3.4: Schematic of the Smith & Hutton problem considered in Sec. 3.5.3.
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Hutton problem considered in Sec. 3.5.3. (a)-(b) Re = 108.
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Figure 3.10: The predicted time-evolving temperature contours ϕ for the mixing warm

and cold fluids problem considered in Sec. 3.5.5. (a) t = 1s ; (b) t = 2s ; (c) t = 3s ; (d) t =

4s.
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Figure 3.11: Comparison of predicted solutions with the analytical solutions for the

mixing warm and cold fluids problem considered in Sec. 3.5.5, where θ is defined in

Fig. 3.9 . (a) θ = 0o ; (b) θ = 45o ; (c) θ = 90o ; (d) θ = 135o.
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Chapter 4

Finite element model for the
incompressible Navier-Stokes equations

The methods for seeking a numerical solution of the incompressible Navier-Stokes equa-

tions have been investigated in the past few decades. Considerable interests have been

focused on the incompressible viscous flow in order to get a better understanding of the

underlying physics in the oceanography, meteorology, hemodynamics, mechanical fluid

flow, etc. The purpose of this chapter is to seek the finite element solution of the incom-

pressible Navier-Stokes equations. The short introduction will be given in Section 4.1 and

the weak variational formulation of the incompressible Navier-Stokes equations will be

introduced in Section 4.2. Next, the difficulty regarding to the incompressibility constrain

condition is described in Section 4.3. The interpolation functions for the velocity and the

pressure field and finite element formulation are introduced in Section 4.4-4.5. As usual,

some analytical verifications and benchmark numerical results are presented in Section

4.6.

4.1 Introduction

It is well known that there are two main potential sources of numerical instability when

solving the incompressible Navier-Stokes equations by using the finite element method.

One is due to the classical Galerkin treatment of the convection term and it results in

spurious node-to-node velocity oscillations. These oscillations become significant as the

Reynolds number increases. To overcome this difficulty, the Petrov-Galerkin finite ele-
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ment formulation has been employed to enhance convective instability. In this chapter,

the developed MWE finite element model will be employed to solve the Eqs. (2.4-2.5) at

high Reynolds number.

The other source of numerical instability is observed when adopting an inappropriate

combination of the interpolation functions for approximating the velocity and the pressure

fields. This numerical instability usually appears as oscillations in the pressure field. The

incompressible constraint condition, which makes the pressure field independent of the

velocity field, has long been regarded as the primary source of this numerical instability.

Taylor and Hood [43] employed the equal-order interpolation functions and found that

a smooth velocity solution was usually accompanied by an oscillatory pressure solution.

They also found that if the order of interpolation function for pressure is one lower than

that for the velocity, non-oscillatory velocity and pressure solutions can be obtained si-

multaneously. Sani et. al. [44] noticed that the use of equal-order interpolation functions

generally results in a singular matrix which produces oscillatory pressure solution.

In Section 2.3, the mixed finite element formulation for solving Eqs. (2.4-2.5) is rec-

ommended since it unconditionally satisfies the incompressibility (or divergence-free)

constraint condition. However, this is subject to the satisfaction of LBB (Ladyzhenskage-

Babǔska-Brezzi) condition [45–47]. The necessity of imposing LBB condition inhibits

an arbitrary combination of the interpolation functions for the velocity and pressure fields.

In other words, a pair of interpolation function endowed with the LBB condition is re-

quired to apply to the mixed finite element formulation. For example, for the quadrilateral

element with bi-quadratic velocity interpolation function, a discontinuous bi-linear inter-

polation function is adopted for pressure solutions.

4.2 Weak formulation

Using the standard notations and definitions of the functional spaces defined in Section.

3.3. We denote by Su and Sp the trial functional spaces for the velocity and pressure,
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respectively.

Su = {u | u ∈H 1(Ω),u= g on ∂Ω = Γ}

Sp = {p | p ∈ L2(Ω),
∫

Ω
pdΩ = 0}

In conjunction with Su and Sp, we define the weighting functional spaces for the momen-

tum and continuity equations, denoted by Vu and Vp

Vu = {w |w ∈H 1(Ω),w = 0 on Γ}

Vp = Sp

Notes that the Su and Vu only differ in the definition of boundary conditions, that is, the

weighting functions for the momentum equations vanish on the boundary where the fluid

velocity is prescribed. The trial and weighting functional spaces for continuity equation

are identical.

Given the above functional spaces, the weak formulation for the incompressible Navier-

Stokes equations is derived by multiplying the Eq. (2.4) by w ∈ Vu and Eq. (2.5) by

q ∈ Vp and integrating the resulting equations over the domain Ω.∫
Ω

∂u
∂ t

wdΩ+
∫

Ω
(u ·∇u)wdΩ− 1

Re

∫
Ω
△u wdΩ+

∫
Ω

∇p ·wdΩ

=
∫

Ω
fwdΩ (4.1)∫

Ω
(∇ ·u)qdΩ = 0 (4.2)

By applying the Green’s theorem [10] on the third and fourth terms in Eq. (4.1), one can

obtain ∫
Ω

∂u
∂ t

wdΩ+
∫

Ω
(u ·∇u)wdΩ+

1
Re

∫
Ω

∇u : ∇wdΩ−
∫

Ω
p (∇ ·w)dΩ

+
1

Re

∫
Γ
(∇u)w ·ndΓ−

∫
Γ
pw ·ndΓ =

∫
Ω
f ·wdΩ (4.3)∫

Ω
(∇ ·u)qdΩ = 0 (4.4)

Note that the integral term over the boundary in Eq. (4.3) vanishes. The resulting weak

variational formulation for the incompressible Navier-Stokes equations is stated as fol-
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lows : Find (u,p) ∈ Su×Sp such that

B
[
(u,p),(w,q)

]
= L(w) ∀ (w,q) ∈ Vu×Vp (4.5)

where the bi-linear form B(·, ·) and linear form L(·) are, respectively, defined below

B
[
(u,p),(w,q)

]
= (

∂u
∂ t

,w)+(u ·∇u,w)+
1

Re
(∇u,∇w)

− (p,∇ ·w)− (∇ ·u,q) (4.6)

L(w) = (f ,w) (4.7)

Let S h
u ⊆ Su, S h

p ⊆ Sp,V h
u ⊆ Vu and V h

p ⊆ Vp be the finite-dimensional subspaces

for trial and weighting functions. The finite element solutions (uh,ph) are sought from

the following statement : Find (uh,ph) ∈ S h
u×S h

p such that

B
[
(uh,ph),(wh,qh)

]
= (

∂u
∂ t

h

,wh)+(uh ·∇uh,wh)+
1

Re
(∇uh,∇wh)

− (ph,∇ ·wh)− (∇ ·uh,qh) ∀ (wh,qh) ∈ (V h
u,V

h
p ) (4.8)

L(wh) = (f ,wh) (4.9)

4.3 Incompressibility constraint condition

When simulating the incompressible fluid flow, the difficulty in satisfying the incom-

pressibility (or divergence-free) constraint condition Eq. (2.5) has been known to result in

numerical instability. Numerical study of the incompressible fluid flows is also of theoret-

ical importance to satisfy the incompressibility constraint for velocity. When considering

the incompressible Navier-Stokes equations, pressure serves as the Lagrangian multiplier

rather than as the thermodynamics property in compressible flow. As a result, the conti-

nuity equation serves as a constraint condition for the velocity field. Maintenance of this

constraint condition demands that the pressure field adjust itself instantaneously to the

velocity field.

As mentioned already, the pair of interpolation functions must satisfy the LBB condi-

tion in order to produce the smooth velocity and pressure solutions simultaneously. This

condition arises from the mathematical realization: There exists a positive constant β

44



which is independent of mesh size, such that

inf
q∈Vp

sup
w∈Vu

( (q,∇ ·w)

||∇w||H1 ||q||L2

)
≥ β (4.10)

The LBB condition is the result of the fact that Eq. (4.10) is an example of the stability

condition found in Brezzi’s theory for the mixed finite element formulation, which, in

turn, is essential when applying the Babǔska theory. Ladyzhenska also proved the anal-

ogous condition for the continuous case. Note that the LBB condition is independent of

the nonlinearity of Navier-Stokes equations, it is also satisfied for the Stokes equations.

Some methods for the non-primitive variable formulation remove the necessity of using

LBB condition, but the continuity equation must to be modified to avoid the use of the

incompressibility constraint.

4.4 Interpolation function

At the first glance, the primitive variables (u,p) in Eqs. (4.3)-(4.4) seem to be indepen-

dently approximated through the interpolation functions. However, for ensuring stability,

the pair of interpolation functions must satisfy the LBB condition. A typical example is

the bi-quadratic/bi-linear element pair, proposed by Bercovier and Pironneau [48], satis-

fies the LBB condition and will be employed in two-dimensional finite element calcula-

tions. In this regard, the velocity field is approximated by the continuous bi-quadratic in-

terpolation functions N j ( j = 1∼ 9), written in terms of the natural coordinate−1≤ ξ≤ 1

and −1≤ η≤ 1.

N j =



1
4
(1+ ξ̄ j)(1+ η̄ j)(ξ̄+ η̄−1) , j = 1,3,5,7

1
2
(1−ξ2)(1+ η̄) , j = 2,6

1
2
(1+ ξ̄)(1−η2) , j = 4,8

(1−ξ2)(1−η2) , j = 9

(4.11)

where ξ̄ = ξξ j, η̄ = ηη j denote the normalized coordinates of the j-th node. To satisfy

the Eq. (4.10), the pressure is approximated by the discontinuous bi-linear interpolation
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functions Ml given by

Ml =
1
4
(1+ξξl)(1+ηηl), l = 1∼ 4 (4.12)

This element pair is very attractive due to its easy coding and the absence of node-to-node

pressure oscillations.

4.5 Finite element formulation

When simulating an incompressible fluid flow, we demand the divergence-free discrete

velocities be attainable. This can be achieved by employing the mixed coupling approach

instead of segregated uncoupling approach so that the mass and momentum conservation

can be simultaneously attained. In Eqs. (4.8)-(4.9), the finite element solutions for the

velocity and the pressure can be expressed as follows :

uh(ξ,η) =
9

∑
j=1

N j(ξ,η) u j (4.13)

ph(ξ,η) =
4

∑
l=1

Ml(ξ,η) pl (4.14)

where u j and pl are the unknowns values at the nodal points. By substituting Eqs. (4.13)-

(4.14) into the weak formulation Eqs. (4.8)-(4.9), we can derive the following matrix

equations along with the bi-linear weighting function qh for the continuity equation.

T



∂u j

∂t

∂v j

∂t

0


+A


u j

v j

pl

= b (4.15)
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where the mass matrix T and fluid matrix A are defined as follows

T =
∫

Ω


NiN j 0 0

0 NiN j 0

0 0 0

dΩ, A =
∫

Ω



Ci j 0 −Ml
∂Ni

∂x

0 Ci j −Ml
∂Ni

∂y

−Ml
∂N j

∂x
−Ml

∂N j

∂y
0


dΩ

Ci j = (Ni +Bi)(Nmũm)
∂N j

∂xk
+

1
Re

∂Ni

∂xk

∂N j

∂xk

In practice, it is customary to set the value of ũm as a constant in order to linearize the mo-

mentum equations. The tilde∼ in Ci j denotes velocities obtained at the previous nonlinear

iteration step. The right hand side vector b includes the source and surface integral terms.

When the natural (traction-free) boundary conditions are imposed, b can be derived as

b =−
∫

Γout



pl nx−
1

Re
∂u j

∂n

pl ny−
1

Re
∂v j

∂n

0


dΓ

where (nx,ny) denotes the outward normal vector, on which the pressure is imposed.

For the temporal derivatives, the 2nd-order backward Euler implicit scheme is employed

∂u
∂t

=
1

2△t

(
3u(n)−4u(n−1)+u(n−2)

)
(4.16)

∂v
∂t

=
1

2△t

(
3v(n)−4v(n−1)+v(n−2)

)
(4.17)

For the first time step, the 1st-order backward Euler scheme is employed. Note that there

is no restriction about the time step since the backward Euler scheme is implicit. By
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substituting the Eqs. (4.14)-(4.15) into Eq. (4.13) yields

T



1
2△t

(
3u(n)−4u(n−1)+u(n−2)

)
1

2△t

(
3v(n)−4v(n−1)+v(n−2)

)
0


+A


u
(n)
j

v
(n)
j

p
(n)
l

= b , (4.18)

Rearranging the Eq. (4.18), the final finite element formulation is read as

( 3
2△t

T+A
)


u
(n)
j

v
(n)
j

p
(n)
l

=
1

2△t
T


4u(n−1)

j −u
(n−2)
j

4v(n−1)
j −v

(n−2)
j

0

+b (4.19)

The Gaussian elimination-based direct Frontal solver developed by Irons [49, 50] is used

to solve the above matrix equations. It is a variant of Gaussian elimination that auto-

matically avoids a large number of operations involving zero components. The direct

Frontal solver begins by assembling the matrix for each element. This is followed by

incorporating all the elementary matrices into the global matrix system. As soon as all

the contributions from each element to a particular node have been assembled, the cor-

responding variables associated with this node can then be eliminated immediately. This

process continues until all the elementary matrices have been assembled and the elim-

ination procedure is completed. Calculation of the solution is followed by performing

backward substitution. The Frontal solver is considered as an effective solver for two-

dimensional problem. Unfortunately, it is infeasible in three-dimensional problem due to

the largely increased memory demands and operation costs. Consequently, the iterative

solver turns out to be the legitimate alternative in three-dimensional problem.

4.6 Verification study

For verifying the proposed MWE finite element model for solving the incompressible

Navier-Stokes equations, two problems amenable to the analytical solutions are investi-
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gated in the domain of [0,1]× [0,1]

4.6.1 Steady-state analytical verification problem

The steady-state Navier-Stokes equations with the analytical velocities prescribed at the

boundary [51] will be solved at Re = 100

u(x,y)=
−2(1+y)

(1+x)2+(1+y)2

v(x,y)=
2(1+x)

(1+x)2+(1+y)2

According to the above solutions, the corresponding analytical pressure solution can be

derived as

p(x,y)=− 2

(1+x)2+(1+y)2

From Table 4.1, good agreement with the analytical solutions is seen. In addition, good

rate of convergence obtained from the computed L2-error norms at 212,412,612 and 812

nodal points is obtained.

4.6.2 Transient analytical verification problem

The transient Navier-Stokes equations amenable to the following analytical solutions are

also solved for the verification purpose

u(x,y,t)=−cos(πx)sin(πy)exp(−2π2t/Re)

v(x,y,t)= sin(πx)cos(πy)exp(−2π2t/Re)

p(x,y,t)=−1
4
(cos(2πx)+ cos(2πy))exp(−2π2t/Re)

All the calculations are carried out at different nodal sizes 212, 412,612 and 812 and time

step △t = 0.1. The computed L2 error norms at t = 4 and t = 8 tabulated in Tables. 4.1-

4.2 show good agreements with the analytical solutions. The applicability of the proposed

finite element scheme to solve the steady or transient incompressible Navier-Stokes equa-

tions is, therefore, confirmed.
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4.7 Numerical results
4.7.1 Lid-driven cavity problem

The lid-driven cavity problem schematic in Fig. 4.1 is regarded as the standard benchmark

problem because of its simple geometry, easy boundary condition implementation and its

embedded rich physical flow phenomena. The boundary velocities are zero everywhere

except along the lid-plane at y = 1. All the calculations with 1292 and 1512 nodal points

are carried out in the unit domain. The residual reduction profiles for all the investigated

cases are plotted in Fig. 4.2. The predicted streamfunction contours are plotted in Fig. 4.3.

For the sake of comparison, the predicted mid-section horizontal u(0.5,y) and vertical

v(x,0.5) velocity profiles plotted in Fig. 4.3 show good agreement with the steady-state

benchmark solutions of Ghia [52] and Erturk [53]. In addition, the velocity profile near

the boundary layer at Re = 10000 are also compared well with the reference solutions of

Coupez [54]. The proposed model is also applied to solve the transient problem case. For

the case at Re = 400, 1292 nodal points and △t = 0.1, the residual reduction profile is

plotted in Fig. 4.5. The predicted velocity profiles shown in Fig. 4.6 and Fig. 4.7 also

show good agreement with the reference solutions of Pontaza [55] and Dailey [56].

For the sake of completeness, the predicted eddy centers at T, BL1, BR1, BL2 and

BR2, shown in Fig. 4.1, are also compared well with the reference data that are summa-

rized in Tables 4.4-4.5. The applicability of the proposed finite element model to predict

the high Reynolds number incompressible flows is, therefore, confirmed.

4.7.2 Backward facing step flow problem

The second benchmark problem deals with the channel flow with a backward-facing step.

This well known problem has been extensively employed in code validation due to its

simple geometry and the presence of interesting flow phenomena such as flow separation,

flow reattachment and multiple recirculations. The problem is schematically shown in

Fig. 4.8. The ratio of the height of the backward-facing step, h, to the height of the down-

stream channel, H, is chosen to be h : H = 1 : 2. The previous study of Wang and Sheu [57]
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revealed that as L/h > 32, the flow solution becomes trustable since the simulated traction

force is zero. The downstream channel length is, thus, chosen as 20 in this study. Two

different cases schematic in Fig. 4.8 are investigated in the Reynolds number range of

100≤ Re≤ 800. The fully-developed flow profile u(0.5≤ y ≤ 1) = 24(1−y)(y−0.5)

is prescribed at the inlet boundary. No-slip condition is imposed at every solid wall and

the traction-free condition is imposed at the outlet boundary. The residual reduction pro-

files at Re = 800 are plotted in Fig. 4.9. For the sake of comparison, the predicted velocity

profiles u(3,y) and u(7,y) at Re=800 plotted in Fig. 4.10 are compared with the refer-

ence solutions of Gartling [58] and Erturk [59] with good agreement.

We denote x1 as the computed reattachment length of the recirculation region down-

stream of the step. The x2 and x3 are denoted as the separation and reattachment lengths

of the upper stream of the step, The comparison of x1 in the range of 100 ≤ Re ≤ 800

with the reference data of Erturk [59] in Fig. 4.11 shows that the predicted x1 reattach-

ment lengths are shorter for the cases without inlet channel. In addition, the compar-

isons of the predicted x2 separation and x3 reattachment lengths with other reference so-

lutions [58, 60–64, 66] are also tabulated in Table. 4.6.

4.7.3 Natural convection problem

Two-dimensional benchmark natural convection problem in an unit domain (0≤x,y≤ 1)

schematically shown in Fig. 4.12 is investigated by the following equations

∇ ·u= 0
∂u

∂t
+u ·∇u=−∇p+Pr∇2u+RaPr Ty

∂T

∂t
+u ·∇T = ∇2T (4.20)

Here T represents the temperature field, Pr and Ra denote the Prandtl and Rayleigh num-

ber, respectively. The boundary velocities at all walls are no-slip, while the temperatures

along the left hot wall are T = 1 and right cold wall are set to be T = 0. Along the hor-

izontal walls y = 0 and y = 1, the temperatures are assumed to be adiabatic (∂T∂y = 0).

The cases are investigated at Ra = 103,104,105,106,107 and 108 and Pr = 0.71. Uniform
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distribution of 129× 129 nodal points is employed for the cases with Ra = 103 ∼ 107

and 257× 257 for the case with Ra = 108. The residual reduction profiles for the cases

Ra = 107 and 108 are plotted in Fig 4.13. The predicted streamfunction and temperature

contours at Ra = 107 and 108 are plotted in Fig. 4.14. From Table 4.7, the predicted val-

ues of streamfunction at (0.5,0.5) at different Ra numbers are compared well with other

reference solutions given in [67–69]. In addition, the predicted velocity v and tempera-

ture T profiles plotted in Figs. 4.15-4.17 also show good agreements with the reference

solutions of Najafi [67].

For the sake of completeness, we can calculate the local Nusselt number Nux and

its average value Nu, which describe the heat transfer characteristic across the cavity, is

defined as

Nux =
∫∫∫ 1

0
Q(x,y)dy (4.21)

Nu =
∫∫∫ 1

0
Nuxdx (4.22)

where Q(x,y) = uT − ∂T
∂x denotes the local heat flux at any point in the cavity. The

Simpson rule is used to evaluate the Eqs. (4.21)-(4.22). One can clearly see from Fig. 4.17

and Table. 4.8 that the predicted local Nusselt number at hot wall and Nu are compared

well with other results given in [68–71].
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grid sizes
u-velocity v-velocity p-pressure

L2-norms R.O.C. L2-norms R.O.C. L2-norms R.O.C.

21x21 1.125E-4 – 1.194E-4 – 1.575E-3 –

41x41 1.289E-5 3.126 1.343E-5 3.152 4.018E-4 1.971

61x61 3.060E-6 3.547 3.156E-6 3.572 1.790E-4 1.994

81x81 1.044E-6 3.738 1.074E-6 3.747 1.006E-4 2.003

Table 4.1: The predicted L2 error norms for the steady-state analytical verification prob-

lem considered in Sec. 4.6.1.
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grid sizes
u-velocity v-velocity p-pressure

L2-norms R.O.C. L2-norms R.O.C. L2-norms R.O.C.

21x21 1.060E-2 – 1.329E-2 – 1.045E-2 –

41x41 1.908E-3 2.474 2.154E-3 2.625 5.073E-3 1.470

61x61 6.375E-4 2.704 7.107E-4 2.735 2.869E-3 1.406

81x81 2.888E-4 2.752 3.119E-4 2.863 2.010E-3 1.237

Table 4.2: The predicted L2 error norms at t = 4 for the transient analytical verification

problem considered in Sec. 4.6.2.

grid sizes
u-velocity v-velocity p-pressure

L2-norms R.O.C. L2-norms R.O.C. L2-norms R.O.C.

21x21 9.554E-3 – 1.197E-2 – 1.213E-2 –

41x41 1.677E-3 2.510 1.902E-3 2.654 4.365E-3 1.475

61x61 5.559E-4 2.723 6.182E-4 2.774 2.444E-3 1.430

81x81 2.501E-4 2.776 2.697E-4 2.883 1.710E-3 1.241

Table 4.3: The predicted L2 error norms at t = 8 for the transient analytical verification

problem considered in Sec. 4.6.2.
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Re

Symbol Authors 1,000 5,000 7,500 10,000

Primary Ghia et. al. [52] -0.1179 -0.1189 -0.1199 -0.1197

Present -0.1184 -0.1244 -0.1252 -0.1254

Location (x,y) (0.5313,0.5625) (0.5117,0.5352) (0.5117.0.5322) (0.5117,0.5333)

T Ghia et. al. [52] — 1.4564×10−3 2.0462×10−3 2.4201×10−3

Present — 1.2370×10−3 1.8700×10−3 2.3205×10−3

Location (x,y) — (0.0625,0.9102) (0.0664,0.9141) (0.0703,0.9141)

BL1 Ghia et. al. [52] 2.3112×10−4 1.3611×10−3 1.4670×10−3 1.5128×10−3

Present 2.2360×10−4 1.3130×10−3 1.4577×10−3 1.5265×10−3

Location (x,y) (0.0859,0.0781) (0.0703,0.1367) (0.0645,0.1504) (0.0586,0.1641)

BR1 Ghia et. al. [52] 1.7510×10−3 3.0835×10−3 3.2848×10−3 3.4183×10−3

Present 1.6892×10−3 2.9855×10−3 3.0928×10−3 3.0280×10−3

Location (x,y) (0.8594,0.1094) (0.8086,0.0742) (0.7813,0.0625) (0.7656,0.0586)

BL2 Ghia et. al. [52] — -7.0886×10−8 -1.8316×10−7 -7.7565×10−7

Present — -5.9553×10−8 -2.2905×10−7 -9.2063×10−7

Location (x,y) — (0.0117,0.0078) (0.0117,0.0117) (0.0156,0.0195)

BR2 Ghia et. al. [52] -9.3192×10−8 -1.4322×10−6 -3.2814×10−5 -1.3132×10−4

Present -7.6148×10−8 -1.3834×10−6 -2.6210×10−5 -1.2016×10−4

Location (x,y) (0.9922,0.0078) (0.9805,0.0195) (0.9492,0.0430) (0.9336,0.0625)

BR3 Ghia et. al. [52] — — 1.5811×10−9 5.6683×10−9

Present — — 1.1146×10−9 3.3595×10−9

Location (x,y) — — (0.9961,0.0039) (0.9961,0.0039)

Table 4.4: Comparison of the predicted streamfunction solutions with the results of

Ghia [52] for the lid-driven cavity problem considered in Sec. 4.7.1.
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Re

Symbol Authors 1,000 5,000 7,500 10,000

Primary Erturk et. al. [53] -0.1187 -0.1212 -0.1209 -0.1204

Present -0.1184 -0.1245 -0.1252 -0.1254

Location (x,y) (0.5300,0.5650) (0.5150,0.5350) (0.5133,0.5317) (0.5117,0.5300)

T Erturk et. al. [53] — 1.4416×10−3 2.1119×10−3 2.5870×10−3

Present — 1.2379×10−3 1.8714×10−3 2.3252×10−3

Location (x,y) — (0.0633,0.9100) (0.0667,0.9133) (0.0717,0.9117)

BL1 Erturk et. al. [53] 2.3266×10−4 1.3639×10−3 1.5171×10−3 1.5930×10−3

Present 2.2399×10−4 1.3162×10−3 1.4572×10−3 1.5250×10−3

Location (x,y) (0.0833,0.0783) (0.0733,0.1367) (0.0650,0.1517) (0.0583,0.1633)

BR1 Erturk et. al. [53] 1.7281×10−3 3.0835×10−3 3.2102×10−3 3.1758×10−3

Present 1.6892×10−3 2.9855×10−3 3.1088×10−3 3.0659×10−3

Location (x,y) (0.8633,0.1117) (0.8086,0.0742) (0.7900,0.0650) (0.7767,0.0600)

BL2 Erturk et. al. [53] -8.4221×10−8 -7.2080×10−8 -2.0202×10−7 -1.0151×10−6

Present -2.1484×10−8 -9.7635×10−8 -2.2905×10−7 -9.1216×10−7

Location (x,y) (0.0050,0.0050) (0.0083,0.0083) (0.0117,0.0117) (0.0167,0.0200)

BR2 Erturk et. al. [53] -5.4962×10−8 -1.4010×10−6 -3.0998×10−5 -1.3397×10−4

Present -7.2006×10−8 -1.4068×10−6 -2.7026×10−5 -1.2018×10−4

Location (x,y) (0.9917,0.0067) (0.9783,0.0183) (0.9517,0.0417) (0.9350,0.0667)

BR3 Erturk et. al. [53] — 2.1562×10−10 1.4409×10−9 5.1934×10−9

Present — 7.9339×10−10 3.7625×10−9 4.0978×10−9

Location (x,y) — (0.9983,0.0017) (0.9967,0.0033) (0.9967,0.0050)

Table 4.5: Comparison of the predicted streamfunction solutions with the results of

Erturk [53] for the lid-driven cavity problem considered in Sec. 4.7.1.
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Lower eddy Upper eddy Upper eddy
Authors reattachment separation reattachment

x1/h x2/h x3/h
Gartling [58] 6.10 4.85 10.48
Gresho et. al. [60] 6.08 4.84 10.46
Gresho et. al. [60] 6.10 4.86 10.49

No inlet Sani and Gresho [61] 6.22 5.09 10.25
channel Barton [62] 6.02 4.81 10.48

Keskar and Lyn [63] 6.10 4.85 10.48
Present 5.97 5.02 10.29
Sheu and Hsu [65] 5.73 4.65 10.02
Wan, Patnaik and Wei [64] 5.02 — —

With inlet Abide (Parabolic inlet) [66] 5.90 — —
channel Abide (uniform inlet) [66] 5.06 — —
(l = 25) Present (parabolic inlet) 5.80 4.93 10.03

Present (uniform inlet) 5.80 4.93 10.03

Table 4.6: Comparison of the reattachment and separation lengths for the backward-

facing step flow problem investigated at Re = 800.
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Ra 103 104 105 106 107 108

Najafi and Enjilela [67] 1.184 5.083 9.076 16.12 29.38 51.15

Kalita et. al [68] 1.174 5.071 9.111 16.32 — –

Ramawamy, Jue and Akin [68] 1.170 5.099 9.217 16.68 29.34 –

Dennis and Hudson [68] 1.175 5.074 9.113 — — –

Kalita, Dalal and Dass [68] 1.175 5.080 9.123 16.42 29.38 –

Sheu and Chiu [69] 1.174 5.070 9.103 16.35 29.43 –

Present work 1.174 5.066 9.125 16.40 29.34 52.27

Table 4.7: Comparison of the predicted streamfunction at (0.5,0.5) for the natural con-

vection problem considered in Sec. 4.7.3.

Ra 103 104 105 106 107 108

Chenoweth and Paolucci [68] 1.118 2.244 4.520 8.822 16.82 —

De Vahl Davis [68] 1.118 2.243 4.519 8.800 — —

Ball and Kuo [68] 1.118 2.248 4.528 8.824 16.52 —

Ho and Lin [68] 1.118 2.248 4.528 8.824 16.52 —

Kalita, Dalal and Dass [68] 1.118 2.245 4.522 8.829 16.52 —

Sheu and Chiu [69] 1.118 2.241 4.528 8.820 16.70 —

Dixit and Babu [70] 1.121 2.286 4.546 8.652 — —

Wan, Patnaik and Wei [71] 1.073 2.155 4.352 8.632 13.86 23.67

Present work 1.118 2.242 4.515 8.810 16.48 23.22

Table 4.8: Comparison of the predicted averaged Nusselt numbers Nu for the natural

convection problem considered in Sec. 4.7.3.
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Figure 4.1: Schematic of the lid-driven cavity problem considered in Sec. 4.7.1
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Figure 4.2: Residual reduction plots for the steady-state lid-driven cavity problem con-
sidered in Sec. 4.7.1. (a)-(b) Re = 5000 ; (c)-(d) Re = 10000.
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Figure 4.3: Comparison of the streamfunction contours and velocity profiles u(0.5,y)

and v(x,0.5) for the steady-state lid-driven cavity problem considered in Sec. 4.7.1. (a)-

(b) Re = 5000 ; (c)-(d) Re = 10000.

61



u

x

y v

-1 -0.5 0 0.5 1

0 0.5 1

0

0.5

1

-1

-0.5

0

0.5

1

Present, 129x129
T. Couplez et. al [54]
, 600x600

v(x,0.1)

u(0.1,y)

(a)

u

x

y v

-1 -0.5 0 0.5 1

0 0.5 1

0

0.5

1

-1

-0.5

0

0.5

1
Present, 129x129
T. Couplez et. al [54]
, 600x600

v(0.9,y)

u(0.9,y)

(b)

u

x

y v

-1 -0.5 0 0.5 1

0 0.5 1

0

0.5

1

-1

-0.5

0

0.5

1

Present, 129x129
T. Couplez et. al [54]
, 600x600

v(x,0.1)

u(0.1,y)

(c)

u

x

y v

-1 -0.5 0 0.5 1

0 0.5 1

0

0.5

1

-1

-0.5

0

0.5

1
Present, 129x129
T. Couplez et. al [54]
, 600x600

v(x,0.9)

u(0.9,y)

(d)

Figure 4.4: Comparisons of the predicted velocity profiles u(0.1,y), u(0.9,y),v(x,0.1)

and v(x,0.9) for the steady-state lid-driven cavity problem considered in Sec. 4.7.1. (a)-

(b) Re = 5000 ; (c)-(d) Re = 10000
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Figure 4.14: The streamfunction and T -temperature contours for the natural convection

problem considered in Sec. 4.7.3. (a)-(b) Ra = 107 ; (c)-(d) Ra = 108.
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Chapter 5

Iterative solver for three-dimensional
Navier-Stokes finite element equations

5.1 Introduction

It is well known that matrix equation arising from the mixed finite element formulation

for steady-state incompressible viscous Navier-Stokes equations lacks symmetry and def-

initeness. As a result, matrix equation becomes less diagonally dominant because of the

presence of many diagonal zeros in the global stiffness matrix. These diagonal zeros ow-

ing to the continuity equation can further increase the matrix condition number. A com-

plex distribution of eigenvalues for the matrix equation can furthermore cause the matrix

equation to become indefinite. These difficulties pose a grand computational challenge.

The Gaussian-elimination-based direct solver has long been considered as the only

way to circumvent the above difficulties. Unfortunately, the demand on the continued

fill-in in the calculation of three-dimensional finite element solution from a direct solver

is infeasible even if one uses state-of-the-art storage technology. Therefore, application

of direct solver may no longer be practical. For this reason, there is a strong need to use

iterative solver. As noted earlier, there is a trend toward using a robust iterative solver as

research moves toward three-dimensional flow problems. The iterative solver is a strong

rival to its direct counterpart because it is less prone to fill-in problems.

The iterative solver can be grouped into stationary and nonstationary type meth-

ods [72]. Stationary methods (e.g. Jacobi, Gaussian-Seidel, SOR) are older, simpler to
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understand and implement. However, they are usually not effective for solving the sparse

matrix equations. Nonstationary methods are a relatively recent development. Their anal-

ysis are harder to understand, but they can be highly effective. Therefore, the nonsta-

tionary or called Krylov subsapce methods will be adopted in this study rather than the

stationary methods. The Krylov subspace methods search for the solution of matrix equa-

tions A x = b in a certain subspace of the whole domain called the Krylov subspace. The

Krylov subspace is spanned by vectors of polynomial of A of the form P (A)r, where

P and r = b−A x represent the polynomial function and the residual, respectively. The

iterative solver then project the solution onto a Krylov subspace of increased dimensions

to converge towards the solution in each iteration.

It is known that the convergence behavior of iterative solvers depends greatly on the

condition number of coefficient matrix. If the condition number is large, it will make

the convergence behavior become very slow or even divergent. Hence, iterative method

usually involves a transformation matrix to transform the coefficient matrix into the one

with a smaller condition number. This transformation matrix is called the pre-conditioner.

A good preconditioner can improve convergence of the iterative solver, sufficiently to

overcome the extra cost of constructing and applying the pre-conditioner. Indeed, the

iterative solver may fail without a pre-conditioner.

5.2 Interpolation functions

Let Ω ∈ R3 be an open and bounded problem domain and ∂Ω = Γ denotes its bound-

ary. The steady incompressible Navier-Stokes equations cast in primitive-variable form is

given by

∇ ·u= 0 (5.1)

(u ·∇)u+∇p− 1
Re

∇2u= f (5.2)

where u= {u,v,w} denotes the velocity vector, p the pressure, Re the Reynolds number

and f the source term.
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In three-dimensional finite element calculations, univariant [73] rather than multivari-

ant element plotted in Fig. 5.1 is adopted because of its programming simplicity. The

primitive velocity vector is approximated using the following tri-quadratic interpolation

functions N j ( j = 1∼ 27)

N j =(
3
2

ξ̄2 +
1
2

ξ̄+1+ξ2−ξ2
j)(

3
2

η̄2 +
1
2

η̄+1+η2−η2
j)

(
3
2

ζ̄2 +
1
2

ζ̄+1+ζ2−ζ2
j). (5.3)

where ξ̄ = ξξ j, η̄ = ηη j and ζ̄ = ζζ j represent the normalized coordinates of the j-th

node. In the mixed finite element context, the pressure unknown is approximated using

the following tri-linear interpolation functions Ml (l = 1∼ 8) in order to satisfy the LBB

condition [45–47].

Ml =
1
8
(1+ ξ̄)(1+ η̄)(1+ ζ̄) (5.4)

5.3 The finite element formulation

The finite element matrix equation is obtained by substituting the finite element approxi-

mation uh = ∑27
j=1 u jN j and ph = ∑8

l=1 plMl for the respective u and p into the weighted

residuals statement of Eqs. (5.1)-(5.2). A sparse and unsymmetric indefinite matrix sys-

tem Ax = b can be derived as
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A =
∫

Ω



Ci j 0 0 −Ml
∂Ni

∂x1

0 Ci j 0 −Ml
∂Ni

∂x2

0 0 Ci j −Ml
∂Ni

∂x3

Ml
∂N j

∂x1
Ml

∂N j

∂x2
Ml

∂N j

∂x3
0


dΩ, (5.5)

x = {u j,v j,w j,pl} (5.6)

b =−
∫

Γout

Ni



pnx−
1

Re
∂uj

∂n

pny−
1

Re
∂vj
∂n

pnz−
1

Re
∂wj

∂n
0


dΓ. (5.7)

where n = {nx,ny,nz} represents the unit outer normal vector. The component Ci j in

Eq. (5.5) contains the biased part Bi = τ(Nmũm)
∂Ni
∂xk

which can be expressed as follows

Ci j = (Ni +Bi)(Nmũm)
∂N j

∂xk
+

1
Re

∂Ni

∂xk

∂N j

∂xk
. (5.8)

The stabilization parameter τ in Bi is determined via Eq. (3.18) in order to minimize the

wavenumber error of the convection term. In each element, the unsymmetric matrix equa-

tions shown in Eq. (5.5) needs to be calculated sequentially. All these elementary matrices

are than mapped into their appropriate global row and column index to form a large-sized

global matrix equations.

5.4 Newton linearization of the nonlinear convection term

To calculate the elementary matrix Eq. (5.5), the nonlinear convection term needs to be

linearized first. Since the linearization of convection term will significantly affect the

rate of convergence toward the final solutions. The choice of an appropriate linearization

method is, thus, an important topic in computational fluid dynamics. In three-dimensional

calculations, the Newton linearization [74] is employed to accelerate the nonlinear itera-

tion of the incompressible Navier-Stokes equations
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Taking the x-component momentum equation in Eq. (5.2) as example.

uux+vuy+wuz =−px+
1

Re
(uxx+uyy+uzz)+fx (5.9)

Linearization of the convection term on the left-hand side of Eq. (5.9) starts from rewriting

it as

(u2)x+(vu)y+(wu)z =−px+
1

Re
(uxx+uyy+uzz)+fx (5.10)

Consider a function st, we can expand it in Taylor series about the current value and

terminate the expansion after the first-derivative term to obtain

sk+1tk+1 = sktk+
[ ∂

∂s
(st)

]k
(sk+1−sk)+

[ ∂

∂t
(st)

]k
(tk+1− tk)+H.O.T.

= sk+1tk+sktk+1−sktk+H.O.T. (5.11)

In the following derivation, all variables denoted by superscript k are evaluated using

solution obtained from the previous nonlinear iteration. For those denoted by superscript

k+1, they are evaluated at the most updated nonlinear iteration and are, therefore, refered

to as the activity quantities. According to Eq. (5.11), the quantities (u2)x, (vu)y and

(wu)z can be expressed as follows :

(u2)xk+1 = (uk+1uk+ukuk+1−ukuk)x

= uk+1
x uk+uk+1uk

x+uk
xu

k+1 +ukuk+1
x −uk

xu
k−ukuk

x (5.12)

(vu)yk+1 = (vk+1uk+vkuk+1−vkuk)y

= (vk+1
y uk+vk+1uk

y+vk
yu

k+1 +vkuk+1
y −vk

yu
k−vkuk

y (5.13)

(wu)zk+1 = (wk+1uk+vkuk+1−vkuk)z

=wk+1
z uk+wk+1uk

z +wk
zu

k+1 +wkuk+1
z −wk

zu
k−wkuk

z (5.14)

Substituting Eqs. (5.12)-(5.14) into Eq. (5.10) and applying the continuity equation, one
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can obtain the linearized x-momentum equation

ukuk+1
x +vkuk+1

y +wkuk+1
z − 1

Re
(uk+1

xx +uk+1
yy +uk+1

zz )+uk
xu

k+1 +uk
yv

k+1 +uk
zw

k+1

New reaction term

+pk+1
x = fx+ukuk

x+vkuk
y+wkuk

z

New source term

(5.15)

The y- and z-component linearized momentum equations are obtained by following the

similar derivation. Neglect of the underlined terms from the Newton linearization equa-

tions results in the convectional lagging coefficient linearized equations.

Prior to applying the iterative solver to solve a large-sized matrix equation, it is in-

structive to perform calculations in the smallest size of 23 tri-quadratic elements. The

global matrix structure in the size of 23 elements is shown in Fig. 5.2. The red diamond,

green circle, blue square and black triangle symbols are contributed from the momentum

equations, continuity equation, Dirichlet boundary condition and Newton linearization

procedure, respectively. It is clearly seen the presence of diagonal zeros due to the use of

mixed finite element formulation.

5.5 The normalization procedure

It is known that no Krylov subspace iterative solver can be used to obtain unconditionally

convergent solution from the unsymmetric and indefinite finite element matrix equations

for the convection dominated flow problems [75]. In particular, this is true if the system

involves a complex eigenvalue distribution and has a large condition number. For these

reasons, the original unsymmetric indefinite finite element matrix equations A x = b can

be transformed into its equivalent SPD counterpart by multiplying the transpose matrix

AT on both sides to obtain

Ã x = b̃ (5.16)

where Ã = ATA and b̃ = ATb. This procedure is called the normalization procedure [72]

and the resulting SPD system is called the normal matrix equations. However, the normal-

ization procedure significantly alters the distribution of eigenvalues. More precisely, the
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nature of the matrix is changed from an indefinite matrix featuring imaginary eigenvalues

to a positive definite matrix containing only real eigenvalues. Furthermore, use of this

procedure largely increases the condition number in the sense that the condition number

of Ã is the square of the condition number of the original matrix A.

Since the convergence behavior of iterative solver strictly depends on the condition

number. The increase of the condition number due to the normalization procedure makes

the convergence of iterative solver become very slow or even divergent. To overcome this

difficulty, the matrix equations need to be pre-conditioned using a properly chosen pre-

conditioner. However, the traditional pre-conditioner is assumed to be in a global form

(e.g. ILU). The lack of matrix assembling procedure will lead to the pre-conditioning

difficulty. To overcome this problem, Hughes proposed the element-by-element pre-

conditioner [72]. Unfortunately, we deal with the normalized matrix equations instead of

the original ones, the value of elementary matrix
(
ATA

)
e is not available. In this study,

two polynomial-based pre-conditioners are employed to reduce the condition number of

normalized matrix equations.

5.6 The element-by-element technique

The application of the finite element method for the solution of Eqs. (5.1)-(5.2) usually

results in a sparse and ill-conditioned global coefficient matrix. Storing the full global

coefficient matrix will occupy a large amount of RAM memory. In order to reduce the

memory demands, one recommended way is to store the non-zero entries of the global

matrix in some sparse storage formats. Some sparse matrix formats, such as CSR (com-

pressed sparse row), HYB (Hybrid) and JAD (Jagged Diagonal) [72], store the non-zero

entries into an one-dimensional array and use some auxiliary arrays to indicate the loca-

tions of the non-zero entries. However, the use of sparse matrix format still requires a

large amount of RAM memory in three-dimensional finite element calculation because

the number of non-zero entries increases significantly as the problem size increases.

To overcome this difficulty, Hughes et al. proposed the memory-efficient element-by-
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element (EBE) technique to avoid assembling the global matrix [76, 77]. The underlying

idea of the EBE technique is based on the recognition that the assembling of elementary

matrices to form the global matrix is a linear operation. The global coefficient matrix

is obtained by sum up the all elementary matrices via the Boolean connectivity matrix.

Wang et al. implemented the EBE-BICGSTAB to solve the three-dimensional incom-

pressible Navier-Stokes equations [78]. Tezduyar combined the EBE and GMRES solver

to solve the fluid-structure interaction problem [79]. Phoon developed the generalized

Jacobi pre-conditioner to implement the CG solver together with the EBE strategy [80].

In the EBE context, the elementary matrices associated with each element are stored

and never assembled. Contrary to the sparse global matrix A, the elementary matrix A e

of size ne×ne (ne being the local degree of freedom) is usually dense.

Applying the EBE concept, the most time-consuming global matrix-vector product

operation Av for a given vector v in any Krylov subspace solver can be converted to

calculations in terms of element-wise calculations. We denote by Be the Boolean con-

nectivity matrix, which maps the entries of e-th elementary matrix A e into a global matrix

A. The global matrix-vector product Av can be reformulated as follows

Av =
Nel

∑
e=1

(Be)
TA eBev =

Nel

∑
e=1

(Be)
T
(

A eve

)
where Nel is the number of total elements. A global matrix-vector product can be, as a

result, represented by the operation carried out at element level for A e x e. This is means

that the product of global matrix and a vector is equivalent to the assembled vector of

the elementary matrix-vector product. Any Krylov subspace iterative method applied in

conjunction with the EBE technique has, therefore, a much lower memory demands. Be-

cause of this advantage, a large-scaled three-dimensional finite element flow calculation

can be carried out on a relative modest desktop. One more advantage of the EBE tech-

nique worth mentioning is that no global numbering skill (e.g. RCM [81]) is required in

order to minimize the global matrix bandwidth.
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5.7 Implementation of Dirichlet boundary condition on
elementary matrix

Since the global matrix is never assembled, the elementary matrix associated with el-

ements containing the boundary nodes must be, therefore, modified to incorporate the

Dirichlet boundary conditions. Note that the resulting elementary matrices must yield

the same effect of the global matrix obtained from the assembly procedure and Dirichlet

boundary condition implementation.

We denote by A e the e-th elementary matrix and the superscript b means that this

element contains the Dirichlet boundary condition node. For the sake of simplicity , we

take a domain containing the shaded Dirichlet boundary region shown in Fig. 5.3 as an

example. In Fig. 5.3, the number shown in the circle and the square symbol represent the

global and local numbering, respectively. Each global corner nodes, namely, 1, 7, 19 and

25 shares only one element, which is element 1, 2, 3 and 4 ,respectively. The middle edge

nodes (4,10,16,22) share with two elements, respectively. The node 13 is shared by four

elements. Thus for each boundary node (1,4,7,10,13,16,19,22,25), the data of (i) the ID of

boundary element ; (ii) the number of shared boundary node and (iii) the corresponding

local row index of the boundary element matrix A b
e, are required. Using these data, the

boundary element matrix A b
e and global right hand side vector can be, therefore, modified

for the inclusion of the Dirichlet boundary values.

The above procedure can be explained by considering the nodes 4, which are shared

by elements 1 and 2. The boundary elementary matrix A b
1 is given by
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A b
1 =



1 2 3 4 5 6 7 8

1 M(1)
11 M(1)

12 M(1)
13 M(1)

14 M(1)
15 M(1)

16 M(1)
17 M(1)

18

2 M(1)
21 M(1)

22 M(1)
23 M(1)

24 M(1)
25 M(1)

26 M(1)
27 M(1)

28

3 M(1)
31 M(1)

32 M(1)
33 M(1)

34 M(1)
35 M(1)

36 M(1)
37 M(1)

38

4 M(1)
41 M(1)

42 M(1)
43 M(1)

44 M(1)
45 M(1)

46 M(1)
47 M(1)

48

5 M(1)
51 M(1)

52 M(1)
53 M(1)

54 M(1)
55 M(1)

56 M(1)
57 M(1)

58

6 M(1)
61 M(1)

62 M(1)
63 M(1)

64 M(1)
65 M(1)

66 M(1)
67 M(1)

68

7 M(1)
71 M(1)

72 M(1)
73 M(1)

74 M(1)
75 M(1)

76 M(1)
77 M(1)

78

8 M(1)
81 M(1)

82 M(1)
83 M(1)

84 M(1)
85 M(1)

86 M(1)
87 M(1)

88


In Fig. 5.3, the boundary node 4 appears in both the elements 1 and 2 but with different

row index. It appears in the third row in the element 1 whereas it appears in the first row

in the element 2. As discussed by Reddy [11], the global matrix and right hand side

vector must be modified for the known value at the Dirichlet boundary node. This can be

achieved by enforcing the following conditions in A b
1

M(1)
11 = 1.0/S(1)1

M(1)
1 j = 0, j = 2∼ 8

b(1) = ϕ1

where S(1)1 = 1 in this example denotes the number of shared boundary node 1 of element

1 and ϕ1 is the Dirichlet boundary value of boundary node 1. Repeating this modification

procedure for other Dirichlet boundary nodes in the element 1, the resulting modified

boundary elementary matrix A b
1 is given by
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A b
1 =



1 2 3 4 5 6 7 8

1 1/S(1)1 0 0 0 0 0 0 0

2 M(1)
21 M(1)

22 M(1)
23 M(1)

24 M(1)
25 M(1)

26 M(1)
27 M(1)

28

3 0 0 1/S(1)3 0 0 0 0 0

4 M(1)
41 M(1)

42 M(1)
43 M(1)

44 M(1)
45 M(1)

46 M(1)
47 M(1)

48

5 0 0 0 0 1/S(1)5 0 0 0

6 M(1)
61 M(1)

62 M(1)
63 M(1)

64 M(1)
65 M(1)

66 M(1)
67 M(1)

68

7 0 0 0 0 0 0 1/S(1)7 0

8 M(1)
81 M(1)

82 M(1)
83 M(1)

84 M(1)
85 M(1)

86 M(1)
87 M(1)

88


where S(1)3 = S(1)5 = 2 and S(1)7 = 4. For the element 2, the modified elementary matrix

A b
2 is also given by

A b
2 =



1 2 3 4 5 6 7 8

1 1/S(2)1 0 0 0 0 0 0 0

2 M(2)
21 M(2)

22 M(2)
23 M(2)

24 M(2)
25 M(2)

26 M(2)
27 M(2)

28

3 0 0 1/S(2)3 0 0 0 0 0

4 M(2)
41 M(2)

42 M(2)
43 M(2)

44 M(2)
45 M(2)

46 M(2)
47 M(2)

48

5 0 0 0 0 1/S(2)5 0 0 0

6 M(2)
61 M(2)

62 M(2)
63 M(2)

64 M(2)
65 M(2)

66 M(2)
67 M(2)

68

7 0 0 0 0 0 0 1/S(2)7 0

8 M(2)
81 M(2)

82 M(2)
83 M(2)

84 M(2)
85 M(2)

86 M(2)
87 M(2)

88


where S(2)3 = 1, S(2)1 = S(2)7 = 2 and S(2)5 = 4. In general, if ϕbn is the Dirichlet boundary

value at the boundary node ’bn’, the modification procedure can be stated in the Algorithm

5.1. Note that the computational task of this algorithm is insignificant because the number

of boundary nodes is relatively small compared to the total number of grid points in the

problem domain
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Algorithm 5.1: The modification procedure on boundary elementary matrix A b
e

1 Nelb : The number of boundary elements ;
2 ne : The degree of freedom of elementary matrix ;
3 e : The ID of element containing the Dirichlet boundary node ;

4 S(e)k : The number of shared boundary node k in the element e ;
5 ϕbn : The Dirichlet boundary value at the boundary node ’bn’ ;

6 M(e)
i j : The (i, j)-component of matrix A b

e ;
7 b : The global right hand side vector ;
8 for e = 1 → Nelb do
9 Find the local row index r and global row index i for each boundary node k in

the element e ;

10 Set M(e)
rr = 1.0/S(e)k ;

11 for j = 1→ ne , j ̸= r do
12 M(e)

r j = 0
13 end
14 Set b(i) = ϕbn ;
15 end

After modifying the all boundary elementary matrices A b
e via Algorithm (5.1), it is

easy to verify that the assembled modified elementary matrices will produce the same ef-

fect of the global matrix. This procedure can be easily applied to modify the elementary

matrices discretized from the incompressible Navier-Stokes equations Eqs. (5.1)-(5.2) us-

ing the mixed finite element formulation.

5.8 Implementation of polynomial-based pre-conditioner

To reduce the condition number without deterioration of prediction accuracy, the Eq. (5.16)

should be pre-conditioned prior to the calculation of solution through iterative solver. In

this study, two pre-conditioners belonging to the class of polynomial pre-conditioners for

normalized matrix equations will be derived.

Start with the SPD normal matrix equations, we can rewrite it as AT A = D
[
I−

(
I−

D−1ATA
)]

or
(

AT A
)−1

=
[
I−

(
I−D−1ATA

)]−1
D−1, where D denotes the diagonal

part of ATA. Define G = I−D−1ATA, the matrix ATA can be expressed in terms of

the G as
(

ATA
)−1

= (I−G)−1D−1. Given this matrix G, one can rewrite (I−G)−1
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analytically in a form of binomial series as (I−G)−1 = ∑∞
k=0 Gk [72], provided that the

spectral radius of G is less than one. Hence, the inverse of the SPD matrix ATA can be

approximated analytically in terms of the following infinite series of matrix summation(
ATA

)−1
=

∞

∑
k=0

GkD−1 (5.17)

Approximation of
(
ATA

)−1 by choosing k = 0 and k = 1 leads respectively to D−1

and GD−1, which correspond to pre-conditioning the matrix AT A by employing the

well-known Jacobi pre-conditioner
(
M J

)−1
= D−1 and the polynomial pre-conditioner(

MP
)−1

= 2D−1−D−1AT AD−1, respectively.

Note that polynomial pre-conditioner can be employed, provided that the spectral ra-

dius of the matrix G is less than one. For this reason, the distribution of eigenvalues of G

in the size of 23 elements is plotted in Fig. 5.4, which shows that not all the eigenvalues

of G lie in the unit circle. This means that the spectral radius is greater than one, imply-

ing that Eq. (5.17) may not hold. To make the spectral radius of G smaller than one, the

so-called scaling parameter ω [72] is introduced for the approximation of AT A. In the

derivation, we start with ω ATA instead of ATA. Repeating the above derivation proce-

dure, the inverse of ATA can be derived as ω(I− Ĝ
−1
)D−1, where Ĝ = I−ωD−1ATA.

By applying the binomial series, the scaling polynomial pre-conditioner is derived as(
MSP

)−1
= ω

(
I− Ĝ

)
D−1 = 2ω D−1−ω2D−1ATAD−1 (5.18)

The remaining work is to determine the user’s specific scaling parameter ω in a way that

the spectral radius of Ĝ is less than one. For choosing a proper range of ω, as before the

finite element calculation is conducted in the size of 23 elements. In Fig. 5.5, the spectral

radius ρ is plotted with respect to the scaling parameter ω for the matrix equation Ĝ. It

can be clearly seen that the spectral radius is less than one in the range of 0 ≤ ω ≤ 0.1.

In this study, ω = 0.05 is chosen in the rest of our all calculations. For completeness,

the eigenvalues calculated at ω = 0.05 are also plotted in Fig. 5.6. It is clearly seen the

spectral radius of Ĝ is less than one.

85



5.9 Iterative matrix solver

Due to the unsymmetric and ill-conditioned properties of Eq. (5.5), it is a common practice

to solve the matrix equations using the direct solver. However, the use of direct solver for

three-dimensional problem produces prohibitively high computational costs. According

to author’s experience, the direct solver is suitable for two-dimensional problem whereas

iterative solver is more practical for three-dimensional problem. The reason is that storage

demands will be prohibitive in fill-in processed using direct solver with the increasing of

nodal points size.

Before investigating the different Krylov subspace iterative method, a basic idea of

the iterative solver is introduced firstly. Let D be the nonsingular diagonal part of A and

I be the identity matrix, one can apply the matrix-splitting operator to rewrite the system

Ax = b as

x = B̂x+ b̂ where B̂ = I−D−1A, b̂ = D−1b

and we obtain the following iteration formulation.

x n+1 = B̂x n + b̂ (5.19)

It is well known that the Eq. (5.19) will converge to exact solution x̂ = A−1b if and only if

the spectral radius ρ(B̂) is less than one [82]. Unfortunately, even the simplest boundary

value problem, like the Laplace equation, discretized by Galerkin finite element model,

shows that the Eq. (5.19) may converge very slowly.

Since the exact solution x̂ is unknown, we can not compute the error at the n-th itera-

tion step

d n = x n− x̂

In order to check the convergence, the n-th residual vector is normally employed.

r n = b−Ax n =−Ad n (5.20)
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Assuming D = I and letting B = I−A, we have

rn = b−Axn = Bxn +b−xn = B̂ x n + b̂−x n = xn+1−xn (5.21)

Hence, the iteration Eq. (5.19) can be rewritten as

xn+1 = xn + rn (5.22)

Multiplying the Eq. (5.22) by −A yields a recursive formulation for the residual.

r n+1 = r n−Ar n = Br (5.23)

One can compute r n either according to the definition Eq. (5.21) or by Eq. (5.23). From

Eq. (5.23), one can get by induction

r n = Pn(A)r 0 ∈ span{r 0,Ar 0,A2r 0, ...,An r 0} (5.24)

where Pn(ζ) = (1−ζ)n is a polynomial of degree n. From Eq. (5.22), we have

x n = x 0 + r 0 + · · ·+ r n−1 = x 0 +P n−1(A)r 0 (5.25)

with a polynomial Pn−1 of degree n− 1. The Eq. (5.25) shows that x n lies in the affine

space x 0+span{r 0, ...,An−1 r 0} and K n = K n(A,r 0) := span{x 0, ...,An−1 r 0} is called

the Krylov subspace [83]. The calculation of Pn−1(A)r 0 requires n− 1 matrix-vector

product operations because one needs to build up the subspace span{r 0, ...,An−1 r 0}.

This can be done by multiplying the vector r 0 by the matrix A and using the right hand

side to get A2 and so on.

We denote by K and L the search space and constraint subspace, respectively. The

idea behind Krylov subspace solver is to approximate the solution x from A x = b itera-

tively via a sequence of {x 1,x 2, ...,} so that the corresponding residuals r n(= b−Ax n)

is orthogonal to constraint subspace. i.e.

Find x n ∈ x 0 +K s.t. b−A x n ⊥ L

The Krylov subspace methods can be classified into the so-called orthogonal method

(L = K ) and non-orthogonal method (L ̸= K ). Krylov subspace method belong to both
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methods. The Conjugate Gradient (CG) method of Hestenes and Stiefel [84] is a rep-

resentation of orthogonal methods. It is the oldest and the best known Krylov subspace

method. It works effectively only for a symmetric and positive definite matrix equation

containing a clustered set of real eigenvalues and suffers from pivoting breakdown when

matrix symmetry is lost.

The BiConjugate Gradient (BICG) solver [85] was designed to handle the matrix

asymmetry. As with the CG solver, the BICG solver terminates in at most n-steps for

n× n matrix equation. The disadvantage is that there is no minimization property in BICG

solver and it results in the irregular convergence behavior. Other inherent deficiency is the

need of performing the matrix transpose operation. The Biconjugate Gradient Stabilized

method (BICGSTAB) of Van Der Vorst [86] improves the convergence behavior of the

BICG and no transpose matrix operation is required. The General Minimum RESidual

(GMRES) proposed by Saad [87] is the best well known non-orthogonal Krylov subspace

method. It is a generalization of a method called MINRES (MINimal RESidual) method

which can be used to solve nonsymmetric matrix equations

Since the CG solver has long been recognized as the optimal solver due to its ability

of obtaining the unconditionally convergent solution from symmetric and positive definite

(SPD) matrix equations. One possible cure for convergence difficulty when solving the

unsymmetric matrix equations Eqs. (5.5)-(5.7) is to deal with its equivalent SPD matrix

equations via normalization procedure. The CG solver can be therefore applied to get the

unconditionally convergent solution.

5.9.1 The pre-conditioned CG solver

The CG solver is the most well known of the Krylov subspace method for solving linear

systems for the SPD matrix equations. As mentioned early, the constraint subspace for

CG algorithm is chosen as L n = K n. The CG solver consists in generating a sequence

of vectors converging towards the exact solution vector. The vectors are generated by

searching a distance along a specific search direction, resulting in vectors being conjugate

to each other. The EBE-based pre-conditioned CG solver for solving the normal equa-

88



tions in this study is stated in Algorithm 5.2. Note that choosing M = I is equivalent to

the original CG solver.

Algorithm 5.2 : The PCG algorithm for A AT x = ATb

Starting from an initial guess x 0

Compute x ′0 = ∑e A ex 0, x ′′0 = ∑e A T
e x ′0, b′ = ∑e A T

e b ←− EBE procedure

p 0 = z 0

For j = 1,2, . . . , p ′j−1 = ∑e(A ep j−1) ←− EBE procedure

p ′′j−1 = ∑e(A T
e p′j−1) ←− EBE procedure

α j−1 = (p j−1,r j−1)/(p j−1,p
′′
j−1)

x j = x j−1 +α j−1p j−1

r j = r j−1−α j−1p ′′j−1

Convergence check

z j = M−1r j

←−M = M J or M = M SP

β j−1 = (z j,r j)/(r j−1,r j−1)

p j = z j +β j−1p j−1

end

In Algorithm 5.2, p is the search direction vector and α is the search distance along the

vector p for each iteration. The p j+1 and residual r j+1 of the Algorithm 5.2 are enforced

to be orthogonal to all previous p j and r j. Moreover, the coefficient α and β are used to

minimize (x j− x̂,A(x j− x̂)) in the affine space x 0 +K n where x̂ is the exact solution.

In general, this minimum is guaranteed to exist if the coefficient matrix is SPD. The CG

algorithm is attractive due to its cheap computational cost per iteration and low memory

requirement.
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5.9.2 The pre-conditioned BICGSTAB solver

Since the objective in this study is to advocate the use of PCG solver for solving the

normal system arising from the incompressible Navier-Stokes equations to get the un-

conditionally convergent solution. For the sake of comparison, the highly recommended

BICGSTAB solver is also applied to solve the original unsymmetric and indefinite matrix

equations. The BICGSTAB is a variant of CG which, in contrast to CG, can be success-

fully applied to solve the general matrix equations. The CG can only keep orthogonal

residual vectors for the SPD matrix equations. The idea behind the BICGSTAB is substi-

tuting the orthogonal sequence of residual by two mutually orthogonal sequence. It is a

projection process onto the search subspace

K n = span{ν , A ν , A2ν , ... , An−1ν}

and orthogonal to the constraint subspace.

L n = span{γ , ATγ , (AT)2γ , ... , (AT)n−1γ}

where γ = r 0/||r 0|| and r 0 denotes the initial residual vector. The vector ν in K n

can be chosen arbitrarily such that the inner product (ν,γ) ̸= 0. This solver is therefore

considered for the assessment purpose. The algorithm of the EBE-based pre-conditioned

BICGSTAB (PBICGSTAB) is stated in Algorithm 5.3.

Since no global minimum is guaranteed, the Algorithm 5.3 may lead to irregular con-

vergence behavior [78] and it occasionally fail to find a solution. The breakdown seems to

occur rarely in practice. The advantage of Algorithm 5.3 is that it still posses the attractive

features of CG method.

Algorithm 5.3 : The PBICGSTAB algorithm for A x = b

Starting from an initial guess x 0

Compute the initial residual r 0 = b−A x 0

M represents the pre-conditioner
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Choose ν, such that (ν ′,r 0) ̸= 0

For j = 1,2,. . . ,

ρ j−1 = (ν,r j−1)

if ρ j−1 < ε1 (near breakdown)

if j = 1

p j = r j−1

else

β j−1 = (ρ j−1/ρ j−2)/(α j−1/ω j−1)

p j = r j−1 +β j−1(p j−1−ω j−1 v j−1)

end if

Solve M p ′j = p j

v j = ∑e(A ep′j) ←− EBE procedure

α j = ρ j−1/(ν,v j)

if (ν,v j)< ε2 (near breakdown)

s j = r j−1−α jv j

Solve M s ′j = s j

t = ∑e(A es ′j) ←− EBE procedure

if ||s j||< ε

ω j = 0

else

ω j = (t,s)/(t, t)

end if

x j = x j−1 +α j p ′j +ω j s ′j ←− Update

r j = s j−ω j t

Convergence check

end
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5.9.3 The pre-conditioned GMRES solver

For the sake of completeness, the well-known GMRES solver, which is an extension of

MINRES solver [72], is also adopted for solving the original matrix equations. The GM-

RES was first proposed by Sadd [87] and is based on the well-known Arnoldi procedure.

It is an iterative method that approximates the solution of matrix equation by the vector

in Krylov subspace with minimal residual. The Gram-Schmidt orthogonalization pro-

cedure is adopted in order to construct the orthogonal basis of the Krylov subspace. In

GMRES, the search space and constraint subspace are taken respectively as K = K n and

L n = AK n. It can be proven that this choice of constraint subspace can minimize the

norm of residual in affine subspace x 0 +K n. i.e.

x n = Min ||b−A x || ∀ x ∈ x 0 +K m

The main steps of pre-conditioned GMRES (PGMRES) implemented in an EBE fash-

ion [88] are stated in Algorithm 5.4 :

Algorithm 5.4 : The PGMRES algorithm for A x = b

M represents the pre-conditioner

Starting from an initial guess x 0

For j = 1,2,. . . ,

Solve M r j = b−A x 0

v1 = r j/||r j||

s := ||r j|| e 1

For i = 1,2,. . . ,

z = A v j ←− EBE procedure

Solve M w = z

For k = 1,2,. . . ,

hk,i = (w,vk)

w = w−hk,ivk
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end

hi+1,i = ||w||

v = w/hi+1,i

Apply J1, ...,Ji−1 on (h1,i), ...,(hi+1,i)

Construct Ji, acting on the i-th and (i+1)-th component of h.,i

such that the (i+1)-th component of Ji h.,i is zero

s := Ji s

if s(i+1) is small enough, then UPDATE (x̃, i) and quit

end

UPDATE(x̃,m)

end

The UPDATE (x̃, i) procedure is as follows

Solve y from H y = s̃ in which the upper i× i triangular part of H has hi, j as its elements.

s̃ represents the first i components of s

x̃ = x 0 +∑i
k=1 y k v k

Compute||b−A x̃||2 and check the convergence

If x̃ is accurate enough, then terminate the calculation

else x 0 = x̃

In Algorithm 5.4, the vector y k is designed to minimize the residual ||b−Ax n||2. A

drawback of GMRES is that one need to store the whole Krylov subspace, requiring a

large amount of memory, and also increasing the work required per iteration. This can

be circumvented by restarting the GMRES iteration. After the chosen restart number m,

the accumulated data are cleared and the intermediate results are used as the initial con-

dition for the next m iterations. This procedure is repeated until the convergence criterion

is satisfied. This restart procedure decrease the memory requirement and deteriorates

the convergence but works reasonably well in practice. The choice of m is a matter of

experience. In this study, m is fixed as 5 for all computations.
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It is worth noting that the polynomial pre-conditioner can not applicable to indefinite

matrix calculation using either the GMRES or the BICGSTAB. Hence only the Jacobi

pre-conditioner can be implemented in the GMRES and BICGSTAB iterative solvers. As

before, the finite element calculation in 23 elements is carried out. One can clearly see

from Fig. 5.7 that the spectral radius can by no means be less than one.

5.10 Numerical results
5.10.1 Verification study

The first step toward verification of the developed incompressible Navier-Stokes three-

dimensional finite element code is to solve a problem amenable to analytical solution.

The problem under investigation is defined in a hexahedron of length 1. Along the cube

surfaces, the nodal velocities are analytically prescribed by u= 1
2(y

2+z2),v =−z, and

w = y. The corresponding pressure solution takes the form as

p=
1
2
(y2 +z2)+

2
Re

x

In the finite element verification study, which involves N number of unknowns, the mem-

ory is estimated to be O(N4/3) using the direct Frontal solver. Such a large memory

demand prohibits us from getting an accurate solution effectively using the Frontal solver

for large-scaled problem.

Three different element number are used to perform the convergence test. Table 5.1

tabulates the computed L2 error norms, from which the iterative solutions are seen to be

compatible with the solution by Frontal solver. The CPU times are summarized in Table

5.2. From these results, it is concluded that the direct Frontal solver is preferable to itera-

tive solvers when solving a smaller-size problem. Much of the CPU time is consumed in

the iterative solver. This points out the difficulty of solving the unsymmetric and indefinite

matrix equations.
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5.10.2 Lid-driven cavity flow in a cube

The lid-driven cavity problem schematically shown in Fig. 5.8 in considered for assess-

ment of the proposed three iterative solvers. To begin with, the predicted and referenced

mid-line velocity profiles [89] are plotted in Fig. 5.9. Good agreement of two solutions

is shown. Since one of our objectives is to demonstrate the necessity of normalizing the

matrix equations, the computed results using the BICGSTAB and GMRES solvers for the

original matrix equations and the CG solver for the normal matrix equations at different

nodal points are also tabulated in Tables 5.3-5.5. Unlike the other two solvers, steady

solution can be stably obtained by the CG solver for each investigated case. The necessity

of performing matrix normalization is therefore amply demonstrated.

While matrix normalization can be applied to get the steady-state solution using the

PCG solver, it will also bring in two drawbacks. One is related to the increased condition

number, and the other one is the necessity of performing additional matrix-vector multi-

plication. Since the convergence behavior of the Krylov subspace solver is very sensitive

to the condition number, a large condition number makes the CG solver converge very

slowly or even diverge. In Tables 5.3-5.5, the inner iteration number of the CG solver

is greater than those of the BICGSTAB and GMRES solvers. To reduce the condition

number and improve convergence, the pre-conditioning technique is adopted. The results

of PCG used together with the Jacobi and polynomial pre-conditioners at different nodal

points are shown in Tables 5.6-5.8. For the sake of completeness, the results obtained from

the PBICGSTAB and PGMRES solver along with the use of Jacobi pre-conditioner are

also shown in these tables. One can clearly see from Fig. 5.10 that for the case Re = 400,

the number of inner iteration for the PCG solver together with the pre-conditioner is much

smaller than the original CG, PBICGSTAB and PGMRES solver. As the Reynolds num-

ber is increased to 1000, one can see from Fig. 5.11 that the polynomial pre-conditioner

outperforms the Jacobi pre-conditioner in reducing the inner iteration number within the

context of the proposed PCG iterative solver.
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5.11 Conclusion remarks

The current finite element calculation of three-dimensional incompressible Navier-Stokes

equations has been carried out in tri-quadratic/tri-linear elements. The interpolation func-

tions for the primitive variables u and p satisfy the LBB compatability condition to cir-

cumvent the oscillatory pressure solution. To enhance numerical stability in association

with the predicted velocity, the stabilized term is added along the streamline direction. To

minimize the wavenumber error for the convection term, a proper upwinding coefficient

is rigorously chosen. Prior to the calculation of solution from finite element matrix equa-

tions, which has been transformed to a SPD matrix through the normalization procedure

of the original unsymmetric and indefinite mixed finite element equations. This procedure

is essential to reduce the condition number of the normalized SPD matrix equations. Both

of the Jacobi and polynomial pre-conditioners are investigated. To reduce the memory re-

quirement, the element-by-element strategy is implemented in the iterative solver. The

performance of three iterative solvers is also assessed. It is concluded that the use of CG

iterative solver together with the pre-conditioner for solving the normal matrix equations

is superior to the pre-conditioned GMRES and BICGSTAB iterative solvers for solving

the original matrix equations.
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Number of elements

Solver 43 83 163

u 1.532 ×10−3 8.241 ×10−4 –

Frontal
v 8.973 ×10−3 5.489 ×10−3 –
w 9.338 ×10−3 6.044 ×10−3 –
p 3.194 ×10−2 2.069 ×10−2 –
u 1.460 ×10−3 8.253 ×10−4 4.191 ×10−4

BICGSTAB
v 8.915 ×10−3 5.535 ×10−3 2.761 ×10−3

w 9.479 ×10−3 6.004 ×10−3 3.065 ×10−3

p 3.071 ×10−2 1.477 ×10−2 6.629 ×10−3

u 1.460 ×10−3 8.253 ×10−4 4.191 ×10−4

GMRES
v 8.915 ×10−3 5.535 ×10−3 2.761 ×10−3

w 9.479 ×10−3 6.004 ×10−3 3.065 ×10−3

p 3.073 ×10−2 1.481 ×10−3 6.695 ×10−3

u 1.460×10−3 8.254 ×10−4 4.191 ×10−4

CG
v 8.915×10−3 5.535 ×10−3 2.761 ×10−3

w 9.479×10−3 6.004 ×10−3 3.066 ×10−3

p 3.533×10−2 1.481 ×10−2 6.661 ×10−3

Table 5.1: The computed L2 error norms for the problem considered in Sec. 5.10.1. In

this table, ”-” means that the solution is not computable.

Solvers Total CPU time (s)
CPU time and percentage
in ( ) for iterative solver

BICGSTAB 4,608.6 4,527.5 (98.24%)

GMRES 11,459.1 11,257.4 (98.23%)

CG 3,015.2 2,967.4 (98.71%)

Table 5.2: The total CPU times for three solvers in 163 tri-quadratic elements.
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Solvers
Reynolds CPU No. of outer No. of inner iterations
number time (s) iterations at the n-th outer iteration

100 682.7 8 1,465 (n=4)
BICGSTAB 400 × × Break down

1000 × × Break down
100 300.2 6 430 (n=3)

GMRES 400 1,238.4 8 1,350 (n=4)
1000 2,623.3 9 2,120 (n=5)
100 795.4 8 2,073 (n=4)

CG 400 862.2 8 2,788 (n=4)
1000 1,937.7 10 5,463 (n=5)

Table 5.3: The finite element solutions computed from three iterative solvers for the

problem considered in a domain of 213 nodal points. The notation ”×” shown is this

table means that the solution is not computable.

Solvers
Reynolds CPU No. of outer No. of inner iterations
number time (s) iterations at the n-th outer iteration

100 5,853.1 7 3,040 (n=3)
BICGSTAB 400 30,622.5 8 5,585 (n=4)

1000 × × Break down
100 4,652.1 6 850 (n=3)

GMRES 400 12,468.4 7 1,760 (n=4)
1000 × × Break down
100 4,384.9 6 3,460 (n=3)

CG 400 9,490.4 7 4,428 (n=4)
1000 29,845.3 11 7,611 (n=6)

Table 5.4: The finite element solutions computed from three iterative solvers for the

problem considered in a domain of 413 nodal points. The notation ”×” shown in this

table means that the solution is not computable.
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Solvers
Reynolds CPU No. of outer No. of inner iterations
number time (s) iterations at the n-th outer iteration

100 57,630.5 6 3,090 (n=3)
BICGSTAB 400 172,855.2 8 9,995 (n=4)

1000 × × Break down
100 71,598.2 6 2,840 (n=3)

GMRES 400 151,312.7 7 4,070 (n=4)
1000 × × Break down
100 46,097.8 6 4,281 (n=3)

CG 400 88,192.9 8 6,001 (n=4)
1000 272,705.7 12 10,657 (n=6)

Table 5.5: The finite element solutions computed from three iterative solvers for the

problem investigated in a domain of 613 nodal points. The notation ”×” shown in this

table means that the solution is not computable.

Solvers
Reynolds CPU No. of outer No. of inner iterations
number time (s) iterations at the n-th outer iteration

100 294.6 6 1,400 (n=3)
PBICGSTAB 400 3,852.5 8 1,870 (n=4)

1000 × × Break down
100 254.1 6 300 (n=3)

PGMRES 400 1,033.5 8 930 (n=4)
1000 2,094.9 9 1,470 (n=5)
100 93.2 6 364 (n=3)

PJCG 400 362.5 8 1,230 (n=4)
1000 1,466.9 15 2,631 (n=8)
100 107.5 6 361 (n=3)

PPCG 400 425.4 8 1,229 (n=4)
1000 1,051.4 9 2,600 (n=5)

Table 5.6: The finite element solutions computed from three iterative solvers for the

problem investigated in a domain of 213 nodal points. The notation ”×” shown in this

table means that the solution is not computable. PJCG : CG iterative solver used together

with Jacobi pre-conditioner ; PPCG : CG iterative solver used together with polynomial

pre-conditioner.
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Solvers
Reynolds CPU No. of outer No. of inner iterations
number time (s) iterations at the n-th outer iteration

100 5,510.3 6 2,600 (n=3)
PBICGSTAB 400 10,297.1 8 4,870 (n=4)

1000 × × Break down
100 3,935.1 6 600 (n=3)

PGMRES 400 10,537.0 7 1,610 (n=4)
1000 × × Break down
100 1,918.3 6 986 (n=3)

PJCG 400 4,248.3 7 1,960 (n=4)
1000 13,167.7 9 5,017 (n=5)
100 2,711.5 6 978 (n=3)

PPCG 400 5,799.5 7 1,498 (n=4)
1000 12,230.8 9 3,301 (n=5)

Table 5.7: The finite element solutions computed from three iterative solvers for the

problem investigated in a domain of 413 nodal points. The notation ”×” shown in this

table means that the solution is not computable.

Solvers
Reynolds CPU No. of outer No. of inner iterations
number time (s) iterations at the n-th outer iteration

100 49,805.3 7 5,455(n=4)
PBICGSTAB 400 98,022.3 8 6,615(n=4)

1000 × × Break down
100 36,839.9 6 930(n=3)

PGMRES 400 82,338.9 7 1,670(n=4)
1000 × × Break down
100 25,153.4 6 1,996 (n=3)

PJCG 400 46,770.4 10 2,149 (n=5)
1000 172,560.3 15 6,218 (n=7)
100 32,717.1 6 2,395 (n=3)

PPCG 400 51,790.1 7 2,960 (n=4)
1000 133,386.8 11 5,329 (n=5)

Table 5.8: The finite element solutions computed from three iterative solvers for the

problem investigated in a domain of 613 nodal points. The notation ”×” shown in this

table means that the solution is not computable.
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: u , v , w

: u , v , w , p

Figure 5.1: Schematic of the primitive variable storing in a tri-quadratic element
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Continuity eq.
Momentum eqs.
BC (Dirichlet type)
Newton linearization

(a)

Continuity eq.
Momentum eqs.
BC (Dirichlet type)
Newton linearization

diagonal zero

(b)

Figure 5.2: Illustration of a 402 × 402 finite element matrix equation derived in the
23 tri-quadratic elements. The green square, red diamond, blue circle and black triangle
symbols represent the non-zero entries contributed from the continuity equation, momen-
tum equations, Dirichlet-type boundary data and Newton linearization, respectively. (a)
Global matrix profile; (b) Matrix profile in the dashed block of matrix (a).
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Figure 5.5: Predicted spectral radius of I−ω D−1 AT A versus the scaling parameter ω.
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Figure 5.8: Schematic of the three-dimensional lid-driven cavity problem considered in

Sec. 5.10.2
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Figure 5.9: Comparison of the predicted velocity profiles at the mid-plane y = 0.5. (a)

Re = 400; (b) Re = 1000.

106



Iteration number

R
es

id
ua

l

2000 4000
10-11

10-9

10-7

10-5

10-3

10-1 BICGSTAB
GMRES
CG

(a)

Iteration number

R
es

id
ua

l

1000 2000 3000 4000
10-11

10-9

10-7

10-5

10-3

10-1

PBICGSTAB
PGMRES
PJCG
PPCG

(b)

Figure 5.10: The residual reduction plots in one inner iteration (at the fourth outer iter-
ation) using the investigated iterative solvers to solve the incompressible Navier-Stokes
equations at Re = 400 in 413 nodal points. (a) Non pre-conditioned solvers; (b) Pre-
conditioned solvers.
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ation) using the investigated pre-conditioned iterative solvers to solve the Navier-Stokes

equations at Re = 1000 in 413 nodal points.
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Chapter 6

Parallel computing on GPU

It is well known that the calculation of finite element solution for the incompressible

Navier-Stokes equations is a computationally expensive task. In order to reduce the com-

puting time, computers have been developed with many cores executing in parallel (clus-

ters). However, these clusters are too expensive for most of the researchers.

In the past two decades, the Graphic Processing Units (GPUs) have experienced an

amazing evolution and become the trend in high performance computing community.

From a simple device to generate and exhibit the 2D/3D graphics to a highly parallel,

multithread, many-core device with enormous computational power and large memory

bandwidth. Today, they have been widely applied to many computational areas due to

the characteristic of massive multi-core parallelization, delivery of high throughput on

double-precision arithmetic and larger memory bandwidth compared with the traditional

CPU processor. This chapter introduces the GPU computing environment and the imple-

mentation details of the developed finite element GPU code. Firstly, the short history of

GPU and its hardware architecture are introduced. Secondly, the programming model for

GPU will be introduced. Due to the fundamental design difference between the CPU and

the GPU, some implementation details are introduced in order to obtain the finite element

solution on GPU. For the best speedup purpose, some optimization techniques are also

introduced. The developed GPU finite element code will be firstly verified by solving

the problem amenable to analytical solution. The benchmark lid-driven cavity problem is

then solved for the validation and performance analysis study.
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6.1 Introduction

In the past decade, the microprocessors based on a single CPU (Central Processing Unit),

such as those in the Intel Pentium family and the AMD Opteron family, have driven a

rapid performance increase and a dramatic cost reduction in high performance comput-

ing. Currently, these microprocessors have reached GFLOP/s and TFLOP/s floating point

performance1 per second to the desktop and the cluster, respectively.

However, the development of CPU became slow since 2003 due to energy consump-

tion and heat dissipation issues that limited the increase of clock rate and the level of

procedure activities that can be performed in each clock cycle within a single CPU. To in-

crease the computational power, multiple processing cores were placed on the same chip.

This hardware change has exerted a tremendous impact on the software developer com-

munity. These multi-core processors are now very useful in general purpose computation

but still lack appealing potential for high performance mathematical computations.

The GPUs were, unlike the CPUs, originally designed for rendering high resolution

graphics, mainly for the computer game industry. Graphic rendering is in nature highly

parallel, involving a large number of arithmetic operations on large data sets of pixels and

vertices. The demand for real time, high resolution 2D/3D graphics, has led to an evolu-

tion of GPUs into devices with enormous parallel computing capability [90, 91]. Several

orders of magnitude faster than the fastest multi-core CPU have been realized. Fig. 6.1

depicts the growing gap in peak performance which is measured in FLOP/s between the

CPUs and the GPUs over the last decade. It clearly reveals that NVIDIA’s GPUs have

outperformed Intel CPUs quite substantially.

The memory bandwidth2, which represents how fast the memory can be transfered

between the CPU/GPU and the DRAM memory, is another important factor which can

affect the performance of many computational tasks. Currently, GPUs have operated sev-

eral times the memory bandwidth of CPUs shown in Fig. 6.2. The above facts reveal

1Floating point operations per second (FLOPS) is a measure of processor’s performance. 1 GFLOP/s =
109 FLOP/s, 1 TFLOP/s = 1012 FLOP/s

2Bandwidth is an amount of data that can be transferred in a given amount of time
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that GPUs are considered to be highly parallel multi-core processors having a tremen-

dous floating point performance peak (GFLOP/s) and higher memory bandwidth (GB/s)

compared with the CPU.

While the development of GPU hardware has evolved toward more unified proces-

sors, it increasingly resembled high performance parallel computers. Some researchers

took notice of its potential computing power for general purpose computing and they

started trying to explore the use of GPU to solve the problems in science and engineering

communities. The field of GPGPU (General Purpose Graphic Processing Unit) has arisen

to be an important topic. The utilization of computational power of the GPU, however,

does not come for free. Programmers need to pose their problems as graphic rendering

tasks so that computations can be executed on GPUs via open library (e.g. OpenGL) or

graphic runtime API (Application Programming Interface) routines. This results in a high

learning threshold for programmers who are not familiar with the graphic programming.

In addition, the programming environment is very limited when it comes to the stage of

debugging

The first breakthrough of GPGPU programming was achieved due to the introduction

of Brook [92]. Brook, developed by researchers at Stanford University in 2004, provided

the programmers with an extension to C-based programming language that allows access-

ing GPUs for non-graphical computation. It keeps the programmers away from having a

knowledge of graphic programming language, programs written for GPUs using Brook

were able to run up to eight times faster than the similar code written for CPUs. Almost

at the same time, another similar programming model called Sh, which was developed by

researchers at Waterloo University [92], was presented as a library on top of C++. Like

Brook, Sh also supports graphic programming and adopts a stream concept for general

purpose programming.

In 2006, graphic programming took a leap forward when NVIDIA released its first

fully programmable G80-series GPU processor, built on what is called the Tesla architec-

ture, giving the birth of GPGPU computing to a wider public. Later on, a new program-
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ming model called CUDA (Compute Unified Device Architecture) [91] was introduced

by NVIDIA in 2007. CUDA is a general-purpose parallel computing architecture consists

of its own programming and execute model. This new parallel architecture allows the use

of NVIDIA’s GPU to solve many computationally intensive problems faster than with the

CPU counterparts. It provides programmers with a set of runtimes API that allow parallel

code to be executed only for NVIDIA’s GPUs without necessity of learning too much of

the graphic programming language. Therefore, GPUs used in non-graphic applications

have become an easy task. One of the NVIDIA’s goals in the creation of CUDA is to

allow programmers with certain background in common programming language (C/C++,

Fortran) to be able to access NVIDIA’s GPUs as much easy as possible.

The GPUs have found the way into today supercomputers, which increasingly use

GPUs for accelerating calculation and reducing power consumption. The newest Top500

list presented in June 2015 showed that three supercomputers on Top10 are composed of

CPUs and GPUs. Among them, the TITAN supercomputer in the Oak Ridge National

Laboratory is now ranked No. 2 and it was built with both CPUs and GPUs. The increas-

ing use of GPUs in high performance computing industry has made Intel come up with

a competing device, the Intel Xeon Phi accelerator [93]. The interest of major develop-

ers such as Intel, NVIDIA, and AMD, in the many-core architecture computing industry,

promises good future development in the high performance computational area.

6.2 GPU architecture

One natural question to be answered is that ”why there is such a large peak-performance

gap between CPUs and GPUs ?”. The answer lies in the difference in the fundamen-

tal design targets and the transistors which are distributed differently between these two

processors [94]. Fig. 6.3 shows a comparison of the general basic structures of a typical

CPU and a typical GPU [94]. In Fig. 6.3, orange region represents transistors devoted

to memory, yellow region represents transistors devoted to control logic units, and green

region represents transistors which are dedicated to performing arithmetic. Larger re-
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gions represent more transistors. The CPU is composed of arithmetic logic units (ALU),

control logic units and large cache memories is connected to a large amount of Dynamic

Random Access Memory (DRAM), of size in the order of gigabytes (GBs). It is proven

that the design of CPU is optimized for sequential code performance since it makes use

of sophisticated control logic units to allow instructions from a single thread3 to execute.

More importantly, cache4 memories are adopted to reduce the instruction, data access la-

tency 5 of large complex tasks. On the other hand, the GPU is designed to perform pure

arithmetic operations There is no need to devote a large amount of transistors to control

unit, branch predictor and cache, etc. Most of the transistors can be, therefore, used for

units which perform arithmetic operations. This design makes the GPU be optimized for

executing parallel computing tasks. Hereinafter, the term ”device” refers to the GPU and

the term ”host” refers to the CPU will be used.

The revolutionary era of GPU computing started with the G80-series processor by

NVIDIA. Later, the GT2000 processor which firstly supports double-precision floating

point number that complies with IEEE754 standard [94] was introduced in 2008. Apart

from this, a huge amount of data parallelism and data coalesced access is required in

order to take advantage of GPU’s architecture to achieve high performance. In 2012, the

Kepler-series GPU card with GK110 processor was presented. In this dissertation, two

different Kepler-series GPU cards, K20 and K40, will be adopted. The detailed features

of the adopted Intel CPU, K20 and K40 GPU cards are e tabulated in Table. 6.1.

Taking the architecture of Kepler K20 GPU card as an example. Fig. 6.4 shows the

basic structure of a CUDA-capable K20 GPU architecture. The K20 GPU has its own

DRAM memory that can be up to 5GB to exchange data between the CPU and GPU via

the PCI-Express interface. There are different memories in GPU that can be used and

controlled by the programmer, from fast to slow memories, depending on the data to be

accessed. In order to get a higher performance, some memory access pattern must be

3A thread is an element of data to be processed
4Cache is a high-speed memory used to reduce the time to access data from the main memory
5Latency can be regarded as the time between a task initialization and the time it begins to execute it.
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followed. Note that not all algorithms can take advantage of these fast memories.

The GK110 processor in K20 consists of 13 streaming multiprocessors (SMXs). Each

SMX is composed of 192 single- and 64 double-precision cores, 4 warp scheduler, 4

dispatch units, 32 special function units (SFUs) responsible for the calculations of some

special mathematical functions (e.g. sin,cos,exp,etc). The warp scheduler and the dis-

patch units enable launch of four warps concurrently. The 32 LD/ST units (Load/Store

units) are responsible for a load and store processing. The K20 GPU is clocked at 705

MHz which achieves total single- and double-precision floating point peak performances

at 3.52 and 1.17 TFLOP/s, respectively. Each SMX has its own on-chip memory of size

64KB that can be accessed both explicitly as the shared memory and implicitly as the

L1 cache. One can refer to NVIDIA Kepler whitepaper [95] for getting more detailed

features.

6.2.1 Memory hierarchy

The memory hierarchy in GPU is composed of some different types of memory ranging

from a small size with low latency to a large size with large latency. On-chip there are

registers, shared memory, and various caches (L1, L2, constant, and texture). Off-chip

there are global, local, constant, and texture memories. Local variables defined in device

code are stored in registers provided that there are sufficient registers available for use.

If there are no sufficient registers, data will be stored in local memory which seriously

reduces the performance. Shared memory belongs to the on-chip read/write memory and

is accessible only by threads within a block and has a latency of only 1-2 clock cycles.

Note that the benefit gained from shared memory can be only obtained if the number

of arithmetic operations is larger than the number of memory accesses. The L1 cache

consists of programmable shared memory and a general purpose cache. The latter is used

to accelerate random access operation. The size of the total L1 cache is 64 KB in Kepler-

series GPU.

Constant memory can be accessed and written from the host code, but is accessed-

only from threads in the device code. It is cache on device and is the most effective when
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threads execute the same value at the same time. Texture memory is similar to constant

memory in that it is accessed-only by device code. It is simply a different pathway for

accessing global memory, and is sometimes useful to avoid large global memory access

latency. The last level in this hierarchy is the off-chip global memory. It can be accessed

by all threads in GPU with the disadvantage of high access latency cost (hundred of clock

cycles). One strategy to hide access latency is to increase the parallel working threads.

Most of the data are usually stored in global memory since the size of global memory is

bigger than other memories. This can be achieved when dealing with huge amount of data.

One can refer to Table 6.2 for getting more key features of different device memories.

6.3 CUDA programming model

CUDA is a general-purpose parallel model developed to exploit the computational power

of NVIDIA’s GPU, based on a scalable programming model on an instruction set archi-

tecture. It supports common programming language, enabling programmers to execute a

parallel computational task only on NVIDIA’s GPU [91]. The idea behind the instruction

set architecture is to partition the problem into several smaller problems that can be solved

corporately, in parallel, by all threads in GPU.

A significant feature of CUDA model is that it adopts a heterogenous computational

framework, meaning that two different types of processors, CPU and GPU, are used to-

gether during programming execution. It allows programmers to exploit the strengths of

both types of processors. A standard CUDA code can, therefore, be regarded as a stan-

dard serial CPU host code plus an additional parallel GPU device code, as illustrated in

Fig. 6.5. The host code control function calls for device memory allocation, data transfer

between host and device, and function calls. The device code is responsible for time-

consuming computational tasks. This heterogeneous programming model simultaneously

enables running some codes on the device and some other codes on the host.

The execution of CUDA program is to write and launch the so-called kernel func-

tion. A kernel function, which is similar to the subroutine in Fortran, is executed in
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parallel on GPU by a set of threads. To launch a kernel function, the new program syn-

tax (<<<,>>>) is used and requires launching parameters, block dimensions and grid

dimensions.

To simply manage a large amount of threads, CUDA adopts the thread hierarchy

framework. The programmers need to decide the number of threads within a block before

launching kernel function. When a kernel function is launched, the execution is moved to

device and a large number of threads is created. These threads are grouped into blocks,

and blocks are grouped into grids. Each block is assigned to a SMX and the threads within

a block are executed in a group of 32 threads called warp. The size of warp is fixed and de-

pends on the device. The execution of a warp follows the Single Instruction Multiple Data

(SIMD) manner, meaning that each thread within the warp executes the same instruction

but acts on different data. This is a major advantage of the SIMD, implying that many

instructions and memory operations can be combined and coalesced [94]. The maximum

number of threads per block for the Kepler-series GPU in one, two and three-dimensions

is 1024 [95].

The threads within the same block can communicate with each other via block syn-

chronization and share data via shared memory. On the other hand, threads from different

blocks can not synchronize and can share the data only through the device global memory

accompanied with large access latency. Some blocks may be executed in parallel but not

necessary all, depending on the available resource. It is required that all blocks should be

executed independently. Blocks executing the same kernel function are batched together

into a grid. This execution hierarchy is an important feature of CUDA model, which

improves dramatically the execution efficiency and makes the GPU scalable.

6.4 CUDA Fortran programming

In the beginning of CUDA development, only the C-based programming language is sup-

ported to program and execute parallel codes on GPU. Fortran programmers either rewrite

their own developed program code or use iso c binding interface provided by For-
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tran 2003 to call CUDA C kernel function. In the late 2009, the CUDA Fortran complier

became available thanks to the joint work of the Portland Group (PGI) and NVIDIA [96].

Programmers now just need to use a few extensions to Fortran language to modify their

code to exploit the power of GPUs in their computations. This section introduces the

CUDA Fortran and presents some implementation details.

CUDA Fortran and CUDA C have much in common since CUDA Fortran is based on

the CUDA C runtime API. Just as CUDA C is an extension to C language, the CUDA

Fortran is also a set of programming extensions to Fortran. However, there are still some

differences in how the CUDA concepts are expressed using Fortran programming syntax.

As mentioned before, the execution of CUDA program is to write and launch the ker-

nel function. In CUDA Fortran, the kernel function is defined in Fortran module using the

attribute(global) qualifier as follows :

module CUDA Fortran module

contains

attributes(global) subroutine kernel 1()
...

end subroutine kernel 1

attributes(global) subroutine kernel 2()
...

end subroutine kernel 2

end module CUDA Fortran module

In the above CUDA Fortran implementation, the attribute global indicates that the

code is executed on GPU but is called from the host code. To identify the unique in-

dex of thread, block and grid, some built-in variables, namely, gridDim, blockDim,

blockIdx and threadIdx are used. Note that the index of threadIdx in CUDA

Fortran begins with 1, instead of 0, so a typical index calculation for each thread in CUDA
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Fortran should be expressed as

i = blockDim%x*(blockidx%x-1)+threadidx%x

This is in contrast to CUDA C’s :

i = blockDim.x*(blockidx.x)+threadidx.x

This is the major difference between the CUDA C and CUDA Fortran. The CUDA Fortran

also makes use of other attributes such as shared or value. Data stored in shared mem-

ory must be declared in device code with the shared variable attributes just as CUDA C

uses the shared qualifier. Some integer/real arguments passing to a kernel function

must be declared with the value variable attributes.

In host code the CUDAFOR module, which defines the CUDA runtime API routines,

is declared. The device variable in host code is declared with the device variable at-

tributes. For example

Real(kind=8) , device :: a d(N)

will allocate the one-dimensional array a d of size N on device. Device data can also be

declared as allocatable using the Fortran allocate statement :

Real(kind=8), allocatable, device :: a d(:)
...

Ierr = CudaMalloc(a d(N))

In the above, Ierr is an integer-type error code and CudaMalloc() function will

allocate the memory to a d on device. Note that the use of CudaMalloc() can guaran-

tee the data alignment in global memory. Once a program has allocated device mem-

ory for the data objects the data must be copied from host to device. The data are

then copied from device to host after the completion of parallel computation. The data

translation is completed via the CudaMemcpy() function. One of the two qualifiers

CudaMemcpyHostToDevice and CudaMemcpyDeviceToHost in CudaMemcpy()

is needed to be specified to indicate the transfer direction. At the end of host code, the

CudaFree() function is specified to free the memory on the device. Launching the

kernel function using the following execution syntax
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CALL kernel name<<< grid size,block size>>>(arg 1, arg 2,...),

where grid size is the number of blocks per grid and block size is the number

of threads per block. Use of the Syncthreads() function which is used inside a ker-

nel function is to guarantee that device has completed all the preceding requested tasks.

Reader can refer to the programming guide [96, 97] for more detailed implementation.

Global synchronization is not allowed by the CUDA Fortran model. The only way to

force a global synchronization is to exit the kernel function before launching a new one.

6.5 Implementation of iterative solvers on GPU

One of the applications that might be benefitted from the enormous computational power

of modern GPU is the application of iterative solvers to solve a large system of linear

equations. The main objective of this chapter is to solve the finite element equations

discretized from the incompressible Navier-Stokes equations on GPU. Special attention

was devoted to the sparse matrix-vector product (SpMV) operation due to its importance

in applying an iterative solver [98–100]. A good summary on the development of high

performance SpMV implementation on recent multicore and accelerator-based hardware

can be found in [101]. Some iterative solvers implemented on GPU architecture have

been reported in [102–104].

In Chapter 5, the efficiency of using the pre-conditioned conjugate gradient (PCG)

solver for solving the normalization matrix equations has been demonstrated. Now, the

current PCG solver will be implemented on GPU platform to obtain convergent solution

even quickly. The PCG algorithm is described as follows :

Starting from an initial guess x 0

M represents the Jacobi pre-conditioner

Compute x ′0 = ∑e A ex 0, x ′′0 = ∑e(A e)
T x ′0, b′ = ∑e(A e)

T b // matrix-vector product ;

Compute the initial residual r 0 = b′−x ′′0 // global update ;

Solve M z 0 = r 0 // pre-conditioning ;
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p 0 = z 0

For j = 1, 2, . . . ,

p ′j−1 = ∑e(A ep j−1) // matrix-vector product ;

p ′′j−1 = ∑e[(A e)
Tp′j−1] // matrix-vector product ;

α j−1 = (p j−1,r j−1)/(p j−1,p
′′
j−1) // inner product ;

x j = x j−1 +α j−1p j−1 // global update ;

r j = r j−1−α j−1p ′′j−1 // global update ;

Convergence check

Solve M z j = r j // pre-conditioning ;

β j−1 = (z j,r j)/(r j−1,r j−1) // inner product ;

p j = z j +β j−1p j−1 // global upadte ;

End

The main operations of PCG solver consist of (i) global update operation ; (ii) pre-

conditioning operation ; (iii) inner-product operation ; and (iv) matrix-vector product

operation. The main computational cost is the matrix-vector product operation (iV), in

particular in large-sized problem, while the cost of other operations is relatively small.

The operations (i) and (ii) are naturally parallelized owing to the chosen Jacobi pre-

conditioner. The implementations of operations (iii) and (iv) will be described in detail.

6.5.1 Inner product operation on GPU

Calculation of the inner product operation (iii) on GPU is implemented in two steps.

Firstly, the temporal vector c with size N is constructed to store the vector-vector product

ci = ai bi (i = 1, ...,N) of vectors a and b in GPU. Secondly, all the components in c

are summed up to get the inner product (a,b) = ∑N
i=1 ci. The above procedures can be

completed with two kernel functions: One is used for the vector-vector product and the

other one is used for the calculation of the sum.
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6.5.2 Matrix-vector product operation on GPU

It is proven that the SpMV operation is regarded as the most computationally intensive

part in most of the Krylov subspace iterative solvers. Great efforts have been made to

improve the performance of parallel SpMV implementations. Several research groups

have reported their implementations on high-performance SpMV on GPU [98–100]. A

good summary on the development of high performance SpMV implementation on recent

multi-core and accelerator-based hardware can be found in [101]. In these literatures,

the global matrix is, however, usually stored in some specific sparse matrix formats. The

choice of sparse matrix format essentially depends on the feature of the matrix and the

number of non-zero entries. The survey of sparse matrix can be found in the literature

[72]. Among them, the CSR format is the most common one and has been frequently

used.

As mentioned already, the use of sparse matrix format still encounters memory inten-

sive requirement problem because the number of non-zero entries increases significantly

as the problem size increases. In this study, we aimed to compute the matrix-vector prod-

uct without using any sparse matrix format. To this end, the EBE technique will be im-

plemented on GPU. Kiss et al. [105] also presented the similar technique, but the detailed

algorithm is not given therein.

In EBE context, the global matrix-vector A x can be decomposed into the sum of the

element-level matrix-vector (EMV) Ae xe

A x =
Nel

∑
e=1

(Be)T(Ae xe) (6.1)

where Be denotes the Boolean matrix, which maps the entries of e-th element matrix

Ae into a global matrix A. Calculation of the global matrix-vector product on GPU via

Eq. (6.1) is, therefore, a challenging task.

In the developed EMV kernel function (Algorithm 6.1), each block with ne threads (ne

being the local degree of freedom) is responsible for computing the product of one row

vector of matrix to its corresponding vector. Therefore, ne blocks are used to compute
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one element matrix-vector product. The above algorithm is described in Algorithm 6.1

Algorithm 6.1: EMV kernel function
1 Ae(ne,ne) : The e-th elementary matrix element matrix ;
2 xe(ne) : corresponding vector ;
3 B i : The i-th block containing ne threads in device ;
4 E : A collection of elements ;
5 for e ∈ E do
6 for i = 1 → ne do

7 Compute

partial product︷ ︸︸ ︷
Ae

i, j xe
j and store in Bi //parallel ;

8 Compute the sum
ne
∑
j=1

(Ae
i, j xe

j) //parallel ;

9 end
10 end

The Algorithm 6.1 may, however, result in an incorrect result due to the presence of

the so-called race condition [105]. Race condition occurs in GPU computation if any two

threads try to read or write the same GPU memory location simultaneously. Such a read

or write leads to information loss and incorrect result. Since in the CUDA execution no

information is given about which thread performs the specific task, the fastest thread will

perform the task.

To avoid race condition problem, one can use the atomic update or the element color-

ing technique [105]. The former refers to protect the memory space during I/O causing

other threads to access the same memory space to wait until the operation is fully com-

pleted. The latter refers to partition elements into a finite disjoint element subsets marked

with different colors such that any two elements in a given subset are not allowed to share

the same global node, as illustrated in Figs. 6.6-6.7. Different colors are displaced in pro-

cess serially, while elements within the subset marked with the same color are invoked in

parallel. In this study, the element coloring strategy shown in Algorithm 6.2 is adopted

because it is effective and run only once during the 2D/3D mesh generation.

The Algorithm 6.2 is very simple, but it may generate color distributions that are

usually uneven. We therefore add a second step to balance the number of elements inside
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Algorithm 6.2: 2D/3D Mesh coloring algorithm
1 Nel : The number of elements ;
2 E : A collection of elements ;
3 Ee : The e-th element ;
4 Color(Nel) : The color ID of each element ;
5 for e=1→ Nel do
6 Cused(1) = 1 , . . . , Cused(Nel)=Nel // Initialize the Cused array ;
7 for k = 1→ Nel-1 do
8 check the all neighbors of e-th element Ek ∈ E/Ee ;
9 if (Ek is colored) then

10 Cused(Color(k)) = Nel+1
11 end
12 end
13 Color(e) = Min{Cused} // mark the element with color ;
14 end

each mesh subset of a given color, as stated in [106].

6.6 Optimization

In order to maximize the GPU’s computation power for the finite element calculation,

the currently developed device code must be optimized via several aspects of the kernel

function design. In this section, two techniques are adopted in order to improve the per-

formance of speedup. The first skill is to exploit a global memory coalescing. The other

one is related to the utilization of the shared memory. Both skills are described below.

6.6.1 Global memory coalescing

Before launching the kernel functions on GPU, data must be copied from host to device

and store in the global memory. Global memory is a large-sized memory but has a much

higher latency (about 400 to 800 clock cycles). It is not cached, so it is very important to

follow a right pattern to access global memory efficiently.

Global memory is typically accessed via DRAM (Dynamic Random Access Memory).

Accessing DRAM is normally a slow process and has thus a large access latency and a

finite access bandwidth. How to optimally access data from global memory plays a key
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role to determine if a better parallel performance can be achieved. In GPU architecture,

global memory is accessed by a half warp (for device of compute capability 1.x) or by

a warp (for device of compute capability 2.x). When all the threads in a warp execute

the load instruction, the hardware will detect what has been accessed in the continuous

memory region. If all threads in a warp access the continuous global memory region,

then these accesses can be coalesced and combined into a single memory transaction.

Therefore, storing the data in a special aligned data format to guarantee that the threads

in a warp can access the continuous global memory region is worthy to be done.

To avoid race condition, elements are divided into several different disjoint subsets

and they are marked by different colors. Our strategy to improve the access efficiency

is to store all the elementary matrices Ae in global memory in the color order instead of

the element id order, as illustrated in Fig. 6.8. The advantage of this data arrangement is

that the global memory coalescing can be guaranteed. In addition, the degree of freedom

(DOF) for each element is 22 in two- and 89 in three-dimensional problem in the chosen

velocity-pressure interpolation functions. In the EMV kernel function, the block size is,

therefore, chosen as the DOF in order to compute the SpMV product exactly. However,

it is known that the number of threads has been chosen as the multiple of 32 which is the

size of a warp to render a high performance [94]. One can therefore extend the length

of each row from the DOF to the multiple of warp size (e.g. 96 in three-dimensional

problem) by filling up the zero entries, as illustrated in Fig. 6.9.

6.6.2 Shared memory

Shared memory is classified to be the on-chip read/write memory and threads within the

same block can access and share the data with the latency of only 1-2 clock rates. It is

therefore considered to be an important optimization technique and it can provide us an

efficient means for threads to cooperate with each other.

In PCG solver, an important question in inner product operation (iii) is how the tem-

poral products in vector c are summed up effectively on GPU. The vector c is originally

stored in the global memory. To improve the computational efficiency, each thread block
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can calculate a partial sum of a section of vector c. This can be done by loading the com-

ponents of the section into the shared memory. The parallel reduction is then performed

in each block to obtain the partial sum quickly via the shared memory. These partial sums

are then copied from device to host to sum up the final inner product. Note that this op-

timization technique is also applied to Algorithm 6.1 (line 8) with the block size of ne

threads.

6.7 Description of GPU code

The flow chart of the developed finite element GPU code for solving the fluid and heat

flow problems is stated in Fig. 6.11, The mesh is generated by using the house-developed

program for regular geometry and commercial mesh generator Gambit for irregular ge-

ometry. Irregular geometry is constructed by using the commercial software Rhino.

In order to run the program, two input files are required. One is the mesh file contain-

ing the basic mesh parameters, domain coordinates, mesh connectivity, fluid properties

and boundary conditions. Another is the data of the inlet and outlet boundary when solv-

ing the inlet/outlet flow problem.

When executing the program, the problem loads the mesh file and organizes some nec-

essary data. These data are then copied from host to device for finite element calculations.

The GPU takes the most expensive computational tasks. The CPU is responsible for or-

ganizing the data, calling the kernel functions and checking the convergence. Calculation

will stop if the convergence criterion is satisfied. All the computations were performed

with an Intel I7-4820K (CPU) containing 8 cores. Since the problem size is limited by

the on-board GPU global memory, the two- and three-dimensional computations were

performed on K20 and K40 GPU, respectively.

6.8 Numerical study

Two test problems, including the analytical verification and the benchmark lid-driven cav-

ity flow problems, are chosen to test the currently developed finite element GPU code for
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the incompressible Navier-Stokes equations. All the calculations are executed using the

IEEE754 satisfying double-precision floating-point representation. The problems pre-

sented here will be also solved using the serial CPU code for the performance analysis of

speed up.

6.8.1 2D verification study

The first step toward verification of the GPU code is to solve equations amenable to analyt-

ical solutions. In the unit square domain the problem amenable to the analytical solutions

is given below

u= 1− expλx cos(2πy) (6.2)

v =
λ

2π
expλx sin(2πy) (6.3)

p=
1

2
(1− exp2λx) (6.4)

where λ = Re
2 − (Re2

4 +4π2)1/2. The Reynolds number chosen for this study is 1000.

The predicted L2 error norms obtained at different nodal points are tabulated in Table.

6.3. Good agreement between the numerical and analytical solutions is clearly shown.

For the sake of comparison, all the calculations will be also carried out using the serial

CPU code and the predicted L2 norms are tabulated in Table. 6.3 as well.

6.8.2 3D verification study

The problem under investigation is defined in a hexahedron of length 1. Along the cube

surfaces, the nodal velocities are analytically given below.

u=
1
2
(y2+z2) (6.5)

v =−z (6.6)

w = y (6.7)

The corresponding analytical pressure takes the form p = 1
2(y

2+ z2)+ 2
Rex. All the

calculations at Re = 1000 are carried out using the serial CPU and parallel GPU code,

respectively. The predicted L2 error norms tabulated in Table 6.4 show good agreement
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with the analytical solutions. The developed finite element GPU code for solving the two-

and three-dimensional incompressible Navier-Stokes equations is analytically verified.

6.8.3 Lid-driven cavity flow problem

The benchmark lid-driven cavity flow problems schematic shown in Fig. 4.1 and Fig. 5.8

are used to validate the developed finite element GPU code. In an unit cubical cavity,

an unit velocity is prescribed on the lid boundary while on the other boundary no-slip

condition u = 0 is specified. The predicted two- and three-dimensional velocity profiles

at different Reynolds numbers are compared with the benchmark solutions of Ghia [52]

and Ding [89]. Good agreement shown in Fig. 6.12. demonstrates that the developed

finite element GPU code can be used to accurately predict the incompressible fluid flow

in the cavity.

6.9 Performance analysis
6.9.1 Introduction

In this section, a performance comparison between the developed CPU and GPU code

is discussed, with the goal of exploring the benefit of running the computer program on

GPU. The benchmark lid-driven cavity problem investigated before is used to perform

computations at different grid sizes to assess the speedup performance.

Since GPU is suitable for parallel algorithm, especially for those with high data paral-

lelism. The performance analysis in this section is based on the degree of grids refinement.

By increasing the grid sizes, the amount of load and computing time also increases sig-

nificantly. In order to analyze the performance, a summary of some important routines in

the current developed code is listed in Table 6.5. The bold red triangle symbol indicates

that the routine is fully executed on CPU, whereas the green circle symbol indicates that

the routine is fully executed on GPU. Note that the hybrid CPU/GPU platform requires

three additional routines in comparison with the CPU platform counterpart. This table is

further used to address the time measurement obtained from both CPU and GPU codes.
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Following the nomenclature given to each routine, a short description of some routines

is given below.

• Data preparation

This routine consists of loading the domain coordinate, mesh connectivity informa-

tion and boundary condition data. In addition, the values of interpolation functions,

derivative of interpolation functions and weighted factors associated with the total

Gaussian quadrature points are also evaluated. Moreover, the Boolean matrices for

each element are constructed in this routine.

• Element coloring

The coloring routine (Algorithm 6.2) runs on CPU since it is effective and runs only

once. Note that this routine is only executed on a hybrid CPU/GPU platform.

• Initial condition

The steady-state solutions at low Reynolds number are used to be the initial condi-

tion for all the problems at high Reynolds number.

Time measurements of each routine for the CPU and GPU code are obtained via the

command clock system(). Note that the command Syncthreads() in GPU code

must precede the time measurement command in order to guarantee all the threads in

GPU have completed all computations.

The two- and three-dimensional lid-driven cavity flow problems at two different Reynolds

number are used to assess the performance of CPU and CPU/GPU platforms. The details

of the grid sizes used in the performance analysis are listed in Tables. 6.6 and 6.7. The

nomenclature introduced in Table 6.5 will be useful to clearly indicate the most time-

consuming routine and how they scale with mesh refinement.

The first task toward the performance analysis is to justify the need of GPU platform.

For all the considered cases, the computation time and its relative time of each routine ex-

ecuted on CPU platform are tabulated in Tables. 6.9.1-6.9.1. One can clearly see that the
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SOLV routine is the most time-consuming, up to 99% of the total computation time. The

computation time for executing other routines is relatively small and can be negligible.

It is well known that the good parallel performance is achieved if the most computa-

tionally intensive part is accelerated. This justifies the need for a complete implementation

of the iterative solver on GPU in order to take advantage of the available GPU computing

power. The computation time of each routine executed on a hybrid CPU/GPU platform is

tabulated in Tables. 6.12-6.15 and the speedup ratio between the these two platforms are

summarized in Table. 6.16- 6.19 by presenting the total computational time and the re-

spective speedup ratio. The speedup indicates how fast the GPU runs in comparison with

its CPU counterpart. The speedup ratio for all considered cases are plotted in Figs. 6.13.

The speedup increases with respect to the increasing grid sizes and Reynolds number.

Thus the increase of computation tasks raises the speedup ratio considerably higher.
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Memory Location Cached Device access Scope Lifetime
Register On-chip N/A R/W One thread Thread
Shared On-chip N/A R/W All threads in block Thread block
Local DRAM Yes R/W One thread Thread
Global DRAM Yes R/W All threads in block Program

Constant DRAM Yes R All threads in block Program
Texture DRAM Yes R All threads in block Program

Table 6.2: Some features of different GPU device memory types

Grid size Platform ||u−uexact ||2 ||v−vexact ||2 ||p−pexact ||2

212 CPU 6.182×10−5 5.708×10−6 2.785×10−5

Hybrid 6.182×10−5 5.708×10−6 2.785×10−5

412 CPU 5.656×10−6 4.392×10−7 4.464×10−6

Hybrid 5.656×10−6 4.392×10−7 4.464×10−6

612 CPU 1.630×10−6 1.494×10−7 1.949×10−6

Hybrid 1.630×10−6 1.495×10−7 1.950×10−6

812 CPU 7.183×10−7 9.592×10−8 1.189×10−6

Hybrid 7.183×10−7 9.591×10−8 1.189×10−6

Note : Hybrid denotes the hybrid CPU/GPU platform

Table 6.3: The computed L2 error norms obtained at different grids for the 2D verification
problem considered in Sec. 6.8.1.

Grid size Platform ||u−uexact ||2 ||v−vexact ||2 ||w−wexact ||2 ||p−pexact ||2

213 CPU 2.450×10−4 1.739×10−3 1.998×10−3 9.945×10−3

Hybrid 2.450×10−4 1.739×10−3 1.997×10−3 9.943×10−3

413 CPU 1.451×10−4 9.783×10−4 1.170×10−3 4.936×10−3

Hybrid 1.451×10−4 9.783×10−4 1.170×10−3 4.935×10−3

613 CPU 1.033×10−4 6.791×10−4 8.248×10−4 3.305×10−3

Hybrid 1.032×10−4 6.791×10−4 8.247×10−4 3.303×10−3

813 CPU 8.000×10−5 5.196×10−4 6.354×10−4 2.480×10−3

Hybrid 8.000×10−5 5.196×10−4 6.365×10−4 2.481×10−3

Table 6.4: The computed L2 error norms obtained at different grids for the 3D verification
problem considered in Sec. 6.8.2.
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Routines Nomenclature CPU GPU+CPU

Data preparation DATA N N
Elements coloring ECOL – N
Host to device HTOD – N
Compute all Ae MATX N N
Compute ATb NORB N •
Compute M PREC N •
Solve ATA = ATb SOLV N •
Device to host DTOH – N
M : Jacobi pre-conditioner

Table 6.5: Summary of the most important routines on the implementation platforms

M1 M2 M3 M4 M5
Element sizes 1600 2500 3600 6400 10000

Node sizes 6561 10201 14641 25921 40401
Total DOF 14803 23003 33003 58403 91003

Table 6.6: Meshes used in the performance analysis of the 2D lid-driven cavity problem
considered in Sec. 6.8.3.

M1 M2 M3 M4 M5
Element sizes 1000 3375 8000 27000 64000
Nodal sizes 9261 29791 68921 226981 531441
Total DOF 29114 93469 216024 710734 1663244

Table 6.7: Meshes used in the performance analysis of the 3D lid-driven cavity problem
considered in Sec. 6.8.3.
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M1 M2 M3 M4 M5

DATA
0.304 0.475 0.868 1.404 2.277

(0.021%) (0.016%) (0.016%) (0.010%) (0.007%)

MATX
2.037 2.925 4.086 7.330 11.241

(0.143%) (0.101%) (0.076%) (0.052%) (0.035%)

NORB
0.245 0.378 0.487 0.892 1.349

(0.017%) (0.013%) (0.009%) (0.006%) (0.004%)

PREC
0.407 0.609 0.814 1.499 2.355

(0.029%) (0.021%) (0.015%) (0.011%) (0.007%)

SOLV
1362.064 2845.961 5313.823 14162.614 32029.803

(99.781%) (99.846%) (99.882%) (99.922%) (99.772%)
Total 1365.057 2850.348 5320.078 14173.739 32047.025

Table 6.8: Timing in seconds of each routine executed on CPU platform with different

nodal points for the 2D lid-driven cavity flow problem investigated at Re = 1000. The

value is ”()” denotes the relative time.

M1 M2 M3 M4 M5

DATA
0.302 0.472 0.689 1.248 1.914

(0.007%) (0.006%) (0.005%) (0.004%) (0.003%)

MATX
2.813 3.108 4.410 8.213 12.421

(0.070%) (0.038%) (0.031%) (0.024%) (0.019%)

NORB
0.319 0.381 0.531 1.031 1.519

(0.008%) (0.005%) (0.004%) (0.003%) (0.002%)

PREC
0.508 0.657 0.914 1.541 2.623

(0.013%) (0.008%) (0.006%) (0.005%) (0.004%)

SOLV
4025.668 8245.954 14120.571 34015.611 66933.028

(99.902%) (99.944%) (99.954%) (99.965%) (99.972%)
Total 4029.610 8250.572 14127.115 34027.644 66951.505

Table 6.9: Timing in seconds of each routine executed on CPU platform with different

nodal points for the 2D lid-driven cavity flow problem investigated at Re = 5000. The

value is ”()” denotes the relative time.
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M1 M2 M3 M4 M5

DATA
4.227 17.721 49.545 245.864 939.764

(0.179%) (0.184%) (0.167%) (0.158%) (0.162%)

MATX
12.027 36.909 94.396 554.422 1862.125

(0.508%) (0.384%) (0.317%) (0.355%) (0.321%)

NORB
0.452 1.310 3.104 17.117 69.612

(0.019%) (0.014%) (0.010%) (0.011%) (0.012%)

PREC
1.918 5.772 13.915 101.148 307.454

(0.081%) (0.060%) (0.047%) (0.065%) (0.053%)

SOLV
2347.659 9544.219 29570.941 154695.416 576922.149

(99.213%) (99.358%) (99.459%) (99.411%) (99.452%)
Total 2366.283 9605.931 29731.901 155611.971 580101.103

Table 6.10: Timing in seconds of each routine executed on CPU platform with different

nodal points for the 3D lid-driven cavity flow problem investigated at Re= 400. The value

is ”()” denotes the relative time.

M1 M2 M3 M4 M5

DATA
4.118 17.706 49.514 343.546 885.999

(0.049%) (0.066%) (0.062%) (0.063%) (0.061%)

MATX
11.996 36.551 82.742 577.879 1568.655

(0.142%) (0.136%) (0.104%) (0.106%) (0.108%)

NORB
0.374 1.029 2.745 27.258 87.148

(0.004%) (0.004%) (0.004%) (0.005%) (0.006%)

PREC
1.918 5.070 12.027 70.872 334.066

(0.023%) (0.019%) (0.015%) (0.013%) (0.023%)

SOLV
8403.321 26834.044 79235.325 544148.948 1449582.869

(99.781%) (99.776%) (99.815%) (99.813%) (99.802%)
Total 8421.727 26894.400 79382.353 545168.143 1452458.737

Table 6.11: Timing in seconds of each routine executed on CPU platform with different

nodal points for the 3D lid-driven cavity flow problem investigated at Re = 1000. The

value is ”()” denotes the relative time.
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M1 M2 M3 M4 M5
DATA 0.321 0.505 0.716 1.298 1.989
ECOL 0.217 0.373 0.609 0.921 1.879
HTOD 0.246 0.385 0.533 0.929 1.424
MATX 2.037 3.509 4.541 8.128 13.039
NORB 0.054 0.074 0.093 0.161 0.239
PREC 0.797 1.628 1.809 3.158 4.966
SOLV 253.187 508.984 895.346 3254.107 5317.635
DTOH 0.005 0.008 0.008 0.015 0.022
Total 256.864 515.466 903.655 3268.717 5341.193

Table 6.12: Timing in seconds of each routine executed on a hybrid CPU/GPU platform

with different nodal points for the 2D lid-driven cavity flow problem investigated at Re =

1000

M1 M2 M3 M4 M5
DATA 0.333 0.569 0.873 1.334 2.004
ECOL 0.217 0.373 0.609 0.921 1.879
HTOD 0.266 0.420 0.581 1.014 1.593
MATX 2.318 3.441 5.151 9.173 14.544
NORB 0.051 0.082 0.101 0.169 0.254
PREC 0.904 1.352 2.041 3.528 5.540
SOLV 754.137 1717.714 2410.355 5553.297 10965.770
DTOH 0.002 0.004 0.011 0.019 0.031
Total 758.228 1723.955 2419.722 5569.455 10991.615

Table 6.13: Timing in seconds of each routine executed on a hybrid CPU/GPU platform

with different nodal points for the 2D lid-driven cavity flow problem investigated at Re =

5000
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M1 M2 M3 M4 M5
DATA 11.882 31.178 92.289 550.847 2303.337
ECOL 1.232 13.587 76.736 837.616 4566.336
HTOD 1.729 5.620 7.703 43.606 70.603
MATX 22.585 75.138 167.243 625.483 1569.951
NORB 0.005 0.014 0.025 0.072 0.176
PREC 2.804 11.469 24.521 82.362 193.155
SOLV 176.580 700.007 2130.097 10348.068 33337.453
DTOH 0.002 0.007 0.023 0.070 0.110
Total 216.819 837.020 3498.637 11650.508 37474.785

Table 6.14: Timing in seconds of each routine executed on a hybrid CPU/GPU platform

with different nodal points for the 3D lid-driven cavity flow problem investigated at Re =

400

M1 M2 M3 M4 M5
DATA 11.984 30.875 90.088 536.819 2356.922
ECOL 1.232 13.587 76.736 837.616 4566.336
HTOD 1.713 2.787 11.554 36.621 65.632
MATX 23.374 61.842 151.328 694.178 1757.023
NORB 0.007 0.010 0.024 0.065 0.132
PREC 3.207 0.292 24.351 73.607 169.439
SOLV 642.055 1969.218 5723.879 33861.239 71861.279
DTOH 0.004 0.006 0.021 0.072 0.098
Total 683.576 2078.671 6077.981 36040.217 80776.861

Table 6.15: Timing in seconds of each routine executed on a hybrid CPU/GPU platform

with different nodal points for the 3D lid-driven cavity flow problem investigated at Re =

1000

136



M1 M2 M3 M4 M5
CPU 1365.057 2850.348 5320.078 14173.739 32047.025
CPU/GPU 256.864 515.466 903.655 2368.717 5341.193
Speedup 5.314 5.530 5.887 5.984 6.000

Table 6.16: Comparisons of the total computation time(s) and the speedup for the 2D

lid-driven cavity flow problem investigated at Re = 1000

M1 M2 M3 M4 M5
CPU 4029.610 8250.572 14127.115 34027.644 66933.028
CPU/GPU 758.228 1423.955 2419.722 5569.455 10965.770
Speedup 5.315 5.794 5.838 6.110 6.104

Table 6.17: Comparisons of the total computation time(s) and the speedup for the 2D

lid-driven cavity flow problem investigated at Re = 5000

M1 M2 M3 M4 M5
CPU 2366.283 9605.931 29731.901 155611.971 580101.103
CPU/GPU 216.819 837.020 2498.637 11650.508 37474.785
Speedup 10.914 11.476 11.899 13.356 15.479

Table 6.18: Comparisons of the total computation time(s) and the speedup for the 3D

lid-driven cavity flow problem investigated at Re = 400

M1 M2 M3 M4 M5
CPU 8421.727 26894.400 79382.353 545168.143 1452458.737
CPU/GPU 683.576 2078.617 6077.981 36040.217 80776.861
Speedup 12.320 12.939 13.061 15.216 17.980

Table 6.19: Comparisons of the total computation time(s) and the speedup for the 3D

lid-driven cavity flow problem investigated at Re = 1000
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Figure 6.1: Comparison of the peak performance of the CPUs and the GPUs

Figure 6.2: Comparison of the memory bandwidth of the CPUs and the GPUs
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Figure 6.3: Basic structure of the two investigated typical processors [94]: (a) CPU ; (b)
GPU

Figure 6.4: Basic structure of the Kepler K20 architecture.
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Figure 6.5: Schematic of the CUDA programming model.
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Figure 6.6: Illustration of the 2D mesh coloring strategy in four color-element groups
without sharing the same global node.
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Figure 6.7: Illustration of the 3D mesh coloring strategy in eight color-element groups
without sharing the same global node.
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Figure 6.8: Distribution of all element matrices in global memory to satisfy the global
memory coalescing.

Figure 6.9: Extension of element matrix to satisfy the global memory coalescing condi-
tion.
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Figure 6.10: Illustration of the inner product operation on GPU

Figure 6.11: Flow chart for the developed code executed on a hybrid CPU/GPU platform.
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Figure 6.12: Comparison of the predicted mid-sectional velocity profiles for the lid-driven
cavity problem considered in Sec. 6.8.3. (a)-(b) 2D problems ; (c)-(d) 3D problems.
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145



Chapter 7

Applications

In previous chapters, we focused on developing a new finite element model for the

simulation of incompressible fluid flow and heat transfer problems. The justification of

using the proposed finite element model has been demonstrated through the several an-

alytical verification and benchmark validation problems. In this chapter, the proposed

finite element model will be applied to investigate some practical flow problems. In order

to obtain the results quickly, all the calculations will be executed on CPU/GPU platform.

7.1 Three-dimensional 90 bend curved duct flow prob-
lem

Flow in curved ducts can be found in piping system, air conditioning, centrifugal pumps,

aircraft intakes, river bends and cooling coils of heat exchanges. Their practical signifi-

cance has motivated considerable research effort in the past. The destabilizing centrifugal

and viscous (Tollmien-Schliichting) instabilities can be both present and they may fur-

thermore interact with each other in the case of curved geometry. Due to nonlinear inter-

action between two instability mechanisms, it is highly possible that fluid flows in bent

ducts might proceed prematurely from transition to turbulence. Advancing our under-

standing of the three-dimensional nature of the curved duct flow is, thus, of fundamental

importance.

A main difference between curved and straight duct flows is the generation of sec-

ondary flow within the elbow region. It was firstly observed by Eustice in curved pipe

[107,108]. Later on, the experimentally observed phenomena were analytically confirmed
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by Dean [109]. The secondary flow motion that makes the flow in curved ducts differ sig-

nificantly from that seen in straight ducts. Secondary flow phenomena depends upon the

Dean number, which represents the ratio of centrifugal force to the viscous force. Sec-

ondary flow results in a pressure loss, the spatial redistribution of streamwise velocity and

increased heat transfer with the duct. In addition, a much larger pressure drop, better mix-

ing, and non-uniform wall shear stress are the major features of the fluid flow in curved

ducts.

In the past decades, numerous studies of curved duct with rectangular or circle cross

sections have been investigated. Due to the effects of geometry, the flow problems in

rectangular curved ducts is more involved than those in the circle ducts. However, some

useful insights are usually impossible to obtain in experiments. One way to obtain the

secondary flow insight is to exploit the computational fluid dynamics technique. Study of

this problem is particularly suitable to perform numerical simulation.

7.1.1 Problem description and validation

The curved duct with an unit rectangular cross-section schematically shown in Fig. 7.1

has a 90◦ bend of mean radius Rc = 2.3, is characterized by a dimensionless parameter

δ̄(≡ ro/ri = 1.556). This geometric parameter plays an important role in affecting the

balance of inertia, viscous, and centrifugal force. The elbow has upstream and down-

stream straight extensions. The downstream extension has a length 14 times the hydraulic

diameter D(= 1). It is, thus, rational to specify a fully-developed flow profile at the trun-

cated outlet plane EFGH. Deflection of the prescribed inlet velocity may generate a strong

transverse pressure gradient and, in turn, influence the streamwise pressure gradient. This

can explain why the upstream extension is chosen to have a length of 2. With U = 1 as

the characteristic velocity (inflow velocity), D a characteristic length and ν the fluid vis-

cosity, the Reynolds number is obtained as Re = 790. The corresponding Dean number

De, which is another dimensionless parameter used in the study of secondary flow, was

368.

The flow profile which is imposed at the inlet plane is taken as the fully-developed
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laminar solution for a duct with a rectangular cross section [110].

u(y,z)=
48
π3

∑
n=1,3,5,...

(−1)
n−1

2
(

1− cosh(nπy/2h)
cosh(nπ/2)

)cos(nπz/2h)
n3

1− 192
π5 ∑

n=1,3,5,...

tanh(nπ/2)
n5

(7.1)

where h is the half-height of duct. No-slip condition is imposed at all duct walls and the

traction-free condition is prescribed at the outlet plane.

In view of the possibility of asymmetric solution, calculation is performed in the entire

duct. The present calculations were performed in a non-uniform grid distribution. Com-

parison of the streamwise velocity profiles at different planes in Fig. 7.3 demonstrates that

the calculation carried out in a grid involving 410375 nodal points is adopted according

to the grid independence test. The residual reduction profile is plotted in Fig. 7.2.

For the validation purpose, we have compared the present finite element GPU solu-

tions with the experimental data of Humphrey [111] and numerical data of Sotiropou-

los [112]. Comparisons of the streamwise velocity profiles uθ(r) within the elbow region

was made at two planes y = 0.25 and y = 0.5, respectively. Good agreement is shown

in Fig. 7.4 except at the plane θ = 60◦. Like many numerical results have indicated, the

reason for the discrepancy between the experimental and predicted results still remains

unclear. Moreover, the velocity profiles uθ(r) in the radial direction were also compared

at different angle. As Fig. 7.5 shows, the agreement between the present numerical and

experimental data is good except in the case of θ = 60◦.

7.1.2 Numerical results

Discussion of the predicted numerical result begins with the axial flow development

within the elbow region. In Fig. 7.4, the velocity profile in the vicinity of inner wall

undergoes a rapid decrease, thus, forming a step-like profile. This results in a shift of

the maximum axial velocity towards the outer wall due to the centrifugal force. Farther

downstream, this step-like velocity profile continuously eroded to form a new local max-

imum and, thus, forming the M-shaped velocity profile with two local maximums. This
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flow phenomenon was experimentally confirmed by Humphrey. In addition, the step-like

velocity profile near the inner wall was also experimentally observed by Agrawal [113]

and numerical simulated by Soh [114].

Fig. 7.6 shows the pressure contours p(r) at three different planes. In Fig. 7.6, the

difference between the high pressure near outer wall and low pressure near the inner wall

leads to an inwardly directed pressure gradient. As the flow enters the curved duct, an

acceleration flow develops immediately in regions near the inner wall due to the inwardly

directed pressure gradient. Conversely, deceleration flow will occur in regions near the

outer wall because of the adverse pressure gradient established in the downstream region

after about θ = 0◦. The imbalance of inwardly pressure gradient and centrifugal force

drives fluid flow in the elbow region to move toward to the outer wall and return to the

inner wall along the duct wall, resulting in a vortex pair. One vortex is symmetric to the

other with respect to the plane of symmetry. The axial flow is superimposed over the

secondary flow, thereby forming a flow that is of substantially three-dimensional nature

in the elbow region, as schematically shown in Fig. 7.7. Also, the predicted velocity

vectors are plotted at different chosen planes in Fig. 7.8 for illustrating the formation of

the secondary flow patterns.

7.2 Three-dimensional backward facing step flow prob-
lem

Fluid flow in the channel with flow separation, flow reattachment and multiple recircu-

lation bubble are commonly encountered in many real flow problems. Some examples

are the flow over airfoils at large angle of attack, channel flow with area being suddenly

increased, and the flow in heat transfer devices. Among this type of flow problem, the

backward-facing step flow problem was regarded as having the simplest geometry while

retaining many rich and interesting flow phenomena. This flow problem has been ex-

tensively studied, for instance, under different Reynolds numbers [115], step height and

expansion ratio [116], inlet entrance effect [62, 117] and inflow/outflow boundary condi-

tion [57, 58, 118]. Armaly et al. [119] have conducted the experiments on the backward-
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facing step flow and have presented valuable experimental benchmark data. This work

was extensively employed to validate and verify numerical solutions. It is also known

from this study that as the Reynolds number is greater than 400 the flow becomes three-

dimensional, yielding different results than those obtained in two-dimensional channel.

7.2.1 Problem description and numerical results

In this study, problem geometry and flow conditions reported by Armaly are considered

due to the available experiment data for making a direct comparison of results. In Fig. 7.9,

the channel upstream height, h, is 1 and the channel downstream height H is 1.9423, giv-

ing an expansion ratio H/h = 1.9423 and the step has a height S = 0.9423. The channel

width is 35h and the downstream length Ld = 50h. The fully-developed analytical veloc-

ity profile with the mean velocity umean = 1 is imposed at the inlet boundary. No-slip

condition is imposed at the channel walls and traction-free condition is imposed at the

channel outlet plane. In this study, the full-scaled calculation is performed rather than in

half channel with the symmetric mid-plane. The calculations at Re = 100, 389, and 1000

are carried out in a grid involving 496131 nodal points. The residual reduction profiles

for the cases Re=100 and 389 are plotted in Fig. 7.10.

For the sake of validation purpose, the streamwise velocity profiles for Re = 100,389

and 1000 at mid-plane are plotted in Fig. 7.11 Included in the same figure are the exper-

imental data of Armaly [119] and the two-dimensional numerical results for comparative

purpose.

In case the Reynolds number is less than 400, there is an excellent agreement between

the two- and three-dimensional predicted solutions and the experimental data. These

results reveal that the channel width 35h is sufficient wide to ignore the left and right-wall

effect in the immediate vicinity of mid-plane.

When the Reynolds number is larger than 400, only the predicted two-dimensional

solutions is particular apparent in the range of 10h≤ x≤ 35h. This result was also pointed

out by Chiang et al. and they stated that the main reason of this discrepancy is due to the

effect of roof eddy in the three-dimensional analysis
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Moreover, the predicted reattachment lengths x1 at the mid-plane is compared with the

experimental data of Armaly [119]. The good agreement in the Reynolds number range

of 100≤ Re≤ 800 in Fig. 7.12.
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Chapter 8

Concluding Remarks

In this study, we have focused on developing a new GPU-based parallel finite element

model to predict two- and three-dimensional incompressible viscous flow and heat trans-

fer problems. The developed model is endowed with the minimized wavenumber error

property and an oscillations suppressant capability to suppress erroneous oscillations aris-

ing from the non-symmetric convection term at high Reynolds numbers. The LBB sat-

isfied interpolation functions are chosen to prevent oscillation of the computed pressure

fields. Good agreements between the numerical results and the solution to the benchmark

problems show that the proposed finite element model is stable and reliable.

In the three-dimensional mixed finite element formulation, the use of an iterative

solver may fail for solving the unsymmetric and indefinite finite element equations. In

order to enhance the stability, we advocated the use of normalization strategy and the

preconditioned conjugate gradient solver to increase stability during convergence. Two

polynomial-based pre-conditioners for the normalized system are presented to reduce the

increasing condition number due to the normalization procedure. To avoid assemblying

the global matrix, the use of EBE technique and the implementation of boundary condi-

tion on element-level matrices are also presented. The efficiency of the proposed strategy

is confirmed via several numerical experiments.

With the advent of CUDA, the utilization of GPU devices for performing general sci-

entific and engineering computation becomes a possibility. With recent GPU hardware,

such as NVIDIA’s Kepler architecture used in this thesis, the finite element parallel calcu-

lations were executed. Some optimization strategies are introduced in order to maximize
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the GPU’s computational power. We believe that the true potential of GPU can be ef-

fectively tapped as the problem sizes increase. The future work of this topic is to extend

the computation from single CPU to multiple CPUs. This can be done via the domain

decomposition method and MPI framework.

164



Bibliography

[1] R. Aris, Vector, Tensor, and the basic equations of fluid mechanics, Prentice-Hall

Cliffs, Nj, 1962.

[2] G. K. Batchelor, An introduction to fluid dynamics, Cambridge University Press,

1967.

[3] A. J. Chorin, J. E. Marsden, A mathematical introduction to fluid mechanics,

Springer-Verlag press, New York, 1998.

[4] C. A. J. Fletcher, Computational Techniques for Fluid Dynamics Volume I, Springer-

Verlag press, New York, 1990.

[5] R. H. Pletcher, J. C. Tannehill, D. Anderson, Computational fluid mechanics and Heat

transfer, CRC press, 2012.

[6] R. Currant, Variational methods for the solution of problems of equilibrium and viba-

tion, Bulletin American Mathematical Society, pp.1-23, 1943.

[7] S. C. Brenner, L. R. Seott, The mathematical theory of finite element method,

Springer-Verlag press, New York, 1994.

[8] P. G. Ciarlet, The finite element method for elliptic problem, Holland North Amster-

dam, 1978.

[9] G. S. Almasi, Highly Parallel Computing, Benjamin-Cummings publisher, Redwood

city publishers, 1998.

165



[10] C. Johnson, Numerical solution of partial differential equations by the finite element

method, Cambridge University Press, 1992.

[11] J. N. Reddy, D. K. Gartling, The finite element method in heat transfer and fluid

dynamics, CRC press, 2010.

[12] A. J. Baker, Finite element computational fluid mechanics, McGraw-Hill, New York,

1984.

[13] L. P. Franca, G. Hauke, A. Masud, Revisiting stabilized finite elements for the

advective-diffusive equation, Computer Methods in Applied Mechanics and Engi-

neering, Vol. 195, pp. 1560-1572, 2006.

[14] J. Donea, A. Huerta, Finite element methods for flow problems, John Wiley press,

2003.

[15] M. J. Quinn, Parallel programming in C with MPI and OpenMP, McGraw-Hill, New

York, 2004.

[16] NVIDIA, CUDA (Compute Unified Device Architecture) programming guide,

NVIDIA, 2007.

[17] H. Elman, D. Silvester, A. Wathen, Finite elements and fast iterative solver with ap-

plications in incompressible fluid dynamics, Oxford University Press, United King-

dom, 2014.

[18] L. Navier, Mémoire sur les lois du mouvment des fluides, Mén. del’Acad. des Sci.

pp. 389, vi(1822).

[19] G. G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, and of the

Equilibrium and Motion of Elastic Solids, Mathematical and Physical Papers, Vol. 1,

pp. 75-129, 2009.

[20] L. Quartapelle, Numerical solution of the incompressible Navier-Stokes equations,
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[106] D. Komatitsch, D. Michéa, G. Erlebacher, Porting a high-order finite element earth-

quake modeling application to NVIDIA graphics cards using CUDA, Journal of Par-

allel and Distributed Computing, Vol. 69, pp. 451-460, 2009.

[107] J. Eustice, Flow of water in curved pipe, Proceeding of the Royal Sociery of London

Series A, Vol. 84, pp. 107-118, 1910.

[108] J. Eustice, Experimnets on stream-line motion in curved pipes, Proceeding of the

Royal Society of London Series A, Vol. 85, pp. 119-131, 1911.

[109] W. R. Dean, The stream-line motion of fluid in a curved pipe, Philosophie Magazin,

Vol. 20, pp. 208-223, 1927.

176



[110] R. K. Shah, A. L. London, Laminar flow forced convection in ducts, Academic

press, New York, San Fransisco, London , 1978.

[111] J. A. C. Humphrey, A. M. K. Taylor, J. H. Whitelaw, Laminar flow in a square duct

of strong curvature, Journal of Fluid Mechanics, Vol. 83, pp. 509-527, 1977.

[112] F. Sotiropoulos, W. J. Kim, V. C. Patel, A computational comparison of two in-

compressible Navier-Stokes solvers in three-dimensional laminar flows, Computer &

Fluids, Vol. 23(4), pp. 627-646, 1994.

[113] Y, Argawal, L. Talbot, K. Gong, Laser anemometer study of flow development in

curved circular pipe, Journal of Fluid Mechanics, Vol. 85, pp. 497-518, 1978.

[114] W. Y. Soh, S. A. Berger, Laminar entrance flow in a curved pipe, Journal of Fluid

Mechanics, Vol. 148, pp. 109-135, 1984.

[115] I. E. Barton, A numerical study of flow over a confined backward-facing step,

International Journal for Numerical Methods in Fluids, Vol. 21, pp. 653-665, 1995.

[116] G. Biswas, M. Breuer, F. Durst, Backward-facing step flows for various expansion

ratios at low and moderate Reynolds number, Journal of Fluid Engineering, Vol. 126,

pp. 362-374, 2004.

[117] M. A. Cruchaga, A study of the backward-facing step problem using generalized

streamline formulation., Communications in Numerical Methods in Engineering, Vol.

14, pp. 697-708, 1998.

[118] T. C. Papanastasiou, N. Malamataris, K. A. Ellwood, A new outflow boundary

condition, International Journal for Numerical Methods in Fluids, Vol. 14, pp. 587-

608, 1992.

[119] B. F. Armaly, F. Durst, J. C. F. Pereira, B. Schönung, Experimental and theoretical

investigation of backward-facing step flow, Journal of Fluid Mechanics, Vol. 127, pp.

473-496, 1983.

177



[120] H. C. Ku, R. S. Hirsh, T. D. Taylor, A. P. Rosenberg, A pseudospectral matrix

element method for solution of three-dimensional incompressible flow and its parallel

implementation, Journal of Computational Physics, Vol. 83, pp. 260-291, 1989.

[121] B. N. Jiang, L. J. Hou, T. L. Lin, L. A. Povinelli, Least-squares finite element

solution for three-dimensional backward-facing step flow, International Journal of

Computational Fluid Dynamics, Vol. 4, pp. 1-19, 1995.

[122] P. T. William, A. J. Baker, Numerical simulations of laminar flow over a 3D

backward-facing step, International Journal for Numerical Methods in Fluids, Vol.

24, pp. 1159-1183, 1997.

178


